UNMANNED AIR VEHICLES

Semester : VII										
Course Code	Category	Hours / Week		Credits	Maximum Marks					
AAE506	Elective	L	Т	Р	С	CIA	SEE	Total		
		3	-	-	3	30	70	100		
Contact Classes: 45	Tutorial Classes: Nil	Practical Cla			asses: Nil	Total Classes: 45		45		

OBJECTIVES:

The course should enable the students to:

- I. Introduce to the student about the basic ideas of Unmanned AirVehicles.
- II. Familiarize the students about the aerodynamics and airframeconfigurations.
- III. Accustom the student to the wide variety of unmanned airvehicles.
- IV. Acquaint the student about the various communication and navigation systems of unmanned air vehicles.

COURSE OUTCOMES (Cos):

- CO1: Describe the concept of UAS-system composition and design concepts with some applications of UAS.
- CO2: Understand the concept of aerodynamics, airframe configurations, structures, mechanisms, selection of power-plants, modular construction and ancillary equipment.
- CO3: Explore the concept of Long-endurance, long range, Medium-range, tactical aircraft and aircraft configurations.
- CO4: Describe the concept of communications, Mid-air collision avoidance, communications data rate and bandwidth usage Inertial Navigation Radio Tracking Way-point Navigation.
- CO5: Understand the concept of convertible rotor aircraft payload control, culmon filter and autonomy.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand the unmanned aerial vehicle types based on the design and application
- 2. Understand different elements of UAS (composition) and their importance
- 3. Describe the design concepts of UAS
- 4. Apply the knowledge of selection of the system
- 5. Understand the different types of drags for UAVs
- 6. Describe the range of airframe configurations available for UAVs
- 7. Remember the aerodynamic efficiency factors
- 8. Analyze the structures and mechanical design factors in the design of UAVs
- 9. Understand the design of a UAS-based flight mission.
- 10. Apply the knowledge of different types of power- plants in selection.
- 11. Recognize and recommend potential airframe for long- endurance long-range UAVs
- 12. Apply acquired knowledge and critical thinking skills to select airframe for medium-range, tactical aircraft
- 13. Understand the MUAV types
- 14. Analyze the different types of MAV, NAV and UCAV
- 15. Understand the novel hybrid aircraft configurations and UAVs for Research purpose
- 16. Understand the communication media and radio communication between GCS and aircraft $2 \mid P \mid a \mid a \mid e$

17. Apply the knowledge of regulations to avoid mid-air collision							
18. Understand the technology of communication data rate and bandwidth usage 19. Apply knowledge of GPS							
20. Identify the different navigation systems and tracking							
21. Understand the issues and challenges of control and stability of different types of UAVs							
22. Apply the knowledge of payload control							
23. Ability to underst	tand the role of different sensors and autonomy in control and stability of	UAV systems					
UNIT-I	INTRODUCTION TO UNMANNED AIRCRAFT SYSTEMS	Classes: 10					
The systemic basis of UAS-system composition; Conceptual phase; Preliminary design; Selection of the system; Some applications of UAS.							
UNIT-II	AERODYNAMICS AND AIRFRAME CONFIGURATIONS	Classes: 10					
Lift-induced Drag; Parasitic Drag; Rotary-wing aerodynamics; Response to air turbulence; Airframe configurations scale effects; Packaging density; Aerodynamics; Structures and mechanisms; Selection of power-plants; Modular construction; Ancillary equipment.							
UNIT-III	CHARACTERISTICS OF AIRCRAFT TYPES	Classes: 09					
Long-endurance, long-range role aircraft; Medium-range, tactical aircraft; Close-range /battlefield aircraft; MUAV types; MAV and NAV types; UCAV; Novel hybrid aircraft configurations; Research UAV.							
UNIT-IV	COMMUNICATIONS NAVIGATION	Classes: 08					
Communication media; Radio communication; Mid-air collision (MAC) avoidance; communications data rate and bandwidth usage; Antenna Types NAVSTAR Global Positioning System (GPS) - TACAN - LORAN C - Inertial Navigation - Radio Tracking - Way-point Navigation.							
UNIT-V	CONTROL AND STABILITY	Classes: 08					
HTOL Aircraft - Helicopters - OTE/OTE/SPH - Convertible Rotor Aircraft - Payload Control -Sensors – culmon filter- Autonomy.							
Text Books:							
1. Reg Austin., Unmanned Aircraft Systems, John Wiley and Sons., 2010.							
Reference Books:							
1. Milman&Halkias,—IntegratedElectronicsI,McGrawHill,1999.							
2. Malvino& Leach, —Digital Principles & Applications, McGraw Hill, 1986.							
3. CollinsonR.P.G, -Introductionto Avionicsl, Chapman and Hall, India, 1996.							
4. BernadEtikin, "Dynamic of flight stability and controll, John Wiley, 1972.							
Web References:							
1. www.tc.gc.ca/eng/civilaviation/publications/page-6557.html							
2. www.dhl.com/en/about_us/logistics_insights/dhl_trend_research/							
3. www.books.google.co.in/books?id=guGVDQAAQBAJ&pg=PT3&lpg=PT3&dq							
E-Text Books:							
www.ebookstrust.com/9048197066/Ebooks%20Textbooks%20Handbook%20Of%20Unmanned.							