

INSTITUTE OF AERONAUTICAL ENGINEERING

Dundigal, Hyderabad - 500 043

CIVIL ENGINEERING

COURSE DESCRIPTION FORM

Course Title	Water Resource Eng	Water Resource Engineering-I								
Course Code	A50122									
Regulation	R15 - JNTUH									
	Lectures	Tutorials	Practicals	Credits						
Course Structure	4	1	-	4						
Course Coordinator	Dr.G.V.Ramana, Professor, Department of Civil Engineering									
Team of Instructors	Dr.G.V.Ramana, Professor, Department of Civil Engineering									
i cum or moti actors	Ms.B.Navya Assistan	t Professor, Departn	nent of Civil Engin	eering						

I. COURSE OVERVIEW:

This course address the concept of present science of the practice of irrigation engineering which comprising partially all the modern developments which occurs in irrigation purpose. In this mainly the units are taken as metric unit which covers the total area which need for irrigation. In this we can know about water requirement of crops by hydrology, ground water, reservoir water and rain water storing. By this water recourses engineering we can know about design of irrigation structures and planning of reservoir as for flood control

II. PREREQUISITE(S):

Level	Credits	Periods/ Week	Prerequisites
UG		5	Fluid mechanics.

III. MARKS DISTRIBUTION:

Sessional Marks	University End Exam marks	Total marks
Midterm Test There shall be two midterm examinations. Each midterm examination consists of essay paper, objective paper and assignment. The essay paper is for 10 marks of 60 minutes duration and shall contain 4 questions. The student has to answer 2 questions, each carrying 5 marks. The objective paper is for 10 marks of 20 minutes duration. It consists of 10 multiple choice and 10 fill-in-the blank questions, the student has to answer all the questions and each carries half mark. First midterm examination shall be conducted for the first two and half units of syllabus and second midterm examination shall be conducted for the remaining portion. Five marks are earmarked for assignments. There shall be two assignments in every theory course. Assignments are usually issued at the time of commencement of the semester. These are of problem solving in nature with course. Critical thinking. Marks shall be awarded considering the average of two midterm tests in each.	75	100

IV. EVALUATION SCHEME:

S. No	Component	Duration	Marks
1.	I Mid Examination	80 minutes	20
2.	I Assignment	-	5
3.	II Mid Examination	80 minutes	20
4.	II Assignment	-	5
5.	External Examination	3 hours	75

V. COURSE OBJECTIVES:

At the end of the course, the students will be able to:

- I. Apply concepts of hydrologic cycle and precipitation and its applications
- II. Learn how to measure base flow and find the analysis of base flow separation
- III. Evaluate the unit, S, SUH and synthetic hydrograph.
- IV. Design the discharge of flood frequency
- V. Apply the concept of ground water and its occurrence

VI. COURSE OUTCOMES:

After completing this course the student must demonstrate the knowledge and ability to:

- 1. Analyze the importance of hydrology, able to calculate the average rainfall over a basin.
- 2. Understand the infiltration methods, evaporation nd evapotranspiration.
- 3. Apply hydrograph base flow concept,
- 4. Understand hydrograph methods, the types of hydrograph and their applications.
- 5. Understand the concept of ground water and its occurrence.
- 6. Know the about the complete concept of well development.
- 7. Know the importance of irrigation, types and methods.
- 8. Analyze soil-water plant relationship, duty & delta and factors affecting them.
- 9. Analyze the design of canals by using different methods.

VII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency assessed by
PO1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	S	Assignments, Tutorials.
PO2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	Н	Assignments, Tutorials, Exams.
PO3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	Н	Assignments, Tutorials, Exams
PO4	Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of		

	the information to provide valid conclusions.		
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.		Assignments, Exams
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.		
PO7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.		
PO8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	S	Assignments, Exams.
PO9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	Н	Assignments and Exams
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.	Н	Assignments and Exams
PO11	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.	Н	Assignments and Exams
PO12	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.		

S – Supportive

H - Highly Related

VIII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	ENGINEERING KNOWLEDGE: Graduates shall demonstrate sound knowledge in analysis, design, laboratory investigations and construction aspects of civil engineering infrastructure, along with good foundation in mathematics, basic sciences and technical communication.	Н	Assignments, Tutorials, Exams
PSO2	BROADNESS AND DIVERSITY: Graduates will have a broad understanding of economical, environmental, societal, health and safety factors involved in infrastructural development, and shall demonstrate ability to function within multidisciplinary teams with competence in modern tool usage.	Н	Projects
PSO3	SELF-LEARNING AND SERVICE: Graduates will be motivated for continuous self-learning in engineering practice and/ or pursue research in advanced areas of civil engineering in order to offer engineering services to the society, ethically and responsibly.	S	Guest Lectures

Program Specific Outcomes	Level	Proficiency assessed by
---------------------------	-------	----------------------------

S - Supportive

H - Highly Related

IX. SYLLABUS:

UNIT - I:

Introduction to engineering hydrology and its applications, Hydrologic cycle, types and forms of precipitation, rainfall measurement, types of rain gauges, computation of average rainfall over a basin, processing of rainfall data-Adjustment of record-Rainfall Double Mass Curve. Runoff - factors affecting runoff-Runoff over catchment-Empirical and Rational Formulae.

Abstraction from rainfall, Evaporation - factors affecting evaporation, measurement of evaporation – Evapotranspiration-Penman and Blaney & Criddle Methods- Infiltration - factors affecting infiltration, measurement of infiltration, infiltration indices.

UNIT – II:

Distribution of Runoff-Hydrograph analysis flood hydrograph-Effective Rainfall Base Flow Separation-Direct Runoff Hydrograph-Unit Hydrograph, definition, and limitations of applications of Unit Hydrograph, derivation of unit Hydrograph from direct runoff hydrograph and vice versa –S-hydrograph,Synethic Unit Hydrograph.

UNIT – III:

Ground water - Occurrence, types of aquifers, aquifer parameters, porosity, specific yield, permeability, transmissivity and storage coefficient, types of wells, Darcy's law, radial flow to wells in confined and unconfined aquifers. Types of wells, Well construction-Well Development

UNIT – IV:

Necessity and Importance of Irrigation, advantages and ill effects of Irrigation, types of Irrigation, methods of application of Irrigation water, Indian agricultural soils, methods of improving soil fertility-Crop Rotation, preparation of land for Irrigation, standards of quality for Irrigation water.

Soil-water plant relationship, vertical distribution of soil moisture, soil moisture constants, soil moisture tension, consumptive Use, Duty and delta, factors affecting duty-Design discharge for water course. Depth and frequency of Irrigation, irrigation efficiencies-Water Logging.

UNIT – V:

Classification of canals, Design of irrigation canals by Kennedy's and Lacey's theories, balancing depth of cutting, IS Standards for a canal design canal lining

Design Discharge over a catchment, Computation of design discharge - rational formula, SCS Curve number method, flood frequency analysis-introductory part only. Stream gauging-measurement and estimation of stream flow.

Textbooks:

- 1. Engineering hydrology by jayaram Reddy,Laxmi Publications pvt.Ltd.,New Delhi
- 2. Irrigation and water power engineering by Punmia, Lal (2010), Laxmi publications Pvt. Ltd., New Delhi,

Reference Books:

- 1. Elementary hydrology by V.P.Singh, PHI publications.
- 2. Irrigation and water Resources & Water power by P.N.Modi,Standard Book House.
- 3. Water Resources Engineering-I by Dr.G. Venkata Ramana, Acadamic Publishing Company
- 4. Irrigation and water Management by Dr.Majumdar, Printice Hall of India.
- 5. Irrigation and Hydraulic Structures by S.K. Garg
- 6. Applied hydrology by Ven Te Chow, David R.Mays Tata Mc Graw Hill.
- 7. Introduction to hydrology by Warren Viessvann, Jr, Garyl. Lewis, PHI.

X. COURSE PLAN:

Unit	Lecture Number	Topics Planned to cover	Learning Objectives	References
	1	Introduction to engineering hydrology and its applications, Hydrologic cycle.	Understand the applications of Engg. Hydrology and its cycle.	T2:24.6 T2:24.7 T2:24.8
	2-3	Types and forms of precipitation.	Derive the kinds and forms of precipitation.	T7:12.14
	4-5	Rainfall measurement, types of rain gauges, Computation of average rainfall over a basin.	Understand the rain fall measurement and to know the types of rain gauges.	T4:3.10
Ι	6-7	Processing of rainfall data. Abstraction from rainfall. Adjustment of record	Explain the processing of rain fall and abstraction of its.	T4:3.11 T4:3.12
	8-9	Rainfall double mass curve	Evaluate rainfall data in the curve.	T1:16.2
	7-8	Runoff - factors affecting runoff.	Understand about Runoff and factors effecting.	T1:16.5
	9	Runoff over catchment- empirical formulae.	Understand the measurement of runoff	T1:16.6.2
	10-11	Rational formulae.	Evaluate the measurement of runoff	T2:26.9
	12-13	Evaporation - factors affecting evaporation	Understand about evaporation and its effecting factors.	T2:26.11
	14-16	Measurement of evaporation and evaptranspiration penman method	Evaluate measurement of evaporation and evaptranspiration.	T1:16.7
	17-18	Evaptranspiration criddle method	Evaluate the measurement evaptranspiration.	T2:26
	19-21	Infiltration - factors affecting infiltration, measurement of infiltration, infiltration indices.	understand the infiltration and its factors effecting and able to measure the filtration	T2:20.4
п	23-24	Distribution of runoff- Hydrograph analysis flood hydrograph.	Define hydrograph analysis and flood hydrograph	T2:23.4
	25-26	Effective rainfall base Flow separation-direct	Evaluate the measurement of steam and rainfall	T2:20.9 T2:20.10

		runoff		
	27-28	Unit hydrograph,	Define unit hydrograph and its	T4:5.13
		Definition, and	limitations, applications	T2:34.2
		limitations of		
		applications of Unit		
		hydrograph		
	29-30	Derivation of Unit	Derive the Unit hydrographs -UH,	T2:21.1-21.2
		Hydrograph, S	influence UH Derivation of Unit	
		hydrograph, Synethic	Hydrograph, S hydrograph, SUH.	
		unit hydrograph.		
	31	Ground water -	Define about Ground water	T:21.3-
	01	Occurrence, types of	Occurrence, types of aquifers.	T:21.4
		aquifers.	o courrence, types of aquiners.	
-	32-33	Aquifer parameters,	understand the parameters of	T2:21.5-21.6
	52 55	porosity, specific yield,	aquifer, and types of wells	12.21.5-21.0
		permeability,	aquifer, and types of wents	
		transmissivity and		
III		storage coefficient, types		
		of wells.		
	34-36	Darcy's law, radial flow	understand the Darcy's law,	T4:7.1-7.3
	550	to wells in confined and	radial flow of well in types of	17./.1-/.5
		unconfined aquifers	aquifers	
-	37-38	Types of wells, well	Define well construction and	T3:27.2
	57-50	construction and	development	13.27.2
		development	development	
	20.40	-		
	39-40	Necessity and	Understand irrigation and its	T3:27.9
		Importance of Irrigation,	Necessity, Importance, advantages,	
		advantages and ill effects	ill effects.	
	41.40	of Irrigation.		
	41-42	types of Irrigation,	Define types of Irrigation, methods	T3:27.9
		methods of application	and its application.	
TX 7	12.11	of Irrigation water		
IV	43-44	Indian agricultural soils,	understand the Indian agricultural	T3:27.10
		methods of improving	soils, methods of improving soil	
-		soil fertility.	fertility	
	45	Soil-water plant	understand Soil-water plant	T3:27.11
	45.17	relationship	relationship	MO AE 1 A
	46-47	Vertical distribution of	Understand the vertical	T3:27.12
		soil moisture, Soil	distribution of soil moisture and its	
	40.50	moisture constants.	constants.	
	48-50	Soil moisture tension,	Define soil moisture tension,	T4:10.7
	F O F 1	consumptive use	consumptive use.	TE 4.40.0
	50-51	Duty and delta, Factors	understand about Duty and delta	T4:10.8
		affecting duty.	and factors affecting duty	T4:10.9
	52-53	Factors affecting duty,	calculate factors affecting duty	T4:10.10
		Irrigation efficiencies.	and to know the Irrigation	
	-	Water logging	efficiencies	
	54-56	Classification of canals,	Design the irrigation canals	T5:13.8
		Design of irrigation by		
		Kennedy's and lacey's		
		theories		
V	57-58	Balancing depth of	Understand the balancing depth	T5:13.9
		cutting ,IS Standard for	and cutting	
		canal design canal lining		
	59-61	Design discharge over a	understand the design of	T4:9.8
		catchment, Computation	discharge - rational formula	T4:9.9

	of design discharge - rational formula.		
62-	63 SCS Curve number method, flood frequency analysis –introductory part only	Understand SCS method, flood frequency analysis,	T4:9.10
64-	65 Stream gauging- measurement and estimation of stream flow	Evaluate the measurement of steam and rainfall	T3:27.12
66-	67 Duty and delta, Factors affecting duty.	understand about Duty and delta and factors affecting duty	T4:10.8 T4:10.9
67-	68 Factors affecting duty, Irrigation efficiencies. Water logging	calculate factors affecting duty and to know the Irrigation efficiencies	T4:10.10
68-	69 Classification of canals, Design of irrigation by Kennedy's and lacey's theories	Design the irrigation canals	T5:13.8
69-	70 Duty and delta, Factors affecting duty.	understand about Duty and delta and factors affecting duty	T4:10.8 T4:10.9

XI MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course					Pr	ogram	Outco	omes					Program Specific Outcomes		
Objectives	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12							PSO1	PSO2	PSO3					
I.	Н	S		S		S		S			S	S	Н	S	S
II.		Н	S			S		S		S		S	Н		S
III.		Н		S			S		S	S	S		Н	S	
IV.	Н			S	Н		Н					S	Н	S	
V.	Н		S		Н			S				S	S	Н	

S – Supportive

H - Highly Related

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course s	Program Outcomes													Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
1.	S	Η				S			S			S	Н		S	
2.	Н	S		Н				S		S			Н	S		
3.	Η			Н			S						Н	S		

4.	S					S			Н		S		S	Н		
5.			Н	S						S			S	Н	S	
6.	Н					Η		S	S			S	Н		S	
7.	Н					S				S			Н	S		
8.		Н		S		Н				S			Н		S	
9.	Н		Н		S		Η		Н		S	S	Н	S		
S – Supportive									H - Highly Related							

Prepared by: Dr. G.V. Ramana, Professor, Department of Civil Engineering. Ms.B.Navya Assistant Professor, Department of Civil Engineering.

Date : 5 June, 2017

HOD, CIVIL