

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE DESCRIPTOR

Course Title	OPER A	OPERATING SYSTEMS				
Course Code	ACS00	ACS007				
Programme	B.Tech	B.Tech				
Semester	IV CSE IT					
Course Type	Core					
Regulation	IARE - R16					
Theory Practical				al		
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits
	3		1	4	3	2
Chief Coordinator	Mr. N Bhaswanth, Assistant Professor, IT					
Course Faculty	Ms. B I	Pravallika	a, Assistant P	rofessor, IT		

I. COURSE OVERVIEW:

This course provides a comprehensive introduction to operating system design concepts, data structures and algorithms. The course is designed to provide in-depth critique on the problems of resource management and scheduling, concurrency and synchronization, memory management, file management, peripheral management, protection and security. This course is intended to discuss the topics in a general setting not tied to any one particular operating system. Throughout the course, the study of practical aspects that pertain to the most popular operating systems such as Unix/Linux and Windows are considered as case studies

II. COURSE PRE-REQUISITES:

Level	vel Course Code Semester		Course Code Semester		Prerequisites
UG	JG ACS002 II		Data Structures		
UG	ACS004	III	Computer Organization and Architecture		

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Operating Systems	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
✗ Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the
	concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CI	А
------------------------------------	---

Component	Theory		Total Marks
Type of Assessment	CIE Exam	Quiz / AAT	Total Warks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (POs) PO 1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. PO 2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences PO 3 Design/development of solutions: Design solutions for	Strength 3 2 1	Proficiency assessed by Presentation on real-world problems Assignment
 mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. PO 2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences PO 3 Design/development of solutions: Design solutions for 	2	real-world problems Assignment
 literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences PO 3 Design/development of solutions: Design solutions for 		
	1	
complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1	Assignment
PO 4 Conduct investigations of complex problems : Use research- based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Seminar
 PO 5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations. 3 = High; 2 = Medium; 1 = Low 	1	Seminar

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to research, understand and implement computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient analysis and design of computer-based systems of varying complexity.	1	Seminar
PSO 2	Software Engineering Practices: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	-	-
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course s	hould enable the students to:
т	Understand the fundamental principles of the operating system, its services and
1	functionalities.
II	Illustrate the concepts of processes, inter-process communication,
11	synchronization and scheduling.
ш	Understand different types of memory management viz. virtual memory, paging and
III	segmentation.
IV	Identify the reasons for deadlock and understand the techniques for deadlock detection,

	prevention and recovery.
V	Understand the need of protection and security mechanisms in computer systems.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
CACS007.01	CLO 1	Describe the structure of operating system	PO 1,	2
		and basic architectural components involved	PO 2	
		in operating system design.		
CACS007.02	CLO 2	Describe how the computing resources are	PO 1,	2
		managed by the operating system.	PO 4	
CACS007.03	CLO 3	Understand the objectives and functions of	PO 3	2
		modern operating systems.		
CACS007.04	CLO 4	Analyze and design the applications to run in	PO 1	3
		parallel either using process or thread		
		models of different operating system		
CACS007.05	CLO 5	Understand and analyze implementation of	PO 2	2
		virtual memory	_	
CACS007.06	CLO 6	Understand the various resource management	PO 3	2
01100001100	0200	techniques for timesharing and distributed	100	-
		systems.		
CACS007.07	CLO 7	Describe the mutual exclusion, deadlock	PO 3	2
CAC5007.07		detection in operating system	105	2
CACS007.08	CLO 8	Describe the common algorithms used for	PO 2,	1
CACS007.08	CLU 8	both pre-emptive and non-pre-emptive	PO 2, PO 4	1
		scheduling of tasks in operating systems,	101	
G A G G G G G G G G G G G G G G G G G G	CT O O	such a priority and performance comparison	DO 1	2
CACS007.09	CLO 9	Understand the difference between a process	PO 1	3
G 4 G 9 0 7 1 0	GT 0 10	and a thread	DO 1	2
CACS007.10	CLO 10	Explain the state diagram that describes the	PO 1, PO 3	2
		states and state transitions during the	PO 5	
		whole lifetime of a process; likewise,		
		interpret such a state transition diagram		
CACS007.11	CLO 11	Identify the mapping between virtual	PO 2,	1
		memory address into a physical address	PO 4	
CACS007.12	CLO 12	Explain how a shared memory area can be	PO 5	1
		implemented using virtual memory		
		addresses in different processes		
CACS007.13	CLO 13	Identify the need of memory management in	PO 3	1
		operating systems and understand the		
		limits of fixed memory allocation schemes		
CACS007.14	CLO 14	Understand the fragmentation in dynamic	PO 1,	2
		memory allocation, and identify dynamic	PO 5	
		allocation approaches		
CACS007.15	CLO 15	Understand how program memory addresses	PO 1,	2
		relate to physical memory addresses,	PO 2	
		memory management in base-limit machines,		
		and swapping		
CACS007.16	CLO 16	Understand the mechanisms adopted for file	PO 2	2
		distribution in applications		-
CACS007.17	CLO 17	Describe different Mass storage structure and	PO 2,	1
C/1C5007.17		Beserie unierent mass storage structure and	PO 4	I

		I/O systems		
G + G 0007 10	CT 0 10	-	DO 0	1
CACS007.18	CLO 18	Understand issues related to file system	PO 2,	1
		interface and implementation, disk	PO 3	
		management		
CACS007.19	CLO 19	Identify the mechanisms adopted for file	PO 1,	1
		sharing in distributed applications	PO 5	
CACS007.20	CLO 20	Understand the concepts of Storage	PO 1,	2
		Management, disk management and disk	PO 3	
		scheduling		
CACS007.21	CLO 21	Understand the concept of deadlock in	PO 2	2
		operating systems and how they can be		
		implemented in multiprogramming system		
CACS007.22	CLO 22	Identify how deadlock can occur and know	PO 1,	1
		how it can be prevented or avoided	PO 3	
CACS007.23	CLO 23	Describe the protection and security aspects	PO 5	1
		of operating systems		
CACS007.24	CLO 24	Understand types of security risks in	PO 1,	1
		operating system and the role of operating	PO 3	
		system in establishing security		
CACS007.25	CLO 25	Identify different protection and security	PO 1,	2
		mechanisms in operating system	PO 2	
	A TT! 1	A M. P 1 I		

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

(CLOs)					Progra	am Ou	itcome	es (PO	s)				Program Specific Outcomes (PSOs)		
(CLOS)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2											1		
CLO 2	3			1									1		
CLO 3			2												
CLO 4	3												1		
CLO 5		2													
CLO 6			2										1		
CLO 7			2										1		
CLO 8		1		1											
CLO 9	3												1		
CLO 10	3		1										1		
CLO 11		2		1											
CLO 12					1								1		
CLO 13			1												

CLO 14	3				1				1	
CLO 15	2	2								
CLO 16	2									
CLO 17		2		1					1	
CLO 18		2	1							
CLO 19	2				1				1	
CLO 20	3		2						1	
CLO 21		2								
CLO 22	2		1						1	
CLO 23					1					
CLO 24	2		1						1	
CLO 25	3	2		- 1*					1	

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1,PO 2, PO 3, PO 4, PO5	SEE Exams	PO 1,PO 2, PO 3, PO 4, PO5	Assignmen ts	PO 2, PO 3	Seminars	PO 4, PO 5
Laboratory Practices	PO 1	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

Unit-I	INTRODUCTION						
Operating systems objectives and functions: Computer system architecture, operating systems structure, operating systems operations; Evolution of operating systems: Simple batch, multi programmed, time shared, personal computer, parallel distributed systems, real time systems, special purpose systems, operating system services, user operating systems interface; Systems calls: Types of systems calls, system programs, protection and security, operating system design and implementation, operating systems structure, virtual machines							
Unit-II	PROCESS AND CPU SCHEDULING, PROCESS COORDINATION						
Unit-IIPROCESS AND CPU SCHEDULING, PROCESS COORDINATIONProcess concepts: The process, process state, process control block, threads; Process scheduling: Scheduling queues, schedulers, context switch, preemptive scheduling, dispatcher, scheduling criteria, scheduling algorithms, multiple processor scheduling; Real time scheduling; Thread scheduling; Case studies Linux windows; Process synchronization, the critical section problem; Peterson's solution, synchronization hardware, semaphores and classic problems of synchronization, monitors.							

	Γ							
Unit-III	MEMORY MANAGEMENT AND VIRTUAL MEMORY							
Logical and p table.	Logical and physical address space: Swapping, contiguous memory allocation, paging, structure of page							
	: Segmentation with paging, virtual memory, demand paging; Performance of demand							
0	replacement, page replacement algorithms, allocation of frames, thrashing.							
Unit-IV	FILE SYSTEM INTERFACE, MASS-STORAGE STRUCTURE							
The concept	of a file, access methods, directory structure, file system mounting, file sharing, protection,							
file system st	ructure, file system implementation, allocation methods, free space management, directory							
implementati	on, efficiency and performance; Overview of mass storage structure: Disk structure, disk							
attachment, d	lisk scheduling, disk management, swap space management; Dynamic memory allocation:							
Basic concep	ts; Library functions.							
Unit-V	DEADLOCKS, PROTECTION							
System mode	el: Deadlock characterization, methods of handling deadlocks, deadlock prevention, dead							
lock avoidand	ce, dead lock detection and recovery form deadlock system protection, goals of protection,							
principles of	protection, domain of protection, access matrix, implementation of access matrix, access							
control, revoo	cation of access rights, capability based systems, language based protection.							
Text Books:								
1. Abraham	Silberschatz, Peter B. Galvin, Greg Gagne, "Operating System Principles", Wiley							
	dition, 8th Edition, 2010							
Edition, 2002.								
Reference B	ooks:							
1. Andrew	S Tanenbaum, "Modern Operating Systems", PHI, 3rd Edition, 2007.							
2. D. M. Di	amdhere, "Operating Systems a Concept based Approach", Tata McGraw-Hill, 2nd							

Edition, 2006

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1 - 2	Computer system architecture, operating systems structure, operating systems operations.	CLO 1	T2: 2.1 T1: 1.1 - 1.5
3 - 4	Evolution of operating systems: Simple batch, multi programmed, time shared, personal computer, parallel distributed systems, real time systems, special purpose systems.	CLO 6	T2: 2.2
5 - 6	Operating system services, user operating systems interface. Systems calls: Types of systems calls, system programs.	CLO 2	T1: 2.1 - 2.5
7 - 8	Protection and security, operating system design and implementation, operating systems structure, virtual machines.	CLO 5	T1: 2.6 - 2.8
9 - 10	The process, process state, process control block, threads.	CLO 10	T1: 3.1 -3.4 T2: 3.1 -3.4
11 - 14	Process scheduling: Scheduling queues, schedulers, context switch, preemptive scheduling, dispatcher, scheduling criteria, scheduling algorithms, multiple processor scheduling.	CLO 8	T1: 5.2 - 5.3
15	Real time scheduling; Thread scheduling.	CLO 8	T1: 5.4 -5.5 T2:10.1-10.2
16	Case studies - Linux, Windows;	CLO 10	T1:5.6,21.4 T2: 8.3 -8.5
17 - 19	Process synchronization, the critical section problem, Peterson's solution, synchronization hardware.	CLO 7	T1: 6.1 - 6.4
20 - 21	Semaphores and classic problems of synchronization, monitors.	CLO 7	T1: 6.5 -6.7 T2: 6.7 -6.8,

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
			6.10
22 - 24	Swapping, contiguous memory allocation, paging, structure of page table, Segmentation with paging.	CLO 11	T1: 8.1 - 8.3
25 - 26	Virtual memory, demand paging, performance of demand paging.	CLO 13	T1: 8.4 -8.6 T1: 9.1 -9.2
27 - 29	Page replacement:Page replacementalgorithms,allocation of frames, thrashing.	CLO 15	T1: 9.4 - 9.6
30-31	The concept of a file, access methods, directory structure.	CLO 18	T1:10.1-10.3
32 - 35	File system mounting, file sharing, protection, file	CLO 18	T1:10.4-10.6
	system structure, file system implementation.		T1:11.1-11.2
36 - 38	Allocation methods, free space management, directory implementation, efficiency and performance.	CLO 19	T1: 11.3- 11.6
39 - 40	Overview of mass storage structure: Disk structure, disk attachment, disk scheduling, disk management, swap space management.	CLO 20	T1:12.1 - 12.6
41 - 42	Dynamic memory allocation: Basic concepts; Library functions.	CLO 19	T1:12.7 - 12.8
43 - 45	Deadlock characterization, methods of handling deadlocks.	CLO 21	T1: 7.1 - 7.2
46 - 50	Deadlock prevention, dead lock avoidance, dead lock detection and recovery form deadlock system protection.	CLO 22	T1: 7.3 - 7.7
51 - 52	Goals of protection, principles of protection, domain of protection.	CLO 23	T1:14.1 - 14.3
53 - 55	Access matrix, implementation of access matrix, access control, revocation of access rights.	CLO 25	T1:14.4 - 14.7
56 - 58	Capability based systems, language based protection.	CLO 25	T1:14.8 - 14.9

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S no	Description	Proposed actions	Relevance with pos	Relevance with psos
1	Interrupts, Exceptions, and System Calls.	Assignments	PO 2, PO 3	PSO 1
2	Multicore Programming, Multithreading Models	Seminars / Guest Lectures / NPTEL	PO 2, PO 3	PSO 1
3	Free Space Management, I/O Systems	Seminars / NPTEL	PO 1, PO 3	PSO 1

Prepared by:

Ms. B Pravallika, Assistant Professor

HOD, IT