SPACE MECHANICS

VII Semester: AE								
Course Code	Category	Hours / Week		Credits	Maxir	Maximum Marks		
	Gerra	L	Т	Р	С	CIA	SEE	Total
AAEU10	Core	3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Pı	actical	Classes:	Nil	Total	Classes	: 60
COURSE OBJECTIVES	S: e the students to:							
I. Impart the knowledge transformations, Point	in two-body, restricted three- care surface sections.	body an	d n-bod	y probler	n, Hamilto	niandyna	mics, ca	nonical
II. Analyze the basic NewIII. Provide necessary knowapproaches for handli	wtonian dynamics and spaceer owledge to study the satellite a ng coordinate transformations.	aft altitu und inter	ide dyna planetai	amics. y trajecto	ories and F	ormal		
IV. Solve the orbital problems related to Earth satellite orbits using Hamilton's and generate interplanetary orbits in the frame work of restricted three-body problem.								
COURSE OUTCOMES	(COs):							
CO 1 : Understand and de	velop basic concepts in Space	Mechai	nics					
CO 2 : Obtain a clear understanding of the Two Body Problem.								
CO 3 : Develop a clear un	derstanding of the perturbed s	atellite o	orbit, an	d its vari	ous implica	ations.		
CO 4 : Develop a Comple	te understanding of the Ballist	ic Missi	ile Traie	ctories	-			
CO_5 : Describe the solar	system reference frames and	coordir	nate svet	eme				
CO 5 . Desende die solar	system, reference frames, and	coordin	late syst	cm3.				
COURSE OUTCOMES	(COs):							
1. Explain the celestial sphere, the ecliptic, a motion of vernal equinox, sidereal time, solar time, standard time, and the Earth's atmosphere								
 Analyze the concepts of discrete and continuous random variables, probability distributions, expectation and variance. Recognize and describe the circular restricted three body problem, libration points, and relative motion in the 								n the
N-body problem.Derive and describe the Equations of motion. Specifically, the general characteristics of motion for different								erent
 5. Define and describe the expansions in elliptic motion, and orbital elements. 								
6. Explain the relation between orbital elements and position and velocity. Launch vehicle ascent trajectories,								
 Discuss the dependence of orbital parameters on in-plane injection parameters, and launch vehicle performances, and orbit deviations due to injection errors. 								
8. Explain special and general perturbations, such as the Cowell's method, & Encke's method.								
 Understand the method of variations of orbital elements, and the general perturbations approach Define the two-dimensional interplanetary trajectories fast interplanetary trajectories 								
11. Understand 3D interplanetary trajectories								
12. Discuss about the launch of interplanetary spacecraft, and understand the trajectory of the target planet.								
13. Define and understand the boost phase, the ballsuc phase, trajectory geometry and optimal flights. 14. Define the time of flight and the re-entry phase.								
15. Define the position of the impact point and the influence coefficients.								
16. Understand the equat	ions of motion.	constan	t tancor	tial thrus	t (Charact	aristics of	the mo	tion)
Linearization of the e	quations of motion, and Perfor	rmance	analysis	an unus		LISUUS OI		uon <i>)</i> ,

UNIT-I	INTRODUCTION TO SPACE MECHANICS	Classes: 10

Basic concepts: The solar system, Reference frames and coordinate systems, The celestial sphere, The ecliptic, Motion of vernal equinox, Sidereal time, Solar Time, Standard Time, The earth's atmosphere. The many body problem, Lagrange-Jacobi identity. The circular restricted three body problem, Libration points, Relative Motion in the N-bodyproblem.

UNIT-II THE TWO BODY PROBLEM

Ι

Classes: 09

Equations of motion-General characteristics of motion for different orbits-Relations between position and time for different orbits, Expansions in elliptic motion, Orbital Elements. Relation between orbital elements and position and velocity: Launch vehicle ascent trajectories, General aspects of satellite injection. Dependence of orbital parameters on in-plane injection parameters, Launch vehicle performances, Orbit deviations due to injection errors.

UNIT-III	PERTURBED SATELLITE ORBIT	Classes: 09				
Special and general perturbations- Cowell's Method, Encke's method. Method of variations of orbital elements, General perturbations approach.						
Two-dimensional interplanetary trajectories, Fast interplanetary trajectories, Three dimensional interplanetary trajectories. Launch of interplanetary spacecraft. Trajectory about the target planet.						
UNIT-IV	VIT-IV BALLISTIC MISSILE TRAJECTORIES					
The boost phase, the ballistic phase, Trajectory geometry, optimal flights. Time of flight, Re-entry phase. The position of the impact point, Influence coefficients.						
UNIT-V	LOW-THRUST TRAJECTORIES	Classes: 08				
Equations of Motion. Constant radial thrust acceleration, Constant tangential thrust (Characteristics of the motion), Linearization of the equations of motion, Performance analysis.						
Text Books	:					
 J. W.Cornelisse,-RocketPropulsionandSpaceflightDynamics ,PitmanPublishing,London,1979. WilliamE.Wiesel,-SpaceflightDynamics ,McGraw-Hill,3rdEdition,NewDelhi,2010. 						
Reference	Books:					
 VladimirA.Chobotov,-OrbitalMechanicsI,AIAAEducationSeries,USA,3rd Edition,2002. Kaplan, Marshall H., -Modern Spacecraft Dynamics and ControlI, John Wiley & Sons, New York, 1976. Wiesel, William E.,-Spaceflight DynamicsI, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2nd Edition2007. David A. Vellado, -Fundamentals of Astrodynamics and ApplicationsI, Springer, Germany, 3rdEdition,2007. 						
Web Refer	ences:					
 https://soaneemrana.org/onewebmedia/INTRODUCTION%20TO%20SPACE%20DYNAMICS1 https://nptel.ac.in/courses/101105030/ 						
E-Text Boo	oks:					
 https://store.doverpublications.com/0486651134.html https://worldcat.org/title/introduction-to-space-dynamics/oclc/867680515 						