INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad -500 043
AERONAUTICAL ENGINEERING
COURSE DESCRIPTOR

Course Title	LINEAR ALGEBRA AND ORDINARY DIFFERENTIAL EQUATION									
Course Code	AHS002									
Programme	B.Tech									
Semester	AE \| CSE	IT	ECE	EEE	ME	CE				
Course Type	Foundation									
Regulation	IARE - R16									
Course Structure	Theory			Practical						
	Lectures	Tutorials	Credits	Laboratory	Credits					
	3	1	4	-	-					
Chief Coordinator	Ms. P Rajani, Assistant Professor									
Course Faculty	Dr. M Anita, Professor Mr. J Suresh Goud, Assistant Professor Ms. P Srilatha, Assistant Professor Ms. C Rachana, Assistant Professor Ms. B Praveena, Assistant Professor									

I. COURSE OVERVIEW:

The course focuses on more advanced Engineering Mathematics topics which provide with the relevant mathematical tools required in the analysis of problems in engineering and scientific professions. The course includes Types of matrices, difference calculus methods and differential equations. The mathematical skills derived from this course form a necessary base to analytical and design concepts encountered in the program.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites
-	-	-	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Linear Algebra and Ordinary Differential Equations	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\boldsymbol{v}	Chalk \& Talk	\boldsymbol{v}	Quiz	\boldsymbol{x}	Assignments	\boldsymbol{x}	MOOCs
$\boldsymbol{\sim}$	LCD / PPT	\boldsymbol{v}	Seminars	\boldsymbol{x}	Mini Project	\boldsymbol{v}	Videos
\boldsymbol{x}	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50%	To test the objectiveness of the concept.
50%	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz / AAT	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the $8^{\text {th }}$ and $16^{\text {th }}$ week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part-A shall have five compulsory questions of one mark each. In part-B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.
VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (POs)			Strength
PO 1	Engineering knowledge: Apply the knowledge of assessed by		
mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Presentation on real-world problems	
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminar
PO 4	Conduct investigations of complex problems: Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Term Paper

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes (PSOs)		Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products.	1	Seminar PSO 2Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	-	-
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats.	-	-

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:					
I	Enrich the knowledge of probability on single random variables and probability distributions.				
II	Apply the concept of correlation and regression to find covariance.				
III	Analyze the given data for appropriate test of hypothesis.				

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS002.01	CLO 1	Demonstrate knowledge of matrix calculation as an elegant and powerful mathematical language in connection with rank of a matrix.	PO 1	1
AHS002.02	CLO 2	Finding rank by reducing the matrix to Echelon and Normal forms.	PO 1	3

$\begin{aligned} & \text { CLO } \\ & \text { Code } \\ & \hline \end{aligned}$	CLO's	At the end of the course, the student will have the ability to:	$\begin{gathered} \text { PO's } \\ \text { Mapped } \\ \hline \end{gathered}$	Strength of Mapping
AHS002.03	CLO 3	Determine inverse of the matrix by Gauss Jordon Method.	PO 1	3
AHS002.04	CLO 4	Apply the method of LU Decomposition and solve the simultaneous equations.	PO 2	2
AHS002.05	CLO 5	Use the method of LU factorization real world problems such as circuit designing and solving complex circuits	PO 2	3
AHS002.06	CLO 6	Use the method of LU factorization real world problems such as economize and accumulate sums in double precision Computer Programme.	PO 2	2
AHS002.07	CLO 7	Interpret the Eigen values and Eigen vectors of matrix for a linear transformation and use properties of Eigen values	PO 4	1
AHS002.08	CLO 8	Understand the concept of Eigen values in real world problems of control field where they are pole of closed loop system.	PO 4	1
AHS002.09	CLO 9	Apply the concept of Eigen values in real world problems of mechanical systems where Eigen values are natural frequency and mode shape.	PO4	1
AHS002.10	CLO 10	Use the system of linear equations and matrix to determine the dependency and independency.	PO 2	2
AHS002.11	CLO 11	Determine a modal matrix, and reducing a matrix to diagonal form.	PO 1	3
AHS002.12	CLO 12	Evaluate inverse and powers of matrices by using Cayley-Hamilton theorem.	PO 1	3
AHS002.13	CLO 13	Solving differential equations of first order.	PO 1	3
AHS002.14	CLO 14	Finding orthogonal trajectories of Cartesian and polarequations.	$\begin{aligned} & \hline \text { PO 1, } \\ & \text { PO 2 } \end{aligned}$	2
AHS002.15	CLO 15	Apply the first order differential equations in real world problems such as Newton's Law of cooling and Law of natural growth and decay	PO 2	2
AHS002.16	CLO 16	Solving Second and higher order differential equations with constant coefficients.	PO 2	2
AHS002.17	CLO 17	Apply the second order differential equations for real world problems of electrical circuits and simple harmonic motion.	PO 4	1
AHS002.18	CLO 18	Apply the Mean value theorems for the single variable functions.	$\begin{aligned} & \text { PO 1, } \\ & \text { PO 2 } \end{aligned}$	2
AHS002.19	CLO 19	Understand the basic concepts of Partial Differential equations.	$\begin{aligned} & \text { PO 1, } \\ & \text { PO 2 } \end{aligned}$	2
AHS002.20	CLO 20	Determine Jacobian for the coordinate transformation	$\begin{aligned} & \hline \text { PO 1, } \\ & \text { PO 2 } \end{aligned}$	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS002.21	CLO 21	Apply the technique of Jacobian and inverse Jacobian relation to real world problems such as kinematics and inverse kinematic solutions of robot manipulators.	PO 4	1
AHS002.22	CLO 22	Understand the techniques of multidimensional change -of -variables to transform the coordinates by utilizing the Jacobian.	PO 1	3
AHS002.23	CLO 23	Apply maxima and minima for functions of several variable's and Lagrange's method of multipliers	PO 1	3
AHS002.24	CLO 24	Understand the concept and acquire the knowledge for attempting the competitive exams	PO 4	1

3 $=$ High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	1												1			
CLO 2	2												1			
CLO 3	3												1			
CLO 4		2														
CLO 5		3														
CLO 6		2														
CLO 7				1									1			
CLO 8				1												
CLO 9				2									1			
CLO 10		2											1			
CLO 11	3															
CLO 12	3															
CLO 13	3															
CLO 14	1	2											1			
CLO 15		2														

CLOs	Program Outcomes (POs)												Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 16		2														
CLO 17				1									1			
CLO 18	1	2											1			
CLO 19	1	2											1			
CLO 20	1	2											1			
CLO 21				1												
CLO 22	3															
CLO 23	3															
CLO 24				1												

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO 2	SEE Exams	PO 1, PO2, PO 4	Assignments	-	Seminars	PO 2
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 4						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

$\boldsymbol{\checkmark}$	Early Semester Feedback	$\boldsymbol{\nu}$	End Semester OBE Feedback
\boldsymbol{x}	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I \quad THEORY OF MATRICES

Real Matrices: Symmetric, skew-symmetric and orthogonal matrices; Complex matrices: Hermitian, Skew-Hermitian and unitary matrices; Elementary row and column transformations, elementary matrix, finding rank of a matrix by reducing to Echelon form and normal form; Finding the inverse of a matrix using elementary row/column transformations: Gauss-Jordan method; Solving of linear system of equations by LU decomposition method.

Unit-II \quad LINEAR TRANSFORMATIONS

Cayley-Hamilton theorem: Statement, verification, finding inverse and powers of a matrix; Linear dependence and independence of vectors; Linear transformation; Eigen values and eigen vectors of a matrix; Properties of eigen values and eigen vectors of real and complex matrices; Diagonalization of matrix.

Formation of a differential equation; Differential equations of first order and first degree: Exact, non exact, linear equations; Bernoulli equation; Applications of first order differential equations: Orthogonal trajectories; Newton's law of cooling; Law of natural growth and decay.

Unit-IV

HIGHER ORDINARY LINEAR DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS
Linear differential equations of second and higher order with constant coefficients, non homogeneous term of the type $f(x)=e^{a x}, \sin a x, \cos a x$ and $f(x)=x^{n}, e^{a x} v(x), x^{n} v(x)$; Method of variation of parameters; Applications to electrical circuits and simple harmonic motion.

Unit-V \quad FUNCTIONS OF SINGLE AND SEVERAL VARIABLES

Mean value theorems: Rolle's theorem, Lagrange's theorem, Cauchy's theorem and generalized mean value theorems-without proofs. Functions of several variables: Functional dependence, Jacobian, maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers.

Text Books:

1. Kreyszig, "Advanced Engineering Mathematics", John Wiley \& Sons Publishers, $9^{\text {th }}$ Edition, 2014.
2. B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, $42^{\text {nd }}$ Edition, 2012.

Reference Books:

1. RK Jain \& SRK Iyengar, "Advanced Engineering Mathematics", Narosa Publishers, $5^{\text {th }}$ Edition, 2016.
2. Ravish R Singh, Mukul Bhatt, "Engineering Mathematics-1", Tata Mc Graw Hill Education, $1^{\text {st }}$ Edition, 2009.
3. Srimanthapal \& Suboth C.Bhunia, "Engineering Mathematics", Oxford Publishers, $3^{\text {rd }}$ Edition, 2015.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference 1
Theory of Matrices Introduction of matrices	CLO 1	T1:22.5 R1:2.3	
$2-3$	Real and complex matrices	CLO 2	T1:22.5 R1:2.4
$4-6$	Find rank by echelon and normal form	CLO 2	T1:22.6 R1:2.6
7	Gauss-Jordan method	CLO 4	T1:22.7 R1:4.4
8	LU decomposition method	CLO 4	T1:22.7 R1:4.10
$9-12$	Cayley Hamilton theorem	CLO 7	T1:22.8 R1:4.15
$13-16$	Eigen values and Eigen vectors	CLO 9	T1:22.9 R1:5.4
$17-18$	Diagonalisation	CLO 9	T1:22.9 R1:5.8
$19--22$	Differential equations Introduction of first order differential equations	CLO 11	T1:23.10 R1:6.8
$23-24$	Orthogonal trajectories	CLO 11	T1:23.10 R1:6.13

Lecture No	Topics to be covered Reference		
$25-26$	Applications	Course Learning Outcomes (CLOs)	CLO 13
$27-30$	Second and Higher order differential equations with constant coefficients	CLO 11	T1:7.23.9 R1:7.5
$31-34$	Method of variation of parameters	CLO 9	T1:23.10 R1:8.1
$35-36$	Applications of second order differential equations	CLO 14	T1:23.1 R1:9.2
37	Differential Calculus Methods Verification of Rolle's Theorem to the given functions	CLO 14	T1:23.1 R1:9.4
$38-39$	Verification of Lagrange's Mean value theorem to the given functions	CLO 14	T1:23.1 R1:9.9
40	Verification of Cauchy's mean value theorem to the given functions	CLO 14	T1:23.1 R1:9.10
41	Functional dependence for two and three functions	CLO 14	T2:27.5 R1:10.2
$42-43$	Maxima and minima of functions of two variables without constraints	CLO 17	T2:27.7 R1:11.3
$44-45$	Lagranges method of undetermined multipliers	CLO 17	T2:27.8 R1:11.6

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with P0s	Relevance with PSOs
1	To improve standards and analyze the concepts.	Guest lecture	PO 1	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	Seminars / NPTEL	PO 4	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2	PSO 1

Prepared by:

Ms. P Rajani, Assistant Professor

