WIRELESS LANS AND PANS

I Semester: ES								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
		L	Т	P	С	CIA	SEE	Total
BESB03	Core	3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	Practical Classes: Nil				Total Classes: 45		

OBJECTIVES:

The course should enable the students to:

- Learn about First and Second Generation Cellular Systems, Cellular Communications from 1G to3G, Wireless 4G systems.
- II. Understand about importance of Wireless LANs, WLAN Topologies, Transmission Techniques: Wired Networks, Wireless Networks, comparison of wired and Wireless LANs; WLAN Technologies infrared technology, UHF narrowband technology, Spread Spectrum technology.
- III. Learn about Network Architecture, Physical layer, The Medium Access Control Layer; MAC Layer issues: Hidden Terminal Problem and Reliability.

COURSE OUTCOMES (COs):

- CO 1: Describe first and second generation cellular systems and analyze cellular communications from 1G to 3G.
- CO 2: Understand and analyze WLAN topologies and analyze transmission techniques.
- CO 3: Demonstrate network architecture and analyze MAC layer issues and describe the importance of MAC layer applications.
- CO 4: Explore Bluetooth technology and Bluetooth specifications, describe the importance of wireless private area networks.
- CO 5: Develop practical skills in the use of ZigBee components and network topologies.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand and Analyze First and Second Generation Cellular Systems with architectures.
- 2. Analyze Cellular Communications from 1G to 3G with architectures of AMPs, GSM and GPRS.
- 3. Explain Wireless 4G systems & Wireless Spectrum of 4G with increased bandwidth and speed.
- 4. Distinguish Random Access Methods of Pure ALOHA and Slotted ALOHA.
- Describe Carrier Sense Multiple Access (CSMA), Carrier Sense Multiple Access with Collision Detection (CSMA/CD), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).
- 6. Describe importance of Wireless LANs with components such as BSS, stations, ESS, Distributed systems
- 7. Explain WLAN Topologies of infrastructure and adhoc mode of operations.
- 8. Analyze Transmission Techniques and Distinguish wired and wireless LANs.
- 9. Explain Network Architecture of IEEE 802.11 standard for wireless lans and Analyze MAC Layer issues.

- 10.Describe importance of Wireless PANs and explain Bluetooth technology with Specifications and Enhancements.
- 11. Explain Bluetooth interference issues, Traffic Engineering, QoS and Dynamics Slot Assignment.
- 12. Describe IEEE 802.15.3 architecture.
- 13. Understand ZigBee technology, components and network topologies.
- 14.IEEE 802.15.4 LR-WPAN Device architecture: Physical Layer, Data Link Layer, The Network Layer, Applications.

UNIT -I WIRELESS SYSTEM&RANDOM ACCESS PROTOCOLS

Classes: 08

Introduction, First and Second Generation Cellular Systems, Cellular Communications from 1G to3G, Wireless 4G systems, The Wireless Spectrum; Random Access Methods: Pure ALOHA, Slotted ALOHA, Carrier Sense Multiple Access (CSMA), Carrier Sense Multiple Access with Collision Detection (CSMA/CD), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).

UNIT – II WIRELESS LANS

Classes: 10

Introduction, importance of Wireless LANs, WLAN Topologies, Transmission Techniques: Wired Networks, Wireless Networks, comparison of wired and Wireless LANs; WLAN Technologies: Infrared technology, UHF narrowband technology, Spread Spectrum technology.

UNIT – III THE IEEE 802.11 STANDARD FOR WIRELESS LANS

Classes: 08

Network Architecture, Physical layer, The Medium Access Control Layer; MAC Layer issues: Hidden Terminal Problem, Reliability, Collision avoidance.

Congestion avoidance, Congestion control, Security, The IEEE 802.11e MAC protocol.

UNIT - IV WIRELESS PANS

Classes: 10

Introduction, importance of Wireless PANs, The Bluetooth technology: history and applications, technical overview, the Bluetooth specifications, piconet synchronization and Bluetooth clocks, Master-Slave Switch; Bluetooth security; Enhancements to Bluetooth: Bluetooth interference issues, Intra and Inter Piconet scheduling, Bridge selection, Traffic Engineering, QoS and Dynamics Slot Assignment, Scatter net formation.

UNIT -V THE IEEE 802.15 WORKING GROUP FOR WPANS

Classes: 09

The IEEE 802.15.3, The IEEE 802.15.4, ZigBee Technology, ZigBee components and network topologies, The IEEE 802.15.4 LR-WPAN Device architecture: Physical Layer, Data Link Layer, The Network Layer, Applications; IEEE 802.15.3a Ultra wideband..

TEXT BOOKS:

- 1. Carlos de Morais Cordeiro, Dharma Prakash Agrawal, "AdHoc and Sensor Networks", World Scientific, 2011.
- 2. Vijay K.Garg, "Wireless Communications and Networking", Morgan Kaufmann Publishers, 2009.

REFERENCES:

- 1. Kaveh Pahlaram, Prashant Krishnamurthy, "Wireless Networks", PHI, 2002.
- 2. Marks Ciampor, Jeorge Olenewa, "Wireless Communication", Cengage Learning, 2007.