RADAR SYSTEMS

III Semester: ECE									
Course Code	Category	Hours / Week Cred			Credits	Maximum Marks			
AEC521	Core	L	Т	Р	С	CIA	SEE	Total	
		3	0	0	3	30	70	100	
Contact Classes: 45	Tutorial Classes:15	Practical Classes: Nil			1	Total Classes: 60			

OBJECTIVES:

The course should enable the students to:

- I. Learning and understanding of operation of basic types of radar systems.
- II. Learning and understanding of detection and processing of radar signals
- III. Learning and understanding of various types of targets, interferences, noises and losses encountered in radars.
- IV. Learning and understanding of some important aspects radar transmitters and receivers

COURSE OUTCOMES:

- CO 1 Learning and Understanding of Pulse radar systems
- CO 2 Understanding of CW and FMCW radar systems.
- CO 3 Exploration of Moving Target Indication and Pulse Doppler Radar systems
- CO 4 Analysis of Target detection techniques and Understanding of Tracking Radar
- CO 5 Discussion of subsystems of a typical Radar Transmitter and Receiver

COURSE LEARNING OUTCOMES:

AEC521.01	Learning of the operating principles of Pulse & CW radars
AEC521.02	Understanding of various types of radar targets: point and fluctuating
AEC521.03	Appreciate various types of clutters, noises, losses involved in radar systems
AEC521.04	Preliminary System design of Pulse and Pulse Compression radars
AEC521.05	Preliminary System design of CW and FM-CW radars
AEC521.06	Appreciate various interferences encountered in radar target detection
AEC521.07	Understanding of the operating principles of MTI & Pulse Doppler radars
AEC521.08	Preliminary System design of MTI and Pulse Doppler radars
AEC521.09	Understanding of the operating principles of search and tracking radars
AEC521.10	Understanding & Analysis of detection techniques of target echo signal
AEC521.11	Understanding of tracking techniques of target echo signal
AEC521.12	Understanding of different subsystems of a typical Radar transmitter
AEC521.13	Appreciate the concept of Noise Figure and the estimating the performance of radar receivers
AEC521.14	Understanding of different subsystems of a typical Radar Receiver

INTRODUCTION

Radar frequencies and applications; Maximum unambiguous range; Radar wave forms; Radar equation; Radar block diagram and operation; Basic pulsed radar system; Moving target indication; Prediction of range performance; Minimum detectable signal; Receiver noise and SNR; Radar cross section of targets; Cross section fluctuations, transmitter power, PRF and range ambiguities; system losses, related problems.

MODULE - II CW AND FREQUENCY MODULATED RADAR

Doppler Effect, CW Radar: Block Diagram; Isolation between transmitter and receiver; Non-zero IF receiver, receiver bandwidth requirements, applications of CW radar, illustrative problems; FM-CW radar, range and Doppler measurement, block Diagram and characteristics (Approaching/ Receding Targets), FM-CW altimeter, multiple frequency CW radar

MODULE - III MOVING TARGET INDICATION AND PULSE DOPPLER RADAR Classes: 09

PART:1

MODULE - I

Introduction to Doppler and moving target indication radar, principle and block diagram of moving target indication, power amplifier transmitter, delay line cancellers, filter characteristics, blind speeds, double cancellation,

PART:2

staggered pulse repetition frequencies, MTI radar parameters, moving target detector; limitations to MTI performance, non-coherent MTI. Pulse doppler radar; radar Equation for pulsed radar; moving target indication versus pulse doppler radar

MODULE - IV TRACKING RADAR AND RADAR DETECTION THEORY

Introduction, single target tracking: range, Doppler and angle measurement, track while scan, angle tracking: sequential lobing, conical scan, monopulse; Tracking radar: Amplitude comparison monopulse (one- and two coordinates), phase comparison monopulse, tracking in range, acquisition and scanning patterns, comparison of trackers. matched filter receiver, response characteristics and derivation, correlation function and cross-correlation receiver, efficiency of nonmatched filters, matched filter with non-white noise.

MODULE - V RADAR RECEIVERS

Noise figure and noise temperature; Displays: Types; Duplexers, branch type and balanced type, circulators as duplexers; Introduction to phased array antennas: Basic concepts, radiation pattern, beam steering and beam width changes, series versus parallel feeds, applications, advantages and limitations.

TEXTBOOKS:

- 1. Merrill I Skolnik, —Introduction to Radar Systems^I, TMH Special Indian Edition, 2nd Edition, 2007.
- 2. V.S.Bagad, —Radar Systems, Technical Publications, 1st Edition, 2009

REFERENCES:

1. Merrill I Skolnik, -Radar Handbook, McGraw-Hill Professional Publishing, 3rd Edition, 2008

Classes: 09

Classes: 09