ROBOTICS

Course Code	Category	Но	urs / W	eek	Credits	Maximum Marks		
AME533	Professional Elective	L	Т	Р	С	CIA	SEE	Tota
		4	1	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil	I	Practica	l Class	es: Nil	Tota	al Classes	s: 45
COURSE OBJECTIV								
The course should enal								
-	ledge in various robot structu			-	.			
	in performing kinematics an							
	edge of the dynamics associa					tems.		
	edge and analysis skills assoc				inning.			
V. Understand materi	al handling and robot applica	tions in	industrie	es.				
COURSE OUTCOME	$S(CO_{c})$							
	teristic features of robots and	usage of	f differe	nt orinr	ers for indus	trial appli	cations	
O2 Understand direct a	and inverse kinematics of rob	of struct	ure	in gripp	ers for meus	unan appin	cations.	
	al Kinematics of planar and			ilators				
	cation of robot actuators and							
	l handling and applications in			0				
COURSE LEARNING	OUTCOMES (CLOs):							
	een automation and robotics.							
2. Classify robots and	l describe its anatomy.							
3. Specify various typ	bes of industrial sensors.							
4. Classify various gr								
5. Discuss about mot	ion analysis of robot.							
6. Understand method	ds for calculating the kinema	tics and	inverse	kinemat	ics of a robo	t manipula	tor.	
	tions, joint coordinates and.	world co	ordinate	es.				
	ogeneous transformation.							
	ential kinematics of planar m	anipulat	ors.					
10. Illustrate Lagrange								
11. Discuss jacobian a								
12. Illustrate Newton-J								
13. Describe joint space								
14. Illustrate cubic pol								
15. Classify types of n								
16. Explain actuators a	bobot applications in manufact	uring						
	robots in material handling.	uning.						
19. Explain work cell								
-	robots in assembly and inspe	ection						
20. Discuss the fole of	robots in assembly and inspe	cuon.						
Unit-I INTRO	DUCTION TO ROBOTICS						Class	es: 09
ntroduction: Automatic	on and robotic, an over view	v of rob	otics, cl	lassifica	tion by coor	dinate sys	stem and	contro
	f the industrial robotics: Deg							
acuum cup and other t	ypes of grippers, general con	nsiderati	on on g	ripper s	election and	design, ro	bot actua	ator and
ensors.			_					
Unit -II MOTIO	N ANALYSIS					T	Class	es: 09

Motion analysis: Basic rotation matrices, composite rotation matrices, Euler angles, equivalent angle and axis, homogeneous transformation, problems; Manipulator kinematics: D-H notations, joint coordinates and world

coordinates, f	prward and inverse kinematics, problems.					
Unit -III	DIFFERENTIONAL KINEMATICS	Classes: 09				
	inematics: Differential kinematics of planar and spherical manipulators, Jacobians pr nics: Lagrange, Euler formulations, Newton-Euler formulations, problems on					
Unit -IV	TRAJECTORY PLANNING	Classes: 09				
	nning: Joint space scheme, cubic polynomial fit, avoidance of obstacles, types of mo joint interpolated motion, straight line motion, problems, Robot actuators and feed eumatic.					
Unit -V	ROBOTIC APPLICATIONS	Classes: 09				
Robot application in manufacturing: Material handling, assembly and inspection, work cell design.						
Text Books:						
	oover, Industrial Robotics , Pearson, 2 nd Edition, 2012. , Introduction to Robotic Mechanics and Control , Pearson, 3 rd Edition, 2013.					
Reference Bo	oks:					
 Richard Approace Asada, S Mark W 	Robotics, McGraw-Hill, 1 st Edition, 2013. , D. Klafter, Thomas A Chmielewski, Miachael Neigen, Robotic Engineerin chl, Prentice Hall, 1 st Edition, 2013. Slotine, Robot Analysis and Itelligencel, Wiley, 1 st Edition, 2013. . Spong, M. Vidyasagar, I.John, —Robot Dynamics & Controll, John Wiley & Sons, ittal, I.J. Nagrath, Robotics and Controll, Tata McGraw-Hill, 1 st Edition, 2011.	0 0				
Web Referen	ces:					
	otel.ac.in/courses/112105249/					
E-Text Book						
	ww.robot.bmstu.ru/files/books/[Robotic]%20Robotics%20-20Designing%20the%20M -Zion%20Sandier.pdf	Mechanisms%20-				