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COURSE OBJECTIVES (COs): 

The course should enable the students to: 

 

I.  

Assess how the choice of data structures and algorithm design methods impacts the 

performance of programs,. 
 

II.  
Solve problems using data structures such as binary search trees, and graphs and 

writing programs for these solutions. 

III.  
Choose the appropriate data structure and algorithm design method for a specified 

application 

IV.  

Solve problems using algorithm design methods such as the greedy method, divide and 

conquer, dynamic programming, backtracking, and branch and bound and writing 

programs for these solutions 

 

COURSE LEARNING OUTCOMES (CLOs): 

Students, who complete the course, will have demonstrated the ability to do the 

following: 

AITB05.01 Describe Pseudo code for expressing algorithms. 

AITB05.02 Summarize the concept of Space complexity, time complexity. 

AITB05.03 Describe Big O notation, omega notation, theta notation, little o notation and amortized 

complexity. 



 

AITB05.04 Use the concept of Divide and Conquer such as general method, binary search, quick 

sort. 

AITB05.05 Describe the concept of merge sort, Strassen‟s matrix multiplication. 

AITB05.06 Determine disjoint set operations, union and find algorithms. 

AITB05.07 Understand efficient non recursive binary tree traversal algorithms. 

AITB05.08 Describe the concept of spanning trees with suitable examples. 

AITB05.09 Use breadth first search and depth first search graph traversals. 

AITB05.10 Describe connected components, biconnected components. 

AITB05.11 Understand general method of greedy method, job sequencing with deadlines, knapsack 

problem. 

AITB05.12 Analyze the concept of minimum cost spanning trees, single source shortest paths. 

AITB05.13 Describe general method of dynamic programming, matrix chain multiplication. 

AITB05.14 Understand optimal binary search trees, 0/1 knapsack problem, single source 

shortest paths. 

AITB05.15 Define all pairs shortest paths problem, the travelling salesperson problem. 

AITB05.16 Discuss the concept of Backtracking, the 8 queens problem. 

AITB05.17 Understand sum of subsets problem, graph coloring. 

AITB05.18 Summarize the concept of Hamiltonian cycles, Branch and bound. 

AITB05.19  Discuss 0/1 knapsack problem, least cost branch and    bound solution. 

AITB05.20 Apply the concept of first in first out branch and bound solution, travelling salesperson 

problem. 

AITB05.21 Knowledge about basic concepts of NP Hard and NP Complete, Non-deterministic 

algorithms. 

AITB05.22 Apply Working with the classes NP - Hard and NP. 

AITB05.23 Understand NP Hard problems, clique decision problem. 

AITB05.24 Implement chromatic number decision problem. 

AITB05.25 Discuss Cook's theorem in NP Hard and NP Complete problems. 

 

  



 

Module-1 

Introduction 

ALGORITHM: 

Algorithm was first time proposed a purshian mathematician Al-Chwarizmi in 825 AD. 

According to web star dictionary, algorithm is a special method to represent the procedure 

to solve given problem. 

OR 

An Algorithm is any well-defined computational procedure that takes some value or set of 

values as Input and produces a set of values or some value as output. Thus algorithm is a 

sequence of computational steps that transforms the input into the output. 

Formal Definition: 

 An Algorithm is a finite set of instructions that, if followed, accomplishes a 

particular task. In addition, all algorithms should satisfy the following criteria. 

1. Input.  Zero or more quantities are externally supplied. 

2. Output. At least one quantity is produced. 

3. Definiteness.  Each instruction is clear and unambiguous. 

4. Finiteness.  If we trace out the instructions of an algorithm, then for all cases, the 

algorithm terminates after a finite number of steps. 

5. Effectiveness. Every instruction must very basic so that it can be carried out, in 

principle, by a person using only pencil & paper. 

 

Areas of study of Algorithm: 

 How to device or design an algorithm– It includes the study of various design 

techniques and helps in  writing  algorithms using  the existing design techniques 

like divide and conquer. 

 How to validate an algorithm– After the algorithm is written it is necessary to  

check the correctness of the algorithm i.e for each input correct output is 

produced, known as algorithm validation.  The second phase is writing a 

program  known as program proving or program verification. 

 How to analysis an algorithm–It is known as analysis of algorithms or 

performance analysis, refers to the task of calculating time and space complexity 

of the algorithm. 

 How to test a program – It consists of two phases . 1. debugging is detection and 

correction of   errors. 2. Profiling or performance measurement is the actual 

amount of time required by the program to compute the result. 

 

Algorithm Specification: 

Algorithm can be described in three ways. 

       1. Natural language like English: 

2. Graphic representation called flowchart: 



 

This method will work well when the algorithm is small& simple. 

3. Pseudo-code Method: 

     In this method, we should typically describe algorithms as program, which resembles 

language like Pascal &algol. 

 

Pseudo-Code for writing Algorithms: 

1. Comments begin with // and continue until the end of line. 

2. Blocks are indicated with matching braces {and}. 

3. An identifier begins with a letter. The data types of variables are not explicitly 

declared. 

4. Compound data types can be formed with records. Here is an example, 

Node. Record 

{ 

data type – 1   data-1; . 

  data type – n  data – n; 

  node * link; 

  } 

  Here link is a pointer to the record type node. Individual data items of a 

record can be accessed with  and period. 

5. Assignment of values to variables is done using the assignment statement. 

<Variable>:= <expression>; 

6. There are two Boolean values TRUE and FALSE. 

 Logical Operators       AND, OR, NOT 

Relational Operators   <, <=,>,>=, =, != 

7. The following looping statements are employed. 

For, while and repeat-until 

While Loop: 

  While < condition >do{ 

   <statement-1> 

    .    . 

   <statement-n> 

  } 

For Loop: 

 For variable: = value-1 to value-2 step step do 

{ 

 <statement-1> 

  . 

  . 

<statement-n> 

} 



 

 One step is a key word, other Step  is used for increment or decrement. 

 

repeat-until: 

  repeat{ 

   <statement-1> 

    . 

    . 

 <statement-n> 

  }until<condition> 

8. A conditional statement has the following forms. 

(1) If <condition> then <statement> 

(2) If <condition> then <statement-1> 

     Else <statement-2> 

Case statement: 

Case 

{ :<condition-1>:<statement-1>     

    . 

    . 

 :<condition-n>:<statement-n> 

 :else:<statement-n+1> 

} 

9. Input and output are done using the instructions read & write. 

10. There is only one type of procedure: 

Algorithm, the heading takes the form, 

 Algorithm Name (<Parameter list>) 

As an example, the following algorithm fields & returns the maximum of „n‟ given 

numbers: 

Algorithm Max(A,n) 

             // A is an array of size n 

{ 

Result := A[1]; 

for I:= 2 to n do 

   if A[I] > Result then 

         Result :=A[I]; 

  return Result; 

} 

In this algorithm (named Max), A & n are procedure parameters. Result & I are 

Local variables. 

 



 

Performance Analysis. 

 There are many Criteria to judge an algorithm. 

– Is it correct? 

– Is it readable? 

– How it works 

Performance evaluation can be divided into two major phases. 

1. Performance Analysis (machine independent) 

– space complexity: The space complexity of an algorithm is the amount of 

memory it needs to run for completion. 

– time complexity: The time complexity of an algorithm is the amount of 

computer  time it needs to run to completion. 

2 .Performance Measurement (machine dependent). 

Space Complexity: 

The Space Complexity of any algorithm P is given by S(P)=C+SP(I),C is constant. 

1.Fixed Space Requirements (C) 

Independent of the characteristics of the inputs and outputs 

– It includes instruction space 

– space for simple variables, fixed-size structured variable, constants 

2. Variable Space Requirements (SP(I)) 

depend on the instance characteristic I 

– number, size, values of inputs and outputs associated with I 

– recursive stack space, formal parameters, local variables, return address 

Examples: 

*Program 1 :Simple arithmetic function  

Algorithmabc( a,  b,  c) 

{ 

    return a + b + b * c + (a + b - c) / (a + b) + 4.00; 

 } 

SP(I)=0 

HenceS(P)=Constant 

Program 2: Iterative function for sum a list of numbers  

Algorithm sum( list[ ],  n) 

{ 

tempsum = 0; 

  for i = 0 ton do 

tempsum += list [i]; 

  return tempsum; 



 

} 

In the  above example list[] is dependent on n. Hence SP(I)=n. The  remaining  variables 

are i,n, tempsum each requires one location. 

Hence  S(P)=3+n 

*Program 3: Recursive function for sum a list of numbers  

Algorithmrsum( list[ ],  n) 

{ 

If  (n<=0) then  

return 0.0 

else 

 return rsum(list, n-1) + list[n]; 

 

 } 

In the above example  the recursion  stack space includes  space for formal parameters 

local variables and return address. Each call to rsum requires 3 locations i.e for list[],n 

and return address .As the length of recursion is n+1. 

S(P)>=3(n+1) 

Time complexity: 

 T(P)=C+TP(I) 

It is combination of-Compile time (C) 

independent of instance characteristics 

-run (execution) time TP 

dependent of instance characteristics 

Time complexity is calculated in terms of program  step as it is difficult to know the 

complexities of individual operations. 

Definition: Aprogram step is a syntactically or semantically meaningful program 

segment whose execution time is independent of the instance characteristics. 

Program steps are considered for different statements as : for comment  zero steps . 

     assignment statement is considered as one step. Iterative statements such as “for, while 

and until-repeat” statements, we consider the step counts  based on the expression . 

 

Methods to compute the step count: 

1) Introduce variable count into programs 

2) Tabular method 

– Determine the total number of steps contributed by each statement 

step per execution  frequency 

– add up the contribution of all statements 

 



 

Program 1.with count statements  

 

Algorithm sum( list[ ], n) 

{ 

tempsum := 0; count++; /* for assignment */ 

    for  i := 1  to n do { 

count++;             /*for the for loop */ 

tempsum := tempsum + list[i]; count++;  /* for assignment */ 

    } 

count++;         /* last execution of for */ 

    return tempsum;  

count++;         /* for return */ 

Hence  T(n)=2n+3 

Program :Recursive sum 

Algorithmrsum( list[ ],  n) 

{ 

 count++;       /*for if conditional */ 

 if (n<=0) { 

  count++;  /* for return */ 

 return 0.0 } 

else  

returnrsum(list, n-1) + list[n]; 

  

 count++;/*for return and rsum invocation*/ 

  

} 

T(n)=2n+2 

Program for matrix addition 

Algorithm add( a[ ][MAX_SIZE],  b[ ][MAX_SIZE], 

                            c[ ][MAX_SIZE],  rows, cols ) 

{ 

   for i := 1 to rows do { 

count++; /* for i for loop */ 

        for  j :=  1 to cols do { 

count++; /* for j for loop */ 

           c[i][j] := a[i][j] + b[i][j]; 

count++; /* for assignment statement */ 

        } 

count++;    /* last time of j for loop */ 

  } 



 

count++;         /* last time of i for loop */ 

}     

T(n)=2rows*cols+2*rows+1 

II Tabular method.  

Complexity is determined by using a table which includes steps per execution(s/e) i.e 

amount by which count changes as a result of execution of the statement.  

Frequency – number of times a statement is executed. 

Statement s/e Frequency Total steps 

Algorithm sum( list[ ],  n) 

{ 

tempsum := 0; 

  for i := 0 ton do 

tempsum :=  tempsum + list [i]; 

  return tempsum; 

} 

 

0 

0 

1 

1 

1 

1 

0 

- 

- 

1 

n+1 

n 

1 

0 

0 

0 

1 

n+1 

n 

1 

0 

Total   2n+3 

 

 

Statement s/e Frequency 

n=0  n>0 

Total steps 

n=0  n>0 

Algorithmrsum( list[ ],  n) 

{ 

If  (n<=0) then  

return 0.0; 

else 

 return rsum(list, n-1) + list[n]; 

 

 } 

 

0 

0 

1 

1 

0 

1+x 

0 

- 

- 

1 

1 

0 

0 

0 

 

- 

- 

1 

0 

0 

1 

0 

 

0 

0 

1 

1 

0 

0 

0 

 

 

0 

0 

1 

0 

0 

1+x 

0 

Total   2           2+x 

 

Statement s/e Frequency Total steps 

Algorithm add(a,b,c,m,n) 

{ 

    for  i:=1 to m do 

        for  j:=1 to n do  

             c[i,j]:=a[i,j]+b[i,j]; 

} 

0 

0 

1 

1 

1 

0 

- 

- 

m+1 

m(n+1) 

mn 

- 

0 

0 

m+1 

mn+m 

mn 

0 

Total   2mn+2m+1 

 



 

 Complexity ofAlgorithms 

 

The complexity of an algorithm M is the function f(n) which gives the running time 

and/or storage space requirement of the algorithm in terms of the size „n‟ of the  input 

data. Mostly, the storage space required by an algorithm is simply a multiple of the data 

size „n‟. Complexity shall refer to the running time of thealgorithm. 

The function f(n), gives the running time of an algorithm, depends not only on the size „n‟ 

of the input data but also on the particular data. The complexity function f(n) for certain 

casesare: 

 

1. Best Case :  The minimum possible value of f(n) is called the bestcase. 

 

2. Average Case :  The average  value off(n). 

 

3. Worst Case :  The maximum value of f(n) for any key possibleinput. 

 

The field of computer science, which studies efficiency of algorithms, is known as 

analysis ofalgorithms. 

Algorithms can be evaluated by a variety of criteria. Most often we shall be interested in 

the rate of growth of the time or space required to solve larger and larger  instances of a 

problem. We will associate with the problem an integer, called the size of the problem, 

which is a measure of the quantity of inputdata.Rate ofGrowth: 

 

The following notations are commonly use notations in performance analysis and used to 

characterize the complexity of analgorithm: 

 

Asymptotic notation 

Big oh notation:O  

The function f(n)=O(g(n)) (read as “f of n is big oh of g of n”) iff there exist positive 

constants c and n0 such that f(n)≤C*g(n) for all n, n≥0 

 

The value g(n)is the upper bound value of f(n). 

Example: 

3n+2=O(n) as 

3n+2 ≤4n for all n≥2 

 



 

 

 

Omega notation:Ω 

The function f(n)=Ω (g(n)) (read as “f of n is Omega of g of n”) iff there exist positive 

constants c and n0 such that f(n)≥C*g(n) for all n, n≥0 

The value g(n) is the lower bound value of f(n). 

Example: 

3n+2=Ω (n) as 

3n+2 ≥3n for all n≥1 

 

 

Theta notation:θ 

The function f(n)= θ (g(n)) (read as “f of n is theta of g of n”) iff there exist positive 

constants c1, c2 and n0 such that C1*g(n) ≤f(n)≤C2*g(n) for all n, n≥0 

Example: 

3n+2=θ (n) as 

3n+2 ≥3n for all n≥2 

3n+2 ≤3n for all n≥2 

Here c1=3 and c2=4 and n0=2 



 

 

Little oh: o 

The function f(n)=o(g(n)) (read as “f of n is little oh of g of n”) iff  

Lim f(n)/g(n)=0    for all n, n≥0 

n~ 

Example: 

3n+2=o(n
2
) as 

 

Lim ((3n+2)/n
2
)=0     

n~ 

 

Little Omega:ω 

The function f(n)=ω (g(n)) (read as “f of n is little ohomega of g of n”) iff  

 

Lim g(n)/f(n)=0 for all n, n≥0 

n~ 

Example: 

3n+2=o(n
2
) as 

 

Lim (n
2
/(3n+2) =0     

n~ 

 

 

 

AnalyzingAlgorithms 
Suppose „M‟ is an algorithm, and suppose „n‟ is the size of the input data. Clearly the 

complexity f(n) of M increases as n increases. It is usually the rate of increase of f(n) we 

want to examine. This is usually done by comparing f(n) with some standard functions. 

The most common computing timesare: 

O(1), O(log2n), O(n), O(n. log2n), O(n2), O(n3), O(2n), n! andnn 

 

Numerical Comparison of DifferentAlgorithms 
The execution time for six of the typical functions is givenbelow: 

N log2n n*log2n n2 n3 2n 



 

1 0 0 1 1 2 

2 1 2 4 8 4 

4 2 8 16 64 16 

8 3 24 64 512 256 

16 4 64 256 4096 65,536 

32 5 160 1024 32,768 4,294,967,296 

64 6 384 4096 2,62,144 Note1 

128 7 896 16,384 2,097,152 Note2 

256 8 2048 65,536 1,677,216 ???????? 

 

Note1: The value here is approximately the number of machine instructions  executed 

by a 1 gigaflop computer in 5000years. 

Note 2: The value here is about 500 billion times the age of the universe in nanoseconds, 

assuming a universe age of 20 billionyears. 
Graph of log n, n, n log n, n2, n3, 2n, n! andnn 

 

One way to compare the function f(n) with these standard function is to use the functional 

„O‟ notation, suppose f(n) and g(n) are functions defined on the positive integers with the 

property that f(n) is bounded by some multiple g(n) for almost all „n‟.Then,f(n) =O(g(n)) 

Which is read as “f(n) is of order g(n)”. For example, the order of complexityfor: 

 Linear search is O(n) 

 Binary search is O (logn) 

 Bubble sort is O(n2) 

 Merge sort is O (n logn) 

 

Probabilistic analysis of algorithms is an approach to estimate the computational 

complexity of an algorithm or a computational problem. It starts from an assumption about 

a probabilistic distribution of the set of all possible inputs. This assumption is then used to 

design an efficient algorithm or to derive the complexity of a known algorithm.  

http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Algorithm


 

 

 

DIVIDE AND CONQUER 

General method: 

Given a function to compute on „n‟ inputs the divide-and-conquer strategy suggests splitting 

the inputs into „k‟ distinct subsets, 1<k<=n, yielding „k‟ sub problems. 

These sub problems must be solved, and then a method must be found to combine sub 

solutions into a solution of the whole. 

If the sub problems are still relatively large, then the divide-and-conquer strategy can 

possibly be reapplied.Often the sub problems resulting from a divide-and-conquer design 

are of the same type as the original problem.For those cases the re application of the divide-

and-conquer principle is naturally expressed by a recursive algorithm.DAndC(Algorithm) is 

initially invoked as DandC(P), where „p‟ is the problem to be solved.Small(P) is a Boolean-

valued function that determines whether the i/p size is small enough that the answer can be 

computed without splitting.If this so, the function „S‟ is invoked.Otherwise, the problem P 

is divided into smaller sub problems.These sub problems P1, P2 …Pk are solved by 

recursive application of DAndC.Combine is a function that determines the solution to p 

using the solutions to the „k‟ sub problems.If the size of „p‟ is n and the sizes of the „k‟ sub 

problems are n1, n2 ….nk, respectively, then the computing time of DAndC is described by 

the recurrence relation. 

T(n)=  { g(n)                                                          n small 

T(n1)+T(n2)+……………+T(nk)+f(n);   otherwise. 

Where T(n)  is the time for DAndC  on any i/p of size „n‟. 

g(n)  is the time of compute the answer directly for small i/ps. 

f(n) is the time for dividing P & combining the solution to                     

sub problems. 

 

   Algorithm DAndC(P) 

{ 

if small(P) then return S(P); 

else 

{ 

divide P into smaller instances 

                       P1, P2… Pk, k>=1; 

 Apply DAndC to each of these sub problems; 

return combine (DAndC(P1), DAndC(P2),…….,DAndC(Pk)); 

  } 

} 

 

The complexity of many divide-and-conquer algorithms is given by recurrence relation 

of the form  

T(n)  = T(1)                      n=1 



 

          =    aT(n/b)+f(n)       n>1 

 Where a & b are known constants. 

We assume that T(1) is known & „n‟ is a power of b(i.e., n=b
k
) 

One of the methods for solving any such recurrence relation is called the substitution 

method.This method repeatedly makes substitution for each occurrence of the function. 

T is the right-hand side until all such occurrences disappear. 

Example: 

1) Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n. 

We have, 

T(n)  = 2T(n/2)+n 

            = 2[2T(n/2/2)+n/2]+n 

            = [4T(n/4)+n]+n 

            = 4T(n/4)+2n 

            = 4[2T(n/4/2)+n/4]+2n 

            = 4[2T(n/8)+n/4]+2n 

            = 8T(n/8)+n+2n 

            = 8T(n/8)+3n 

                      *  

                      * 

 In general, we see that T(n)=2
i
T(n/2

i
)+in., for any log2 n >=i>=1. 

T(n) =2
log n

 T(n/2
log n

) + n log n 

Corresponding to the choice of i=log2n 

Thus, T(n) = 2
log n

 T(n/2
log n

) + n log n 

                          = n. T(n/n) + n log n 

                          = n. T(1) + n log n                  [since, log 1=0, 2
0
=1] 

                           = 2n + n log n 

 T(n)= nlogn+2n. 

The recurrence using the substitution method,it can be shown as 

T(n)=n
log

b
a
[T(1)+u(n)]

 

h(n) u(n) 

O(n
r)
,r<0

 O(1) 



 

((log n)
i
),i≥0                ((log n)

i+1
/(i+1)) 

Ω(n
r
),r>0 (h(n)) 

 

Applications of Divide and conquer rule or algorithm: 

Binary search, Quick sort, Merge sort, Strassen‟s matrix multiplication. 

 

BINARY SEARCH 

 Given a list of n elements arranged in increasing order. The problem is to determine 

whether a given element is present in the list or not. If x is present then determine the 

position of x, otherwise position is zero. 

Divide and conquer is used to solve the problem. The value Small(p) is true  if n=1. S(P)= i, 

if x=a[i], a[] is an array otherwise S(P)=0.If P has more than one element then it can be 

divided into sub-problems. Choose an index j and compare x with aj. then there 3 

possibilities (i). X=a[j]   (ii) x<a[j] (x is searched in the list a[1]…a[j-1]) 

(iii) x>a[j ] ( x is searched in the list a[j+1]…a[n]). 

And the same procedure is applied repeatedly until the solution is found or solution is zero. 

Algorithm Binsearch(a,n,x) 

// Given an array a[1:n] of elements in non-decreasing 

//order, n>=0,determine whether „x‟ is present and  

// if so, return „j‟ such that x=a[j]; else return 0. 

{ 

low:=1; high:=n; 

while (low<=high) do 

{ 

mid:=[(low+high)/2]; 

if (x<a[mid]) then high; 

else if(x>a[mid]) then  

low:=mid+1; 

else return mid; 

  } 

return 0; 

} 

Algorithm, describes this binary search method, where Binsrch has 4 inputssa[], I , n& x.It 

is initially invoked as Binsrch (a,1,n,x)A non-recursive version of Binsrch is given below. 

This Binsearch has 3 i/psa,n, & x.The while loop continues processing as long as there are 

more elements left to check.At the conclusion of the procedure 0 is returned if x is not 

present, or „j‟ is returned, such that a[j]=x.We observe that low & high are integer Variables 

such that each time through the loop either x is found or low is increased by at least one or 

high is decreased at least one. 

Thus we have 2 sequences of integers approaching each other and eventually low becomes 

> than high & causes termination in a finite no. of steps if „x‟ is not present. 

Example: 

1) Let us select the 14 entries. 

                     -15,-6,0,7,9,23,54,82,101,112,125,131,142,151. 

mid:=[(low+high)/2


 

 Place them in a[1:14], and simulate the steps Binsearch goes through as it searches for 

different values of „x‟. 

 Only the variables, low, high & mid need to be traced as we simulate the algorithm. 

 We try the following values for x: 151, -14 and 9. 

for 2 successful searches & 1 unsuccessful search. 

Table. Shows the traces of Binsearch on these 3 steps. 

X=151                 low       high         mid 

 1          147 

 8             14           11 

 12           14            13 

 14           14            14 

      Found 

     x=-14                    low        high         mid 

 1            14              7 

 1             6               3 

 1             2               1 

 2             2               2 

 2             1           Not found 

  

   x=9                        low         high          mid 

 1             14             7 

 1              6              3 

 4              6              5 

                              Found 

 

Theorem:    Algorithm Binsearch(a,n,x) works correctly. 

Proof:We assume that all statements work as expected and that comparisons such as 

x>a[mid] are appropriately carried out. 

Initially low =1, high= n,n>=0, and a[1]<=a[2]<=……..<=a[n]. 

If n=0, the while loop is not entered and is returned.Otherwise we observe that each 

time thro‟ the loop the possible elements to be checked of or equality with x and 

a[low], a[low+1],……..,a[mid],……a[high]. If x=a[mid], then the algorithm 

terminates successfully.Otherwise, the range is narrowed by either increasing low to 

(mid+1) or decreasing high to (mid-1).Clearly, this narrowing of the range does not 

affect the outcome of the search.If low becomes > than high, then „x‟ is not present 

& hence the loop is exited. 

The complexity of binary search issuccessful searches is 

Worst case is   O(log n) or θ(log n) 

Average case is  O(log n) or θ(log n) 

Best case is  O(1) or θ(1) 

Unsuccessful searches  is:  θ(log n)  for all cases. 

 

  



 

 MergeSort 
Merge sort algorithm is a classic example of divide and conquer. To sort an array, 

recursively, sort its left and right halves separately and then merge them. The time 

complexity of merge sort in the best case, worst case and average case is O(n log n) and 

the number of comparisons used is nearlyoptimal. 

This strategy is so simple, and so efficient but the problem here is that there seems to be 

no easy way to merge two adjacent sorted arrays together in place (The result must be 

build up in a separatearray).The fundamental operation in this algorithm is merging two 

sorted lists. Because the lists are sorted, this can be done in one pass through the input, if 

the output is put in a thirdlist. 

 

Algorithm MERGESORT (low,high) 

// a (low : high) is a global array to besorted. 
{ 

if (low <high) 
{ 

mid := (low +high)/2;//finds where to split theset 

MERGESORT(low, mid); //sortonesubset 

MERGESORT(mid+1, high);  //sort the other subset 
MERGE(low,mid,high);   // combine theresults 

} 
 

} 

Algorithm MERGE (low, mid,high) 

// a (low : high) is a global array containing two sortedsubsets 
// in a (low : mid) and in a (mid + 1 :high). 
// The objective is to merge these sorted sets into singlesorted 
// set residing in a (low : high). An auxiliary array B isused. 
{ 

h :=low; i := low; j:= mid + 1; 

 while ((h <mid) and (J <high))do 

{ 

if (a[h] <a[j])then 

{ 

b[i] :=a[h];    h:=h+1; 
 

} 

else 

{ 

 

 

 

 

 

 

b[i] :=a[j]; j := j +1; 

 

} 
i := i +1; 

} 
if (h > mid)then 

for k := j to highdo 
{ 

 b[i] := a[k]; i := i +1

for k := h to middo 



 

{ 
b[i]  := a[K];  i := i +l; 

} 
for k := low to highdo 

a[k] :=b[k]; 
} 

 

 Example 

 

Tree call of Merge sort: 

A[1:10]={310,285,179,652,351,423,861,254,450,520} 

 

 

 

 

 

 

 
Tree call of Merge sort (1, 10) 

 

 

Analysis of MergeSort 
 

We will assume that „n‟ is a power of 2, so that we always split into even halves, so 
we solve for the case n =2k. 
 

For n = 1, the time to merge sort is constant, which we will be denote by 1. 

Otherwise, the time to merge sort „n‟ numbers is equal to the time to do two recursive 

merge sorts of size n/2, plus the time to merge, which is linear. The equation says 

thisexactly: 

T(1) =1 

T(n) = 2 T(n/2) +n 

 

This is a standard recurrence relation, which can be solved several ways. We will 

solve by substituting recurrence relation continually on the right–handside. 

  

We have, T(n) = 2T(n/2) +n 

Since we can substitute n/2 into this mainequation 

 

1, 10 

6, 10 

6, 8

 

  

7, 7 

9, 10 

6, 6 

6, 7 8, 8 9,9 10, 10 

1, 5 

1, 3 

2, 2 

4, 5 

1, 1 

1, 2 3 , 3 4, 4 5, 5 



 

2T(n/2) 

 

Wehave, 

= 
= 

2 (2 (T(n/4)) +n/2) 
4 T(n/4) +n 

T(n/2) = 2 T(n/4) +n 
T(n) = 4 T(n/4) +2n 

Again, by substituting n/4 into the main equation, we seethat 

 

4T(n/4) = 
= 

4 (2T(n/8)) +n/4 
8 T(n/8) +n 

So wehave,   

T(n/4) = 2 T(n/8) +n 
T(n) = 8 T(n/8) +3n 

Continuing in this manner, weobtain: 

T(n) = 2k T(n/2k) + K.n 

 

As n = 2k, K = log2n, substituting this in the aboveequation 

T(n)   =  2
log n

T(n/2
log n

 ) +log n * n 

=nT(1)+ n log n 

            =n+n log n 

Representing in O-notation    T(n)=O(n log n). 

We have assumed that n = 2k. The analysis can be refined to handle cases when „n‟  is not 

a power of 2. The answer turns out to be almostidentical. 

Although merge sort‟s running time is O(n log n), it is hardly ever used for main memory 

sorts. The main problem is that merging two sorted lists requires linear  extra memory and 

the additional work spent copying to the temporary array and back, throughout the 

algorithm, has the effect of slowing down the sort considerably. The Best and worst case 

time complexity of Merge sort is O(n logn). 

 

 

 Strassen’s MatrixMultiplication: 

 

The matrix multiplication of algorithm due to Strassens is the most dramatic example of 

divide and conquer technique(1969). 

Let A and B be two n×n Matrices. The product matrix C=AB is also a n×n matrix whose i, 

j
th 

element is formed by taking elements in the i
th

 row of A and j
th 

column of B and 

multiplying them to get 

 

The usual wayC(i, j)= 𝐴 𝑖,𝑘 𝐵(𝑘, 𝑗)1≤𝑘≤𝑛  

Here  1≤  i &  j ≤ n  means i and j are in between 1 and n. 

 

To compute C(i, j) using this formula, we need n multiplications. 

 



 

The divide and conquer strategy suggests another way to compute the product of two n×n 

matrices.For Simplicity assume n is a power of 2 that is n=2
k
,  k is  a nonnegative integer. 

If n is not power of two then enough rows and columns of zeros can be added to both A and 

B, so that resulting dimensions are a power of two. 

 To  multiply two n x n matrices A and B, yielding result matrix „C‟ as follows: 

Let A and B be two n×n Matrices. Imagine that A & B are each partitioned into four square 

sub matrices. Each sub matrix having dimensions n/2×n/2. 

The product of AB can be computed by using previous formula. 

If AB is  product of 2×2  matrices then 

 
𝐴11 𝐴12
𝐴21 𝐴22

  
𝐵11 𝐵12
𝐵21 𝐵22

  =  
𝐶11 𝐶12
𝐶21 𝐶22

  

 

Then cijcan be found by the usual matrix multiplicationalgorithm, 

C11 = A11 .B11 + A12 .B21 

C12 = A11 .B12 + A12 .B22 

C21 = A21 .B11 + A22 .B21 

C22 = A21 .B12 + A22 .B22 

This leads to a divide–and–conquer algorithm, which performs nxn matrix multiplication 

by partitioning the matrices into quarters and performing eight (n/2)x(n/2) matrix 

multiplications and four (n/2)x(n/2) matrixadditions. 

T(1) = 1 
T(n) = 8T(n/2) 

Which leads to T (n) = O (n3), where n is the power of2. 
Strassens insight was to find an alternative method for calculating the Cij, requiring seven 
(n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix  additions 
andsubtractions: 

P  =  (A11 + A22) (B11 + B22) 

Q =    (A21 + A22)B11 

R  =   A11  (B12 -B22)  

S  =    A22  (B21  - B11)  

T  =    (A11 + A12)B22 

U  =   (A21 – A11) (B11 + B12) 

 V = (A12 – A22) (B21  + B22)  

C11 =  P + S – T +V 

C12 = R + T 

C21 =  Q +S 

C22 =  P + R - Q +U. 



 

n 

7 

 

 

This method is used recursively to perform the seven (n/2) x (n/2) matrix multiplications, 

then the recurrence equation for the number of scalar multiplications performedis: 

T(1) = 1 
T(n) = 7T(n/2) 

Solving this for the case of n = 2k iseasy: 

T(2k) = 

 

= 

7T(2k–1) 

 

72T(2k-

2) 
 = 

= 

- - - - -- 

- - - - -- 

 
= 7iT(2k–i) 

 

 

  

Put i =k 

       =7
k
T(2

0
) 

 

As k is the power of 2 

That is,  T(n)  =        7log
2 

= nlog
2

 

=O(n
log

27)= O(n
2.81

)  

So, concluding that Strassen‟s algorithm is asymptotically more efficient than the 

standard algorithm. In practice, the overhead of managing the many small matrices does 

not pay off until „n‟ revolves thehundreds. 

 

QuickSort 

 

The main reason for the slowness of Algorithms in which all comparisons and exchanges 
between keys in a sequence w1, w2, . . . ., wn take place between adjacent pairs. In this 
way it takes a relatively long time for a key that is badly out of place to work its way into 
its proper position in the sortedsequence. 

 Hoare his devised a very efficient way of implementing this idea in the early 1960‟s 

that improves the O(n2) behavior of the algorithm with an expected performance that is 

O(n logn).In essence, the quick sort algorithm partitions the original array by rearranging it 

into two groups. The first group contains those elements less than some arbitrary chosen 

value taken from the set, and the second group contains those elements greater than or 

equal to the chosenvalue. 

The chosen value is known as the pivot element. Once the array has been rearranged in 

this way with respect to the pivot, the very same partitioning is recursively applied to 

each of the two subsets. When all the subsets have been partitioned and rearranged, the 

original array issorted. 

The function partition() makes use of two pointers „i‟ and „j‟ which are moved toward 



 

each other in the followingfashion: 

Repeatedly increase the pointer „i‟ until a[i] >=pivot. 

                                  Repeatedly decrease the pointer „j‟ until a[j] <=pivot. 

If j > i, interchange a[j] witha[i] 
Repeat the steps 1, 2 and 3 till the „i‟ pointer crosses the „j‟ pointer. If „i‟ pointer crosses „j‟ 
pointer, the position for pivot is found and place pivot element in „j‟ pointerposition. 
The program uses a recursive function quicksort(). The algorithm of quick sort 

function sorts all elements in an array „a‟ between positions „low‟ and„high‟. 

It terminates when the condition low >= high is satisfied. This condition will be satisfied 

only when the array is completelysorted.Here we choose the first element as the „pivot‟. 

So, pivot = x[low]. Now it calls the partition function to find the proper position j of the 

element x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . . .. 
 . . x[j-1] and x[j+1], x[j+2], . ..x[high].It calls itself recursively to sort the left sub-
array x[low], x[low+1], . . . ... . x[j-1] between positions low and j-1 (where j is 
returned by the partitionfunction).It calls itself recursively to sort the right sub-array 
x[j+1], x[j+2], . . . . ... . . x[high] between positions j+1 andhigh. 

Algorithm 

AlgorithmQUICKSORT(low,high) 
// sorts the elements a(low), . . . . . , a(high) which reside in the global array  A(1 :n) into 
//ascending order a (n + 1) is considered to be defined and must be greater than all 
//elements in a(1 : n); A(n + 1) = α*/ 
{ 

If( low < high) then 
{ 

j := PARTITION(a, low,high+1); 
// J is the position of the partitioningelement 

QUICKSORT(low, j –1); 
QUICKSORT(j + 1 ,high); 

} 

} 

 

Algorithm PARTITION(a, m,p) 

{ 
V :=a(m); i :=m; j:=p;  

// a (m) is thepartitionelement 

do 
{ 

repeat 

 i  := i +1; 

                      until  (a(i)>v);  

repeat 

  j  := j –1; 

until  (a(j)<v);  

if (i < j) then INTERCHANGE(a, i,j) 
}  while (i >j); 

a[m]  :=a[j];a[j]:=V;  

returnj; 
} 

 

 



 

Algorithm INTERCHANGE(a, i,j) 

{ 
               p:= a[i]; 

              a[i]:=a[j]; 

               a[j]:=p; 

} 
  

Example 
Select first element as the pivot element. Move „i‟ pointer from left to right in search of 

an element larger than pivot. Move the „j‟ pointer from right to left in search of an 

element smaller than pivot. If such elements are found, the elements are swapped. This 

process continues till the „i‟ pointer crosses the „j‟ pointer. If „i‟ pointer crosses „j‟ 

pointer, the position for pivot is found and interchange pivot and element at „j‟ 

position. 

Let us consider the following example with 13 elements to analyze quicksort: 
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Analysis of QuickSort: 

 

Like merge sort, quick sort is recursive, and hence its analysis requires solving a 

recurrence formula. We will do the analysis for a quick sort, assuming a random pivot  

We will take   T (0) = T (1) = 1, as in merge sort. 

The running time of quick sort is equal to the running time of the two recursive calls 

plus the linear time spent in the partition (The pivot selection takes only constant time). 

This gives the basic quick sortrelation: 

T (n) = T (i) + T (n – i – 1) + Cn - (1) 

Where, i = |S1| is the number of elements inS1. 

 

 Worst CaseAnalysis 
The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1, 

which is insignificant, the recurrenceis: 

 

T (n) = T (n – 1) + Cn n>1 - (2) 

Using equation – (1) repeatedly,thus 

 

T (n – 1) = T (n – 2) + C (n –1) 



 

 

T (n – 2) = T (n – 3) + C (n –2) 

- - - - - - -- 

T (2) = T (1) + C(2) 

Adding up all these equationsyields 

=O(n2) - (3) 

Best CaseAnalysis 
In the best case, the pivot is in the middle. To simply the math, we assume that the two 

sub-files are each exactly half the size of the original and although this gives a slight over 

estimate, this is acceptable because we are only interested in a Big – oh answer. 

 

T (n)    =  2 T (n/2) +Cn - (4) 

 

Divide both sides byn and Substitute n/2 for „n‟  

 

Finally, 

Which yields, T (n) = C n log n + n = O(n logn) -  

This is exactly the same analysis as merge sort, hence we get the sameanswer. 

Average CaseAnalysis 

The number of comparisons for first call on partition: Assume left_to_right moves over k 

smaller element and thus k comparisons. So when right_to_left crosses left_to_right it has 

made n-k+1 comparisons. So, first call on partition makes n+1 comparisons. The average 

case complexity of quicksort is 

T(n) = comparisons for first call onquicksort 

+ 

{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n  = (n+1) + 2 [T(0) +T(1) + T(2) + 

----- +T(n-1)]/n 

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) +T(n-1)] 

(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)]\ 

Subtracting bothsides: 

nT(n) –(n-1)T(n-1) = [ n(n+1) – (n-1)n] + 2T(n-1) = 2n + 2T(n-1) nT(n) 

= 2n + (n-1)T(n-1) + 2T(n-1)  = 2n +(n+1)T(n-1) 

T(n) = 2 +(n+1)T(n-1)/n 

The recurrence relation obtained is: 

T(n)/(n+1) = 2/(n+1) +T(n-1)/n 

Using the method ofsubstitution: 

T(n)/(n+1) = 2/(n+1) +T(n-1)/n 

T(n-1)/n = 2/n +T(n-2)/(n-1) 

T(n-2)/(n-1) = 2/(n-1) +T(n-3)/(n-2) 

T(n-3)/(n-2) = 2/(n-2) +T(n-4)/(n-3) 

.  . 

.  . 

T(3)/4 = 2/4 +T(2)/3 



 

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 +T(0) 

Adding bothsides: 

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 +T(1)/2] 

= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] + T(0)+ [2/(n+1) 

+ 2/n + 2/(n-1) + ---------- +2/4 +2/3] 

Cancelling the commonterms: 

T(n)/(n+1) = 2[1/2 +1/3+1/4+--------------+1/n+1/(n+1)] 

Finally, 

We will get,  

O(n log n)  



 

MODULE-II 

DEARCHING AND TRAVERSAL TECHNIQUES 

 Disjoint Set Operations 

 

Set: 

A set is a collection of distinct elements. The Set can be represented,for 
examples, asS1={1,2,5,10}. 

 

Disjoint Sets: 
The disjoints sets are those do not have any common element. 

For example S1={1,7,8,9} and S2={2,5,10}, then we can say that S1 and S2are  

two disjoint sets. 

 

Disjoint Set Operations: 
The disjoint set operations are 

1. Union 
2. Find 

 

Disjoint setUnion: 
If Si and Sj are two disjoint sets, then their union Si U Sj consists of all the 

elements x such that x is in Si or Sj. 

 

 

 

 

Find: 

Example: 

S1={1,7,8,9} S2={2,5,10} 
S1 US2={1,2,5,7,8,9,10} 

 

Given the element I, find the set containing I. 



 

 

Example: 
S1={1,7,8,9} 
Then, 

 

S2={2,5,10} 

 

s3={3,4,6} 

Find(4)=S3 Find(5)=S2 Find97)=S1 

 

Set Representation: 
The set will be represented as the tree structure where all children will store the 

address of parent / root node. The root node will store null at the place of parent address. 

In the given set of elements any element can be selected as the root node, generally we 

select the first node as the root node. 

 

Example: 
S1={1,7,8,9} S2={2,5,10} s3={3,4,6} 
Then these sets can be represented as 

 

Disjoint Union: 
To perform disjoint set union between two sets Si and Sj can take any one root 

and make it sub-tree of the other. Consider the above example sets S1 and S2 then the 

union of S1 and S2 can be represented as any one of the following. 

 

 

 

 



 

Find: 

To perform find operation, along with the tree structure we need to  maintain 

the name of each set. So, we require one more data structure to store the set names. 

The data structure contains two fields. One is the set name and the other one is the 

pointer to root. 

 

 Union and Find Algorithms: 

In presenting Union and Find algorithms, we ignore the set names  and identify 

sets just by the roots of trees representing them. To represent the sets, we use an array 

of 1 to n elements where n is the maximum value among the elements of all sets. The 

index values represent the nodes (elements of set) and the entries represent the parent 

node. For the root value the entry will be„-1‟. 

 

Example: 

For the following sets the array representation is as shownbelow. 

 

I [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] 
P -1 -1 -1 3 2 3 1 1 1 2 

 

Algorithm for Union operation: 
To perform union the SimpleUnion(i,j) function takes the inputs as the set 

roots i and j . And make the parent of i as j i.e, make the second root as the parent of 

first root. 

 

Algorithm SimpleUnion(i,j) 
{ 

P[i]:=j; 
} 
 



 

Algorithm for find operation: 

The SimpleFind(i) algorithm takes the element i and finds the root node of i.It 

starts at i until it reaches a node with parent value-1. 
Algorithm SimpleFind(i) 
{ 

while( P[i]≥0)  

i:=P[i];  

returni; 
} 

 

 Analysis of SimpleUnion(i,j) and SimpleFind(i): 

Although the SimpleUnion(i,j) and SimpleFind(i) algorithms are easy to state, 

their performance characteristics are not very good. For example, consider the sets 

 

 

. . . . .. 

 

 

Then  if  we  want  to  perform  following  sequence     of operations Union(1,2) 

,Union(2,3)……. Union(n-1,n) and sequence of Find(1), Find(2)………Find(n). 

 

The sequence of Union operations results the degenerate tree as below. 

 

Since, the time taken for a Union is constant, the n-1 sequence of union can be processed 

in time O(n).And for the sequence of Find operations it will take  

We can improve the performance of union and find by avoiding the creation of 

degenerate tree by applying weighting rule for Union. 
 

n 

n-1 

n-2 

1 

1 4 2 3 n 



 

 Weighting rule forUnion: 
If the number of nodes in the tree with root I is less than the number in the tree 

with the root j, then make „j‟ the parent of i; otherwise make „i' the parent of j. 

 

 

To implement weighting rule we need to know how many nodes are there in every tree. 

To do this we maintain “count” field in the root of every tree. If „i' is the root then 

count[i] equals to number of nodes in tree with rooti. 

Since all nodes other than roots have positive numbers in parent (P) field, we can maintain 

count in P field of the root as negative number. 

 

Algorithm WeightedUnion(i,j) 
//Union sets with roots i and j, i≠j using the weighted rule 

// P[i]=-count[i] andp[j]=-count[j] 

{ 

temp:=P[i]+P[j]; 
if (P[i]>P[j])then 
{ 

// i has fewer nodes 

P[i]:=j; 
P[j]:=temp; 

} 
else 
{ 
// j has fewer nodes 

P[j]:=i; 

P[i]:=temp; 
} 

} 

 

 Collapsing rule for find: 
If j is a node on the path from i to its root and p[i]≠root[i], then set P[j] to root[i]. 

Consider the tree created by WeightedUnion() on the sequence of1≤i≤8. 
Union(1,2), Union(3,4), Union(5,6) and Union(7,8) 



 

 

 

 

Now process the following eight find operations 

Find(8),Find(8)………………………Find(8) 

If SimpleFind() is used each Find(8) requires going up three parent link fields for 

a total of 24 moves. 

When Collapsing find is used the first Find(8) requires going up three links and 

resetting three links. Each of remaining seven finds require going up only one 

link field. Then the total cost is now only 13 moves.( 3 going up + 3 resets + 7 

remaining finds). 

Algorithm CoIlapsingFind(i) 

// Find the root of the tree containing element i. Use the  



 

 // collapsing rule to collapse all nodes from i to the root . 

{ r := i; 

while (p[r] >0) do 

 r := p[r];  / Find the root, 

 while (i< r)  do / /  Col lapse nodes from i  to  root r ,  

             r:=p[i];  

 return r; 

} 

 

SEARCHING 

Search means finding a path or traversal between a start node and one of a set of goal nodes. 

Search is a study of states and their transitions. 

        Search involves visiting nodes in a graph in a systematic manner, and may or may  

not result into a visit to all nodes. When the search necessarily involved the examination 

of every vertex in the tree, it is called the traversal. 

Techniques for Traversal of a Binary Tree: 

      A binary tree is a finite (possibly empty) collection of elements. When the binary tree 

is not empty, it has a root element and remaining elements (if any) are partitioned into two 

binary trees, which are called the left and right subtrees. 

          There are three common ways to traverse a binary tree: Preorder, Inorder, postorder 

In all the three traversal methods, the left sub tree of a node is traversed before the right 

sub tree. The difference among the three orders comes from the difference in the time at 

which a node is visited. 

  

 Inorder Traversal: 
      In the case of inorder traversal, the root of each subtree is visited after its left subtree 

has been traversed but before the traversal of its right subtree begins. The steps for 

traversing a binary tree in inorder traversal are: 

1. Visit the left subtree, using inorder. 
2. Visit the root. 
3. Visit the right subtree, using inorder. 

 

The algorithm for preorder traversal is as follows: 
   treenode =record 

{ 

Type data;        //Type is the data type of data. 

 Treenode *lchild, *rchild; 

} 

Algorithm inorder(t) 
// t is a binary tree. Each node of t has three fields: lchild, data, and rchild. 
{ 

If( t ≠0)then 

{ 

inorder (t→ lchild); 

visit(t); 
inorder (t →rchild); 



 

} 

} 

 Preorder Traversal: 
In a preorder traversal, each node is visited before its left and right subtrees are traversed. 

Preorder search is also called backtracking. The steps for traversing a binary tree in 

preorder traversal are: 
1. Visit the root. 
2. Visit the left subtree, using preorder. 
3. Visit the right subtree, using preorder. 

 

The algorithm for preorder traversal is as follows: 

Algorithm Preorder (t) 

// t is a binary tree. Each node of t has three fields; lchild, data, and rchild. 

{ 

If( t ≠0)then 

{ 

visit(t); 

Preorder (t→lchild); 

Preorder 

(t→rchild); 

} 

} 

 Postorder Traversal: 
      In a Postorder traversal, each root is visited after its left and right subtrees have been 

traversed. The steps for traversing a binary tree in postorder traversal are: 
1. Visit the left subtree, using postorder. 
2. Visit the right subtree, using postorder 
3. Visit the root 

The algorithm for preorder traversal is as follows: 

Algorithm Postorder (t) 

// t is a binary tree. Each node of t has three fields : lchild, data, and rchild. 

{ 

If( t ≠0)then 

{ 

Postorder(t→ child); 

Postorder(t→rchild); 

visit(t); 

}    } 

Examples for binary tree traversal/search technique: 



 

Example1: 

Traverse the following binary tree in pre, post and in-order. 

 

 

Binary  Tree Pre,Post and In-order Traversing 

 

 Non Recursive Binary Tree Traversal Algorithms: 
          At first glance, it appears we would always want to use the flat traversal functions 

since the use less stack space. But the flat versions are not necessarily better. For 

instance, some overhead is associated with the use of an explicit stack, which may negate 

the savings we gain from storing only node pointers. Use of the implicit function call 

stack may actually be faster due to special machine instructions that can be used. 
 

Inorder Traversal: 

Initially push zero onto stack and then set root as vertex. Then repeat the following steps 

until the stack is empty: 

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the 

stack and stop when there is no left son of vertex. 

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with 

right son exists, then set right son of vertex as current vertex and return to step 

one. 
 

The algorithm for inorder Non Recursive traversal is asfollows: 

Algorithm inorder() 

{ 

stack[1] = 0 

vertex =root 

top: while(vertex ≠0) 

{ 

A 

B C 

D E F 

G H I 

 

Preordof the vertices: A, B, 

D, C, E, G, F, H, I. 

 

Post order of the vertices: D, 

B, G, E, H, I, F, C, A. 

 

Inorder of the vertices: D, 

B, A, E, G, C, H, F, I 



 

push the vertex into the 

stack vertex 

=leftson(vertex) 

} 

pop the element from the stack and make it as vertex 

while(vertex ≠0) 

{ 

print the vertex node 

if(rightson(vertex) 

≠0) 

{ 

vertex = 

rightson(vertex) goto 

top 

} 

pop the element from the stack and made it as vertex 

} 

} 

Preorder Traversal: 
   Initially push zero onto stack and then set root as vertex. Then repeat the following steps 

until the stack is empty: 

 

1. Proceed down the left most path by pushing the right son of vertex onto stack, if 

any and process each vertex. The traversing ends after a vertex with no left child 

exists. 

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit. 

 

The algorithm for preorder Non Recursive traversal is as follows: 

    Algorithm preorder() 

{ 

stack[1]: = 0 

vertex := root. 

while(vertex ≠0) 

{ 

print vertex node 

if(rightson(vertex) 

≠0) 



 

push the right son of vertex into the 

stack. if(leftson(vertex) ≠0) 

vertex :=leftson(vertex) 

else 

 

} 
} 

 

pop the element from the stack and made it as vertex



 

Postorder Traversal: 

 

Initially push zero onto stack and then set root as vertex. Then repeat the following steps 

until the stack is empty: 

 

1. Proceed down the left most path rooted at vertex. At each vertex of path push 

vertex on to stack and if vertex has a right son push –(right son of vertex) onto 

stack. 

 

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a 

negative node is popped, then ignore the sign and return to step one. 

 

The algorithm for postorder Non Recursive traversal is as follows: 
    Algorithm  postorder() 

{ 

stack[1] := 0 

vertex:=root 

top: while(vertex ≠0) 

{ 

push vertex onto stack 

if(rightson(vertex) ≠0) 

push -(vertex) onto stack 

vertex :=leftson(vertex) 

} 

pop from stack and make it as 

vertex while(vertex >0) 

{ 

print the vertex node 

pop from stack and make it as vertex 

} 

if(vertex <0) 
{ 

vertex :=-(vertex) 

goto top 
} 

} 

 

 

 



 

Example1: 
Traverse the following binary tree in pre, post and inorder using non-recursive 

traversing algorithm. 

 

Inorder Traversal: 

Initially push zero onto stack and then set root as vertex. Then repeat the following steps 

until the stack is empty: 

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack 

and stop when there is no left son of vertex. 

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with right 

son exists, then set right son of vertex as current vertex and return to step one. 
 

Current 

vertex Stack Processed nodes Remarks 

A 0  PUSH0 

 0 A B D GK  PUSH the left most path ofA 

K 0 A B DG K POPK 

G 0 A BD KG POP G since K has no right son 

D 0 AB K GD POP D since G has no right son 

H 0 AB K GD Make the right son of D 

as vertex 

H 0 A B HL K GD PUSH the leftmost path of H 

L 0 A BH K G DL POPL 

H 0 AB K G D LH POP H since L has no right son 

M 0 AB K G D LH Make the right son of H 

as vertex 

 0 A BM K G D LH PUSH the left most path of M 

M 0 AB K G D L HM POPM 

B 0A K G D L H MB POP B since M has no right son 

A 0 K G D L H M BA Make the right son of A 

as vertex 

C 0 CE K G D L H M BA PUSH the left most path of C 

E 0C K G D L H M B AE POPE 

C 0 K G D L H M B A EC Stop since stack is empty 

 

A 

B C 

D E 

G H 

K L M 

 

• Preorder  traversal yields: A, 
B, D, G , K, H, L, M , C , E 

 

• Postorder  t raversal yields: 
K, G , L, M , H, D, B, E, C , A 

 

• Inorder  traversal yields: 

K, G , D, L, H, M , B, A, E,  C 



 

Postorder Traversal: 
Initially push zero onto stack and then set root as vertex. Then repeat the following steps 

until the stack is empty: 

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex 

on to stack and if vertex has a right son push -(right son of vertex)  onto stack. 

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a 

negative node is popped, then ignore the sign and return to step one. 

 

Curren

t 

vertex 

Stack Processed nodes Remark

s 
A 0  PUSH0 

 0 A -C B D -H GK  PUSH the left most path of A 

with a -ve for right sons 

 0 A -C B D-H KG POP all +ve nodes K and G 

H 0 A -C BD KG Pop H 

 
0 A -C B D H -ML KG PUSH the left most path of H 

with a -ve for right sons 

 0 A -C B D H-M K GL POP all +ve nodes L 

M 0 A -C B DH K GL PopM 

 
0 A -C B D HM K GL 

PUSH the left most path of M 

with a -ve for rightsons 

 0 A-C K G L M H DB POP all +ve nodes M, H, D 

andB C 0A K G L M H DB PopC 

 
0 A CE K G L M H DB 

PUSH the left most path of C 

with a -ve for rightsons 

 0 K G L M H D B E 

CA 

POP all +ve nodes E, C andA 

 0  Stop since stack isempty 

 

Preorder Traversal: 
     Initially push zero onto stack and then set root as vertex. Then repeat the following steps 

until the stack is empty: 

1. Proceed down the left most path by pushing the right son of vertex onto stack, if any 

and process each vertex. The traversing ends after a vertex with no left child exists. 

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit. 

 

Current 

vertex Stack Processednodes Remarks 

A 0  PUSH0 

  

0 CH 

 

A B D GK 

PUSH the right son of each vertex 

onto stack and process each vertex in 

the left most path 

H 0C A B D GK POPH 



 

  

0 CM 

 

A B D G K HL 

PUSH the right son of each vertex 

onto stack and process each vertex in 

the left most path 

M 0C A B D G K HL POPM 

  

0C 

 

A B D G K H LM 

PUSH the right son of each vertex 

onto stack and process each vertex in 

the left most path; M has no leftpath 

C 0 A B D G K H LM PopC 

  

0 

 

A B D G K H L M CE 

PUSH the right son of each vertex 

onto stack and process each vertex in 

the left most path; C has no right son 

on the left most path  0 A B D G K H L M CE Stop since stack is empty 

 

 Subgraphs and SpanningTrees: 

Subgraphs: A graph G‟ = (V‟, E‟) is a subgraph of graph G = (V, E) iff V‟ V and E‟ 

E. 

The undirected graph G is connected, if for every pair of vertices u, v there exists a path 

from u to v. If a graph is not connected, the vertices of the graph can be divided into 

connected components. Two vertices are in the same connected component iff they are 

connected by a path. 

 

Tree is a connected acyclic graph. A spanning tree of a graph G = (V, E) is a tree  that 

contains all vertices of V and is a subgraph of G. A single graph can have multiple spanning 

trees. 

 

Lemma 1:  Let T be a spanning tree of a graph G. Then 

1. Any two vertices in T are connected by a unique simple path. 

2. If any edge is removed from T, then T becomes disconnected. 

3. If we add any edge into T, then the new graph will contain a cycle. 

4. Number of edges in T isn-1. 

 

 Minimum Spanning Trees(MST): 

 

A spanning tree for a connected graph is a tree whose vertex set is the same as the vertex set 

of the given graph, and whose edge set is a subset of the edge set of the given graph. i.e., 

any connected graph will have a spanning tree. 

 

Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum 

spanning tree (MST) is a spanning tree with the smallest possible weight. 
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A weighted graphG: TheminimalspanningtreefromweightedgraphG: 

Examples: 

To explain the Minimum Spanning Tree, let's consider a few real-world examples: 

1. One practical application of a MST would be in the design of a network. For instance, 

a group of individuals, who are separated by varying distances, wish  to be 

connected together in a telephone network. Although MST cannot do anything about 

the distance from one connection to another, it can be used to determine the least 

cost paths with no cycles in this network, thereby connecting everyone at a 

minimum cost. 

2. Another useful application of MST would be finding airline routes. The vertices of 

the graph would represent cities, and the edges would represent routes between the 

cities. Obviously, the further one has to travel, the more it will cost, so MST can be 

applied to optimize airline routes by finding the least costly paths with no cycles. 

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the 

Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology, but 

both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim‟s algorithm 

uses vertex connections in determining the MST. 
 

 Kruskal’s Algorithm 
 

This is a greedy algorithm. A greedy algorithm chooses some local optimum(i.e. picking an 

edge with the least weight in a MST). 

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the 

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges have been 

added. Sometimes two or more edges may have the same cost. The order in which the edges 

are chosen, in this case, does not matter. Different MSTs may result, but they will all have 

the same total cost, which will always be the minimum cost. 



 

 Algorithm: 
The algorithm for finding the MST, using the Kruskal‟s method is as follows: 
Algorithm Kruskal (E, cost, n,t) 
// E is the set of edges in G. G has n vertices. cost [u, v] is the 
// cost of edge (u, v). „t‟ is the set of edges in the minimum-cost spanning tree. 
// The final cost is returned. 
{ 

Construct a heap out of the edge costs using heapify; for  

i := 1 to n do parent [i] :=-1; 
// Each vertex is in a different set. 

i := 0; mincost :=0.0; 
while ((i < n -1) and (heap not empty))do 
{ 

Delete a minimum cost edge (u, v) from the heap and re-

heapify using Adjust; 

j := Find (u); k := Find(v); if  

(j k)then 

{ 
i := i +1; 
t [i, 1] := u; t [i, 2] := v; mincost 

:=mincost + cost [u,v]; Union 

(j,k); 
} 

} 
if (i n-1) then write ("no spanning tree"); else 

return mincost; 
} 

 

Running time: 
 

 The number of finds is at most 2e, and the number of unions at most n-1. Including 

the initialization time for the trees, this part of the algorithm has a complexity that is 

just slightly more than O (n +e). 

 We can add at most n-1 edges to tree T. So, the total time for operations on T is 

O(n). 

Summing up the various components of the computing times, we get O (n + e log e) as 

asymptotic complexity 
 

 Example1: 
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Arrange all the edges in the increasing order of their costs: 

 

Cost 10 15 20 25 30 35 40 45 50 55 
Edge (1,2) (3,6) (4,6) (2,6) (1,4) (3,5) (2,5) (1,5) (2,3) (5,6) 

 

The edge set T together with the vertices of G define a graph that has up to n  connected 

components. Let us represent each component by a set of vertices in it. These vertex sets are 

disjoint. To determine whether the edge (u, v) creates a cycle, we need to check whether u 

and v are in the same vertex set. If so, then a cycle is created. If not then no cycle is created. 

Hence two Finds on the vertex sets suffice. When an edge is included in T, two components 

are combined into one and a union is to be performed on the two sets. 
 

Edge Cost Spanning Forest Edge Sets Remarks 

   

1 

  

2 

  

3 

  

4 

  

5 

  

6 

 
{1}, {2}, {3}, 
{4}, {5},{6} 

 

 

(1, 

 

2) 

 

10 

 

1 

  

2 

  

3 

  

4 

  

5 

  

6 
 

{1,  2},  {3},{4}, 

 

The vertices 1and 
              {5},{6} 2  are  in different 

               sets,  so  the edge 

               Is combined 

 

(3, 

 

6) 

 

15 

1  2   3  4   5  

{1, 2}, {3, 6}, 

 

The vertices 3and 
       6       {4},{5} 6  are  in different 

               sets,  so  the edge 

               Is combined 

 

(4, 

 

6) 

 

20 

1  2   3   5    

{1, 2}, {3, 4, 6}, 

 

The vertices 4and 
     4                 6       {5} 6  are  in different 

               sets,  so  the edge 
is combined 

 

(2, 

 

6) 

 

25 

 1  2     5    

{1,  2,  3,  4,  6}, 

 

The vertices 2and 
     4    3     {5} 6  are  in different 

      6         sets,  so  the edge 
is combined 

 

(1, 

 

4) 

 

30 

 

Reject 

 The vertices 1and 
4 are in the same 

set, so the edge is 

rejected 
 

(3, 

 

5) 

 

35 

  

1 

  

2 

         

The vertices 3and 
               5 are in  the same 

     4    
5 

  
3 

 {1, 2, 3, 4, 5,6} set, so the edge is 
combined 

      6          

 MINIMUM-COST SPANNING TREES:  PRIM'SALGORITHM 



 

 

A given graph can have many spanning trees. From these many spanning trees, we have to 

select a cheapest one. This tree is called as minimal cost spanning tree. 

 

Minimal cost spanning tree is a connected undirected graph G in which each edge is labeled 

with a number (edge labels may signify lengths, weights other than costs). Minimal cost 

spanning tree is a spanning tree for which the sum of the edge labels is as small as possible 

 

The slight modification of the spanning tree algorithm yields a very simple algorithm for 

finding an MST. In the spanning tree algorithm, any vertex not in the tree but connected to it 

by an edge can be added. To find a Minimal cost spanning tree, we  must be selective - we 

must always add a new vertex for which the cost of the new edge is as small as possible. 

 

This simple modified algorithm of spanning tree is called prim's algorithm for finding an 

Minimal cost spanning tree. 

 

Prim's algorithm is an example of a greedy algorithm. 

 

 Algorit

hm 

Algorit

hm 

Prim 

(E, 

cost, 

n,t) 
// E is the set of edges in G. cost [1:n, 1:n] is the cost 
// adjacency matrix of an n vertex graph such that cost [i, j]is 
// either a positive real number or if no edge (i, j)exists. 
// A minimum spanning tree is computed and stored as a set of 
// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in 
// the minimum-cost spanning tree. The final cost is returned. 
{ 

Let (k, l) be an edge of minimum cost in E; 

mincost := cost [k,l]; 
t [1, 1] := k; t [1, 2] :=l; 
for   i :=1 to n do //Initialize near if  

(cost [i, l] < cost [i, k]) then near [i] :=l; 

else near [i] := k; 

near [k] :=near [l] :=0; 



 

B  3 

0 6 




4 

B 3 

0 2 

for  i:=2 to n - 1do // Find n - 2 additional edges fort. 
{ 

Let j be an index such that near [j] 0and 
cost [j, near [j]] is minimum; 

t [i, 1] := j; t [i, 2] := near [j]; mincost := 

mincost + cost [j, near [j]]; near [j] :=0 
for   k:= 1 to n do // Update near[]. 

if ((near [k] 0) and (cost [k, near [k]] > cost [k, j])) then near 

[k] :=j; 
} 
return mincost; 

} 

 

Running time: 
We do the same set of operations with dist as in Dijkstra's algorithm (initialize structure, m 

times decrease value, n - 1 times select minimum). Therefore, we get O (n2) time when we 
implement dist with array, O (n + E log n) when we implement it with a heap. 
For each vertex u in the graph we dequeue it and check all its neighbors in O (1 + deg (u)) 

time. 

EXAMPLE1: 
 

Use Prim‟s Algorithm to find a minimal spanning tree for the graph shown below starting 

with the vertex A. 

 

The stepwise progress of the prim‟s algorithm is as follows: 

 

 

Step1: 
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Step2: 

 

D 

B 
 4  

D 

3 2 1 2 
4 

4 E 1 

A C 2 G 
6 

2 F 1 

Vertex A B C D E F 

Status 0 1 1 1 1 1 
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Vertex A B C D E F G 

Status 0 0 1 1 1 1 1 
Dist. 0 3 2 4   

Next * A B B A A A 
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Step3: 

 

D 

 

 

A G 

C 2 

Step4: 

D 

 

E 
A G 

F 

 

 

Step5: 

 

 

 

 

A G 

 

 

 

Step6: 

 

 

 

Vertex A B C D E F 

Status 0 0 0 0 1 1 

Dist. 0 3 2 1 2 2 

Next * A B C D C 

G 

1 

4 

D 

Vertex A B C D E F 

Status 0 0 0 0 1 0 

Dist. 0 3 2 1 2 2 

Next * A B C D C 

G 

1 

1 

E 



Vertex A B C D E F G 

Status 0 0 0 1 1 1 1 
Dist. 0 3 2 1 4 2 

Next * A B C C C A 
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Step7: 
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C 1 F 

B  3 1 D 

 

2 

0 2 
E 

C 1 F 

Vertex A B C D E F G 

Status 0 0 0 0 0 1 0 
Dist. 0 3 2 1 2 1 1 

Next * A B C D G E 

 

 Vertex A B C D E F G 
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* 
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GRAPH ALGORITHMS 

    Basic Definitions: 

 Graph G is a pair (V, E), where V is a finite set (set of vertices) and E is a finite set 

of pairs from V (set of edges). We will often denote n := |V|, m :=|E|. 

 Graph G can be directed, if E consists of ordered pairs, or undirected, if E consists 

of unordered pairs. If (u, v) E, then vertices u, and v are adjacent. 

 We can assign weight function to the edges: wG(e) is a weight of edge e E. The 

graph which has such function assigned is called weighted graph. 

 Degree of a vertex v is the number of vertices u for which (u, v) E (denote deg(v)). 

The number of incoming edges to a vertex v is called in–degree of the vertex 

(denote indeg(v)). The number of outgoing edges from a vertex is called out-degree 

(denote outdeg(v)). 

 

 Representation of Graphs: 

 

Consider graph G = (V, E), where V= {v1,v2,….,vn}. 

 

Adjacency matrix represents the graph as an n x n matrix A = (ai,j),where 

 

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the 

graph is directed. 

 

We may consider various modifications. For example for weighted graphs, we may have 
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Where default is some sensible value based on the meaning of the weight function 

(for example, if weight function represents length, then default can be , meaning 

value larger than any other value). 

 

Adjacency List: An array Adj [1 . . . . . . . n] of pointers where for 1 <v <n, Adj [v] 

points to a linked list containing the vertices which are adjacent to v (i.e. the vertices 

that can be reached from v by a single edge). If the edges have weights then these 

weights may also be stored in the linked list elements. 

 

 

 Paths and Cycles: 

 

A path is a sequence of vertices (v1, v2, . . . . . . , vk), where for all i, (vi, vi+1) E. A path 
is simple if all vertices in the path are distinct. 

 

A (simple) cycle is a sequence of vertices (v1, v2, . . . . . . , vk, vk+1 = v1), where for all i, 
(vi, vi+1) E and all vertices in the cycle are distinct except pair v1,vk+1. 

  

 Techniques forgraphs: 
Given a graph G = (V, E) and a vertex V in V (G) traversing can be done in two ways. 

1. Depth first search 

2. Breadth first search 
 

Connected Component: 

Connected component of a graph can be obtained by using BFST (Breadth first search and 

traversal) and DFST (Dept first search and traversal). It is also called the spanning tree.  

BFST (Breadth first search and traversal): 

In BFS we start at a vertex V mark it as reached (visited).The vertex V is at this time said 

to be unexplored (not yet discovered).A vertex is said to been explored (discovered) by 

visiting all vertices adjacent from it.All unvisited vertices adjacent from V are visited 

next.The first vertex on this list is the next to be explored.Exploration continues until no 

unexplored vertex is left. These operations can be performed by using Queue. 

 

This is also called connected graph or spanning tree. 

Spanning trees obtained using BFS then it called breadth first spanning trees 
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Algorithm BFS(v) 

// a bfs of G is begin at vertex v 

// for any node I, visited[i]=1 if I has already been visited. 

// the graph G, and array visited[] are global 

{ 

U:=v; // q is a queue of unexplored vertices. 

Visited[v]:=1; 

Repeat{ 

For all vertices w adjacent from U do 

If (visited[w]=0) then 

{ 

Add w to q; // w is unexplored  

Visited[w]:=1; 

} 

If q is empty then return; // No unexplored vertex. 

Delete U from q; //Get 1
st
 unexplored vertex. 

} Until(false) 

} 

Maximum Time complexity and space complexity of G(n,e), nodes are in adjacency 

list. 

T(n, e)=θ(n+e) 

S(n, e)=θ(n) 

 

If nodes are in adjacency matrix then 

T(n, e)=θ(n
2
) 

S(n, e)=θ(n) 

DFST(Dept first search and traversal).: 

    DFS different from BFS. The exploration of a vertex v is suspended (stopped) as soon as a 

new vertex is reached.In this the exploration of the new vertex (example v) begins; this new 

vertex has been explored, the exploration of v continues. Note: exploration start at the new 

vertex which is not visited in other vertex exploring and choose nearest path for exploring 

next or adjacent vertex. 

Algorithm dFS(v) 

// a Dfs of G is begin at vertex v 

// initially an array visited[] is set to zero. 

//this algorithm visits all vertices reachable from v. 

// the graph G, and array visited[] are global 

{ 

Visited[v]:=1; 

For each vertex w adjacent from v do 

{ 

If (visited[w]=0) then DFS(w); 

{ 
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Add w to q; // w is unexplored  

Visited[w]:=1; 

} 

} 

Maximum Time complexity and space complexity of G(n,e), nodes are in adjacency 

list. 

T(n, e)=θ(n+e) 

S(n, e)=θ(n) 

 

If nodes are in adjacency matrix then 

T(n, e)=θ(n
2
) 

S(n, e)=θ(n) 

Bi-connected Components:  

A graph G is biconnected, iff (if and only if) it contains no articulation point (joint or 

junction).  

A vertex v in a connected graph G is an articulation point, if and only if (iff) the deletion of 

vertex v together with all edges incident to v disconnects the graph into two or more none 

empty components. 

The presence of articulation points in a connected graph can be an undesirable(un wanted) 

feature in many cases. 

For example 

 if G1Communication network with 

    Vertex  communication stations. 

    Edges Communication lines. 

 

Then the failure of a communication station I that is an articulation point, then we loss the 

communication in between  other stations. F 

Form graph G1 
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There is an efficient algorithm to test whether a connected graph is biconnected. If the case of 

graphs that are not biconnected, this algorithm will identify all the articulation points. 

Once it has been determined that a connected graph G is not biconnected, it may be desirable 

(suitable) to determine a set of edges whose inclusion makes the graph biconnected.  
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MODULE-III 

GREEDY METHOD AND DYNAMIC PROGRAMMING 

GENERALMETHOD 

         Greedy is the most straight forward design technique. Most of the problems have n 

inputs and require us to obtain a subset that satisfies some constraints. Any subset  that 

satisfies these constraints is called a feasible solution. We need to find a feasible solution 

that either maximizes or minimizes the objective function. A feasible solution that does this 

is called an optimal solution. 
 

      The greedy method is a simple strategy of progressively building up a solution, one 

element at a time, by choosing the best possible element at each stage. At each stage, a 

decision is made regarding whether or not a particular input is in an optimal solution. This is 

done by considering the inputs in an order determined by some selection procedure. If the 

inclusion of the next input, into the partially constructed optimal solution will result in an 

infeasible solution then this input is not added to the partial solution. The selection 

procedure itself is based on some optimization measure. Several optimization measures are 

plausible for a given problem. Most of them, however, will result in algorithms that 

generate sub-optimal solutions. This version of greedy technique is called subset paradigm. 

Some problems like Knapsack, Job sequencing with deadlines and minimum cost spanning 

trees are based on subset paradigm. 
 

For the problems that make decisions by considering the inputs in some order, each 

decision is made using an optimization criterion that can be computed using decisions 

already made. This version of greedy method is ordering paradigm. Some problems like 

optimal storage on tapes, optimal merge patterns and single source shortest path are based 

on ordering paradigm. 

 CONTROLABSTRACTION 

Algorithm Greedy (a,n) 
// a(1 : n) contains the „n‟ inputs 
{ 

solution:=ᶲ ;     // initialize the solution to be empty 

for i:=1 to ndo 

{ 
x := select(a); 
if  feasible (solution, x)then 

solution := Union (Solution,x); 
} 
return solution; 

} 

      Procedure Greedy describes the essential way that a greedy based algorithm will look, 

once a particular problem is chosen and the functions select, feasible and union are properly 

implemented. 

The function select selects an input from „a‟, removes it and assigns its value to „x‟. 

Feasible is a Boolean valued function, which determines if „x‟ can be included into the 

solution vector. The function Union combines „x‟ with solution and updates the objective 

function. 
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KNAPSACK PROBLEM 

         Let us apply the greedy method to solve the knapsack problem. We are given „n‟  

objects and a knapsack. The object „i‟ has a weight wi and the knapsack has a capacity „m‟. 

If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pixi is 

earned. The objective is to fill the knapsack that maximizes the total profit earned. 

Since the knapsack capacity is „m‟, we require the total weight of all chosen objects to be at 

most „m‟. The problem is stated as: 

 

Maximize   

subject to 
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The profits and weights are positive numbers. 

 Algorithm 

If the objects are already been sorted into non-increasing order of p[i] / w[i] then the 

algorithm given below obtains solutions corresponding to this strategy. 

 

Algorithm GreedyKnapsack (m,n) 

// P[1 : n] and w[1 : n] contain the profits and weights respectively of 

// Objects ordered so that p[i] / w[i]> p[i + 1] / w[i + 1]. 

// m is the knapsack size and x[1: n] is the solution vector. 

{ 

for i := 1 to n do 

 x[i] :=0.0 ;      //initialize the solution vector 

 U :=m; 
for i := 1 to n do 
{ 

if  (w(i) > U) then break; 
x [i] := 1.0; 

 U := U –w[i]; 

} 
if (i <n) then x[i] := U /w[i]; 

} 
 

Running time: 
      The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we disregard 
the time to initially sort the objects, the algorithm requires only O(n)time. 

 

 Example: 
     Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) = 
(25, 24, 15) and (w1, w2, w3) = (18, 15,10). 

 

1. First, we try to fill the knapsack by selecting the objects in some order: 

 

x1 x2 x3 ∑wi xi ∑pi xi 

1/2 1/3 1/4 18 x 1/2 + 15 x 1/3 + 10 x1/4 
=16.5 

25 x 1/2 + 24 x 1/3 + 15 x 1/4= 
24.25 

 

 

2. Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit earned is 

25. Now, only 2 Modules of space is left, select the object with next largest profit (p = 
24). So, x2  =2/15 

 

x1 x2 x3 ∑wi xi ∑pi xi 

1 2/15 0 18 x 1  + 15 x 2/15 =20 25 x 1 + 24 x 2/15 =28.2 
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3. Considering the objects in the order of non-decreasing weightswi. 

 

x1 x2 x3 ∑ wi xi ∑ pi xi 

0 2/3 1 15 x 2/3  + 10 x 1 =20 24 x 2/3 + 15 x 1 =31 

 

4. Considered the objects in the order of the ratio pi / wi. 

 

p1/w1 p2/w2 p3/w3 

25/18 24/15 15/10 

1.4 1.6 1.5 

 

Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the object 

with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now, only 5 Modules of 

space is left, select the object with next largest pi / xi ratio, so x3 = ½ and the profit 

earned is7.5. 

x1 x2 x3 ∑wi xi ∑pi xi 

0 1 1/2 15 x 1 + 10 x 1/2 =20 24 x 1 + 15 x 1/2 =31.5 

 

This solution is the optimal solution. 

 

 JOB SEQUENCING WITHDEADLINES 
       Given a set of „n‟ jobs. Associated with each Job i, deadline di >0 and profit Pi >0. For 

any job „i‟ the profit pi is earned iff the job is completed by its  deadline. Only one machine is 
available for processing jobs. An optimal solution is the feasible solution with maximum 
profit. 
       Sort the jobs in „j‟ ordered by their deadlines. The array d [1 : n] is used to store the 

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r ≤ k are the 

jobs in „j‟ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U {i} is feasible, we have 

just to insert i into J preserving the deadline ordering and then verify that d [J[r]] ≤ r,  1 ≤ r 

≤k+1. 

 

 Example: 
     Let n=4,(P1,P2,P3,P4,)=(100,10,15,27)and(d1 d2 d3 d4)=(2,1,2,1).The 
feasible solutions and their values are: 

 

Sl.No Feasible Solution Procuring 

sequence 

Value Remarks 

1 1,2 2,1 110  

2 1,3 1,3 or3,1 115  
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3 1,4 4,1 127 OPTIMA

L 
4 2,3 2,3 25  

5 3,4 4,3 42  

6 1 1 100  

7 2 2 10  

8 3 3 15  

9 4 4 27  

  

Algorithm: 
     The algorithm constructs an optimal set J of jobs that can be processed by their deadlines. 

Algorithm GreedyJob (d, J,n) 

// J is a set of jobs that can be completed by their deadlines. 

{ 
J :={1}; 
for i := 2 to ndo 
{ 

if (all jobs in J U {i} can be completed by their deadlines) then J 

:= J U{i}; 
} 

} 
The greedy algorithm is used to obtain an optimal solution. 

We must formulate an optimization measure to determine how the next job is chosen. 

 

Algorithm js(d, j, n) 

//d dead line, jsubset of jobs ,n total number of jobs 

// d[i]≥1 1 ≤ i ≤ n are the dead lines, 

// the jobs are ordered such that p[1]≥p[2]≥---≥p[n] 

//j[i] is the ith job in the optimal solution 1 ≤ i ≤ k, k subset range 

{ 

d[0]=j[0]=0; 

j[1]=1; 

k=1; 

for i=2 to n do{ 

r=k; 

while((d[j[r]]>d[i]) and [d[j[r]]≠r)) do 

r=r-1; 

if((d[j[r]]≤d[i]) and (d[i]> r)) then 

{ 

for q:=k to (r+1) setp-1 do j[q+1]= j[q]; 

j[r+1]=i; 

k=k+1; 

} 

} 

return k; 

} 

The Single Source Shortest-Path Problem:  DIJKSTRA'SALGORITHMS 
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In the previously studied graphs, the edge labels are called as costs, but here we think 

them as lengths. In a labeled graph, the length of the path is defined to be the sum of the 

lengths of its edges. 
 

In the single source, all destinations, shortest path problem, we must find a shortest 

path from a given source vertex to each of the vertices (called destinations) in the 

graph to which there is a path. 

Dijkstra‟s algorithm is similar to prim's algorithm for finding minimal spanning trees. 

Dijkstra‟s algorithm takes a labeled graph and a pair of vertices P and Q, and finds the 

shortest path between then (or one of the shortest paths) if there is more than one.  The 

principle of optimality is the basis for Dijkstra‟salgorithms.Dijkstra‟s algorithm does 

not work for negative edges at all. 

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph. 

 

 0 

                                 8 

 

 

3 

                     Graph 

 

4 

 

6 

 

Shortest Paths 

 

 Algorithm: 

 

Algorithm Shortest-Paths (v, cost, dist,n) 

// dist [j], 1 <j <n, is set to the length of the shortest path 

// from vertex v to vertex j in the digraph G with n vertices. 

// dist [v] is set to zero. G is represented by its 

1 
4  

2 5 

2 4 5 

3 4 3 
1 

1 

1 3 

1 3 4 

1 2 

1 3 4 5 
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// cost adjacency matrix cost [1:n,1:n]. 

{ 

for  i :=1 to n do 

{ 

S  [i]:=false; //Initialize S. 

dist [i] :=cost [v,i]; 

} 

S[v] := true; dist[v] :=0.0; // Put v in S. 

for num := 2 to n – 1do 

{ 

Determine n - 1 paths from v. 

Choose u from among those vertices not in S such that dist[u] is 

minimum; S[u]:=true; // Put u is S. 

for (each w adjacent to u with S [w] = false)do 

if (dist [w] > (dist [u] + cost [u, w])then //Update distances 

dist [w] := dist [u] + cost [u,w]; 

} 

} 

 

 

Runningtime: 

 

Depends on implementation of data structures fordist. 

 

 Build a structure with nelements A 

 at most m = E times decrease the value of  anitem mB 

 „n‟ times select the smallestvalue nC 

 For array A = O (n); B = O (1); C = O (n) which gives O (n2)total. 

 For heap A = O (n); B = O (log n); C = O (log n) which gives O (n + m logn) total. 

 

 Example1: 

 

Use Dijkstras algorithm to find the shortest path from A to each of the other six  vertices in 
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B  3 

0 6 





4 7 

B 3 

2 

0 5 





the graph: 

 

The problem is solved by considering the following information: 

 

 Status[v] will be either „0‟, meaning that the shortest path from v to v0 has 
definitely been found; or „1‟, meaning that it hasn‟t. 

 

 Dist[v] will be a number, representing the length of the shortest path from vto v0 
found so far. 

 

 Next[v] will be the first vertex on the way to v0 along the shortest path found so far 
from v to v0 

 

The progress of Dijkstra‟s algorithm on the graph shown above is as follows: 

 

Step1: 

 

D 

 

E 

A G 
F 
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Step2: 
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F 
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2 F 1 

Vertex A B C D E F 

Status 0 1 1 1 1 1 
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Next * A A A A A 

G 

1 



A 





Vertex A B C D E F G 

Status 0 0 1 1 1 1 1 
Dist. 0 3 5 7   

Next * A B B A A A 
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Dynamic Programming 

       Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic 

programming, as greedy method, is a powerful algorithm design technique that can be 

used when the solution to the problem may be viewed as the result of a sequence of 

decisions. In the greedy method we make irrevocable decisions one at a time, using a 

greedy criterion. However, in dynamic programming we examine the decision 

sequence to see whether an optimal decision sequence contains optimal decision 

subsequence. 

 

When optimal decision sequences contain optimal decision subsequences, we can 

establish recurrence equations, called dynamic-programming recurrence equations 

that enable us to solve the problem in an efficient way. 

 

Dynamic programming is based on the principle of optimality (also coined by 

Bellman). The principle of optimality states that no matter whatever the initial state 

and initial decision are, the remaining decision sequence must constitute an optimal 

decision sequence with regard to the state resulting from the first decision. The 

principle implies that an optimal decision sequence is comprised of optimal decision 

subsequences. Since the principle of optimality may not hold for some formulations of 

some problems, it is necessary to verify that it does hold for the problem being solved. 

Dynamic programming cannot be applied when this principle does not hold. 
 

The steps in a dynamic programming solution are: 

Verify that the principle of optimality holds. Set up the dynamic-programming 

recurrence equations. Solve the dynamic-programming recurrence equations for the 

value of the optimal solution. Perform a trace back step in which the solution itself is 

constructed. 

        Dynamic programming differs from the greedy method since the greedy method 

produces only one feasible solution, which may or may not be optimal, while dynamic 

programming produces all possible sub-problems at most once, one of which 

guaranteed to be optimal. Optimal solutions to sub-problems are retained in a table, 

thereby avoiding the work of recomputing the answer every time a sub-problem is 

encountered 
 

The divide and conquer principle solve a large problem, by breaking it up into smaller 

problems which can be solved independently. In dynamic programming this principle 

is carried to an extreme: when we don't know exactly which smaller problems to 

solve, we simply solve them all, then store the answers away in a table to be used later 

in solving larger problems. Care is to be taken to avoid recomputing previously 

computed values, otherwise the recursive program will have prohibitive complexity. 

In some cases, the solution can be improved and in other cases, the dynamic 

programming technique is the best approach. 
 

Two difficulties may arise in any application of dynamic programming: 
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1. It may not always be possible to combine the solutions of smaller problems to 

form the solution of a larger one. 

2. The number of small problems to solve may be un-acceptably large. 

 

There is no characterized precisely which problems can be effectively solved with 

dynamic programming; there are many hard problems for which it does not seen to be 

applicable, as well as many easy problems for which it is less efficient than standard 

algorithms. 

 

5.1     MULTI STAGEGRAPHS 

        A multistage graph G = (V, E) is a directed graph in which the vertices are 

partitioned into k >2 disjoint sets Vi, 1 <i <k. In addition, if <u, v> is an edge in E, 

then u Vi and v Vi+1  for some i, 1 <i <k. 

Let the vertex „s‟ is the source, and „t‟ the sink. Let c (i, j) be the cost of edge <i, j>. 

The cost of a path from „s‟ to „t‟ is the sum of the costs of the edges on the path. The 
multistage graph problem is to find a minimum cost path from „s‟ to „t‟. Each set Vi 

defines a stage in the graph. Because of the constraints on E, every path from „s‟ to „t‟ 

starts in stage 1, goes to stage 2, then to stage 3, then to stage 4, and so on, and 
eventually terminates in stage k. 

A dynamic programming formulation for a k-stage graph problem is obtained by first 

noticingthateverystoppathistheresultofasequenceofk–2decisions.Theith 

decision involves determining which vertex in vi+1, 1 <i <k - 2, is to be on the   path. 

Let c (i, j) be the cost of the path from source to destination. Then using the forward 
approach, we obtain: 

 

cost (i, j) = min {c (j, l) + cost (i + 1,l)} 
l in Vi+1 

 
<j, l> in E 

 

ALGORITHM: 
Algorithm Fgraph(G, k, n,p) 

// The input is a k-stage graph G = (V, E) with n vertices 
// indexed in order or stages. E is a set of edges and c [i,j] 
// is the cost of (i, j). p [1 : k] is a minimum cost path. 
{ 

cost [n] :=0.0; 
for j:= n - 1 to 1 step – 1do 
{ // compute cost[j] 

let r be a vertex such that (j, r) is an edge 

of G and c [j, r] + cost [r] is minimum; 

cost [j] := c [j, r] + cost[r]; 
d [j] :=r: 

} 
p [1] := 1; p [k] :=n;    // Find a minimum cost path. 

for j := 2 to k - 1 do  
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p [j] := d [p [j -1]]; 
} 

The multistage graph  problem  can  also be solved using the  backward approach.  
Let bp(i, j) be a minimum cost path from vertex s to j vertex in Vi. Let Bcost(i, j) be 

the cost of bp(i, j). From the backward approach we obtain: 

 

Bcost (i, j) = min { Bcost (i –1, l) + c (l, j)}  
1 in Vi -1 

 
<l, j> in E 

 

Algorithm Bgraph(G, k, n,p) 

// Same function asFgraph 
{ 

Bcost [1] :=0.0; 
for j := 2 to ndo 
{ // Compute Bcost[j]. 

Let r be such that (r, j) is an edge of 

G and Bcost [r] + c [r, j] is 

minimum; Bcost [j] := Bcost [r] + c 

[r,j]; 
D [j] :=r; 

} //find a minimum costpath 
p [1] := 1; p [k] :=n; 
for j:= k - 1 to 2 do p [j] := d [p [j +1]]; 

} 
 

EXAMPLE1: 

 

Find the minimum cost path from s to t in the multistage graph of five stages shown 

below. Do this first using forward approach and then using backward approach. 

 

 

 

s t 

 

 

FORWARDAPPROACH: 

We use the following equation to find the minimum cost path from s to t: 
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cost (i, j) = min {c (j, l) + cost (i + 1,l)} 

l inVi +1 
 

<j, l>inE 

cost (1, 1) = min {c (1, 2) + cost (2, 2), c (1, 3) + cost (2, 3), c (1, 4) + cost (2,4), 
c (1, 5) + cost (2,5)} 

= min {9 + cost (2, 2), 7 + cost (2, 3), 3 + cost (2, 4), 2 + cost (2,5)} 

 

Now first starting with, 

 

cost (2, 2) = min{c (2, 6) + cost (3, 6), c (2, 7) + cost (3, 7), c (2, 8) + cost (3,8)} 
= min {4 + cost (3, 6), 2 + cost (3, 7), 1 + cost (3,8)} 

 

cost(3,6) = min {c (6, 9) + cost (4, 9), c (6, 10) + cost (4,10)} 
= min {6 + cost (4, 9), 5 + cost (4,10)} 

 

cost(4,9) = min {c (9, 12) + cost (5, 12)} = min {4 + 0) =4 

 

cost (4, 10)  =  min {c (10, 12) + cost (5, 12)} =2 

 

Therefore, cost (3, 6) = min {6 + 4, 5 + 2} =7 

 

 

cost(3,7) = min {c (7, 9) + cost (4, 9) , c (7, 10) + cost (4,10)} 
= min {4 + cost (4, 9), 3 + cost (4,10)} 

 

cost(4,9) = min {c (9, 12) + cost (5, 12)} =  min {4 + 0} =4 

 

Cost (4, 10) = min {c (10, 2) + cost (5, 12)} = min {2 + 0} =2 

 

Therefore, cost (3, 7) = min {4 + 4, 3 + 2} = min {8, 5} =5 

 

cost(3,8) = min {c (8, 10) + cost (4, 10), c (8, 11) + cost (4,11)} 

= min {5 + cost (4, 10), 6 + cost (4 +11)} 
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cost (4, 11) = min {c (11, 12) + cost (5, 12)} =5 

 

Therefore, cost (3, 8) = min {5 + 2, 6 + 5} = min {7, 11} =7 

 

Therefore, cost (2, 2) = min {4 + 7, 2 + 5, 1 + 7} = min {11, 7, 8} =7 

 

Therefore, cost (2, 3) = min {c (3, 6) + cost (3, 6), c (3, 7) + cost (3,7)} 
= min {2 + cost (3, 6), 7 + cost (3,7)} 
= min {2 + 7, 7 + 5} = min {9, 12} =9 

 

cost (2, 4) =  min {c (4, 8) + cost (3, 8)} = min {11 + 7} =18 
cost (2, 5) =  min {c (5, 7) + cost (3, 7), c (5, 8) + cost (3,8)} 

=  min {11 + 5, 8 + 7} = min {16, 15} =15 

 

Therefore, cost (1, 1) = min {9 + 7, 7 + 9, 3 + 18, 2 +15} 
= min {16, 16, 21, 17} =16 

 

The minimum cost path is16. 

 

The path is 1 2 7 

 

or 

10 12 

 1 3 6 10 12 

 

 

BACKWARDAPPROACH: 

We use the following equation to find the minimum cost path from t tos: Bcost (i, 

J) =  min {Bcost (i – 1, l) + c (l,J)} 

l in vi –1 

<l, 
j>inE 

Bcost (5, 12) = min {Bcost (4, 9) + c (9, 12), Bcost (4, 10) + c (10,12), 
Bcost (4, 11) + c (11,12)} 

= min {Bcost (4, 9) + 4, Bcost (4, 10) + 2, Bcost (4, 11) +5} 
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Bcost (4, 9)  = min {Bcost (3, 6) + c (6, 9), Bcost (3, 7) + c (7,9)} 
= min {Bcost (3, 6) + 6, Bcost (3, 7) +4} 

Bcost (3, 6)  = min {Bcost (2, 2) + c (2, 6), Bcost (2, 3) + c (3,6)} 
= min {Bcost (2, 2) + 4, Bcost (2, 3) +2} 

 

Bcost (2, 2)  = min {Bcost (1, 1) + c (1, 2)} = min {0 + 9} =9 

 

Bcost (2, 3)  = min {Bcost (1, 1) + c (1, 3)} = min {0 + 7} =7 

 

Bcost (3, 6)  = min {9 + 4, 7 + 2} = min {13, 9} =9 

 

Bcost (3, 7)  = min {Bcost (2, 2) + c (2, 7), Bcost (2, 3) + c (3,7), 

Bcost (2, 5) + c (5,7)} 

 

Bcost (2, 5)  = min {Bcost (1, 1) + c (1, 5)} =2 

 

Bcost (3, 7)  = min {9 + 2, 7 + 7, 2 + 11} = min {11, 14, 13} =11 

 

Bcost (4, 9)  = min {9 + 6, 11 + 4} = min {15, 15} =15 

 

Bcost (4, 10) = min {Bcost (3, 6) + c (6, 10), Bcost (3, 7) + c (7,10), 
Bcost (3, 8) + c (8,10)} 

 

Bcost (3, 8) = min {Bcost (2, 2) + c (2, 8), Bcost (2, 4) + c (4,8), 
Bcost (2, 5) + c (5,8)} 

Bcost (2, 4) = min {Bcost (1, 1) + c (1, 4)} =3 
 

Bcost (3, 8) = min {9 + 1, 3 + 11, 2 + 8} = min {10, 14, 10} =10 

 

Bcost (4, 10) = min {9 + 5, 11 + 3, 10 + 5} = min {14, 14, 15) =14 

 

Bcost (4, 11) = min {Bcost (3, 8) + c (8, 11)} = min {Bcost (3, 8) +6} 
= min {10 + 6} =16 

 

Bcost (5, 12) = min {15 + 4, 14 + 2, 16 + 5} = min {19, 16, 21} =16. 
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 All pairs shortestpaths 

 

In the all pairs shortest path problem, we are to find a shortest path between every 

pair of vertices in a directed graph G. That is, for every pair of vertices (i, j), we are 

to find a shortest path from i to j as well as one from j to i. These two paths are the 

same when G is undirected. 

 

When no edge has a negative length, the all-pairs shortest path problem may be solved 

by using Dijkstra‟s greedy single source algorithm n times, once with each of the n 

vertices as the source vertex. 

 

The all pairs shortest path problem is to determine a matrix A such that A (i, j) is the 
length of a shortest path from i to j. The matrix A can be obtained by solving n single-
source problems using the algorithm shortest Paths. Since each application of this 

procedure requires O (n2) time, the matrix A can be obtained in O (n3)time. 
 

The dynamic programming solution, called Floyd‟s algorithm, runs in O (n3) time. 

Floyd‟s algorithm works even when the graph has negative length edges (provided 

there are no negative length cycles). 

 

The shortest i to j path in G, i ≠ j originates at vertex i and goes through some 

intermediate vertices (possibly none) and terminates at vertex j. If k is an intermediate 
vertex on this shortest path, then the subpaths from i to k and from k  to j must be 

shortest paths from i to k and k to j, respectively. Otherwise, the i to j path is not of 

minimum length. So, the principle of optimality holds. Let Ak (i, j) represent the 
length of a shortest path from i to j going through no vertex of index greater than k, 

we obtain: 

 

Ak  (i, j) = {min {min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i,j)} 

1<k<n 

 

Algorithm All Paths (Cost, A,n) 

// cost [1:n, 1:n] is the cost adjacency matrix of a graph which 
// n vertices; A [I, j] is the cost of a shortest path from vertex 
// i to vertex j. cost [i, i] = 0.0, for 1 <i <n. 
{ 

for i := 1 to n do 
for j:= 1 to n do 

A [i, j] := cost [i,j];        // copy cost into A  

for k := 1 to n do 
for i := 1 to n do 
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for j := 1 to n do 
A [i, j] := min (A [i, j], A [i, k] + A [k,j]); 

} 

 

Complexity Analysis: A Dynamic programming algorithm based on this recurrence 
involves in calculating n+1 matrices, each of size n x n. Therefore, the algorithm has a 

complexity of O(n3). 

 

General formula:  min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i,j)} 

1<k<n 

Solve the problem for different values of k = 1, 2 and3 

Step 1: Solving the equation for, k =1; 

 

A1 (1, 1) = min {(Ao  (1, 1) + Ao  (1, 1)), c (1, 1)} = min {0 + 0, 0} =0 

A1 (1, 2) = min {(Ao  (1, 1) + Ao  (1, 2)), c (1, 2)} = min {(0 + 4), 4} =4 

A1 (1, 3) = min {(Ao (1, 1) + Ao (1, 3)), c (1, 3)} = min {(0 + 11), 11} =11 

A1 (2, 1) = min {(Ao  (2, 1) + Ao  (1, 1)), c (2, 1)} = min {(6 + 0), 6} =6 

A1 (2, 2) = min {(Ao  (2, 1) + Ao  (1, 2)), c (2, 2)} = min {(6 + 4), 0)} =0 

A1 (2, 3) = min {(Ao  (2, 1) + Ao  (1, 3)), c (2, 3)} = min {(6 + 11), 2} =2 

A1 (3, 1) = min {(Ao  (3, 1) + Ao  (1, 1)), c (3, 1)} = min {(3 + 0), 3} =3 

A1 (3, 2) = min {(Ao  (3, 1) + Ao  (1, 2)), c (3, 2)} = min {(3 + 4), 0} =7 

A1 (3, 3) = min {(Ao  (3, 1) + Ao  (1, 3)), c (3, 3)} = min {(3 + 11), 0} =0 

 

Step 2: Solving the equation for, K =2; 

 

A2 (1, 1) = min {(A1 (1, 2) + A1  (2, 1), c (1, 1)} = min {(4 + 6), 0} = 0 

A2 (1, 2) = min {(A1 (1, 2) + A1  (2, 2), c (1, 2)} = min {(4 + 0), 4} = 4 

A2 (1, 3) = min {(A1 (1, 2) + A1  (2, 3), c (1, 3)} = min {(4 + 2), 11} =6 

A2 (2, 1) = min {(A (2, 2) + A (2, 1), c (2, 1)} = min {(0 + 6), 6} =6 

A2 (2, 2) = min {(A (2, 2) + A (2, 2), c (2, 2)} = min {(0 + 0), 0} =0 

A2 (2, 3) = min {(A (2, 2) + A (2, 3), c (2, 3)} = min {(0 + 2), 2} =2 

A2 (3, 1) = min {(A (3, 2) + A (2, 1), c (3, 1)} = min {(7 + 6), 3} =3 
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A2 (3, 2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} =7 

A2 (3, 3) = min {(A (3, 2) + A (2, 3), c (3, 3)} = min {(7 + 2), 0} =0 
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  0 4 

A (2) =6 0 

 3 7 

 

Step 3: Solving the equation for, k =3; 

 

A3 (1, 1) = min {A2 (1, 3) + A2 (3, 1), c (1, 1)} = min {(6 + 3), 0} =0 

A3 (1, 2) = min {A2 (1, 3) + A2 (3, 2), c (1, 2)} = min {(6 + 7), 4} =4 

A3 (1, 3) = min {A2 (1, 3) + A2 (3, 3), c (1, 3)} = min {(6 + 0), 6} =6 

A3 (2, 1) = min {A2 (2, 3) + A2 (3, 1), c (2, 1)} = min {(2 + 3), 6} =5 

A3 (2, 2) = min {A2 (2, 3) + A2 (3, 2), c (2, 2)} = min {(2 + 7), 0} =0 

A3 (2, 3) = min {A2 (2, 3) + A2 (3, 3), c (2, 3)} = min {(2 + 0), 2} =2 

A3 (3, 1) = min {A2 (3, 3) + A2 (3, 1), c (3, 1)} = min {(0 + 3), 3} =3 

A3 (3, 2) = min {A2 (3, 3) + A2 (3, 2), c (3, 2)} = min {(0 + 7), 7} =7 

A3 (3, 3) = min {A2 (3, 3) + A2 (3, 3), c (3, 3)} = min {(0 + 0), 0} =0 

 

 

 

A(3)  = 

 

0 
 
5 

3 

 

4 6 
 

0  

7 0 

 TRAVELLING SALESPERSONPROBLEM 

 

Let G = (V, E) be a directed graph with edge costs Cij. The variable cijis defined such 

that cij> 0 for all I and j and cij= if < i, j>E. Let |V| = n and assume n > 1. A tour of G 

is a directed simple cycle that includes every vertex in V. The cost of a tour is the sum of 
the cost of the edges on the tour. The traveling sales person problem is to find a tour of 
minimum cost. The tour is to be a simple path that starts and ends at vertex1. 

 

Let g (i, S) be the length of shortest path starting at vertex i, going through all vertices in 

S, and terminating at vertex 1. The function g (1, V – {1}) is the length of an optimal 

salesperson tour. From the principal of optimality it followsthat: 

C(S, i) = min { C(S-{i}, j) + dis(j, i)} where j belongs to S, j != i and j != 1. 

 

The Equation can be solved for g (1, V – 1}) if we know g (k, V – {1, k}) for all 
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choices of k. 

 

Complexity Analysis: 

 

Foreachvalueof|S|therearen–1choicesfori.ThenumberofdistinctsetsSof 

 

size k not including 1 and i is k 

Hence, the total number of g (i, S)‟s to be computed before computing g (1, V – {1})  

To calculate this sum, we use the binominaltheorem: 

This is Φ (n 2n-2), so there are exponential number of calculate. Calculating one g  (i, 

S) require finding the minimum of at most n quantities. Therefore, the entire algorithm is 

Φ (n2 2n-2). This is better than enumerating all n! different tours to find the best one. So, 

we have traded on exponential growth for a much smaller exponential growth. The most 

serious drawback of this dynamic programming solution is the space needed, which is O 

(n 2n). This is too large even for modest values of n. 

 

Example1: 

 

For the following graph find minimum cost tour for the traveling sales person 

problem: 

 

 

 

 

 

 

 

 

The cost adjacency matrix =  

0 10 15 20       

5 0 9 10
 

6 13 0 12  
 
8 8 9 0 

 

Let us start the tour from vertex1: 

 

g (1, V – {1}) =  min {c1k  + g (k, V – {1,K})} - (1) 

2<k<n 

More generally writing: 
 

. 

1 2 

3 4 
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g (i, s) = min {cij+ g (J, s –{J})} - (2) 

Clearly, g (i, 0) = ci1 , 1 ≤ i ≤ n.  

g (2, 0) = C21 =5 
 

g (3, 0) = C31 = 6 

g (4, 0) = C41 =8 

Using equation – (2) we obtain: 
 

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}, c13 + g (3, {2, 4}), c14 + g (4, {2,3})} 

 

g (2, {3, 4}) = min {c23 + g (3, {4}),  c24 + g (4,{3})} 
= min {9 + g (3, {4}), 10 + g (4,{3})} 

 

g (3, {4}) = min {c34  + g (4, 0)} = 12 + 8 =20 

 

g (4, {3}) = min {c43  + g (3, 0)} = 9 + 6 =15 

 

Therefore, g (2, {3, 4}) = min {9 + 20, 10 + 15} = min {29, 25} =25 

 

g (3, {2, 4}) = min {(c32 + g (2, {4}), (c34  + g (4,{2})} 

 

g (2, {4}) = min {c24  + g (4, 0)} = 10 + 8 =18 

 

g (4, {2}) = min {c42  + g (2, 0)} = 8 + 5 =13 

 

Therefore, g (3, {2, 4}) = min {13 + 18, 12 + 13} = min {41, 25} =25 

 

g (4, {2, 3}) = min {c42 + g (2, {3}), c43 + g (3,{2})} 

 

g (2, {3}) = min {c23  + g (3, 0} = 9 + 6 =15 

 

g (3, {2}) = min {c32 + g (2, 0} = 13 + 5 =18 

 

Therefore, g (4, {2, 3}) = min {8 + 15, 9 + 18} = min {23, 27} =23 
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g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}), c13 + g (3, {2, 4}), c14 + g (4, {2,3})} 
= min {10 + 25, 15 + 25, 20 + 23} = min {35, 40, 43} =35 

 

The optimal tour for the graph has length = 35 The 

optimal tour is: 1, 2, 4, 3,1. 

 OPTIMAL BINARY SEARCHTREE 

        Let us assume that the given set of identifiers is {a1, . . . , an} with a1 < a2 < . . . . < 

an. Let p (i) be the probability with which we search for ai. Let q (i) be the probability 

that the identifier x being searched for is such that ai  < x < ai+1, 0 <i <n (assume  a0 = - 

and an+1  = +). We have to arrange the identifiers in a binary search tree in a way that 

minimizes the expected total access time. 

In a binary search tree, the number of comparisons needed to access an element at depth 

'd' is d + 1, so if 'ai' is placed at depth 'di', then we want to minimize: 

 

   Let P (i) be the probability with which we shall be searching for 'ai'. Let Q (i) be the 

probability of an un-successful search. Every internal node represents a point where a 
successful search may terminate. Every external node represents a point where an 
unsuccessful search may terminate. 

 

The expected cost contribution for the internal node for 'ai'is: 

P(i)*level(ai). 

Unsuccessful search terminate with I = 0 (i.e at an external node). Hence the cost 

contribution for this node is: 

Q (i) * level ((Ei) -1) 

The expected cost of binary search tree is: 
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Given a fixed set of identifiers, we wish to create a binary search tree organization. We 

may expect different binary search trees for the same identifier set to have different 

performance characteristics. 

 

The computation of each of these c(i, j)‟s requires us to find the minimum of m quantities. 
Hence, each such c(i, j) can be computed in time O(m). The total time for all c(i, j)‟s with 

j – i = m is therefore O(nm –m2).   

Example 1: The possible binary search trees for the identifier set (a1, a2, a3) = (do, if, 
stop) are as follows. Given the equal probabilities p (i) = Q (i) = 1/7 for all i, we have: 

 

Tree2 

 

 

 

 

 

 

 Tree 4 

 

Huffman coding tree solved by a greedy algorithm has a limitation of having the data only 

at the leaves and it must not preserve the property that all nodes to the left of the root have 

keys, which are less etc. Construction of an optimal binary search tree is harder, because 

the data is not constrained to appear only at the leaves, and also because the tree must 

satisfy the binary search tree property and it must preserve the property that all nodes to 

the left of the root have keys, which areless. 

A dynamic programming solution to the problem of obtaining an optimal binary search 
tree can be viewed by constructing a tree as a result of sequence of decisions by holding 
the principle of optimality. A possible approach to this is to make a decision as which of 
the ai's be arraigned to the root node at 'T'. If we choose 'ak' then is clear that the internal 

nodes for a1, a2, . . . . . ak-1 as well as the external nodes for the classes Eo, E1, . . . . . . . 

Ek-1 will lie in the left sub tree, L, of the root. The remaining nodes will be in the right 

subtree, R. The structure of an optimal binary search treeis: 

 

if 

do stop 

stop 

if 

do 

Tree1 

do 

if 

stop 

Tree3 

do 

stop 

if 
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The C (i, J) can be computedas: 

 

C (i, J) = min {C (i, k-1) + C (k, J) + P (K) + w (i, K-1) + w (K,J)} 

i<k<J 

 

= min {C (i, K-1) + C (K, J)} + w (i,J) -- (1) 

i<k<J 

 

Where W (i, J) = P (J) + Q (J) + w (i,J-1) -- (2) 

 

Initially C (i, i) = 0 and w (i, i) = Q (i) for 0 <i <n. 

 

Equation (1) may be solved for C (0, n) by first computing all C (i, J) such that J - i = 1 

Next, we can compute all C (i, J) such that J - i = 2, Then all C (i, J) with J - i = 3  and 

soon. 

 

C (i, J) is the cost of the optimal binary search tree 'Tij' during computation we record the 

root R (i, J) of each tree 'Tij'. Then an optimal binary search tree may be constructed from 

these R (i, J). R (i, J) is the value of 'K' that minimizes equation(1). 

 

We solve the problem by knowing W (i, i+1), C (i, i+1) and R (i, i+1), 0 ≤ i < 4; Knowing 

W (i, i+2), C (i, i+2) and R (i, i+2), 0 ≤ i < 3 and repeating until  W (0, n), C (0, n) and R 

(0, n) areobtained. 

 

The results are tabulated to recover the actualtree. 

 

Example1: 

 

Let n = 4, and (a1, a2, a3, a4) = (do, if, need, while) Let P (1: 4) = (3, 3, 1, 1) and Q (0: 4) 
= (2, 3, 1, 1,1) 
 

Solution: 
Table for recording W (i, j), C (i, j) and R (i,j): 

 

Column 

Row 0 1 2 3 4 
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0 2, 0,0 3, 0,0 1, 0,0 1, 0,0, 1, 0,0 

1 8, 8,1 7, 7,2 3, 3,3 3, 3,4 
 

2 12, 19,1 9, 12,2 5, 8,3 
 

3 14, 25,2 11, 19,2 
 

4 16, 32,2 
 

 

Thiscomputationiscarriedoutrow-wisefromrow0torow4.Initially,W(i,i)=Q 
(i) and C (i, i) = 0 and R (i, i) = 0, 0 <i <4. 

 

Solving for C (0,n): 

 

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 <i < 4; i = 0, 1, 2 and 3;  i 

< k ≤ J. Start with i = 0;  so j = 1; as i < k ≤ j,  so the possible value  for  k =1 

 

W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 =8 
C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} =8 
R (0, 1) = 1 (value of 'K' that is minimum in the above equation). Next 

with i = 1; so j = 2; as i < k ≤ j, so the possible value for k =2 

W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 =7 
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} =7 
R (1, 2) =2 

 

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k =3 

 

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 =3 
C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] =3 
R (2, 3) =3 

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k =4 W (3, 

4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 =3 
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] =3 
R (3, 4) =4 

 

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 <i < 3; i = 0,  1, 2; i < k 

≤ J. Start with i = 0; so j = 2; as i < k ≤ J, so the possible values for k = 1 and2. 

 

W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 =12 
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2,2))} 

= 12 + min {(0 + 7, 8 + 0)} =19 



123 
 

R (0, 2) =1 
Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and3. 

 

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 =9 
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3,3)]} 

= W (1, 3) + min {(0 + 3), (7 + 0)} = 9 + 3 =12 
R (1, 3) =2 

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4. W (2, 

4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 =5 
C (2, 4)  = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4,4)] 

= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 =8 
R (2, 4)  =3 

 

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 <i < 2; i = 0,1; 
i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 and3. 

 

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 =14 
C (0, 3)  = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2,3)], 

[C (0, 2) + C (3,3)]} 
= 14 + min {(0 + 12), (8 + 3), (19 + 0)} = 14 + 11 =25 

R (0, 3)  =2 

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and4. W (1, 4) 

= P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 =11 
C (1, 4)  = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3,4)], 

[C (1, 3) + C (4,4)]} 
= 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 + 8 =19 

R (1, 4)  =2 

 

Fourth, Computing all C (i, j) such that j - i = 4; j = i + 4 and as 0 <i < 1; i = 0; i < k 

≤J. 

 

Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and4. 

 

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 =16 
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2,4)], 

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4,4)]} 
= 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 =32 

R (0, 4) =2 
 

From the table we see that C (0, 4) = 32 is the minimum cost of a binary search tree for 

(a1, a2, a3, a4). The root of the tree 'T04' is'a2'. 
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a2 
T04 

a1 a3 
T01 T24 

T00 T11 T22 T34 

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the 
root of 'T24' isa3. 

 

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is 
'a1' 

 

The left and right sub trees for T24 are T22 and T34 respectively. 

The root of T24  is'a3'. 

The root of T22 is null 

The root of T34  isa4. 

 

 

 

 

a4 

 

 

Example2: 

 

Consider four elements a1, a2, a3 and a4 with Q0 = 1/8, Q1 = 3/16, Q2 = Q3 = Q4 =  1/16 
and p1 = 1/4, p2 = 1/8, p3 = p4 =1/16. Construct an optimal binary search tree. Solving 
for C (0,n): 

 

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 <i < 4; i = 0, 1, 2 and 3;  i 

< k ≤ J.  Start with i = 0; so j = 1; as i < k ≤ j,  so the  possible value for  k =1 

 

W (0, 1) = P (1) + Q (1) + W (0, 0) = 4 + 3 + 2 =9 
C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 9 + [(0 + 0)] =9 
R (0, 1) = 1 (value of 'K' that is minimum in the above equation). Next 

with i = 1; so j = 2; as i < k ≤ j, so the possible value for k =2 

W (1, 2) = P (2) + Q (2) + W (1, 1) = 2 + 1 + 3 =6 
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 6 + [(0 + 0)] =6 
R (1, 2) =2 

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k =3 W (2, 

if 

do read 

while 
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3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 =3 

C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] =3 
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R (2, 3) =3 

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k =4 W (3, 

4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 =3 
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] =3 
R (3, 4) =4 

 

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 <i < 3; i = 0,  1, 2; i < 

k ≤J 

Start with i = 0; so j = 2; as i < k ≤ j, so the possible values for k = 1 and 2. W (0, 

2) = P (2) + Q (2) + W (0, 1) = 2 + 1 + 9 =12 
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2,2))} 

= 12 + min {(0 + 6, 9 + 0)} = 12 + 6 =18 
R (0, 2) =1 
Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and3. 

 

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 6 =8 
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3,3)]} 

= W (1, 3) + min {(0 + 3), (6 + 0)} = 8 + 3 =11 
R (1, 3) =2 

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4. W (2, 

4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 =5 
C (2, 4)  = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4,4)] 

= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 =8 
R (2, 4)  =3 

 

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 <i < 2; i = 0,1; 
i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 and3. 

 

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 =14 
C (0, 3)  = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2,3)], 

[C (0, 2) + C (3,3)]} 
= 14 + min {(0 + 11), (9 + 3), (18 + 0)} = 14 + 11 =25 

R (0, 3)  =1 

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and4. W (1, 4) 

= P (4) + Q (4) + W (1, 3) = 1 + 1 + 8 =10 

C (1, 4)  = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3,4)], 

[C (1, 3) + C (4,4)]} 
= 10 + min {(0 + 8), (6 + 3), (11 + 0)} = 10 + 8 =18 

R (1, 4)  =2 
 

Fourth, Computing all C (i, j) such that J - i = 4; j = i + 4 and as 0 <i < 1; i =0; 
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i < k ≤ J. Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and4. 

 

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 =16 
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2,4)], 

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4,4)]} 

= 16 + min [0 + 18, 9 + 8, 18 + 3, 25 + 0] = 16 + 17 =33 
R (0, 4) =2 

 

Table for recording W (i, j), C (i, j) and R (i,j) 

 

Column 

Row 
0 1 2 3 4 

0 2, 0,0 1, 0,0 1, 0,0 1, 0,0, 1, 0,0 

1 9, 9,1 6, 6,2 3, 3,3 3, 3,4  

2 12, 18,1 8, 11,2 5, 8,3  

3 14, 25,2 11, 18,2  

4 16, 33,2  

 

From the table we see that C (0, 4) = 33 is the minimum cost of a binary search tree for 

(a1, a2, a3,a4) 

 

The root of the tree 'T04' is'a2'. 

 

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the 
root of 'T24' isa3. 

 

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is 
'a1' 

 

The left and right sub trees for T24 are T22 and T34 respectively. 

The root of T24 is'a3'. 

The root of T22 is null. 

The root of T34 isa4. 
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a2 
T04 

a1 a3 
T 01 T24 

T00 T11 T22 T34 

 

 

a4 

 

 

 0/1 –KNAPSACK 

 

We are given n objects and a knapsack. Each object i has a positive weight wi and a 

positive value Vi. The knapsack can carry a weight not exceeding W. Fill the knapsack so 

that the value of objects in the knapsack isoptimized. 

 

A solution to the knapsack problem can be obtained by making a sequence of decisions 
on the variables x1, x2, . . . . , xn. A decision on variable xi involves 

determiningwhichofthevalues0or1istobeassignedtoit.Letusassume that 

decisions on the xi are made in the order xn, xn-1, . . . .x1. Following a decision on xn, we 

may be in one of two possible states: the capacity remaining in m – wn and a profit of pn 
has accrued. It is clear that the remaining decisions xn-1, . . . , x1 must be optimal with 

respect to the problem state resulting from the decision on xn. Otherwise, xn,. . . . , x1 
will not be optimal. Hence, the principal of optimalityholds. 

Fn (m) = max {fn-1  (m), fn-1  (m - wn)+pn} -- 1 

For arbitrary fi (y), i > 0, this equation generalization: 

Fi (y) = max {fi-1  (y), fi-1  (y - wi)+pi} -- 2 

 

Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y) = 0 for all y 

and fi (y) = - 0, y < 0. Then f1, f2, . . . fn can be successively computed using equation–2. 
 

When the wi‟s are integer, we need to compute fi (y) for integer y, 0 <y <m. Sincefi 

(y) = - for y < 0, these function values need not be computed explicitly. Since  each fi 

can be computed from fi - 1 in Θ (m) time, it takes Θ (m n) time to compute  fn. When 

the wi‟s are real numbers, fi (y) is needed for real numbers y such that 0 <y <m. So, fi 

cannot be explicitly computed for all y in this range. Even when the wi‟s are integer, the 

explicit Θ (m n) computation of fn may not be the most efficient computation. So, we 

explore an alternative method for bothcases. 
 

The fi (y) is an ascending step function; i.e., there are a finite number  of y‟s, 0 = y1 
< y2  < . . . . < yk, such that fi (y1) < fi (y2) < . . . . . < fi (yk); fi (y) = - , y < y1;   fi 
(y) = f (yk), y >yk; and fi (y) = fi (yj), yj <y <yj+1. So, we need to compute only fi (yj), 1 

<j <k. We use the ordered set Si = {(f (yj), yj) | 1 <j <k} to represent fi  (y). Each number 

a2 

a1 a3 

a4 
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of Si  is a pair (P, W), where P = fi (yj) and W = yj. Notice that S0  = 
{(0, 0)}. We can compute Si+1 from Si by firstcomputing: 

Si
1 = {(P, W) | (P – pi, W – wi) Si} 

Now, Si+1 can be computed by merging the pairs in Si and Si
1 together. Note that if Si+1 

contains two pairs (Pj, Wj) and (Pk, Wk) with the property that Pj <Pk and Wj >Wk, then 

the pair (Pj, Wj) can be discarded because of equation-2. Discarding or purging rules such 

as this one are also known as dominance rules. Dominated tuples get purged. In the 
above, (Pk, Wk) dominates (Pj,Wj). 

 

Example1: 

 

Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) = (1,2, 
5) and M =6. 

 

Solution: 

 

Initially, fo (x) = 0, for all x and fi (x) = - if x < 0. Fn 

(M) = max {fn-1  (M), fn-1 (M - wn) +pn} 

F3 (6)  = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2  (2) +5} 

 

F2 (6)  = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1  (3) +2} 

 

F1 (6)  = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} =1 

 

F1 (3)  = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} =1 

 

Therefore, F2 (6) = max (1, 1 + 2} =3 

 

F2 (2)  = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), - 0+ 2} 

 

F1 (2)  = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} =1 

 

F2 (2)  = max {1, - 0+ 2} =1 

 



130 
 

1 

1 

S1 

S2 

Finally, f3 (6) = max {3, 1 + 5} =6 

 

 

OtherSolution: 

 

For the given data wehave: 

 

S0  ={(0,0)}; S0   = {(1,2)} 

S1 = (S0  U S0
1) = {(0, 0), (1,2)} 

 

X - 2 = 0  => x =2. y – 3 = 0  => y =3 
X - 2 = 1  => x =3. y – 3 = 2  => y =5 
 

1 = {(2, 3), (3,5)} 

 

S2  = (S1 U S1  ) = {(0, 0), (1, 2), (2, 3), (3,5)} 

 

X – 5 = 0  => x =5. y – 4 = 0  => y =4 
X – 5 = 1  => x =6. y – 4 = 2  => y =6 
X – 5 = 2  => x =7. y – 4 = 3  => y =7 
X – 5 = 3  => x =8. y – 4 = 5  => y =9 

 

1 = {(5, 4), (6, 6), (7, 7), (8,9)} 

 

S3 = (S2  U S2
1) = {(0, 0), (1, 2), (2, 3), (3, 5), (5, 4), (6, 6), (7, 7), (8,9)} 

 

By applying Dominancerule, 

 

S3 = (S2  U S2
1) = {(0, 0), (1, 2), (2, 3), (5, 4), (6,6)} 

 

From (6, 6) we can infer that the maximum Profit pi xi = 6 and weight xi wi =6 

 

 ReliabilityDesign 
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i 

The problem is to design a system that is composed of several devices connected in series. 
Let ri  be the reliability of device Di  (that is ri  is the probability that device i  will 

function properly) then the reliability of the entire system is ri. Even if the individual 

devices are very reliable (the ri‟s are very close to one), the reliability of  the system may 

not be very good. For example, if n = 10 and ri = 0.99, i <i <10, then ri = .904. Hence, it 

is desirable to duplicate devices. Multiply copies of the same device type are connected 
inparallel. 

 

Ifstage I contains miscopies ofdeviceDi.Thentheprobabilitythatallmi havea 

malfunction is (1 -ri)
mi. Hence the reliability of stage i becomes 1 – (1 - r)

mi. 
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The reliability of stage „i‟ is given by a function i(mi). 

 

Our problem is to use device duplication. This maximization is to be carried out under a 
cost constraint. Let ci be the cost of each Module of device i and let c be the maximum 
allowable cost of the system beingdesigned. 

 

Clearly, f0 (x) = 1 for all x, 0 <x <C and f (x) = -for all x < 0.  

Let Si  consist of tuples of the form (f, x), where f = fi(x). 

There is at most one tuple for each different „x‟, that result from a sequence of decisions 
on m1, m2, . . . . mn. The dominance rule (f1, x1) dominate (f2, x2) if f1 ≥ f2 and x1 ≤ x2. 
Hence, dominated tuples can be discarded fromSi. 

 

DominanceRule: 

 

If Si contains two pairs (f1, x1) and (f2, x2) with the property that f1 ≥ f2 and x1 ≤ x2, 

then (f1, x1) dominates (f2, x2), hence by dominance rule (f2, x2) can be discarded. 

Discarding or pruning rules such as the one above is known as dominance rule. 

Dominating tuples will be present in Si and Dominated tuples has to be discarded fromSi. 

 

Case 1: if f1 ≤ f2 and x1 > x2 then discard (f1, x1) 

Case 2: if f1 >f2 and x1 < x2 the discard (f2, x2) 

Case 3: otherwise simply write (f1,x1) 

 

S2 = {(0.72, 45), (0.864, 60), (0.8928,75)} 
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S 3 

 

3  (0.63, 105), 1.756, 120, 0.7812,135 

 

If cost exceeds 105, remove thattuples 

 

S3 = {(0.36, 65), (0.437, 80), (0.54, 85), (0.648, 100)} 

 

The best design has a reliability of 0.648 and a cost of 100. Tracing back forthe 
solution through Si „s we can determine that m3 = 2, m2 = 2 and m1 = 1. 

 

OtherSolution: 

 

According to the principle ofoptimality: 

 

fn(C) = max  {on (mn). fn-1 (C - Cn mn) with fo (x) = 1 and 0 ≤ x ≤C; 
1 mn  un 

 

Since,wecanassumeachci >0,eachmimustbeintherange1≤mi ≤ ui. 



 

 

 

MODULE-IV 

BACKTRACKING AND BRANCH AND BOUND 

GeneralMethod: 
Backtracking is used to solve problem in which a sequence of objects is chosen from a 

specified set so that the sequence satisfies some criterion. The desired solution is 
expressed as an n-tuple (x1, . . . . , xn) where each xi  Є   S, S being a finite set. 

The solution is based on finding one or more vectors that maximize, minimize, or satisfy a 

criterion function P (x1, . . . . . , xn). Form a solution and check at every step if this has 

any chance of success. If the solution at any point seems not promising, ignore it. All 
solutions requires a set of constraints divided into two categories: explicit and implicit 
constraints. 
Explicit constraints are rules that restrict each xi to take on values only from a given set 

Explicit constraints depend on the particular instance I of problem being 
solved. All tuples that satisfy the explicit constraints define a possible 
solution space for I. 

Implicit constraints are rules that determine which of the tuples in the solution space of I 

satisfy the criterion function. Thus, implicit constraints describe the way in 

which the xi‟s must relate to eachother. 

For 8-queensproblem: 

Explicit constraints using 8-tuple formation, for this problem are S= {1, 2, 3, 4, 5, 6, 7,8}. 

The implicit constraints for this problem are that no two queens can be the same (i.e., all 

queens must be on different columns) and no two queens can  be on the same diagonal. 

 

Backtracking is a modified depth first search of a tree. Backtracking algorithms determine 

problem solutions by systematically searching the solution space for the given problem 

instance. This search is facilitated by using a tree organization for the solution space. 

Backtracking is the procedure where by, after determining that a node can lead to nothing 

but dead end, we go back (backtrack) to the nodes parent and proceed with the search on 

the next child. 

A backtracking algorithm need not actually create a tree. Rather, it only needs to  keep 

track of the values in the current branch being investigated. This is the way we implement 

backtracking algorithm. We say that the state space tree exists implicitly  in the algorithm 

because it is not actually constructed. 

Terminology: 

Problem state is each node in the depth first search tree. 

solution states are the problem states „S‟ for which the path from the root node to „S‟ 

defines a tuple in the solution space. 

Answer states are those solution states for which the path from root node to s defines a 

tuple that is a member of the set of solutions. 

State space is the set of paths from root node to other nodes. State space tree is the tree 

organization of the solution space. The state space trees are called static trees. This 

terminology follows from the observation that the tree organizations are independent of 

the problem instance being solved. For some problems it is advantageous to use different 

tree organizations for different problem instance. In  this case the tree organization is 



 

 

determined dynamically as the solution space is being searched. Tree organizations that 

are problem instance dependent are called dynamic trees. 

Live node is a node that has been generated but whose children have not yet been 

generated. 

E-node is a live node whose children are currently being explored. In other words, an E-

node is a node currently being expanded. 

Dead node is a generated node that is not to be expanded or explored any further. All 

children of a dead node have already been expanded. 

Branch and Bound refers to all state space search methods in which all children of an E-

node are generated before any other live node can become the E-node. 

 

Depth first node generation with bounding functions is called backtracking. State 

generation methods in which the E-node remains the E-node until it is dead, lead to 

branch and bound methods. 

 

N-QueensProblem: 
Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8 

chessboard so that no two “attack”, that is, no two of them are on the same row, column, 

ordiagonal.All solutions to the 8-queens problem can be represented as 8-tuples (x1, . . . . 

, x8), where xi  is the column of the ithrow where the ithqueen isplaced. 
The explicit constraints using this formulation are Si  = {1, 2, 3, 4, 5, 6, 7, 8}, 1 ≤i≤8 

Therefore the solution space consists of 888-tuples. 

The implicit constraints for this problem are that no two xi‟s can be the same (i.e., all 
queens must be on different columns) and no two queens can be on the same diagonal. 

This realization reduces the size of the solution space from 88 tuples to 8!Tuples. 

The promising function must check whether two queens are in the same column or 

diagonal: 

Suppose two queens are placed at positions (i, j) and (k, l)Then: 

 Column Conflicts: Two queens conflict if their xi  values are identical. 

 Diagonal conflict: Two queens i and j are on the same diagonal 

i – j = k –l. 

This implies, j – l = i –k 

 

 Diagonal conflict: 
i + j = k +l. 

 

This implies, j – l = k –i 

 

Therefore, two queens lie on the same diagonal if and only if: 

|j – l|= |i – k| 
Where, j be the column of object in row i for the ithqueen and l be the column of object in 

row „k‟ for the kthqueen. 

 

To check the diagonal clashes, let us take the following tile configuration: 



 

 

 

In this example, we have: 

 

i 1 2 3 4 5 6 7 8 

xi 2 5 1 8 4 7 3 6 

 

Let us consider for the case whether the queens on 3rdrow and 8throw are 
conflicting or not. In thiscase (i, j) = (3, 1) and (k, l) = (8, 6) 

Therefore: 
|j – l|= |i – k | is |1 – 6|= |3 –8 | which is 5 =5 
In the above example we have, |j – l|= |i – k| , so the two queens are attacking. This is not 

a solution. 

Example: 
Suppose we start with the feasible sequence 7, 5, 3,1. 

 

Step1: 
Add to the sequence the next number in the sequence 1, 2, . . . , 8 not yet used. 

 

Step2: 
If this new sequence is feasible and has length 8 then STOP with a solution. If the 

new sequence is feasible and has length less then 8, repeat Step1. 

 

Step3: 
If the sequence is not feasible, then backtrack through the sequence until we find 

the most recent place at which we can exchange a value. Go back to Step 1. 

 

On a chessboard, the solution 

 

* 

* 

* 

* 

* 

* 

 

* 

* 

* 

* 

* 



 

 

4 – QueensProblem: 
Let us see how backtracking works on the 4-queens problem. We start with the root node 

as the only live node. This becomes the E-node. We generate one child. Let us assume that 

the children are generated in ascending order. Let us assume that the children are 

generated in ascending order. Thus node number 2 of figure is generated and the path is 

now (1). This corresponds to placing queen 1 on column 1. Node 2 becomes the E-node. 

Node 3 is generated and immediately killed. The next node generated is node 8 and the 

path becomes (1, 3). Node 8 becomes the E-node. However, it gets killed as all its children 

represent board configurations that cannot lead to an answer node. We backtrack to node 2 

and generate another child, node 13. The path is now (1, 4). The board configurations as 

backtracking proceeds is as follows: 

 

(a) (b) (c) (d) 

 

 

(e) (f) (g) (h) 

The above figure shows graphically the steps that the backtracking algorithm goes through 

as it tries to find a solution. The dots indicate placements of a queen, which were tried and 

rejected because another queen was attacking. 

 

In Figure (b) the second queen is placed on columns 1 and 2 and finally settles on column 

3. In figure (c) the algorithm tries all four columns and is unable to place the next queen 

on a square. Backtracking now takes place. In figure (d) the second  queen is moved to the 

next possible column, column 4 and the third queen is placed on column 2. The boards in 

Figure (e), (f), (g), and (h) show the remaining steps that the algorithm goes through until 

a solution is found. 
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 = 19, 173, 961nodes 



 

 

 
 

 

Sum of Subsets: 
Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets of 

wi  whose sums are„m‟.All solutions are k-tuples, 1 ≤ k ≤n. Explicit constraints: 

xi  Є {j | j is an integer and 1 ≤ j ≤n}.  Implicit constraints:No two xi  can be the same.          
The sum of the corresponding wi‟s be m.xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid 
generating multiple instances of the same subset (for example, (1, 2, 4) and (1, 4, 2) 
represent the samesubset). 

A better formulation of the problem is where the solution subset is represented bya n-
tuple (x1, . . . . . , xn) such that xi Є {0,1}. 
The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1,1). For both 

the above formulations, the solution space is 2n distinct tuples. 

For example,  n = 4,  w = (11, 13, 24, 7) and m = 31, the desired subsets are(11, 
13, 7) and (24,7).The following figure shows a possible tree organization for two possible 
formulations of the solution space for the case n =4. 

 

A possible solution space organisation for the 

Sum of subsets problem. 

 

The tree corresponds to the variable tuple size formulation. The edges are labeled such that 
an edge from a level i node to a level i+1 node represents a value for xi. At each node, the 

solution space is partitioned into sub - solution spaces. All paths from the root node to any 
node in the tree define the solution space, since any such path corresponds to a subset 
satisfying the explicit constraints. 
The possible paths are  (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2, 
3), and so on. Thus, the left mot sub-tree defines all subsets containing w1, the next sub-
tree defines all subsets containing w2 but not w1, and soon. 
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 Graph Coloring (for planar graphs): 
Let G be a graph and m be a given positive integer. We want to discover whether the 

nodes of G can be colored in such a way that no two adjacent nodes have the same color, 

yet only m colors are used. This is termed the m-colorabiltiy decision problem. The m-

colorability optimization problem asks for the smallest integer m for which the graph G 

can becolored. 

Given any map, if the regions are to be colored in such a way that no two adjacent regions 

have the same color, only four colors are needed. 

For many years it was known that five colors were sufficient to color any map, but no map 

that required more than four colors had ever been found. After several hundred years, this 

problem was solved by a group of mathematicians with the help of a computer. They 

showed that in fact four colors are sufficient for planar graphs. 
The function m-coloring will begin by first assigning the graph to its adjacency matrix, 
setting the array x [] to zero. The colors are represented by the integers 1, 2, . . . m and the 
solutions are given by the n-tuple (x1, x2, . . ., xn), where xi is the color of nodei. 

 

A recursive backtracking algorithm for graph coloring is carried out by invoking the 

statement  mcoloring(1); 

 

Algorithm mcoloring(k) 

// This algorithm was formed using the recursive backtracking schema. The graph is 
// represented by its Boolean adjacency matrix G [1: n, 1: n].  All assignments of 
// 1, 2, . . . . . , m to the vertices of the graph such that adjacent vertices are assigned 
// distinct integers are printed. k is the index  of the next vertex to color. 
{ 

repeat 

{   // Generate all legal assignments for x[k]. 

NextValue(k);     // Assign to x [k] a legal color. 

 If (x [k] = 0) then return;    // No new color possible 

 If (k = n)then // at most m colors have been 

// used to color the n vertices. 

write (x [1:n]); 

else mcoloring(k+1); 

} until(false); 

} 

 

Algorithm NextValue(k) 

// x [1] , . . . . x [k-1] have been assigned integer values in the range [1, m] such that 



 

 

// adjacent vertices have distinct integers. A value for x [k] is determined in the range 

//[0,m].x[k]Is assigned the next highest numbered color while maintaining distinctness 

// from the adjacent vertices of vertex k. If no such color exists, then x [k] is0. 

{ 

repeat 

{ 

x [k]: = (x [k] +1) mod(m+1) // Next highest color. 

If (x [k] = 0) thenreturn;                 // All colors have been used 

 for j := 1 to ndo 

{ // check if this color is distinct from adjacent colors 

 if ((G [k, j] !=0) and (x [k] = x[j])) 

// If (k, j) is and edge and if adj. vertices have the same color then break; 

} 

if (j = n+1) thenreturn; // New color found 

}until(false); // Otherwise try to find another color. 

} 

Example: 

 

Color the graph given below with minimum number of colors by backtracking using state 

space tree. 

 

x1 

1 
2 

3 

1 2 2 3 1 3 1 2 x2 

  1 3 1 2 2 x3 

4 3 
3 1 2 2 3 1 3 

Graph 

2    3 2 2 
x4 

3 3 1    3 1 3   1 3 1    1 2 2    1 2 

A 4-node graph and all possible 3-colorings 



 

 

 
 
Hamiltonian cycles 
 
Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle (suggested by 
William Hamilton) is a round-trip path along n edges of G that visits every vertex once 
and returns to its starting position. In other vertices of G are visited in the order v1, v2,  . . 

. . . , vn+1, then the edges (vi, vi+1) are in E, 1 <i <n, and the vi  are  distinct expect for v1 
and vn+1, which are equal. The graph G1 contains  the  Hamiltonian cycle 1, 2, 8, 7, 6, 5, 

4, 3, 1. The graph G2 contains no Hamiltonian  cycle. 

 

Two graphs to illustrate Hamiltoniancycle 

The backtracking solution vector (x1, . . . . . xn) is defined so that xi represents the 

ithvisited vertex of the proposed cycle. If k = 1, then x1 can be any of the n vertices. To 

avoid printing the same cycle n times, we require that x1 = 1. If 1 < k < n, then xk  can be 

any vertex v that is distinct from x1, x2, . . . , xk–1 and v is connected by an edge to kx-1. 

The vertex xn can only be one remaining vertex and it must be connected to both xn-1 
andx1. 

 

Using NextValue algorithm we can particularize the recursive backtracking schema to find 

all Hamiltonian cycles. This algorithm is started by first initializing the adjacency matrix 

G[1: n, 1: n], then setting x[2: n] to zero and x[1] to 1, and then executing Hamiltonian(2). 

 

The traveling salesperson problem using dynamic programming asked for a tour that has 

minimum cost. This tour is a Hamiltonian cycles. For the simple case of a graph  all of 

whose edge costs are identical, Hamiltonian will find a minimum-cost tour if a tour exists. 

Algorithm NextValue(k) 

// x [1: k-1] is a path of k – 1 distinct vertices . If x[k] = 0, then no vertex has been 

// assigned to x [k]. After execution, x[k] is assigned to the next highest numberedvertex 

// which does not already appear in x [1 : k – 1] and is connected by an edge to x [k –1]. 

// Otherwise x [k] = 0. If k = n, then in addition x [k] is connected to x[1]. 

{ 

repeat 

1 2 3 4 1 2 3 

8 7 6 5 5 4 

GraphG1 GraphG2 
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{ 

          x [k] := (x [k] +1) mod(n+1); //Nextvertex. 

        If (x [k] = 0) then return; 

      If (G [x [k – 1], x [k]] !=0)then 

      { // Is there an edge? 

for j := 1 to k – 1 do if (x [j] = x [k]) then break; 

// check for distinctness. 

If (j = k) then    // If true, then the vertex is distinct. 

 If ((k < n) or ((k = n) and G [x [n], x [1]] 0)) 

Then return; 

} 

} until(false); 

} 

 

Algorithm Hamiltonian(k) 

// This algorithm uses the recursive formulation of backtracking to find all 
theHamiltonian 

// cycles of a graph. The graph is stored as an adjacency matrix G [1: n, 1: n]. All cycles 
begin 

// at node1. 

{ 

repeat 

{ // Generate values for x[k]. 

NextValue(k); //Assign a legal Next value to 

x[k]. if (x [k] = 0) then return; 

if (k = n) then write (x 

[1:n]); else Hamiltonian (k 

+1) 

} until(false); 

} 
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 BRANCH AND BOUND 

 Generalmethod: 

 

Branch and Bound is another method to systematically search a solution space. Just like 

backtracking, we will use bounding functions to avoid generating subtrees that do not 

contain an answer node. However branch and Bound differs from backtracking in two 

ways: 

 

1. It has a branching function, which can be a depth first search, breadth first search 

or based on bounding function. 

 

2. It has a bounding function, which goes far beyond the feasibility test as a mean to 

prune efficiently the search tree. 

 

Branch and Bound refers to all state space search methods in which all children of  the E-

node are generated before any other live node becomes the E-node 

 

Branch and Bound is the generalization of both graph search strategies, BFS and D- 

search. 

 

 A BFS like state space search is called as FIFO (First in first out) search as 
the list of live nodes in a first in first out list (or queue). 

 

 A D search like state space search is called as LIFO (Last in first out) 
search as the list of live nodes in a last in first out (or stack). 

 

Definition 1: Live node is a node that has been generated but whose children have not yet 

been generated. 

 

Definition 2: E-node is a live node whose children are currently being explored. In other 

words, an E-node is a node currently being expanded. 

 

Definition 3: Dead node is a generated node that is not to be expanded or explored any 

further. All children of a dead node have already been expanded. 

 

Definition 4: Branch-an-bound refers to all state space search methods in which all 

children of an E-node are generated before any other live node can become 

the E-node. 
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 Least Cost (LC)search: 

 

In both LIFO and FIFO Branch and Bound the selection rule for the next E-node in rigid 

and blind. The selection rule for the next E-node does not give any preference  to a node 

that has a very good chance of getting the search to an answer node quickly. 

 

The search for an answer node can be obtained by using an “intelligent” ranking 
function C(.) for live nodes. The next E-node is selected on the basis of this ranking 

function. The node x is assigned a rank using: 

c(x)=f(h(x))+g(x) 

where,     c(x) is the cost of x. 

 

h(x) is the cost of reaching x from the root and f(.) is any non-decreasing function. 

  is g(x) is an estimate of the additional effort needed to reach an answer node from x. 

 

A search strategy that uses a cost function  

c(x)=f(h(x))+g(x)  to select next 

 

E-node would always choose for its next E-node a live node with least c(.) is    is is 

known as LC–search (Least Cost search) 

 

 

BFS and D-search are special cases of LC-search.If  

g  

= 0 and f(h(x)) = levelof 

node x, then an LC search generates nodes by levels.  This is eventually the sameas 

a BFS. If f(h(x)) = 0 and 

essentially aD-search. 
g

(x)> g


(y)wheneveryisachildofx,thenthesearchis 

An LC-search coupled with bounding functions is called an LC-branch and bound search 

 

We associate a cost c(x) with each node x in the state space tree. It is not possibleto 
easily compute the function c(x). So we compute aestimate c


(x)ofc(x). 

 Control Abstraction forLC-Search: 
Let t be a state space tree and c() a cost function for the nodes in t. If x is a node in t, then 

c(x) is the minimum cost of any answer node in the subtree with root x. Thus, c(t) is the 

cost of a minimum-cost answer node int. 

 

Aheuristic 
c

(.)isusedtoestimatec().Thisheuristicshouldbeeasytocomputeand 

generally has the property that if x is either an answer node or a leaf node, then 

c(x)= c

(x) . 
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LC-search usesc

to find an answer node. The algorithm usestwofunctionsLeast()and Add() 

to delete and add a live node from or to the list of live  nodes,  respectively. 

 

Least() finds a live node with least c(). This node is deleted from the list of live nodes 

andn returned. 

Add(x) adds the new live node x to the list of live nodes. The list of live nodes be 

implemented as a min-heap. 

 

Algorithm LCSearch outputs the path from the answer node it finds to the root  node 

t. This is easy to do if with each node x that becomes live, we associate a field parent 

which gives the parent of node x. When the answer node g is found, the path from g to t 

can be determined by following a sequence of parent values starting from the current E-

node (which is the parent of g) and ending at node t. 

 

Listnode =record 

{ 

Listnode * next, *parent; float cost; 

} 

 

AlgorithmLCSearch(t) 

{ //Search t for an answernode 

if *t is an answer node then output *t and 

return; E:=t; //E-node. 

initialize the list of live nodes to be empty; 

repeat 

{ 

for each child x of Edo 

{ 

if x is an answer node then output the path from x to t and 

return; 

 Add (x); //x is a new livenode. 

(x parent):=E; // pointer for path to root 

} 

if there are no more live nodes then 
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{ 

write (“No answer 

node”); return; 

} 

E :=Least(); 

} until(false); 

} 

The root node is the first, E-node. During the execution of LC search, this list  contains all 

live nodes except the E-node. Initially this list  should  be  empty. Examine all the 

children of the E-node, if one of the children is an answer node, then the algorithm 

outputs the path from x to t and terminates. If the child of E is not an answer node, then it 

becomes a live node. It is added to the list of live nodes and its parent field set to E. When 

all the children of E have been generated, E becomes a dead node. This happens only if 

none of E‟s children is an answer node. Continue the search further until no live nodes 

found. Otherwise, Least(), by definition, correctly chooses the next E-node and the search 

continues from here. 

LC search terminates only when either an answer node is found or the entire state space 

tree has been generated and searched. 

 Bounding: 
A branch and bound method searches a state space tree using any search  mechanism in 

which all the children of the E-node are generated before another node becomes the E-

node. We assume that each answer node x has a cost c(x) associated with it and that a 

minimum-cost answer node is to be found. Three common search strategies are FIFO, 

LIFO, and LC. The three search methods differ only in the selection rule used to obtain 

the nextE-node. 

good bounding helps to prune efficiently the tree, leading to a faster exploration of the 

solutionspace. 

A  costfunctionc

(.)suchthatc


(x)<c(x)  is used  to provide lower bounds on 

solutionsobtainablefromanynodex.Ifupperisanupperboundonthecostofa 

minimum-cost solution, then all live nodes x with c(x)>c

(x)> upper. The starting 

value for upper can be obtained by some heuristic or can be set . 

 

As long as the initial value for upper is not less than the cost of a minimum-cost answer 

node, the above rules to kill live nodes will not result in the killing of a live node that can 

reach a minimum-cost answer node. Each time a new answer node is found, the value of 

upper can beupdated. 

 

Branch-and-bound algorithms are used for optimization problems where, we deal directly 

only with minimization problems. A maximization problem is easily converted to a 

minimization problem by changing the sign of the objective function. 

 

To formulate the search for an optimal solution for a least-cost answer node in a  state 

space tree, it is necessary to define the cost function c(.), such that c(x) is minimum for all 
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nodes representing an optimal solution. The easiest way to do this is to use the objective 

function itself forc(.). 

 

 For nodes representing feasible solutions, c(x) is the value of the objective 
function for that feasible solution. 

 

 For nodes representing infeasible solutions, c(x) =0. 

 

 For nodes representing partial solutions, c(x) is the cost of the minimum-cost node 

in the subtree with root x. 

 

Since, c(x) is generally hard to compute, the branch-and-bound algorithm will usean 

Estimate

(x)suchthat(x)<c(x)forallx. 

Sum-of-Subsets problem 

 

 In this problem, we are given a vector of N values, called weights. The weights are 

usually given in ascending order of magnitude and are unique. 

 For example, W= (2, 4, 6, 8, 10) is a weight vector. We are also given a value M, for 

example 20. 

 The problem is to find all combinations of the weights that exactly add to M. 

 In this example, the weights that add to 20 are: 

(2, 4, 6, 8); (2, 8, 10); and (4, 6, 10). 

 Solutions to this problem are often expressed by an N-bit binary solution vector, X, 

where a 1 in position i indicates that Wiis part of the solution and a 0 indicates it is 

not. 

 In this manner the three solutions above could be expressed as: (1,1,1,1,0); 

(1,0,0,1,1); (0,1,1,0,1) 

Sum-of-Subsets problem 

 We are given „n‟ positive numbers called weights and we have to find all 
combinations of these numbers whose sum is M. this is called sum of subsets 
problem. 

 If we consider backtracking procedure using fixed tuple strategy , the elements X(i) 
of the solution vector is either 1 or 0 depending on if the weight W(i) is included or 
not. 

 If the state space tree of the solution, for a node at level I, the left child corresponds 
to X(i)=1 and right to X(i)=0. 

Sum of Subsets Algorithm 

void SumOfSub(float s, int k, float r) 

{ 

// Generate left child. 

x[k] = 1; 

if (s+w[k] == m) 

{ for (int j=1; j<=k; j++) 
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Print (x[j] ) 

} 

else if (s+w[k]+w[k+1] <= m) 

SumOfSub(s+w[k], k+1, r-w[k]); 

// Generate right child and evaluate 

if ((s+r-w[k] >= m) && (s+w[k+1] <= m)) { x[k] = 0; 

SumOfSub(s, k+1, r-w[k]); 

} 

} 

Sum of Subsets State Space Tree 

 

Example n=6, w[1:6]={5,10,12,13,15,18},m=30 

 

 
 

 

Branch and Bound Principal 

 

 The term branch-and-bound refers to all state space search methods in which all 
children of the £-node are generated before any other live node can become the £-
node. 

 We have already seen two graph search strategies, BFS and D-search, in 
which the exploration of a new node cannot begin until the node currently 
being explored is fully explored. 

 Both of these generalize to branch-and-bound strategies. 
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 In branch-and-bound terminology, a BFS-like state space search will be called FIFO 
(First In First Out) search as the list of live nodes is a first-in-first-out list (or queue). 

 A D-search like state space search will be called LIFO (Last In First Out) search as 

the list of live nodes is a last-in-first-out list (or stack). 

Control Abstraction for Branchand Bound(LC Method) 

 

LC Method Control AbstractionExplanation 

 The search for an answer node can often be speeded by using an "intelligent" 

ranking function, c(. ), for livenodes. 

 The next £-node is selected on the basis of this rankingfunction. 

 Let T be a state space tree and c( ) a cost function for the nodes in T. If X is a node 

in T then c(X) is the minimum cost of any answer node in the subtree with root X. 

Thus, c(T) is the cost of a minimum cost answer node 

 The algorithm uses two subalgorithms LEAST(X) and ADD(X) to respectively 

delete and add a live node from or to the list of livenodes. 

 LEAST{X) finds a live node with least c( ). This node is deleted from the list of 

live nodes and returned in variableX. 

 ADD(X) adds the new live node X to the list of livenodes. 

 Procedure LC outputs the path from theanswer 
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The 0/1 knapsack problem 

 
The 0/1 knapsack problem 

 
The Branching Mechanism in the Branch-and-Bound Strategy toSolve 0/1KnapsackProblem. 

How to find the upper bound? 

Ans: by quickly finding a feasible solution in a greedy manner: starting from the 

smallest available i, scanning towards the largest i‟s until M is exceeded. The 

upper bound can be calculated. 
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How to find the ranking Function 

 

How to expand the tree? 

 

 By the best-first searchscheme 

 That is, by expanding the node with the best lower bound. If two nodes have the 

same lower bounds, expand the node with the lower upper bound. 

 

0/1 Knapsack algorithm using BB 
 

 
 

 

0/1 Knapsack Example usingLCBB (Least Cost) 
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 Example (LCBB) 

 Consider the knapsackinstance: 

 n = 4; 

 (pi, p2,p3, p4) = (10, 10, 12, 18); 

 (wi. w2, w3, w4) = (2, 4, 6, 9)and 

  M = 15. 

 

0/1 Knapsack State Space tree ofExample using LCBB 

 

0/1 Knapsack State Space tree ofExample using FIFO BB 
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The traveling salesperson problem 

 

 Given a graph, the TSP Optimization problem is to find a tour, starting from 

any vertex, visiting every other vertex and returning to the starting vertex, 

with minimalcost. 

 

The basic idea 

 There is a way to split the solution space (branch) 

There is a way to predict a lower bound for a class of solutions. There is also a way tofind a 

upper bound of an optimal solution. If the lower bound of a solution exceeds the upper 

bound, this solution cannot be optimal and thus we should terminate the branching 

associated with thissolution. 

 

Example- TSP 

 

 Example with Cost Matrix(a) and its Reduced Cost Matrix (b) 

 Reduced matrix means every row and column of matrix should contain at least one 

Zero and all other entries should be non negative. 
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Reduced Matrix for node 2,3…10 ofState Space tree using LC Method 

 

 
 

State Space tree of Example using LCMethod 
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MODULE-V 

NP –HARD AND NP-COMPLETE PROBLEMS. 

Basic concepts: 

NP  Nondeterministic Polynomial time. 

The problems has best algorithms for their solutions have “Computing times”, that cluster into 

two groups. 

Group-1 

             Problems with solution time  bound by a polynomial of a small degree.  They are also 

called “Tractable Algorithms”. Most Searching & Sorting algorithms are polynomial time 

algorithms. Ex: Ordered Search (O (log n)), Polynomial evaluation O(n) 

Sorting O(n.log n) 

 

Group-II 

        Problems with solution times not bound by polynomial (simply non polynomial ). These 

are hard or intractable problems. None of the problems in this group has been solved by any 

polynomial time algorithm. Ex: Traveling Sales Person  O(n
2
 2

n
), Knapsack O(2

n/2
) 

 

No one has been able to develop a polynomial time algorithm for any problem in the  

group –II.  So, it is compulsory and finding algorithms whose computing times are greater 

than polynomial very quickly because such vast amounts of time to execute that even 

moderate size problems cannot be solved. 

 

Theory of NP-Completeness: 

Show that may of the problems with no polynomial time algorithms are computational time 

algorithms are computationally related. 

There are two classes of non-polynomial time problems  

1. NP-Hard 

2. NP-Complete  

NP Complete Problem: A problem that is NP-Complete can solved in polynomial time if and 

only if (iff) all other NP-Complete problems can also be solved in polynomial time. 

NP-Hard: Problem can be solved in polynomial time then all NP-Complete problems can be 

solved in polynomial time. 

All NP-Complete problems are NP-Hard but some NP-Hard problems are not know to be NP-

Complete. 
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Nondeterministic Algorithms: 

Algorithms with the property that the result of every operation is uniquely defined are termed 

as deterministic algorithms. Such algorithms agree with the way programs are executed on a 

computer. 

Algorithms which contain operations whose outcomes are not uniquely defined but are limited 

to specified set of possibilities. Such algorithms are called nondeterministic algorithms. 

The machine executing such operations is allowed to choose any one of these outcomes 

subject to a termination condition to be defined later. 

To specify nondeterministic algorithms, there are 3 new functions. 

Choice(S)  arbitrarily chooses one of the elements of sets S 

Failure ()  Signals an Unsuccessful completion 

Success ()  Signals a successful completion. 

Example for Non Deterministic algorithms: 

Algorithm Search(x){ 

//Problem is to search an element x 

//output J, such that A[J]=x; or J=0 if x is not in A 

J:=Choice(1,n); 

if( A[J]:=x) then  

{ 

     Write(J); 

   Success(); 

               } 

else{ 

    write(0); 

    failure(); 

} 

Whenever there is a set of choices that leads to a successful completion then one such set of 

choices is always made and the algorithm terminates. 

A Nondeterministic algorithm terminates unsuccessfully if and only if (iff) there exists no set 

of choices leading to a successful signal. 

 

Nondeterministic Knapsack algorithm 

Algorithm DKP(p, w, n, m, r, x) 

{ 
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W:=0; 

P:=0; 

for  i:=1 to n do{ 

x[i]:=choice(0, 1); 

W:=W + x[i]*w[i]; 

P:=P + x[i]*p[i]; 

} 

if( (W>m) or (P<r) ) then Failure(); 

else Success(); 

} 

p  given Profits w  given Weights 

n  Number of elements (number of p or w) m  Weight of bag limit 

P Final Profit W Final weight 

 

The Classes NP-Hard & NP-Complete: 

For measuring the complexity of an algorithm, we use the input length as the parameter. For 

example, An algorithm A is of polynomial complexity p() such that the computing time of A 

is O(p(n)) for every input of size n. 

Decision problem/ Decision algorithm: Any problem for which the answer is either zero or 

one is decision problem. Any algorithm for a decision problem is termed a decision algorithm. 

Optimization problem/ Optimization algorithm: Any problem that involves the 

identification of an optimal (either minimum or maximum) value of a given cost function is 

known as an optimization problem. An optimization algorithm is used to solve an optimization 

problem. 

 

P  is the set of all decision problems solvable by deterministic algorithms in polynomial time. 

NP  is the set of all decision problems solvable by nondeterministic algorithms in polynomial 

time. 

 

Since deterministic algorithms are just a special case of nondeterministic, by this we 

concluded that P ⊆NP 

 Commonly believed relationship between P & NP 

 

The most famous unsolvable problems in Computer Science is Whether P=NP or P≠NP 

In considering this problem, s.cook formulated the following question. 

If there any single problem in NP, such that if we showed it to be in „P‟ then that would imply 

that P=NP. 
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Cook answered this question with 

Theorem: Satisfiability is in P if and only if (iff) P=NP 

Notation of Reducibility  

Let L1 and L2 be problems, Problem L1 reduces to L2 (written L1 α L2) iff there is a way to 

solve L1 by a deterministic polynomial time algorithm using a deterministic algorithm that 

solves L2 in polynomial time 

This implies that, if we have a polynomial time algorithm for L2, Then we can solve L1 in 

polynomial time. 

Here α  is a transitive relation i.e., L1 α L2 and L2 α L3 then L1 α L3 

A problem L is NP-Hard if and only if (iff) satisfiability reduces to L ie., Statisfiability α L 

A problem L is NP-Complete if and only if (iff) L is NP-Hard and L Є NP 

 

   
Commonly believed relationship among P, NP, NP-Complete and NP-Hard 

 

Most natural problems in NP are either in P or NP-complete. 

 

Examples of NP-complete problems: 

Packing problems: SET-PACKING, INDEPENDENT-SET. 

Covering problems: SET-COVER, VERTEX-COVER. 

Sequencing problems: HAMILTONIAN-CYCLE, TSP. 

Partitioning problems: 3-COLOR, CLIQUE. 

Constraint satisfaction problems: SAT, 3-SAT. 

Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK. 


