

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTOR

Course Title	THEORY	THEORY OF COMPUTATION							
Course Code	AIT002	AIT002							
Programme	B.Tech	B.Tech							
Semester	IV C	IV CSE IT							
Course Type	Foundatio	Foundation							
Regulation	IARE - R16								
		Theory	Practical						
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits				
	3	-	3	-	-				
Chief Coordinator	Dr. K Srir	ivasa Reddy, Profe	essor and HOD	, IT					
Course Faculty	Mr. Ch Su	Mr. Ch Suresh Kumar Raju, Assistant Professor, CSE							

I. COURSE OVERVIEW:

Introduction to the theory of computation, including models of computation such as Turing machines; theory of programming languages, including grammars, parsing, syntax and semantics. This course in reached to student by power point presentations, lecture notes, and assignment questions ,previous model question papers, multiple choice questions and question bank of long and short answers.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACS002	II	Data Structures	4
UG	AHS013	III	Discrete Mathematical Structures	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
THEORY OF COMPUTATION	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	>	Quiz	~	✓ Assignments		MOOCs		
~	LCD / PPT	/	Seminars	×	✗ Mini Project		Videos		
×	Open Ended Experiments								

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50) %	To test the objectiveness of the concept.
50) %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Total Marks			
Type of Assessment	CIE Exam	Quiz / AAT	1 Otal Marks		
CIA Marks	25	05	30		

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Assignments
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	3	Lectures, Assignments
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Assignments
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Guest Lettuces
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Seminars

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.	2	Lectures, Assignments
PSO 2	Software Engineering Practices: The ability to apply standard practices and strategies in software service management using open-ended programming environments with agility to deliver a quality service for business success	2	Assignments
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	1	Guest Lectures

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course s	should enable the students to:
I	Comprehend abstract, mathematical models of computation and use them to solve computational problems.
II	Interpret the relationship between formal languages in Chomsky's hierarchy and different Machines.
III	Analyze and explain the behavior of push-down automata.
IV	Understand the limits and capacities of Turing's machines to recognize languages.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	PO's Mapped	Strength of Mapping		
AIT002.01	CLO 1	Use the definitions and notations for sets, relations and functions in defining and study Finite Automata	PO1; PO2	3	
AIT002.02	CLO 2	Knowledge on formal languages and Kleene's Theorem to intend programming languages	PO1; PO2; PO3	2	
AIT002.03	CLO 3	Construct deterministic and nondeterministic finite state automata (DFA and NFA) for solving simple decision problems.	PO1; PO2; PO4; PO5	2	
AIT002.04	CLO 4	Perform conversions between nondeterministic finite automata and deterministic finite automata and regular expressions and finite state automata to gain knowledge about formal proofs in computer science	PO1; PO2; PO3; PO4	2	
AIT002.05	CLO 5	Knowledge on recursive definitions of regular languages, regular expressions and the use of regular expressions to represent regular languages	PO1; PO2; PO3; PO4	2	
AIT002.06	CLO 6	Detailed knowledge on the relationship between regular expressions and finite automata	PO2; PO3	2	
AIT002.07	CLO 7	Identify that few languages are not regular by using Pumping lemma	PO4	2	
AIT002.08	CLO 8	Knowledge on Left Linear grammar, Right Linear grammars and converting grammars into Finite Automata.	PO1; PO2; PO5	2	
AIT002.09	CLO 9	Understand the fundamental role played by Context-Free Grammars (CFG) in designing formal computer languages with simple examples	PO2; PO3	2	
AIT002.10	CLO 10	Knowledge on Context-Free Grammars so that able to prove properties of Context-Free Grammars.	PO2	3	
AIT002.11	CLO 11	Identify relationship between regular languages and context-free grammars	PO1; PO2; PO3	2	
AIT002.12	CLO 12	Use the pumping lemma for Context Free Languages to show that a language is not context-free	PO2; PO4	2	
AIT002.13	CLO 13	Understand the equivalence between Context- Free Grammars and Non-deterministic Pushdown Automata	PO1; PO2; PO3	2	
AIT002.14	CLO 14	Understand deterministic Pushdown Automata to parse formal language strings by using (i) top down or (ii) bottom up techniques	PO2; PO4; PO5	2	
AIT002.15	CLO 15	Knowledge on converting Context-Free Grammars into pushdown automata to identify the acceptance of a string by the Context Free Language	PO1; PO2	3	

CLO	CLO's	At the end of the course, the student will	PO's	Strength of
Code		have the ability to:	Mapped	Mapping
AIT002.16	CLO 16	Understand the path processing computation	PO1;	1
		using Turing Machines (Deterministic and	PO2;	
		Non-Deterministic) and Church-Turing	PO4;	
		Thesis in computers.	PO5	
AIT002.17	CLO 17	Knowledge on non-halting Turing Machine	PO1;	1
		accepted by Recursively Enumerable	PO4	
		Languages		
AIT002.18	CLO 18	Understand the power of the Turing Machine,	PO1;	1
		as an abstract automaton, that describes	PO4	
		computation, effectively and efficiently		
AIT002.19	CLO 19	Theory of Computation is important in	PO1;	3
		programming language design, parsers, web-	PO2;	
		scrappers, Natural Language Processing	PO5	
		(NLP), and is at the heart of modern compiler		
		architectures.		
AIT002.20	CLO 20	Process the knowledge and skills for	PO5	2
		employability and to succeed in national and		
		international level competitive exams.		

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)					Progra	am Ot	itcome	es (PO	s)				Program Specific Outcomes (PSOs)		
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2												2	
CLO 2	3	3	2											2	
CLO 3	3	3		2	2								2		
CLO 4	3	2	3	2										3	
CLO 5	2	3	2	2										3	
CLO 6		3	2										2		
CLO 7				3									2		
CLO 8	2	3			2									2	
CLO 9		2	3											2	
CLO 10		3												2	
CLO 11	2	3	2										2	2	1
CLO 12		3		3									2	2	
CLO 13	3	2	2										2	2	
CLO 14		3		2	2									3	
CLO 15	2	3											2	2	

(CLOs)	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 16	3	3		2	2									3	
CLO 17	3			2										1	
CLO 18	3			2									2	3	
CLO 19	3	2			2									3	
CLO 20					1								2		1

^{3 =} High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1; PO2; PO3;PO4; PO5	SEE Exams	PO1;PO2; PO3;PO4; PO5	Assignments	PO1;PO2; PO3;PO4; PO5	Seminars	-
Laboratory Practices	-	Student Viva	-	Mini Project	1	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

•	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	FINITE AUTOMATA

Fundamentals: Alphabet, strings, language, operations; Introduction to finite automata: The central concepts of automata theory, deterministic finite automata, nondeterministic finite automata, an application of finite automata, finite automata with epsilon transitions.

Unit-II REGULAR LANGUAGES

Regular sets, regular expressions, identity rules, constructing finite automata for a given regular expressions, conversion of finite automata to regular expressions, pumping lemma of regular sets, closure properties of regular sets (proofs not required), regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and finite automata, inter conversion.

Unit-III CONTEXT FREE GRAMMARS

Context free grammars and languages: Context free grammar, derivation trees, sentential forms, right most and leftmost derivation of strings, applications.

Ambiguity in context free grammars, minimization of context free grammars, Chomsky normal form, Greibach normal form, pumping lemma for context free languages, enumeration of properties of context free language (proofs omitted).

Unit-IV PUSHDOWN AUTOMATA

Pushdown automata, definition, model, acceptance of context free language, acceptance by final state and acceptance by empty stack and its equivalence, equivalence of context free language and pushdown automata, inter conversion; (Proofs not required); Introduction to deterministic context free languages and

deterministic pushdown automata.

Unit-V TURING MACHINE

Turing machine: Turing machine, definition, model, design of Turing machine, computable functions, recursively enumerable languages, Church's hypothesis, counter machine, types of Turing machines (proofs not required), linear bounded automata and context sensitive language, Chomsky hierarchy of languages.

Text Books:

John E. Hopcroft, Rajeev Motwani, Jeffrey D.Ullman, —Introduction to Automata, Theory, Languages and Computation^{||}, Pearson Education, 3rd Edition, 2007.

Reference Books:

- John C Martin, —Introduction to Languages and Automata Theory, Tata McGraw-Hill, 3rd Edition, 2007
- 2. Daniel I.A. Cohen, —Introduction to Computer Theory, John Wiley & Sons, 2nd Edition, 2004.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes	Reference
110		(CLOs)	
1	Alphabet, strings, language, operations	CLO 1	T1: 1.5-1.6
2	Introduction to finite automata: The central	CLO 1	T1: 2.1-2.2
	concepts of automata theory		
3	Deterministic finite automata	CLO 3	T1: 2.2-2.3
4-5	Nondeterministic finite automata	CLO 3	T1: 2.3-2.4
6	An application of finite automata	CLO 4	T1: 2.4-2.5
7	Finite automata with epsilon transitions	CLO 2	T1: 2.5-2.6
8-9	Finite Automata with output: Moore and Melay Machines	CLO 3	R2:
	-		Chapter 9
10	Regular sets, regular expressions, identity rules	CLO 5	T1: 3.1-3.2
11	Constructing finite automata for a given regular expressions	CLO 5	T1: 3.1-3.2
12-13	Conversion of finite automata to regular expressions	CLO 5	T1: 3.1-3.2
14	Pumping lemma of regular sets	CLO 5	T1: 4.1-4.2
15	Closure properties of regular sets (proofs not required)	CLO 6	T1: 4.1-4.2
16-17	Regular grammars-right linear and left linear grammars	CLO 7	T1: 4.4-4.5
18	Equivalence between regular linear grammar and finite automata, inter conversion.	CLO 7	T1: 4.4-4.5
19	Context free grammar	CLO 8	T1: 5.1-5.2
20-22	derivation trees, sentential forms, right most and leftmost derivation	CLO 9	T1: 5.1-5.2
22	of strings	GY 0.10	TD1 5 4 5 5
23	Ambiguity in context free grammars	CLO 10	T1: 5.4-5.5
24-25	Minimization of context free grammars	CLO 11	T1: 7.4-7.5
26-27	Chomsky normal form, Greibach normal form	CLO 12	T1: 7.4-7.5
28-29	Pumping lemma for context free languages, properties	CLO 13	T1: 7.2-7.3
30	Pushdown automata, definition, model	CLO 14	T1: 6.1-6.2
31-33	Acceptance by final state and acceptance by	CLO 14	T1: 6.2
24.25	empty stack and its equivalence	CI O 15	T1. 6.2
34-35	Equivalence of context free language and pushdown automata, inter conversion.	CLO 15	T1: 6.3
36	Deterministic context free languages and deterministic push down automata	CLO 16	T1: 6.4
37-38	Turing machine: Turing machine, definition, model	CLO 17	T1: 8.1-8.2
39-40	Design of Turing machine, computable functions,	CLO 18	T1: 8.1-8.2

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
41-43	Recursively enumerable languages, Types of Turing machines and	CLO 19	T1: 8.2-8.6
	Church's hypothesis.		
44-45	Linear bounded automata and context sensitive language, Chomsky	CLO 20	R2:
	hierarchy of languages.		Chapter 30

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed Actions	Relevance With POs	Relevance With PSOs
1	Finite automata with output	Seminars / Guest	PO 1, PO 2,	PSO 1, PSO 2
		Lectures / NPTEL	PO 3	
2	Deterministic Pushdown	Seminars / Guest	PO 2, PO 3	PSO 1
	Automata	Lectures / NPTEL		
3	JFLAP Automation Tool	Assignments /	PO 1, PO 3,	PSO 2
		Laboratory	PO 4	
		Practices		

Prepared by: Dr. K Srinivasa Reddy, Professor and HOD, IT

HOD, IT