

LECTURE NOTES

ON

DESIGN AND ANALYSIS OF ALGORITHMS

Prepared by

Dr. L. V. N. Prasad
Professor

Department of Computer Science and Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal – 500 043, Hyderabad

I

CONTENTS

CHAPTER 1 BASIC CONCEPTS

 Algorithm

 Performance of Programs

 Algorithm Design Goals

 Classification of Algorithms

 Complexity of Algorithms

 Rate of Growth
 Analyzing Algorithms

 The Rule of Sums

 The Rule of products
 The Running time of Programs
 Measuring the running time of programs

 Asymptotic Analyzing of Algorithms

 Calculating the running time of programs

 General rules for the analysis of programs

CHAPTER 2 Advanced Data Structures and Recurrence Relations

 Priority Queue, Heap and Heap sort
 Heap Sort

2.3 Priority Queue implementation using heap tree

 Binary Search trees

 Balanced Trees

 Dictionary

 Disjoint Set Operations

 Recurrence Relations – Iterative Substitution Method

 Recursion Tree

 The Guess-and test

 The Master Theorem Method

 Cold Form expression

 Solving Recurrence relations

CHAPTER 3 Divide And Conquer

 General Method
 Control Abstraction of Divide and Conquer

 Binary Search

 External and Internal path length

 Merge Sort
 Strassen‟s Matrix Multiplication

 Quick Sort

 Straight Insertion Sort

CHAPTER 4 Greedy Method

4.1 General Method

 Control Abstraction

 Knapsack Problem

 Optimal Storage on Tapes

 Job Sequencing with deadlines

 Optimal Merge Patterns

 Huffman Codes

II

 Graph Algorithms

CHAPTER 5 Dynamic programming

 Multi Storage graphs

 All Pairs Shortest paths

 Traveling Sales Person problem

 Optimal Binary Search Tree

 0/1 Knapsack

 Reliability design

CHAPTER 6 Basic Traversal and Search Techniques

 Techniques for traversal of Binary tree

 Techniques for graphs

 Representation of Graph and Digraphs

 Depth First and Breadth First Spanning trees

 Articulation Points and bi-connected components

 Articulation points by Depth First Search

 Game planning

 Alpha-Beta pruning

 AND/OR Graphs

CHAPTER 7 Backtracking

 General method

 Terminology

 N-Queens problem
 Sum of Subsets

 Graph Coloring(for planar graphs)

 Hamiltonian Cycles
 0/1 Knapsack

 Traveling Sales Person using Backtracking

CHAPTER 8 Branch and Bound

 General method
 Least Cost (LC) Search
 Control Abstraction for LC-Search

 Bounding

 The 15-Puzzle problem

 LC Search for 15-Puzzle Problem

 Job Sequencing with deadlines

 Traveling Sales Person problem

 0/1 Knapsack

1

Chapter

1

Basic Concepts

 Algorithm

An Algorithm is a finite sequence of instructions, each of which has a clear meaning

and can be performed with a finite amount of effort in a finite length of time. No

matter what the input values may be, an algorithm terminates after executing a finite

number of instructions. In addition every algorithm must satisfy the following

criteria:

Input: there are zero or more quantities, which are externally supplied;

Output: at least one quantity is produced;

Definiteness: each instruction must be clear and unambiguous;

Finiteness: if we trace out the instructions of an algorithm, then for all cases

the algorithm will terminate after a finite number of steps;

Effectiveness: every instruction must be sufficiently basic that it can in

principle be carried out by a person using only pencil and paper. It is not

enough that each operation be definite, but it must also be feasible.

In formal computer science, one distinguishes between an algorithm, and a program.

A program does not necessarily satisfy the fourth condition. One important example

of such a program for a computer is its operating system, which never terminates

(except for system crashes) but continues in a wait loop until more jobs are entered.

We represent algorithm using a pseudo language that is a combination of the

constructs of a programming language together with informal English statements.

 Performance of a program:

The performance of a program is the amount of computer memory and time needed

to run a program. We use two approaches to determine the performance of a

program. One is analytical, and the other experimental. In performance analysis we

use analytical methods, while in performance measurement we conduct experiments.

Time Complexity:

The time needed by an algorithm expressed as a function of the size of a problem is

called the time complexity of the algorithm. The time complexity of a program is the

amount of computer time it needs to run to completion.

The limiting behavior of the complexity as size increases is called the asymptotic time

complexity. It is the asymptotic complexity of an algorithm, which ultimately

determines the size of problems that can be solved by the algorithm.

2

Space Complexity:

The space complexity of a program is the amount of memory it needs to run to

completion. The space need by a program has the following components:

Instruction space: Instruction space is the space needed to store the compiled

version of the program instructions.

Data space: Data space is the space needed to store all constant and variable

values. Data space has two components:

 Space needed by constants and simple variables in program.

 Space needed by dynamically allocated objects such as arrays and class

instances.

Environment stack space: The environment stack is used to save information

needed to resume execution of partially completed functions.

Instruction Space: The amount of instructions space that is needed depends on

factors such as:

 The compiler used to complete the program into machine code.

 The compiler options in effect at the time of compilation

 The target computer.

 Algorithm Design Goals

The three basic design goals that one should strive for in a program are:

1. Try to save Time
2. Try to save Space

3. Try to save Face

A program that runs faster is a better program, so saving time is an obvious

goal. Like wise, a program that saves space over a competing program is considered

desirable. We want to “save face” by preventing the program from locking up or

generating reams of garbled data.

 Classification of Algorithms

If „n‟ is the number of data items to be processed or degree of polynomial or the size

of the file to be sorted or searched or the number of nodes in a graph etc.

1 Next instructions of most programs are executed once or at most only a

few times. If all the instructions of a program have this property, we say

that its running time is a constant.

Log n When the running time of a program is logarithmic, the program gets

slightly slower as n grows. This running time commonly occurs in
programs that solve a big problem by transforming it into a smaller
problem, cutting the size by some constant fraction., When n is a million,
log n is a doubled. Whenever n doubles, log n increases by a constant,

but log n does not double until n increases to n2.

3

n When the running time of a program is linear, it is generally the case that

a small amount of processing is done on each input element. This is the

optimal situation for an algorithm that must process n inputs.

n. log n This running time arises for algorithms that solve a problem by breaking

it up into smaller sub-problems, solving then independently, and then

combining the solutions. When n doubles, the running time more than

doubles.

n2 When the running time of an algorithm is quadratic, it is practical for use

only on relatively small problems. Quadratic running times typically arise

in algorithms that process all pairs of data items (perhaps in a double

nested loop) whenever n doubles, the running time increases four fold.

n3 Similarly, an algorithm that process triples of data items (perhaps in a

triple–nested loop) has a cubic running time and is practical for use only

on small problems. Whenever n doubles, the running time increases eight

fold.

2n Few algorithms with exponential running time are likely to be appropriate

for practical use, such algorithms arise naturally as “brute–force”

solutions to problems. Whenever n doubles, the running time squares.

 Complexity of Algorithms

The complexity of an algorithm M is the function f(n) which gives the running time

and/or storage space requirement of the algorithm in terms of the size „n‟ of the

input data. Mostly, the storage space required by an algorithm is simply a multiple of

the data size „n‟. Complexity shall refer to the running time of the algorithm.

The function f(n), gives the running time of an algorithm, depends not only on the

size „n‟ of the input data but also on the particular data. The complexity function f(n)

for certain cases are:

1. Best Case : The minimum possible value of f(n) is called the best case.

2. Average Case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any key possible input.

The field of computer science, which studies efficiency of algorithms, is known as

analysis of algorithms.

Algorithms can be evaluated by a variety of criteria. Most often we shall be interested

in the rate of growth of the time or space required to solve larger and larger

instances of a problem. We will associate with the problem an integer, called the size

of the problem, which is a measure of the quantity of input data.

4

 Rate of Growth:

The following notations are commonly use notations in performance analysis and

used to characterize the complexity of an algorithm:

1. Big–OH (O) 1,
2. Big–OMEGA (),

3. Big–THETA () and

4. Little–OH (o)

Big–OH O (Upper Bound)

f(n) = O(g(n)), (pronounced order of or big oh), says that the growth rate of f(n) is

less than or equal (<) that of g(n).

Big–OMEGA  (Lower Bound)

f(n) = (g(n)) (pronounced omega), says that the growth rate of f(n) is greater

than or equal to (>) that of g(n).

1 In 1892, P. Bachmann invented a notation for characterizing the asymptotic behavior of

functions. His invention has come to be known as big oh notation.

5

Big–THETA  (Same order)

f(n) = (g(n)) (pronounced theta), says that the growth rate of f(n) equals (=) the

growth rate of g(n) [if f(n) = O(g(n)) and T(n) =  (g(n)].

Little–OH (o)

T(n) = o(p(n)) (pronounced little oh), says that the growth rate of T(n) is less than

the growth rate of p(n) [if T(n) = O(p(n)) and T(n)  (p(n))].

 Analyzing Algorithms

Suppose „M‟ is an algorithm, and suppose „n‟ is the size of the input data. Clearly the

complexity f(n) of M increases as n increases. It is usually the rate of increase of f(n)

we want to examine. This is usually done by comparing f(n) with some standard

functions. The most common computing times are:

O(1), O(log2 n), O(n), O(n. log2 n), O(n2), O(n3), O(2n), n! and nn

Numerical Comparison of Different Algorithms

The execution time for six of the typical functions is given below:

n log2 n n*log2n n2 n3 2n

1 0 0 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4096 65,536

32 5 160 1024 32,768 4,294,967,296

64 6 384 4096 2,62,144 Note 1

128 7 896 16,384 2,097,152 Note 2

256 8 2048 65,536 1,677,216 ????????

Note1: The value here is approximately the number of machine instructions

executed by a 1 gigaflop computer in 5000 years.

6

Note 2: The value here is about 500 billion times the age of the universe in

nanoseconds, assuming a universe age of 20 billion years.
Graph of log n, n, n log n, n2, n3, 2n, n! and nn

O(log n) does not depend on the base of the logarithm. To simplify the analysis, the

convention will not have any particular units of time. Thus we throw away leading

constants. We will also throw away low–order terms while computing a Big–Oh

running time. Since Big-Oh is an upper bound, the answer provided is a guarantee

that the program will terminate within a certain time period. The program may stop

earlier than this, but never later.

One way to compare the function f(n) with these standard function is to use the

functional „O‟ notation, suppose f(n) and g(n) are functions defined on the positive

integers with the property that f(n) is bounded by some multiple g(n) for almost all

„n‟. Then,
f(n) = O(g(n))

Which is read as “f(n) is of order g(n)”. For example, the order of complexity for:

 Linear search is O (n)

 Binary search is O (log n)

 Bubble sort is O (n2)

 Merge sort is O (n log n)

 The rule of sums

Suppose that T1(n) and T2(n) are the running times of two programs fragments P1

and P2, and that T1(n) is O(f(n)) and T2(n) is O(g(n)). Then T1(n) + T2(n), the
running time of P1 followed by P2 is O(max f(n), g(n)), this is called as rule of sums.

For example, suppose that we have three steps whose running times are respectively

O(n2), O(n3) and O(n. log n). Then the running time of the first two steps executed

sequentially is O (max(n2, n3)) which is O(n3). The running time of all three

together is O(max (n3, n. log n)) which is O(n3).

7

 The rule of products

If T1(n) and T2(n) are O(f(n) and O(g(n)) respectively. Then T1(n)*T2(n) is O(f(n)

g(n)). It follows term the product rule that O(c f(n)) means the same thing as O(f(n))

if „c‟ is any positive constant. For example, O(n2/2) is same as O(n2).

Suppose that we have five algorithms A1–A5 with the following time complexities:

A1 : n
A2 : n log n

A3 : n2

A4: n3

A5: 2n

The time complexity is the number of time units required to process an input of size

„n‟. Assuming that one unit of time equals one millisecond. The size of the problems

that can be solved by each of these five algorithms is:

Algorithm Time

complexity

Maximum problem size

1 second 1 minute 1 hour

A1 n 1000 6 x 104
 3.6 x 106

A2 n log n 140 4893 2.0 x 105

A3
n2 31 244 1897

A4
n3 10 39 153

A5 2n 9 15 21

The speed of computations has increased so much over last thirty years and it might

seem that efficiency in algorithm is no longer important. But, paradoxically, efficiency

matters more today then ever before. The reason why this is so is that our ambition

has grown with our computing power. Virtually all applications of computing

simulation of physical data are demanding more speed.

The faster the computer run, the more need are efficient algorithms to take

advantage of their power. As the computer becomes faster and we can handle larger

problems, it is the complexity of an algorithm that determines the increase in

problem size that can be achieved with an increase in computer speed.

Suppose the next generation of computers is ten times faster than the current

generation, from the table we can see the increase in size of the problem.

Algorithm

Time

Complexity

Maximum problem size

before speed up

Maximum problem size

after speed up

A1 n S1 10 S1

A2 n log n S2 10 S2 for large S2

A3
n2 S3 3.16 S3

A4
n3 S4 2.15 S4

A5 2n S5 S5 + 3.3

Instead of an increase in speed consider the effect of using a more efficient

algorithm. By looking into the following table it is clear that if minute as a basis for

comparison, by replacing algorithm A4 with A3, we can solve a problem six times

larger; by replacing A4 with A2 we can solve a problem 125 times larger. These

results are for more impressive than the two fold improvement obtained by a ten fold

increase in speed. If an hour is used as the basis of comparison, the differences are

even more significant.

8

We therefore conclude that the asymptotic complexity of an algorithm is an

important measure of the goodness of an algorithm.

 The Running time of a program

When solving a problem we are faced with a choice among algorithms. The basis for

this can be any one of the following:

i. We would like an algorithm that is easy to understand, code and debug.

ii. We would like an algorithm that makes efficient use of the computer‟s

resources, especially, one that runs as fast as possible.

 Measuring the running time of a program

The running time of a program depends on factors such as:

1. The input to the program.

2. The quality of code generated by the compiler used to create the object

program.

3. The nature and speed of the instructions on the machine used to execute the

program, and

4. The time complexity of the algorithm underlying the program.

The running time depends not on the exact input but only the size of the input. For

many programs, the running time is really a function of the particular input, and not

just of the input size. In that case we define T(n) to be the worst case running time,
i.e. the maximum overall input of size „n‟, of the running time on that input. We also
consider Tavg(n) the average, over all input of size „n‟ of the running time on that

input. In practice, the average running time is often much harder to determine than
the worst case running time. Thus, we will use worst–case running time as the
principal measure of time complexity.

Seeing the remarks (2) and (3) we cannot express the running time T(n) in standard
time units such as seconds. Rather we can only make remarks like the running time

of such and such algorithm is proportional to n2. The constant of proportionality will
remain un-specified, since it depends so heavily on the compiler, the machine and
other factors.

 Asymptotic Analysis of Algorithms:

Our approach is based on the asymptotic complexity measure. This means that we

don‟t try to count the exact number of steps of a program, but how that number

grows with the size of the input to the program. That gives us a measure that will

work for different operating systems, compilers and CPUs. The asymptotic complexity

is written using big-O notation.

Rules for using big-O:

The most important property is that big-O gives an upper bound only. If an algorithm

is O(n2), it doesn‟t have to take n2 steps (or a constant multiple of n2). But it can‟t

9

take more than n2. So any algorithm that is O(n), is also an O(n2) algorithm. If this
seems confusing, think of big-O as being like "<". Any number that is < n is also <

n2.

1. Ignoring constant factors: O(c f(n)) = O(f(n)), where c is a constant; e.g.
O(20 n3) = O(n3)

2. Ignoring smaller terms: If a<b then O(a+b) = O(b), for example O(n2+n)

= O(n2)

3. Upper bound only: If a<b then an O(a) algorithm is also an O(b)

algorithm. For example, an O(n) algorithm is also an O(n2) algorithm (but
not vice versa).

4. n and log n are "bigger" than any constant, from an asymptotic view (that

means for large enough n). So if k is a constant, an O(n + k) algorithm is

also O(n), by ignoring smaller terms. Similarly, an O(log n + k) algorithm

is also O(log n).

5. Another consequence of the last item is that an O(n log n + n) algorithm,

which is O(n(log n + 1)), can be simplified to O(n log n).

 Calculating the running time of a program:

Let us now look into how big-O bounds can be computed for some common

algorithms.

Example 1:

Let‟s consider a short piece of source code:

x = 3*y + 2;

z = z + 1;

If y, z are scalars, this piece of code takes a constant amount of time, which we write

as O(1). In terms of actual computer instructions or clock ticks, it‟s difficult to say

exactly how long it takes. But whatever it is, it should be the same whenever this

piece of code is executed. O(1) means some constant, it might be 5, or 1 or 1000.

Example 2:

2n2 + 5n – 6 = O (2n)

2n2 + 5n – 6   (2n)
2n2 + 5n – 6 = O (n3) 2n2 + 5n – 6   (n3)
2n2 + 5n – 6 = O (n2) 2n2 + 5n – 6 =  (n2)
2n2 + 5n – 6  O (n) 2n2 + 5n – 6   (n)

2n2 + 5n – 6   (2n)

2n2 + 5n – 6 = o (2n)
2n2 + 5n – 6   (n3) 2n2 + 5n – 6 = o (n3)

2n2 + 5n – 6 =  (n2) 2n2 + 5n – 6  o (n2)

2n2 + 5n – 6 =  (n) 2n2 + 5n – 6  o (n)

10

Example 3:

If the first program takes 100n2 milliseconds and while the second takes 5n3

milliseconds, then might not 5n3 program better than 100n2 program?

As the programs can be evaluated by comparing their running time functions, with

constants by proportionality neglected. So, 5n3 program be better than the 100n2

program.

5 n3/100 n2 = n/20

for inputs n < 20, the program with running time 5n3 will be faster than those the

one with running time 100 n2. Therefore, if the program is to be run mainly on inputs

of small size, we would indeed prefer the program whose running time was O(n3)

However, as „n‟ gets large, the ratio of the running times, which is n/20, gets

arbitrarily larger. Thus, as the size of the input increases, the O(n3) program will take

significantly more time than the O(n2) program. So it is always better to prefer a
program whose running time with the lower growth rate. The low growth rate
function‟s such as O(n) or O(n log n) are always better.

Example 4:

Analysis of simple for loop

Now let‟s consider a simple for loop:

for (i = 1; i<=n; i++)

v[i] = v[i] + 1;

This loop will run exactly n times, and because the inside of the loop takes constant

time, the total running time is proportional to n. We write it as O(n). The actual

number of instructions might be 50n, while the running time might be 17n

microseconds. It might even be 17n+3 microseconds because the loop needs some

time to start up. The big-O notation allows a multiplication factor (like 17) as well as

an additive factor (like 3). As long as it‟s a linear function which is proportional to n,

the correct notation is O(n) and the code is said to have linear running time.

Example 5:

Analysis for nested for loop

Now let‟s look at a more complicated example, a nested for loop:

for (i = 1; i<=n; i++)

for (j = 1; j<=n; j++)

a[i,j] = b[i,j] * x;

The outer for loop executes N times, while the inner loop executes n times for every

execution of the outer loop. That is, the inner loop executes n  n = n2 times. The
assignment statement in the inner loop takes constant time, so the running time of

the code is O(n2) steps. This piece of code is said to have quadratic running time.

11

2

Example 6:

Analysis of matrix multiply

Lets start with an easy case. Multiplying two n  n matrices. The code to compute the

matrix product C = A * B is given below.

for (i = 1; i<=n; i++)

for (j = 1; j<=n; j++)

C[i, j] = 0;

for (k = 1; k<=n; k++)

C[i, j] = C[i, j] + A[i, k] * B[k, j];

There are 3 nested for loops, each of which runs n times. The innermost loop

therefore executes n*n*n = n3 times. The innermost statement, which contains a
scalar sum and product takes constant O(1) time. So the algorithm overall takes

O(n3) time.

Example 7:

Analysis of bubble sort

The main body of the code for bubble sort looks something like this:

for (i = n-1; i<1; i--)

for (j = 1; j<=i; j++)

if (a[j] > a[j+1])

swap a[j] and a[j+1];

This looks like the double. The innermost statement, the if, takes O(1) time. It

doesn‟t necessarily take the same time when the condition is true as it does when it

is false, but both times are bounded by a constant. But there is an important

difference here. The outer loop executes n times, but the inner loop executes a

number of times that depends on i. The first time the inner for executes, it runs i =

n-1 times. The second time it runs n-2 times, etc. The total number of times the

inner if statement executes is therefore:

(n-1) + (n-2) + ... + 3 + 2 + 1

This is the sum of an arithmetic series.

N 1


i 1

(n  i)  n(n  i)


n


n
2 2 2

The value of the sum is n(n-1)/2. So the running time of bubble sort is O(n(n-1)/2),

which is O((n2-n)/2). Using the rules for big-O given earlier, this bound simplifies to

O((n2)/2) by ignoring a smaller term, and to O(n2), by ignoring a constant factor.

Thus, bubble sort is an O(n2) algorithm.

12

Example 8:

Analysis of binary search

Binary search is a little harder to analyze because it doesn‟t have a for loop. But it‟s

still pretty easy because the search interval halves each time we iterate the search.

The sequence of search intervals looks something like this:

n, n/2, n/4, ..., 8, 4, 2, 1

It‟s not obvious how long this sequence is, but if we take logs, it is:

log2 n, log2 n - 1, log2 n - 2, ..., 3, 2, 1, 0

Since the second sequence decrements by 1 each time down to 0, its length must be

log2 n + 1. It takes only constant time to do each test of binary search, so the total
running time is just the number of times that we iterate, which is log2n + 1. So
binary search is an O(log2 n) algorithm. Since the base of the log doesn‟t matter in an
asymptotic bound, we can write that binary search is O(log n).

 General rules for the analysis of programs

In general the running time of a statement or group of statements may be

parameterized by the input size and/or by one or more variables. The only

permissible parameter for the running time of the whole program is „n‟ the input size.

1. The running time of each assignment read and write statement can usually be

taken to be O(1). (There are few exemptions, such as in PL/1, where

assignments can involve arbitrarily larger arrays and in any language that

allows function calls in arraignment statements).

2. The running time of a sequence of statements is determined by the sum rule.

I.e. the running time of the sequence is, to with in a constant factor, the

largest running time of any statement in the sequence.

3. The running time of an if–statement is the cost of conditionally executed

statements, plus the time for evaluating the condition. The time to evaluate

the condition is normally O(1) the time for an if–then–else construct is the

time to evaluate the condition plus the larger of the time needed for the

statements executed when the condition is true and the time for the

statements executed when the condition is false.

4. The time to execute a loop is the sum, over all times around the loop, the

time to execute the body and the time to evaluate the condition for

termination (usually the latter is O(1)). Often this time is, neglected constant

factors, the product of the number of times around the loop and the largest

possible time for one execution of the body, but we must consider each loop

separately to make sure.

13

Chapter

2

Advanced Data Structures and

Recurrence Relations

 Priority Queue, Heap and Heap Sort:

Heap is a data structure, which permits one to insert elements into a set and also to

find the largest element efficiently. A data structure, which provides these two

operations, is called a priority queue.

 Max and Min Heap data structures:

A max heap is an almost complete binary tree such that the value of each node is

greater than or equal to those in its children.

Figure 2. 1. Max. and Min heap

A min heap is an almost complete binary tree such that the value of each node is less

than or equal to those in its children. Figure 2.1 shows the maximum and minimum

heap tree.

 Representation of Heap Tree:

Since heap is a complete binary tree, a heap tree can be efficiently represented using

one dimensional array. This provides a very convenient way of figuring out where

children belong to.

 The root of the tree is in location 1.

 The left child of an element stored at location i can be found in location 2*i.

 The right child of an element stored at location i can be found in location

2*i + 1.

 The parent of an element stored at location i can be found at location
floor(i/2).

95 15

85 45 45 25

75 25 35 15 55 65 35 75

55 65 Max heap 85 95 Min heap

14

For example let us consider the following elements arranged in the form of array as

follows:

X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8]

65 45 60 40 25 50 55 30

The elements of the array can be thought of as lying in a tree structure. A heap tree

represented using a single array looks as follows:

Figure 2. 2. Heap Tree

 Operations on heap tree:

The major operations required to be performed on a heap tree:

1. Insertion,

2. Deletion and

3. Merging.

Insertion into a heap tree:

This operation is used to insert a node into an existing heap tree satisfying the

properties of heap tree. Using repeated insertions of data, starting from an empty

heap tree, one can build up a heap tree.

Let us consider the heap (max) tree. The principle of insertion is that, first we have

to adjoin the data in the complete binary tree. Next, we have to compare it with the

data in its parent; if the value is greater than that at parent then interchange the

values. This will continue between two nodes on path from the newly inserted node

to the root node till we get a parent whose value is greater than its child or we

reached the root.

For illustration, 35 is added as the right child of 80. Its value is compared with its

parent‟s value, and to be a max heap, parent‟s value greater than child‟s value is

satisfied, hence interchange as well as further comparisons are no more required.

As another illustration, let us consider the case of insertion 90 into the resultant heap

tree. First, 90 will be added as left child of 40, when 90 is compared with 40 it

x[1]
65 x[3]

x[2]
45 60

x[6] x[7]
x[4] 40 x[5] 25 50 55

x[8] 30

15

requires interchange. Next, 90 is compared with 80, another interchange takes place.

Now, our process stops here, as 90 is now in root node. The path on which these

comparisons and interchanges have taken places are shown by dashed line.

The algorithm Max_heap_insert to insert a data into a max heap tree is as follows:

Max_heap_insert (a, n)

{

//inserts the value in a[n] into the heap which is stored at a[1] to a[n-1]

integer i, n;
i = n;

item = a[n] ;

while ((i > 1) and (a[ i/2 ] < item) do

{

a[i] = a[ i/2 ] ; // move the parent down

i =  i/2  ;
}

a[i] = item ;

return true ;

}

Example:

Form a heap by using the above algorithm for the given data 40, 80, 35, 90, 45, 50,

70.

1. Insert 40:

2. Insert 80:

40

3. Insert 35:

40

80

40 35

80
 40

 80

80

40

16

4. Insert 90:

80

 90

90

 80

 40 35

40

 90

5. Insert 45:

6. Insert 50:

50

7. Insert 70:

50

Deletion of a node from heap tree:

Any node can be deleted from a heap tree. But from the application point of view,

deleting the root node has some special importance. The principle of deletion is as

follows:

 Read the root node into a temporary storage say, ITEM.

 Replace the root node by the last node in the heap tree. Then re-heap the
tree as stated below:

 Let newly modified root node be the current node. Compare its

value with the value of its two child. Let X be the child whose value

is the largest. Interchange the value of X with the value of the

current node.
 Make X as the current node.

 Continue re-heap, if the current node is not an empty node.

90

80 35

40 45

90

80 70

40 45 35 50

90

80 35

40 45 50
35

90

80 50

40 45 35

90

70

80 50

40 45 35 70

90

80 35

40

17

The algorithm for the above is as follows:

delmax (a, n, x)
// delete the maximum from the heap a[n] and store it in x

{
if (n = 0) then

{
write (“heap is empty”);
return false;

}
x = a[1]; a[1] = a[n];

adjust (a, 1, n-1);
return true;

}

adjust (a, i, n)

// The complete binary trees with roots a(2*i) and a(2*i + 1) are combined with a(i) to form a
single heap, 1 < i < n. No node has an address greater than n or less than 1. //
{

j = 2 *i ;
item = a[i] ;
while (j < n) do

{
if ((j < n) and (a (j) < a (j + 1)) then j  j + 1;

// compare left and right child and let j be the larger child

if (item > a (j)) then break;
// a position for item is found

else a[ j / 2 ] = a[j] // move the larger child up a level
j = 2 * j;

}
a [ j / 2 ] = item;

}

Here the root node is 99. The last node is 26, it is in the level 3. So, 99 is replaced by

26 and this node with data 26 is removed from the tree. Next 26 at root node is

compared with its two child 45 and 63. As 63 is greater, they are interchanged. Now,

26 is compared with its children, namely, 57 and 42, as 57 is greater, so they are

interchanged. Now, 26 appear as the leave node, hence re-heap is completed. This is

shown in figure 2.3.

Figure 2. 3.

 26 63

 99
 26 63

57

45 63
45 57

26

35 29 57 42
35 29 26 42

27 12 24 26
27 12 24

Deleting the node with data 99 After Deletion of node with data 99

18

 Merging two heap trees:

Consider, two heap trees H1 and H2. Merging the tree H2 with H1 means to include

all the node from H2 to H1. H2 may be min heap or max heap and the resultant tree

will be min heap if H1 is min heap else it will be max heap.

Merging operation consists of two steps: Continue steps 1 and 2 while H2 is not

empty:

1. Delete the root node, say x, from H2. Re-heap H2.

2. Insert the node x into H1 satisfying the property of H1.

Figure 2. 4. Merging of two heaps.

 Applications of heap tree:

They are two main applications of heap trees known:

1. Sorting (Heap sort) and

2. Priority queue implementation.

92 13

59 67 19 80

38 45 92 93 96

H1: max heap H2: min heap

+

96

93 67

80 92 13 19

38 59 45 92 Resultant max heap after merging H1 and H2

19

 HEAP SORT:

A heap sort algorithm works by first organizing the data to be sorted into a special

type of binary tree called a heap. Any kind of data can be sorted either in ascending

order or in descending order using heap tree. It does this with the following steps:

1. Build a heap tree with the given set of data.

2. a. Remove the top most item (the largest) and replace it with the last

element in the heap.

b. Re-heapify the complete binary tree.

c. Place the deleted node in the output.

3. Continue step 2 until the heap tree is empty.

Algorithm:

This algorithm sorts the elements a[n]. Heap sort rearranges them in-place in non-

decreasing order. First transform the elements into a heap.

heapsort(a, n)

{
heapify(a, n);

for i = n to 2 by – 1 do

{
temp = a[I];

a[i] = a[1];
a[1] = t;
adjust (a, 1, i – 1);

}

}

heapify (a, n)
//Readjust the elements in a[n] to form a heap.

{
for i   n/2  to 1 by – 1 do adjust (a, i, n);

}

adjust (a, i, n)

// The complete binary trees with roots a(2*i) and a(2*i+1) are combined
// with a(i) to form a single heap, 1<i<n. No node has an address greater

// than n or less than 1.

{
j = 2 *i ;

item = a[i] ;
while (j < n) do

{
if ((j < n) and (a (j) < a (j + 1)) then j  j + 1;

// compare left and right child and let j be the larger child

if (item > a (j)) then break;
// a position for item is found

else a[ j / 2 ] = a[j] // move the larger child up a level
j = 2 * j;

}
a [ j / 2 ] = item;

}

20

70

45 50

40 35 80 90

50

45 35

40 70 80 90

Time Complexity:

Each „n‟ insertion operations takes O(log k), where „k‟ is the number of elements in

the heap at the time. Likewise, each of the „n‟ remove operations also runs in time

O(log k), where „k‟ is the number of elements in the heap at the time. Since we

always have k ≤ n, each such operation runs in O(log n) time in the worst case.

Thus, for n elements it takes O(n log n) time, so the priority queue sorting algorithm

runs in O(n log n) time when we use a heap to implement the priority queue.

Example 1:

Form a heap from the set of elements (40, 80, 35, 90, 45, 50, 70) and sort the data

using heap sort.

Solution:

First form a heap tree from the given set of data and then sort by repeated deletion

operation:

1. E xc h a n g e ro ot 9 0 w it h t h e la st e le me n t 3 5 of t h e array a n d re - h e a p ify

35

2. E xc h a n g e ro ot 8 0 w it h t h e la st e le me n t 5 0 of t h e array a n d re - h e a p ify

70

 50

50
45 7 0

40 35 80 90

3. E xc h a n g e ro ot 7 0 w it h t h e la st e le me n t 3 5 of t h e array a n d re- h e a p ify

50

 3 5

45

35

 50

40 70 80 90

80
3 5

45 35

 80 70

40 45 50 90

80

45 70

40 35 50 90

21

40

35 45

50 70 80 90

35

40 45

50 70 80 90

4. Exchange root 50 with the last element 40 of the array and re-heapify

5. Exchange root 45 with the last element 35 of the array and re-heapify

40

 35

35

 40 45

50 70 80 90

6. Exchange root 40 with the last element 35 of the array and re-heapify

35

40

 35

 40

45

50 70 80 90

The sorted tree

 Priority queue implementation using heap tree:

Priority queue can be implemented using circular array, linked list etc. Another

simplified implementation is possible using heap tree; the heap, however, can be

represented using an array. This implementation is therefore free from the

complexities of circular array and linked list but getting the advantages of simplicities

of array.

As heap trees allow the duplicity of data in it. Elements associated with their priority

values are to be stored in from of heap tree, which can be formed based on their

priority values. The top priority element that has to be processed first is at the root;

so it can be deleted and heap can be rebuilt to get the next element to be processed,

and so on.

As an illustration, consider the following processes with their priorities:

Process P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Priority 5 4 3 4 5 5 3 2 1 5

These processes enter the system in the order as listed above at time 0, say. Assume

that a process having higher priority value will be serviced first. The heap tree can be

formed considering the process priority values. The order of servicing the process is

successive deletion of roots from the heap.

45
 40

40

 45 35

50 70 80 90

45

40 35

50 70 80 90

22

 Binary Search Trees:

A binary search tree has binary nodes and the following additional property. Given a

node t, each node to the left is “smaller” than t, and each node to the right is

“larger”. This definition applies recursively down the left and right sub-trees. Figure
 shows a binary search tree where characters are stored in the nodes.

Figure 2.5. Binary Search tree

Figure 2.5 also shows what happens if you do an inorder traversal of a binary search

tree: you will get a list of the node contents in sorted order. In fact, that‟s probably

how the name inorder originated.

Binary Tree Searching:

The search operation starts from root node R, if item is less than the value in the

root node R, we proceed to the left child; if item is greater than the value in the node

R, we proceed to its right child. The process will be continued till the item is found or

we reach to a dead end. The Figure 2.6 shows the path taken when searching for a

node “c”.

Figure 2.6. Searching a binary tree

Why use binary search trees?

Binary search trees provide an efficient way to search through an ordered collection

of items. Consider the alternative of searching an ordered list. The search must

proceed sequentially from one end of the list to the other. On average, n/2 nodes

must be compared for an ordered list that contains n nodes. In the worst case, all n

f

b h

a e g

d

c Inorder: a b c d e f g h

f

b h

a e g

d

c Path to find c

23

nodes might need to be compared. For a large collection of items, this can get very

expensive.

The inefficiency is due to the one-dimensionality of a linked list. We would like to

have a way to jump into the middle of the list, in order to speed up the search

process. In essence, that‟s what a binary search tree does. The longest path we will

ever have to search is equal to the height of the tree. The efficiency of a binary

search tree thus depends on the height of the tree. For a tree holding n nodes, the

smallest possible height is log(n).

To obtain the smallest height, a tree must be balanced, where both the left and right

sub trees have approximately the same number of nodes. Also, each node should

have as many children as possible, with all levels being full except possibly the last.

Figure 2.7 shows an example of a well-constructed tree.

Figure 2.7. Well constructed binary search tree.

Unfortunately, trees can become so unbalanced that they‟re no better for searching

than linked lists. Such trees are called degenerate trees. Figure 2.8 shows an

example. For a degenerate tree, an average of n/2 comparisons are needed, with a

worst case of n comparisons – the same as for a linked list.

Figure 2.8. A degenerate binary search tree.

When nodes are being added and deleted in a binary search tree, it‟s difficult to

maintain the balance of the tree. We will investigate methods of balancing trees in

the next section.

Inserting Nodes into a Binary Search Tree:

When adding nodes to a binary search tree, we must be careful to maintain the

binary search tree property. This can be done by first searching the tree to see

whether the key we are about to add is already in the tree. If the key cannot be

found, a new node is allocated and added at the same location where it would go if

e

c g

b d f h

a

a

b

c

d

e

24

the search had been successful. Figure 2.9 shows what happens when we add some

nodes to a tree.

Figure 2.9. Inserting nodes into a binary search tree.

Deleting nodes from a Binary search tree:

Deletions from a binary search tree are more involved than insertions. Given a node

to delete, we need to consider these tree cases:

1. The node is a leaf

2. The node has only one child.

3. The node has two children.

Case 1: It is easy to handle because the node can simply be deleted and the

corresponding child pointer of its parent set to null. Figure 2.10 shows

an example.

Figure 2. 10. Deleting a leaf node.

Case 2: It is almost as easy to manage. Here, the single child can be promoted

up the tree to take the place of the deleted node, as shown in figure

2.11.

Figure 2. 11. Deleting a node that has one child.

d d
d

b f
insert a

b f
insert e b f

a
a e

b

a c

d

b

a c

b

a c

e

d f

b

a e

d f

25

Case 3: The node to be deleted has two children, is more difficult. We must

find some node to take the place of the one deleted and still maintain

the binary search tree property. There are two obvious cases:

 The inorder predecessor of the deleted node.

 The inorder successor of the deleted node.

We can detach one of these nodes from the tree and insert it where

the node to be deleted.

The predecessor of a node can be found by going down to the left once, and then all

the way to the right as far as possible. To find the successor, an opposite traversal is

used: first to the right, and then down to the left as far as possible. Figure 2.12

shows the path taken to find both the predecessor and successor of a node.

Figure 2.12. Finding predecessor and successor of nodes.

Both the predecessor and successor nodes are guaranteed to have no more than one

child, and they may have none. Detaching the predecessor or successor reduces to

either case 1 or 2, both of which are easy to handle. In figure 2.13 (a), we delete a

node from the tree and use its predecessor as the replacement and in figure 2.13

(b), we delete a node from the tree and use its successor as the replacement.

Figure 2.13. Deleting a node that has two children.

e e

b i b i

a d g j a d g j

c f h c f h

(a) Predecessor of e. (b) Successor of e.

d f

b i b i

a c g j a d g j

f h c h

(a) After deleting the
predecessor of e.

(b) After deleting the
successor of e.

26

 Balanced Trees:

For maximum efficiency, a binary search tree should be balanced. Every un-balanced

trees are referred to as degenerate trees, so called because their searching

performance degenerates to that of linked lists. Figure 2.14 shows an example.

Figure 2.14. A degenerate binary search tree.

The first tree was built by inserting the keys „a‟ through „i‟ in sorted order into binary

search tree. The second tree was built using the insertion sequence. a-g-b-f-c-e-d.

This pathological sequence is often used to test the balancing capacity of a tree.

Figure 2.15 shows what the tree in 2.14-(b) above would look like if it were

balanced.

Figure 2.15 Balanced Tree

Balancing Acts:

There are two basic ways used to keep trees balanced.

1) Use tree rotations.

2) Allow nodes to have more than two children.

a a

b i

c
b

d
h

e

f
c

g
g

(a) h d (b)

i f

e

d

b h

a c f i

e g

27

Tree Rotations:

Certain types of tree-restructurings, known as rotations, can aid in balancing trees.

Figure 2.16 shows two types of single rotations.

Figure 2.16. Single Rotations

Another type of rotation is known as a double rotation. Figure 2.17 shows the two

symmetrical cases.

Figure 2.17. Double Rotations

p
c b

t

b 4 a c

a 3
1 2 3 4

1 2 (a) Right Rotation.

p

a
b

t a c

1 b

1 2 3 4

2 c

(a) Left Rotation.

3 4

g
c c b

p

a 4 b 4 a c

1 b
a 3 1 2 3 4

2 3
1 2

(a) Left - Right Rotation.
p

a a
b

t a c

1 c 1 b

1 2 3 4

b 4 2 c

2 3 3 4

(b) Right - Left Rotation.

28

Both single and double rotations have one important feature: in order traversals of

the trees before and after the rotations are preserved. Thus, rotations help balance

trees, but still maintain the binary search tree property.

Rotations don‟t guarantee a balanced tree, however for example, figure 2.18 shows

a right rotations that makes a tree more un-balanced. The trick lies in determining

when to do rotation and what kind of notations to do.

Figure 2.18. Un-balanced rotation.

The Red-black trees have certain rules to be used to determine when a how to

rotate.

 Dictionary:

A Dictionary is a collection of pairs of form (k, e), where k is a key and e is the

element associated with the key k (equivalently, e is the element whose key is k). No

two pairs in a dictionary should have the same key.

Examples:

1. A word dictionary is a collection of elements; each element comprises a word,

which is the key and the meaning of the word, pronunciation and etymologies

etc. are associated with the word.

2. A telephone directory with a collection of telephone numbers and names.

3. The list of students enrolled for the data structures course, compiler and

Operating System course. The list contains (CourseName, RollID) pairs.

The above last two examples are dictionaries, which permit two or more (key,

element) pairs having the same key.

Operations on Dictionaries:

 Get the element associated with a specified key from the dictionary.

For example, get(k) returns the element with the key k.
 Insert or put an element with a specified key into the dictionary.

For example, put(k, e) puts the element e whose key is k into the dictionary.

 Delete or remove an element with a specified key.

For example, remove(k) removes the element with key k.

b a

a c
b

c

29

Disjoint Set Operations

 Disjoint Set Operations

Set:

A set is a collection of distinct elements. The Set can be represented, for

examples, as S1={1,2,5,10}.

Disjoint Sets:
The disjoints sets are those do not have any common element.

For example S1={1,7,8,9} and S2={2,5,10}, then we can say that S1 and S2 are

two disjoint sets.

Disjoint Set Operations:

The disjoint set operations are

1. Union

2. Find

Disjoint set Union:

If Si and Sj are tow disjoint sets, then their union Si U Sj consists of all the

elements x such that x is in Si or Sj.

Find:

Example:

S1={1,7,8,9} S2={2,5,10}

S1 U S2={1,2,5,7,8,9,10}

Given the element I, find the set containing i.

Example:

S1={1,7,8,9}

Then,

S2={2,5,10}

s3={3,4,6}

Find(4)= S3 Find(5)=S2 Find97)=S1

Set Representation:

The set will be represented as the tree structure where all children will store

the address of parent / root node. The root node will store null at the place of parent

address. In the given set of elements any element can be selected as the root node,

generally we select the first node as the root node.

Example:
S1={1,7,8,9} S2={2,5,10} s3={3,4,6}

Then these sets can be represented as

Disjoint Union:

To perform disjoint set union between two sets Si and Sj can take any one

root and make it sub-tree of the other. Consider the above example sets S1 and S2

then the union of S1 and S2 can be represented as any one of the following.

30

Find:

To perform find operation, along with the tree structure we need to maintain

the name of each set. So, we require one more data structure to store the set

names. The data structure contains two fields. One is the set name and the other one

is the pointer to root.

 Union and Find Algorithms:

In presenting Union and Find algorithms, we ignore the set names and

identify sets just by the roots of trees representing them. To represent the sets, we

use an array of 1 to n elements where n is the maximum value among the elements

of all sets. The index values represent the nodes (elements of set) and the entries

represent the parent node. For the root value the entry will be „-1‟.

Example:

For the following sets the array representation is as shown below.

i [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

p -1 -1 -1 3 2 3 1 1 1 2

Algorithm for Union operation:

To perform union the SimpleUnion(i,j) function takes the inputs as the set

roots i and j . And make the parent of i as j i.e, make the second root as the parent

of first root.

Algorithm SimpleUnion(i,j)

{
P[i]:=j;

}

31

Algorithm for find operation:

The SimpleFind(i) algorithm takes the element i and finds the root node of i. It

starts at I until it reaches a node with parent value -1.
Algorithms SimpleFind(i)

{

while(P[i]≥0) do i:=P[i];

return i;
}

 Analysis of SimpleUnion(i,j) and SimpleFind(i):

Although the SimpleUnion(i,j) and SimpleFind(i) algorithms are easy to state,

their performance characteristics are not very good. For example, consider the sets

.

Then if we want to perform following sequence of operations Union(1,2) ,

Union(2,3)……. Union(n-1,n) and sequence of Find(1), Find(2)……… Find(n).

The sequence of Union operations results the degenerate tree as below.

Since, the time taken for a Union is constant, the n-1 sequence of union can be

processed in time O(n). And for the sequence of Find operations it will take time
n

complexity of O (i) = O(n2).
i1

We can improve the performance of union and find by avoiding the creation of

degenerate tree by applying weighting rule for Union.

 Weighting rule for Union:

If the number of nodes in the tree with root I is less than the number in the

tree with the root j, then make „j‟ the parent of i; otherwise make „i' the parent of j.

n

n-1

n-2

1

1 4 2 3 n

32

To implement weighting rule we need to know how many nodes are there in every

tree. To do this we maintain “count” field in the root of every tree. If „i' is the root

then count[i] equals to number of nodes in tree with root i.

Since all nodes other than roots have positive numbers in parent (P) field, we can

maintain count in P field of the root as negative number.

Algorithm WeightedUnion(i,j)
//Union sets with roots i and j , i≠j using the weighted rule
// P[i]=-count[i] and p[j]=-count[j]

{

temp:= P[i]+P[j];

if (P[i]>P[j]) then

{

// i has fewer nodes

P[i]:=j;
P[j]:=temp;

}

else
{

// j has fewer nodes

P[j]:=i;

P[i]:=temp;
}

}

 Collapsing rule for find:

If j is a node on the path from i to its root and p[i]≠root[i], then set P[j] to

root[i]. Consider the tree created by WeightedUnion() on the sequence of 1≤i≤8.
Union(1,2), Union(3,4), Union(5,6) and Union(7,8)

33

Now process the following eight find operations

Find(8), Find(8)………………………Find(8)

If SimpleFind() is used each Find(8) requires going up three parent link fields for a

total of 24 moves .

When Collapsing find is used the first Find(8) requires going up three links and

resetting three links. Each of remaining seven finds require going up only one link

field. Then the total cost is now only 13 moves.(3 going up + 3 resets + 7 remaining

finds).

34

Algorithm CollapsingFind(i)
// Find the root of the tree containing element i
// use the collapsing rule to collapse all nodes from i to root.

{
r:=i;

while(P[r]>0) do r:=P[r]; //Find root

while(i≠r)
{

//reset the parent node from element i to the root

s:=P[i];
P[i]:=r;

i:=s;

}

}

35

Recurrence Relations

Recurrence Relation for a sequence of numbers S is a formula that relates all but a

finite number of terms of S to previous terms of the sequence, namely, {a0, a1, a2, .
. . . . , an-1}, for all integers n with n ≥ n0, where n0 is a nonnegative integer.
Recurrence relations are also called as difference equations.

Sequences are often most easily defined with a recurrence relation; however the

calculation of terms by directly applying a recurrence relation can be time

consuming. The process of determining a closed form expression for the terms of a

sequence from its recurrence relation is called solving the relation. Some guess and

check with respect to solving recurrence relation are as follows:

 Make simplifying assumptions about inputs

 Tabulate the first few values of the recurrence

 Look for patterns, guess a solution

 Generalize the result to remove the assumptions

Examples: Factorial, Fibonnaci, Quick sort, Binary search etc.

Recurrence relation is an equation, which is defined in terms of itself. There is no

single technique or algorithm that can be used to solve all recurrence relations. In

fact, some recurrence relations cannot be solved. Most of the recurrence relations

that we encounter are linear recurrence relations with constant coefficients.

Several techniques like substitution, induction, characteristic roots and generating

function are available to solve recurrence relations.

 The Iterative Substitution Method:

One way to solve a divide-and-conquer recurrence equation is to use the iterative

substitution method. This is a “plug-and-chug” method. In using this method, we

assume that the problem size n is fairly large and we than substitute the general

form of the recurrence for each occurrence of the function T on the right-hand side.

For example, performing such a substitution with the merge sort recurrence equation

yields the equation.

T(n) = 2 (2 T(n/22) + b (n/2)) + b n

= 22 T(n/22) + 2 b n

Plugging the general equation for T again yields the equation.

T(n) = 22 (2 T(n/23) + b (n/22)) + 2 b n

= 23 T(n/23) + 3 b n

The hope in applying the iterative substitution method is that, at some point, we will

see a pattern that can be converted into a general closed-form equation (with T only

36



appearing on the left-hand side). In the case of merge-sort recurrence equation, the

general form is:

T(n) = 2 i T (n/2i) + i b n

Note that the general form of this equation shifts to the base case, T(n) = b, where

n = 2i, that is, when i = log n, which implies:

T(n) = b n + b n log n.

In other words, T(n) is O(n log n). In a general application of the iterative

substitution technique, we hope that we can determine a general pattern for T(n) and

that we can also figure out when the general form of T(n) shifts to the base case.

 The Recursion Tree:

Another way of characterizing recurrence equations is to use the recursion tree

method. Like the iterative substitution method, this technique uses repeated

substitution to solve a recurrence equation, but it differs from the iterative

substitution method in that, rather than being an algebraic approach, it is a visual

approach.

In using the recursion tree method, we draw a tree R where each node represents a

different substitution of the recurrence equation. Thus, each node in R has a value of

the argument n of the function T (n) associated with it. In addition, we associate an

overhead with each node v in R, defined as the value of the non-recursive part of the

recurrence equation for v.

For divide-and-conquer recurrences, the overhead corresponds to the running time

needed to merge the subproblem solutions coming from the children of v. The

recurrence equation is then solved by summing the overheads associated with all the

nodes of R. This is commonly done by first summing values across the levels of R and

then summing up these partial sums for all the levels of R.

For example, consider the following recurrence equation:

T(n) 
 b


3 T n / 3  b n

if n  3

if n  3

This is the recurrence equation that we get, for example, by modifying the merge

sort algorithm so that we divide an unsorted sequence into three equal – sized

sequences, recursively sort each one, and then do a three-way merge of three sorted

sequences to produce a sorted version of the original sequence. In the recursion tree

R for this recurrence, each internal node v has three children and has a size and an

overhead associated with it, which corresponds to the time needed to merge the sub-

problem solutions produced by v‟s children. We illustrate the tree R as follows:

37

O v erhe a d

bn

bn

bn

The overheads of the nodes of each level, sum to bn. Thus, observing that the depth

of R is log3 n, we have that T(n) is O(n log n).

 The Guess-and-Test Method:

Another method for solving recurrence equations is the guess-and-test technique.

This technique involves first making a educated guess as to what a closed-form

solution of the recurrence equation might look like and then justifying the guesses,

usually by induction. For example, we can use the guess-and-test method as a kind

of “binary search” for finding good upper bounds on a given recurrence equation. If

the justification of our current guess fails, then it is possible that we need to use a

faster-growing function, and if our current guess is justified “too easily”, then it is

possible that we need to use a slower-growing function. However, using this

technique requires case careful, in each mathematical step we take, in trying to

justify that a certain hypothesis holds with respect to our current “guess”.

Example 2.10.1: Consider the following recurrence equation:

T (n) = 2 T(n/2) + b n log n. (assuming the base case T(n) = b for n < 2)

This looks very similar to the recurrence equation for the merge sort routine, so we

might make the following as our first guess:

First guess: T (n) < c n log n.

for some constant c>0. We can certainly choose c large enough to make this true for

the base case, so consider the case when n > 2. If we assume our first guesses an

inductive hypothesis that is true for input sizes smaller than n, then we have:

T (n) = 2T (n/2) + b n log n

≤ 2 (c (n/2) log (n/2)) + b n log n

≤ c n (log n – log 2) + b n log n

≤ c n log n – c n + b n log n.

But there is no way that we can make this last line less than or equal to c n log n for

n ≥ 2. Thus, this first guess was not sufficient. Let us therefore try:

Better guess: T (n) ≤ c n log2 n.

for some constant c > 0. We can again choose c large enough to make this true for

the base case, so consider the case when n ≥ 2. If we assume this guess as an

38

inductive hypothesis that is true for input sizes smaller than n, then we have

inductive hypothesis that is true for input sizes smaller than n, then we have:

T (n) = 2T (n/2) + b n log n

≤ 2 (c (n/2) log2 (n/2)) + b n log n

≤ c n (log2n – 2 log n +1) + b n log n

≤ c n log2 n - 2 c n log n + c n + b n log n

≤ c n log2 n

Provided c ≥ b. Thus, we have shown that T (n) is indeed O(n log2 n) in this case.
We must take care in using this method. Just because one inductive hypothesis for T

(n) does not work, that does not necessarily imply that another one proportional to

this one will not work.

Example 2.10.2: Consider the following recurrence equation (assuming the base

case T(n) = b for n < 2): T (n) = 2T (n/2) + log n

This recurrence is the running time for the bottom-up heap construction. Which is

O(n). Nevertheless, if we try to prove this fact with the most straightforward

inductive hypothesis, we will run into some difficulties. In particular, consider the

following:

First guess: T (n) ≤ c n.

For some constant c > 0. We can choose c large enough to make this true for the

base case, so consider the case when n ≥ 2. If we assume this guess as an inductive

hypothesis that is true of input sizes smaller than n, then we have:

T (n) = 2T (n/2) + log n

≤ 2 (c (n/2)) + log n

= c n + log n

But there is no way that we can make this last line less than or equal to cn for n > 2.

Thus, this first guess was not sufficient, even though T (n) is indeed O (n). Still, we

can show this fact is true by using:

Better guess: T (n) ≤ c (n – log n)

For some constant c > 0. We can again choose c large enough to make this true for

the base case; in fact, we can show that it is true any time n < 8. So consider the

case when n ≥ 8. If we assume this guess as an inductive hypothesis that is true for

input sizes smaller than n, then we have:

T (n) = 2T (n/2) + log n

≤ 2 c ((n/2) – log (n/2)) + log n

= c n – 2 c log n + 2 c + log n

= c (n – log n) – c log n + 2 c + log n

≤ c (n – log n)

Provided c ≥ 3 and n ≥ 8. Thus, we have shown that T (n) is indeed O (n) in this

case.

 The Master Theorem Method:

39

b

2

Each of the methods described above for solving recurrence equations is ad hoc and

requires mathematical sophistication in order to be used effectively. There is,

nevertheless, one method for solving divide-and-conquer recurrence equations that is

quite general and does not require explicit use of induction to apply correctly. It is

the master method. The master method is a “cook-book” method for determining the

asymptotic characterization of a wide variety of recurrence equations. It is used for

recurrence equations of the form:

 c
T(n)  

if n  d

 a T(n / b)  f (n) if n  d

Where d > 1 is an integer constant, a > 0, c > 0, and b > 1 are real constants, and f
(n) is a function that is positive for n ≥ d.

The master method for solving such recurrence equations involves simply writing
down the answer based on whether one of the three cases applies. Each case is

distinguished by comparing f (n) to the special function nlog a (we will show later why
this special function is so important.

The master theorem: Let f (n) and T (n) be defined as above.

1. If there is a small constant є > 0, such that f (n) is O (n
logb a  

) , then T

(n) is   nlogb a .

2. If there is a constant K ≥ 0, such that f (n) is  nlogb a logk n, then T (n)

is   nlogb a logk 1 n .

3. If there are small constant  > 0 and  < 1, such that f (n) is

and af(n/b) < f(n), for n ≥ d, then T (n) is  (f(n)).

  nlogb a   



Case 1 characterizes the situation where f (n) is polynomial smaller than the special
function, nlog

b
a.

Case 2 characterizes the situation when f (n) is asymptotically close to the special

function, and

Case 3 characterizes the situation when f (n) is polynomially larger than the special

function.

We illustrate the usage of the master method with a few examples (with each taking

the assumption that T (n) = c for n < d, for constants c > 1 and d > 1).

Example 2.11.1: Consider the recurrence T (n) = 4 T (n/2) + n

In this case, nlog
b
a = nlog2 4

= n2. Thus, we are in case 1, for f (n) is O (n2-) for  = 1.
This means that T (n) is  (n2) by the master.

Example 2.11.2: Consider the recurrenceT (n) = 2 T (n/2) + n log n

In this case, nlog
b
a = nlog 2

 = n. Thus, we are in case 2, with k=1, for f (n) is
 (n log n). This means that T (n) is  (n log2n) by the master method.

40

1 0 0+

3

Example 2.11.3: consider the recurrence T (n) = T (n/3) + n

In this case nlog

b
a = nlog

3 =n = 1. Thus, we are in Case 3, for f (n) is (n), for  =

1, and af(n/b) = n/3 = (1/3) f(n). This means that T (n) is  (n) by the master

method.

Example 2.11.4: Consider the recurrence T (n) = 9 T (n/3) + n2.5

In this case, nlog
b
a = nlog 9

 = n2. Thus, we are in Case 3, since f (n) is (n 2+) (for

=1/2) and af(n/b) = 9 (n/3)2.5 = (1/3)1/2 f(n). This means that T (n) is  (n2.5) by

the master method.

Example 2.11.5: Finally, consider the recurrence T (n) = 2T (n1/2) + log n

Unfortunately, this equation is not in a form that allows us to use the master method.

We can put it into such a form, however, by introducing the variable k = log n, which

lets us write:

T (n) = T (2k) = 2 T (2k/2) + k

Substituting into this the equation S (k) = T (2k), we get that

S (k) = 2 S (k/2) + k

Now, this recurrence equation allows us to use master method, which specifies that S

(k) is O (k log k). Substituting back for T (n) implies T (n) is O (log n log log n).

 CLOSED FROM EXPRESSION

There exists a closed form expression for many summations

Sum of first n natural numbers (Arithmetic progression)

n


i  1

i  1  2   n 
n(n  1)

2

Sum of squares of first n natural numbers

n


i  1

i 2
 1  4  9 .  n

 
n(n  1) (2n  1)

6

Sum of cubes

n 2 2


i  1

i 3
 13

  23
 33

.  n3
 

n (n  1)
4

Geometric progression

n


i  0

2i

 20

 21

 22

.  2n

 2n  1

1

41



n


i  0

r i 
r n  1  1

r  1

n


i  1

r i 
r n

 1

r 1

 SOLVING RECURRENCE RELATIONS

Example 2.13.1. Solve the following recurrence relation:

2

T(n) 





 n 

, n  1

2 .T 
2
  7 , n  1

  


Solution: We first start by labeling the main part of the relation as Step 1:

Step 1: Assume n > 1 then,

 n 
T(n)  2.T    7

 2 
 n  n

Step 2: Figure out what T   is; everywhere you see n, replace it with .

 n 


 n 

 2  2

T    2.T    7
 2   2

2




Now substitute this back into the last T (n) definition (last line from step 1):

  n  

T n  2. 2. T    7  7

  2
2

 
 n 

 22 .T    3.7
 22





 n 
Step 3: let's expand the recursive call, this time, it's T   :

 n 


 n 

 22


T    2.T    7
 2

2
  2

3




Now substitute this back into the last T(n) definition (last line from step 2):

  n  
T n  22 . 2. T    7  7

  2
3

 

42

i






 n 
23 .T    7.7

 2
3




From this, first, we notice that the power of 2 will always match i, current. Second,
we notice that the multiples of 7 match the relation 2i – 1 : 1, 3, 7, 15. So, we can

write a general solution describing the state of T (n).

Step 4: Do the ith substitution.

T(n)  2i . T    2i
1 . 7

 n 

 2
i




However, how many times could we take these "steps"? Indefinitely? No… it would

stop when n has been cut in half so many times that it is effectively 1. Then, the

original definition of the recurrence relation would give us the terminating condition T
(1) = 1 and us restrict size n = 2i

When, 1 
n

2i

 2i
 n

 log2 2  log2 n

 i .log2 2  log2 n

 i  log2 n

Now we can substitute this "last value for i" back into a our general Step 4 equation:

T (n) = 2 . T    2 1 . 7
i  n  i

 2
i


= 2log2 n . T
 n

  2log2 n  1 . 7

 2log2 n





= n . T(1) + (n - 1) . 7

= n . 2 + (n - 1) . 7

= 9 . n - 7

This implies that T (n) is O (n).

Example 2.13.2. Imagine that you have a recursive program whose run time is

described by the following recurrence relation:

1

T(n) 





 n 

, n  1

2.T 
2
  4. n , n  1

  

43

 

Solve the relation with iterated substitution and use your solution to determine a

tight big-oh bound.

Solution:

Step 1: Assume n > 1 then,

T(n)  2 . T 
n
  4 . n

 


 2 

 n 
Step 2: figure out what T   is:

 2 


T 

n
  2 . T

n n
   4 .    

 2   2
2

 2

Now substitute this back into the last T (n) definition (last line from step 1):

   

T n  2 . 2 . T
n n

   4 .   4 . n

  2
2

 2 


= 22 . T 

n
  2 . 4 . n

 

 2
2




Step 3: figure out what T
 n 




is:
 22




T 

n
  2 . T 

n
  4 .

n

   

 22
  23

 22

Now substitute this back into the last T (n) definition (last time from step 2):

   

T n  22 . 2 . T



n


 23


 4 .
n



22


 2 . 4 . n

= 23 . T 

n
  3 . 4 . n

 

 2
3




Step 4: Do the ith substitution.

Tn  2i . T 
n
  i . 4 . n

 

 2i




The parameter to the recursive call in the last line will equal 1 when i = log2 n (use
the same analysis as the previous example). In which case T (1) = 1 by the original
definition of the recurrence relation.

Now we can substitute this back into a our general Step 4 equation:

44



Tn  2i . T
n

   i
. 4 . n

 


 2
i




= 2log2 n . T






n 
  log

n . 4 . n

 2log2 n

 2

= n . T(1)  4 . n . log2 n

= n + 4 . n . log2 n

This implies that T (n) is O(n log n).

Example 2.13.3. Write a recurrence relation and solve the recurrence relation for

the following fragment of program:

Write T(n) in terms of T for fractions of n, for example, T(n/k) or T(n -

k).

int findmax (int a[], int start, int end)

{

int mid, max1, max2;

if (start == end) // easy case (2 steps)

return (a [start]);

mid = (start + end) / 2; // pre-processing (3)

max1 = findmax (a, start, mid); // recursive call: T(n/2) + 1

max2 = findmax (a, mid+1, end); // recursive call: T(n/2) + 1

if (max1 >= max2) //post-processing (2)
return (max1);

else

}

return (max2);

Solution:

The Recurrence Relation is:

T (n) = 2, if n = 1

2 T(n/2) + 8, if n > 1

Solving the Recurrence Relation by iteration method:

Assume n > 1 then T(n) = 2 T (n/2) + 8

Step 1: Substituting n = n/2 , n/4 for n in the relation:

Since, T (n/2) = 2 T ((n/2) /2) + 8, and T (n/4) = 2T((n/4) /2) + 8,

T (n) = 2 [T(n/2)] + 8 (1)

45



T (n) = 2 [2 T(n/4) + 8] + 8 (2)

T (n) = 2 [2 [2 T(n/8) + 8] + 8] + 8 (3)

= 2x2x2 T (n/2x2x2) + 2x2x8 + 2x8 + 8,

Step 2: Do the ith substitution:

T (n) = 2i T (n/2i) + 8 (2i-1 + . . . + 22 + 2 + 1)

i  1

= 2i T (n/2i) + 8 (
k  0

2k)

= 2i T (n/2i) + 8 (2i - 1) (the formula for geometric series)

Step 3: Define i in terms of n:

If n = 2 i, then i = log n so, T (n/2 i) = T(1) = 2

T(n) = 2i T (n/2i) + 8 (2i - 1)
= n T (1) + 8 (n-1)

= 2n + 8n - 8 = 10n - 8

Step 4: Representing in big-O function:

T (n) = 10n - 8 is O(n)

Example 2.13.4. If K is a non negative constant, then prove that the recurrence

k

T(n) 





 n 

, n  1

3 .T 
2
  k . n , n  1

  


has the following solution (for n a power of 2)

T(n)  3 k . n
log2 3 - 2k .n

Solution:

Assuming n > 1, we have T (n) = 3T


n
 





K . n

(1)
 



Substituting n 
n

2

 2 



for n in equation (1), we get

T 

n
  3T 

n
  k

n
 (2)

   


 2 

	 

 4  2

 n 
Substituting equation (2) for T   in equation (1)

 2 

46

2

4

4 

8 



   
T (n) = 3 3T 

n
  k

n
  k . n

 
 


T(n)  32 T 

n
 

3
k . n  k . n (3)

 

 4  2

Substituting n 
n

4

for n equation (1)

T 

n
  3T 

n
  k

n
 (4)

   


 4 

	 

 8  4

Substituting equation (4) for T 
n

4

in equation (3)

   

T(n)  32
 3 T 

n
  k

n
 

3
k . n  k . n

 
 


33 T 

n
 

9
k . n 

3
k .n  k . n (5)

 

 8  4 2

Continuing in this manner and substituting n = 2i, we obtain

 
i  1

T(n)  3i T 
n
 

3
 k .n  

9 k n
 

3
k . n  k .n

 2
i
 2i  1 4 2

 
i 

 
3


  

1  n  1 r n
1

T (n)  3i T 
n
  

 2 
 k . n as  r i 

 2
i
 

3
 1  i  0 r 1

 2 
 

i = 3i T 
n
  2 . 

3
 k . n  2 k n (6)

   

 2
i
  2 

As n = 2i , then i = log2n and by definition as T (1) = k

T(n)  3i
 k  2.

3
 . k n  2 k n

= 3i

n

3k  2 k n

= 3 k . 3
log 2n

 2 k n

= 3 k n
log2 3

 2 k n

Example 2.13.5. Towers of Hanoi

2

i

47

The Towers of Hanoi is a game played with a set of donut shaped disks stacked on

one of three posts. The disks are graduated in size with the largest on the bottom.

The objective of the game is to transfer all the disks from post B to post A moving

one disk at a time without placing a larger disk on top of a smaller one. What is the

minimum number of moves required when there are n disks?

In order to visualize the most efficient procedure for winning the game consider the

following:

1. Move the first n-1 disks, as per the rules in the most efficient manner

possible, from post B to post C.

2. Move the remaining, largest disk from post B to post A.

3. Move the n - 1 disks, as per the rules in the most efficient manner possible,

from post C to post A.

Let mn be the number of moves required to transfer n disks as per the rules in the

most efficient manner possible from one post to another. Step 1 requires moving n

- 1 disks or mn-1 moves. Step 2 requires 1 move. Step 3 requires mn-1 moves again.
We have then,

Mn = mn-1 + 1 + mn-1, for n > 2 = 2mn-1 + 1

Because only one move is required to win the game with only one disk, the initial

condition for this sequence is m1 = 1. Now we can determine the number of moves

required to win the game, in the most efficient manner possible, for any number of

disks.

m1 = 1

m2 = 2(1) + 1 = 3

m3 = 2(3) + 1 = 7

m4 = 2(7) + 1 = 15

m5 = 2(15) + 1 = 31

m6 = 2(31) + 1 = 63

m7 = 2(63) + 1 = 127

Unfortunately, the recursive method of determining the number of moves required is

exhausting if we wanted to solve say a game with 69 disks. We have to calculate

each previous term before we can determine the next.

Lets look for a pattern that may be useful in determining an explicit formula for mn.

In looking for patterns it is often useful to forego simplification of terms. mn = 2mn-

1 + 1, m1 = 1

m1 = 1

m2 = 2(1) + 1 = 2+1

m3 = 2(2+1) + 1 = 22+2+1

m4 = 2(22+2+1) + 1 = 23+22+2+1

m5 = 2(23+22+2+1) + 1 = 24+23+22+2+1

48

m6 = 2(24+23+22+2+1) + 1 = 25+24+23+22+2+1

m7 = 2(25+24+23+22+2+1) + 1 = 26+25+24+23+22+2+1

So we guess an explicit formula:

Mk = 2k-1 + 2k-2 + + 22 + 2 + 1

By sum of a Geometric Sequence, for any real number r except 1, and any integer n

> 0.

n

 r i
r n  1  1

 
i  0

r 1

our formula is then

n  1
mk   2

k

2n
1

  2n
1

k  0 2 1

This is nothing but O (2n)

Thus providing an explicit formula for the number of steps required to win the Towers

of Hanoi Game.

Example 2.13.6 Solve the recurrence relation T (n) = 5 T (n/5) + n/log n

Using iteration method,

T (n) = 25 T (n/25) + n/log (n/5) + n/log n

=125 T (n/125) + n/ log (n/25) + n/log (n/5) + n/log n

= 5k T (n/5k) + n/log (n/5k-1) + n/log (n/5k-2) + n/log n

When n = 5k

= n * T(1) + n/log 5 + n/log 25 + n/log 125 + n/log n

= c n + n (1/log 5 + 1/log 25 + 1/log 125 + 1/log n)

= c n + n log5 2 (1/1 + 1/2 + 1/3 + 1/k)

= c n + log5 2 n log (k)

= c n + log5 2 n log (log n)

=  (n log (log n))

Example 2.13.7. Solve the recurrence relation T (n) = 3 T (n/3 + 5) + n/2

Use the substitution method, guess that the solution is T (n) = O (n log n)

49

We need to prove T (n) < = c n log n for some c and all n > no.

Substitute c (n/3 + 5) log (n/3 + 5) for T (n/3 + 5) in the recurrence

T (n) <= 3 * c (n/3 + 5) * (log (n/3 + 5)) + n/2

If we take n0 as 15, then for all n > n0, n/3+5 <= 2n/3, so

T (n) <= (c n + 15 c) * (log n/3 + log 2) + n/2

<= c n log n – c n log 3 + 15 c log n – 15 c log 3 + c n + 15 c + n/2

<= c n log n - (c n (log 3-1) + n/2 – 15 c log n - 15 c (log 3 - 1)

<= c n log n, by choosing an appropriately large constant c

Which implies T (n) = O (n log n)

Similarly, by guessing T (n) >= c1 n log n for some c1 and all n > n0 and substituting

in the recurrence, we get.

T (n) >= c1 n log n - c1 n log 3 + 15 c1 log n – 15 c1 log3 + c1 n + 15 c1 + n/2

>= c1 n log n + n/2 + c1 n (1 - log 3) + 15 c1 + 15 c1 (log n – log 3)

>= c1 n log n + n (0.5 + c1 (1 - log 3) + 15 c1 + 15 c1 (log n - log 3)

by choosing an appropriately small constant c1 (say c1 = 0.01) and for all n > 3

T (n) >= c1 n log n

Which implies T (n) =  (n log n)

Thus, T (n) =  (n log n)

Example 2.13.8. Solve the recurrence relation T (n) = 2 T (n/2) + n/log n.

Using iteration method,

T (n) = 4 T (n/4) + n/log (n/2) + n/log n

= 8 T (n/8) + n/log (n/4) + n/log (n/2) + n/log n

= 2k T (n/2k) + n/log (n/2k-1) + n/log (n/2k-2) + n/log n

When n = 2k

= n * T(1) + n/log 2 + n/log 4 + n/log 8 + n/log n

= c n + n (1/log 2 + 1/log 4 + 1/log 8 + 1/log n)

= c n + n (1/1 + 1/2 + 1/3 + 1/k)

= c n + n log (k)

= c n + n log (log n)

50

a

a 2

28

3

3

3

28

x

=  (n log (log n))

Example 2.13.9: Solve the recurrence relation:

T (n) = T (n/2) + T (n/4) + T (n/8) + n

Use the substitution method, guess that the solution is T (n) = O (n log n).

We need to prove T (n) <= c n log n for some c and all n > no.

Substituting the guess in the given recurrence, we get

T (n) <= c (n/2) log (n/2) + c (n/4) log (n/4) + c (n/8) log (n/8) + n

<= c (n/2) (log n - 1) + c (n/4) (log n - 2) + c (n/8) (log n - 3) + n

<= c n log n (1/2 + 1/4 + 1/8) – c n/2 – c n/2 – 3 c n/8 + n

<= c n log n (7/8) - (11 c n – 8 n) / 8

<= c n log n (7/8) (if c = 1)

<= c n log n

From the recurrence equation, it can be inferred that T (n) > = n. So, T (n) =  (n)

Example 2.13.10: Solve the recurrence relation: T (n) = 28 T (n/3) + cn3

Let us consider :

n

log  f (n)

 cn3

b

n
log b n

log 3

According to the law of indices:
a

, we can write ax-y

ay

c n3

log 28

 c n3log 3

= c nr where r = 3 - log 28 < 0

n 3

It can be written as: h (n) = O (nr) where r < 0

f (n) for these from the table can be taken O (1)

T(n) 





nlog28

nlog28

T(1)  h(n)

T (1)  0(1)    n




log 3 







Example 2.13.12: Solve the recurrence relation T (n) = T (n) + c. n > 4

51

2



T (n) = T (n1/2)+ C

T (n)1/2 = T (n1/2)1/2 + C

T (n1/2) = T (n1/4)+ C + C

T (n) = T (n1/4)+ 2c

T (n) = T (n1/2)+ 3c

= T (n1/2i)+ i c

= T (n1 / n)  C log n

T n n   C

log2

n =  (log n)

Example 2.13.13: Solve the recurrence relation

T(n)  

1


n  4

2 T (n)  logn n  4

T (n)  2 2 T (n1 / 2)1 / 2

 log   logn

= 4 T (n1/4) + 2 log n1/2 + log n

T (n1/4) = 2 T (n1/2)1/4 + log n1/4

T (n)  4  2T n1 / 2 1 / 4




logn1 / 4 


 2 logn1 / 4

  logn

= 8 T (n1/8) + 4 log n1/4 + 2 log n1/2 + log n

T (n1/8) = 2 T (n1/2)1/8 + log n1/8

T(n)  8 2T (n1 / 16)  logn1 / 8   4
logn1 / 4

  2 logn1 / 2

 logn

= 16 T (n1/6) + 8 log n1/8 + 4 log n1/4 + 2 log n1/2 + log n

= 2i
 T (n1/ 2i

)  2

i1

logn
1/ 2i1

 2i2

logn
1/ 2i2

 2i3

logn
1/ 2i3

 2i4 logn1/ 2i4

= 2i

T  n

1 / 2i

 
 

n


k 1

2i  k

logn1 / 2

i k

 n T n1 / n   
n

2k

=  (log n)

lognk / n

n

52

53

Chapter

3

Divide and Conquer

 General Method

Divide and conquer is a design strategy which is well known to breaking down
efficiency barriers. When the method applies, it often leads to a large improvement in

time complexity. For example, from O (n2) to O (n log n) to sort the elements.

Divide and conquer strategy is as follows: divide the problem instance into two or

more smaller instances of the same problem, solve the smaller instances recursively,

and assemble the solutions to form a solution of the original instance. The recursion

stops when an instance is reached which is too small to divide. When dividing the

instance, one can either use whatever division comes most easily to hand or invest

time in making the division carefully so that the assembly is simplified.

Divide and conquer algorithm consists of two parts:

Divide : Divide the problem into a number of sub problems. The sub problems

are solved recursively.
Conquer : The solution to the original problem is then formed from the solutions

to the sub problems (patching together the answers).

Traditionally, routines in which the text contains at least two recursive calls are called

divide and conquer algorithms, while routines whose text contains only one recursive

call are not. Divide–and–conquer is a very powerful use of recursion.

 Control Abstraction of Divide and Conquer

A control abstraction is a procedure whose flow of control is clear but whose primary

operations are specified by other procedures whose precise meanings are left

undefined. The control abstraction for divide and conquer technique is DANDC(P),

where P is the problem to be solved.

DANDC (P)

{

if SMALL (P) then return S (p);

else
{

divide p into smaller instances p1, p2, …. Pk, k  1;

apply DANDC to each of these sub problems;

return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk));
}

}

SMALL (P) is a Boolean valued function which determines whether the input size is

small enough so that the answer can be computed without splitting. If this is so

function „S‟ is invoked otherwise, the problem „p‟ into smaller sub problems. These

sub problems p1, p2, . . . , pk are solved by recursive application of DANDC.

54



If the sizes of the two sub problems are approximately equal then the computing

time of DANDC is:

T (n) =
 g (n)


2 T (n/2) f (n)

n small

otherwise

Where, T (n) is the time for DANDC on „n‟ inputs

g (n) is the time to complete the answer directly for small inputs and

f (n) is the time for Divide and Combine

 Binary Search

If we have „n‟ records which have been ordered by keys so that x1 < x2 < … < xn .

When we are given a element „x‟, binary search is used to find the corresponding
element from the list. In case „x‟ is present, we have to determine a value „j‟ such
that a[j] = x (successful search). If „x‟ is not in the list then j is to set to zero (un
successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and

compare „x‟ with a[mid]. If x = a[mid] then the desired record has been found.

If x < a[mid] then „x‟ must be in that portion of the file that precedes a[mid], if there

at all. Similarly, if a[mid] > x, then further search is only necessary in that past of

the file which follows a[mid]. If we use recursive procedure of finding the middle key

a[mid] of the un-searched portion of a file, then every un-successful comparison of

„x‟ with a[mid] will eliminate roughly half the un-searched portion from consideration.

Since the array size is roughly halved often each comparison between „x‟ and

a[mid], and since an array of length „n‟ can be halved only about log2n times before
reaching a trivial length, the worst case complexity of Binary search is about log2n

 Algorithm Algorithm

BINSRCH (a, n, x)
// array a(1 : n) of elements in increasing order, n  0,

// determine whether „x‟ is present, and if so, set j such that x = a(j)

// else return j

{

low :=1 ; high :=n ;

while (low < high) do
{

mid :=|(low + high)/2|

if (x < a [mid]) then high:=mid – 1;

else if (x > a [mid]) then low:= mid + 1
else return mid;

}

return 0;

}

low and high are integer variables such that each time through the loop either „x‟ is

found or low is increased by at least one or high is decreased by at least one. Thus

we have two sequences of integers approaching each other and eventually low will

become greater than high causing termination in a finite number of steps if „x‟ is not

present.

55

 Example for Binary Search

Let us illustrate binary search on the following 9 elements:

Index 1 2 3 4 5 6 7 8 9

Elements -15 -6 0 7 9 23 54 82 101

The number of comparisons required for searching different elements is as follows:

1. Searching for x = 101

Number of comparisons = 4

2. Searching for x = 82

found

Number of comparisons = 3

3. Searching for x = 42

7 6 not found

Number of comparisons = 4

4. Searching for x = -14

2 1 not found

Number of comparisons = 3

Continuing in this manner the number of element comparisons needed to find each of

nine elements is:

Index 1 2 3 4 5 6 7 8 9

Elements -15 -6 0 7 9 23 54 82 101

Comparisons 3 2 3 4 1 3 2 3 4

No element requires more than 4 comparisons to be found. Summing the

comparisons needed to find all nine items and dividing by 9, yielding 25/9 or

approximately 2.77 comparisons per successful search on the average.

There are ten possible ways that an un-successful search may terminate depending

upon the value of x.

low

1

high

9

mid

5
6 9 7

8 9 8
9 9 9

low

1

high

9

mid

5
6 9 7

8 9 8

found

low

1

high

9

mid

5
6 9 7

6 6 6

low

1

high

9

mid

5
1 4 2
1 1 1

56

If x < a[1], a[1] < x < a[2], a[2] < x < a[3], a[5] < x < a[6], a[6] < x < a[7] or

a[7] < x < a[8] the algorithm requires 3 element comparisons to determine that „x‟

is not present. For all of the remaining possibilities BINSRCH requires 4 element

comparisons. Thus the average number of element comparisons for an unsuccessful

search is:

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4

The time complexity for a successful search is O(log n) and for an unsuccessful

search is Θ(log n).

Successful searches un-successful searches

Θ(1), Θ(log n), Θ(log n) Θ(log n)

Best average worst best, average and worst

 Analysis for worst case

Let T (n) be the time complexity of Binary search

The algorithm sets mid to [n+1 / 2]

Therefore,

T(0) = 0

T(n) = 1 if x = a [mid]

 = 1 + T([(n + 1) / 2] – 1) if x < a [mid]

 = 1 + T(n – [(n + 1)/2]) if x > a [mid]

Let us restrict „n‟ to values of the form n = 2K – 1, where „k‟ is a non-negative

integer. The array always breaks symmetrically into two equal pieces plus middle

element.

2K – 1 - 1 2K – 1 - 1

2K 1

Algebraically this is

 n  1
  

2K


 1  1




= 2K – 1 for K > 1

Giving,

 2   2 



T(0) = 0

T(2k – 1) = 1 if x = a [mid]

= 1 + T(2K - 1 – 1) if x < a [mid]

= 1 + T(2k - 1 – 1) if x > a [mid]

In the worst case the test x = a[mid] always fails, so

w(0) = 0

w(2k – 1) = 1 + w(2k - 1 – 1)

57

This is now solved by repeated substitution:

w(2k – 1) = 1 + w(2k - 1 – 1)

= 1 + [1 + w(2k - 2 –1)]

= 1 + [1 + [1 + w(2k - 3 –1)]]

=

=

= i + w(2k - i – 1)

For i < k, letting i = k gives w(2k –1) = K + w(0) = k

But as 2K – 1 = n, so K = log2(n + 1), so

w(n) = log2(n + 1) = O(log n)

for n = 2K–1, concludes this analysis of binary search.

Although it might seem that the restriction of values of „n‟ of the form 2K–1 weakens

the result. In practice this does not matter very much, w(n) is a monotonic
increasing function of „n‟, and hence the formula given is a good approximation even

when „n‟ is not of the form 2K–1.

 External and Internal path length:

The lines connecting nodes to their non-empty sub trees are called edges. A non-

empty binary tree with n nodes has n–1 edges. The size of the tree is the number of

nodes it contains.

When drawing binary trees, it is often convenient to represent the empty sub trees

explicitly, so that they can be seen. For example:

The tree given above in which the empty sub trees appear as square nodes is as

follows:

The square nodes are called as external nodes E(T). The square node version is

sometimes called an extended binary tree. The round nodes are called internal nodes

I(T). A binary tree with n internal nodes has n+1 external nodes.

The height h(x) of node „x‟ is the number of edges on the longest path leading down

from „x‟ in the extended tree. For example, the following tree has heights written

inside its nodes:

a

b c

d

58

The depth d(x) of node „x‟ is the number of edges on path from the root to „x‟. It is

the number of internal nodes on this path, excluding „x‟ itself. For example, the

following tree has depths written inside its nodes:

The internal path length I(T) is the sum of the depths of the internal nodes of „T‟:

I(T) = 
x  I(T)

d(x)

The external path length E(T) is the sum of the depths of the external nodes:

E(T) = 
x  E(T)

d(x)

For example, the tree above has I(T) = 4 and E(T) = 12.

A binary tree T with „n‟ internal nodes, will have I(T) + 2n = E(T) external nodes.

A binary tree corresponding to binary search when n = 16 is

External square nodes, which lead for unsuccessful search.

Let CN be the average number of comparisons in a successful search.

C 'N be the average number of comparison in an un successful search.

3

1 2

0 0 1 0

0 0

0

1 1

2 2 2 2

3 3

8

4 12

2 6 10 14

1 3 5 7 9 11 13 15

0 1 2 3 4 5 6 7 8 9 16

Represents internal nodes which lead for successful search

10 11 12 13 14

15 16

59

Then we have,

CN  1 
internal pathlengthof tree

N

C' 
External path length of tree

N
N  1

CN 
 1 
1  
 N

C'N  1

External path length is always 2N more than the internal path length.

 Merge Sort

Merge sort algorithm is a classic example of divide and conquer. To sort an array,

recursively, sort its left and right halves separately and then merge them. The time

complexity of merge mort in the best case, worst case and average case is O(n log n)

and the number of comparisons used is nearly optimal.

This strategy is so simple, and so efficient but the problem here is that there seems

to be no easy way to merge two adjacent sorted arrays together in place (The result

must be build up in a separate array).

The fundamental operation in this algorithm is merging two sorted lists. Because the

lists are sorted, this can be done in one pass through the input, if the output is put in

a third list.

The basic merging algorithm takes two input arrays „a‟ and ‟b‟, an output array „c‟,

and three counters, a ptr, b ptr and c ptr, which are initially set to the beginning of

their respective arrays. The smaller of a[a ptr] and b[b ptr] is copied to the next

entry in „c‟, and the appropriate counters are advanced. When either input list is

exhausted, the remainder of the other list is copied to „c‟.

To illustrate how merge process works. For example, let us consider the array „a‟

containing 1, 13, 24, 26 and „b‟ containing 2, 15, 27, 38. First a comparison is done

between 1 and 2. 1 is copied to „c‟. Increment a ptr and c ptr.

and then 2 and 13 are compared. 2 is added to „c‟. Increment b ptr and c ptr.

1 2 3 4

1 13 24 26

h

ptr

5 6 7 8

2 15 27 28

j

ptr

1 2 3 4 5 6 7 8

1
i

ptr

1 2 3 4

1 13 24 26

 h

ptr

5 6 7 8

2 15 27 28

j

ptr

1 2 3 4 5 6 7 8

1 2
 i

ptr

60

then 13 and 15 are compared. 13 is added to „c‟. Increment a ptr and c ptr.

24 and 15 are compared. 15 is added to „c‟. Increment b ptr and c ptr.

24 and 27 are compared. 24 is added to „c‟. Increment a ptr and c ptr.

26 and 27 are compared. 26 is added to „c‟. Increment a ptr and c ptr.

As one of the lists is exhausted. The remainder of the b array is then copied to „c‟.

h

ptr

i

ptr

 Algorithm

Algorithm MERGESORT (low, high)

// a (low : high) is a global array to be sorted.

{
if (low < high)

{

mid := (low + high)/2 //finds where to split the set

MERGESORT(low, mid) //sort one subset

MERGESORT(mid+1, high) //sort the other subset
MERGE(low, mid, high) // combine the results

}

}

1 2 3 4

1 13 24 26

 h

ptr

5 6 7 8

2 15 27 28

 j

ptr

1 2 3 4 5 6 7 8

1 2 13
 i

ptr

1 2 3 4

1 13 24 26

 h

ptr

5 6 7 8

2 15 27 28

 j

ptr

1 2 3 4 5 6 7 8

1 2 13 15
 i

ptr

1 2 3 4

1 13 24 26

 h

ptr

5 6 7 8

2 15 27 28

 j

ptr

1 2 3 4 5 6 7 8

1 2 13 15 24
 i

ptr

1 2 3 4

1 13 24 26

 h

ptr

5 6 7 8

2 15 27 28

 j

ptr

1 2 3 4 5 6 7 8

1 2 13 15 24 26
 i

ptr

1 2 3 4

1 13 24 26

5 6 7 8

2 15 27 28

 j

ptr

1 2 3 4 5 6 7 8

1 2 13 15 24 26 27 28

61

7, 2 | 9, 4  2, 4, 7, 9 3, 8 | 6, 1  1, 3, 6, 8

7 | 2  2, 7 9 | 4  4, 9 3 | 8  3, 8 6 | 1  1, 6

Algorithm MERGE (low, mid, high)

// a (low : high) is a global array containing two sorted subsets

// in a (low : mid) and in a (mid + 1 : high).

// The objective is to merge these sorted sets into single sorted

// set residing in a (low : high). An auxiliary array B is used.

{

h :=low; i := low; j:= mid + 1;

while ((h < mid) and (J < high)) do
{

if (a[h] < a[j]) then

{

}
else

{

}

b[i] := a[h]; h := h + 1;

b[i] :=a[j]; j := j + 1;

i := i + 1;

}
if (h > mid) then

for k := j to high do

{

}

else

b[i] := a[k]; i := i + 1;

for k := h to mid do

{
b[i] := a[K]; i := i + l;

}
for k := low to high do

a[k] := b[k];

}

 Example

For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustrate

merge sort algorithm:

7, 2, 9, 4 | 3, 8, 6, 1  1, 2, 3, 4, 6, 7, 8, 9

7  7 2  2 9  9 4  4 3  3 8  8 6  6 1  1

62

5, 6, 8 1, 2, 4

 Tree Calls of MERGESORT(1, 8)

The following figure represents the sequence of recursive calls that are produced by

MERGESORT when it is applied to 8 elements. The values in each node are the values

of the parameters low and high.

 Tree Calls of MERGE()

The tree representation of the calls to procedure MERGE by MERGESORT is as

follows:

 Analysis of Merge Sort

We will assume that „n‟ is a power of 2, so that we always split into even halves, so

we solve for the case n = 2k.

For n = 1, the time to merge sort is constant, which we will be denote by 1.

Otherwise, the time to merge sort „n‟ numbers is equal to the time to do two

recursive merge sorts of size n/2, plus the time to merge, which is linear. The

equation says this exactly:

T(1) = 1

T(n) = 2 T(n/2) + n

This is a standard recurrence relation, which can be solved several ways. We will

solve by substituting recurrence relation continually on the right–hand side.

We have, T(n) = 2T(n/2) + n

1, 8

1, 2 3, 4 5, 6 7, 8

1, 1, 2 3, 3, 4 5, 5, 6 7, 7, 8

1, 4, 8

1, 4 5, 8

1, 1 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7 8, 8

63

2

Since we can substitute n/2 into this main equation

2 T(n/2)

We have,

=

=

2 (2 (T(n/4)) + n/2)

4 T(n/4) + n

T(n/2) = 2 T(n/4) + n
T(n) = 4 T(n/4) + 2n

Again, by substituting n/4 into the main equation, we see that

4T (n/4) =

=

4 (2T(n/8)) + n/4

8 T(n/8) + n

So we have,

T(n/4) = 2 T(n/8) + n
T(n) = 8 T(n/8) + 3n

Continuing in this manner, we obtain:

T(n) = 2k T(n/2k) + K. n

As n = 2k, K = log2n, substituting this in the above equation

T (n)  2
log

2
n

 k 
T  


 log

n . n

 2k  2

 

= n T(1) + n log n

= n log n + n

Representing this in O notation:

T(n) = O(n log n)

We have assumed that n = 2k. The analysis can be refined to handle cases when „n‟

is not a power of 2. The answer turns out to be almost identical.

Although merge sort‟s running time is O(n log n), it is hardly ever used for main

memory sorts. The main problem is that merging two sorted lists requires linear

extra memory and the additional work spent copying to the temporary array and

back, throughout the algorithm, has the effect of slowing down the sort considerably.

The Best and worst case time complexity of Merge sort is O(n log n).

 Strassen’s Matrix Multiplication:

The matrix multiplication of algorithm due to Strassens is the most dramatic example

of divide and conquer technique (1969).

The usual way to multiply two n x n matrices A and B, yielding result matrix „C‟ as

follows :

for i := 1 to n do

for j :=1 to n do
c[i, j] := 0;
for K: = 1 to n do

c[i, j] := c[i, j] + a[i, k] * b[k, j];

64

    

This algorithm requires n3 scalar multiplication‟s (i.e. multiplication of single
numbers) and n3 scalar additions. So we naturally cannot improve upon.

We apply divide and conquer to this problem. For example let us considers three

multiplication like this:

A 11


A 12 


B 11


B 12 


C 11
 

C 12 


A 21 A 22  B 21 B 22  C 21 C 22 


Then cij can be found by the usual matrix multiplication algorithm,

C11 = A11 . B11 + A12 . B21

C12 = A11 . B12 + A12 . B22

C21 = A21 . B11 + A22 . B21

C22 = A21 . B12 + A22 . B22

This leads to a divide–and–conquer algorithm, which performs nxn matrix

multiplication by partitioning the matrices into quarters and performing eight

(n/2)x(n/2) matrix multiplications and four (n/2)x(n/2) matrix additions.

T(1) = 1
T(n) = 8 T(n/2)

Which leads to T (n) = O (n3), where n is the power of 2.

Strassens insight was to find an alternative method for calculating the Cij, requiring

seven (n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix
additions and subtractions:

P = (A11 + A22) (B11 + B22)

Q = (A21 + A22) B11

R = A11 (B12 – B22)

S = A22 (B21 - B11)

T = (A11 + A12) B22

U = (A21 – A11) (B11 + B12)

V = (A12 – A22) (B21 + B22)

C11 = P + S – T + V

C12 = R + T

C21 = Q + S

C22 = P + R - Q + U.

This method is used recursively to perform the seven (n/2) x (n/2) matrix

multiplications, then the recurrence equation for the number of scalar multiplications

performed is:

65

n

7

7 2.81

T(1) = 1
T(n) = 7 T(n/2)

Solving this for the case of n = 2k is easy:

T(2k) =

=

7 T(2k–1)

72 T(2k-2)

=

=

- - - - - -

- - - - - -

= 7i T(2k–i)

Put i = k
= 7k T(1)

= 7k

That is, T(n) = 7 log
2

= n log
2

= O(n log
2) = O(n)

So, concluding that Strassen‟s algorithm is asymptotically more efficient than the

standard algorithm. In practice, the overhead of managing the many small matrices

does not pay off until „n‟ revolves the hundreds.

Quick Sort

The main reason for the slowness of Algorithms like SIS is that all comparisons and

exchanges between keys in a sequence w1, w2, , wn take place between

adjacent pairs. In this way it takes a relatively long time for a key that is badly out of

place to work its way into its proper position in the sorted sequence.

 Hoare his devised a very efficient way of implementing this idea in the early 1960‟s

that improves the O(n2) behavior of SIS algorithm with an expected performance that
is O(n log n).

In essence, the quick sort algorithm partitions the original array by rearranging it

into two groups. The first group contains those elements less than some arbitrary

chosen value taken from the set, and the second group contains those elements

greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has been rearranged

in this way with respect to the pivot, the very same partitioning is recursively applied

to each of the two subsets. When all the subsets have been partitioned and

rearranged, the original array is sorted.

The function partition() makes use of two pointers „i‟ and „j‟ which are moved toward

each other in the following fashion:

 Repeatedly increase the pointer „i‟ until a[i] >= pivot.

 Repeatedly decrease the pointer „j‟ until a[j] <= pivot.

66

 If j > i, interchange a[j] with a[i]

 Repeat the steps 1, 2 and 3 till the „i‟ pointer crosses the „j‟ pointer. If „i‟

pointer crosses „j‟ pointer, the position for pivot is found and place pivot

element in „j‟ pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sort

function sorts all elements in an array „a‟ between positions „low‟ and „high‟.

 It terminates when the condition low >= high is satisfied. This condition

will be satisfied only when the array is completely sorted.

 Here we choose the first element as the „pivot‟. So, pivot = x[low]. Now it

calls the partition function to find the proper position j of the element

x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1],
. . . x[j-1] and x[j+1], x[j+2], . . .x[high].

 It calls itself recursively to sort the left sub-array x[low], x[low+1],

. . x[j-1] between positions low and j-1 (where j is returned by the

partition function).

 It calls itself recursively to sort the right sub-array x[j+1], x[j+2],

. . . x[high] between positions j+1 and high.

 Algorithm Algorithm

QUICKSORT(low, high)
/* sorts the elements a(low), , a(high) which reside in the global array A(1 :

n) into ascending order a (n + 1) is considered to be defined and must be greater

than all elements in a(1 : n); A(n + 1) = +  */
{

if low < high then

{

j := PARTITION(a, low, high+1);

// J is the position of the partitioning element

QUICKSORT(low, j – 1);
QUICKSORT(j + 1 , high);

}

}

Algorithm PARTITION(a, m, p)

{

V  a(m); i  m; j  p; // A (m) is the partition element

do
{

loop i := i + 1 until a(i) > v // i moves left to right

loop j := j – 1 until a(j) < v // p moves right to left

if (i < j) then INTERCHANGE(a, i, j)
} while (i > j);

a[m] :=a[j]; a[j] :=V; // the partition element belongs at position P

return j;
}

67

Algorithm INTERCHANGE(a, i, j)

{

P:=a[i];

a[i] := a[j];

a[j] := p;
}

 Example

Select first element as the pivot element. Move „i‟ pointer from left to right in search

of an element larger than pivot. Move the „j‟ pointer from right to left in search of an

element smaller than pivot. If such elements are found, the elements are swapped.

This process continues till the „i‟ pointer crosses the „j‟ pointer. If „i‟ pointer crosses „j‟

pointer, the position for pivot is found and interchange pivot and element at „j‟

position.

Let us consider the following example with 13 elements to analyze quick sort:

1

2

3

4

5

6

7

8

9

10

11

12

13

Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot i j swap i & j

 04 79

 i j swap i & j

 02 57

 j i

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)
swap pivot

& j

pivot j, i swap pivot

& j

(02 08 16 06 04) 24

pivot,
j

i swap pivot
& j

02 (08 16 06 04)

 pivot i j swap i & j

 04 16

 j i

 (06 04) 08 (16) swap pivot

& j

 pivot,
j

i

 (04) 06 swap pivot

& j

 04

pivot,
j, i

 16

pivot,

j, i

(02 04 06 08 16 24) 38

 (56 57 58 79 70 45)

68

 pivot i j swap i & j

 45 57

 j i

 (45) 56 (58 79 70 57)
swap pivot

& j

 45

pivot,
j, i

 swap pivot
& j

 (58

pivot

79

i
70

57)

j
swap i & j

 57 79

 j i

 (57) 58 (70 79)
swap pivot

& j

 57

pivot,

j, i

 (70 79)

 pivot,

j
i

swap pivot

& j

 70

 79

pivot,
j, i

 (45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

Analysis of Quick Sort:

Like merge sort, quick sort is recursive, and hence its analysis requires solving a

recurrence formula. We will do the analysis for a quick sort, assuming a random pivot

(and no cut off for small files).

We will take T (0) = T (1) = 1, as in merge sort.

The running time of quick sort is equal to the running time of the two recursive calls

plus the linear time spent in the partition (The pivot selection takes only constant

time). This gives the basic quick sort relation:

T (n) = T (i) + T (n – i – 1) + C n - (1)

Where, i = |S1| is the number of elements in S1.

 Worst Case Analysis

The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1,

which is insignificant, the recurrence is:

T (n) = T (n – 1) + C n n > 1 - (2)

Using equation – (1) repeatedly, thus

69

T (n – 1) = T (n – 2) + C (n – 1)

T (n – 2) = T (n – 3) + C (n – 2)

- - - - - - - -

T (2) = T (1) + C (2)

Adding up all these equations yields

T (n)  T (1) 

n

 i
i  2

= O (n2) - (3)

Best Case Analysis

In the best case, the pivot is in the middle. To simply the math, we assume that the

two sub-files are each exactly half the size of the original and although this gives a

slight over estimate, this is acceptable because we are only interested in a Big – oh

answer.

T (n) = 2 T (n/2) + C n - (4)

Divide both sides by n

T(n)

n


T(n / 2)
 C

n / 2

- (5)

Substitute n/2 for „n‟ in equation (5)

T(n / 2)

n / 2


T(n / 4)
 C

n / 4

- (6)

Substitute n/4 for „n‟ in equation (6)

T(n / 4)

n / 4


T(n / 8)
 C

n / 8

- (7)

- - - - - - - -

- - - - - - - -

Continuing in this manner, we obtain:

T(2)

2


T(1)
 C

1

- (8)

We add all the equations from 4 to 8 and note that there are log n of them:

T(n)

n


T(1)

1

 C log n

- (9)

Which yields, T (n) = C n log n + n = O(n log n) - (10)

This is exactly the same analysis as merge sort, hence we get the same answer.

70

1

 Average Case Analysis

The number of comparisons for first call on partition: Assume left_to_right moves

over k smaller element and thus k comparisons. So when right_to_left crosses

left_to_right it has made n-k+1 comparisons. So, first call on partition makes n+1

comparisons. The average case complexity of quicksort is

T(n) = comparisons for first call on quicksort

+

{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) +

----- + T(n-1)]/n

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) + T(n-1)]

(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)] \

Subtracting both sides:

nT(n) –(n-1)T(n-1) = [n(n+1) – (n-1)n] + 2T(n-1) = 2n + 2T(n-1)

nT(n) = 2n + (n-1)T(n-1) + 2T(n-1) = 2n + (n+1)T(n-1)

T(n) = 2 + (n+1)T(n-1)/n

The recurrence relation obtained is:

T(n)/(n+1) = 2/(n+1) + T(n-1)/n

Using the method of subsititution:

T(n)/(n+1) = 2/(n+1) + T(n-1)/n

T(n-1)/n = 2/n + T(n-2)/(n-1)

T(n-2)/(n-1) = 2/(n-1) + T(n-3)/(n-2)

T(n-3)/(n-2) = 2/(n-2) + T(n-4)/(n-3)

. .

. .

T(3)/4 = 2/4 + T(2)/3

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 + T(0)

Adding both sides:

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2]

= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] + T(0) +

[2/(n+1) + 2/n + 2/(n-1) + ---------- +2/4 + 2/3]

Cancelling the common terms:

T(n)/(n+1) = 2[1/2 +1/3 +1/4+--------------+1/n+1/(n+1)]

T(n) = (n+1)2[2k n1
/ k

=2(n+1) []

=2(n+1)[log (n+1) – log 2]
=2n log (n+1) + log (n+1)-2n log 2 –log 2

T(n)= O(n log n)

3.8. Straight insertion sort:

Straight insertion sort is used to create a sorted list (initially list is empty) and at

each iteration the top number on the sorted list is removed and put into its proper

71

place in the sorted list. This is done by moving along the sorted list, from the

smallest to the largest number, until the correct place for the new number is located

i.e. until all sorted numbers with smaller values comes before it and all those with

larger values comes after it. For example, let us consider the following 8 elements for

sorting:

Index 1 2 3 4 5 6 7 8

Elements 27 412 71 81 59 14 273 87

Solution:

Iteration 0:

unsorted

412

71

81

59

14

273

87

 Sorted 27

Iteration 1: unsorted 412 71 81 59 14 273 87

 Sorted 27 412

Iteration 2: unsorted 71 81 59 14 273 87

 Sorted 27 71 412

Iteration 3: unsorted 81 39 14 273 87

 Sorted 27 71 81 412

Iteration 4: unsorted 59 14 273 87

 Sorted 274 59 71 81 412

Iteration 5: unsorted 14 273 87

 Sorted 14 27 59 71 81 412

Iteration 6: unsorted 273 87

 Sorted 14 27 59 71 81 273 412

Iteration 7: unsorted 87

 Sorted 14 27 59 71 81 87 273 412

72

Chapter

4

Greedy Method

 GENERAL METHOD

Greedy is the most straight forward design technique. Most of the problems have n

inputs and require us to obtain a subset that satisfies some constraints. Any subset

that satisfies these constraints is called a feasible solution. We need to find a feasible

solution that either maximizes or minimizes the objective function. A feasible solution

that does this is called an optimal solution.

The greedy method is a simple strategy of progressively building up a solution, one

element at a time, by choosing the best possible element at each stage. At each stage,

a decision is made regarding whether or not a particular input is in an optimal solution.

This is done by considering the inputs in an order determined by some selection

procedure. If the inclusion of the next input, into the partially constructed optimal

solution will result in an infeasible solution then this input is not added to the partial

solution. The selection procedure itself is based on some optimization measure. Several

optimization measures are plausible for a given problem. Most of them, however, will

result in algorithms that generate sub-optimal solutions. This version of greedy

technique is called subset paradigm. Some problems like Knapsack, Job sequencing

with deadlines and minimum cost spanning trees are based on subset paradigm.

For the problems that make decisions by considering the inputs in some order, each

decision is made using an optimization criterion that can be computed using decisions

already made. This version of greedy method is ordering paradigm. Some problems like

optimal storage on tapes, optimal merge patterns and single source shortest path are

based on ordering paradigm.

 CONTROL ABSTRACTION

Algorithm Greedy (a, n)
// a(1 : n) contains the „n‟ inputs

{

solution := ; // initialize the solution to empty

for i:=1 to n do

{
x := select (a);

if feasible (solution, x) then

solution := Union (Solution, x);

}
return solution;

}

Procedure Greedy describes the essential way that a greedy based algorithm will look,

once a particular problem is chosen and the functions select, feasible and union are

properly implemented.

The function select selects an input from „a‟, removes it and assigns its value to „x‟.

Feasible is a Boolean valued function, which determines if „x‟ can be included into the

solution vector. The function Union combines „x‟ with solution and updates the objective

function.

73

 KNAPSACK PROBLEM

Let us apply the greedy method to solve the knapsack problem. We are given „n‟

objects and a knapsack. The object „i‟ has a weight wi and the knapsack has a capacity

„m‟. If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pi

xi is earned. The objective is to fill the knapsack that maximizes the total profit earned.

Since the knapsack capacity is „m‟, we require the total weight of all chosen objects to

be at most „m‟. The problem is stated as:

maximize

subject to

n


i  1

n


i  1

pi xi

ai xi  M

where, 0 < xi < 1 and 1 < i < n

The profits and weights are positive numbers.

 Algorithm

If the objects are already been sorted into non-increasing order of p[i] / w[i] then the

algorithm given below obtains solutions corresponding to this strategy.

Algorithm GreedyKnapsack (m, n)

// P[1 : n] and w[1 : n] contain the profits and weights respectively of

// Objects ordered so that p[i] / w[i] > p[i + 1] / w[i + 1].

// m is the knapsack size and x[1: n] is the solution vector.

{

for i := 1 to n do x[i] := 0.0 // initialize x

U := m;
for i := 1 to n do

{
if (w(i) > U) then break;

x [i] := 1.0; U := U – w[i];

}
if (i < n) then x[i] := U / w[i];

}

Running time:

The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we

disregard the time to initially sort the objects, the algorithm requires only O(n) time.

 Example:

Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) =

(25, 24, 15) and (w1, w2, w3) = (18, 15, 10).

74

i

1. First, we try to fill the knapsack by selecting the objects in some order:

x1 x2 x3  wi xi  pi xi

1/2 1/3 1/4 18 x 1/2 + 15 x 1/3 + 10 x 1/4

= 16.5

25 x 1/2 + 24 x 1/3 + 15 x 1/4 =

24.25

2. Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit

earned is 25. Now, only 2 units of space is left, select the object with next largest
profit (p = 24). So, x2 = 2/15

x1 x2 x3  wi xi  pi xi

1 2/15 0 18 x 1 + 15 x 2/15 = 20 25 x 1 + 24 x 2/15 = 28.2

3. Considering the objects in the order of non-decreasing weights wi.

x1 x2 x3  wi xi  pi xi

0 2/3 1 15 x 2/3 + 10 x 1 = 20 24 x 2/3 + 15 x 1 = 31

4. Considered the objects in the order of the ratio pi / wi .

p1/w1 p2/w2 p3/w3

25/18 24/15 15/10

1.4 1.6 1.5

Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the
object with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now, only 5
units of space is left, select the object with next largest pi / xi ratio, so x3 = ½ and the
profit earned is 7.5.

x1 x2 x3  wi xi  pi xi

0 1 1/2 15 x 1 + 10 x 1/2 = 20 24 x 1 + 15 x 1/2 = 31.5

This solution is the optimal solution.

4.4. OPTIMAL STORAGE ON TAPES

There are „n‟ programs that are to be stored on a computer tape of length „L‟. Each
program „i‟ is of length li, 1 ≤ i ≤ n. All the programs can be stored on the tape if and

only if the sum of the lengths of the programs is at most „L‟.

We shall assume that whenever a program is to be retrieved from this tape, the tape is

initially positioned at the front. If the programs are stored in the order i = i1, i2,

, in, the time tJ needed to retrieve program iJ is proportional to

 l k

1  k  j

75



If all the programs are retrieved equally often then the expected or mean retrieval time

(MRT) is:
1

. t
n

1  J  n

For the optimal storage on tape problem, we are required to find the permutation for

the „n‟ programs so that when they are stored on the tape in this order the MRT is

minimized.

d (I) 

n


J  1

J


K  1

l i k

 Example

Let n = 3, (l1, l2, l3) = (5, 10, 3). Then find the optimal ordering?

Solution:

There are n! = 6 possible orderings. They are:

Ordering I d(I)

1, 2, 3 5 + (5 +10) +(5 + 10 + 3) = 38

1, 3, 2 5 + (5 + 3) + (5 + 3 + 10) = 31

2, 1, 3 10 + (10 + 5) + (10 + 5 + 3) = 43

2, 3, 1 10 + (10 + 3) + (10 + 3 + 5) = 41

3, 1, 2 3 + (3 + 5) + (3 + 5 + 10) = 29

3, 2, 1 3 + (3 + 10) + (3 + 10 + 5) = 34

From the above, it simply requires to store the programs in non-decreasing order

(increasing order) of their lengths. This can be carried out by using a efficient sorting

algorithm (Heap sort). This ordering can be carried out in O (n log n) time using heap

sort algorithm.

The tape storage problem can be extended to several tapes. If there are m  1 tapes,

To, ,Tm – 1, then the programs are to be distributed over these tapes.
m  1

The total retrieval time (RT) is 
J  0

d (IJ)

The objective is to store the programs in such a way as to minimize RT.

The programs are to be sorted in non decreasing order of their lengths li‟s, l1 < l2 < .. .

.. . . ln.

The first „m‟ programs will be assigned to tapes To, ,Tm-1 respectively. The next „m‟
programs will be assigned to T0, ,Tm-1 respectively. The general rule is that
program i is stored on tape Ti mod m.

j

76

 Algorithm:

The algorithm for assigning programs to tapes is as follows:

Algorithm Store (n, m)
// n is the number of programs and m the number of tapes

{

j := 0; // next tape to store on

for i :=1 to n do

{

Print („append program‟, i, „to permutation for tape‟, j);

j := (j + 1) mod m;
}

}

On any given tape, the programs are stored in non-decreasing order of their lengths.

 JOB SEQUENCING WITH DEADLINES

When we are given a set of „n‟ jobs. Associated with each Job i, deadline di > 0 and
profit Pi > 0. For any job „i‟ the profit pi is earned iff the job is completed by its
deadline. Only one machine is available for processing jobs. An optimal solution is the
feasible solution with maximum profit.

Sort the jobs in „j‟ ordered by their deadlines. The array d [1 : n] is used to store the

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r ≤

k are the jobs in „j‟ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U {i} is

feasible, we have just to insert i into J preserving the deadline ordering and then verify

that d [J[r]] ≤ r, 1 ≤ r ≤ k+1.

 Example:

Let n = 4, (P1, P2, P3, P4,) = (100, 10, 15, 27) and (d1 d2 d3 d4) = (2, 1, 2, 1). The
feasible solutions and their values are:

S. No Feasible Solution Procuring

sequence

Value Remarks

1 1,2 2,1 110

2 1,3 1,3 or 3,1 115

3 1,4 4,1 127 OPTIMAL

4 2,3 2,3 25

5 3,4 4,3 42

6 1 1 100

7 2 2 10

8 3 3 15

9 4 4 27

77

 Algorithm:

The algorithm constructs an optimal set J of jobs that can be processed by their

deadlines.

Algorithm GreedyJob (d, J, n)

// J is a set of jobs that can be completed by their deadlines.

{
J := {1};

for i := 2 to n do

{

if (all jobs in J U {i} can be completed by their dead lines)

then J := J U {i};
}

}

 OPTIMAL MERGE PATERNS

Given „n‟ sorted files, there are many ways to pair wise merge them into a single sorted

file. As, different pairings require different amounts of computing time, we want to

determine an optimal (i.e., one requiring the fewest comparisons) way to pair wise

merge „n‟ sorted files together. This type of merging is called as 2-way merge patterns.

To merge an n-record file and an m-record file requires possibly n + m record moves,

the obvious choice choice is, at each step merge the two smallest files together. The

two-way merge patterns can be represented by binary merge trees.

 Algorithm to Generate Two-way Merge Tree:

struct treenode

{

treenode * lchild;

treenode * rchild;
};

Algorithm TREE (n)
// list is a global of n single node binary trees

{
for i := 1 to n – 1 do

{
pt  new treenode

(pt  lchild)  least (list); // merge two trees with smallest

lengths
(pt  rchild)  least (list);

(pt  weight)  ((pt  lchild)  weight) + ((pt  rchild)  weight);

insert (list, pt);

tree

}

}

return least (list); // The tree left in list is the merge

78

35

Z1 15 20

5 10 X3

Example 1:

Suppose we are having three sorted files X1, X2 and X3 of length 30, 20, and 10 records

each. Merging of the files can be carried out as follows:

S.No First Merging Record moves in

first merging

Second

merging

Record moves in

second merging

Total no. of

records moves

1. X1 & X2 = T1 50 T1 & X3 60 50 + 60 = 110

2. X2 & X3 = T1 30 T1 & X1 60 30 + 60 = 90

The Second case is optimal.

Example 2:

Given five files (X1, X2, X3, X4, X5) with sizes (20, 30, 10, 5, 30). Apply greedy rule to

find optimal way of pair wise merging to give an optimal solution using binary merge

tree representation.

Solution:

X1 X2 X3 X4 X5

Merge X4 and X3 to get 15 record moves. Call this Z1.

X1 X2 Z1 X5

Merge Z1 and X1 to get 35 record moves. Call this Z2.

X2 Z2 X5

X1

X4

20 30 10 5 30

20 30 15

5 10

30

30 30

79

Merge X2 and X5 to get 60 record moves. Call this Z3.

Z2 Z3

X5 X2

X4 X3

Merge Z2 and Z3 to get 90 record moves. This is the answer. Call this Z4.

Z4

X4 X3

Therefore the total number of record moves is 15 + 35 + 60 + 95 = 205. This is an

optimal merge pattern for the given problem.

 Huffman Codes

Another application of Greedy Algorithm is file compression.

Suppose that we have a file only with characters a, e, i, s, t, spaces and new lines, the

frequency of appearance of a's is 10, e's fifteen, twelve i's, three s's, four t's, thirteen

banks and one newline.

Using a standard coding scheme, for 58 characters using 3 bits for each character, the

file requires 174 bits to represent. This is shown in table below.

Character

A

Code

000

Frequency

10

Total bits

30

E 001 15 45

I 010 12 36

S 011 3 9

T 100 4 12

Space 101 13 39

New line 110 1 3

60

30 30

95

Z2 35 60 Z3

Z1 15 20 30 30

X1 X5 X2

5 10

35

Z1 15 20

X1

5 10

80

Representing by a binary tree, the binary code for the alphabets are as follows:

The representation of each character can be found by starting at the root and recording

the path. Use a 0 to indicate the left branch and a 1 to indicate the right branch.

If the character ci is at depth di and occurs fi times, the cost of the code is equal to

 di fi

With this representation the total number of bits is 3x10 + 3x15 + 3x12 + 3x3 + 3x4 +

3x13 + 3x1 = 174

A better code can be obtained by with the following representation.

The basic problem is to find the full binary tree of minimal total cost. This can be done

by using Huffman coding (1952).

 Huffman's Algorithm:

Huffman's algorithm can be described as follows: We maintain a forest of trees. The

weights of a tree is equal to the sum of the frequencies of its leaves. If the number of

characters is 'c'. c - 1 times, select the two trees T1 and T2, of smallest weight, and

form a new tree with sub-trees T1 and T2. Repeating the process we will get an optimal

Huffman coding tree.

 Example:

The initial forest with the weight of each tree is as follows:

10 15 12 3 4 13 1

a e i s t sp nl

a e i s l sp nl

nl

a e i s l sp

81

sp

The two trees with the lowest weight are merged together, creating the forest, the
Huffman algorithm after the first merge with new root T1 is as follows: The total weight
of the new tree is the sum of the weights of the old trees.

10 15 12 4 13 4

We again select the two trees of smallest weight. This happens to be T1 and t, which

are merged into a new tree with root T2 and weight 8.

10 15 12 13 8

a e i sp T2

T1 t

s nl

In next step we merge T2 and a creating T3, with weight 10+8=18. The result of this

operation in

15 12 13 18

e i sp T3

T2 a

T1 t

s nl

After third merge, the two trees of lowest weight are the single node trees representing

i and the blank space. These trees merged into the new tree with root T4.

15 25 18

T4 T3

i sp T2 a

T1 t

s nl

e

T1

s nl

t i e a

82

The fifth step is to merge the trees with roots e and T3. The results of this step is

T4

i

Finally, the optimal tree is obtained by merging the two remaining trees. The optimal

trees with root T6 is:

The full binary tree of minimal total cost, where all characters are obtained in the

leaves, uses only 146 bits.

Character Code Frequency Total bits

(Code bits X frequency)

A 001 10 30

E 01 15 30

I 10 12 24

S 00000 3 15

T 0001 4 16

Space 11 13 26

New line 00001 1 5

 Total : 146

T6

0 1

0
T5 T4

T3

1 0

e i

1

sp
0

0
T2

1

a
1

T1 t
0 1

s nl

25 33
T5

sp T3 e

T2 a

T1 t

s nl

83

 GRAPH ALGORITHMS

 Basic Definitions:

 Graph G is a pair (V, E), where V is a finite set (set of vertices) and E is a finite

set of pairs from V (set of edges). We will often denote n := |V|, m := |E|.

 Graph G can be directed, if E consists of ordered pairs, or undirected, if E

consists of unordered pairs. If (u, v)  E, then vertices u, and v are adjacent.

 We can assign weight function to the edges: wG(e) is a weight of edge e  E.

The graph which has such function assigned is called weighted.

 Degree of a vertex v is the number of vertices u for which (u, v)  E (denote

deg(v)). The number of incoming edges to a vertex v is called in–degree of

the vertex (denote indeg(v)). The number of outgoing edges from a vertex is

called out-degree (denote outdeg(v)).

 Representation of Graphs:

Consider graph G = (V, E), where V= {v1, v2,….,vn}.

Adjacency matrix represents the graph as an n x n matrix A = (ai,j), where

a i, j

 1,
 

if (vi , v j)  E,

 0, otherwise

The matrix is symmetric in case of undirected graph, while it may be asymmetric if

the graph is directed.

We may consider various modifications. For example for weighted graphs, we may

have

a i, j

 w (vi, v j),
 

 default,

if (vi , v j)  E,

otherwise,

Where default is some sensible value based on the meaning of the weight function

(for example, if weight function represents length, then default can be , meaning

value larger than any other value).

Adjacency List: An array Adj [1 n] of pointers where for 1 < v < n, Adj [v]

points to a linked list containing the vertices which are adjacent to v (i.e. the vertices

that can be reached from v by a single edge). If the edges have weights then these

weights may also be stored in the linked list elements.

84

 Paths and Cycles:

A path is a sequence of vertices (v1, v2, , vk), where for all i, (vi, vi+1)  E. A

path is simple if all vertices in the path are distinct.

A (simple) cycle is a sequence of vertices (v1, v2, , vk, vk+1 = v1), where for

all i, (vi, vi+1)  E and all vertices in the cycle are distinct except pair v1, vk+1.

 Subgraphs and Spanning Trees:

Subgraphs: A graph G‟ = (V‟, E‟) is a subgraph of graph G = (V, E) iff V‟  V and E‟ 

E.

The undirected graph G is connected, if for every pair of vertices u, v there exists a

path from u to v. If a graph is not connected, the vertices of the graph can be divided

into connected components. Two vertices are in the same connected component iff

they are connected by a path.

Tree is a connected acyclic graph. A spanning tree of a graph G = (V, E) is a tree

that contains all vertices of V and is a subgraph of G. A single graph can have multiple

spanning trees.

Lemma 1: Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.

2. If any edge is removed from T, then T becomes disconnected.

3. If we add any edge into T, then the new graph will contain a cycle.

4. Number of edges in T is n-1.

 Minimum Spanning Trees (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the

vertex set of the given graph, and whose edge set is a subset of the edge set of the

given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum

spanning tree (MST) is a spanning tree with the smallest possible weight.

85

G:

A gra p h G:

T hre e

(of

ma n y

p o s s ib le)

s p a n n in g

t re e s

fro m

gra p h

G:

2

2

 4
G: 3 5 3

 6
 1 1

A w e ig ht e d gra p h G: T h e min i ma l s p a n n in g t re e fro m w e ig ht e d gra p h G:

Here are some examples:

To explain further upon the Minimum Spanning Tree, and what it applies to, let's

consider a couple of real-world examples:

1. One practical application of a MST would be in the design of a network. For

instance, a group of individuals, who are separated by varying distances, wish

to be connected together in a telephone network. Although MST cannot do

anything about the distance from one connection to another, it can be used to

determine the least cost paths with no cycles in this network, thereby

connecting everyone at a minimum cost.

2. Another useful application of MST would be finding airline routes. The vertices of

the graph would represent cities, and the edges would represent routes between
the cities. Obviously, the further one has to travel, the more it will cost, so MST
can be applied to optimize airline routes by finding the least costly paths with no
cycles.

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the

Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology,

but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim‟s

algorithm uses vertex connections in determining the MST.

 Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e.

picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges

have been added. Sometimes two or more edges may have the same cost. The order in

which the edges are chosen, in this case, does not matter. Different MSTs may result,

but they will all have the same total cost, which will always be the minimum cost.

86

 Algorithm:

The algorithm for finding the MST, using the Kruskal‟s method is as follows:

Algorithm Kruskal (E, cost, n, t)

// E is the set of edges in G. G has n vertices. cost [u, v] is the

// cost of edge (u, v). „t‟ is the set of edges in the minimum-cost spanning tree.

// The final cost is returned.

{

Construct a heap out of the edge costs using heapify;

for i := 1 to n do parent [i] := -1;
// Each vertex is in a different set.

i := 0; mincost := 0.0;
while ((i < n -1) and (heap not empty)) do

{

Delete a minimum cost edge (u, v) from the heap and

re-heapify using Adjust;

j := Find (u); k := Find (v);

if (j  k) then

{
i := i + 1;

t [i, 1] := u; t [i, 2] := v;

mincost :=mincost + cost [u, v];

Union (j, k);
}

}

if (i  n-1) then write ("no spanning tree");

else return mincost;
}

Running time:

 The number of finds is at most 2e, and the number of unions at most n-1.

Including the initialization time for the trees, this part of the algorithm has a

complexity that is just slightly more than O (n + e).

 We can add at most n-1 edges to tree T. So, the total time for operations on T is

O(n).

Summing up the various components of the computing times, we get O (n + e log e) as

asymptotic complexity

 Example 1:

1
 1 0

2 50

4 5 4 0
30 3 5

3

4 25 5
55

20
6

15

87

Arrange all the edges in the increasing order of their costs:

Cost 10 15 20 25 30 35 40 45 50 55

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6)

The edge set T together with the vertices of G define a graph that has up to n

connected components. Let us represent each component by a set of vertices in it.

These vertex sets are disjoint. To determine whether the edge (u, v) creates a cycle,

we need to check whether u and v are in the same vertex set. If so, then a cycle is

created. If not then no cycle is created. Hence two Finds on the vertex sets suffice.

When an edge is included in T, two components are combined into one and a union is

to be performed on the two sets.

Edge Cost Spanning Forest Edge Sets Remarks

1

2

3

4

5

6

{1}, {2}, {3},

{4}, {5}, {6}

(1,

2)

10

1

2

3

4

5

6

{1, 2}, {3}, {4},

The vertices 1 and

 {5}, {6} 2 are in different

 sets, so the edge

 is combined

(3,

6)

15

1

2

3

4

5

{1, 2}, {3, 6},

The vertices 3 and

 {4}, {5} 6 are in different

 6 sets, so the edge

 is combined

(4,

6)

20

1

2

3

5

{1, 2}, {3, 4, 6},

The vertices 4 and

 {5} 6 are in different

 4 6 sets, so the edge

is combined

(2,

6)

25

1

2

5

{1, 2, 3, 4, 6},

The vertices 2 and

 {5} 6 are in different

 4 3 sets, so the edge

is combined

 6

(1,

4)

30

Reject
 The vertices 1 and

4 are in the same

set, so the edge is

rejected

(3,

5)

35

1

2

The vertices 3 and

 5 are in the same

 4
5

3

 {1, 2, 3, 4, 5, 6} set, so the edge is
combined

 6

88

 MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM

A given graph can have many spanning trees. From these many spanning trees, we

have to select a cheapest one. This tree is called as minimal cost spanning tree.

Minimal cost spanning tree is a connected undirected graph G in which each edge is

labeled with a number (edge labels may signify lengths, weights other than costs).

Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as

small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm for

finding an MST. In the spanning tree algorithm, any vertex not in the tree but

connected to it by an edge can be added. To find a Minimal cost spanning tree, we

must be selective - we must always add a new vertex for which the cost of the new

edge is as small as possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding an

Minimal cost spanning tree.

Prim's algorithm is an example of a greedy algorithm.

 Algorithm Algorithm Prim

(E, cost, n, t)
// E is the set of edges in G. cost [1:n, 1:n] is the cost

// adjacency matrix of an n vertex graph such that cost [i, j] is

// either a positive real number or  if no edge (i, j) exists.

// A minimum spanning tree is computed and stored as a set of
// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in

// the minimum-cost spanning tree. The final cost is returned.

{

Let (k, l) be an edge of minimum cost in E;

mincost := cost [k, l];
t [1, 1] := k; t [1, 2] := l;

for i :=1 to n do // Initialize near

if (cost [i, l] < cost [i, k]) then near [i] := l;

else near [i] := k;

near [k] :=near [l] := 0;
for i:=2 to n - 1 do // Find n - 2 additional edges for t.

{

Let j be an index such that near [j]  0 and

cost [j, near [j]] is minimum;

t [i, 1] := j; t [i, 2] := near [j];

mincost := mincost + cost [j, near [j]];

near [j] := 0
for k:= 1 to n do // Update near[].

if ((near [k]  0) and (cost [k, near [k]] > cost [k, j]))

then near [k] := j;
}

return mincost;

}

89

B 3

0 6





 

Running time:

We do the same set of operations with dist as in Dijkstra's algorithm (initialize
structure, m times decrease value, n - 1 times select minimum). Therefore, we get O

(n2) time when we implement dist with array, O (n + E  log n) when we implement it
with a heap.

For each vertex u in the graph we dequeue it and check all its neighbors in  (1 + deg

(u)) time. Therefore the running time is:

 
  1  degv 

 


   n 




degv   (n  m)


 v V   v V 




EXAMPLE 1:

Use Prim‟s Algorithm to find a minimal spanning tree for the graph shown below

starting with the vertex A.

SOLUTION:

0 3

3 0
6 2

6     


2 4    

0 1 4 2 





1 









The stepwise progress of the prim‟s algorithm is as follows:

Step 1:

D

E

A G
F

C

B
 4

D

3 2 1 2
4

4 E 1

A C 2 G
6

2 F 1

Vertex A B C D E F

Status 0 1 1 1 1 1

Dist. 0 3 6   

Next * A A A A A

G

1



A





The cost adjacency matrix is

 4 1 0 2 


4 




 4 2 0 2



  2  2 0 1 



  4 1 1 0 




90

4

B 3

0 2





B 3 1

4

0 2
E



F

B 3 1

2

C

2
4

2

0

B 3 1 D

2 E

0 2 1

C 2 F

Step 2:

D

E

A G

C

F

Step 3:

D

A G

C 2

Step 4:

D

E

A G

F

Step 5:

A G

Step 6:

A

Step 7:

A

Vertex A B C D E F

Status 0 0 0 0 1 1

Dist. 0 3 2 1 2 2
Next * A B C D C

G

1

4
D

Vertex A B C D E F

Status 0 0 0 0 1 0

Dist. 0 3 2 1 2 2
Next * A B C D C

G

1

1
E



B 3 1 D

2

0 2
E

1 G

C 1 F

B 3 1 D

2

0 2
E

C 1 F

Vertex A B C D E F G

Status 0 0 1 1 1 1 1
Dist. 0 3 2 4   

Next * A B B A A A

Vertex A B C D E F G

Status 0 0 0 1 1 1 1
Dist. 0 3 2 1 4 2 

Next * A B C C C A

Vertex A B C D E F G

Status 0 0 0 0 0 1 0
Dist. 0 3 2 1 2 1 1
Next * A B C D G E

 Vertex A B C D E F G

Status 0 0 0 0 0 0 0

1

G

Dist.

Next

0

*

3

A

2

B

1

C

2

D

1

G

1

E

91



EXAMPLE 2:

Considering the following graph, find the minimal spanning tree using prim‟s algorithm.

8

1 4 4
9

4 3 5

1
2 3 3

4

 4 9

 4  4

The cost adjacent matrix is 9 4 

8 1 3


  3

8  


1  

3 3 


 4 


4 


The minimal spanning tree obtained as:

The cost of Minimal spanning tree = 11.

The steps as per the algorithm are as follows:

Algorithm near (J) = k means, the nearest vertex to J is k.

The algorithm starts by selecting the minimum cost from the graph. The minimum cost

edge is (2, 4).

K = 2, l = 4

Min cost = cost (2, 4) = 1

T [1, 1] = 2

T [1, 2] = 4

Vertex 1 Vertex 2

2 4

3 4

5 3

1 2

1 4

4 1 3 5
3

2 3

92

for i = 1 to 5 Near matrix Edges added to min spanning

 tree:

Begin
 T [1, 1] = 2
i = 1 T [1, 2] = 4

is cost (1, 4) < cost (1, 2)
8 < 4, No
Than near (1) = 2 1 2 3 4 5

i = 2

is cost (2, 4) < cost (2, 2)
1 < , Yes
So near [2] = 4 1 2 3 4 5

i = 3

is cost (3, 4) < cost (3, 2)
1 < 4, Yes
So near [3] = 4 1 2 3 4 5

i = 4

is cost (4, 4) < cost (4, 2)
 < 1, no
So near [4] = 2 1 2 3 4 5

i = 5

is cost (5, 4) < cost (5, 2)
4 < , yes
So near [5] = 4 1 2 3 4 5

end

near [k] = near [l] = 0

near [2] = near[4] = 0 1 2 3 4 5

for i = 2 to n-1 (4) do

i = 2

for j = 1 to 5

j = 1

near(1)0 and cost(1, near(1))

2  0 and cost (1, 2) = 4

j = 2

near (2) = 0

j = 3

is near (3)  0

4  0 and cost (3, 4) = 3

2

2 4

2 4 4

2 4 4 2

2 4 4 2 4

2 0 4 0 4

93

j = 4
near (4) = 0

J = 5

Is near (5)  0
4  0 and cost (4, 5) = 4

select the min cost from the

above obtained costs, which is
3 and corresponding J = 3

min cost = 1 + cost(3, 4)

= 1 + 3 = 4 T (2, 1) = 3

 T (2, 2) = 4

T (2, 1) = 3
T (2, 2) = 4

Near [j] = 0

1

2

3

4

5

i.e. near (3) =0

for (k = 1 to n)

K = 1

is near (1)  0, yes
2  0
and cost (1,2) > cost(1, 3)
4 > 9, No

K = 2

Is near (2) 0, No

K = 3

Is near (3)  0, No

K = 4

Is near (4)  0, No

K = 5

Is near (5)  0
4  0, yes 1 2 3 4 5
and is cost (5, 4) > cost (5, 3)
4 > 3, yes
than near (5) = 3

i = 3

for (j = 1 to 5)

J = 1
is near (1) 0
2  0
cost (1, 2) = 4

J = 2

Is near (2) 0, No

2 0 0 0 4

2 0 0 0 3

94

J = 3
Is near (3)  0, no
Near (3) = 0

J = 4

Is near (4)  0, no
Near (4) = 0

J = 5

Is near (5)  0
Near (5) = 3  3  0, yes
And cost (5, 3) = 3

Choosing the min cost from

the above obtaining costs
which is 3 and corresponding J
= 5 T (3, 1) = 5

 T (3, 2) = 3

Min cost = 4 + cost (5, 3)
= 4 + 3 = 7

T (3, 1) = 5

T (3, 2) = 3

Near (J) = 0  near (5) = 0

for (k=1 to 5) 1 2 3 4 5

k = 1

is near (1)  0, yes
and cost(1,2) > cost(1,5)
4 > , No

K = 2

Is near (2)  0 no

K = 3

Is near (3)  0 no

K = 4

Is near (4)  0 no

K = 5

Is near (5)  0 no

i = 4

for J = 1 to 5

J = 1
Is near (1)  0
2  0, yes
cost (1, 2) = 4

j = 2

is near (2)  0, No

2 0 0 0 0

95

J = 3
Is near (3)  0, No
Near (3) = 0

J = 4

Is near (4)  0, No
Near (4) = 0

J = 5

Is near (5)  0, No
Near (5) = 0

Choosing min cost from the

above it is only '4' and
corresponding J = 1

Min cost = 7 + cost (1,2)

= 7+4 = 11

T (4, 1) = 1

T (4, 1) = 1

T (4, 2) = 2 1 2 3 4 5 T (4, 2) = 2

Near (J) = 0  Near (1) = 0

for (k = 1 to 5)

K = 1

Is near (1)  0, No

K = 2

Is near (2)  0, No

K = 3

Is near (3)  0, No

K = 4

Is near (4)  0, No

K = 5

Is near (5)  0, No

End.

4.8.7. The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS

In the previously studied graphs, the edge labels are called as costs, but here we think

them as lengths. In a labeled graph, the length of the path is defined to be the sum of

the lengths of its edges.

In the single source, all destinations, shortest path problem, we must find a shortest

path from a given source vertex to each of the vertices (called destinations) in the

graph to which there is a path.

Dijkstra‟s algorithm is similar to prim's algorithm for finding minimal spanning trees.

Dijkstra‟s algorithm takes a labeled graph and a pair of vertices P and Q, and finds the

0 0 0 0 0

96

shortest path between then (or one of the shortest paths) if there is more than one.

The principle of optimality is the basis for Dijkstra‟s algorithms.

Dijkstra‟s algorithm does not work for negative edges at all.

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph.

8 0

2

3

4

Graph
6

Shortest Paths

 Algorithm:

Algorithm Shortest-Paths (v, cost, dist, n)
// dist [j], 1 < j < n, is set to the length of the shortest path
// from vertex v to vertex j in the digraph G with n vertices.

// dist [v] is set to zero. G is represented by its
// cost adjacency matrix cost [1:n, 1:n].

{
for i :=1 to n do

{

S [i] := false; // Initialize S.
dist [i] :=cost [v, i];

}

S[v] := true; dist[v] := 0.0; // Put v in S.
for num := 2 to n – 1 do
{

Determine n - 1 paths from v.

Choose u from among those vertices not in S such that dist[u] is minimum;
S[u] := true; // Put u is S.
for (each w adjacent to u with S [w] = false) do

if (dist [w] > (dist [u] + cost [u, w]) then // Update distances

dist [w] := dist [u] + cost [u, w];
}

}

Running time:

Depends on implementation of data structures for dist.

 Build a structure with n elements A

 at most m = E  times decrease the value of an item mB

 „n‟ times select the smallest value nC

 For array A = O (n); B = O (1); C = O (n) which gives O (n2) total.

 For heap A = O (n); B = O (log n); C = O (log n) which gives O (n + m log n)

total.

1
 4

2 5

2 4 5

3 4 3
1

1

1 3

1 3 4

1 2

1 3 4 5

97

B 3

0 6







4 7

B 3

2

0 5





Example 1:

Use Dijkstras algorithm to find the shortest path from A to each of the other six

vertices in the graph:

Solution:

0 3

3 0
6 2

6     


2 4    

0 1 4 2 





1 







The problem is solved by considering the following information:

 Status[v] will be either „0‟, meaning that the shortest path from v to v0 has

definitely been found; or „1‟, meaning that it hasn‟t.

 Dist[v] will be a number, representing the length of the shortest path from v to

v0 found so far.

 Next[v] will be the first vertex on the way to v0 along the shortest path found so

far from v to v0

The progress of Dijkstra‟s algorithm on the graph shown above is as follows:

Step 1:

D

E

A G
F

C

Step 2:

D

E

A G

C

F

B
 4

D

3 2 1 2
4

4 E 1

A C 2 G
6

2 F 1

Vertex A B C D E F

Status 0 1 1 1 1 1

Dist. 0 3 6   

Next * A A A A A

G

1



A





The cost adjacency matrix is

 4 1 0 2 


4 




 4 2 0 2



  2  2 0 1 




  4 1 1 0 




Vertex A B C D E F G

Status 0 0 1 1 1 1 1
Dist. 0 3 5 7   

Next * A B B A A A

98



B 3 7

5

C

8
10

7

0

B 3 9 D

8 E

0 5 8

C 7 F

Step 3:

B 3

A 0 5

C

6 D

9 E G

F 7

Step 4:

D

E

A G

F

Step 5:

A

Step 6:

A

Step 7:

A G

Vertex A B C D E F

Status 0 0 0 0 1 1

Dist. 0 3 5 6 8 7
Next * A B C D C

G

1

10
D

Vertex A B C D E F

Status 0 0 0 0 1 0
Dist. 0 3 5 6 8 7
Next * A B C D C

G

1
8
F

Vertex A B C D E F

Status 0 0 0 0 0 0

Dist. 0 3 5 6 8 7
Next * A B C D C

G

0

8
F

B 3 6 D

8 E

0 5 8 G

C 7 F

B 3 8 D

8

0 5
E

8 G

C 7 F

Vertex A B C D E F G

Status 0 0 0 0 0 0 1
Dist. 0 3 5 6 8 7 8

Next * A B C D C F

Vertex A B C D E F G

Status 0 0 0 1 1 1 1
Dist. 0 3 5 6 9 7 

Next * A B C C C A

99

Chapter

5

Dynamic Programming

Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic

programming, as greedy method, is a powerful algorithm design technique that can

be used when the solution to the problem may be viewed as the result of a sequence

of decisions. In the greedy method we make irrevocable decisions one at a time,

using a greedy criterion. However, in dynamic programming we examine the decision

sequence to see whether an optimal decision sequence contains optimal decision

subsequence.

When optimal decision sequences contain optimal decision subsequences, we can

establish recurrence equations, called dynamic-programming recurrence equations,

that enable us to solve the problem in an efficient way.

Dynamic programming is based on the principle of optimality (also coined by

Bellman). The principle of optimality states that no matter whatever the initial state

and initial decision are, the remaining decision sequence must constitute an optimal

decision sequence with regard to the state resulting from the first decision. The

principle implies that an optimal decision sequence is comprised of optimal decision

subsequences. Since the principle of optimality may not hold for some formulations

of some problems, it is necessary to verify that it does hold for the problem being

solved. Dynamic programming cannot be applied when this principle does not hold.

The steps in a dynamic programming solution are:

 Verify that the principle of optimality holds

 Set up the dynamic-programming recurrence equations

 Solve the dynamic-programming recurrence equations for the value of the

optimal solution.

 Perform a trace back step in which the solution itself is constructed.

Dynamic programming differs from the greedy method since the greedy method

produces only one feasible solution, which may or may not be optimal, while dynamic

programming produces all possible sub-problems at most once, one of which

guaranteed to be optimal. Optimal solutions to sub-problems are retained in a table,

thereby avoiding the work of recomputing the answer every time a sub-problem is

encountered

The divide and conquer principle solve a large problem, by breaking it up into smaller

problems which can be solved independently. In dynamic programming this principle

is carried to an extreme: when we don't know exactly which smaller problems to

solve, we simply solve them all, then store the answers away in a table to be used

later in solving larger problems. Care is to be taken to avoid recomputing previously

computed values, otherwise the recursive program will have prohibitive complexity.

In some cases, the solution can be improved and in other cases, the dynamic

programming technique is the best approach.

100

Two difficulties may arise in any application of dynamic programming:

1. It may not always be possible to combine the solutions of smaller problems to

form the solution of a larger one.

2. The number of small problems to solve may be un-acceptably large.

There is no characterized precisely which problems can be effectively solved with

dynamic programming; there are many hard problems for which it does not seen to

be applicable, as well as many easy problems for which it is less efficient than

standard algorithms.

5.1 MULTI STAGE GRAPHS

A multistage graph G = (V, E) is a directed graph in which the vertices are
partitioned into k > 2 disjoint sets Vi, 1 < i < k. In addition, if <u, v> is an edge in E,

then u  Vi and v  Vi+1 for some i, 1 < i < k.

Let the vertex „s‟ is the source, and „t‟ the sink. Let c (i, j) be the cost of edge <i, j>.
The cost of a path from „s‟ to „t‟ is the sum of the costs of the edges on the path. The
multistage graph problem is to find a minimum cost path from „s‟ to „t‟. Each set Vi

defines a stage in the graph. Because of the constraints on E, every path from „s‟ to
„t‟ starts in stage 1, goes to stage 2, then to stage 3, then to stage 4, and so on, and
eventually terminates in stage k.

A dynamic programming formulation for a k-stage graph problem is obtained by first

noticing that every s to t path is the result of a sequence of k – 2 decisions. The ith

decision involves determining which vertex in vi+1, 1 < i < k - 2, is to be on the

path. Let c (i, j) be the cost of the path from source to destination. Then using the
forward approach, we obtain:

cost (i, j) = min {c (j, l) + cost (i + 1, l)}

l  Vi + 1

<j, l>  E

ALGORITHM:

Algorithm Fgraph (G, k, n, p)

// The input is a k-stage graph G = (V, E) with n vertices

// indexed in order or stages. E is a set of edges and c [i, j]
// is the cost of (i, j). p [1 : k] is a minimum cost path.

{
cost [n] := 0.0;

for j:= n - 1 to 1 step – 1 do

{ // compute cost [j]

let r be a vertex such that (j, r) is an edge

of G and c [j, r] + cost [r] is minimum;

cost [j] := c [j, r] + cost [r];
d [j] := r:

}

p [1] := 1; p [k] := n; // Find a minimum cost path.

for j := 2 to k - 1 do p [j] := d [p [j - 1]];
}

101

2 4 6
2 6 9

9 1
2 5 4

7 3 4
7 2

1
7 1 0 1 2

3 3

2
4 11

5
5

11
8 1 1

6

5 8

The multistage graph problem can also be solved using the backward approach.
Let bp(i, j) be a minimum cost path from vertex s to j vertex in Vi. Let Bcost(i, j) be
the cost of bp(i, j). From the backward approach we obtain:

Bcost (i, j) = min { Bcost (i –1, l) + c (l, j)}

l  Vi - 1

<l, j>  E

Algorithm Bgraph (G, k, n, p)

// Same function as Fgraph

{
Bcost [1] := 0.0;

for j := 2 to n do

{ // Compute Bcost [j].

Let r be such that (r, j) is an edge of

G and Bcost [r] + c [r, j] is minimum;

Bcost [j] := Bcost [r] + c [r, j];
D [j] := r;

} //find a minimum cost path

p [1] := 1; p [k] := n;

for j:= k - 1 to 2 do p [j] := d [p [j + 1]];

}

Complexity Analysis:

The complexity analysis of the algorithm is fairly straightforward. Here, if G has E

edges, then the time for the first for loop is  (V +E).

EXAMPLE 1:

Find the minimum cost path from s to t in the multistage graph of five stages shown

below. Do this first using forward approach and then using backward approach.

s
t

FORWARD APPROACH:

We use the following equation to find the minimum cost path from s to t:

cost (i, j) = min {c (j, l) + cost (i + 1, l)}
l  Vi + 1

102

<j, l>  E

cost (1, 1) = min {c (1, 2) + cost (2, 2), c (1, 3) + cost (2, 3), c (1, 4) + cost (2, 4),

c (1, 5) + cost (2, 5)}

= min {9 + cost (2, 2), 7 + cost (2, 3), 3 + cost (2, 4), 2 + cost (2, 5)}

Now first starting with,

cost (2, 2) = min{c (2, 6) + cost (3, 6), c (2, 7) + cost (3, 7), c (2, 8) + cost (3, 8)}

= min {4 + cost (3, 6), 2 + cost (3, 7), 1 + cost (3, 8)}

cost (3, 6) = min {c (6, 9) + cost (4, 9), c (6, 10) + cost (4, 10)}

= min {6 + cost (4, 9), 5 + cost (4, 10)}

cost (4, 9) = min {c (9, 12) + cost (5, 12)} = min {4 + 0) = 4

cost (4, 10) = min {c (10, 12) + cost (5, 12)} = 2

Therefore, cost (3, 6) = min {6 + 4, 5 + 2} = 7

cost (3, 7) = min {c (7, 9) + cost (4, 9) , c (7, 10) + cost (4, 10)}

= min {4 + cost (4, 9), 3 + cost (4, 10)}

cost (4, 9) = min {c (9, 12) + cost (5, 12)} = min {4 + 0} = 4

Cost (4, 10) = min {c (10, 2) + cost (5, 12)} = min {2 + 0} = 2

Therefore, cost (3, 7) = min {4 + 4, 3 + 2} = min {8, 5} = 5

cost (3, 8) = min {c (8, 10) + cost (4, 10), c (8, 11) + cost (4, 11)}

= min {5 + cost (4, 10), 6 + cost (4 + 11)}

cost (4, 11) = min {c (11, 12) + cost (5, 12)} = 5

Therefore, cost (3, 8) = min {5 + 2, 6 + 5} = min {7, 11} = 7

Therefore, cost (2, 2) = min {4 + 7, 2 + 5, 1 + 7} = min {11, 7, 8} = 7

Therefore, cost (2, 3) = min {c (3, 6) + cost (3, 6), c (3, 7) + cost (3, 7)}
= min {2 + cost (3, 6), 7 + cost (3, 7)}

= min {2 + 7, 7 + 5} = min {9, 12} = 9

cost (2, 4) = min {c (4, 8) + cost (3, 8)} = min {11 + 7} = 18
cost (2, 5) = min {c (5, 7) + cost (3, 7), c (5, 8) + cost (3, 8)}

= min {11 + 5, 8 + 7} = min {16, 15} = 15

Therefore, cost (1, 1) = min {9 + 7, 7 + 9, 3 + 18, 2 + 15}

= min {16, 16, 21, 17} = 16

The minimum cost path is 16.

103

The path is 1 2 7

or

10 12

 1 3 6 10 12

BACKWARD APPROACH:

We use the following equation to find the minimum cost path from t to s:

Bcost (i, J) = min {Bcost (i – 1, l) + c (l, J)}
l  vi – 1

<l, j>  E

Bcost (5, 12) = min {Bcost (4, 9) + c (9, 12), Bcost (4, 10) + c (10, 12),

Bcost (4, 11) + c (11, 12)}

= min {Bcost (4, 9) + 4, Bcost (4, 10) + 2, Bcost (4, 11) + 5}

Bcost (4, 9) = min {Bcost (3, 6) + c (6, 9), Bcost (3, 7) + c (7, 9)}

= min {Bcost (3, 6) + 6, Bcost (3, 7) + 4}

Bcost (3, 6) = min {Bcost (2, 2) + c (2, 6), Bcost (2, 3) + c (3, 6)}

= min {Bcost (2, 2) + 4, Bcost (2, 3) + 2}

Bcost (2, 2) = min {Bcost (1, 1) + c (1, 2)} = min {0 + 9} = 9

Bcost (2, 3) = min {Bcost (1, 1) + c (1, 3)} = min {0 + 7} = 7

Bcost (3, 6) = min {9 + 4, 7 + 2} = min {13, 9} = 9

Bcost (3, 7) = min {Bcost (2, 2) + c (2, 7), Bcost (2, 3) + c (3, 7),

Bcost (2, 5) + c (5, 7)}

Bcost (2, 5) = min {Bcost (1, 1) + c (1, 5)} = 2

Bcost (3, 7) = min {9 + 2, 7 + 7, 2 + 11} = min {11, 14, 13} = 11

Bcost (4, 9) = min {9 + 6, 11 + 4} = min {15, 15} = 15

Bcost (4, 10) = min {Bcost (3, 6) + c (6, 10), Bcost (3, 7) + c (7, 10),

Bcost (3, 8) + c (8, 10)}

Bcost (3, 8) = min {Bcost (2, 2) + c (2, 8), Bcost (2, 4) + c (4, 8),

Bcost (2, 5) + c (5, 8)}

Bcost (2, 4) = min {Bcost (1, 1) + c (1, 4)} = 3

Bcost (3, 8) = min {9 + 1, 3 + 11, 2 + 8} = min {10, 14, 10} = 10

Bcost (4, 10) = min {9 + 5, 11 + 3, 10 + 5} = min {14, 14, 15) = 14

Bcost (4, 11) = min {Bcost (3, 8) + c (8, 11)} = min {Bcost (3, 8) + 6}

= min {10 + 6} = 16

104

3 4 1

2 4 7

5 6 7

3 6

1 5 2 9

2 5
3

6
8

3

8 6
2

Bcost (5, 12) = min {15 + 4, 14 + 2, 16 + 5} = min {19, 16, 21} = 16.

EXAMPLE 2:

Find the minimum cost path from s to t in the multistage graph of five stages shown

below. Do this first using forward approach and then using backward approach.

s t

SOLUTION:

FORWARD APPROACH:

cost (i, J) = min {c (j, l) + cost (i + 1, l)}

l  Vi + 1

<J, l> E

cost (1, 1) = min {c (1, 2) + cost (2, 2), c (1, 3) + cost (2, 3)}

= min {5 + cost (2, 2), 2 + cost (2, 3)}

cost (2, 2) = min {c (2, 4) + cost (3, 4), c (2, 6) + cost (3, 6)}

= min {3+ cost (3, 4), 3 + cost (3, 6)}

cost (3, 4) = min {c (4, 7) + cost (4, 7), c (4, 8) + cost (4, 8)}

= min {(1 + cost (4, 7), 4 + cost (4, 8)}

cost (4, 7) = min {c (7, 9) + cost (5, 9)} = min {7 + 0) = 7

cost (4, 8) = min {c (8, 9) + cost (5, 9)} = 3

Therefore, cost (3, 4) = min {8, 7} = 7

cost (3, 6) = min {c (6, 7) + cost (4, 7), c (6, 8) + cost (4, 8)}

= min {6 + cost (4, 7), 2 + cost (4, 8)} = min {6 + 7, 2 + 3} = 5

Therefore, cost (2, 2) = min {10, 8} = 8

cost (2, 3) = min {c (3, 4) + cost (3, 4), c (3, 5) + cost (3, 5), c (3, 6) + cost

(3,6)}

cost (3, 5) = min {c (5, 7) + cost (4, 7), c (5, 8) + cost (4, 8)}= min {6 + 7, 2 + 3}

= 5

Therefore, cost (2, 3) = min {13, 10, 13} = 10

cost (1, 1) = min {5 + 8, 2 + 10} = min {13, 12} = 12

105

BACKWARD APPROACH:

Bcost (i, J) = min {Bcost (i – 1, l) = c (l, J)}
l  vi – 1

<l ,j> E

Bcost (5, 9) = min {Bcost (4, 7) + c (7, 9), Bcost (4, 8) + c (8, 9)}

= min {Bcost (4, 7) + 7, Bcost (4, 8) + 3}

Bcost (4, 7) = min {Bcost (3, 4) + c (4, 7), Bcost (3, 5) + c (5, 7),

Bcost (3, 6) + c (6, 7)}

= min {Bcost (3, 4) + 1, Bcost (3, 5) + 6, Bcost (3, 6) + 6}

Bcost (3, 4) = min {Bcost (2, 2) + c (2, 4), Bcost (2, 3) + c (3, 4)}

= min {Bcost (2, 2) + 3, Bcost (2, 3) + 6}

Bcost (2, 2) = min {Bcost (1, 1) + c (1, 2)} = min {0 + 5} = 5

Bcost (2, 3) = min (Bcost (1, 1) + c (1, 3)} = min {0 + 2} = 2

Therefore, Bcost (3, 4) = min {5 + 3, 2 + 6} = min {8, 8} = 8

Bcost (3, 5) = min {Bcost (2, 3) + c (3, 5)} = min {2 + 5} = 7

Bcost (3, 6) = min {Bcost (2, 2) + c (2, 6), Bcost (2, 3) + c (3, 6)}

= min {5 + 5, 2 + 8} = 10

Therefore, Bcost (4, 7) = min {8 + 1, 7 + 6, 10 + 6} = 9

Bcost (4, 8) = min {Bcost (3, 4) + c (4, 8), Bcost (3, 5) + c (5, 8),

Bcost (3, 6) + c (6, 8)}

= min {8 + 4, 7 + 2, 10 + 2} = 9

Therefore, Bcost (5, 9) = min {9 + 7, 9 + 3} = 12

 All pairs shortest paths

In the all pairs shortest path problem, we are to find a shortest path between every

pair of vertices in a directed graph G. That is, for every pair of vertices (i, j), we are

to find a shortest path from i to j as well as one from j to i. These two paths are the

same when G is undirected.

When no edge has a negative length, the all-pairs shortest path problem may be

solved by using Dijkstra‟s greedy single source algorithm n times, once with each of

the n vertices as the source vertex.

The all pairs shortest path problem is to determine a matrix A such that A (i, j) is the
length of a shortest path from i to j. The matrix A can be obtained by solving n
single-source problems using the algorithm shortest Paths. Since each application of

this procedure requires O (n2) time, the matrix A can be obtained in O (n3) time.

106


2

4


The dynamic programming solution, called Floyd‟s algorithm, runs in O (n3) time.

Floyd‟s algorithm works even when the graph has negative length edges (provided

there are no negative length cycles).

The shortest i to j path in G, i ≠ j originates at vertex i and goes through some
intermediate vertices (possibly none) and terminates at vertex j. If k is an
intermediate vertex on this shortest path, then the subpaths from i to k and from k
to j must be shortest paths from i to k and k to j, respectively. Otherwise, the i to j

path is not of minimum length. So, the principle of optimality holds. Let Ak (i, j)
represent the length of a shortest path from i to j going through no vertex of index
greater than k, we obtain:

Ak (i, j) = {min {min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)}
1<k<n

Algorithm All Paths (Cost, A, n)

// cost [1:n, 1:n] is the cost adjacency matrix of a graph which

// n vertices; A [I, j] is the cost of a shortest path from vertex

// i to vertex j. cost [i, i] = 0.0, for 1 < i < n.

{
for i := 1 to n do

for j:= 1 to n do

A [i, j] := cost [i, j]; // copy cost into A.

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do

A [i, j] := min (A [i, j], A [i, k] + A [k, j]);

}

Complexity Analysis: A Dynamic programming algorithm based on this recurrence
involves in calculating n+1 matrices, each of size n x n. Therefore, the algorithm has

a complexity of O (n3).

Example 1:

Given a weighted digraph G = (V, E) with weight. Determine the length of the

shortest path between all pairs of vertices in G. Here we assume that there are no

cycles with zero or negative cost.

6

1 2 0

Cost adjacency matrix (A0) = 6

4 11

0 
3 1 1 2

3  0 


3

General formula: min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i, j)}
1<k<n

Solve the problem for different values of k = 1, 2 and 3

Step 1: Solving the equation for, k = 1;

107

A1 (1, 1) = min {(Ao (1, 1) + Ao (1, 1)), c (1, 1)} = min {0 + 0, 0} = 0

A1 (1, 2) = min {(Ao (1, 1) + Ao (1, 2)), c (1, 2)} = min {(0 + 4), 4} = 4

A1 (1, 3) = min {(Ao (1, 1) + Ao (1, 3)), c (1, 3)} = min {(0 + 11), 11} = 11

A1 (2, 1) = min {(Ao (2, 1) + Ao (1, 1)), c (2, 1)} = min {(6 + 0), 6} = 6

A1 (2, 2) = min {(Ao (2, 1) + Ao (1, 2)), c (2, 2)} = min {(6 + 4), 0)} = 0

A1 (2, 3) = min {(Ao (2, 1) + Ao (1, 3)), c (2, 3)} = min {(6 + 11), 2} = 2

A1 (3, 1) = min {(Ao (3, 1) + Ao (1, 1)), c (3, 1)} = min {(3 + 0), 3} = 3

A1 (3, 2) = min {(Ao (3, 1) + Ao (1, 2)), c (3, 2)} = min {(3 + 4), } = 7

A1 (3, 3) = min {(Ao (3, 1) + Ao (1, 3)), c (3, 3)} = min {(3 + 11), 0} = 0

A(1) =

0 4


6 0

3 7

11



0 


Step 2: Solving the equation for, K = 2;

A2 (1, 1) = min {(A1 (1, 2) + A1 (2, 1), c (1, 1)} = min {(4 + 6), 0} = 0

A2 (1, 2) = min {(A1 (1, 2) + A1 (2, 2), c (1, 2)} = min {(4 + 0), 4} = 4

A2 (1, 3) = min {(A1 (1, 2) + A1 (2, 3), c (1, 3)} = min {(4 + 2), 11} = 6

A2 (2, 1) = min {(A (2, 2) + A (2, 1), c (2, 1)} = min {(0 + 6), 6} = 6

A2 (2, 2) = min {(A (2, 2) + A (2, 2), c (2, 2)} = min {(0 + 0), 0} = 0

A2 (2, 3) = min {(A (2, 2) + A (2, 3), c (2, 3)} = min {(0 + 2), 2} = 2

A2 (3, 1) = min {(A (3, 2) + A (2, 1), c (3, 1)} = min {(7 + 6), 3} = 3

A2 (3, 2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} = 7

A2 (3, 3) = min {(A (3, 2) + A (2, 3), c (3, 3)} = min {(7 + 2), 0} = 0

A(2) =

0 4


6 0

3 7

6 



0 


Step 3: Solving the equation for, k = 3;

A3 (1, 1) = min {A2 (1, 3) + A2 (3, 1), c (1, 1)} = min {(6 + 3), 0} = 0

A3 (1, 2) = min {A2 (1, 3) + A2 (3, 2), c (1, 2)} = min {(6 + 7), 4} = 4

A3 (1, 3) = min {A2 (1, 3) + A2 (3, 3), c (1, 3)} = min {(6 + 0), 6} = 6

A3 (2, 1) = min {A2 (2, 3) + A2 (3, 1), c (2, 1)} = min {(2 + 3), 6} = 5

A3 (2, 2) = min {A2 (2, 3) + A2 (3, 2), c (2, 2)} = min {(2 + 7), 0} = 0

A3 (2, 3) = min {A2 (2, 3) + A2 (3, 3), c (2, 3)} = min {(2 + 0), 2} = 2

A3 (3, 1) = min {A2 (3, 3) + A2 (3, 1), c (3, 1)} = min {(0 + 3), 3} = 3

A3 (3, 2) = min {A2 (3, 3) + A2 (3, 2), c (3, 2)} = min {(0 + 7), 7} = 7

2

2

108

2

 

k  

A3 (3, 3) = min {A2 (3, 3) + A2 (3, 3), c (3, 3)} = min {(0 + 0), 0} = 0

A(3) =

 0


 5

 3

4 6 


0 

7 0 


 TRAVELLING SALESPERSON PROBLEM

Let G = (V, E) be a directed graph with edge costs Cij. The variable cij is defined such

that cij > 0 for all I and j and cij =  if < i, j>  E. Let |V| = n and assume n > 1. A

tour of G is a directed simple cycle that includes every vertex in V. The cost of a tour
is the sum of the cost of the edges on the tour. The traveling sales person problem is
to find a tour of minimum cost. The tour is to be a simple path that starts and ends
at vertex 1.

Let g (i, S) be the length of shortest path starting at vertex i, going through all

vertices in S, and terminating at vertex 1. The function g (1, V – {1}) is the length of

an optimal salesperson tour. From the principal of optimality it follows that:

g1, V - 1   min
2  k  n

c1k  g  k, V   1, k   -- 1

Generalizing equation 1, we obtain (for i  S)

g  i, S  


minci j
j S

 g i, S   j  


-- 2

The Equation can be solved for g (1, V – 1}) if we know g (k, V – {1, k}) for all

choices of k.

Complexity Analysis:

For each value of |S| there are n – 1 choices for i. The number of distinct sets S of

 n  2 
size k not including 1 and i is  k 

 

Hence, the total number of g (i, S)‟s to be computed before computing g (1, V – {1})

is:

n  1  n  2 

 n 1  
k  0  



To calculate this sum, we use the binominal theorem:

(n  2 (n  2 (n  2 (n  2)
(n – 1)                

 0   1   2  (n  2)


According to the binominal theorem:

(n  2 (n  2 (n  2 (n  2)
                = 2n - 2

 0   1   2  (n  2)


Therefore,

.

109




k  

n  1  n  2

 n 1  
k  0  

 (n  1) 2n  2

This is Φ (n 2n-2), so there are exponential number of calculate. Calculating one g (i,

S) require finding the minimum of at most n quantities. Therefore, the entire

algorithm is Φ (n2 2n-2). This is better than enumerating all n! different tours to find
the best one. So, we have traded on exponential growth for a much smaller
exponential growth. The most serious drawback of this dynamic programming

solution is the space needed, which is O (n 2n). This is too large even for modest
values of n.

Example 1:

For the following graph find minimum cost tour for the traveling salesperson

problem:

0

The cost adjacency matrix = 
5

6


8

10 15

0 9

13 0

8 9

20

10



12








Let us start the tour from vertex 1:

g (1, V – {1}) = min {c1k + g (k, V – {1, K})} - (1)

2<k<n

More generally writing:

g (i, s) = min {cij + g (J, s – {J})} - (2)

Clearly, g (i, ) = ci1 , 1 ≤ i ≤ n. So,

g (2, ) = C21 = 5

g (3, ) = C31 = 6

g (4, ) = C41 = 8

Using equation – (2) we obtain:

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}, c13 + g (3, {2, 4}), c14 + g (4, {2, 3})}

g (2, {3, 4}) = min {c23 + g (3, {4}), c24 + g (4, {3})}
= min {9 + g (3, {4}), 10 + g (4, {3})}

g (3, {4}) = min {c34 + g (4, )} = 12 + 8 = 20

g (4, {3}) = min {c43 + g (3, )} = 9 + 6 = 15

1 2

3 4
0

110

Therefore, g (2, {3, 4}) = min {9 + 20, 10 + 15} = min {29, 25} = 25

g (3, {2, 4}) = min {(c32 + g (2, {4}), (c34 + g (4, {2})}

g (2, {4}) = min {c24 + g (4, )} = 10 + 8 = 18

g (4, {2}) = min {c42 + g (2, )} = 8 + 5 = 13

Therefore, g (3, {2, 4}) = min {13 + 18, 12 + 13} = min {41, 25} = 25

g (4, {2, 3}) = min {c42 + g (2, {3}), c43 + g (3, {2})}

g (2, {3}) = min {c23 + g (3, } = 9 + 6 = 15

g (3, {2}) = min {c32 + g (2, } = 13 + 5 = 18

Therefore, g (4, {2, 3}) = min {8 + 15, 9 + 18} = min {23, 27} = 23

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}), c13 + g (3, {2, 4}), c14 + g (4, {2, 3})}
= min {10 + 25, 15 + 25, 20 + 23} = min {35, 40, 43} = 35

The optimal tour for the graph has length = 35

The optimal tour is: 1, 2, 4, 3, 1.

 OPTIMAL BINARY SEARCH TREE

Let us assume that the given set of identifiers is {a1, . . . , an} with a1 < a2 < <
an. Let p (i) be the probability with which we search for ai. Let q (i) be the probability
that the identifier x being searched for is such that ai < x < ai+1, 0 < i < n (assume
a0 = -  and an+1 = +). We have to arrange the identifiers in a binary search tree in
a way that minimizes the expected total access time.

In a binary search tree, the number of comparisons needed to access an element at

depth 'd' is d + 1, so if 'ai' is placed at depth 'di', then we want to minimize:
n


i 1

Pi (1  di) .

Let P (i) be the probability with which we shall be searching for 'ai'. Let Q (i) be the

probability of an un-successful search. Every internal node represents a point where
a successful search may terminate. Every external node represents a point where an
unsuccessful search may terminate.

The expected cost contribution for the internal node for 'ai' is:

P (i) * level (ai) .

Unsuccessful search terminate with I = 0 (i.e at an external node). Hence the cost

contribution for this node is:

Q (i) * level ((Ei) - 1)

The expected cost of binary search tree is:

111

 

 

 

 

n


i  1

n

P(i) * level (ai)  
i  0

Q (i) * level

((Ei)  1)

Given a fixed set of identifiers, we wish to create a binary search tree organization.

We may expect different binary search trees for the same identifier set to have

different performance characteristics.

The computation of each of these c(i, j)‟s requires us to find the minimum of m
quantities. Hence, each such c(i, j) can be computed in time O(m). The total time for

all c(i, j)‟s with j – i = m is therefore O(nm – m2).

The total time to evaluate all the c(i, j)‟s and r(i, j)‟s is therefore:

 nm  m2   O n3 
1  m  n

Example 1: The possible binary search trees for the identifier set (a1, a2, a3) = (do,
if, stop) are as follows. Given the equal probabilities p (i) = Q (i) = 1/7 for all i, we

have:

Tree 2

ree 4

Cost (tree # 1) =
 1

x 1 
1

 7 7

x 2 
1

7
x 3






 1
x 1 

1

 7 7

x 2 
1

7

x 3 
1

x 3



7 

=
1  2  3


1  2  3  3


6  9


15

Cost (tree # 2) =

7

 1
x 1 

1

 7 7

x 2 

7

1
x 2




7 

7

 1
x 2 

 7

7

1
x 2 

1

7 7

x 2 


1

x 2



7 


=
1  2  2

7


2  2  2  2
7


5  8

7


13
7

if

do st o p

st o p

if

do

Tree 1

do

if

st o p

Tree 3

do

st o p

if

T





112

 

 

 

 

Cost (tree # 3) =
 1

 7

x 1 
1

7
x 2 

1

7
x 3






 1
x 1 

1

 7 7

x 2 
1

7

x 3 
1

x 3



7 

=
1  2  3


1  2  3  3


6  9


15

Cost (tree # 4) =

 1

 7

7

x 1 
1

7

7

x 2 
1

7

x 3






7 7

 1
x 1 

1

 7 7

x 2 

1

7

x 3 


1

x 3



7 

=
1  2  3


1  2  3  3


6  9


15

7 7 7 7

Huffman coding tree solved by a greedy algorithm has a limitation of having the data

only at the leaves and it must not preserve the property that all nodes to the left of

the root have keys, which are less etc. Construction of an optimal binary search tree

is harder, because the data is not constrained to appear only at the leaves, and also

because the tree must satisfy the binary search tree property and it must preserve

the property that all nodes to the left of the root have keys, which are less.
A dynamic programming solution to the problem of obtaining an optimal binary
search tree can be viewed by constructing a tree as a result of sequence of decisions
by holding the principle of optimality. A possible approach to this is to make a
decision as which of the ai's be arraigned to the root node at 'T'. If we choose 'ak'
then is clear that the internal nodes for a1, a2, ak-1 as well as the external
nodes for the classes Eo, E1, Ek-1 will lie in the left sub tree, L, of the root.
The remaining nodes will be in the right subtree, R. The structure of an optimal
binary search tree is:

Cost (L) =

K


i  1

K

P(i)* level (ai)  
i  0

Q(i)* level (Ei)  1





Cost (R) =

n


i  K

n

P(i)* level (ai)  
i  K

Q(i)* level (Ei)  1



The C (i, J) can be computed as:

C (i, J) = min {C (i, k-1) + C (k, J) + P (K) + w (i, K-1) + w (K, J)}
i<k<J

= min {C (i, K-1) + C (K, J)} + w (i, J) -- (1)
i<k<J

Where W (i, J) = P (J) + Q (J) + w (i, J-1) -- (2)

Initially C (i, i) = 0 and w (i, i) = Q (i) for 0 < i < n.

Equation (1) may be solved for C (0, n) by first computing all C (i, J) such that J - i =

1

Next, we can compute all C (i, J) such that J - i = 2, Then all C (i, J) with J - i = 3

and so on.

ak

L R





113

C (i, J) is the cost of the optimal binary search tree 'Tij' during computation we record
the root R (i, J) of each tree 'Tij'. Then an optimal binary search tree may be
constructed from these R (i, J). R (i, J) is the value of 'K' that minimizes equation (1).

We solve the problem by knowing W (i, i+1), C (i, i+1) and R (i, i+1), 0 ≤ i < 4;

Knowing W (i, i+2), C (i, i+2) and R (i, i+2), 0 ≤ i < 3 and repeating until W (0, n),

C (0, n) and R (0, n) are obtained.

The results are tabulated to recover the actual tree.

Example 1:

Let n = 4, and (a1, a2, a3, a4) = (do, if, need, while) Let P (1: 4) = (3, 3, 1, 1) and Q

(0: 4) = (2, 3, 1, 1, 1)

Solution:

Table for recording W (i, j), C (i, j) and R (i, j):

Column

Row
0 1 2 3 4

0 2, 0, 0 3, 0, 0 1, 0, 0 1, 0, 0, 1, 0, 0

1 8, 8, 1 7, 7, 2 3, 3, 3 3, 3, 4

2 12, 19, 1 9, 12, 2 5, 8, 3

3 14, 25, 2 11, 19, 2

4 16, 32, 2

This computation is carried out row-wise from row 0 to row 4. Initially, W (i, i) = Q

(i) and C (i, i) = 0 and R (i, i) = 0, 0 < i < 4.

Solving for C (0, n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 < i < 4; i = 0, 1, 2

and 3; i < k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for

k = 1

W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 = 8

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 8

R (0, 1) = 1 (value of 'K' that is minimum in the above equation).

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2

W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 = 7

C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 7

R (1, 2) = 2

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3

114

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3
C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3

R (2, 3) = 3

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4

W (3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3

C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3
R (3, 4) = 4

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 < i < 3; i = 0,

1, 2; i < k ≤ J. Start with i = 0; so j = 2; as i < k ≤ J, so the possible values for k =

1 and 2.

W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 = 12

C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))}

= 12 + min {(0 + 7, 8 + 0)} = 19

R (0, 2) = 1

Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3.

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 = 9

C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]}

= W (1, 3) + min {(0 + 3), (7 + 0)} = 9 + 3 = 12

R (1, 3) = 2

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4.

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5

C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)]
= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8

R (2, 4) = 3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 < i < 2; i = 0, 1;

i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2

and 3.

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)],

[C (0, 2) + C (3, 3)]}

= 14 + min {(0 + 12), (8 + 3), (19 + 0)} = 14 + 11 = 25

R (0, 3) = 2

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4.

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 = 11
C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)],

[C (1, 3) + C (4, 4)]}

= 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 + 8 = 19

R (1, 4) = 2

Fourth, Computing all C (i, j) such that j - i = 4; j = i + 4 and as 0 < i < 1; i = 0;

i < k ≤ J.

Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and 4.

115

a2
T 04

a1 a3
T 01 T 24

T 00 T 11 T 22 T 34

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16

C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)],
[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]}

= 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 = 32

R (0, 4) = 2

From the table we see that C (0, 4) = 32 is the minimum cost of a binary search tree

for (a1, a2, a3, a4). The root of the tree 'T04' is 'a2'.

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the

root of 'T24' is a3.

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is

'a1'

The left and right sub trees for T24 are T22 and T34 respectively.

The root of T24 is 'a3'.

The root of T22 is null

The root of T34 is a4.

a4

Example 2:

Consider four elements a1, a2, a3 and a4 with Q0 = 1/8, Q1 = 3/16, Q2 = Q3 = Q4 =
1/16 and p1 = 1/4, p2 = 1/8, p3 = p4 =1/16. Construct an optimal binary search tree.

Solving for C (0, n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 < i < 4; i = 0, 1, 2

and 3; i < k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for

k = 1

W (0, 1) = P (1) + Q (1) + W (0, 0) = 4 + 3 + 2 = 9

C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 9 + [(0 + 0)] = 9

R (0, 1) = 1 (value of 'K' that is minimum in the above equation).

Next with i = 1; so j = 2; as i < k ≤ j, so the possible value for k = 2

W (1, 2) = P (2) + Q (2) + W (1, 1) = 2 + 1 + 3 = 6

C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 6 + [(0 + 0)] = 6

R (1, 2) = 2

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k = 3

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 = 3

C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] = 3

if

do read

while

116

R (2, 3) = 3

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k = 4

W (3, 4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 = 3
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] = 3

R (3, 4) = 4

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 < i < 3; i = 0,

1, 2; i < k ≤ J

Start with i = 0; so j = 2; as i < k ≤ j, so the possible values for k = 1 and 2.

W (0, 2) = P (2) + Q (2) + W (0, 1) = 2 + 1 + 9 = 12
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2, 2))}

= 12 + min {(0 + 6, 9 + 0)} = 12 + 6 = 18

R (0, 2) = 1

Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and 3.

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 6 = 8
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3, 3)]}

= W (1, 3) + min {(0 + 3), (6 + 0)} = 8 + 3 = 11

R (1, 3) = 2

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4.

W (2, 4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 = 5
C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4, 4)]

= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 = 8

R (2, 4) = 3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 < i < 2; i = 0, 1;

i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2

and 3.

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 = 14
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2, 3)],

[C (0, 2) + C (3, 3)]}

= 14 + min {(0 + 11), (9 + 3), (18 + 0)} = 14 + 11 = 25

R (0, 3) = 1

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and 4.

W (1, 4) = P (4) + Q (4) + W (1, 3) = 1 + 1 + 8 = 10

C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3, 4)],
[C (1, 3) + C (4, 4)]}

= 10 + min {(0 + 8), (6 + 3), (11 + 0)} = 10 + 8 = 18

R (1, 4) = 2

Fourth, Computing all C (i, j) such that J - i = 4; j = i + 4 and as 0 < i < 1; i = 0;

i < k ≤ J. Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2,

3 and 4.

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 = 16

C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2, 4)],

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4, 4)]}

117

a2
T 04

a1 a3
T 01 T 24

T 00 T 11 T 22 T 34

= 16 + min [0 + 18, 9 + 8, 18 + 3, 25 + 0] = 16 + 17 = 33

R (0, 4) = 2

Table for recording W (i, j), C (i, j) and R (i, j)

Column

Row
0 1 2 3 4

0 2, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0, 1, 0, 0

1 9, 9, 1 6, 6, 2 3, 3, 3 3, 3, 4

2 12, 18, 1 8, 11, 2 5, 8, 3

3 14, 25, 2 11, 18, 2

4 16, 33, 2

From the table we see that C (0, 4) = 33 is the minimum cost of a binary search tree

for (a1, a2, a3, a4)

The root of the tree 'T04' is 'a2'.

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the

root of 'T24' is a3.

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is

'a1'

The left and right sub trees for T24 are T22 and T34 respectively.

The root of T24 is 'a3'.

The root of T22 is null.

The root of T34 is a4.

a4

Example 3:

WORD

A

PROBABILITY

4
B 2

C 1
D 3

E 5

F 2

G 1

a2

a1 a3

a4

118

and all other elements have zero probability.

Solving c(0,n):

First computing all c(i, j) such that j- i = 1;j = i +1 and as 0 ≤ i < 7; i = 0, 1, 2, 3,

4, 5 and 6; i < k ≤ j. Start with i = 0 ; so j = 1; as i < k ≤ j, so the possible value

for k = 1

W(0, 1) = P(1) + Q(1)+W(0, 0) = 4+0+0 = 4
C(0, 1) = W(0, 1)+ min {C (0, 0) + C(1, 1) }=4 + [(0 + 0)] = 4

R(0, 1) = 1

next with i = 1 ; so j = 2; as i < k ≤ j, so the possible value for k = 2

W(1, 2) = P(2) + Q(2)+W(1, 1) = 2+0+0 = 2
C(1, 2) = W(1, 2)+ min {C (1, 1) + C(2, 2) }=2 + [(0 + 0)] = 2

R(1, 2) = 2

next with i = 2 ; so j = 3; as i < k ≤ j, so the possible value for k = 3

W(2, 3) = P(3) + Q(3)+W(2, 2) = 1+0+0 = 1
C(2, 3) = W(2, 3)+ min {C (2, 2) + C(3, 3) }=1 + [(0 + 0)] = 1

R(2, 3) = 3

next with i = 3 ; so j = 4; as i < k ≤ j, so the possible value for k = 4

W(3, 4) = P(4) + Q(4)+W(3, 3) = 3+0+0 = 3
C(3, 4) = W(3, 4)+ min {C (3, 4) + C(4, 4) }=3 + [(0 + 0)] = 3

R(3, 4) = 4

next with i = 4 ; so j = 5; as i < k ≤ j, so the possible value for k = 5

W(4, 5) = P(5) + Q(5)+W(4, 4) = 5+0+0 = 5

C(4, 5) = W(4, 5)+ min {C (4, 4) + C(5, 5) }=5 + [(0 + 0)] = 5
R(4, 5) = 5

next with i = 5; so j = 6; as i < k ≤ j, so the possible value for k = 6

W(5, 6) = P(6) + Q(6)+W(5, 5) = 2+0+0 = 2
C(5, 6) = W(5, 6)+ min {C (5, 5) + C(6, 6) }=2 + [(0 + 0)] = 2

R(5, 6) = 6

next with i = 6; so j = 7; as i < k ≤ j, so the possible value for k = 7

W(6, 7) = P(7) + Q(7)+W(6, 6) = 1+0+0 = 1
C(6, 7) = W(6, 7)+ min {C (6, 6) + C(7, 7) }=1 + [(0 + 0)] = 1

R(6, 7) = 7

Second, computing all c(i, j) such that j - i = 2 ;j = i + 2 and as 0 ≤ i < 6; i = 0,

1, 2, 3, 4 and 5; i < k ≤ j; Start with i = 0 ; so j = 2; as i < k ≤ j, so the possible

values for k = 1 and 2.

W(0, 2) = P(2) + Q(2)+W(0, 1) = 2 + 0 + 4 = 6
C(0, 2) = W(0, 2)+ min {C (0, 0) + C(1, 2) ,C(0, 1) + C(2, 2)}

= 6 +min{ 0 + 2, 4 + 0} = 8

R(0, 2) = 1

R(2, 5) = 5

119

next with i = 1 ; so j = 3; as i < k ≤ j, so the possible values for k = 2 and 3.

W(1, 3) = P(3) + Q(3) +W(1, 2) = 1+ 0 + 2 = 3
C(1, 3) = W(1, 3)+ min {C (1, 1) + C(2,3) ,C(1, 2) + C(3, 3)}

= 3 +min{ 0 + 1, 2 + 0} = 4

R(1, 3) = 2

next with i = 2 ; so j = 4; as i < k ≤ j, so the possible values for k = 3 and 4.

W(2, 4) = P(4) + Q(4) +W(2, 3) = 3+ 0 + 1 = 4
C(2, 4) = W(2, 4)+ min {C (2, 2) + C(3,4) ,C(2, 3) + C(4, 4)}

= 4 +min{ 0 + 3, 1 + 0} = 5

R(2, 4) = 4

next with i = 3 ; so j = 5; as i < k ≤ j, so the possible values for k = 4 and 5.

W(3, 5) = P(5) + Q(5)+W(3, 4) = 5+ 0 + 3 =8

C(3, 5) = W(3, 5)+ min {C (3, 3) + C(4,5) ,C(3,4) + C(5, 5)}

= 8 +min{ 0 + 5, 3 + 0} = 11

R(3, 5) = 5

next with i = 4 ; so j = 6; as i < k ≤ j, so the possible values for k = 5 and 6.

W(4, 6) = P(6) + Q(6)+W(4, 5) = 2+ 0 + 5 = 7
C(4, 6) = W(4, 6)+ min {C (4, 4) + C(5,6) ,C(4, 5) + C(6, 6)}

= 7 +min{ 0 + 2, 5 + 0} = 9

R(4, 6) = 5

next with i = 5 ; so j = 7; as i < k ≤ j, so the possible values for k = 6 and 7.

W(5, 7) = P(7) + Q(7)+W(5, 6) = 1+ 0 + 2 = 3

C(5, 7) = W(5, 7)+ min {C (5, 5) + C(6,7) ,C(5, 6) + C(7, 7)}
= 3 +min{ 0 + 1, 2 + 0} = 4

R(5, 7) = 6

Third, computing all c(i, j) such that j – i = 3 ;j = i + 3 and as 0 ≤ i < 5 ; i = 0, 1,

2, 3, 4 and I < k ≤ j.

Start with i = 0 ; so j = 3; as i < k ≤ j, so the possible values for k = 1,2 and 3.

W(0, 3) = P(3) + Q(3)+W(0, 2) = 1+ 0 + 6 = 7
C(0, 3) = W(0, 3)+ min {C (0, 0) + C(1,3) ,C(0, 1) + C(2, 3),C(0, 2) + C(3, 3)}

= 7 +min{ 0 + 4, 4 + 1, 8 + 0} = 7

R(0, 3) = 1

next with i = 1 ; so j = 4; as i < k ≤ j, so the possible values for k = 2,3 and 4.

W(1, 4) = P(4) + Q(4)+W(1, 3) = 3+ 0 + 3 = 6
C(1, 4) = W(1, 4)+ min {C (1, 1) + C(2, 4) ,C(1, 2) + C(3, 4),C(1, 3) + C(4, 4)}

= 6 +min{ 0 + 5, 2 + 3, 4 + 0} = 10

R(1, 4) = 4

next with i = 2 ; so j = 5; as i < k ≤ j, so the possible values for k = 3, 4 and 5.

W(2, 5) = P(5) + Q(5)+W(2, 4) = 5+ 0 + 4 = 9
C(2, 5) = W(2, 5)+ min {C (2, 2) + C(3, 5) ,C(2, 3) + C(4, 5),C(2, 4) + C(5, 5)}

= 9 +min{ 0 + 11, 1 + 5 ,5 + 0} = 14

120

next with i = 3 ; so j = 6; as i < k ≤ j, so the possible values for k = 4, 5 and 6.

W(3, 6) = P(6) + Q(6)+W(3, 5) = 2+ 0 + 8 = 10
C(3, 6) = W(3, 6)+ min {C (3, 3) + C(4, 6) ,C(3 ,4) + C(5, 6),C(3, 5) + C(6, 6)}

= 10 +min{ 0 + 9 , 3 + 2 ,11 + 0} = 15

R(3, 6) = 5

next with i = 4 ; so j = 7; as i < k ≤ j, so the possible values for k = 5, 6 and 7.

W(4, 7) = P(7) + Q(7)+W(4, 6) = 1+ 0 + 7 = 8

C(4, 7) = W(4, 7)+ min {C (4, 4) + C(5, 7) ,C(4 ,5) + C(6, 7),C(4, 6) + C(7, 7)}

= 8 +min{ 0 + 4 , 5 + 1 ,9 + 0} = 12

R(4, 7) = 5

Fourth, computing all c(i, j) such that j – i = 4 ;j = i + 4 and as 0 ≤ i < 4 ; i = 0, 1,

2, 3 for i < k ≤ j. Start with i = 0 ; so j = 4; as i < k ≤ j, so the possible values for

k = 1,2 ,3 and 4.

W(0, 4) = P(4) + Q(4)+W(0, 3) = 3+ 0 + 7 = 10

C(0, 4) = W(0, 4)+ min {C (0, 0) + C(1,4) ,C(0, 1) + C(2, 4),C(0, 2) + C(3, 4),
C(0, 3) + C(4, 4)}

= 10 +min{ 0 + 10, 4 + 5,8 + 3,11 + 0} = 19

R(0, 4) = 2

next with i = 1 ; so j = 5; as i < k ≤ j, so the possible values for k = 2,3 ,4 and 5.

W(1, 5) = P(5) + Q(5)+W(1, 4) = 5+ 0 + 6 = 11

C(1, 5) = W(1, 5)+ min {C (1, 1) + C(2, 5) ,C(1, 2) + C(3, 5),C(1, 3) + C(4, 5)
C(1, 4) + C(5, 5)}

= 11 +min{ 0 + 14, 2 + 11,4 + 5,10 +0} = 20

R(1, 5) = 4

next with i = 2 ; so j = 6; as i < k ≤ j, so the possible values for k = 3,4,5 and 6.

W(2, 6) = P(6) + Q(6)+W(2, 5) = 2+ 0 + 9 = 11

C(2, 6) = W(2, 6)+ min {C (2, 2) + C(3, 6) ,C(2, 3) + C(4, 6),C(2, 4) + C(5, 6)
C(2, 5) + C (6, 6)} = 11 +min{ 0 + 15, 1 + 9 ,5 + 2,14 + 0} = 18

R(2, 6) = 5

next with i = 3 ; so j = 7; as i < k ≤ j, so the possible values for k = 4,5,6 and 7.

W(3, 7) = P(7) + Q(7)+W(3, 6) = 1+ 0 +11 = 12

C(3, 7) = W(3, 7)+ min {C (3, 3) + C(4, 7) ,C(3, 4) + C(5, 7),C(3, 5) + C(6, 7)
C(3, 6) + C (7, 7)} = 12 +min{ 0 + 12, 3 +4 ,11 +1,15 + 0} = 19

R(3, 7) = 5

Fifth, computing all c(i, j) such that j – i = 5; j = i + 5 and as 0 ≤ i < 3;

i = 0, 1, 2, i < k ≤ j. Start with i = 0 ; so j = 4; as i < k ≤ j, so the possible

values for k = 1,2 ,3,4 and 5.

W(0, 5) = P(5) + Q(5)+W(0, 4) = 5+ 0 + 10 = 15
C(0, 5) = W(0, 5)+ min {C (0, 0) + C(1,5) ,C(0, 1) + C(2, 5),C(0, 2) + C(3, 5),

C(0, 3) + C(4, 5),C(0, 4) + C(5, 5)}

= 10 +min{ 0 + 20, 4 + 14, 8 + 11 ,19 + 0} = 28

121

R(0, 5) = 2

next with i = 1 ; so j = 6; as i < k ≤ j, so the possible values for k = 2, 3 ,4, 5 & 6.

W(1, 6) = P(6) + Q(6)+W(1, 5) = 2+ 0 + 11 = 13

C(1, 6) = W(1, 6)+ min {C (1, 1) + C(2, 6) ,C(1, 2) + C(3, 6),C(1, 3) + C(4, 6)

C(1, 4) + C(5, 6),C(1, 5)+C(6, 6)}
= 13 +min{ 0 + 18, 2 + 15, 4 + 9, 10 +2, 20 + 0} = 25

R(1, 6) = 5

next with i = 2 ; so j = 7; as i < k ≤ j, so the possible values for k = 3,4,5,6 and 7.

W(2, 7) = P(7) + Q(7)+W(2, 6) = 1+ 0 + 11 = 12

C(2, 7) = W(2, 7)+ min {C (2, 2) + C(3, 7) ,C(2, 3) + C(4, 7),C(2, 4) + C(5, 7)
C(2, 5) + C (6, 7),C(2, 6) + C(7,7)}

= 12 +min{ 0 + 18, 1 + 12 , 5 + 4, 14 + 1, 18 + 0} = 21

R(2, 7) = 5

Sixth, computing all c(i, j) such that j – i = 6 ;j = i + 6 and as 0 ≤ i < 2 ; i = 0, 1

i < k ≤ j. Start with i = 0; so j = 6; as i < k ≤ j, so the possible values for k = 1,

2, 3, 4 5 & 6.
W(0, 6) = P(6) + Q(6)+W(0, 5) = 2+ 0 + 15 = 17

C(0, 6) = W(0,6)+ min {C (0, 0) + C(1,6) ,C(0, 1) + C(2, 6),C(0, 2) + C(3, 6),

C(0, 3) + C(4, 6),C(0, 4) + C(5, 6),C(0, 5) + C(6, 6)}

= 17 +min{ 0 + 25, 4 + 18, 8 + 15,19 + 2, 31 + 0} = 37

R(0, 6) = 4

next with i = 1 ; so j = 7; as i < k ≤ j, so the possible values for k = 2, 3, 4, 5, 6

and 7.

W(1, 7) = P(7) + Q(7)+W(1, 6) = 1+ 0 + 13 = 14
C(1, 7) = W(1, 7)+ min {C (1, 1) + C(2, 7) ,C(1, 2) + C(3, 7),C(1, 3) + C(4, 7)

C(1, 4) + C(5, 7),C(1, 5)+C(6, 7),C(1, 6) +C(7, 7)}

= 14 +min{ 0 + 21, 2 + 18, 4 + 12, 10 + 4, 20 + 1, 21 + 0} = 28

R(1, 7) = 5

Seventh, computing all c(i, j) such that j – i = 7 ;j = i + 7 and as 0 ≤ i < 1 ; i = 0

i < k ≤ j. Start with i = 0 ; so j = 7; as i < k ≤ j, so the possible values for k = 1, 2,

3, 4, 5, 6 and 7.

W(0, 7) = P(7) + Q(7)+W(0, 6) = 1+ 0 + 17 = 18

C(0, 7) = W(0, 7)+ min {C (0, 0) + C(1, 7) ,C(0, 1) + C(2, 7),C(0, 2) + C(3, 7),
C(0, 3) + C(4, 7),C(0, 4) + C(5, 6),C(0, 5) + C (6, 7),C(0, 6) + C(7, 7)}

= 18 +min{ 0 + 28, 4 + 21, 8 + 18,19 +4, 31 + 1, 37 + 0} = 41

R(0, 7) = 4

 0/1 – KNAPSACK

We are given n objects and a knapsack. Each object i has a positive weight wi and a
positive value Vi. The knapsack can carry a weight not exceeding W. Fill the knapsack
so that the value of objects in the knapsack is optimized.

A solution to the knapsack problem can be obtained by making a sequence of
decisions on the variables x1, x2, , xn. A decision on variable xi involves
determining which of the values 0 or 1 is to be assigned to it. Let us assume that

122

decisions on the xi are made in the order xn, xn-1,x1. Following a decision on xn,
we may be in one of two possible states: the capacity remaining in m – wn and a
profit of pn has accrued. It is clear that the remaining decisions xn-1, . . . , x1 must be
optimal with respect to the problem state resulting from the decision on xn.
Otherwise, xn,. . . . , x1 will not be optimal. Hence, the principal of optimality holds.

Fn (m) = max {fn-1 (m), fn-1 (m - wn) + pn} -- 1

For arbitrary fi (y), i > 0, this equation generalizes to:

Fi (y) = max {fi-1 (y), fi-1 (y - wi) + pi} -- 2

Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y) = 0 for all
y and fi (y) = - , y < 0. Then f1, f2, . . . fn can be successively computed using
equation–2.

When the wi‟s are integer, we need to compute fi (y) for integer y, 0 < y < m. Since fi

(y) = -  for y < 0, these function values need not be computed explicitly. Since
each fi can be computed from fi - 1 in Θ (m) time, it takes Θ (m n) time to compute
fn. When the wi‟s are real numbers, fi (y) is needed for real numbers y such that 0 <
y < m. So, fi cannot be explicitly computed for all y in this range. Even when the wi‟s
are integer, the explicit Θ (m n) computation of fn may not be the most efficient
computation. So, we explore an alternative method for both cases.

The fi (y) is an ascending step function; i.e., there are a finite number of y‟s, 0 = y1

< y2 < < yk, such that fi (y1) < fi (y2) < < fi (yk); fi (y) = -  , y < y1; fi

(y) = f (yk), y > yk; and fi (y) = fi (yj), yj < y < yj+1. So, we need to compute only fi
(yj), 1 < j < k. We use the ordered set Si = {(f (yj), yj) | 1 < j < k} to represent fi
(y). Each number of Si is a pair (P, W), where P = fi (yj) and W = yj. Notice that S0 =
{(0, 0)}. We can compute Si+1 from Si by first computing:

Si
1 = {(P, W) | (P – pi, W – wi)  S

i}

Now, Si+1 can be computed by merging the pairs in Si and Si
1 together. Note that if

Si+1 contains two pairs (Pj, Wj) and (Pk, Wk) with the property that Pj < Pk and Wj >
Wk, then the pair (Pj, Wj) can be discarded because of equation-2. Discarding or
purging rules such as this one are also known as dominance rules. Dominated tuples
get purged. In the above, (Pk, Wk) dominates (Pj, Wj).

Example 1:

Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) = (1, 2,
5) and M = 6.

Solution:

Initially, fo (x) = 0, for all x and fi (x) = -  if x < 0.

Fn (M) = max {fn-1 (M), fn-1 (M - wn) + pn}

F3 (6) = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2 (2) + 5}

F2 (6) = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1 (3) + 2}

123

1

1

S1

S2

F1 (6) = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} = 1

F1 (3) = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} = 1

Therefore, F2 (6) = max (1, 1 + 2} = 3

F2 (2) = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), -  + 2}

F1 (2) = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} = 1

F2 (2) = max {1, -  + 2} = 1

Finally, f3 (6) = max {3, 1 + 5} = 6

Other Solution:

For the given data we have:

S0 = {(0, 0)}; S0 = {(1, 2)}

S1 = (S0 U S0
1) = {(0, 0), (1, 2)}

X - 2 = 0 => x = 2. y – 3 = 0 => y = 3

X - 2 = 1 => x = 3. y – 3 = 2 => y = 5

1 = {(2, 3), (3, 5)}

S2 = (S1 U S1) = {(0, 0), (1, 2), (2, 3), (3, 5)}

X – 5 = 0 => x = 5. y – 4 = 0 => y = 4

X – 5 = 1 => x = 6. y – 4 = 2 => y = 6

X – 5 = 2 => x = 7. y – 4 = 3 => y = 7

X – 5 = 3 => x = 8. y – 4 = 5 => y = 9

1 = {(5, 4), (6, 6), (7, 7), (8, 9)}

S3 = (S2 U S2
1) = {(0, 0), (1, 2), (2, 3), (3, 5), (5, 4), (6, 6), (7, 7), (8, 9)}

By applying Dominance rule,

S3 = (S2 U S2
1) = {(0, 0), (1, 2), (2, 3), (5, 4), (6, 6)}

From (6, 6) we can infer that the maximum Profit  pi xi = 6 and weight  xi wi = 6

 Reliability Design

The problem is to design a system that is composed of several devices connected in
series. Let ri be the reliability of device Di (that is ri is the probability that device i
will function properly) then the reliability of the entire system is  ri. Even if the
individual devices are very reliable (the ri‟s are very close to one), the reliability of
the system may not be very good. For example, if n = 10 and ri = 0.99, i < i < 10,
then  ri = .904. Hence, it is desirable to duplicate devices. Multiply copies of the
same device type are connected in parallel.

124

i


J 

If stage i contains mi copies of device Di. Then the probability that all mi have a

malfunction is (1 - ri)
mi

. Hence the reliability of stage i becomes 1 – (1 - r)
mi

.

The reliability of stage „i‟ is given by a function i (mi).

Our problem is to use device duplication. This maximization is to be carried out under

a cost constraint. Let ci be the cost of each unit of device i and let c be the maximum

allowable cost of the system being designed.

We wish to solve:

Maximize 

i mi 

1  i  n

Subject to  Ci mi  C
1  i  n

mi > 1 and interger, 1 < i < n

Assume each Ci > 0, each mi must be in the range 1 < mi < ui, where

 
ui   C






 Ci

n 
 C 


1 


Ci 




The upper bound ui follows from the observation that mj > 1

An optimal solution m1, m2 mn is the result of a sequence of decisions, one

decision for each mi.

Let fi (x) represent the maximum value of

Subject to the constrains:


1  j  i

 mJ 

 CJ mJ  x
1  j  i

and 1 < mj < uJ, 1 < j < i

The last decision made requires one to choose mn from {1, 2, 3, un}

Once a value of mn has been chosen, the remaining decisions must be such as to use

the remaining funds C – Cn mn in an optimal way.

The principle of optimality holds on

fn C  


max
1  mn  un

n mn  fn  1 C  Cn mn  



for any fi (xi), i > 1, this equation generalizes to

125


J

S



j

o

fn x  max i
mi  fi  1 x  Ci mi  

1  mi  ui

clearly, f0 (x) = 1 for all x, 0 < x < C and f (x) = - for all x < 0.

Let Si consist of tuples of the form (f, x), where f = fi (x).

There is atmost one tuple for each different „x‟, that result from a sequence of

decisions on m1, m2, mn. The dominance rule (f1, x1) dominate (f2, x2) if f1 ≥ f2

and x1 ≤ x2. Hence, dominated tuples can be discarded from Si.

Example 1:

Design a three stage system with device types D1, D2 and D3. The costs are $30, $15

and $20 respectively. The Cost of the system is to be no more than $105. The

reliability of each device is 0.9, 0.8 and 0.5 respectively.

Solution:

We assume that if if stage I has mi devices of type i in parallel, then  i (mi) =1 – (1-

ri)
mi

Since, we can assume each ci > 0, each mi must be in the range 1 ≤ mi ≤ ui. Where:

 
ui   C  Ci




n 
 C 


1 


Ci 




Using the above equation compute u1, u2 and u3.

u1 

105 30 3015  20


30

10515 3015  20

70
 2

30

55

u2 
  3

15 15

105 20 3015  20 60
u3 

20
  3

20

We use i
  i:stage number and J: no. of devices in stage i  mi

S  fo (x), x initially fo x  1 and x  0, so, So
  1, 0



Compute S1, S2 and S3 as follows:

S1 = depends on u1 value, as u1 = 2, so

S1

 S1, S1 
1 2

S2 = depends on u2 value, as u2 = 3, so

126

S 1

mi

1

S

S 2

S

S

S

1

1

1

1

2

1

2

2

1

2

3

S2
 S2 , S2 , S2 

1 2 3

S3 = depends on u3 value, as u3 = 3, so

S3

 S3 , S3 , S3 


Now find, 1

1

f

2

(x),

3

x 


f1 x  1 (1) fo  , 1 (2) f 0 ()} With devices m1 = 1 and m2 = 2

Compute 1 (1) and 1 (2) using the formula: i mi)  1  (1  ri)

 1  1 1  r m 1
= 1 – (1 – 0.9)1 = 0.9

 2  1 1 0.9 2
 0.99

S   f1 x, x     0.9 , 30
1

1
 0.99 , 30  30    0.99, 60



Therefore, S1 = {(0.9, 30), (0.99, 60)}

Next find 2
  f

(x), x 



f2 (x)  {2 1 * f1  , 2 2 * f1  , 2 3 * f1  }

2 1  1  1  rI  = 1 – (1 – 0.8) = 1 – 0.2 = 0.8
mi 1

 2  1  1  0.8 2
  0.96

 3  1  1  0.8 3
  0.992

2
 {(0.8(0.9),30  15), (0.8(0.99),60  15)} = {(0.72, 45), (0.792, 75)}

2
 {(0.96(0.9),30  15 15) , (0.96(0.99),60  15  15)}

= {(0.864, 60), (0.9504, 90)}

2
 {(0.992(0.9),30  15 1515) , (0.992(0.99),60  15  1515)}

= {(0.8928, 75), (0.98208, 105)}

S2
 S2 , S2 , S2 

1 2 3

By applying Dominance rule to S2:

Therefore, S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}

Dominance Rule:



127

S

S

S

S

S

3

3

1

1

2

3

3

If Si contains two pairs (f1, x1) and (f2, x2) with the property that f1 ≥ f2 and x1 ≤ x2,
then (f1, x1) dominates (f2, x2), hence by dominance rule (f2, x2) can be discarded.
Discarding or pruning rules such as the one above is known as dominance rule.

Dominating tuples will be present in Si and Dominated tuples has to be discarded

from Si.

Case 1: if f1 ≤ f2 and x1 > x2 then discard (f1, x1)

Case 2: if f1 > f2 and x1 < x2 the discard (f2, x2)

Case 3: otherwise simply write (f1, x1)

S2 = {(0.72, 45), (0.864, 60), (0.8928, 75)}

 3 1  1  1  rI  = 1 – (1 – 0.5)1 = 1 – 0.5 = 0.5

 2  1  1  0.5 2

 3  1  1  0.5 3

 0.75

 0.875

3
 0.5 (0.72), 45  20, 0.5 (0.864), 60  20, 0.5 (0.8928), 75  20



3
 0.36, 65, 0.437, 80, 0.4464, 95



3
{0.75 (0.72), 45  20  20, 0.75 (0.864), 60  20  20,

0.75 (0.8928), 75  20  20}

= {(0.54, 85), (0.648, 100), (0.6696, 115)}

3
  0.875 (0.72), 45  20  20  20, 0.875 (0.864),

0.875 (0.8928), 75  20  20  20 



60  20  20  20,

3
 (0.63, 105), 1.756, 120, 0.7812, 135



If cost exceeds 105, remove that tuples

S3 = {(0.36, 65), (0.437, 80), (0.54, 85), (0.648, 100)}

The best design has a reliability of 0.648 and a cost of 100. Tracing back for the

solution through Si „s we can determine that m3 = 2, m2 = 2 and m1 = 1.

Other Solution:

According to the principle of optimality:

fn(C) = max {n (mn). fn-1 (C - Cn mn) with fo (x) = 1 and 0 ≤ x ≤ C;

1  mn  un

Since, we can assume each ci > 0, each mi must be in the range 1 ≤ mi ≤ ui.

Where:

mi

128

 

  n  
ui  

C  Ci  C J
 / Ci 




i
 





Using the above equation compute u1, u2 and u3.

u1 

105 30 3015  20


30

10515 3015  20

70
 2

30

55

u2 
  3

15 15

105 20 3015  20 60
u3 

20
  3

20

f3 (105) = max {3 (m3). f2 (105 – 20m3)}
1  m3  u3

= max {3(1) f2(105 - 20), 3(2) f2(105 - 20x2), 3(3) f2(105 -20x3)}

= max {0.5 f2(85), 0.75 f2(65), 0.875 f2(45)}

= max {0.5 x 0.8928, 0.75 x 0.864, 0.875 x 0.72} = 0.648.

f2 (85) = max {2 (m2). f1 (85 -15m2)}

1  m2  u2

= max {2(1).f1(85 - 15), 2(2).f1(85 - 15x2), 2(3).f1(85 - 15x3)}

= max {0.8 f1(70), 0.96 f1(55), 0.992 f1(40)}

= max {0.8 x 0.99, 0.96 x 0.9, 0.99 x 0.9} = 0.8928

f1 (70) = max {1(m1). f0(70 - 30m1)}

1  m1  u1

= max {1(1) f0(70 - 30), 1(2) f0 (70 - 30x2)}

= max {1(1) x 1, 1(2) x 1} = max {0.9, 0.99} = 0.99

f1 (55) = max {1(m1). f0(55 - 30m1)}
1  m1  u1

= max {1(1) f0(50 - 30), 1(2) f0(50 - 30x2)}

= max {1(1) x 1, 1(2) x -} = max {0.9, -} = 0.9

f1 (40) = max {1(m1). f0 (40 - 30m1)}

1  m1  u1

= max {1(1) f0(40 - 30), 1(2) f0(40 - 30x2)}

= max {1(1) x 1, 1(2) x -} = max{0.9, -} = 0.9

129

f2 (65) = max {2(m2). f1(65 -15m2)}
1  m2  u2

= max {2(1) f1(65 - 15), 2(2) f1(65 - 15x2), 2(3) f1(65 - 15x3)}

= max {0.8 f1(50), 0.96 f1(35), 0.992 f1(20)}

= max {0.8 x 0.9, 0.96 x 0.9, -} = 0.864

f1 (50) = max {1(m1). f0(50 - 30m1)}
1  m1  u1

= max {1(1) f0(50 - 30), 1(2) f0(50 - 30x2)}

= max {1(1) x 1, 1(2) x -} = max{0.9, -} = 0.9

f1 (35) = max 1(m1). f0(35 - 30m1)}
1  m1  u1

= max {1(1).f0(35-30), 1(2).f0(35-30x2)}

= max {1(1) x 1, 1(2) x -} = max{0.9, -} = 0.9

f1 (20) = max {1(m1). f0(20 - 30m1)}
1  m1  u1

= max {1(1) f0(20 - 30), 1(2) f0(20 - 30x2)}

= max {1(1) x -, 1(2) x -} = max{-, -} = -

f2 (45) = max {2(m2). f1(45 -15m2)}
1  m2  u2

= max {2(1) f1(45 - 15), 2(2) f1(45 - 15x2), 2(3) f1(45 - 15x3)}

= max {0.8 f1(30), 0.96 f1(15), 0.992 f1(0)}

= max {0.8 x 0.9, 0.96 x -, 0.99 x -} = 0.72

f1 (30) = max {1(m1). f0(30 - 30m1)}
1  m1  u1

= max {1(1) f0(30 - 30), 1(2) f0(30 - 30x2)}

= max {1(1) x 1, 1(2) x -} = max{0.9, -} = 0.9

Similarly, f1 (15) = -, f1 (0) = -.

The best design has a reliability = 0.648 and

Cost = 30 x 1 + 15 x 2 + 20 x 2 = 100.

Tracing back for the solution through Si „s we can determine that:

m3 = 2, m2 = 2 and m1 = 1.

130

Chapter

6

BASIC TRAVERSAL

AND SEARCH TECHNIQUES

Search means finding a path or traversal between a start node and one of a set of

goal nodes. Search is a study of states and their transitions.

Search involves visiting nodes in a graph in a systematic manner, and may or may

not result into a visit to all nodes. When the search necessarily involved the

examination of every vertex in the tree, it is called the traversal.

 Techniques for Traversal of a Binary Tree:

A binary tree is a finite (possibly empty) collection of elements. When the binary tree

is not empty, it has a root element and remaining elements (if any) are partitioned

into two binary trees, which are called the left and right subtrees.

There are three common ways to traverse a binary tree:

1. Preorder

2. Inorder

3. postorder

In all the three traversal methods, the left subtree of a node is traversed before the

right subtree. The difference among the three orders comes from the difference in the

time at which a node is visited.

 Inorder Traversal:

In the case of inorder traversal, the root of each subtree is visited after its left subtree

has been traversed but before the traversal of its right subtree begins. The steps for

traversing a binary tree in inorder traversal are:

1. Visit the left subtree, using inorder.
2. Visit the root.

3. Visit the right subtree, using inorder.

The algorithm for preorder traversal is as follows:

treenode = record

{
Type data; //Type is the data type of data.
Treenode *lchild; treenode *rchild;

}

131

algorithm inorder (t)
// t is a binary tree. Each node of t has three fields: lchild, data, and rchild.

{
if t  0 then

{
inorder (t  lchild);

visit (t);
inorder (t  rchild);

}

}

 Preorder Traversal:

In a preorder traversal, each node is visited before its left and right subtrees are

traversed. Preorder search is also called backtracking. The steps for traversing a

binary tree in preorder traversal are:

1. Visit the root.

2. Visit the left subtree, using preorder.

3. Visit the right subtree, using preorder.

The algorithm for preorder traversal is as follows:

Algorithm Preorder (t)

// t is a binary tree. Each node of t has three fields; lchild, data, and rchild.

{
if t  0 then

{
visit (t);

Preorder (t  lchild);
Preorder (t  rchild);

}

}

 Postorder Traversal:

In a postorder traversal, each root is visited after its left and right subtrees have been

traversed. The steps for traversing a binary tree in postorder traversal are:

1. Visit the left subtree, using postorder.

2. Visit the right subtree, using postorder

3. Visit the root.

The algorithm for preorder traversal is as follows:

Algorithm Postorder (t)

// t is a binary tree. Each node of t has three fields : lchild, data, and rchild.

{
if t  0 then

{
Postorder (t  lchild);

Postorder (t  rchild);

visit(t);
}

}

132

 Examples for binary tree traversal/search technique:

Example 1:

Traverse the following binary tree in pre, post and in-order.

Bin a ry T re e Pre, P o st a n d In- ord er T rav ers in g

Example 2:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

Example 3:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

A

B C

D E F

G H I

Preord eri ng of t he vertices:

A, B, D, C, E, G, F, H, I.

Post ord eri ng of t he vertices:

D, B, G, E, H, I, F, C, A.

Inord eri ng of t he vertices:

D, B, A, E, G, C, H, F, I

A

B C

D E F

G H I

• P reo rde r t ra v e rs a l y ie lds:
A, B, D, C , E, G , F , H, I

• Posto rde r t ra v e rs a l y ie lds:
D, B, G , E, H, I, F , C , A

• Ino rde r t ra v e rs a l y ie lds:

D, B, A, E, G , C , H, F , I

• Le v e l o rde r t ra v e rs a l y ie lds:

A, B, C , D, E, F , G , H, I

P

F S

B H R Y

G T Z

W

• P reo rde r t ra v e rs a l y ie lds:
P , F , B, H, G , S, R, Y, T, W , Z

• Posto rde r t ra v e rs a l y ie lds:

B, G , H, F , R, W , T, Z, Y, S, P

• Ino rde r t ra v e rs a l y ie lds:

B, F , G , H, P , R, S, T, W , Y, Z

• Le v e l o rde r t ra v e rs a l y ie lds:

P , F , S, B, H, R, Y, G , T, Z,
W

133

Example 4:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

Example 5:

Traverse the following binary tree in pre, post, inorder and level order.

Bin a ry T re e Pre, P o st , In ord er a n d lev e l ord er T rav ers in g

 Non Recursive Binary Tree Traversal Algorithms:

At first glance, it appears we would always want to use the flat traversal functions

since the use less stack space. But the flat versions are not necessarily better. For

instance, some overhead is associated with the use of an explicit stack, which may

negate the savings we gain from storing only node pointers. Use of the implicit

function call stack may actually be faster due to special machine instructions that can

be used.

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto

the stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to

step one.

2

7 5

2 6 9

5 11 4

• P reo rde r t ra v e rs a l y ie lds:
2 , 7 , 2 , 6 , 5 , 11 , 5 , 9 , 4

• Posto rde r t ra v a rs a l y ie lds:

2 , 5 , 11 , 6 , 7 , 4 , 9 , 5 , 2

• Ino rde r t ra v a rs a l y ie lds:

2 , 7 , 5 , 6 , 11 , 2 , 5 , 4 , 9

• Le v e l o rde r t ra v e rs a l y ie lds:
2 , 7 , 5 , 2 , 6 , 9 , 5 , 11 , 4

A

B C

D E

G H

K L M

• Preo rde r t rav e rs al y ie lds:
A, B, D, G , K, H, L, M , C , E

• Posto rde r t rav ars al y ie lds:
K, G , L, M , H, D, B, E, C , A

• Ino rde r t rav ars al y ie lds:

K, G , D, L, H, M , B, A, E, C

• Le v e l o rde r t rav e rs al y ie lds:

A, B, C , D, E, G , H, K, L, M

134

The algorithm for inorder Non Recursive traversal is as follows:

Algorithm inorder()
{

stack[1] = 0
vertex = root

top: while(vertex ≠ 0)

{
push the vertex into the stack

vertex = leftson(vertex)
}

pop the element from the stack and make it as vertex

while(vertex ≠ 0)

{
print the vertex node

if(rightson(vertex) ≠ 0)
{

vertex = rightson(vertex)
goto top

}
pop the element from the stack and made it as vertex

}

}

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack,

if any and process each vertex. The traversing ends after a vertex with no left

child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

The algorithm for preorder Non Recursive traversal is as follows:

Algorithm preorder()
{

stack[1]: = 0

vertex := root.
while(vertex ≠ 0)
{

print vertex node
if(rightson(vertex) ≠ 0)

push the right son of vertex into the stack.
if(leftson(vertex) ≠ 0)

vertex := leftson(vertex)
else

}

}

pop the element from the stack and made it as vertex

135

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push –(right son of vertex)

onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If

a negative node is popped, then ignore the sign and return to step one.

The algorithm for postorder Non Recursive traversal is as follows:

Algorithm postorder()

{
stack[1] := 0
vertex := root

top: while(vertex ≠ 0)

{
push vertex onto stack
if(rightson(vertex) ≠ 0)

push -(vertex) onto stack
vertex := leftson(vertex)

}

pop from stack and make it as vertex

while(vertex > 0)
{

print the vertex node
pop from stack and make it as vertex

}
if(vertex < 0)

{

vertex := -(vertex)
goto top

}

}

Example 1:

Traverse the following binary tree in pre, post and inorder using non-recursive

traversing algorithm.

Bin a ry T re e Pre, P o st a n d In ord er T rav ers in g

A

B C

D E

G H

K L M

• Preo rde r t rav e rs al y ie lds:

A, B, D, G , K, H, L, M , C , E

• Posto rde r t rav ars al y ie lds:
K, G , L, M , H, D, B, E, C , A

• Ino rde r t rav ars al y ie lds:

K, G , D, L, H, M , B, A, E, C

136

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto

the stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to

step one.

Current

vertex
Stack Processed nodes Remarks

A 0 PUSH 0

 0 A B D G K PUSH the left most path of A

K 0 A B D G K POP K

G 0 A B D K G POP G since K has no right son

D 0 A B K G D POP D since G has no right son

H 0 A B K G D
Make the right son of D as

vertex

H 0 A B H L K G D PUSH the leftmost path of H

L 0 A B H K G D L POP L

H 0 A B K G D L H POP H since L has no right son

M 0 A B K G D L H
Make the right son of H as
vertex

 0 A B M K G D L H PUSH the left most path of M

M 0 A B K G D L H M POP M

B 0 A K G D L H M B POP B since M has no right son

A 0 K G D L H M B A
Make the right son of A as
vertex

C 0 C E K G D L H M B A PUSH the left most path of C

E 0 C K G D L H M B A E POP E

C 0 K G D L H M B A E C Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push -(right son of vertex)

onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If

a negative node is popped, then ignore the sign and return to step one.

137

Current

vertex
Stack Processed nodes Remarks

A 0 PUSH 0

 0 A -C B D -H G K PUSH the left most path of A with

a -ve for right sons

 0 A -C B D -H K G POP all +ve nodes K and G

H 0 A -C B D K G Pop H

 0 A -C B D H -M L K G
PUSH the left most path of H with

a -ve for right sons

 0 A -C B D H -M K G L POP all +ve nodes L

M 0 A -C B D H K G L Pop M

 0 A -C B D H M K G L
PUSH the left most path of M with
a -ve for right sons

 0 A -C K G L M H D B POP all +ve nodes M, H, D and B

C 0 A K G L M H D B Pop C

 0 A C E K G L M H D B
PUSH the left most path of C with

a -ve for right sons

 0 K G L M H D B E C A POP all +ve nodes E, C and A

 0 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack,

if any and process each vertex. The traversing ends after a vertex with no left

child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

Current
vertex

Stack Processed nodes Remarks

A 0 PUSH 0

0 C H

A B D G K

PUSH the right son of each vertex onto
stack and process each vertex in the left
most path

H 0 C A B D G K POP H

0 C M

A B D G K H L

PUSH the right son of each vertex onto
stack and process each vertex in the left
most path

M 0 C A B D G K H L POP M

0 C

A B D G K H L M

PUSH the right son of each vertex onto
stack and process each vertex in the left

most path; M has no left path

C 0 A B D G K H L M Pop C

0

A B D G K H L M C E

PUSH the right son of each vertex onto
stack and process each vertex in the left

most path; C has no right son on the left
most path

 0 A B D G K H L M C E Stop since stack is empty

138

Example 2:

Traverse the following binary tree in pre, post and inorder using non-recursive

traversing algorithm.

Bin a ry T re e Pre, P o st a n d In ord er T rav ers in g

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto

the stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to

step one.

Current
vertex

Stack Processed nodes Remarks

2 0

 0 2 7 2

2 0 2 7 2

7 0 2 2 7

6 0 2 6 5 2 7

5 0 2 6 2 7 5

11 0 2 2 7 5 6 11

5 0 5 2 7 5 6 11 2

9 0 9 4 2 7 5 6 11 2 5

4 0 9 2 7 5 6 11 2 5 4

 0 2 7 5 6 11 2 5 4 9 Stop since stack is empty

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push –(right son of vertex)

onto stack.

2

7 5

2 6 9

5 11 4

• Preo rde r t rav e rs al y ie lds:

2, 7 , 2 , 6 , 5 , 11 , 5 , 9 , 4

• Posto rde r t rav ars al y ie lds:
2, 5 , 11 , 6 , 7 , 4 , 9 , 5 , 2

• Ino rde r t rav ars al y ie lds:
2, 7 , 5 , 6 , 11 , 2 , 5 , 4 , 9

139

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If

a negative node is popped, then ignore the sign and return to step one.

Current

vertex
Stack Processed nodes Remarks

2 0

 0 2 -5 7 -6 2

2 0 2 -5 7 -6 2

6 0 2 -5 7 2

 0 2 -5 7 6 -11 5 2

5 0 2 -5 7 6 -11 2 5

11 0 2 -5 7 6 11 2 5

 0 2 -5 2 5 11 6 7

5 0 2 5 -9 2 5 11 6 7

9 0 2 5 9 4 2 5 11 6 7

 0 2 5 11 6 7 4 9 5 2 Stop since stack is empty

Preorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following

steps until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack,

if any and process each vertex. The traversing ends after a vertex with no left

child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

Current

vertex
Stack Processed nodes Remarks

2 0

 0 5 6 2 7 2

6 0 5 11 2 7 2 6 5

11 0 5 2 7 2 6 5

 0 5 2 7 2 6 5 11

5 0 9 2 7 2 6 5 11

9 0 2 7 2 6 5 11 5

 0 2 7 2 6 5 11 5 9 4 Stop since stack is empty

 Techniques for graphs:

Given a graph G = (V, E) and a vertex V in V (G) traversing can be done in two ways.

1. Depth first search

2. Breadth first search

3. D-search (Depth Search)

140

 Depth first search:

With depth first search, the start state is chosen to begin, then some successor of the

start state, then some successor of that state, then some successor of that and so on,

trying to reach a goal state.

If depth first search reaches a state S without successors, or if all the successors of a

state S have been chosen (visited) and a goal state has not get been found, then it

“backs up” that means it goes to the immediately previous state or predecessor

formally, the state whose successor was „S‟ originally.

For example consider the figure. The circled letters are state and arrows are

branches.

ST A RT

G OA L

Suppose S is the start and G is the only goal state. Depth first search will first visit S,

then A then D. But D has no successors, so we must back up to A and try its second

successor, E. But this doesn‟t have any successors either, so we back up to A again.

But now we have tried all the successors of A and haven‟t found the goal state G so

we must back to „S‟. Now „S‟ has a second successor, B. But B has no successors, so

we back up to S again and choose its third successor, C. C has one successor, F. The

first successor of F is H, and the first of H is J. J doesn‟t have any successors, so we

back up to H and try its second successor. And that‟s G, the only goal state. So the

solution path to the goal is S, C, F, H and G and the states considered were in order

S, A, D, E, B, C, F, H, J, G.

Disadvantages:

1. It works very fine when search graphs are trees or lattices, but can get

struck in an infinite loop on graphs. This is because depth first search can

travel around a cycle in the graph forever.

To eliminate this keep a list of states previously visited, and never permit

search to return to any of them.

2. One more problem is that, the state space tree may be of infinite depth, to

prevent consideration of paths that are too long, a maximum is often

placed on the depth of nodes to be expanded, and any node at that depth

is treated as if it had no successors.

3. We cannot come up with shortest solution to the problem.

D

A

E

J

S B

H G

C F
K

I

141

Time Complexity:

Let n = |V| and e = |E|. Observe that the initialization portion requires  (n) time.

Since we never visit a vertex twice, the number of times we go through the loop is at

most n (exactly n assuming each vertex is reachable from the source). As, each

vertex is visited at most once. At each vertex visited, we scan its adjacency list once.

Thus, each edge is examined at most twice (once at each endpoint). So the total

running time is O (n + e).

Alternatively,

If the average branching factor is assumed as „b‟ and the depth of the solution as „d‟,
and maximum depth m ≥ d.

The worst case time complexity is O(bm) as we explore bm nodes. If many solutions

exists DFS will be likely to find faster than the BFS.

Space Complexity:

We have to store the nodes from root to current leaf and all the unexpanded siblings

of each node on path. So, We need to store bm nodes.

 Breadth first search:

Given an graph G = (V, E), breadth-first search starts at some source vertex S and

“discovers" which vertices are reachable from S. Define the distance between a vertex

V and S to be the minimum number of edges on a path from S to V. Breadth-first

search discovers vertices in increasing order of distance, and hence can be used as an

algorithm for computing shortest paths (where the length of a path = number of

edges on the path). Breadth-first search is named because it visits vertices across the

entire breadth.

To illustrate this let us consider the following tree:

ST A RT

G OA L

Breadth first search finds states level by level. Here we first check all the immediate

successors of the start state. Then all the immediate successors of these, then all the

immediate successors of these, and so on until we find a goal node. Suppose S is the

start state and G is the goal state. In the figure, start state S is at level 0; A, B and C

are at level 1; D, e and F at level 2; H and I at level 3; and J, G and K at level 4. So

breadth first search, will consider in order S, A, B, C, D, E, F, H, I, J and G and then

stop because it has reached the goal node.

D

A

E

J

S B

H G

C F
K

I

142

Breadth first search does not have the danger of infinite loops as we consider states

in order of increasing number of branches (level) from the start state.

One simple way to implement breadth first search is to use a queue data structure

consisting of just a start state. Any time we need a new state, we pick it from the

front of the queue and any time we find successors, we put them at the end of the

queue. That way we are guaranteed to not try (find successors of) any states at level

„N‟ until all states at level „N – 1‟ have been tried.

Time Complexity:

The running time analysis of BFS is similar to the running time analysis of many graph

traversal algorithms. Let n = |V| and e = |E|. Observe that the initialization portion

requires  (n) time. Since we never visit a vertex twice, the number of times we go

through the loop is at most n (exactly n, assuming each vertex is reachable from the

source). So, Running time is O (n + e) as in DFS. For a directed graph the analysis is

essentially the same.

Alternatively,

If the average branching factor is assumed as „b‟ and the depth of the solution as „d‟.

In the worst case we will examine 1 + b + b2 + b3 + . . . + bd = (bd + 1 - 1) / (b –1) =

O(bd).

In the average case the last term of the series would be bd / 2. So, the complexity is

still O(bd)

Space Complexity:

Before examining any node at depth d, all of its siblings must be expanded and

stored. So, space requirement is also O(bd).

 Depth Search (D-Search):

The exploration of a new node cannot begin until the node currently being explored is

fully explored. D-search like state space search is called LIFO (Last In First Out)

search which uses stack data structure. To illustrate the D-search let us consider the

following tree:

ST A RT

G OA L

The search order for goal node (G) is as follows: S, A, B, C, F, H, I, J, G.

D

A

E

J

S B

H G

C F
K

I

143

3

2

1 2 3

1 2 3

1
1

2
2

3 3

(a) Adjacency Matrix (b) Adjacency List



Time Complexity:

The time complexity is same as Breadth first search.

 Representation of Graphs and Digraphs by Adjacency List:

We will describe two ways of representing digraphs. We can represent undirected

graphs using exactly the same representation, but we will double each edge,

representing the undirected edge {v, w} by the two oppositely directed edges (v, w)

and (w, v). Notice that even though we represent undirected graphs in the same way

that we represent digraphs, it is important to remember that these two classes of

objects are mathematically distinct from one another.

Let G = (V, E) be a digraph with n = |V| and let e = |E|. We will assume that the

vertices of G are indexed {1, 2, , n}.

A v, w 
1

0

if v,w  E

otherwise

Adjacency List: An array Adj [1 n] of pointers where for 1 < v < n, Adj [v]

points to a linked list containing the vertices which are adjacent to v (i.e. the vertices

that can be reached from v by a single edge). If the edges have weights then these

weights may also be stored in the linked list elements.

1 1

1

0

0 1

0 1 0

Adjacency matrix and adjacency list

An adjacency matrix requires Θ (n2) storage and an adjacency list requires Θ (n + e)

storage.

Adjacency matrices allow faster access to edge queries (for example, is (u, v)  E)

and adjacency lists allow faster access to enumeration tasks (for example, find all the

vertices adjacent to v).

 Depth First and Breadth First Spanning Trees:

BFS and DFS impose a tree (the BFS/DFS tree) along with some auxiliary edges

(cross edges) on the structure of graph. So, we can compute a spanning tree in a

graph. The computed spanning tree is not a minimum spanning tree. Trees are much

more structured objects than graphs. For example, trees break up nicely into

subtrees, upon which subproblems can be solved recursively. For directed graphs the

other edges of the graph can be classified as follows:

Back edges: (u, v) where v is a (not necessarily proper) ancestor of u in the tree.

(Thus, a self-loop is considered to be a back edge).

144

2 3

Forward edges: (u, v) where v is a proper descendent of u in the tree.

Cross edges: (u, v) where u and v are not ancestors or descendents of one another

(in fact, the edge may go between different trees of the forest).

 Depth first search and traversal:

Depth first search of undirected graph proceeds as follows. The start vertex V is

visited. Next an unvisited vertex 'W' adjacent to 'V' is selected and a depth first

search from 'W' is initiated. When a vertex 'u' is reached such that all its adjacent

vertices have been visited, we back up to the last vertex visited, which has an

unvisited vertex 'W' adjacent to it and initiate a depth first search from W. The search

terminates when no unvisited vertex can be reached from any of the visited ones.

Let us consider the following Graph (G):

Gra p h

The adjacency list for G is:

V ert e x

1

2 1 4 5

3 1 6 7

4

2

8

5 2 8

6 3 8

7 3 8

8

4

5

6

7

If the depth first is initiated from vertex 1, then the vertices of G are visited in the

order: 1, 2, 4, 8, 5, 6, 3, 7. The depth first spanning tree is as follows:

1

2 3

4 5 6 7

8

145

De p t h F irst S p a n n in g T re e

The spanning trees obtained using depth first searches are called depth first spanning

trees. The edges rejected in the context of depth first search are called a back edges.

Depth first spanning tree has no cross edges.

 Breadth first search and traversal:

Starting at vertex 'V' and marking it as visited, BFS differs from DFS in that all

unvisited vertices adjacent to V are visited next. Then unvisited vertices adjacent to

there vertices are visited and so on. A breadth first search beginning at vertex 1 of

the graph would first visit 1 and then 2 and 3.

Bre a dt h F irst S p a n n in g T re e

Next vertices 4, 5, 6 and 7 will be visited and finally 8. The spanning trees obtained

using BFS are called Breadth first spanning trees. The edges that were rejected in the

breadth first search are called cross edges.

 Articulation Points and Biconnected Components:

Let G = (V, E) be a connected undirected graph. Consider the following definitions:

Articulation Point (or Cut Vertex): An articulation point in a connected graph is a

vertex (together with the removal of any incident edges) that, if deleted, would break

the graph into two or more pieces..

Bridge: Is an edge whose removal results in a disconnected graph.

Biconnected: A graph is biconnected if it contains no articulation points. In a

biconnected graph, two distinct paths connect each pair of vertices. A graph that is

not biconnected divides into biconnected components. This is illustrated in the

following figure:

1

2 3

4 5 6 7

8

1

2 3

4 5 6 7

8

146

Articulation Points and Bridges

Biconnected graphs and articulation points are of great interest in the design of

network algorithms, because these are the “critical" points, whose failure will result in

the network becoming disconnected.

Let us consider the typical case of vertex v, where v is not a leaf and v is not the root.
Let w1, w2, wk be the children of v. For each child there is a subtree of the

DFS tree rooted at this child. If for some child, there is no back edge going to a
proper ancestor of v, then if we remove v, this subtree becomes disconnected from
the rest of the graph, and hence v is an articulation point.

On the other hand, if every one of the subtree rooted at the children of v have back

edges to proper ancestors of v, then if v is removed, the graph remains connected

(the back edges hold everything together). This leads to the following:

Observation 1: An internal vertex v of the DFS tree (other than the root) is

an articulation point if and only if there is a subtree rooted at a child of v such

that there is no back edge from any vertex in this subtree to a proper ancestor

of v.

Observation 2: A leaf of the DFS tree is never an articulation point, since a

leaf will not have any subtrees in the DFS tree.

Thus, after deletion of a leaf from a tree, the rest of the tree remains

connected, thus even ignoring the back edges, the graph is connected after

the deletion of a leaf from the DFS tree.

Observation 3: The root of the DFS is an articulation point if and only if it has

two or more children. If the root has only a single child, then (as in the case of

leaves) its removal does not disconnect the DFS tree, and hence cannot

disconnect the graph in general.

Biconnected
Components

Articulation Point

Bridge

147

 Articulation Points by Depth First Search:

Determining the articulation turns out to be a simple extension of depth first search.

Consider a depth first spanning tree for this graph.

Observations 1, 2, and 3 provide us with a structural characterization of which

vertices in the DFS tree are articulation points.

Deleting node E does not disconnect the graph because G and D both have dotted

links (back edges) that point above E, giving alternate paths from them to F. On the

other hand, deleting G does disconnect the graph because there are no such alternate

paths from L or H to E (G‟s parent).

A vertex „x‟ is not an articulation point if every child „y‟ has some node lower in the

tree connect (via a dotted link) to a node higher in the tree than „x‟, thus providing an

alternate connection from „x‟ to „y‟. This rule will not work for the root node since

there are no nodes higher in the tree. The root is an articulation point if it has two or

more children.

Depth First Spanning Tree for the above graph is:

By using the above observations the articulation points of this graph are:

A : because it connects B to the rest of the graph.

H : because it connects I to the rest of the graph.

J : because it connects K to the rest of the graph.

G : because the graph would fall into three pieces if G is deleted.

Biconnected components are: {A, C, G, D, E, F}, {G, J, L, M}, B, H, I and K

A H I

B C G

J K

D

E

F L M

148

This observation leads to a simple rule to identify articulation points. For each is

define L (u) as follows:

L (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  (u, w)

is a back edge}}.

L (u) is the lowest depth first number that can be reached from „u‟ using a path of

descendents followed by at most one back edge. It follows that, If „u‟ is not the root

then „u‟ is an articulation point iff „u‟ has a child „w‟ such that:

L (w) ≥ DFN (u)

6.6.2. Algorithm for finding the Articulation points:

Pseudocode to compute DFN and L.

Algorithm Art (u, v)

// u is a start vertex for depth first search. V is its parent if any in the depth first

// spanning tree. It is assumed that the global array dfn is initialized to zero and that // the

global variable num is initialized to 1. n is the number of vertices in G.
{

dfn [u] := num; L [u] := num; num := num + 1;
for each vertex w adjacent from u do
{

if (dfn [w] = 0) then

{

Art (w, u); // w is unvisited.

L [u] := min (L [u], L [w]);
}

else if (w  v) then L [u] := min (L [u], dfn [w]);

}

}

6.6.1. Algorithm for finding the Biconnected Components:

Algorithm BiComp (u, v)

// u is a start vertex for depth first search. V is its parent if any in the depth first
// spanning tree. It is assumed that the global array dfn is initially zero and that the

// global variable num is initialized to 1. n is the number of vertices in G.

{

dfn [u] := num; L [u] := num; num := num + 1;
for each vertex w adjacent from u do
{

if ((v  w) and (dfn [w] < dfn [u])) then

add (u, w) to the top of a stack s;
if (dfn [w] = 0) then

{
if (L [w] > dfn [u]) then

{

write (“New bicomponent”);
repeat
{

Delete an edge from the top of stack s;

Let this edge be (x, y);
Write (x, y);

} until (((x, y) = (u, w)) or ((x, y) = (w, u)));

}

149

8 6

1 1 5 7

4 6 2 7

3 3 8 1 0

1 0 9 5

BiComp (w, u); // w is unvisited.
L [u] := min (L [u], L [w]);

}
else if (w  v) then L [u] : = min (L [u], dfn [w]);

}

}

6.7.1. Example:

For the following graph identify the articulation points and Biconnected components:

2 9

4

4

Grap h

Dept h Fi rst Sp an ni ng Tree

To identify the articulation points, we use:

L (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  w is a vertex

to which there is back edge from u}}

L (1) = min {DFN (1), min {L (4)}} = min {1, L (4)} = min {1, 1} = 1

L (4) = min {DFN (4), min {L (3)}} = min {2, L (3)} = min {2, 1} = 1

L (3) = min {DFN (3), min {L (10), L (9), L (2)}} =

= min {3, min {L (10), L (9), L (2)}} = min {3, min {4, 5, 1}} = 1

L (10) = min {DFN (10)} = 4

L (9) = min {DFN (9)} = 5

L (2) = min {DFN (2), min {L (5)}, min {DFN (1)}}

= min {6, min {L (5)}, 1} = min {6, 6, 1} = 1

L (5) = min {DFN (5), min {L (6), L (7)}} = min {7, 8, 6} = 6

L (6) = min {DFN (6)} = 8

L (7) = min {DFN (7), min {L (8}, min {DFN (2)}}

= min {9, L (8) , 6} = min {9, 6, 6} = 6

L (8) = min {DFN (8), min {DFN (5), DFN (2)}}

1 1

2 4

3 3

1 0 5 9 6 2

7 5

8 6 7 9

8 1 0

150

= min {10, min (7, 6)} = min {10, 6} = 6

Therefore, L (1: 10) = (1, 1, 1, 1, 6, 8, 6, 6, 5, 4)

Finding the Articulation Points:

Vertex 1: Vertex 1 is not an articulation point. It is a root node. Root is an articulation

point if it has two or more child nodes.

Vertex 2: is an articulation point as child 5 has L (5) = 6 and DFN (2) = 6,

So, the condition L (5) = DFN (2) is true.

Vertex 3: is an articulation point as child 10 has L (10) = 4 and DFN (3) = 3,

So, the condition L (10) > DFN (3) is true.

Vertex 4: is not an articulation point as child 3 has L (3) = 1 and DFN (4) = 2,

So, the condition L (3) > DFN (4) is false.

Vertex 5: is an articulation point as child 6 has L (6) = 8, and DFN (5) = 7,

So, the condition L (6) > DFN (5) is true.

Vertex 7: is not an articulation point as child 8 has L (8) = 6, and DFN (7) = 9,

So, the condition L (8) > DFN (7) is false.

Vertex 6, Vertex 8, Vertex 9 and Vertex 10 are leaf nodes.

Therefore, the articulation points are {2, 3, 5}.

 Example:

For the following graph identify the articulation points and Biconnected components:

1

2

G ra p h

D F S s p a n ni n g T re e

1
4

2 3 7 8

5 6

1

2 3 3

4 5 5 6 4 6

7 7

8 8

151

V ert e x

1 2

2 1 3

3 2 5 6 4

4 3 7 8

5

3

6

3

7 4 8

8 4 7

Adj ac enc y List

L (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  w is a vertex

to which there is back edge from u}}

L (1) = min {DFN (1), min {L (2)}} = min {1, L (2)} = min {1, 2} = 1

L (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min {2, 3} = 2

L (3) = min {DFN (3), min {L (4), L (5), L (6)}} = min {3, min {6, 4, 5}} = 3

L (4) = min {DFN (4), min {L (7)} = min {6, L (7)} = min {6, 6} = 6

L (5) = min {DFN (5)} = 4

L (6) = min {DFN (6)} = 5

L (7) = min {DFN (7), min {L (8)}} = min {7, 6} = 6

L (8) = min {DFN (8), min {DFN (4)}} = min {8, 6} = 6

Therefore, L (1: 8) = {1, 2, 3, 6, 4, 5, 6, 6}

Finding the Articulation Points:

Check for the condition if L (w) > DFN (u) is true, where w is any child of u.

Vertex 1: Vertex 1 is not an articulation point.

It is a root node. Root is an articulation point if it has two or more child

nodes.

Vertex 2: is an articulation point as L (3) = 3 and DFN (2) = 2.

So, the condition is true

Vertex 3: is an articulation Point as:

I. L (5) = 4 and DFN (3) = 3

II. L (6) = 5 and DFN (3) = 3 and

III. L (4) = 6 and DFN (3) = 3

So, the condition true in above cases

152

2 4 5

Vertex 4: is an articulation point as L (7) = 6 and DFN (4) = 6.

So, the condition is true

Vertex 7: is not an articulation point as L (8) = 6 and DFN (7) = 7.

So, the condition is False

Vertex 5, Vertex 6 and Vertex 8 are leaf nodes.

Therefore, the articulation points are {2, 3, 4}.

Example:

For the following graph identify the articulation points and Biconnected components:

1 1

2 2

3 3

4 4

5 5 7 8

Graph 6 6 Depth First

Spanning Tree

7 8

DFN (1: 8) = {1, 2, 3, 4, 5, 6, 8, 7}

V ert e x

1

2 1 3

3 2 4 7

4 1 3 5 6 7 8

5 1 4 6

6 4 5 8

7

3

4

8

4

6

Adj ac enc y List

L (u) = min {DFN (u), min {L (w)  w is a child of u}, min {DFN (w)  w is a vertex

to which there is back edge from u}}

L (1) = min {DFN (1), min {L (2)}}

= min {1, L (2)} = 1

L (2) = min {DFN (2), min {L (3)}} = min {2, L (3)} = min{2, 1}= 11

5

1

6

2 4

8

3

7

153

L (3) = min {DFN (3), min {L (4)}} = min {3, L (4)} = min {3, L (4)}

= min {3, 1} = 1

L (4) = min {DFN (4), min {L (5), L (7)}, min {DFN (1)}}

= min {4, min {L (5), L (7)}, 1} = min {4, min {1, 3}, 1}

= min {4, 1, 1} = 1

L (5) = min {DFN (5), min {L (6)}, min {DFN (1)}} = min {5, L (6), 1}

= min {5, 4, 1} = 1

L (6) = min {DFN (6), min {L (8)}, min {DFN (4)}} = min(6, L (8), 4}

= min(6, 4, 4} = 4

L (7) = min {DFN (7), min {DFN (3)}} = min {8, 3} = 3

L (8) = min {DFN (8), min {DFN (4)}} = min {7, 4} = 4

Therefore, L (1: 8) = {1, 1, 1, 1, 1, 4, 3, 4}

Finding the Articulation Points:

Check for the condition if L (w) > DFN (u) is true, where w is any child of u.

Vertex 1: is not an articulation point.

It is a root node. Root is an articulation point if it has two or more child
nodes.

Vertex 2: is not an articulation point. As L (3) = 1 and DFN (2) = 2.

So, the condition is False.

Vertex 3: is not an articulation Point as L (4) = 1 and DFN (3) = 3.

So, the condition is False.

Vertex 4: is not an articulation Point as:
L (3) = 1 and DFN (2) = 2 and
L (7) = 3 and DFN (4) = 4

So, the condition fails in both cases.

Vertex 5: is not an Articulation Point as L (6) = 4 and DFN (5) = 6.

So, the condition is False

Vertex 6: is not an Articulation Point as L (8) = 4 and DFN (6) = 7.

So, the condition is False

Vertex 7: is a leaf node.

Vertex 8: is a leaf node.

So they are no articulation points.

 GAME PLAYING

In game-playing literature, the term play is used for a move. The two major components

of game-playing program are plausible move generator, and a static evaluation function

generator.

154

In a game of chess, for every move a player makes, the average branching factor is 35,

that is the opponent can make 35 different moves. It may not be possible to examine all

the states because the amount of time given for a move is limited and the amount of

computational power available for examining various states is also limited. Hence it is

essential that only very selected moves or paths are examined. For this purpose only,

one has a plausible move generator, that expands or generates only selected moves.

Static Evaluation function generator (SEF) is the most important component of the

game-playing program. The process of computing a number that reflects board quality is

called static evaluation. The procedure that does the computation is called a static

evaluator. A static evaluation function, is defined as the one that estimates the value of

the board position without looking any of that position's successors.

The SEF gives a snapshot of a particular move. More the SEF value, more is the

probability for a victory. Games can be classified as either a single person playing or

multi-person playing. For single person games (for example, Rubik's cube, 8-tile puzzle

etc.) search strategies such as Best-first branch and bound algorithm can be used.

On the other hand, in a two-person games like chess, checkers etc., each player tries to

outsmart the opponent. Each has their own way of evaluating the situation and since

each player tries to obtain the maximum benefits, best first search branch and bound

algorithm do not serve the purpose. The basic methods available for game playing are:

1. Minimax search.

2. Minimax search with alpha beta cutoffs.

 MINIMAX SEARCH

The standard algorithm for two-player games is called minimax search with static

evaluation. We have to add more knowledge to improve search and to reduce the

complexity. Heuristic search adds a small amount of knowledge to a problem space,

giving, surprisingly, a fairly dramatic effect of the efficiency of search algorithm. A good

heuristic is to select roads that go in the direction of the goal. In this case we call it as

heuristic static evaluation function that takes a board position and returns a number that

indicates how favorable that position is to one player or other. We call our players as

MAX and MIN.

The large positive values would correspond to strong positions for one player whereas

large negative values would represent advantageous situations for the opponent.

The player for whom large positive values are advantageous is called the MAX, and

conversely the opponent is referred to as MIN. The value of a node where it is MAX's

turn to move is maximum of the values of its children, while the value of a node where

MIN is to move is the minimum of the values of its children.

MAX represents the player trying to win, or to MAXimize his/her advantage. MIN, the

opponent attempts to MINimize MAX's score. (i.e. we can assume that MIN uses the

same information and always attempts to move to a state that is worst for MAX).

At alternate levels of tree, the minimum and the maximum values of the children are

backedup. The backingup values is done as follows: The (MAX node) parent of MIN tip

nodes is assigned a backedup value equal to the maximum of the evaluations of the tip

nodes, on the other hand, if MIN were to choose among tip nodes, he will choose that

having the smallest evaluation (the most negative). Therefore, the (MIN node), parent

of MAX tip nodes is assigned a backedup value equal to the minimum of the evaluation

of the tip nodes.

155

M IN

M A X

7

2 - 1 - 1 - 1 - 1- 1

After the parents of all tip nodes have been assigned backedup values, we backup

values another level, assuming that MAX would choose that node with largest backedup

value, while MIN would choose that node with smallest backedup value.

We continue the procedure level by level, until finally, the successors of the start node

are assigned backedup values. The search algorithm then uses these derived values to

select among possible next moves.

Backingup the values of a 2 - ply search

The best first move can be extracted from minimax procedure after search terminates.

 EXAMPLE

To illustrate these ideas, let us consider a simple game called "Grundy's game". The

rules of the game are as follows: Two players have in front of them a single pile of 7

matches. At each move the player must divide a pile of matches into two non-empty

piles with different numbers of matches in each pile. Thus, 6 matches may be divided

into piles of 5 and 1 or 4 and 2, but not 3 and 3. The first player who can no longer

make a move loses the game. The following figure shows the space for a game with 7

matches and let MIN play first:

M A X 6 - 1 5 - 2 4 - 3

M IN 5 - 1 - 1 4 - 2 - 1 3 - 2 - 2 3 - 3 - 1

M A X

4 - 1 - 1 -

1 3 - 2 - 1 - 1 2 - 2 - 2 - 1

M IN

3 - 1 - 1 - 1 - 1 2 - 2 - 1 - 1 - 1

A GA M E G RA P H F O R G R U N DY S GA M E

We can also use the game tree to show that, no matter what min does max can always

win. A winning strategy for max is shown by heavy lines. Max, can always force the

game to a win, regardless of min‟s first move. Min could win only if max played foolishly.

A -2 MAX

B -6 C -2 D -4 MIN

E F G

9 -6 0

H I

0 -2

J

-4

K

-3

MAX

156

6.8. ALPHA-BETA PRUNING

The minimax pursues all branches in the space, including many that can be ignored or

pruned by a more intelligent algorithm. Researchers in game playing have developed a

class of search technique called Alpha-beta pruning to improve the efficiency of search in

two-person games.

The idea for alpha-beta search is simple: Two values called alpha and beta are created

during the search. The alpha value, associated with MAX nodes, can never decrease, and

the beta value, associated with MIN nodes, can never increase.

Suppose for example, MAX node's alpha value is 6, then MAX need not consider any

backedup value less than or equal to 6 that is associated with any MIN node below it.

Similarly, if MIN has a beta value of 6, it need not consider further any MAX node below

it that has a value of 6 or more.

Because of these constraints, we can state the following two rules for terminating the

search:

1. Search can be stopped below any MIN node having a beta value less than or

equal to the alpha value of any of its MAX node ancestors. The final backedup

value of this MIN node can then the set to its beta value.

2. Search can be stopped below any MAX node having an alpha value greater than

or equal to the beta value of any of its MIN node ancestors. The final backedup

value of this MAX node can then be set to its alpha value.

Figure given below shows an example of alpha-beta pruning. The search proceeds

depth-first to minimise the memory requirement, and only evaluates a node when

necessary. After statically evaluating nodes D and E to 6 and 5, respectively, we back up

their maximum value, 6 as the value of node C. After statically evaluating node G as 8,

we know that the backed up value of node F must be greater than or equal to 8, since it

is the maximum of 8 and the unknown value node W. The value of node B must be 6

then, because it is the maximum of 6 and a value that must be greater than or equal to

8. Since we have exactly determined the value of node B, we do not need to evaluate or

even generate node W. This is called an ALPHA CUTOFF.

Similarly, after statically evaluating nodes J and K to 2 and 1, the backed up value is

their maximum or 2. This tells that the backed up value of node H must be less than or

equal to 2, since it the minimum of 2 and the unknown value of node X. Since the value

of node A is the maximum of 6 and a value that must be less than or equal to 2, it must

be 6, and hence we have evaluated the root of the tree without generating or evaluating

the nodes X, Y or Z. This is called BETA CUTOFF.

The whole process of keeping track of alpha and beta values and making cutoff's when

possible is called as alpha-beta procedure.

157

3

2 3

Alpha - Beta Pruning

6.8.1. EXAMPLE 2:

Taking the space of figure as shown below and when alpha-beta pruning applied

is on this problem, is as follows:

3

3

C

M a x

3 0 2 3 A 0 D 2 E M in

9

0

5 9
 0

7 2 6

7 4 2 1 5 6

3

2 3 5

B 0

0

2 M a x

2 1 M in

Hy p ot h et ic a l st at e s p ac e t o min i ma x A lp h a - Bet a Pru n in g

A has β = 3 (A will be no larger than 3).

B is β pruned, since 5 > 3.

C has α = 3 (C will be no smaller than 3).

D is α pruned, since 0 < 3.

E is α pruned, since 2 < 3.

C is 3.

 AND/OR GRAPH:

And/or graph is a specialization of hypergraph which connects nodes by sets of arcs

rather than by a single arcs. A hypergraph is defined as follows:

A hypergraph consists of:

N, a set of nodes,

H, a set of hyperarcs defined by ordered pairs, in which the first implement of

the pair is a node of N and the second implement is the subset of N.

An ordinary graph is a special case of hypergraph in which all the sets of decendent

nodes have a cardinality of 1.

A 6

B 6 2 H<=2

C 6 F>=8 8 I 2 X

6 5 8 2 1

D E G W J K Y Z

158

Hyperarcs also known as K-connectors, where K is the cardinality of the set of

decendent nodes. If K = 1, the descendent may be thought of as an OR nodes. If K >

1, the elements of the set of decendents may be thought of as AND nodes. In this

case the connector is drawn with individual edges from the parent node to each of the

decendent nodes; these individual edges are then joined with a curved link.

And/or graph for the expression P and Q -> R is follows:

E xpre s s io n f or P a n d Q - > R A K- C o n n ec t or

The K-connector is represented as a fan of arrows with a single tie is shown above.

The and/or graphs consists of nodes labelled by global databases. Nodes labelled by

compound databases have sets of successor nodes. These successor nodes are called

AND nodes, in order to process the compound database to termination, all the

compound databases must be processed to termination.

For example consider, consider a boy who collects stamps (M). He has for the purpose

of exchange a winning conker (C), a bat (B) and a small toy animal (A). In his class

there are friends who are also keen collectors of different items and will make the

following exchanges.

1. 1 winning conker (C) for a comic (D) and a bag of sweets (S).

2. 1 winning conker (C) for a bat (B) and a stamp (M).

3. 1 bat (B) for two stamps (M, M).

4. 1 small toy animal (A) for two bats (B, B) and a stamp (M).

The problem is how to carry out the exchanges so that all his exchangable items are

converted into stamps (M). This task can be expressed more briefly as:

1. Initial state = (C, B, A)

2. Transformation rules:

a. If C then (D, S)

b. If C then (B, M)

c. If B then (M, M)

d. If A then (B, B, M)

3. The goal state is to left with only stamps (M, , M)

R

P Q

N1

N2

N

Nk

159

Expansion for the exchange problem using OR connectors only

The figure shows that, a lot of extra work is done by redoing many of the

transformations. This repetition can be avoided by decomposing the problem into

subproblems. There are two major ways to order the components:

1. The components can either be arranged in some fixed order at the time

they are generated (or).
2. They can be dynamically reordered during processing.

The more flexible system is to reorder dynamically as the processing unfolds. It can

be represented by and/or graph. The solution to the exchange problem will be:

Swap conker for a bat and a stamp, then exchange this bat for two stamps.

Swap his own bat for two more stamps, and finally swap the small toy animal

for two bats and a stamp. The two bats can be exchanged for two stamps.

The previous exchange problem, when implemented as an and/or graph looks as

follows:

The exchange problem as an AND/OR graph

(C, B, A)

(D S B A) (B M B A) (C M M A) (C B B B M)

(D S M M A) (M M M B A) (B M M M A) (B M B B B M)

(D S M M B B M) (M M M M M A) (M M M M M A) (M M M B B B M)

(D S M M M M B M) (M M M M M B B M)

(D S M M M M M M M) (M M M M M M M B M)

(M M M M M M M M M M) GOAL

(C B A)

(C) (B) (A)

(D S) (B M) (M M) (B B M)

(D) (S) (B) ((M)) ((M)) ((M)) (B) (B) ((M))

(M M) (M M) (M M)

((M)) ((M)) ((M)) ((M)) ((M)) ((M))

160

 Example 1:

Draw an And/Or graph for the following prepositions:

1. A

2. B

3. C

4. A ^ B -> D

5. A ^ C -> E

6. B ^ D -> F

7. F -> G

8. A ^ E -> H

A

H

B

F

C

E D

G

161

Chapter

7

BACKTRACKING

 General Method:

Backtracking is used to solve problem in which a sequence of objects is chosen from a
specified set so that the sequence satisfies some criterion. The desired solution is
expressed as an n-tuple (x1, , xn) where each xi Є S, S being a finite set.

The solution is based on finding one or more vectors that maximize, minimize, or
satisfy a criterion function P (x1, , xn). Form a solution and check at every step

if this has any chance of success. If the solution at any point seems not promising,
ignore it. All solutions requires a set of constraints divided into two categories: explicit
and implicit constraints.

Definition 1: Explicit constraints are rules that restrict each xi to take on values only

from a given set. Explicit constraints depend on the particular instance I

of problem being solved. All tuples that satisfy the explicit constraints

define a possible solution space for I.

Definition 2: Implicit constraints are rules that determine which of the tuples in the

solution space of I satisfy the criterion function. Thus, implicit

constraints describe the way in which the xi‟s must relate to each other.

 For 8-queens problem:

Explicit constraints using 8-tuple formation, for this problem are S= {1, 2, 3,

4, 5, 6, 7, 8}.

The implicit constraints for this problem are that no two queens can be the

same (i.e., all queens must be on different columns) and no two queens can

be on the same diagonal.

Backtracking is a modified depth first search of a tree. Backtracking algorithms

determine problem solutions by systematically searching the solution space for the

given problem instance. This search is facilitated by using a tree organization for the

solution space.

Backtracking is the procedure where by, after determining that a node can lead to

nothing but dead end, we go back (backtrack) to the nodes parent and proceed with

the search on the next child.

A backtracking algorithm need not actually create a tree. Rather, it only needs to

keep track of the values in the current branch being investigated. This is the way we

implement backtracking algorithm. We say that the state space tree exists implicitly

in the algorithm because it is not actually constructed.

162

 Terminology:

Problem state is each node in the depth first search tree.

Solution states are the problem states „S‟ for which the path from the root node to

„S‟ defines a tuple in the solution space.

Answer states are those solution states for which the path from root node to s

defines a tuple that is a member of the set of solutions.

State space is the set of paths from root node to other nodes. State space tree is the

tree organization of the solution space. The state space trees are called static trees.

This terminology follows from the observation that the tree organizations are

independent of the problem instance being solved. For some problems it is

advantageous to use different tree organizations for different problem instance. In

this case the tree organization is determined dynamically as the solution space is

being searched. Tree organizations that are problem instance dependent are called

dynamic trees.

Live node is a node that has been generated but whose children have not yet been

generated.

E-node is a live node whose children are currently being explored. In other words, an

E-node is a node currently being expanded.

Dead node is a generated node that is not to be expanded or explored any further.

All children of a dead node have already been expanded.

Branch and Bound refers to all state space search methods in which all children of

an E-node are generated before any other live node can become the E-node.

Depth first node generation with bounding functions is called backtracking. State

generation methods in which the E-node remains the E-node until it is dead, lead to

branch and bound methods.

Planar Graphs:

When drawing a graph on a piece of a paper, we often find it convenient to permit

edges to intersect at points other than at vertices of the graph. These points of

interactions are called crossovers.

A graph G is said to be planar if it can be drawn on a plane without any crossovers;

otherwise G is said to be non-planar i.e., A graph is said to be planar iff it can be

drawn in a plane in such a way that no two edges cross each other.

Example:

the following graph can be redrawn without

crossovers as follows:

a

e b

d c

a

e b

d c

163

Bipartite Graph:

A bipartite graph is a non-directed graph whose set of vertices can be portioned into

two sets V1 and V2 (i.e. V1 U V2 = V and V1 ∩ V2 = ø) so that every edge has one end

in V1 and the other in V2. That is, vertices in V1 are only adjacent to those in V2 and
vice- versa.

Example:

a b c a c e

The graph is bipartite. We can redraw it as

d e f b d f

The vertex set V = {a, b, c, d, e, f} has been partitioned into V1 = {a, c, e} and
V2 = {b, d, f}. The complete bipartite graph for which V1 = n and V2 = m is denoted
Kn,m.

 N-Queens Problem:

Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8

chessboard so that no two “attack”, that is, no two of them are on the same row,

column, or diagonal.

All solutions to the 8-queens problem can be represented as 8-tuples (x1, , x8),

where xi is the column of the ith row where the ith queen is placed.

The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 < i <

8. Therefore the solution space consists of 88 8-tuples.

The implicit constraints for this problem are that no two xi‟s can be the same (i.e., all

queens must be on different columns) and no two queens can be on the same

diagonal.

This realization reduces the size of the solution space from 88 tuples to 8! Tuples.

The promising function must check whether two queens are in the same column or

diagonal:

Suppose two queens are placed at positions (i, j) and (k, l) Then:

 Column Conflicts: Two queens conflict if their xi values are identical.

 Diag 45 conflict: Two queens i and j are on the same 450 diagonal if:

i – j = k – l.

This implies, j – l = i – k

 Diag 135 conflict:
i + j = k + l.

This implies, j – l = k – i

164

Therefore, two queens lie on the same diagonal if and only if:

j - l = i – k 



Where, j be the column of object in row i for the ith queen and l be the column of

object in row „k‟ for the kth queen.

To check the diagonal clashes, let us take the following tile configuration:

In this example, we have:

i 1 2 3 4 5 6 7 8

xi 2 5 1 8 4 7 3 6

Let us consider for the

case whether the queens on 3rd row and 8th row
are conflicting or not. In this

case (i, j) = (3, 1) and (k, l) = (8, 6). Therefore:

j - l = i – k   1 - 6 = 3 – 8 

 5 = 5

In the above example we have, j - l = i – k , so the two queens are attacking.

This is not a solution.

Example:

Suppose we start with the feasible sequence 7, 5, 3, 1.

Step 1:

Add to the sequence the next number in the sequence 1, 2, . . . , 8 not yet

used.

Step 2:

If this new sequence is feasible and has length 8 then STOP with a solution. If

the new sequence is feasible and has length less then 8, repeat Step 1.

Step 3:

If the sequence is not feasible, then backtrack through the sequence until we

find the most recent place at which we can exchange a value. Go back to Step

1.

*

*

*

*

*

*

*

*

*

*

*

*

165

1 2 3 4 5 6 7 8
Remarks

7 5 3 1

7 5 3 1* 2*
 j - l = 1 – 2 = 1

i – k  = 4 – 5 = 1

7 5 3 1 4

7* 5 3 1 4 2*
 j - l = 7 – 2 = 5

i – k  = 1 – 6 = 5

7 5 3* 1 4 6*
 j - l = 3 – 6 = 3

i – k  = 3 – 6 = 3

7 5 3 1 4 8

7 5 3 1 4* 8 2*
 j - l = 4 – 2 = 2

i – k  = 5 – 7 = 2

7 5 3 1 4* 8 6*
 j - l = 4 – 6 = 2

i – k  = 5 – 7 = 2

7 5 3 1 4 8 Backtrack

7 5 3 1 4 Backtrack

7 5 3 1 6

7* 5 3 1 6 2*
 j - l = 1 – 2 = 1

i – k  = 7 – 6 = 1

7 5 3 1 6 4

7 5 3 1 6 4 2

7 5 3* 1 6 4 2 8*
j - l = 3 – 8 = 5

i – k =3 – 8 = 5

7 5 3 1 6 4 2 Backtrack

7 5 3 1 6 4 Backtrack

7 5 3 1 6 8

7 5 3 1 6 8 2

7 5 3 1 6 8 2 4 SOLUTION

* indicates conflicting queens.

On a chessboard, the solution will look like:

*

*

*

*

*

*

*

*

166

4 – Queens Problem:

Let us see how backtracking works on the 4-queens problem. We start with the root

node as the only live node. This becomes the E-node. We generate one child. Let us

assume that the children are generated in ascending order. Let us assume that the

children are generated in ascending order. Thus node number 2 of figure is generated

and the path is now (1). This corresponds to placing queen 1 on column 1. Node 2

becomes the E-node. Node 3 is generated and immediately killed. The next node

generated is node 8 and the path becomes (1, 3). Node 8 becomes the E-node.

However, it gets killed as all its children represent board configurations that cannot

lead to an answer node. We backtrack to node 2 and generate another child, node 13.

The path is now (1, 4). The board configurations as backtracking proceeds is as

follows:

(a) (b) (c) (d)

(e) (f) (g) (h)

The above figure shows graphically the steps that the backtracking algorithm goes

through as it tries to find a solution. The dots indicate placements of a queen, which

were tried and rejected because another queen was attacking.

In Figure (b) the second queen is placed on columns 1 and 2 and finally settles on

column 3. In figure (c) the algorithm tries all four columns and is unable to place the

next queen on a square. Backtracking now takes place. In figure (d) the second

queen is moved to the next possible column, column 4 and the third queen is placed

on column 2. The boards in Figure (e), (f), (g), and (h) show the remaining steps that

the algorithm goes through until a solution is found.

1

1

. . 2

1

 2
. . . .

1

 2

. 3

1

 2

 3
. . . .

 1

 1

. . . 2

 1

 2

3
. . 4

167

Complexity Analysis:

1  n  n2
  n3

   nn
 nn 1  1


n  1

For the instance in which n = 8, the state space tree contains:

88 1  1
= 19, 173, 961 nodes

8  1

Program for N-Queens Problem:

include <stdio.h>
include <conio.h>

include <stdlib.h>

int x[10] = {5, 5, 5, 5, 5, 5, 5, 5, 5, 5};

place (int k)

{
int i;

for (i=1; i < k; i++)

{
if ((x [i] == x [k]) || (abs (x [i] – x [k]) == abs (i - k)))

return (0);
}
return (1);

}
nqueen (int n)

{
int m, k, i = 0;
x [1] = 0;
k = 1;
while (k > 0)

{
x [k] = x [k] + 1;

while ((x [k] <= n) && (!place (k)))
x [k] = x [k] +1;

if(x [k] <= n)

{
if (k == n)

{

}

else

}

}
else

{

}

k--;

i++;

printf (“\ncombination; %d\n”,i);
for (m=1;m<=n; m++)
printf(“row = %3d\t column=%3d\n”, m, x[m]);

getch();

k++;

x [k]=0;

return (0);

168

}
main ()

{

}

int n;

clrscr ();
printf (“enter value for N: “);
scanf (“%d”, &n);
nqueen (n);

Output:

Enter the value for N: 4

Combination: 1

Row = 1 column = 2

Combination: 2

3
Row = 2 column = 4 1

Row = 3 column = 1 4

Row = 4 column = 3 2

For N = 8, there will be 92 combinations.

Sum of Subsets:

Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets

of wi whose sums are „m‟.

All solutions are k-tuples, 1 ≤ k ≤ n.

Explicit constraints:

 xi Є {j | j is an integer and 1 ≤ j ≤ n}.

Implicit constraints:

 No two xi can be the same.

 The sum of the corresponding wi‟s be m.

 xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid generating multiple

instances of the same subset (for example, (1, 2, 4) and (1, 4, 2)

represent the same subset).

A better formulation of the problem is where the solution subset is represented by an
n-tuple (x1, , xn) such that xi Є {0, 1}.

The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1, 1).

For both the above formulations, the solution space is 2n distinct tuples.

For example, n = 4, w = (11, 13, 24, 7) and m = 31, the desired subsets are (11,

13, 7) and (24, 7).

169

The following figure shows a possible tree organization for two possible formulations

of the solution space for the case n = 4.

A p o s s ib le s o lut io n s p ac e org a n is at io n f or t h e

s u m of t h e s u b s et s pro b le m.

The tree corresponds to the variable tuple size formulation. The edges are labeled
such that an edge from a level i node to a level i+1 node represents a value for xi. At

each node, the solution space is partitioned into sub - solution spaces. All paths from
the root node to any node in the tree define the solution space, since any such path
corresponds to a subset satisfying the explicit constraints.

The possible paths are (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2,

3), and so on. Thus, the left mot sub-tree defines all subsets containing w1, the next

sub-tree defines all subsets containing w2 but not w1, and so on.

 Graph Coloring (for planar graphs):

Let G be a graph and m be a given positive integer. We want to discover whether the

nodes of G can be colored in such a way that no two adjacent nodes have the same

color, yet only m colors are used. This is termed the m-colorabiltiy decision problem.

The m-colorability optimization problem asks for the smallest integer m for which the

graph G can be colored.

Given any map, if the regions are to be colored in such a way that no two adjacent

regions have the same color, only four colors are needed.

For many years it was known that five colors were sufficient to color any map, but no

map that required more than four colors had ever been found. After several hundred

years, this problem was solved by a group of mathematicians with the help of a

computer. They showed that in fact four colors are sufficient for planar graphs.

The function m-coloring will begin by first assigning the graph to its adjacency matrix,
setting the array x [] to zero. The colors are represented by the integers 1, 2, . . . , m
and the solutions are given by the n-tuple (x1, x2, . . ., xn), where xi is the color of

node i.

A recursive backtracking algorithm for graph coloring is carried out by invoking the

statement mcoloring(1);

x 1 =1 1

x 1 =3

x 1 =4

2

x 2 =2

x 1 =2

3

x 2 =3

4 5
x 2 =4

x 2 =4
x 2 =3

6 7 8 9 10

x 3 =3 x 3 =4 x 3 =4

x 2 =4

11

S

12

x 4 =4

16

13 14

S

x 3 =4

15

170

Algorithm mcoloring (k)
// This algorithm was formed using the recursive backtracking schema. The graph is
// represented by its Boolean adjacency matrix G [1: n, 1: n]. All assignments of
// 1, 2, , m to the vertices of the graph such that adjacent vertices are assigned
// distinct integers are printed. k is the index of the next vertex to color.

{
repeat
{ // Generate all legal assignments for x[k].

NextValue (k); // Assign to x [k] a legal color.
If (x [k] = 0) then return; // No new color possible
If (k = n) then // at most m colors have been

// used to color the n vertices.
write (x [1: n]);
else mcoloring (k+1);

} until (false);

}

Algorithm NextValue (k)

// x [1] , x [k-1] have been assigned integer values in the range [1, m] such that
// adjacent vertices have distinct integers. A value for x [k] is determined in the range
// [0, m].x[k] is assigned the next highest numbered color while maintaining distinctness
// from the adjacent vertices of vertex k. If no such color exists, then x [k] is 0.

{
repeat

{

x [k]: = (x [k] +1) mod (m+1) // Next highest color.

If (x [k] = 0) then return; // All colors have been used

for j := 1 to n do
{ // check if this color is distinct from adjacent colors

if ((G [k, j]  0) and (x [k] = x [j]))

// If (k, j) is and edge and if adj. vertices have the same color.
then break;

}

if (j = n+1) then return; // New color found
} until (false); // Otherwise try to find another color.

}

Example:

Color the graph given below with minimum number of colors by backtracking using

state space tree.

x 1

1
2

3

1 2 2 3 1 3 1 2 x 2

 1 3 1 2 2 x 3

4 3
3 1 2 2 3 1 3

Gra p h

2 3 2 2
x 4

3 3 1 3 1 3 1 3 1 1 2 2 1 2

A 4- n o d e gra p h a n d a l l p o s s ib le 3-c o lorin g s

171

 Hamiltonian Cycles:

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle (suggested
by William Hamilton) is a round-trip path along n edges of G that visits every vertex
once and returns to its starting position. In other vertices of G are visited in the order
v1, v2, , vn+1, then the edges (vi, vi+1) are in E, 1 < i < n, and the vi are
distinct expect for v1 and vn+1, which are equal. The graph G1 contains the
Hamiltonian cycle 1, 2, 8, 7, 6, 5, 4, 3, 1. The graph G2 contains no Hamiltonian
cycle.

Two graphs to illustrate Hamiltonian cycle

The backtracking solution vector (x1, xn) is defined so that xi represents the ith

visited vertex of the proposed cycle. If k = 1, then x1 can be any of the n vertices. To
avoid printing the same cycle n times, we require that x1 = 1. If 1 < k < n, then xk

can be any vertex v that is distinct from x1, x2, . . . , xk–1 and v is connected by an
edge to kx-1. The vertex xn can only be one remaining vertex and it must be connected
to both xn-1 and x1.

Using NextValue algorithm we can particularize the recursive backtracking schema to

find all Hamiltonian cycles. This algorithm is started by first initializing the adjacency

matrix G[1: n, 1: n], then setting x[2: n] to zero and x[1] to 1, and then executing

Hamiltonian(2).

The traveling salesperson problem using dynamic programming asked for a tour that

has minimum cost. This tour is a Hamiltonian cycles. For the simple case of a graph

all of whose edge costs are identical, Hamiltonian will find a minimum-cost tour if a

tour exists.

Algorithm NextValue (k)
// x [1: k-1] is a path of k – 1 distinct vertices . If x[k] = 0, then no vertex has as yet been
// assigned to x [k]. After execution, x[k] is assigned to the next highest numbered vertex
// which does not already appear in x [1 : k – 1] and is connected by an edge to x [k – 1].
// Otherwise x [k] = 0. If k = n, then in addition x [k] is connected to x [1].

{
repeat

{

x [k] := (x [k] +1) mod (n+1); // Next vertex.
If (x [k] = 0) then return;
If (G [x [k – 1], x [k]]  0) then

{ // Is there an edge?
for j := 1 to k – 1 do if (x [j] = x [k]) then break;

// check for distinctness.

If (j = k) then // If true, then the vertex is distinct.
If ((k < n) or ((k = n) and G [x [n], x [1]]  0))
then return;

}
} until (false);

}

1 2 3 4 1 2 3

8 7 6 5 5 4

Graph G1 Graph G2

172

Algorithm Hamiltonian (k)
// This algorithm uses the recursive formulation of backtracking to find all the Hamiltonian
// cycles of a graph. The graph is stored as an adjacency matrix G [1: n, 1: n]. All cycles begin

// at node 1.
{

repeat
{ // Generate values for x [k].

NextValue (k); //Assign a legal Next value to x [k].
if (x [k] = 0) then return;

if (k = n) then write (x [1: n]);
else Hamiltonian (k + 1)

} until (false);

}

 0/1 Knapsack:

Given n positive weights wi, n positive profits pi, and a positive number m that is the

knapsack capacity, the problem calls for choosing a subset of the weights such that:

 wi

1  i  n

xi  m and pi

1  i  n

xi is maximized.

The xi‟s constitute a zero–one-valued vector.

The solution space for this problem consists of the 2n distinct ways to assign zero or

one values to the xi‟s.

Bounding functions are needed to kill some live nodes without expanding them. A

good bounding function for this problem is obtained by using an upper bound on the

value of the best feasible solution obtainable by expanding the given live node and

any of its descendants. If this upper bound is not higher than the value of the best

solution determined so far, than that live node can be killed.

We continue the discussion using the fixed tuple size formulation. If at node Z the

values of xi, 1 < i < k, have already been determined, then an upper bound for Z can

be obtained by relaxing the requirements xi = 0 or 1.

(Knapsack problem using backtracking is solved in branch and bound chapter)

7.8 Traveling Sale Person (TSP) using Backtracking:

We have solved TSP problem using dynamic programming. In this section we shall

solve the same problem using backtracking.

Consider the graph shown below with 4 vertices.

A graph for TSP

The solution space tree, similar to the n-queens problem is as follows:

30
1 2

5

6 10

4

3 4
20

173

We will assume that the starting node is 1 and the ending node is obviously 1. Then

1, {2, … ,4}, 1 forms a tour with some cost which should be minimum. The vertices

shown as {2, 3, …. ,4} forms a permutation of vertices which constitutes a tour. We

can also start from any vertex, but the tour should end with the same vertex.

Since, the starting vertex is 1, the tree has a root node R and the remaining nodes

are numbered as depth-first order. As per the tree, from node 1, which is the live

node, we generate 3 braches node 2, 7 and 12. We simply come down to the left

most leaf node 4, which is a valid tour {1, 2, 3, 4, 1} with cost 30 + 5 + 20 + 4 = 59.

Currently this is the best tour found so far and we backtrack to node 3 and to 2,

because we do not have any children from node 3. When node 2 becomes the E-

node, we generate node 5 and then node 6. This forms the tour {1, 2, 4, 3, 1} with

cost 30 + 10 + 20 + 6 = 66 and is discarded, as the best tour so far is 59.

Similarly, all the paths from node 1 to every leaf node in the tree is searched in a

depth first manner and the best tour is saved. In our example, the tour costs are

shown adjacent to each leaf nodes. The optimal tour cost is therefore 25.

1

2 7 12

3 5 8 10 13 15

4 6 9 11 14 16

173

Chapter

8

Branch and Bound

 General method:

Branch and Bound is another method to systematically search a solution space. Just

like backtracking, we will use bounding functions to avoid generating subtrees that

do not contain an answer node. However branch and Bound differs from backtracking

in two important manners:

1. It has a branching function, which can be a depth first search, breadth first

search or based on bounding function.

2. It has a bounding function, which goes far beyond the feasibility test as a

mean to prune efficiently the search tree.

Branch and Bound refers to all state space search methods in which all children of

the E-node are generated before any other live node becomes the E-node

Branch and Bound is the generalisation of both graph search strategies, BFS and D-

search.

 A BFS like state space search is called as FIFO (First in first out) search

as the list of live nodes in a first in first out list (or queue).

 A D search like state space search is called as LIFO (Last in first out)

search as the list of live nodes in a last in first out (or stack).

Definition 1: Live node is a node that has been generated but whose children have

not yet been generated.

Definition 2: E-node is a live node whose children are currently being explored. In

other words, an E-node is a node currently being expanded.

Definition 3: Dead node is a generated node that is not to be expanded or explored

any further. All children of a dead node have already been expanded.

Definition 4: Branch-an-bound refers to all state space search methods in which all

children of an E-node are generated before any other live node can

become the E-node.

Definition 5: The adjective "heuristic", means" related to improving problem solving

performance". As a noun it is also used in regard to "any method or trick

used to improve the efficiency of a problem solving problem". But

imperfect methods are not necessarily heuristic or vice versa. "A heuristic

(heuristic rule, heuristic method) is a rule of thumb, strategy, trick

simplification or any other kind of device which drastically limits search

for solutions in large problem spaces. Heuristics do not guarantee optimal

solutions, they do not guarantee any solution at all. A useful heuristic

offers solutions which are good enough most of the time.

174

 Least Cost (LC) search:

In both LIFO and FIFO Branch and Bound the selection rule for the next E-node in

rigid and blind. The selection rule for the next E-node does not give any preference

to a node that has a very good chance of getting the search to an answer node

quickly.

The search for an answer node can be speeded by using an “intelligent” ranking

function c

() for live nodes. The next E-node is selected on the basis of this ranking

function. The node x is assigned a rank using:

c

(x) = f(h(x)) + g


(x)

where, c

(x) is the cost of x.

h(x) is the cost of reaching x from the root and f(.) is any non-decreasing

function.

g

(x) is an estimate of the additional effort needed to reach an answer node

from x.

A search strategy that uses a cost function c


(x)

= f(h(x) + g


(x)

to select the next

E-node would always choose for its next E-node a live node with least

LC–search (Least Cost search)

c

(.) is called a

BFS and D-search are special cases of LC-search. If g

(x)

= 0 and f(h(x)) = level of
node x, then an LC search generates nodes by levels. This is eventually the same as

a BFS. If f(h(x)) = 0 and

essentially a D-search.

g

(x) > g


(y) whenever y is a child of x, then the search is

An LC-search coupled with bounding functions is called an LC-branch and bound

search

We associate a cost c(x) with each node x in the state space tree. It is not possible to

easily compute the function c(x). So we compute a estimate c

(x) of c(x).

 Control Abstraction for LC-Search:

Let t be a state space tree and c() a cost function for the nodes in t. If x is a node in

t, then c(x) is the minimum cost of any answer node in the subtree with root x. Thus,

c(t) is the cost of a minimum-cost answer node in t.

A heuristic c


(.) is used to estimate c(). This heuristic should be easy to compute and

generally has the property that if x is either an answer node or a leaf node, then

c(x) = c

(x) .

LC-search uses c

to find an answer node. The algorithm uses two functions Least() and

Add() to delete and add a live node from or to the list of live nodes, respectively.

Least() finds a live node with least c(). This node is deleted from the list of live nodes

and returned.

175

Add(x) adds the new live node x to the list of live nodes. The list of live nodes be

implemented as a min-heap.

Algorithm LCSearch outputs the path from the answer node it finds to the root node

t. This is easy to do if with each node x that becomes live, we associate a field parent

which gives the parent of node x. When the answer node g is found, the path from g

to t can be determined by following a sequence of parent values starting from the

current E-node (which is the parent of g) and ending at node t.

Listnode = record

{
Listnode * next, *parent; float cost;

}

Algorithm LCSearch(t)
{ //Search t for an answer node

if *t is an answer node then output *t and return;
E := t; //E-node.

initialize the list of live nodes to be empty;
repeat
{

for each child x of E do

{
if x is an answer node then output the path from x to t and return;
Add (x); //x is a new live node.
(x  parent) := E; // pointer for path to root

}
if there are no more live nodes then

{

write (“No answer node”);
return;

}

E := Least();
} until (false);

}

The root node is the first, E-node. During the execution of LC search, this list

contains all live nodes except the E-node. Initially this list should be empty.

Examine all the children of the E-node, if one of the children is an answer node, then

the algorithm outputs the path from x to t and terminates. If the child of E is not an

answer node, then it becomes a live node. It is added to the list of live nodes and its

parent field set to E. When all the children of E have been generated, E becomes a

dead node. This happens only if none of E‟s children is an answer node. Continue the

search further until no live nodes found. Otherwise, Least(), by definition, correctly

chooses the next E-node and the search continues from here.

LC search terminates only when either an answer node is found or the entire state

space tree has been generated and searched.

 Bounding:

A branch and bound method searches a state space tree using any search

mechanism in which all the children of the E-node are generated before another node

becomes the E-node. We assume that each answer node x has a cost c(x) associated

with it and that a minimum-cost answer node is to be found. Three common search

strategies are FIFO, LIFO, and LC. The three search methods differ only in the

selection rule used to obtain the next E-node.

176

A good bounding helps to prune efficiently the tree, leading to a faster exploration of

the solution space.

A cost function c


(.)

such that c


(x)

< c(x) is used to provide lower bounds on

solutions obtainable from any node x. If upper is an upper bound on the cost of a

minimum-cost solution, then all live nodes x with c(x) > c

(x) > upper. The starting

value for upper can be obtained by some heuristic or can be set to  .

As long as the initial value for upper is not less than the cost of a minimum-cost

answer node, the above rules to kill live nodes will not result in the killing of a live

node that can reach a minimum-cost answer node. Each time a new answer node is

found, the value of upper can be updated.

Branch-and-bound algorithms are used for optimization problems where, we deal

directly only with minimization problems. A maximization problem is easily converted

to a minimization problem by changing the sign of the objective function.

To formulate the search for an optimal solution for a least-cost answer node in a

state space tree, it is necessary to define the cost function c(.), such that c(x) is

minimum for all nodes representing an optimal solution. The easiest way to do this is

to use the objective function itself for c(.).

 For nodes representing feasible solutions, c(x) is the value of the objective

function for that feasible solution.

 For nodes representing infeasible solutions, c(x) = .

 For nodes representing partial solutions, c(x) is the cost of the minimum-cost

node in the subtree with root x.

Since, c(x) is generally hard to compute, the branch-and-bound algorithm will use an

estimate c

(x) such that c


(x) < c(x) for all x.

 The 15 – Puzzle Problem:

The 15 puzzle is to search the state space for the goal state and use the path from

the initial state to the goal state as the answer. There are 16! (16! ≈ 20.9 x 1012)
different arrangements of the tiles on the frame.

As the state space for the problem is very large it would be worthwhile to determine

whether the goal state is reachable from the initial state. Number the frame positions

1 to 16.

Position i is the frame position containing title numbered i in the goal arrangement of

Figure 8.1(b). Position 16 is the empty spot. Let position(i) be the position number in

the initial state of the title number i. Then position(16) will denote the position of the

empty spot.

For any state let:

less(i) be the number of tiles j such that j < i and position(j) > position(i).

The goal state is reachable from the initial state iff:
16


i  1

less(i)  x

is even.

177

Here, x = 1 if in the initial state the empty spot is at one of the shaded positions of

figure 8.1(c) and x = 0 if it is at one of the remaining positions.

(a) An arrangement (b) Goal arrangement (c)

Figure 8.1. 15-puzzle arrangement

Example 1:

For the state of Figure 8.1(a) we have less(i) values as follows:

less(1) = 0 less(2) = 0 less(3) = 1 less(4) = 1

less(5) = 0 less(6) = 0 less(7) = 1 less(8) = 0

less(9) = 0 less(10) = 0 less(11) = 3 less(12) = 6

less(13) = 0 less(14) = 4 less(15) = 11 less(16) = 10

Therefore,
16


i  1

less(i) 


x  (0 + 0 + 1 + 1 + 0 + 0 + 1 + 0 + 0 + 0 + 3 + 6 + 0 +

4 + 11 + 10) + 0 = 37 + 0 = 37.

Hence, goal is not reachable.

Example 2:

For the root state of Figure 8.2 we have less(i) values are as follows:

less(1) = 0 less(2) = 0 less(3) = 0 less(4) = 0

less(5) = 0 less(6) = 0 less(7) = 0 less(8) = 1

less(9) = 1 less(10) = 1 less(11) = 0 less(12) = 0

less(13) = 1 less(14) = 1 less(15) = 1 less(16) = 9

Therefore,
16


i  1

less(i) 


x  (0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 1 + 0 + 0 + 1 +

1 + 1 + 9) + 1 = 15 + 1 = 16.

Hence, goal is reachable.

1 3 4 15

2 5 12

7 6 11 14

8 9 10 13

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

178

 LC Search for 15 Puzzle Problem:

A depth first state space tree generation will result in the subtree of Figure 8.3 when

the next moves are attempted in the order: move the empty space up, right, down

and left. The search of the state space tree is blind. It will take the leftmost path

from the root regardless of the starting configuration. As a result, the answer node

may never be found.

A breadth first search will always find a goal node nearest to the root. However, such

a search is also blind in the sense that no matter what the initial configuration, the

algorithm attempts to make the same sequence of moves.

We need a more intelligent search method. We associate a cost c(x) with each node

x in the state space tree. The cost c(x) is the length of a path from the root to a

nearest goal node in the subtree with root x. The easy to compute estimate c

(x) of

c(x) is as follows:

c

(x) = f(x) + g


(x)

where, f(x) is the length of the path from the root to node x and

g

(x) is an estimate of the length of a shortest path from x to a goal node in

the subtree with root x. Here, g

(x) is the number of nonblank tiles not in

their goal position.

An LC-search of Figure 8.2, begin with the root as the E-node and generate all child

nodes 2, 3, 4 and 5. The next node to become the E-node is a live node with least

c

(x).

c

(2) = 1 + 4 = 5

c

(3) = 1 + 4 = 5

c

(4) = 1 + 2 = 3 and

c

(5) = 1 + 4 = 5.

Node 4 becomes the E-node and its children are generated. The live nodes at this

time are 2, 3, 5, 10, 11 and 12. So:

c

(10) = 2 + 1 = 3

c

(11) = 2 + 3 = 5 and

c

(12) = 2 + 3 = 5.

The live node with least c

is node 10. This becomes the next E-node. Nodes 22 and 23

are generated next. Node 23 is the goal node, so search terminates.

LC-search was almost as efficient as using the exact function c(), with a suitable

choice for c

(), LC-search will be far more selective than any of the other search

methods.

179

1

up left

2 down
4

5
3 right

right left up left
6 right left

7 up
down

8 9 10 12 13 15

down 23

left
left

down down

17 18 20 21 Goal
Edges are labelled according to the direction in which

the empty space moves

13 14 15 12 13 14 15 12 13 14 15 12 13 14 15 12 13 14 15 12

down

13 14 7 15 13 14 7 15 13 14 7 15 13 14 15 13 14 15

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

Figure 8.2. Part of the state space tree for 15-puzzle problem

1 2 3 4 5

1 2 3 4 1 2 4 1 2 4 1 2 4 8 1 2 4 8

5 6 8 up 5 6 3 8 right 5 6 3 8 down 5 6 3 down 5 6 3 11

9 10 7 11 9 10 7 11 9 10 7 11 9 10 7 11 9 10 7

 10 9 8 7 6

1 2 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

5 6 4 11 up 5 6 11 up 5 6 3 11 up 5 6 3 11 left 5 6 3 11

9 10 3 12 9 10 3 12 9 10 12 9 10 7 12 9 10 7 12

Figure 8. 3. First ten steps in a depth first search

 Job sequencing with deadlines:

We are given n jobs and one processor. Each job i is associated with it a three tuple
(pi, di, ti). Job i requires ti units of processing time. If its processing is not completed

by the deadline di, then a penalty pi is incurred. The objective is to select a subset J

of the n jobs such that all jobs in J can be completed by their deadlines. Hence, a
penalty can be incurred only on those jobs not in J. The subset J should be such that
the penalty incurred is minimum among all possible subsets J. Such a J is optimal.

1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8
9 10 7 11

13 14 15 12

1 6 2 4

5 3 8

9 10 7 11

13 14 15 12

 1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 8 11

9 10 7 12

13 14 15

1 2 3 4

5 6 8 11

9 10 7

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

11 d

own

1 2 3 4

5 6 7 8

9 10 15 11

13 14 12

1 2 3 4

5 6 8

9 10 7 11

13 14 15 12

14
d

own

1 2 3 4

5 10 6 8

9 7 11

13 14 15 12

1 2 4
5 6 3 8

9 10 7 11

13 14 15 12

down

16

1 2 4 8

5 6 3
9 10 7 11

13 14 15 12

1 2 4

5 6 3 8

9 10 7 11

13 14 15 12

1 2 3
5 6 8 4

9 10 7 11

13 14 15 12

19

left

1 2 3

5 6 8 4

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11
13 14 15 12

1 2 3 4

5 6 7 8

9 10 11
13 14 15 12

up

22

1 2 3 4

5 6 7
9 10 11 8

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 3 4

5 2 6 8

9 10 7 11

13 14 15 12

1 2 3 4

 5 6 8

9 10 7 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

180

Example:

Consider the following instance with n = 4, (p1, d1, t1) = (5, 1, 1), (p2, d2, t2) = (10,

3, 2), (p3, d3, t3) = (6, 2, 1) and (p4, d4, t4) = (3, 1, 1).

The solution space for this instance consists of all possible subsets of the job index

set {1, 2, 3, 4}. The solution space can be organized into a tree. Figure 8.4

corresponds to the variable tuple size formulation. In figure square nodes represent

infeasible subsets and all non-square nodes are answer nodes. Node 9 represents an

optimal solution and is the only minimum-cost answer node. For this node J={2, 3}

and the penalty is 8.

The cost function c(x) for any circular node x is the minimum penalty corresponding

to any node in the subtree with root x.

The value of c(x) =  for a square node.

Let Sx be the subset of jobs selected for J at node x.

If m = max  i / i  Sx , then

c

(x)  c(x).

c
x  

i  m
i  sx

pi is an estimate for c(x) with the property

An upper bound u(x) on the cost of a minimum-cost answer node in the subtree x is

u(x) = iSx
pi . The u(x) is the cost of the solution Sx corresponding to node x.

S(2) = {1} M =1 c

2   pi  0

i  m
i  sx

S(3) = {2} m = 2 c

3   pi   pi  5

i  2 i  1

S(4)= {3} m = 3. c

4   pi   pi  p1  p2  5  10  15

i  3 i 1, 2

S(5) = {4} m = 4 c

5   pi   pi  p1  p2  p3  5  10  6  21

i  4 i 1, 2, 3

S(6) = {1, 2} m = 2


c6   pi   pi  0
i  1, 2 i  1

i  sx i  s6

S(7) = {1, 3} m = 3

7   pi  p2 = 10

c
i  3

i  s7

181

S(8) = {1, 4} m = 4 c
8   pi  p2  p3  10  6  16

i  4

i  s8

S(9)={2,3} m=3 c

(9)= 5

S(10)={2,4} m=3 c

(10)=11

S(11)={3,4} m=4 c

(11)=15

Calculation of the Upper bound u(x) =  pi

i  sx

U(1) = 0

U(2) =

 pi

 p2

 p3

 p4

 10  6  3  19

eliminate job 1
i  s 2

U(3) = p1 + p3 + p4 = 5 + 6 + 3 = 14 eliminate job 2

U(4) = p1 + p2 + p4 = 5 + 10 + 3 = 18 eliminate job 3

U(5) = p1 + p2 + p4 = 5 + 10 + 6= 21 eliminate job 4

U(6) = p3 + p4 = 6 + 3 = 9 eliminate jobs 1, 2

U(7) = p2 + p4 = 10 + 3 = 13 eliminate jobs 1, 3

U(8) = p2 + p3 = 10 + 6 = 16 eliminate jobs 1, 4

U(9) = p1 + p4 = 5 + 3 = 8 eliminate jobs 2, 3

U(10) = p1 + p3 = 5 + 6 = 11 eliminate jobs 2, 4

U(11) = p1 + p2 = 5 + 10 = 15 eliminate jobs 3, 4

FIFO Branch and Bound:

A FIFO branch-and-bound algorithm for the job sequencing problem can begin with

upper =  as an upper bound on the cost of a minimum-cost answer node.

Starting with node 1 as the E-node and using the variable tuple size formulation of

Figure 8.4, nodes 2, 3, 4, and 5 are generated. Then u(2) = 19, u(3) = 14, u(4) =
18, and u(5) = 21.

The variable upper is updated to 14 when node 3 is generated. Since c

(4) and

c

(5) are greater than upper, nodes 4 and 5 get killed. Only nodes 2 and 3 remain

alive.

Node 2 becomes the next E-node. Its children, nodes 6, 7 and 8 are generated.

Then u(6) = 9 and so upper is updated to 9. The cost

gets killed. Node 8 is infeasible and so it is killed.

c

(7) = 10 > upper and node 7

Next, node 3 becomes the E-node. Nodes 9 and 10 are now generated. Then u(9) =

8 and so upper becomes 8. The cost c

(10) = 11 > upper, and this node is killed.

182

The next E-node is node 6. Both its children are infeasible. Node 9‟s only child is also

infeasible. The minimum-cost answer node is node 9. It has a cost of 8.

When implementing a FIFO branch-and-bound algorithm, it is not economical to kill

live nodes with c

(x) > upper each time upper is updated. This is so because live

nodes are in the queue in the order in which they were generated. Hence, nodes with

c

(x)

with

> upper are distributed in some random way in the queue. Instead, live nodes

c

(x) > upper can be killed when they are about to become E-nodes.

The FIFO-based branch-and-bound algorithm with an appropriate

called FIFOBB.

LC Branch and Bound:

c

(.) and u(.) is

An LC Branch-and-Bound search of the tree of Figure 8.4 will begin with upper = 

and node 1 as the first E-node.

When node 1 is expanded, nodes 2, 3, 4 and 5 are generated in that order.

As in the case of FIFOBB, upper is updated to 14 when node 3 is generated and

nodes 4 and 5 are killed as c

(4) > upper and c


(5) > upper.

Node 2 is the next E-node as c

(2) = 0 and c


(3) = 5. Nodes 6, 7 and 8 are generated

and upper is updated to 9 when node 6 is generated. So, node 7 is killed as c

(7) = 10

> upper. Node 8 is infeasible and so killed. The only live nodes now are nodes 3 and

6.

Node 6 is the next E-node as c


(6) = 0 < c


(3) . Both its children are infeasible.

Node 3 becomes the next E-node. When node 9 is generated, upper is updated to 8

as u(9) = 8. So, node 10 with c

(10) = 11 is killed on generation.

Node 9 becomes the next E-node. Its only child is infeasible. No live nodes remain.

The search terminates with node 9 representing the minimum-cost answer node.

2 3

The path = 1  3  9 = 5 + 3 = 8

 Traveling Sale Person Problem:

By using dynamic programming algorithm we can solve the problem with time

complexity of O(n22n) for worst case. This can be solved by branch and bound
technique using efficient bounding function. The time complexity of traveling sale

person problem using LC branch and bound is O(n22n) which shows that there is no
change or reduction of complexity than previous method.

We start at a particular node and visit all nodes exactly once and come back to initial

node with minimum cost.

Let G = (V, E) is a connected graph. Let C(i, J) be the cost of edge <i, j>. cij =  if

<i, j> E and let |V| = n, the number of vertices. Every tour starts at vertex 1 and

ends at the same vertex. So, the solution space is given by S = {1, , 1 |  is a

183

permutation of (2, 3, . . . , n)} and |S| = (n – 1)!. The size of S can be reduced by
restricting S so that (1, i1, i2, in-1, 1)  S iff <ij, ij+1>  E, 0 < j < n - 1 and
i0 = in =1.

Procedure for solving traveling sale person problem:

1. Reduce the given cost matrix. A matrix is reduced if every row and column is

reduced. A row (column) is said to be reduced if it contain at least one zero

and all-remaining entries are non-negative. This can be done as follows:

a) Row reduction: Take the minimum element from first row, subtract it

from all elements of first row, next take minimum element from the

second row and subtract it from second row. Similarly apply the same

procedure for all rows.
b) Find the sum of elements, which were subtracted from rows.

c) Apply column reductions for the matrix obtained after row reduction.

Column reduction: Take the minimum element from first column,

subtract it from all elements of first column, next take minimum

element from the second column and subtract it from second column.

Similarly apply the same procedure for all columns.

d) Find the sum of elements, which were subtracted from columns.

e) Obtain the cumulative sum of row wise reduction and column wise

reduction.

Cumulative reduced sum = Row wise reduction sum + column wise

reduction sum.

Associate the cumulative reduced sum to the starting state as lower

bound and  as upper bound.

2. Calculate the reduced cost matrix for every node R. Let A is the reduced cost

matrix for node R. Let S be a child of R such that the tree edge (R, S)

corresponds to including edge <i, j> in the tour. If S is not a leaf node, then

the reduced cost matrix for S may be obtained as follows:

a) Change all entries in row i and column j of A to .

b) Set A (j, 1) to .

c) Reduce all rows and columns in the resulting matrix except for rows

and column containing only . Let r is the total amount subtracted to

reduce the matrix.

c) Find c

 S  c
R  A i, j  r,

where „r‟ is the total amount

subtracted to reduce the matrix, c
R indicates the lower bound of the

ith node in (i, j) path and c
 S  is called the cost function.

3. Repeat step 2 until all nodes are visited.

184



3







Example:

Find the LC branch and bound solution for the traveling sale person problem whose

cost matrix is as follows:

  20


30 10 11




The cost matrix is
15 
 3 5


19 6
16 4

16 4 2 
 2 4 

18 



7 16 







Step 1: Find the reduced cost matrix.

Apply row reduction method:

Deduct 10 (which is the minimum) from all values in the 1st row.

Deduct 2 (which is the minimum) from all values in the 2nd row.

Deduct 2 (which is the minimum) from all values in the 3rd row.

Deduct 3 (which is the minimum) from all values in the 4th row.

Deduct 4 (which is the minimum) from all values in the 5th row.

The resulting row wise reduced cost matrix =

1 

0 


0 






Row wise reduction sum = 10 + 2 + 2 + 3 + 4 = 21

Now apply column reduction for the above matrix:

Deduct 1 (which is the minimum) from all values in the 1st column.

Deduct 3 (which is the minimum) from all values in the 3rd column.

1 

0 


2 









Cumulative reduced sum = row wise reduction + column wise reduction sum.

= 21 + 4 = 25.

This is the cost of a root i.e., node 1, because this is the initially reduced cost matrix.

The lower bound for node is 25 and upper bound is .

0

0

 10 20 0
13


 14 2

 1 3  0


16 3 15 

12 0 3 12

  10 17 0
12


 11 2

The resulting column wise reduced cost matrix (A) =  0 3  0



15 3 12 

 11 0 0 12

Column wise reduction sum = 1 + 0 + 3 + 0 + 0 = 4

185

Starting from node 1, we can next visit 2, 3, 4 and 5 vertices. So, consider to explore

the paths (1, 2), (1, 3), (1, 4) and (1, 5).

The tree organization up to this point is as follows:
U = 

1 L = 25

i = 2

2

i = 3

3

i = 4 i = 5

4 5

Variable „i‟ indicates the next node to visit.

Step 2:

 Consider the path (1, 2):

Change all entries of row 1 and column 2 of A to  and also set A(2, 1) to .

 

 

 0


15

11

  

 11 2

  0

 12 

 0 12

 

0 


2 



 


Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

Then the resultant matrix is

 

 

 0


15

11

  

 11 2

  0

 12 

 0 12

 

0 


2 



 



Row reduction sum = 0 + 0 + 0 + 0 = 0

Column reduction sum = 0 + 0 + 0 + 0 = 0

Cumulative reduction (r) = 0 + 0 = 0

Therefore, as c

 S  c
R  A 1, 2  r

c
 S = 25 + 10 + 0 = 35

 Consider the path (1, 3):

Change all entries of row 1 and column 3 of A to  and also set A(3, 1) to .

0

0

186

      
12  


2 0 


 3


15 3

11 0

 0

 

 12

2 



 


Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

      
 1  


2 0 


Then the resultant matrix is 


4

0

3  0

3  

0  12

2 



 


Row reduction sum = 0

Column reduction sum = 11

Cumulative reduction (r) = 0 + 11 = 11

Therefore, as c

 S  c
R  A 1, 3  r

c
 S = 25 + 17 + 11 = 53

 Consider the path (1, 4):

Change all entries of row 1 and column 4 of A to  and also set A(4, 1) to .


12

 0


 

11

  

 11 

3  

3 12 

0 0 

 

0 


2 



 


Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

Then the resultant matrix is


12

 0


 

11

  

 11 

3  

3 12 

0 0 

 

0 


2 



 


Row reduction sum = 0

Column reduction sum = 0
Cumulative reduction (r) = 0 + 0 = 0

0

0

0

0

187

Therefore, as c
 S  c

R  A 1, 4  r

c
 S 



= 25 + 0 + 0 = 25

 Consider the path (1, 5):

Change all entries of row 1 and column 5 of A to  and also set A(5, 1) to .

 
12 

 0 3


15 3

  0

 

11 2

 0

12 

0 12

 

 


 



 


Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

Then the resultant matrix is

 
10 

 0 3


12 0

 0

 

9 0

 0

9 

0 12

 

 


 



 


Row reduction sum = 5

Column reduction sum = 0

Cumulative reduction (r) = 5 + 0 = 0

Therefore, as c
 S  c

R  A 1, 5  r

c
 S 



= 25 + 1 + 5 = 31

The tree organization up to this point is as follows:
U = 

1 L = 25

i = 2
i = 3

i = 4 i = 5

35 2 53 3 25 4 31 5

i = 2 i = 5
i = 3

6 7 8

The cost of the paths between (1, 2) = 35, (1, 3) = 53, (1, 4) = 25 and (1, 5) = 31.

The cost of the path between (1, 4) is minimum. Hence the matrix obtained for path

(1, 4) is considered as reduced cost matrix.





188


12


A =  0


 

11

  

 11 

3  

3 12 

0 0 

 

0 


2 



 


The new possible paths are (4, 2), (4, 3) and (4, 5).

 Consider the path (4, 2):

Change all entries of row 4 and column 2 of A to  and also set A(2, 1) to .

     
  11  0 
 
 0 


  2 


  

11 

   

0   


Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

     
  11  0 
 

Then the resultant matrix is  0 


  2 


  

11 

   

0   


Row reduction sum = 0

Column reduction sum = 0
Cumulative reduction (r) = 0 + 0 = 0

Therefore, as c
 S  c

R  A 4, 2  r

c
 S 



= 25 + 3 + 0 = 28

 Consider the path (4, 3):

Change all entries of row 4 and column 3 of A to  and also set A(3, 1) to .

   
12   

  3  


    

 11 0  

 

0 


2 



 

0



189



Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

     
 1    0 
 

Then the resultant matrix is   1   0 
 

      

 0 0    


Row reduction sum = 2

Column reduction sum = 11

Cumulative reduction (r) = 2 + 11 = 13

Therefore, as c
 S  c

R  A 4, 3  r

c
 S 



= 25 + 12 + 13 = 50

 Consider the path (4, 5):

Change all entries of row 4 and column 5 of A to  and also set A(5, 1) to .

 
12 

 0 3


  

  0

 

11 

 

 

0 

 

 


 



 


Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

  
 1  0


Then the resultant matrix is  0 3 


   

  

  


  


 

 
0 0   



Row reduction sum = 11

Column reduction sum = 0

Cumulative reduction (r) = 11+0 = 11

Therefore, as c
 S  c

R  A 4, 5  r

c
 S 



= 25 + 0 + 11 = 36



190

The tree organization up to this point is as follows:
U = 

1 L = 25

i = 2
i = 3

i = 4 i = 5

35 2 53 3 25 4 31 5

i = 2 i = 5
i = 3

28

i = 3

6 7 8
36

50

i = 5

9 10

The cost of the paths between (4, 2) = 28, (4, 3) = 50 and (4, 5) = 36. The cost of

the path between (4, 2) is minimum. Hence the matrix obtained for path (4, 2) is

considered as reduced cost matrix.

     
  11  0 
 

A =  0 


  2 


  

11 

   

0   


The new possible paths are (2, 3) and (2, 5).

 Consider the path (2, 3):

Change all entries of row 2 and column 3 of A to  and also set A(3, 1) to .

 
 

 


   

   


  2 


  

11  

  

 




Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

191







Then the resultant matrix is

  
  

  


  

0  

  

  


 0 


 

 


Row reduction sum = 2

Column reduction sum = 11
Cumulative reduction (r) = 2 + 11 = 13

Therefore, as c
 S  c

R  A 2, 3  r

c
 S 



= 28 + 11 + 13 = 52

 Consider the path (2, 5):

Change all entries of row 2 and column 5 of A to  and also set A(5, 1) to .

 
  

 0 


  

  

   

   


   


  

0   


Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

Then the resultant matrix is

Row reduction sum = 0

Column reduction sum = 0

 
  

 0 


  

  

   

   


   


  

0   

Cumulative reduction (r) = 0 + 0 = 0

Therefore, as c
 S  c

R  A 2, 5  r

c
 S 



= 28 + 0 + 0 = 28

The tree organization up to this point is as follows:

192





U = 

1 L = 25

i = 2
i = 3

i = 4 i = 5

35 2 53 3 25 4 31 5

i = 2 i = 5
i = 3

28

i = 3

6 7 8
36

50

i = 5

52 9 10 28

i = 3

11

The cost of the paths between (2, 3) = 52 and (2, 5) = 28. The cost of the path

between (2, 5) is minimum. Hence the matrix obtained for path (2, 5) is considered

as reduced cost matrix.

 
  


A =  0 


  

  

   

   


   


  

0   


The new possible paths is (5, 3).

 Consider the path (5, 3):

Change all entries of row 5 and column 3 of A to  and also set A(3, 1) to .

Apply row and column reduction for the rows and columns whose rows and

columns are not completely .

Then the resultant matrix is

  
   

   


   

   

  

  


  


 

 


Row reduction sum = 0

Column reduction sum = 0
Cumulative reduction (r) = 0 + 0 = 0

Therefore, as c

 S  c
R  A 5, 3  r

c
 S = 28 + 0 + 0 = 28

The overall tree organization is as follows:

193

U = 

1 L = 25

i = 2
i = 3

i = 4 i = 5

35 2 53 3 25 4 31 5

i = 2 i = 5
i = 3

28

i = 3

6 7 8
36

50

i = 5

52 9 10 28

i = 3

11 28

The path of traveling sale person problem is:

1 4 2 5 3 1

The minimum cost of the path is: 10 + 6 +2+ 7 + 3 = 28.

8.9. 0/1 Knapsack Problem

Consider the instance: M = 15, n = 4, (P1, P2, P3, P4) = (10, 10, 12, 18) and

(w1, w2, w3, w4) = (2, 4, 6, 9).

0/1 knapsack problem can be solved by using branch and bound technique. In this

problem we will calculate lower bound and upper bound for each node.

Place first item in knapsack. Remaining weight of knapsack is 15 – 2 = 13. Place
next item w2 in knapsack and the remaining weight of knapsack is 13 – 4 = 9. Place
next item w3 in knapsack then the remaining weight of knapsack is 9 – 6 = 3. No
fractions are allowed in calculation of upper bound so w4 cannot be placed in
knapsack.

Profit = P1 + P2 + P3 = 10 + 10 + 12

So, Upper bound = 32

To calculate lower bound we can place w4 in knapsack since fractions are allowed in
calculation of lower bound.

Lower bound = 10 + 10 + 12 + (
3

X 18) = 32 + 6 = 38
9

Knapsack problem is maximization problem but branch and bound technique is

applicable for only minimization problems. In order to convert maximization problem

into minimization problem we have to take negative sign for upper bound and lower

bound.

Therefore, Upper bound (U) = -32

Lower bound (L) = -38

We choose the path, which has minimum difference of upper bound and lower bound.

If the difference is equal then we choose the path by comparing upper bounds and

we discard node with maximum upper bound.

194

U = -32

1 L = -38

U = -32

L = -38

x1 = 1 x1 = 0

2 3

U = -22

L = -32

Now we will calculate upper bound and lower bound for nodes 2, 3.

For node 2, x1= 1, means we should place first item in the knapsack.

U = 10 + 10 + 12 = 32, make it as -32

3
L = 10 + 10 + 12 +

9

x 18 = 32 + 6 = 38, make it as -38

For node 3, x1 = 0, means we should not place first item in the knapsack.

U = 10 + 12 = 22, make it as -22

5
L = 10 + 12 +

9

x 18 = 10 + 12 + 10 = 32, make it as -32

Next, we will calculate difference of upper bound and lower bound for nodes 2, 3

For node 2, U – L = -32 + 38 = 6

For node 3, U – L = -22 + 32 = 10

Choose node 2, since it has minimum difference value of 6.

U = - 32

1 L = - 38

U = - 32

x1 = 1 x1 = 0

U = -22

L = - 38
2 3

 L = - 32

x2 = 1 x2 = 0

U = -32

L = - 38
4 5

U = - 22

L = -36

Now we will calculate lower bound and upper bound of node 4 and 5. Calculate

difference of lower and upper bound of nodes 4 and 5.

For node 4, U – L = -32 + 38 = 6

For node 5, U – L = -22 + 36 = 14

Choose node 4, since it has minimum difference value of 6.

195

U = -32

1 L = -38

U = -32

L = -38

x1 = 1 x1 = 0

2 3

U = -22

L = -32

x2 = 1 x2 = 0

U = -32

L = -38
4 5

U = -22

L = -36

x3 = 1 x3 = 0

U = -32

L = -38
6 7

U = -38

L = -38

Now we will calculate lower bound and upper bound of node 8 and 9. Calculate

difference of lower and upper bound of nodes 8 and 9.

For node 6, U – L = -32 + 38 = 6

For node 7, U – L = -38 + 38 = 0

Choose node 7, since it is minimum difference value of 0.

U = -32

1 L = -38

U = -32

L = -38

x1 = 1 x1 = 0

2 3

U = -22

L = -32

x2 = 1 x2 = 0

U = -32

L = -38
4 5

U = -22

L = -36

x3 = 1 x3 = 0

U = -32

L = -38
6 7

U = -38

L = -38

x4 = 1 x4 = 0

U = -38

L = -38
8

U = -20
9

L = -20

Now we will calculate lower bound and upper bound of node 4 and 5. Calculate

difference of lower and upper bound of nodes 4 and 5.

For node 8, U – L = -38 + 38 = 0

For node 9, U – L = -20 + 20 = 0

Here the difference is same, so compare upper bounds of nodes 8 and 9. Discard the

node, which has maximum upper bound. Choose node 8, discard node 9 since, it has

maximum upper bound.

Consider the path from 1  2  4  7  8

X1 = 1

X2 = 1

X3 = 0

196

X4 = 1

The solution for 0/1 Knapsack problem is (x1, x2, x3, x4) = (1, 1, 0, 1)

Maximum profit is:

Pi x i = 10 x 1 + 10 x 1 + 12 x 0 + 18 x 1

= 10 + 10 + 18 = 38.

