EXTRA HIGHVOLTAGE AC TRANSMISSION

VIII Semester: EEE										
Course Code	Category	Но	urs / We	ek Credits Maximum Marks			arks			
AEE504	Core	L	Т	Р	С	CIA	SEE	Total		
		3		-	3	30	70	100		
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil			Nil	Total Classes: 60				

OBJECTIVES:

The course should enable the students to:

I Illustrate basic concepts of extra high voltage AC transmission and understand the need for it.

- II Outline the line and ground reactive parameters and voltage gradients of conductors.
- III Describe effects of corona and methods of associated measurement.
- IV Associate the knowledge of electro static field theory and traveling wave theory.
- V Select voltage control methods for extra high voltage AC transmission system.

COURSE OUTCOMES(COs):

CO1:Student can learn about the trends in EHV AC transmission

CO2: Student can calculate the line inductance and capacitance of bundle conductors.

CO3:Student understands the effect of Corona and radio interference..

CO4:Explore the concept of Electro static field and the travelling wave theory

CO5:Student can analyze compensated devices for voltage control.

COURSE LEARNING OUTCOMES(CLO'S):

- 1. Student shall learn the necessity of EHVAC Transmission.
- 2. Student will come to know the advantages and problems in EHVAC Transmission.
- 3. Student learns the power handling capability and line losses in EHVAC Transmission.
- 4. Student understands the concept of bundle conductors.
- 5. Student can calculate line inductance.
- 6. Student can calculate line capacitance.
- 7. Student learns the concept of sequence inductance and sequence capacitance.
- 8. Student learns the concept of sequence inductance and sequence capacitance
- 9. Student learns different modes of propagation and ground return.
- 10. Student can calculate gradient of bundle conductors.
- 11. Student can solve various design examples.
- 12. Student learns about the concept of power loss and audible noise due to Corona.
- 13. Student can derive the formula for corona loss
- 14. Student can understand the relationship between single phase and three phase audible noise levels
- 15. Student learns the concept of radio interference.
- 16. Student can calculate electrostatic field of EHV transmission lines.
- 17.Understand the effect of electrostatic field on humans, animals and plants.
- 18. Student can estimate the electrostatic induction in un-energized circuit of double, circuit line
- 19. Student can derive travelling wave expression and its solution
- 20. Student learns about source of excitation and terminal conditions.
- 21. Student learns about power circle diagram and its uses.
- 22. Student understands the concept of synchronous condenser.
- 23. Student learns the concept of static VAR compensation.

UNIT - I	INTRODUCTION	Classes: 08					
Necessity of EHV AC transmission – advantages and problems–power handling capacity and line losses- mechanical considerations – resistance of conductors – properties of bundled conductors – bundle spacing and bundle radius- Examples.							
Line and ground reactive parameters: Line inductance and capacitances – sequence inductances and capacitances – modes of propagation – ground return – Examples.							
UNIT - II	II VOLTAGE GRADIENTS OF CONDUCTORS:						
Electrostatics – field of sphere gap – field of line changes and properties – charge – potential relations for multi-conductors – surface voltage gradient on conductors – distribution of voltage gradient on sub-conductors of bundle – Examples.							
UNIT - III	CORONA EFFECTS	Classes: 10					
Power loss and audible noise (AN) – corona loss formulae – charge voltage diagram – generation, characteristics – limits and measurements of AN – relation between 1-phase and 3-phase AN levels – Examples. Radio interference (RI) – corona pulses generation, properties, limits – frequency spectrum – modes of propagation – excitation function – measurement of RI, RIV and excitation functions – Examples.							
UNIT - IV	ELECTRO STATIC FIELD	Classes: 08					
calculation of electrostatic field of EHV/AC lines – effect on humans, animals and plants – electrostatic induction in unenergised circuit of double-circuit line – electromagnetic interference-Examples. Traveling wave theory: Traveling wave expression and solution- source of excitation- terminal conditions- open circuited and short-circuited end- reflection and refraction coefficients-Lumped parameters of distributed lines-generalized constants-No load voltage conditions and charging current							
UNIT - V	VOLTAGE CONTROL	Classes: 09					
Power circle diagram and its use – voltage control using synchronous condensers – cascade connection of shunt and series compensation – sub synchronous resonance in series capacitor – compensated lines – static VAR compensating system							
Text Books:							
1. EHVAC Transmission Engineering by R. D. Begamudre, New Age International (p) Ltd.							
 A. Padiyar K.R., "HVDC Power Transmission Systems" -New age International Ltd 							
Reference Books:							
1.Arrilaga, J, "High voltage direct current transmission", peter pereginver Ltd., London, U.K.19832.Kimbark, E.W, "Direct current transmission-vol.1", Wiley Interscience, New York, 1970.							
Web References:							
 https://www.ad https://www.af langen.de/wint 	e.pwr.wroc.pl/filez/20110606092353_HEV.pdf fdc.energy.gov/pdfs/52723.pdf 5.https://www.leb.eei.uni- erakademie/2010/report/content/course03/pdf/0308.pdf						

E-Text Books:

- https://www.ae.pwr.wroc.pl/filez/20110606092353_HEV.pdf
 https://www.afdc.energy.gov/pdfs/52723.pdf 5.https://www.leb.eei.uni-
- 3. langen.de/winterakademie/2010/report/content/course03/pdf/0308.pdf