

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE LECTURE NOTES

Course Name DESIGN AND ANALYSIS OF ALGORITHIMS

Course Code AITB01

Programme B.Tech

Semester IV

Course

Coordinator
Ms. G GEETHA, Assistant Professor

Course Faculty Dr. M Purushotham Reddy, Associate Professor

Ms. G Geetha, Assistant Professor

Dr. K Suvarchala, Assistant Professor

Ms. E Uma Shankari, Assistant Professor

Ms. G Srilekha, Assistant Professor

Lecture Numbers 1-63

Topic Covered All

COURSE OBJECTIVES (COs):

The course should enable the students to:

I.

Assess how the choice of data structures and algorithm design methods impacts the

performance of programs,.

II.
Solve problems using data structures such as binary search trees, and graphs and

writing programs for these solutions.

III.
Choose the appropriate data structure and algorithm design method for a specified

application

IV.

Solve problems using algorithm design methods such as the greedy method, divide and

conquer, dynamic programming, backtracking, and branch and bound and writing

programs for these solutions

COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the ability to do the

following:

AITB05.01 Describe Pseudo code for expressing algorithms.

AITB05.02 Summarize the concept of Space complexity, time complexity.

AITB05.03 Describe Big O notation, omega notation, theta notation, little o notation and amortized

complexity.

AITB05.04 Use the concept of Divide and Conquer such as general method, binary search, quick

sort.

AITB05.05 Describe the concept of merge sort, Strassen‟s matrix multiplication.

AITB05.06 Determine disjoint set operations, union and find algorithms.

AITB05.07 Understand efficient non recursive binary tree traversal algorithms.

AITB05.08 Describe the concept of spanning trees with suitable examples.

AITB05.09 Use breadth first search and depth first search graph traversals.

AITB05.10 Describe connected components, biconnected components.

AITB05.11 Understand general method of greedy method, job sequencing with deadlines, knapsack

problem.

AITB05.12 Analyze the concept of minimum cost spanning trees, single source shortest paths.

AITB05.13 Describe general method of dynamic programming, matrix chain multiplication.

AITB05.14 Understand optimal binary search trees, 0/1 knapsack problem, single source

shortest paths.

AITB05.15 Define all pairs shortest paths problem, the travelling salesperson problem.

AITB05.16 Discuss the concept of Backtracking, the 8 queens problem.

AITB05.17 Understand sum of subsets problem, graph coloring.

AITB05.18 Summarize the concept of Hamiltonian cycles, Branch and bound.

AITB05.19 Discuss 0/1 knapsack problem, least cost branch and bound solution.

AITB05.20 Apply the concept of first in first out branch and bound solution, travelling salesperson

problem.

AITB05.21 Knowledge about basic concepts of NP Hard and NP Complete, Non-deterministic

algorithms.

AITB05.22 Apply Working with the classes NP - Hard and NP.

AITB05.23 Understand NP Hard problems, clique decision problem.

AITB05.24 Implement chromatic number decision problem.

AITB05.25 Discuss Cook's theorem in NP Hard and NP Complete problems.

Module-1

Introduction

ALGORITHM:

Algorithm was first time proposed a purshian mathematician Al-Chwarizmi in 825 AD.

According to web star dictionary, algorithm is a special method to represent the procedure

to solve given problem.

OR

An Algorithm is any well-defined computational procedure that takes some value or set of

values as Input and produces a set of values or some value as output. Thus algorithm is a

sequence of computational steps that transforms the input into the output.

Formal Definition:

 An Algorithm is a finite set of instructions that, if followed, accomplishes a

particular task. In addition, all algorithms should satisfy the following criteria.

1. Input. Zero or more quantities are externally supplied.

2. Output. At least one quantity is produced.

3. Definiteness. Each instruction is clear and unambiguous.

4. Finiteness. If we trace out the instructions of an algorithm, then for all cases, the

algorithm terminates after a finite number of steps.

5. Effectiveness. Every instruction must very basic so that it can be carried out, in

principle, by a person using only pencil & paper.

Areas of study of Algorithm:

 How to device or design an algorithm– It includes the study of various design

techniques and helps in writing algorithms using the existing design techniques

like divide and conquer.

 How to validate an algorithm– After the algorithm is written it is necessary to

check the correctness of the algorithm i.e for each input correct output is

produced, known as algorithm validation. The second phase is writing a

program known as program proving or program verification.

 How to analysis an algorithm–It is known as analysis of algorithms or

performance analysis, refers to the task of calculating time and space complexity

of the algorithm.

 How to test a program – It consists of two phases . 1. debugging is detection and

correction of errors. 2. Profiling or performance measurement is the actual

amount of time required by the program to compute the result.

Algorithm Specification:

Algorithm can be described in three ways.

 1. Natural language like English:

2. Graphic representation called flowchart:

This method will work well when the algorithm is small& simple.

3. Pseudo-code Method:

 In this method, we should typically describe algorithms as program, which resembles

language like Pascal &algol.

Pseudo-Code for writing Algorithms:

1. Comments begin with // and continue until the end of line.

2. Blocks are indicated with matching braces {and}.

3. An identifier begins with a letter. The data types of variables are not explicitly

declared.

4. Compound data types can be formed with records. Here is an example,

Node. Record

{

data type – 1 data-1; .

 data type – n data – n;

 node * link;

 }

 Here link is a pointer to the record type node. Individual data items of a

record can be accessed with and period.

5. Assignment of values to variables is done using the assignment statement.

<Variable>:= <expression>;

6. There are two Boolean values TRUE and FALSE.

 Logical Operators AND, OR, NOT

Relational Operators <, <=,>,>=, =, !=

7. The following looping statements are employed.

For, while and repeat-until

While Loop:

 While < condition >do{

 <statement-1>

 . .

 <statement-n>

 }

For Loop:

 For variable: = value-1 to value-2 step step do

{

 <statement-1>

 .

 .

<statement-n>

}

 One step is a key word, other Step is used for increment or decrement.

repeat-until:

 repeat{

 <statement-1>

 .

 .

 <statement-n>

 }until<condition>

8. A conditional statement has the following forms.

(1) If <condition> then <statement>

(2) If <condition> then <statement-1>

 Else <statement-2>

Case statement:

Case

{ :<condition-1>:<statement-1>

 .

 .

 :<condition-n>:<statement-n>

 :else:<statement-n+1>

}

9. Input and output are done using the instructions read & write.

10. There is only one type of procedure:

Algorithm, the heading takes the form,

 Algorithm Name (<Parameter list>)

As an example, the following algorithm fields & returns the maximum of „n‟ given

numbers:

Algorithm Max(A,n)

 // A is an array of size n

{

Result := A[1];

for I:= 2 to n do

 if A[I] > Result then

 Result :=A[I];

 return Result;

}

In this algorithm (named Max), A & n are procedure parameters. Result & I are

Local variables.

Performance Analysis.

 There are many Criteria to judge an algorithm.

– Is it correct?

– Is it readable?

– How it works

Performance evaluation can be divided into two major phases.

1. Performance Analysis (machine independent)

– space complexity: The space complexity of an algorithm is the amount of

memory it needs to run for completion.

– time complexity: The time complexity of an algorithm is the amount of

computer time it needs to run to completion.

2 .Performance Measurement (machine dependent).

Space Complexity:

The Space Complexity of any algorithm P is given by S(P)=C+SP(I),C is constant.

1.Fixed Space Requirements (C)

Independent of the characteristics of the inputs and outputs

– It includes instruction space

– space for simple variables, fixed-size structured variable, constants

2. Variable Space Requirements (SP(I))

depend on the instance characteristic I

– number, size, values of inputs and outputs associated with I

– recursive stack space, formal parameters, local variables, return address

Examples:

*Program 1 :Simple arithmetic function

Algorithmabc(a, b, c)

{

 return a + b + b * c + (a + b - c) / (a + b) + 4.00;

 }

SP(I)=0

HenceS(P)=Constant

Program 2: Iterative function for sum a list of numbers

Algorithm sum(list[], n)

{

tempsum = 0;

 for i = 0 ton do

tempsum += list [i];

 return tempsum;

}

In the above example list[] is dependent on n. Hence SP(I)=n. The remaining variables

are i,n, tempsum each requires one location.

Hence S(P)=3+n

*Program 3: Recursive function for sum a list of numbers

Algorithmrsum(list[], n)

{

If (n<=0) then

return 0.0

else

 return rsum(list, n-1) + list[n];

 }

In the above example the recursion stack space includes space for formal parameters

local variables and return address. Each call to rsum requires 3 locations i.e for list[],n

and return address .As the length of recursion is n+1.

S(P)>=3(n+1)

Time complexity:

 T(P)=C+TP(I)

It is combination of-Compile time (C)

independent of instance characteristics

-run (execution) time TP

dependent of instance characteristics

Time complexity is calculated in terms of program step as it is difficult to know the

complexities of individual operations.

Definition: Aprogram step is a syntactically or semantically meaningful program

segment whose execution time is independent of the instance characteristics.

Program steps are considered for different statements as : for comment zero steps .

 assignment statement is considered as one step. Iterative statements such as “for, while

and until-repeat” statements, we consider the step counts based on the expression .

Methods to compute the step count:

1) Introduce variable count into programs

2) Tabular method

– Determine the total number of steps contributed by each statement

step per execution frequency

– add up the contribution of all statements

Program 1.with count statements

Algorithm sum(list[], n)

{

tempsum := 0; count++; /* for assignment */

 for i := 1 to n do {

count++; /*for the for loop */

tempsum := tempsum + list[i]; count++; /* for assignment */

 }

count++; /* last execution of for */

 return tempsum;

count++; /* for return */

Hence T(n)=2n+3

Program :Recursive sum

Algorithmrsum(list[], n)

{

 count++; /*for if conditional */

 if (n<=0) {

 count++; /* for return */

 return 0.0 }

else

returnrsum(list, n-1) + list[n];

 count++;/*for return and rsum invocation*/

}

T(n)=2n+2

Program for matrix addition

Algorithm add(a[][MAX_SIZE], b[][MAX_SIZE],

 c[][MAX_SIZE], rows, cols)

{

 for i := 1 to rows do {

count++; /* for i for loop */

 for j := 1 to cols do {

count++; /* for j for loop */

 c[i][j] := a[i][j] + b[i][j];

count++; /* for assignment statement */

 }

count++; /* last time of j for loop */

 }

count++; /* last time of i for loop */

}

T(n)=2rows*cols+2*rows+1

II Tabular method.

Complexity is determined by using a table which includes steps per execution(s/e) i.e

amount by which count changes as a result of execution of the statement.

Frequency – number of times a statement is executed.

Statement s/e Frequency Total steps

Algorithm sum(list[], n)

{

tempsum := 0;

 for i := 0 ton do

tempsum := tempsum + list [i];

 return tempsum;

}

0

0

1

1

1

1

0

-

-

1

n+1

n

1

0

0

0

1

n+1

n

1

0

Total 2n+3

Statement s/e Frequency

n=0 n>0

Total steps

n=0 n>0

Algorithmrsum(list[], n)

{

If (n<=0) then

return 0.0;

else

 return rsum(list, n-1) + list[n];

 }

0

0

1

1

0

1+x

0

-

-

1

1

0

0

0

-

-

1

0

0

1

0

0

0

1

1

0

0

0

0

0

1

0

0

1+x

0

Total 2 2+x

Statement s/e Frequency Total steps

Algorithm add(a,b,c,m,n)

{

 for i:=1 to m do

 for j:=1 to n do

 c[i,j]:=a[i,j]+b[i,j];

}

0

0

1

1

1

0

-

-

m+1

m(n+1)

mn

-

0

0

m+1

mn+m

mn

0

Total 2mn+2m+1

 Complexity ofAlgorithms

The complexity of an algorithm M is the function f(n) which gives the running time

and/or storage space requirement of the algorithm in terms of the size „n‟ of the input

data. Mostly, the storage space required by an algorithm is simply a multiple of the data

size „n‟. Complexity shall refer to the running time of thealgorithm.

The function f(n), gives the running time of an algorithm, depends not only on the size „n‟

of the input data but also on the particular data. The complexity function f(n) for certain

casesare:

1. Best Case : The minimum possible value of f(n) is called the bestcase.

2. Average Case : The average value off(n).

3. Worst Case : The maximum value of f(n) for any key possibleinput.

The field of computer science, which studies efficiency of algorithms, is known as

analysis ofalgorithms.

Algorithms can be evaluated by a variety of criteria. Most often we shall be interested in

the rate of growth of the time or space required to solve larger and larger instances of a

problem. We will associate with the problem an integer, called the size of the problem,

which is a measure of the quantity of inputdata.Rate ofGrowth:

The following notations are commonly use notations in performance analysis and used to

characterize the complexity of analgorithm:

Asymptotic notation

Big oh notation:O

The function f(n)=O(g(n)) (read as “f of n is big oh of g of n”) iff there exist positive

constants c and n0 such that f(n)≤C*g(n) for all n, n≥0

The value g(n)is the upper bound value of f(n).

Example:

3n+2=O(n) as

3n+2 ≤4n for all n≥2

Omega notation:Ω

The function f(n)=Ω (g(n)) (read as “f of n is Omega of g of n”) iff there exist positive

constants c and n0 such that f(n)≥C*g(n) for all n, n≥0

The value g(n) is the lower bound value of f(n).

Example:

3n+2=Ω (n) as

3n+2 ≥3n for all n≥1

Theta notation:θ

The function f(n)= θ (g(n)) (read as “f of n is theta of g of n”) iff there exist positive

constants c1, c2 and n0 such that C1*g(n) ≤f(n)≤C2*g(n) for all n, n≥0

Example:

3n+2=θ (n) as

3n+2 ≥3n for all n≥2

3n+2 ≤3n for all n≥2

Here c1=3 and c2=4 and n0=2

Little oh: o

The function f(n)=o(g(n)) (read as “f of n is little oh of g of n”) iff

Lim f(n)/g(n)=0 for all n, n≥0

n~

Example:

3n+2=o(n
2
) as

Lim ((3n+2)/n
2
)=0

n~

Little Omega:ω

The function f(n)=ω (g(n)) (read as “f of n is little ohomega of g of n”) iff

Lim g(n)/f(n)=0 for all n, n≥0

n~

Example:

3n+2=o(n
2
) as

Lim (n
2
/(3n+2) =0

n~

AnalyzingAlgorithms
Suppose „M‟ is an algorithm, and suppose „n‟ is the size of the input data. Clearly the

complexity f(n) of M increases as n increases. It is usually the rate of increase of f(n) we

want to examine. This is usually done by comparing f(n) with some standard functions.

The most common computing timesare:

O(1), O(log2n), O(n), O(n. log2n), O(n2), O(n3), O(2n), n! andnn

Numerical Comparison of DifferentAlgorithms
The execution time for six of the typical functions is givenbelow:

N log2n n*log2n n2 n3 2n

1 0 0 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4096 65,536

32 5 160 1024 32,768 4,294,967,296

64 6 384 4096 2,62,144 Note1

128 7 896 16,384 2,097,152 Note2

256 8 2048 65,536 1,677,216 ????????

Note1: The value here is approximately the number of machine instructions executed

by a 1 gigaflop computer in 5000years.

Note 2: The value here is about 500 billion times the age of the universe in nanoseconds,

assuming a universe age of 20 billionyears.
Graph of log n, n, n log n, n2, n3, 2n, n! andnn

One way to compare the function f(n) with these standard function is to use the functional

„O‟ notation, suppose f(n) and g(n) are functions defined on the positive integers with the

property that f(n) is bounded by some multiple g(n) for almost all „n‟.Then,f(n) =O(g(n))

Which is read as “f(n) is of order g(n)”. For example, the order of complexityfor:

 Linear search is O(n)

 Binary search is O (logn)

 Bubble sort is O(n2)

 Merge sort is O (n logn)

Probabilistic analysis of algorithms is an approach to estimate the computational

complexity of an algorithm or a computational problem. It starts from an assumption about

a probabilistic distribution of the set of all possible inputs. This assumption is then used to

design an efficient algorithm or to derive the complexity of a known algorithm.

http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Computational_complexity
http://en.wikipedia.org/wiki/Algorithm

DIVIDE AND CONQUER

General method:

Given a function to compute on „n‟ inputs the divide-and-conquer strategy suggests splitting

the inputs into „k‟ distinct subsets, 1<k<=n, yielding „k‟ sub problems.

These sub problems must be solved, and then a method must be found to combine sub

solutions into a solution of the whole.

If the sub problems are still relatively large, then the divide-and-conquer strategy can

possibly be reapplied.Often the sub problems resulting from a divide-and-conquer design

are of the same type as the original problem.For those cases the re application of the divide-

and-conquer principle is naturally expressed by a recursive algorithm.DAndC(Algorithm) is

initially invoked as DandC(P), where „p‟ is the problem to be solved.Small(P) is a Boolean-

valued function that determines whether the i/p size is small enough that the answer can be

computed without splitting.If this so, the function „S‟ is invoked.Otherwise, the problem P

is divided into smaller sub problems.These sub problems P1, P2 …Pk are solved by

recursive application of DAndC.Combine is a function that determines the solution to p

using the solutions to the „k‟ sub problems.If the size of „p‟ is n and the sizes of the „k‟ sub

problems are n1, n2 ….nk, respectively, then the computing time of DAndC is described by

the recurrence relation.

T(n)= { g(n) n small

T(n1)+T(n2)+……………+T(nk)+f(n); otherwise.

Where T(n) is the time for DAndC on any i/p of size „n‟.

g(n) is the time of compute the answer directly for small i/ps.

f(n) is the time for dividing P & combining the solution to

sub problems.

 Algorithm DAndC(P)

{

if small(P) then return S(P);

else

{

divide P into smaller instances

 P1, P2… Pk, k>=1;

 Apply DAndC to each of these sub problems;

return combine (DAndC(P1), DAndC(P2),…….,DAndC(Pk));

 }

}

The complexity of many divide-and-conquer algorithms is given by recurrence relation

of the form

T(n) = T(1) n=1

 = aT(n/b)+f(n) n>1

 Where a & b are known constants.

We assume that T(1) is known & „n‟ is a power of b(i.e., n=b
k
)

One of the methods for solving any such recurrence relation is called the substitution

method.This method repeatedly makes substitution for each occurrence of the function.

T is the right-hand side until all such occurrences disappear.

Example:

1) Consider the case in which a=2 and b=2. Let T(1)=2 & f(n)=n.

We have,

T(n) = 2T(n/2)+n

 = 2[2T(n/2/2)+n/2]+n

 = [4T(n/4)+n]+n

 = 4T(n/4)+2n

 = 4[2T(n/4/2)+n/4]+2n

 = 4[2T(n/8)+n/4]+2n

 = 8T(n/8)+n+2n

 = 8T(n/8)+3n

 *

 *

 In general, we see that T(n)=2
i
T(n/2

i
)+in., for any log2 n >=i>=1.

T(n) =2
log n

 T(n/2
log n

) + n log n

Corresponding to the choice of i=log2n

Thus, T(n) = 2
log n

 T(n/2
log n

) + n log n

 = n. T(n/n) + n log n

 = n. T(1) + n log n [since, log 1=0, 2
0
=1]

 = 2n + n log n

 T(n)= nlogn+2n.

The recurrence using the substitution method,it can be shown as

T(n)=n
log

b
a
[T(1)+u(n)]

h(n) u(n)

O(n
r)
,r<0

 O(1)

((log n)
i
),i≥0 ((log n)

i+1
/(i+1))

Ω(n
r
),r>0 (h(n))

Applications of Divide and conquer rule or algorithm:

Binary search, Quick sort, Merge sort, Strassen‟s matrix multiplication.

BINARY SEARCH

 Given a list of n elements arranged in increasing order. The problem is to determine

whether a given element is present in the list or not. If x is present then determine the

position of x, otherwise position is zero.

Divide and conquer is used to solve the problem. The value Small(p) is true if n=1. S(P)= i,

if x=a[i], a[] is an array otherwise S(P)=0.If P has more than one element then it can be

divided into sub-problems. Choose an index j and compare x with aj. then there 3

possibilities (i). X=a[j] (ii) x<a[j] (x is searched in the list a[1]…a[j-1])

(iii) x>a[j] (x is searched in the list a[j+1]…a[n]).

And the same procedure is applied repeatedly until the solution is found or solution is zero.

Algorithm Binsearch(a,n,x)

// Given an array a[1:n] of elements in non-decreasing

//order, n>=0,determine whether „x‟ is present and

// if so, return „j‟ such that x=a[j]; else return 0.

{

low:=1; high:=n;

while (low<=high) do

{

mid:=[(low+high)/2];

if (x<a[mid]) then high;

else if(x>a[mid]) then

low:=mid+1;

else return mid;

 }

return 0;

}

Algorithm, describes this binary search method, where Binsrch has 4 inputssa[], I , n& x.It

is initially invoked as Binsrch (a,1,n,x)A non-recursive version of Binsrch is given below.

This Binsearch has 3 i/psa,n, & x.The while loop continues processing as long as there are

more elements left to check.At the conclusion of the procedure 0 is returned if x is not

present, or „j‟ is returned, such that a[j]=x.We observe that low & high are integer Variables

such that each time through the loop either x is found or low is increased by at least one or

high is decreased at least one.

Thus we have 2 sequences of integers approaching each other and eventually low becomes

> than high & causes termination in a finite no. of steps if „x‟ is not present.

Example:

1) Let us select the 14 entries.

 -15,-6,0,7,9,23,54,82,101,112,125,131,142,151.

mid:=[(low+high)/2

 Place them in a[1:14], and simulate the steps Binsearch goes through as it searches for

different values of „x‟.

 Only the variables, low, high & mid need to be traced as we simulate the algorithm.

 We try the following values for x: 151, -14 and 9.

for 2 successful searches & 1 unsuccessful search.

Table. Shows the traces of Binsearch on these 3 steps.

X=151 low high mid

 1 147

 8 14 11

 12 14 13

 14 14 14

 Found

 x=-14 low high mid

 1 14 7

 1 6 3

 1 2 1

 2 2 2

 2 1 Not found

 x=9 low high mid

 1 14 7

 1 6 3

 4 6 5

 Found

Theorem: Algorithm Binsearch(a,n,x) works correctly.

Proof:We assume that all statements work as expected and that comparisons such as

x>a[mid] are appropriately carried out.

Initially low =1, high= n,n>=0, and a[1]<=a[2]<=……..<=a[n].

If n=0, the while loop is not entered and is returned.Otherwise we observe that each

time thro‟ the loop the possible elements to be checked of or equality with x and

a[low], a[low+1],……..,a[mid],……a[high]. If x=a[mid], then the algorithm

terminates successfully.Otherwise, the range is narrowed by either increasing low to

(mid+1) or decreasing high to (mid-1).Clearly, this narrowing of the range does not

affect the outcome of the search.If low becomes > than high, then „x‟ is not present

& hence the loop is exited.

The complexity of binary search issuccessful searches is

Worst case is O(log n) or θ(log n)

Average case is O(log n) or θ(log n)

Best case is O(1) or θ(1)

Unsuccessful searches is: θ(log n) for all cases.

 MergeSort
Merge sort algorithm is a classic example of divide and conquer. To sort an array,

recursively, sort its left and right halves separately and then merge them. The time

complexity of merge sort in the best case, worst case and average case is O(n log n) and

the number of comparisons used is nearlyoptimal.

This strategy is so simple, and so efficient but the problem here is that there seems to be

no easy way to merge two adjacent sorted arrays together in place (The result must be

build up in a separatearray).The fundamental operation in this algorithm is merging two

sorted lists. Because the lists are sorted, this can be done in one pass through the input, if

the output is put in a thirdlist.

Algorithm MERGESORT (low,high)

// a (low : high) is a global array to besorted.
{

if (low <high)
{

mid := (low +high)/2;//finds where to split theset

MERGESORT(low, mid); //sortonesubset

MERGESORT(mid+1, high); //sort the other subset
MERGE(low,mid,high); // combine theresults

}

}

Algorithm MERGE (low, mid,high)

// a (low : high) is a global array containing two sortedsubsets
// in a (low : mid) and in a (mid + 1 :high).
// The objective is to merge these sorted sets into singlesorted
// set residing in a (low : high). An auxiliary array B isused.
{

h :=low; i := low; j:= mid + 1;

 while ((h <mid) and (J <high))do

{

if (a[h] <a[j])then

{

b[i] :=a[h]; h:=h+1;

}

else

{

b[i] :=a[j]; j := j +1;

}
i := i +1;

}
if (h > mid)then

for k := j to highdo
{

 b[i] := a[k]; i := i +1

for k := h to middo

{
b[i] := a[K]; i := i +l;

}
for k := low to highdo

a[k] :=b[k];
}

 Example

Tree call of Merge sort:

A[1:10]={310,285,179,652,351,423,861,254,450,520}

Tree call of Merge sort (1, 10)

Analysis of MergeSort

We will assume that „n‟ is a power of 2, so that we always split into even halves, so
we solve for the case n =2k.

For n = 1, the time to merge sort is constant, which we will be denote by 1.

Otherwise, the time to merge sort „n‟ numbers is equal to the time to do two recursive

merge sorts of size n/2, plus the time to merge, which is linear. The equation says

thisexactly:

T(1) =1

T(n) = 2 T(n/2) +n

This is a standard recurrence relation, which can be solved several ways. We will

solve by substituting recurrence relation continually on the right–handside.

We have, T(n) = 2T(n/2) +n

Since we can substitute n/2 into this mainequation

1, 10

6, 10

6, 8

7, 7

9, 10

6, 6

6, 7 8, 8 9,9 10, 10

1, 5

1, 3

2, 2

4, 5

1, 1

1, 2 3 , 3 4, 4 5, 5

2T(n/2)

Wehave,

=
=

2 (2 (T(n/4)) +n/2)
4 T(n/4) +n

T(n/2) = 2 T(n/4) +n
T(n) = 4 T(n/4) +2n

Again, by substituting n/4 into the main equation, we seethat

4T(n/4) =
=

4 (2T(n/8)) +n/4
8 T(n/8) +n

So wehave,

T(n/4) = 2 T(n/8) +n
T(n) = 8 T(n/8) +3n

Continuing in this manner, weobtain:

T(n) = 2k T(n/2k) + K.n

As n = 2k, K = log2n, substituting this in the aboveequation

T(n) = 2
log n

T(n/2
log n

) +log n * n

=nT(1)+ n log n

 =n+n log n

Representing in O-notation T(n)=O(n log n).

We have assumed that n = 2k. The analysis can be refined to handle cases when „n‟ is not

a power of 2. The answer turns out to be almostidentical.

Although merge sort‟s running time is O(n log n), it is hardly ever used for main memory

sorts. The main problem is that merging two sorted lists requires linear extra memory and

the additional work spent copying to the temporary array and back, throughout the

algorithm, has the effect of slowing down the sort considerably. The Best and worst case

time complexity of Merge sort is O(n logn).

 Strassen’s MatrixMultiplication:

The matrix multiplication of algorithm due to Strassens is the most dramatic example of

divide and conquer technique(1969).

Let A and B be two n×n Matrices. The product matrix C=AB is also a n×n matrix whose i,

j
th

element is formed by taking elements in the i
th

 row of A and j
th

column of B and

multiplying them to get

The usual wayC(i, j)= 𝐴 𝑖,𝑘 𝐵(𝑘, 𝑗)1≤𝑘≤𝑛

Here 1≤ i & j ≤ n means i and j are in between 1 and n.

To compute C(i, j) using this formula, we need n multiplications.

The divide and conquer strategy suggests another way to compute the product of two n×n

matrices.For Simplicity assume n is a power of 2 that is n=2
k
, k is a nonnegative integer.

If n is not power of two then enough rows and columns of zeros can be added to both A and

B, so that resulting dimensions are a power of two.

 To multiply two n x n matrices A and B, yielding result matrix „C‟ as follows:

Let A and B be two n×n Matrices. Imagine that A & B are each partitioned into four square

sub matrices. Each sub matrix having dimensions n/2×n/2.

The product of AB can be computed by using previous formula.

If AB is product of 2×2 matrices then

𝐴11 𝐴12
𝐴21 𝐴22

𝐵11 𝐵12
𝐵21 𝐵22

 =
𝐶11 𝐶12
𝐶21 𝐶22

Then cijcan be found by the usual matrix multiplicationalgorithm,

C11 = A11 .B11 + A12 .B21

C12 = A11 .B12 + A12 .B22

C21 = A21 .B11 + A22 .B21

C22 = A21 .B12 + A22 .B22

This leads to a divide–and–conquer algorithm, which performs nxn matrix multiplication

by partitioning the matrices into quarters and performing eight (n/2)x(n/2) matrix

multiplications and four (n/2)x(n/2) matrixadditions.

T(1) = 1
T(n) = 8T(n/2)

Which leads to T (n) = O (n3), where n is the power of2.
Strassens insight was to find an alternative method for calculating the Cij, requiring seven
(n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix additions
andsubtractions:

P = (A11 + A22) (B11 + B22)

Q = (A21 + A22)B11

R = A11 (B12 -B22)

S = A22 (B21 - B11)

T = (A11 + A12)B22

U = (A21 – A11) (B11 + B12)

 V = (A12 – A22) (B21 + B22)

C11 = P + S – T +V

C12 = R + T

C21 = Q +S

C22 = P + R - Q +U.

n

7

This method is used recursively to perform the seven (n/2) x (n/2) matrix multiplications,

then the recurrence equation for the number of scalar multiplications performedis:

T(1) = 1
T(n) = 7T(n/2)

Solving this for the case of n = 2k iseasy:

T(2k) =

=

7T(2k–1)

72T(2k-

2)
 =

=

- - - - --

- - - - --

= 7iT(2k–i)

Put i =k

 =7
k
T(2

0
)

As k is the power of 2

That is, T(n) = 7log
2

= nlog
2

=O(n
log

27)= O(n
2.81

)

So, concluding that Strassen‟s algorithm is asymptotically more efficient than the

standard algorithm. In practice, the overhead of managing the many small matrices does

not pay off until „n‟ revolves thehundreds.

QuickSort

The main reason for the slowness of Algorithms in which all comparisons and exchanges
between keys in a sequence w1, w2,, wn take place between adjacent pairs. In this
way it takes a relatively long time for a key that is badly out of place to work its way into
its proper position in the sortedsequence.

 Hoare his devised a very efficient way of implementing this idea in the early 1960‟s

that improves the O(n2) behavior of the algorithm with an expected performance that is

O(n logn).In essence, the quick sort algorithm partitions the original array by rearranging it

into two groups. The first group contains those elements less than some arbitrary chosen

value taken from the set, and the second group contains those elements greater than or

equal to the chosenvalue.

The chosen value is known as the pivot element. Once the array has been rearranged in

this way with respect to the pivot, the very same partitioning is recursively applied to

each of the two subsets. When all the subsets have been partitioned and rearranged, the

original array issorted.

The function partition() makes use of two pointers „i‟ and „j‟ which are moved toward

each other in the followingfashion:

Repeatedly increase the pointer „i‟ until a[i] >=pivot.

 Repeatedly decrease the pointer „j‟ until a[j] <=pivot.

If j > i, interchange a[j] witha[i]
Repeat the steps 1, 2 and 3 till the „i‟ pointer crosses the „j‟ pointer. If „i‟ pointer crosses „j‟
pointer, the position for pivot is found and place pivot element in „j‟ pointerposition.
The program uses a recursive function quicksort(). The algorithm of quick sort

function sorts all elements in an array „a‟ between positions „low‟ and„high‟.

It terminates when the condition low >= high is satisfied. This condition will be satisfied

only when the array is completelysorted.Here we choose the first element as the „pivot‟.

So, pivot = x[low]. Now it calls the partition function to find the proper position j of the

element x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1],
 . . x[j-1] and x[j+1], x[j+2], . ..x[high].It calls itself recursively to sort the left sub-
array x[low], x[low+1], x[j-1] between positions low and j-1 (where j is
returned by the partitionfunction).It calls itself recursively to sort the right sub-array
x[j+1], x[j+2], x[high] between positions j+1 andhigh.

Algorithm

AlgorithmQUICKSORT(low,high)
// sorts the elements a(low), , a(high) which reside in the global array A(1 :n) into
//ascending order a (n + 1) is considered to be defined and must be greater than all
//elements in a(1 : n); A(n + 1) = α*/
{

If(low < high) then
{

j := PARTITION(a, low,high+1);
// J is the position of the partitioningelement

QUICKSORT(low, j –1);
QUICKSORT(j + 1 ,high);

}

}

Algorithm PARTITION(a, m,p)

{
V :=a(m); i :=m; j:=p;

// a (m) is thepartitionelement

do
{

repeat

 i := i +1;

 until (a(i)>v);

repeat

 j := j –1;

until (a(j)<v);

if (i < j) then INTERCHANGE(a, i,j)
} while (i >j);

a[m] :=a[j];a[j]:=V;

returnj;
}

Algorithm INTERCHANGE(a, i,j)

{
 p:= a[i];

 a[i]:=a[j];

 a[j]:=p;

}

Example
Select first element as the pivot element. Move „i‟ pointer from left to right in search of

an element larger than pivot. Move the „j‟ pointer from right to left in search of an

element smaller than pivot. If such elements are found, the elements are swapped. This

process continues till the „i‟ pointer crosses the „j‟ pointer. If „i‟ pointer crosses „j‟

pointer, the position for pivot is found and interchange pivot and element at „j‟

position.

Let us consider the following example with 13 elements to analyze quicksort:

1

2

3

4

5

6

7

8

9

10

11

12

13

Remarks

38 08 16 06 79 57 24 56 02 58 04 70 45

pivot I j swap i &j

 04 79

 i j swap i &j

 02 57

 j i

(24 08 16 06 04 02) 38 (56 57 58 79 70 45)
swap

pivot

& j pivot

j,i
 swap

pivot

& j (02 08 16 06 04) 24

pivot

, j
i

 swap

pivot

& j 02 (08 16 06 04)

 pivot i j swap i &j

 04 16

 j i

(06 04) 08 (16)

 swap

pivot

& j pivot

, j
i

(04) 06

 swap

pivot

& j
04

pivot

, j,i

16

pivot

, j,i

(02 04 06 08 16 24) 38

 (56 57 58 79 70 45)

 pivot i j swap i

&j 45 57

 j i

(45) 56 (58 79 70 57)

swap

pivot

& j
45

pivot

, j,i

 swap

pivot

& j (58
pivo

t

79
i 70

57)
j swap i

&j 57 79

 j i

(57) 58 (70 79)

swap

pivot

& j
57

pivot

, j,i

 (70 79)

 pivot

, j
i

swap

pivot

& j 70

79

pivot

, j,i

 (45 56 57 58 70 79)

02 04 06 08 16 24 38 45 56 57 58 70 79

Analysis of QuickSort:

Like merge sort, quick sort is recursive, and hence its analysis requires solving a

recurrence formula. We will do the analysis for a quick sort, assuming a random pivot

We will take T (0) = T (1) = 1, as in merge sort.

The running time of quick sort is equal to the running time of the two recursive calls

plus the linear time spent in the partition (The pivot selection takes only constant time).

This gives the basic quick sortrelation:

T (n) = T (i) + T (n – i – 1) + Cn - (1)

Where, i = |S1| is the number of elements inS1.

 Worst CaseAnalysis
The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1,

which is insignificant, the recurrenceis:

T (n) = T (n – 1) + Cn n>1 - (2)

Using equation – (1) repeatedly,thus

T (n – 1) = T (n – 2) + C (n –1)

T (n – 2) = T (n – 3) + C (n –2)

- - - - - - --

T (2) = T (1) + C(2)

Adding up all these equationsyields

=O(n2) - (3)

Best CaseAnalysis
In the best case, the pivot is in the middle. To simply the math, we assume that the two

sub-files are each exactly half the size of the original and although this gives a slight over

estimate, this is acceptable because we are only interested in a Big – oh answer.

T (n) = 2 T (n/2) +Cn - (4)

Divide both sides byn and Substitute n/2 for „n‟

Finally,

Which yields, T (n) = C n log n + n = O(n logn) -

This is exactly the same analysis as merge sort, hence we get the sameanswer.

Average CaseAnalysis

The number of comparisons for first call on partition: Assume left_to_right moves over k

smaller element and thus k comparisons. So when right_to_left crosses left_to_right it has

made n-k+1 comparisons. So, first call on partition makes n+1 comparisons. The average

case complexity of quicksort is

T(n) = comparisons for first call onquicksort

+

{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) +

----- +T(n-1)]/n

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) +T(n-1)]

(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)]\

Subtracting bothsides:

nT(n) –(n-1)T(n-1) = [n(n+1) – (n-1)n] + 2T(n-1) = 2n + 2T(n-1) nT(n)

= 2n + (n-1)T(n-1) + 2T(n-1) = 2n +(n+1)T(n-1)

T(n) = 2 +(n+1)T(n-1)/n

The recurrence relation obtained is:

T(n)/(n+1) = 2/(n+1) +T(n-1)/n

Using the method ofsubstitution:

T(n)/(n+1) = 2/(n+1) +T(n-1)/n

T(n-1)/n = 2/n +T(n-2)/(n-1)

T(n-2)/(n-1) = 2/(n-1) +T(n-3)/(n-2)

T(n-3)/(n-2) = 2/(n-2) +T(n-4)/(n-3)

. .

. .

T(3)/4 = 2/4 +T(2)/3

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 +T(0)

Adding bothsides:

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 +T(1)/2]

= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] + T(0)+ [2/(n+1)

+ 2/n + 2/(n-1) + ---------- +2/4 +2/3]

Cancelling the commonterms:

T(n)/(n+1) = 2[1/2 +1/3+1/4+--------------+1/n+1/(n+1)]

Finally,

We will get,

O(n log n)

MODULE-II

DEARCHING AND TRAVERSAL TECHNIQUES

 Disjoint Set Operations

Set:

A set is a collection of distinct elements. The Set can be represented,for
examples, asS1={1,2,5,10}.

Disjoint Sets:
The disjoints sets are those do not have any common element.

For example S1={1,7,8,9} and S2={2,5,10}, then we can say that S1 and S2are

two disjoint sets.

Disjoint Set Operations:
The disjoint set operations are

1. Union
2. Find

Disjoint setUnion:
If Si and Sj are two disjoint sets, then their union Si U Sj consists of all the

elements x such that x is in Si or Sj.

Find:

Example:

S1={1,7,8,9} S2={2,5,10}
S1 US2={1,2,5,7,8,9,10}

Given the element I, find the set containing I.

Example:
S1={1,7,8,9}
Then,

S2={2,5,10}

s3={3,4,6}

Find(4)=S3 Find(5)=S2 Find97)=S1

Set Representation:
The set will be represented as the tree structure where all children will store the

address of parent / root node. The root node will store null at the place of parent address.

In the given set of elements any element can be selected as the root node, generally we

select the first node as the root node.

Example:
S1={1,7,8,9} S2={2,5,10} s3={3,4,6}
Then these sets can be represented as

Disjoint Union:
To perform disjoint set union between two sets Si and Sj can take any one root

and make it sub-tree of the other. Consider the above example sets S1 and S2 then the

union of S1 and S2 can be represented as any one of the following.

Find:

To perform find operation, along with the tree structure we need to maintain

the name of each set. So, we require one more data structure to store the set names.

The data structure contains two fields. One is the set name and the other one is the

pointer to root.

 Union and Find Algorithms:

In presenting Union and Find algorithms, we ignore the set names and identify

sets just by the roots of trees representing them. To represent the sets, we use an array

of 1 to n elements where n is the maximum value among the elements of all sets. The

index values represent the nodes (elements of set) and the entries represent the parent

node. For the root value the entry will be„-1‟.

Example:

For the following sets the array representation is as shownbelow.

I [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
P -1 -1 -1 3 2 3 1 1 1 2

Algorithm for Union operation:
To perform union the SimpleUnion(i,j) function takes the inputs as the set

roots i and j . And make the parent of i as j i.e, make the second root as the parent of

first root.

Algorithm SimpleUnion(i,j)
{

P[i]:=j;
}

Algorithm for find operation:

The SimpleFind(i) algorithm takes the element i and finds the root node of i.It

starts at i until it reaches a node with parent value-1.
Algorithm SimpleFind(i)
{

while(P[i]≥0)

i:=P[i];

returni;
}

 Analysis of SimpleUnion(i,j) and SimpleFind(i):

Although the SimpleUnion(i,j) and SimpleFind(i) algorithms are easy to state,

their performance characteristics are not very good. For example, consider the sets

.

Then if we want to perform following sequence of operations Union(1,2)

,Union(2,3)……. Union(n-1,n) and sequence of Find(1), Find(2)………Find(n).

The sequence of Union operations results the degenerate tree as below.

Since, the time taken for a Union is constant, the n-1 sequence of union can be processed

in time O(n).And for the sequence of Find operations it will take

We can improve the performance of union and find by avoiding the creation of

degenerate tree by applying weighting rule for Union.

n

n-1

n-2

1

1 4 2 3 n

 Weighting rule forUnion:
If the number of nodes in the tree with root I is less than the number in the tree

with the root j, then make „j‟ the parent of i; otherwise make „i' the parent of j.

To implement weighting rule we need to know how many nodes are there in every tree.

To do this we maintain “count” field in the root of every tree. If „i' is the root then

count[i] equals to number of nodes in tree with rooti.

Since all nodes other than roots have positive numbers in parent (P) field, we can maintain

count in P field of the root as negative number.

Algorithm WeightedUnion(i,j)
//Union sets with roots i and j, i≠j using the weighted rule

// P[i]=-count[i] andp[j]=-count[j]

{

temp:=P[i]+P[j];
if (P[i]>P[j])then
{

// i has fewer nodes

P[i]:=j;
P[j]:=temp;

}
else
{
// j has fewer nodes

P[j]:=i;

P[i]:=temp;
}

}

 Collapsing rule for find:
If j is a node on the path from i to its root and p[i]≠root[i], then set P[j] to root[i].

Consider the tree created by WeightedUnion() on the sequence of1≤i≤8.
Union(1,2), Union(3,4), Union(5,6) and Union(7,8)

Now process the following eight find operations

Find(8),Find(8)………………………Find(8)

If SimpleFind() is used each Find(8) requires going up three parent link fields for

a total of 24 moves.

When Collapsing find is used the first Find(8) requires going up three links and

resetting three links. Each of remaining seven finds require going up only one

link field. Then the total cost is now only 13 moves.(3 going up + 3 resets + 7

remaining finds).

Algorithm CoIlapsingFind(i)

// Find the root of the tree containing element i. Use the

 // collapsing rule to collapse all nodes from i to the root .

{ r := i;

while (p[r] >0) do

 r := p[r]; / Find the root,

 while (i< r) do / / Col lapse nodes from i to root r ,

 r:=p[i];

 return r;

}

SEARCHING

Search means finding a path or traversal between a start node and one of a set of goal nodes.

Search is a study of states and their transitions.

 Search involves visiting nodes in a graph in a systematic manner, and may or may

not result into a visit to all nodes. When the search necessarily involved the examination

of every vertex in the tree, it is called the traversal.

Techniques for Traversal of a Binary Tree:

 A binary tree is a finite (possibly empty) collection of elements. When the binary tree

is not empty, it has a root element and remaining elements (if any) are partitioned into two

binary trees, which are called the left and right subtrees.

 There are three common ways to traverse a binary tree: Preorder, Inorder, postorder

In all the three traversal methods, the left sub tree of a node is traversed before the right

sub tree. The difference among the three orders comes from the difference in the time at

which a node is visited.

 Inorder Traversal:
 In the case of inorder traversal, the root of each subtree is visited after its left subtree

has been traversed but before the traversal of its right subtree begins. The steps for

traversing a binary tree in inorder traversal are:

1. Visit the left subtree, using inorder.
2. Visit the root.
3. Visit the right subtree, using inorder.

The algorithm for preorder traversal is as follows:
 treenode =record

{

Type data; //Type is the data type of data.

 Treenode *lchild, *rchild;

}

Algorithm inorder(t)
// t is a binary tree. Each node of t has three fields: lchild, data, and rchild.
{

If(t ≠0)then

{

inorder (t→ lchild);

visit(t);
inorder (t →rchild);

}

}

 Preorder Traversal:
In a preorder traversal, each node is visited before its left and right subtrees are traversed.

Preorder search is also called backtracking. The steps for traversing a binary tree in

preorder traversal are:
1. Visit the root.
2. Visit the left subtree, using preorder.
3. Visit the right subtree, using preorder.

The algorithm for preorder traversal is as follows:

Algorithm Preorder (t)

// t is a binary tree. Each node of t has three fields; lchild, data, and rchild.

{

If(t ≠0)then

{

visit(t);

Preorder (t→lchild);

Preorder

(t→rchild);

}

}

 Postorder Traversal:
 In a Postorder traversal, each root is visited after its left and right subtrees have been

traversed. The steps for traversing a binary tree in postorder traversal are:
1. Visit the left subtree, using postorder.
2. Visit the right subtree, using postorder
3. Visit the root

The algorithm for preorder traversal is as follows:

Algorithm Postorder (t)

// t is a binary tree. Each node of t has three fields : lchild, data, and rchild.

{

If(t ≠0)then

{

Postorder(t→ child);

Postorder(t→rchild);

visit(t);

} }

Examples for binary tree traversal/search technique:

Example1:

Traverse the following binary tree in pre, post and in-order.

Binary Tree Pre,Post and In-order Traversing

 Non Recursive Binary Tree Traversal Algorithms:
 At first glance, it appears we would always want to use the flat traversal functions

since the use less stack space. But the flat versions are not necessarily better. For

instance, some overhead is associated with the use of an explicit stack, which may negate

the savings we gain from storing only node pointers. Use of the implicit function call

stack may actually be faster due to special machine instructions that can be used.

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps

until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the

stack and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with

right son exists, then set right son of vertex as current vertex and return to step

one.

The algorithm for inorder Non Recursive traversal is asfollows:

Algorithm inorder()

{

stack[1] = 0

vertex =root

top: while(vertex ≠0)

{

A

B C

D E F

G H I

Preordof the vertices: A, B,

D, C, E, G, F, H, I.

Post order of the vertices: D,

B, G, E, H, I, F, C, A.

Inorder of the vertices: D,

B, A, E, G, C, H, F, I

push the vertex into the

stack vertex

=leftson(vertex)

}

pop the element from the stack and make it as vertex

while(vertex ≠0)

{

print the vertex node

if(rightson(vertex)

≠0)

{

vertex =

rightson(vertex) goto

top

}

pop the element from the stack and made it as vertex

}

}

Preorder Traversal:
 Initially push zero onto stack and then set root as vertex. Then repeat the following steps

until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if

any and process each vertex. The traversing ends after a vertex with no left child

exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

The algorithm for preorder Non Recursive traversal is as follows:

 Algorithm preorder()

{

stack[1]: = 0

vertex := root.

while(vertex ≠0)

{

print vertex node

if(rightson(vertex)

≠0)

push the right son of vertex into the

stack. if(leftson(vertex) ≠0)

vertex :=leftson(vertex)

else

}
}

pop the element from the stack and made it as vertex

Postorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps

until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push

vertex on to stack and if vertex has a right son push –(right son of vertex) onto

stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a

negative node is popped, then ignore the sign and return to step one.

The algorithm for postorder Non Recursive traversal is as follows:
 Algorithm postorder()

{

stack[1] := 0

vertex:=root

top: while(vertex ≠0)

{

push vertex onto stack

if(rightson(vertex) ≠0)

push -(vertex) onto stack

vertex :=leftson(vertex)

}

pop from stack and make it as

vertex while(vertex >0)

{

print the vertex node

pop from stack and make it as vertex

}

if(vertex <0)
{

vertex :=-(vertex)

goto top
}

}

Example1:
Traverse the following binary tree in pre, post and inorder using non-recursive

traversing algorithm.

Inorder Traversal:

Initially push zero onto stack and then set root as vertex. Then repeat the following steps

until the stack is empty:

1. Proceed down the left most path rooted at vertex, pushing each vertex onto the stack

and stop when there is no left son of vertex.

2. Pop and process the nodes on stack if zero is popped then exit. If a vertex with right

son exists, then set right son of vertex as current vertex and return to step one.

Current

vertex Stack Processed nodes Remarks

A 0 PUSH0

 0 A B D GK PUSH the left most path ofA

K 0 A B DG K POPK

G 0 A BD KG POP G since K has no right son

D 0 AB K GD POP D since G has no right son

H 0 AB K GD Make the right son of D

as vertex

H 0 A B HL K GD PUSH the leftmost path of H

L 0 A BH K G DL POPL

H 0 AB K G D LH POP H since L has no right son

M 0 AB K G D LH Make the right son of H

as vertex

 0 A BM K G D LH PUSH the left most path of M

M 0 AB K G D L HM POPM

B 0A K G D L H MB POP B since M has no right son

A 0 K G D L H M BA Make the right son of A

as vertex

C 0 CE K G D L H M BA PUSH the left most path of C

E 0C K G D L H M B AE POPE

C 0 K G D L H M B A EC Stop since stack is empty

A

B C

D E

G H

K L M

• Preorder traversal yields: A,
B, D, G , K, H, L, M , C , E

• Postorder t raversal yields:
K, G , L, M , H, D, B, E, C , A

• Inorder traversal yields:

K, G , D, L, H, M , B, A, E, C

Postorder Traversal:
Initially push zero onto stack and then set root as vertex. Then repeat the following steps

until the stack is empty:

1. Proceed down the left most path rooted at vertex. At each vertex of path push vertex

on to stack and if vertex has a right son push -(right son of vertex) onto stack.

2. Pop and process the positive nodes (left nodes). If zero is popped then exit. If a

negative node is popped, then ignore the sign and return to step one.

Curren

t

vertex

Stack Processed nodes Remark

s
A 0 PUSH0

 0 A -C B D -H GK PUSH the left most path of A

with a -ve for right sons

 0 A -C B D-H KG POP all +ve nodes K and G

H 0 A -C BD KG Pop H

0 A -C B D H -ML KG PUSH the left most path of H

with a -ve for right sons

 0 A -C B D H-M K GL POP all +ve nodes L

M 0 A -C B DH K GL PopM

0 A -C B D HM K GL

PUSH the left most path of M

with a -ve for rightsons

 0 A-C K G L M H DB POP all +ve nodes M, H, D

andB C 0A K G L M H DB PopC

0 A CE K G L M H DB

PUSH the left most path of C

with a -ve for rightsons

 0 K G L M H D B E

CA

POP all +ve nodes E, C andA

 0 Stop since stack isempty

Preorder Traversal:
 Initially push zero onto stack and then set root as vertex. Then repeat the following steps

until the stack is empty:

1. Proceed down the left most path by pushing the right son of vertex onto stack, if any

and process each vertex. The traversing ends after a vertex with no left child exists.

2. Pop the vertex from stack, if vertex ≠ 0 then return to step one otherwise exit.

Current

vertex Stack Processednodes Remarks

A 0 PUSH0

0 CH

A B D GK

PUSH the right son of each vertex

onto stack and process each vertex in

the left most path

H 0C A B D GK POPH

0 CM

A B D G K HL

PUSH the right son of each vertex

onto stack and process each vertex in

the left most path

M 0C A B D G K HL POPM

0C

A B D G K H LM

PUSH the right son of each vertex

onto stack and process each vertex in

the left most path; M has no leftpath

C 0 A B D G K H LM PopC

0

A B D G K H L M CE

PUSH the right son of each vertex

onto stack and process each vertex in

the left most path; C has no right son

on the left most path 0 A B D G K H L M CE Stop since stack is empty

 Subgraphs and SpanningTrees:

Subgraphs: A graph G‟ = (V‟, E‟) is a subgraph of graph G = (V, E) iff V‟ V and E‟

E.

The undirected graph G is connected, if for every pair of vertices u, v there exists a path

from u to v. If a graph is not connected, the vertices of the graph can be divided into

connected components. Two vertices are in the same connected component iff they are

connected by a path.

Tree is a connected acyclic graph. A spanning tree of a graph G = (V, E) is a tree that

contains all vertices of V and is a subgraph of G. A single graph can have multiple spanning

trees.

Lemma 1: Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.

2. If any edge is removed from T, then T becomes disconnected.

3. If we add any edge into T, then the new graph will contain a cycle.

4. Number of edges in T isn-1.

 Minimum Spanning Trees(MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the vertex set

of the given graph, and whose edge set is a subset of the edge set of the given graph. i.e.,

any connected graph will have a spanning tree.

Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum

spanning tree (MST) is a spanning tree with the smallest possible weight.

G:

A grap hG:

Thre

e

(of

man

y

possible

)

Spannin

g

trees

fro

m

grap

h

G:

2

2
 4

G: 3 5 3
 6
 1 1

A weighted graphG: TheminimalspanningtreefromweightedgraphG:

Examples:

To explain the Minimum Spanning Tree, let's consider a few real-world examples:

1. One practical application of a MST would be in the design of a network. For instance,

a group of individuals, who are separated by varying distances, wish to be

connected together in a telephone network. Although MST cannot do anything about

the distance from one connection to another, it can be used to determine the least

cost paths with no cycles in this network, thereby connecting everyone at a

minimum cost.

2. Another useful application of MST would be finding airline routes. The vertices of

the graph would represent cities, and the edges would represent routes between the

cities. Obviously, the further one has to travel, the more it will cost, so MST can be

applied to optimize airline routes by finding the least costly paths with no cycles.

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the

Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology, but

both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim‟s algorithm

uses vertex connections in determining the MST.

 Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum(i.e. picking an

edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges have been

added. Sometimes two or more edges may have the same cost. The order in which the edges

are chosen, in this case, does not matter. Different MSTs may result, but they will all have

the same total cost, which will always be the minimum cost.

 Algorithm:
The algorithm for finding the MST, using the Kruskal‟s method is as follows:
Algorithm Kruskal (E, cost, n,t)
// E is the set of edges in G. G has n vertices. cost [u, v] is the
// cost of edge (u, v). „t‟ is the set of edges in the minimum-cost spanning tree.
// The final cost is returned.
{

Construct a heap out of the edge costs using heapify; for

i := 1 to n do parent [i] :=-1;
// Each vertex is in a different set.

i := 0; mincost :=0.0;
while ((i < n -1) and (heap not empty))do
{

Delete a minimum cost edge (u, v) from the heap and re-

heapify using Adjust;

j := Find (u); k := Find(v); if

(j k)then

{
i := i +1;
t [i, 1] := u; t [i, 2] := v; mincost

:=mincost + cost [u,v]; Union

(j,k);
}

}
if (i n-1) then write ("no spanning tree"); else

return mincost;
}

Running time:

 The number of finds is at most 2e, and the number of unions at most n-1. Including

the initialization time for the trees, this part of the algorithm has a complexity that is

just slightly more than O (n +e).

 We can add at most n-1 edges to tree T. So, the total time for operations on T is

O(n).

Summing up the various components of the computing times, we get O (n + e log e) as

asymptotic complexity

 Example1:

1
10

2 50

4 5 40

30 35
3

4 25 5

55

20

6
15

Arrange all the edges in the increasing order of their costs:

Cost 10 15 20 25 30 35 40 45 50 55
Edge (1,2) (3,6) (4,6) (2,6) (1,4) (3,5) (2,5) (1,5) (2,3) (5,6)

The edge set T together with the vertices of G define a graph that has up to n connected

components. Let us represent each component by a set of vertices in it. These vertex sets are

disjoint. To determine whether the edge (u, v) creates a cycle, we need to check whether u

and v are in the same vertex set. If so, then a cycle is created. If not then no cycle is created.

Hence two Finds on the vertex sets suffice. When an edge is included in T, two components

are combined into one and a union is to be performed on the two sets.

Edge Cost Spanning Forest Edge Sets Remarks

1

2

3

4

5

6

{1}, {2}, {3},
{4}, {5},{6}

(1,

2)

10

1

2

3

4

5

6

{1, 2}, {3},{4},

The vertices 1and
 {5},{6} 2 are in different

 sets, so the edge

 Is combined

(3,

6)

15

1 2 3 4 5

{1, 2}, {3, 6},

The vertices 3and
 6 {4},{5} 6 are in different

 sets, so the edge

 Is combined

(4,

6)

20

1 2 3 5

{1, 2}, {3, 4, 6},

The vertices 4and
 4 6 {5} 6 are in different

 sets, so the edge
is combined

(2,

6)

25

 1 2 5

{1, 2, 3, 4, 6},

The vertices 2and
 4 3 {5} 6 are in different

 6 sets, so the edge
is combined

(1,

4)

30

Reject

 The vertices 1and
4 are in the same

set, so the edge is

rejected

(3,

5)

35

1

2

The vertices 3and
 5 are in the same

 4
5

3

 {1, 2, 3, 4, 5,6} set, so the edge is
combined

 6

 MINIMUM-COST SPANNING TREES: PRIM'SALGORITHM

A given graph can have many spanning trees. From these many spanning trees, we have to

select a cheapest one. This tree is called as minimal cost spanning tree.

Minimal cost spanning tree is a connected undirected graph G in which each edge is labeled

with a number (edge labels may signify lengths, weights other than costs). Minimal cost

spanning tree is a spanning tree for which the sum of the edge labels is as small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm for

finding an MST. In the spanning tree algorithm, any vertex not in the tree but connected to it

by an edge can be added. To find a Minimal cost spanning tree, we must be selective - we

must always add a new vertex for which the cost of the new edge is as small as possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding an

Minimal cost spanning tree.

Prim's algorithm is an example of a greedy algorithm.

 Algorit

hm

Algorit

hm

Prim

(E,

cost,

n,t)
// E is the set of edges in G. cost [1:n, 1:n] is the cost
// adjacency matrix of an n vertex graph such that cost [i, j]is
// either a positive real number or if no edge (i, j)exists.
// A minimum spanning tree is computed and stored as a set of
// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in
// the minimum-cost spanning tree. The final cost is returned.
{

Let (k, l) be an edge of minimum cost in E;

mincost := cost [k,l];
t [1, 1] := k; t [1, 2] :=l;
for i :=1 to n do //Initialize near if

(cost [i, l] < cost [i, k]) then near [i] :=l;

else near [i] := k;

near [k] :=near [l] :=0;

B 3

0 6

4

B 3

0 2

for i:=2 to n - 1do // Find n - 2 additional edges fort.
{

Let j be an index such that near [j] 0and
cost [j, near [j]] is minimum;

t [i, 1] := j; t [i, 2] := near [j]; mincost :=

mincost + cost [j, near [j]]; near [j] :=0
for k:= 1 to n do // Update near[].

if ((near [k] 0) and (cost [k, near [k]] > cost [k, j])) then near

[k] :=j;
}
return mincost;

}

Running time:
We do the same set of operations with dist as in Dijkstra's algorithm (initialize structure, m

times decrease value, n - 1 times select minimum). Therefore, we get O (n2) time when we
implement dist with array, O (n + E log n) when we implement it with a heap.
For each vertex u in the graph we dequeue it and check all its neighbors in O (1 + deg (u))

time.

EXAMPLE1:

Use Prim‟s Algorithm to find a minimal spanning tree for the graph shown below starting

with the vertex A.

The stepwise progress of the prim‟s algorithm is as follows:

Step1:

D

E

A C G

F

Step2:

D

B
 4

D

3 2 1 2
4

4 E 1

A C 2 G
6

2 F 1

Vertex A B C D E F

Status 0 1 1 1 1 1

Dist. 0 3 6

Next * A A A A A

G

1

A

Vertex A B C D E F G

Status 0 0 1 1 1 1 1
Dist. 0 3 2 4

Next * A B B A A A

B 3 1

4

0 2
E

F

B 3 1

2

C

2

4

2

0

B 3 1 D

2 E 0 2 1

C 2 F

E

A C G

F

Step3:

D

A G

C 2

Step4:

D

E
A G

F

Step5:

A G

Step6:

Vertex A B C D E F

Status 0 0 0 0 1 1

Dist. 0 3 2 1 2 2

Next * A B C D C

G

1

4

D

Vertex A B C D E F

Status 0 0 0 0 1 0

Dist. 0 3 2 1 2 2

Next * A B C D C

G

1

1

E

Vertex A B C D E F G

Status 0 0 0 1 1 1 1
Dist. 0 3 2 1 4 2

Next * A B C C C A

A

Step7:

A

B 3 1 D

2

0 2
E

1 G

C 1 F

B 3 1 D

2

0 2
E

C 1 F

Vertex A B C D E F G

Status 0 0 0 0 0 1 0
Dist. 0 3 2 1 2 1 1

Next * A B C D G E

 Vertex A B C D E F G

Status 0 0 0 0 0 0 0

1

G

Dist.

Next

0

*

3

A

2

B

1

C

2

D

1

G

1

E

51

GRAPH ALGORITHMS

 Basic Definitions:

 Graph G is a pair (V, E), where V is a finite set (set of vertices) and E is a finite set

of pairs from V (set of edges). We will often denote n := |V|, m :=|E|.

 Graph G can be directed, if E consists of ordered pairs, or undirected, if E consists

of unordered pairs. If (u, v) E, then vertices u, and v are adjacent.

 We can assign weight function to the edges: wG(e) is a weight of edge e E. The

graph which has such function assigned is called weighted graph.

 Degree of a vertex v is the number of vertices u for which (u, v) E (denote deg(v)).

The number of incoming edges to a vertex v is called in–degree of the vertex

(denote indeg(v)). The number of outgoing edges from a vertex is called out-degree

(denote outdeg(v)).

 Representation of Graphs:

Consider graph G = (V, E), where V= {v1,v2,….,vn}.

Adjacency matrix represents the graph as an n x n matrix A = (ai,j),where

The matrix is symmetric in case of undirected graph, while it may be asymmetric if the

graph is directed.

We may consider various modifications. For example for weighted graphs, we may have

52

Where default is some sensible value based on the meaning of the weight function

(for example, if weight function represents length, then default can be , meaning

value larger than any other value).

Adjacency List: An array Adj [1 n] of pointers where for 1 <v <n, Adj [v]

points to a linked list containing the vertices which are adjacent to v (i.e. the vertices

that can be reached from v by a single edge). If the edges have weights then these

weights may also be stored in the linked list elements.

 Paths and Cycles:

A path is a sequence of vertices (v1, v2, , vk), where for all i, (vi, vi+1) E. A path
is simple if all vertices in the path are distinct.

A (simple) cycle is a sequence of vertices (v1, v2, , vk, vk+1 = v1), where for all i,
(vi, vi+1) E and all vertices in the cycle are distinct except pair v1,vk+1.

 Techniques forgraphs:
Given a graph G = (V, E) and a vertex V in V (G) traversing can be done in two ways.

1. Depth first search

2. Breadth first search

Connected Component:

Connected component of a graph can be obtained by using BFST (Breadth first search and

traversal) and DFST (Dept first search and traversal). It is also called the spanning tree.

BFST (Breadth first search and traversal):

In BFS we start at a vertex V mark it as reached (visited).The vertex V is at this time said

to be unexplored (not yet discovered).A vertex is said to been explored (discovered) by

visiting all vertices adjacent from it.All unvisited vertices adjacent from V are visited

next.The first vertex on this list is the next to be explored.Exploration continues until no

unexplored vertex is left. These operations can be performed by using Queue.

This is also called connected graph or spanning tree.

Spanning trees obtained using BFS then it called breadth first spanning trees

53

Algorithm BFS(v)

// a bfs of G is begin at vertex v

// for any node I, visited[i]=1 if I has already been visited.

// the graph G, and array visited[] are global

{

U:=v; // q is a queue of unexplored vertices.

Visited[v]:=1;

Repeat{

For all vertices w adjacent from U do

If (visited[w]=0) then

{

Add w to q; // w is unexplored

Visited[w]:=1;

}

If q is empty then return; // No unexplored vertex.

Delete U from q; //Get 1
st
 unexplored vertex.

} Until(false)

}

Maximum Time complexity and space complexity of G(n,e), nodes are in adjacency

list.

T(n, e)=θ(n+e)

S(n, e)=θ(n)

If nodes are in adjacency matrix then

T(n, e)=θ(n
2
)

S(n, e)=θ(n)

DFST(Dept first search and traversal).:

 DFS different from BFS. The exploration of a vertex v is suspended (stopped) as soon as a

new vertex is reached.In this the exploration of the new vertex (example v) begins; this new

vertex has been explored, the exploration of v continues. Note: exploration start at the new

vertex which is not visited in other vertex exploring and choose nearest path for exploring

next or adjacent vertex.

Algorithm dFS(v)

// a Dfs of G is begin at vertex v

// initially an array visited[] is set to zero.

//this algorithm visits all vertices reachable from v.

// the graph G, and array visited[] are global

{

Visited[v]:=1;

For each vertex w adjacent from v do

{

If (visited[w]=0) then DFS(w);

{

54

Add w to q; // w is unexplored

Visited[w]:=1;

}

}

Maximum Time complexity and space complexity of G(n,e), nodes are in adjacency

list.

T(n, e)=θ(n+e)

S(n, e)=θ(n)

If nodes are in adjacency matrix then

T(n, e)=θ(n
2
)

S(n, e)=θ(n)

Bi-connected Components:

A graph G is biconnected, iff (if and only if) it contains no articulation point (joint or

junction).

A vertex v in a connected graph G is an articulation point, if and only if (iff) the deletion of

vertex v together with all edges incident to v disconnects the graph into two or more none

empty components.

The presence of articulation points in a connected graph can be an undesirable(un wanted)

feature in many cases.

For example

 if G1Communication network with

 Vertex communication stations.

 Edges Communication lines.

Then the failure of a communication station I that is an articulation point, then we loss the

communication in between other stations. F

Form graph G1

55

There is an efficient algorithm to test whether a connected graph is biconnected. If the case of

graphs that are not biconnected, this algorithm will identify all the articulation points.

Once it has been determined that a connected graph G is not biconnected, it may be desirable

(suitable) to determine a set of edges whose inclusion makes the graph biconnected.

56

MODULE-III

GREEDY METHOD AND DYNAMIC PROGRAMMING

GENERALMETHOD

 Greedy is the most straight forward design technique. Most of the problems have n

inputs and require us to obtain a subset that satisfies some constraints. Any subset that

satisfies these constraints is called a feasible solution. We need to find a feasible solution

that either maximizes or minimizes the objective function. A feasible solution that does this

is called an optimal solution.

 The greedy method is a simple strategy of progressively building up a solution, one

element at a time, by choosing the best possible element at each stage. At each stage, a

decision is made regarding whether or not a particular input is in an optimal solution. This is

done by considering the inputs in an order determined by some selection procedure. If the

inclusion of the next input, into the partially constructed optimal solution will result in an

infeasible solution then this input is not added to the partial solution. The selection

procedure itself is based on some optimization measure. Several optimization measures are

plausible for a given problem. Most of them, however, will result in algorithms that

generate sub-optimal solutions. This version of greedy technique is called subset paradigm.

Some problems like Knapsack, Job sequencing with deadlines and minimum cost spanning

trees are based on subset paradigm.

For the problems that make decisions by considering the inputs in some order, each

decision is made using an optimization criterion that can be computed using decisions

already made. This version of greedy method is ordering paradigm. Some problems like

optimal storage on tapes, optimal merge patterns and single source shortest path are based

on ordering paradigm.

 CONTROLABSTRACTION

Algorithm Greedy (a,n)
// a(1 : n) contains the „n‟ inputs
{

solution:=ᶲ ; // initialize the solution to be empty

for i:=1 to ndo

{
x := select(a);
if feasible (solution, x)then

solution := Union (Solution,x);
}
return solution;

}

 Procedure Greedy describes the essential way that a greedy based algorithm will look,

once a particular problem is chosen and the functions select, feasible and union are properly

implemented.

The function select selects an input from „a‟, removes it and assigns its value to „x‟.

Feasible is a Boolean valued function, which determines if „x‟ can be included into the

solution vector. The function Union combines „x‟ with solution and updates the objective

function.

57

KNAPSACK PROBLEM

 Let us apply the greedy method to solve the knapsack problem. We are given „n‟

objects and a knapsack. The object „i‟ has a weight wi and the knapsack has a capacity „m‟.

If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pixi is

earned. The objective is to fill the knapsack that maximizes the total profit earned.

Since the knapsack capacity is „m‟, we require the total weight of all chosen objects to be at

most „m‟. The problem is stated as:

Maximize

subject to

58

The profits and weights are positive numbers.

 Algorithm

If the objects are already been sorted into non-increasing order of p[i] / w[i] then the

algorithm given below obtains solutions corresponding to this strategy.

Algorithm GreedyKnapsack (m,n)

// P[1 : n] and w[1 : n] contain the profits and weights respectively of

// Objects ordered so that p[i] / w[i]> p[i + 1] / w[i + 1].

// m is the knapsack size and x[1: n] is the solution vector.

{

for i := 1 to n do

 x[i] :=0.0 ; //initialize the solution vector

 U :=m;
for i := 1 to n do
{

if (w(i) > U) then break;
x [i] := 1.0;

 U := U –w[i];

}
if (i <n) then x[i] := U /w[i];

}

Running time:
 The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we disregard
the time to initially sort the objects, the algorithm requires only O(n)time.

 Example:
 Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) =
(25, 24, 15) and (w1, w2, w3) = (18, 15,10).

1. First, we try to fill the knapsack by selecting the objects in some order:

x1 x2 x3 ∑wi xi ∑pi xi

1/2 1/3 1/4 18 x 1/2 + 15 x 1/3 + 10 x1/4
=16.5

25 x 1/2 + 24 x 1/3 + 15 x 1/4=
24.25

2. Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit earned is

25. Now, only 2 Modules of space is left, select the object with next largest profit (p =
24). So, x2 =2/15

x1 x2 x3 ∑wi xi ∑pi xi

1 2/15 0 18 x 1 + 15 x 2/15 =20 25 x 1 + 24 x 2/15 =28.2

59

3. Considering the objects in the order of non-decreasing weightswi.

x1 x2 x3 ∑ wi xi ∑ pi xi

0 2/3 1 15 x 2/3 + 10 x 1 =20 24 x 2/3 + 15 x 1 =31

4. Considered the objects in the order of the ratio pi / wi.

p1/w1 p2/w2 p3/w3

25/18 24/15 15/10

1.4 1.6 1.5

Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the object

with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now, only 5 Modules of

space is left, select the object with next largest pi / xi ratio, so x3 = ½ and the profit

earned is7.5.

x1 x2 x3 ∑wi xi ∑pi xi

0 1 1/2 15 x 1 + 10 x 1/2 =20 24 x 1 + 15 x 1/2 =31.5

This solution is the optimal solution.

 JOB SEQUENCING WITHDEADLINES
 Given a set of „n‟ jobs. Associated with each Job i, deadline di >0 and profit Pi >0. For

any job „i‟ the profit pi is earned iff the job is completed by its deadline. Only one machine is
available for processing jobs. An optimal solution is the feasible solution with maximum
profit.
 Sort the jobs in „j‟ ordered by their deadlines. The array d [1 : n] is used to store the

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r ≤ k are the

jobs in „j‟ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U {i} is feasible, we have

just to insert i into J preserving the deadline ordering and then verify that d [J[r]] ≤ r, 1 ≤ r

≤k+1.

 Example:
 Let n=4,(P1,P2,P3,P4,)=(100,10,15,27)and(d1 d2 d3 d4)=(2,1,2,1).The
feasible solutions and their values are:

Sl.No Feasible Solution Procuring

sequence

Value Remarks

1 1,2 2,1 110

2 1,3 1,3 or3,1 115

60

3 1,4 4,1 127 OPTIMA

L
4 2,3 2,3 25

5 3,4 4,3 42

6 1 1 100

7 2 2 10

8 3 3 15

9 4 4 27

Algorithm:
 The algorithm constructs an optimal set J of jobs that can be processed by their deadlines.

Algorithm GreedyJob (d, J,n)

// J is a set of jobs that can be completed by their deadlines.

{
J :={1};
for i := 2 to ndo
{

if (all jobs in J U {i} can be completed by their deadlines) then J

:= J U{i};
}

}
The greedy algorithm is used to obtain an optimal solution.

We must formulate an optimization measure to determine how the next job is chosen.

Algorithm js(d, j, n)

//d dead line, jsubset of jobs ,n total number of jobs

// d[i]≥1 1 ≤ i ≤ n are the dead lines,

// the jobs are ordered such that p[1]≥p[2]≥---≥p[n]

//j[i] is the ith job in the optimal solution 1 ≤ i ≤ k, k subset range

{

d[0]=j[0]=0;

j[1]=1;

k=1;

for i=2 to n do{

r=k;

while((d[j[r]]>d[i]) and [d[j[r]]≠r)) do

r=r-1;

if((d[j[r]]≤d[i]) and (d[i]> r)) then

{

for q:=k to (r+1) setp-1 do j[q+1]= j[q];

j[r+1]=i;

k=k+1;

}

}

return k;

}

The Single Source Shortest-Path Problem: DIJKSTRA'SALGORITHMS

61

In the previously studied graphs, the edge labels are called as costs, but here we think

them as lengths. In a labeled graph, the length of the path is defined to be the sum of the

lengths of its edges.

In the single source, all destinations, shortest path problem, we must find a shortest

path from a given source vertex to each of the vertices (called destinations) in the

graph to which there is a path.

Dijkstra‟s algorithm is similar to prim's algorithm for finding minimal spanning trees.

Dijkstra‟s algorithm takes a labeled graph and a pair of vertices P and Q, and finds the

shortest path between then (or one of the shortest paths) if there is more than one. The

principle of optimality is the basis for Dijkstra‟salgorithms.Dijkstra‟s algorithm does

not work for negative edges at all.

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph.

 0

 8

3

 Graph

4

6

Shortest Paths

 Algorithm:

Algorithm Shortest-Paths (v, cost, dist,n)

// dist [j], 1 <j <n, is set to the length of the shortest path

// from vertex v to vertex j in the digraph G with n vertices.

// dist [v] is set to zero. G is represented by its

1
4

2 5

2 4 5

3 4 3
1

1

1 3

1 3 4

1 2

1 3 4 5

62

// cost adjacency matrix cost [1:n,1:n].

{

for i :=1 to n do

{

S [i]:=false; //Initialize S.

dist [i] :=cost [v,i];

}

S[v] := true; dist[v] :=0.0; // Put v in S.

for num := 2 to n – 1do

{

Determine n - 1 paths from v.

Choose u from among those vertices not in S such that dist[u] is

minimum; S[u]:=true; // Put u is S.

for (each w adjacent to u with S [w] = false)do

if (dist [w] > (dist [u] + cost [u, w])then //Update distances

dist [w] := dist [u] + cost [u,w];

}

}

Runningtime:

Depends on implementation of data structures fordist.

 Build a structure with nelements A

 at most m = E times decrease the value of anitem mB

 „n‟ times select the smallestvalue nC

 For array A = O (n); B = O (1); C = O (n) which gives O (n2)total.

 For heap A = O (n); B = O (log n); C = O (log n) which gives O (n + m logn) total.

 Example1:

Use Dijkstras algorithm to find the shortest path from A to each of the other six vertices in

63

B 3

0 6

4 7

B 3

2

0 5

the graph:

The problem is solved by considering the following information:

 Status[v] will be either „0‟, meaning that the shortest path from v to v0 has
definitely been found; or „1‟, meaning that it hasn‟t.

 Dist[v] will be a number, representing the length of the shortest path from vto v0
found so far.

 Next[v] will be the first vertex on the way to v0 along the shortest path found so far
from v to v0

The progress of Dijkstra‟s algorithm on the graph shown above is as follows:

Step1:

D

E

A G
F

C

Step2:

D

E

A G

C
F

B
 4

D

3 2 1 2
4

4 E 1

A C 2 G
6

2 F 1

Vertex A B C D E F

Status 0 1 1 1 1 1

Dist. 0 3 6

Next * A A A A A

G

1

A

Vertex A B C D E F G

Status 0 0 1 1 1 1 1
Dist. 0 3 5 7

Next * A B B A A A

64

B 3 7

5

C

8

10

7

0

Step3:

B 3

A 0 5

C

6 D

9 E G

F 7

Step4:

D

E
A G

F

Step5:

A

Vertex A B C D E F

Status 0 0 0 0 1 1

Dist. 0 3 5 6 8 7

Next * A B C D C

G

1

10

D

Vertex A B C D E F

Status 0 0 0 0 1 0

Dist. 0 3 5 6 8 7

Next * A B C D C

G

1

8

F

B 3 6 D

8 E

0 5 8 G

C 7 F

Vertex A B C D E F G

Status 0 0 0 1 1 1 1
Dist. 0 3 5 6 9 7

Next * A B C C C A

65

B 3 9 D

8 E

0 5 8

C 7 F

Step6:

A

Step7:

A G

Vertex A B C D E F

Status 0 0 0 0 0 0

Dist. 0 3 5 6 8 7

Next * A B C D C

G

0

8

F

B 3 8 D

8

0 5
E

8 G

C 7 F

Vertex A B C D E F G

Status 0 0 0 0 0 0 1
Dist. 0 3 5 6 8 7 8

Next * A B C D C F

107

Dynamic Programming

 Dynamic programming is a name, coined by Richard Bellman in 1955. Dynamic

programming, as greedy method, is a powerful algorithm design technique that can be

used when the solution to the problem may be viewed as the result of a sequence of

decisions. In the greedy method we make irrevocable decisions one at a time, using a

greedy criterion. However, in dynamic programming we examine the decision

sequence to see whether an optimal decision sequence contains optimal decision

subsequence.

When optimal decision sequences contain optimal decision subsequences, we can

establish recurrence equations, called dynamic-programming recurrence equations

that enable us to solve the problem in an efficient way.

Dynamic programming is based on the principle of optimality (also coined by

Bellman). The principle of optimality states that no matter whatever the initial state

and initial decision are, the remaining decision sequence must constitute an optimal

decision sequence with regard to the state resulting from the first decision. The

principle implies that an optimal decision sequence is comprised of optimal decision

subsequences. Since the principle of optimality may not hold for some formulations of

some problems, it is necessary to verify that it does hold for the problem being solved.

Dynamic programming cannot be applied when this principle does not hold.

The steps in a dynamic programming solution are:

Verify that the principle of optimality holds. Set up the dynamic-programming

recurrence equations. Solve the dynamic-programming recurrence equations for the

value of the optimal solution. Perform a trace back step in which the solution itself is

constructed.

 Dynamic programming differs from the greedy method since the greedy method

produces only one feasible solution, which may or may not be optimal, while dynamic

programming produces all possible sub-problems at most once, one of which

guaranteed to be optimal. Optimal solutions to sub-problems are retained in a table,

thereby avoiding the work of recomputing the answer every time a sub-problem is

encountered

The divide and conquer principle solve a large problem, by breaking it up into smaller

problems which can be solved independently. In dynamic programming this principle

is carried to an extreme: when we don't know exactly which smaller problems to

solve, we simply solve them all, then store the answers away in a table to be used later

in solving larger problems. Care is to be taken to avoid recomputing previously

computed values, otherwise the recursive program will have prohibitive complexity.

In some cases, the solution can be improved and in other cases, the dynamic

programming technique is the best approach.

Two difficulties may arise in any application of dynamic programming:

108

1. It may not always be possible to combine the solutions of smaller problems to

form the solution of a larger one.

2. The number of small problems to solve may be un-acceptably large.

There is no characterized precisely which problems can be effectively solved with

dynamic programming; there are many hard problems for which it does not seen to be

applicable, as well as many easy problems for which it is less efficient than standard

algorithms.

5.1 MULTI STAGEGRAPHS

 A multistage graph G = (V, E) is a directed graph in which the vertices are

partitioned into k >2 disjoint sets Vi, 1 <i <k. In addition, if <u, v> is an edge in E,

then u Vi and v Vi+1 for some i, 1 <i <k.

Let the vertex „s‟ is the source, and „t‟ the sink. Let c (i, j) be the cost of edge <i, j>.

The cost of a path from „s‟ to „t‟ is the sum of the costs of the edges on the path. The
multistage graph problem is to find a minimum cost path from „s‟ to „t‟. Each set Vi

defines a stage in the graph. Because of the constraints on E, every path from „s‟ to „t‟

starts in stage 1, goes to stage 2, then to stage 3, then to stage 4, and so on, and
eventually terminates in stage k.

A dynamic programming formulation for a k-stage graph problem is obtained by first

noticingthateverystoppathistheresultofasequenceofk–2decisions.Theith

decision involves determining which vertex in vi+1, 1 <i <k - 2, is to be on the path.

Let c (i, j) be the cost of the path from source to destination. Then using the forward
approach, we obtain:

cost (i, j) = min {c (j, l) + cost (i + 1,l)}
l in Vi+1

<j, l> in E

ALGORITHM:
Algorithm Fgraph(G, k, n,p)

// The input is a k-stage graph G = (V, E) with n vertices
// indexed in order or stages. E is a set of edges and c [i,j]
// is the cost of (i, j). p [1 : k] is a minimum cost path.
{

cost [n] :=0.0;
for j:= n - 1 to 1 step – 1do
{ // compute cost[j]

let r be a vertex such that (j, r) is an edge

of G and c [j, r] + cost [r] is minimum;

cost [j] := c [j, r] + cost[r];
d [j] :=r:

}
p [1] := 1; p [k] :=n; // Find a minimum cost path.

for j := 2 to k - 1 do

109

2 4
6

2 6 9

9 1
2 5 4

7 3 4
7 2

1
7 10 12

3 3

2
4 11

5
5

11
8 11

6

5 8

p [j] := d [p [j -1]];
}

The multistage graph problem can also be solved using the backward approach.
Let bp(i, j) be a minimum cost path from vertex s to j vertex in Vi. Let Bcost(i, j) be

the cost of bp(i, j). From the backward approach we obtain:

Bcost (i, j) = min { Bcost (i –1, l) + c (l, j)}
1 in Vi -1

<l, j> in E

Algorithm Bgraph(G, k, n,p)

// Same function asFgraph
{

Bcost [1] :=0.0;
for j := 2 to ndo
{ // Compute Bcost[j].

Let r be such that (r, j) is an edge of

G and Bcost [r] + c [r, j] is

minimum; Bcost [j] := Bcost [r] + c

[r,j];
D [j] :=r;

} //find a minimum costpath
p [1] := 1; p [k] :=n;
for j:= k - 1 to 2 do p [j] := d [p [j +1]];

}

EXAMPLE1:

Find the minimum cost path from s to t in the multistage graph of five stages shown

below. Do this first using forward approach and then using backward approach.

s t

FORWARDAPPROACH:

We use the following equation to find the minimum cost path from s to t:

110

cost (i, j) = min {c (j, l) + cost (i + 1,l)}

l inVi +1

<j, l>inE

cost (1, 1) = min {c (1, 2) + cost (2, 2), c (1, 3) + cost (2, 3), c (1, 4) + cost (2,4),
c (1, 5) + cost (2,5)}

= min {9 + cost (2, 2), 7 + cost (2, 3), 3 + cost (2, 4), 2 + cost (2,5)}

Now first starting with,

cost (2, 2) = min{c (2, 6) + cost (3, 6), c (2, 7) + cost (3, 7), c (2, 8) + cost (3,8)}
= min {4 + cost (3, 6), 2 + cost (3, 7), 1 + cost (3,8)}

cost(3,6) = min {c (6, 9) + cost (4, 9), c (6, 10) + cost (4,10)}
= min {6 + cost (4, 9), 5 + cost (4,10)}

cost(4,9) = min {c (9, 12) + cost (5, 12)} = min {4 + 0) =4

cost (4, 10) = min {c (10, 12) + cost (5, 12)} =2

Therefore, cost (3, 6) = min {6 + 4, 5 + 2} =7

cost(3,7) = min {c (7, 9) + cost (4, 9) , c (7, 10) + cost (4,10)}
= min {4 + cost (4, 9), 3 + cost (4,10)}

cost(4,9) = min {c (9, 12) + cost (5, 12)} = min {4 + 0} =4

Cost (4, 10) = min {c (10, 2) + cost (5, 12)} = min {2 + 0} =2

Therefore, cost (3, 7) = min {4 + 4, 3 + 2} = min {8, 5} =5

cost(3,8) = min {c (8, 10) + cost (4, 10), c (8, 11) + cost (4,11)}

= min {5 + cost (4, 10), 6 + cost (4 +11)}

111

cost (4, 11) = min {c (11, 12) + cost (5, 12)} =5

Therefore, cost (3, 8) = min {5 + 2, 6 + 5} = min {7, 11} =7

Therefore, cost (2, 2) = min {4 + 7, 2 + 5, 1 + 7} = min {11, 7, 8} =7

Therefore, cost (2, 3) = min {c (3, 6) + cost (3, 6), c (3, 7) + cost (3,7)}
= min {2 + cost (3, 6), 7 + cost (3,7)}
= min {2 + 7, 7 + 5} = min {9, 12} =9

cost (2, 4) = min {c (4, 8) + cost (3, 8)} = min {11 + 7} =18
cost (2, 5) = min {c (5, 7) + cost (3, 7), c (5, 8) + cost (3,8)}

= min {11 + 5, 8 + 7} = min {16, 15} =15

Therefore, cost (1, 1) = min {9 + 7, 7 + 9, 3 + 18, 2 +15}
= min {16, 16, 21, 17} =16

The minimum cost path is16.

The path is 1 2 7

or

10 12

 1 3 6 10 12

BACKWARDAPPROACH:

We use the following equation to find the minimum cost path from t tos: Bcost (i,

J) = min {Bcost (i – 1, l) + c (l,J)}

l in vi –1

<l,
j>inE

Bcost (5, 12) = min {Bcost (4, 9) + c (9, 12), Bcost (4, 10) + c (10,12),
Bcost (4, 11) + c (11,12)}

= min {Bcost (4, 9) + 4, Bcost (4, 10) + 2, Bcost (4, 11) +5}

112

Bcost (4, 9) = min {Bcost (3, 6) + c (6, 9), Bcost (3, 7) + c (7,9)}
= min {Bcost (3, 6) + 6, Bcost (3, 7) +4}

Bcost (3, 6) = min {Bcost (2, 2) + c (2, 6), Bcost (2, 3) + c (3,6)}
= min {Bcost (2, 2) + 4, Bcost (2, 3) +2}

Bcost (2, 2) = min {Bcost (1, 1) + c (1, 2)} = min {0 + 9} =9

Bcost (2, 3) = min {Bcost (1, 1) + c (1, 3)} = min {0 + 7} =7

Bcost (3, 6) = min {9 + 4, 7 + 2} = min {13, 9} =9

Bcost (3, 7) = min {Bcost (2, 2) + c (2, 7), Bcost (2, 3) + c (3,7),

Bcost (2, 5) + c (5,7)}

Bcost (2, 5) = min {Bcost (1, 1) + c (1, 5)} =2

Bcost (3, 7) = min {9 + 2, 7 + 7, 2 + 11} = min {11, 14, 13} =11

Bcost (4, 9) = min {9 + 6, 11 + 4} = min {15, 15} =15

Bcost (4, 10) = min {Bcost (3, 6) + c (6, 10), Bcost (3, 7) + c (7,10),
Bcost (3, 8) + c (8,10)}

Bcost (3, 8) = min {Bcost (2, 2) + c (2, 8), Bcost (2, 4) + c (4,8),
Bcost (2, 5) + c (5,8)}

Bcost (2, 4) = min {Bcost (1, 1) + c (1, 4)} =3

Bcost (3, 8) = min {9 + 1, 3 + 11, 2 + 8} = min {10, 14, 10} =10

Bcost (4, 10) = min {9 + 5, 11 + 3, 10 + 5} = min {14, 14, 15) =14

Bcost (4, 11) = min {Bcost (3, 8) + c (8, 11)} = min {Bcost (3, 8) +6}
= min {10 + 6} =16

Bcost (5, 12) = min {15 + 4, 14 + 2, 16 + 5} = min {19, 16, 21} =16.

113

 All pairs shortestpaths

In the all pairs shortest path problem, we are to find a shortest path between every

pair of vertices in a directed graph G. That is, for every pair of vertices (i, j), we are

to find a shortest path from i to j as well as one from j to i. These two paths are the

same when G is undirected.

When no edge has a negative length, the all-pairs shortest path problem may be solved

by using Dijkstra‟s greedy single source algorithm n times, once with each of the n

vertices as the source vertex.

The all pairs shortest path problem is to determine a matrix A such that A (i, j) is the
length of a shortest path from i to j. The matrix A can be obtained by solving n single-
source problems using the algorithm shortest Paths. Since each application of this

procedure requires O (n2) time, the matrix A can be obtained in O (n3)time.

The dynamic programming solution, called Floyd‟s algorithm, runs in O (n3) time.

Floyd‟s algorithm works even when the graph has negative length edges (provided

there are no negative length cycles).

The shortest i to j path in G, i ≠ j originates at vertex i and goes through some

intermediate vertices (possibly none) and terminates at vertex j. If k is an intermediate
vertex on this shortest path, then the subpaths from i to k and from k to j must be

shortest paths from i to k and k to j, respectively. Otherwise, the i to j path is not of

minimum length. So, the principle of optimality holds. Let Ak (i, j) represent the
length of a shortest path from i to j going through no vertex of index greater than k,

we obtain:

Ak (i, j) = {min {min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i,j)}

1<k<n

Algorithm All Paths (Cost, A,n)

// cost [1:n, 1:n] is the cost adjacency matrix of a graph which
// n vertices; A [I, j] is the cost of a shortest path from vertex
// i to vertex j. cost [i, i] = 0.0, for 1 <i <n.
{

for i := 1 to n do
for j:= 1 to n do

A [i, j] := cost [i,j]; // copy cost into A

for k := 1 to n do
for i := 1 to n do

114

for j := 1 to n do
A [i, j] := min (A [i, j], A [i, k] + A [k,j]);

}

Complexity Analysis: A Dynamic programming algorithm based on this recurrence
involves in calculating n+1 matrices, each of size n x n. Therefore, the algorithm has a

complexity of O(n3).

General formula: min {Ak-1 (i, k) + Ak-1 (k, j)}, c (i,j)}

1<k<n

Solve the problem for different values of k = 1, 2 and3

Step 1: Solving the equation for, k =1;

A1 (1, 1) = min {(Ao (1, 1) + Ao (1, 1)), c (1, 1)} = min {0 + 0, 0} =0

A1 (1, 2) = min {(Ao (1, 1) + Ao (1, 2)), c (1, 2)} = min {(0 + 4), 4} =4

A1 (1, 3) = min {(Ao (1, 1) + Ao (1, 3)), c (1, 3)} = min {(0 + 11), 11} =11

A1 (2, 1) = min {(Ao (2, 1) + Ao (1, 1)), c (2, 1)} = min {(6 + 0), 6} =6

A1 (2, 2) = min {(Ao (2, 1) + Ao (1, 2)), c (2, 2)} = min {(6 + 4), 0)} =0

A1 (2, 3) = min {(Ao (2, 1) + Ao (1, 3)), c (2, 3)} = min {(6 + 11), 2} =2

A1 (3, 1) = min {(Ao (3, 1) + Ao (1, 1)), c (3, 1)} = min {(3 + 0), 3} =3

A1 (3, 2) = min {(Ao (3, 1) + Ao (1, 2)), c (3, 2)} = min {(3 + 4), 0} =7

A1 (3, 3) = min {(Ao (3, 1) + Ao (1, 3)), c (3, 3)} = min {(3 + 11), 0} =0

Step 2: Solving the equation for, K =2;

A2 (1, 1) = min {(A1 (1, 2) + A1 (2, 1), c (1, 1)} = min {(4 + 6), 0} = 0

A2 (1, 2) = min {(A1 (1, 2) + A1 (2, 2), c (1, 2)} = min {(4 + 0), 4} = 4

A2 (1, 3) = min {(A1 (1, 2) + A1 (2, 3), c (1, 3)} = min {(4 + 2), 11} =6

A2 (2, 1) = min {(A (2, 2) + A (2, 1), c (2, 1)} = min {(0 + 6), 6} =6

A2 (2, 2) = min {(A (2, 2) + A (2, 2), c (2, 2)} = min {(0 + 0), 0} =0

A2 (2, 3) = min {(A (2, 2) + A (2, 3), c (2, 3)} = min {(0 + 2), 2} =2

A2 (3, 1) = min {(A (3, 2) + A (2, 1), c (3, 1)} = min {(7 + 6), 3} =3

115

A2 (3, 2) = min {(A (3, 2) + A (2, 2), c (3, 2)} = min {(7 + 0), 7} =7

A2 (3, 3) = min {(A (3, 2) + A (2, 3), c (3, 3)} = min {(7 + 2), 0} =0

116

2

 0 4

A (2) =6 0

 3 7

Step 3: Solving the equation for, k =3;

A3 (1, 1) = min {A2 (1, 3) + A2 (3, 1), c (1, 1)} = min {(6 + 3), 0} =0

A3 (1, 2) = min {A2 (1, 3) + A2 (3, 2), c (1, 2)} = min {(6 + 7), 4} =4

A3 (1, 3) = min {A2 (1, 3) + A2 (3, 3), c (1, 3)} = min {(6 + 0), 6} =6

A3 (2, 1) = min {A2 (2, 3) + A2 (3, 1), c (2, 1)} = min {(2 + 3), 6} =5

A3 (2, 2) = min {A2 (2, 3) + A2 (3, 2), c (2, 2)} = min {(2 + 7), 0} =0

A3 (2, 3) = min {A2 (2, 3) + A2 (3, 3), c (2, 3)} = min {(2 + 0), 2} =2

A3 (3, 1) = min {A2 (3, 3) + A2 (3, 1), c (3, 1)} = min {(0 + 3), 3} =3

A3 (3, 2) = min {A2 (3, 3) + A2 (3, 2), c (3, 2)} = min {(0 + 7), 7} =7

A3 (3, 3) = min {A2 (3, 3) + A2 (3, 3), c (3, 3)} = min {(0 + 0), 0} =0

A(3) =

0

5

3

4 6

0

7 0

 TRAVELLING SALESPERSONPROBLEM

Let G = (V, E) be a directed graph with edge costs Cij. The variable cijis defined such

that cij> 0 for all I and j and cij= if < i, j>E. Let |V| = n and assume n > 1. A tour of G

is a directed simple cycle that includes every vertex in V. The cost of a tour is the sum of
the cost of the edges on the tour. The traveling sales person problem is to find a tour of
minimum cost. The tour is to be a simple path that starts and ends at vertex1.

Let g (i, S) be the length of shortest path starting at vertex i, going through all vertices in

S, and terminating at vertex 1. The function g (1, V – {1}) is the length of an optimal

salesperson tour. From the principal of optimality it followsthat:

C(S, i) = min { C(S-{i}, j) + dis(j, i)} where j belongs to S, j != i and j != 1.

The Equation can be solved for g (1, V – 1}) if we know g (k, V – {1, k}) for all

117

choices of k.

Complexity Analysis:

Foreachvalueof|S|therearen–1choicesfori.ThenumberofdistinctsetsSof

size k not including 1 and i is k

Hence, the total number of g (i, S)‟s to be computed before computing g (1, V – {1})

To calculate this sum, we use the binominaltheorem:

This is Φ (n 2n-2), so there are exponential number of calculate. Calculating one g (i,

S) require finding the minimum of at most n quantities. Therefore, the entire algorithm is

Φ (n2 2n-2). This is better than enumerating all n! different tours to find the best one. So,

we have traded on exponential growth for a much smaller exponential growth. The most

serious drawback of this dynamic programming solution is the space needed, which is O

(n 2n). This is too large even for modest values of n.

Example1:

For the following graph find minimum cost tour for the traveling sales person

problem:

The cost adjacency matrix =

0 10 15 20

5 0 9 10

6 13 0 12

8 8 9 0

Let us start the tour from vertex1:

g (1, V – {1}) = min {c1k + g (k, V – {1,K})} - (1)

2<k<n

More generally writing:

.

1 2

3 4

118

g (i, s) = min {cij+ g (J, s –{J})} - (2)

Clearly, g (i, 0) = ci1 , 1 ≤ i ≤ n.

g (2, 0) = C21 =5

g (3, 0) = C31 = 6

g (4, 0) = C41 =8

Using equation – (2) we obtain:

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}, c13 + g (3, {2, 4}), c14 + g (4, {2,3})}

g (2, {3, 4}) = min {c23 + g (3, {4}), c24 + g (4,{3})}
= min {9 + g (3, {4}), 10 + g (4,{3})}

g (3, {4}) = min {c34 + g (4, 0)} = 12 + 8 =20

g (4, {3}) = min {c43 + g (3, 0)} = 9 + 6 =15

Therefore, g (2, {3, 4}) = min {9 + 20, 10 + 15} = min {29, 25} =25

g (3, {2, 4}) = min {(c32 + g (2, {4}), (c34 + g (4,{2})}

g (2, {4}) = min {c24 + g (4, 0)} = 10 + 8 =18

g (4, {2}) = min {c42 + g (2, 0)} = 8 + 5 =13

Therefore, g (3, {2, 4}) = min {13 + 18, 12 + 13} = min {41, 25} =25

g (4, {2, 3}) = min {c42 + g (2, {3}), c43 + g (3,{2})}

g (2, {3}) = min {c23 + g (3, 0} = 9 + 6 =15

g (3, {2}) = min {c32 + g (2, 0} = 13 + 5 =18

Therefore, g (4, {2, 3}) = min {8 + 15, 9 + 18} = min {23, 27} =23

119

g (1, {2, 3, 4}) = min {c12 + g (2, {3, 4}), c13 + g (3, {2, 4}), c14 + g (4, {2,3})}
= min {10 + 25, 15 + 25, 20 + 23} = min {35, 40, 43} =35

The optimal tour for the graph has length = 35 The

optimal tour is: 1, 2, 4, 3,1.

 OPTIMAL BINARY SEARCHTREE

 Let us assume that the given set of identifiers is {a1, . . . , an} with a1 < a2 < <

an. Let p (i) be the probability with which we search for ai. Let q (i) be the probability

that the identifier x being searched for is such that ai < x < ai+1, 0 <i <n (assume a0 = -

and an+1 = +). We have to arrange the identifiers in a binary search tree in a way that

minimizes the expected total access time.

In a binary search tree, the number of comparisons needed to access an element at depth

'd' is d + 1, so if 'ai' is placed at depth 'di', then we want to minimize:

 Let P (i) be the probability with which we shall be searching for 'ai'. Let Q (i) be the

probability of an un-successful search. Every internal node represents a point where a
successful search may terminate. Every external node represents a point where an
unsuccessful search may terminate.

The expected cost contribution for the internal node for 'ai'is:

P(i)*level(ai).

Unsuccessful search terminate with I = 0 (i.e at an external node). Hence the cost

contribution for this node is:

Q (i) * level ((Ei) -1)

The expected cost of binary search tree is:

120

Given a fixed set of identifiers, we wish to create a binary search tree organization. We

may expect different binary search trees for the same identifier set to have different

performance characteristics.

The computation of each of these c(i, j)‟s requires us to find the minimum of m quantities.
Hence, each such c(i, j) can be computed in time O(m). The total time for all c(i, j)‟s with

j – i = m is therefore O(nm –m2).

Example 1: The possible binary search trees for the identifier set (a1, a2, a3) = (do, if,
stop) are as follows. Given the equal probabilities p (i) = Q (i) = 1/7 for all i, we have:

Tree2

 Tree 4

Huffman coding tree solved by a greedy algorithm has a limitation of having the data only

at the leaves and it must not preserve the property that all nodes to the left of the root have

keys, which are less etc. Construction of an optimal binary search tree is harder, because

the data is not constrained to appear only at the leaves, and also because the tree must

satisfy the binary search tree property and it must preserve the property that all nodes to

the left of the root have keys, which areless.

A dynamic programming solution to the problem of obtaining an optimal binary search
tree can be viewed by constructing a tree as a result of sequence of decisions by holding
the principle of optimality. A possible approach to this is to make a decision as which of
the ai's be arraigned to the root node at 'T'. If we choose 'ak' then is clear that the internal

nodes for a1, a2, ak-1 as well as the external nodes for the classes Eo, E1,

Ek-1 will lie in the left sub tree, L, of the root. The remaining nodes will be in the right

subtree, R. The structure of an optimal binary search treeis:

if

do stop

stop

if

do

Tree1

do

if

stop

Tree3

do

stop

if

121

The C (i, J) can be computedas:

C (i, J) = min {C (i, k-1) + C (k, J) + P (K) + w (i, K-1) + w (K,J)}

i<k<J

= min {C (i, K-1) + C (K, J)} + w (i,J) -- (1)

i<k<J

Where W (i, J) = P (J) + Q (J) + w (i,J-1) -- (2)

Initially C (i, i) = 0 and w (i, i) = Q (i) for 0 <i <n.

Equation (1) may be solved for C (0, n) by first computing all C (i, J) such that J - i = 1

Next, we can compute all C (i, J) such that J - i = 2, Then all C (i, J) with J - i = 3 and

soon.

C (i, J) is the cost of the optimal binary search tree 'Tij' during computation we record the

root R (i, J) of each tree 'Tij'. Then an optimal binary search tree may be constructed from

these R (i, J). R (i, J) is the value of 'K' that minimizes equation(1).

We solve the problem by knowing W (i, i+1), C (i, i+1) and R (i, i+1), 0 ≤ i < 4; Knowing

W (i, i+2), C (i, i+2) and R (i, i+2), 0 ≤ i < 3 and repeating until W (0, n), C (0, n) and R

(0, n) areobtained.

The results are tabulated to recover the actualtree.

Example1:

Let n = 4, and (a1, a2, a3, a4) = (do, if, need, while) Let P (1: 4) = (3, 3, 1, 1) and Q (0: 4)
= (2, 3, 1, 1,1)

Solution:
Table for recording W (i, j), C (i, j) and R (i,j):

Column

Row 0 1 2 3 4

122

0 2, 0,0 3, 0,0 1, 0,0 1, 0,0, 1, 0,0

1 8, 8,1 7, 7,2 3, 3,3 3, 3,4

2 12, 19,1 9, 12,2 5, 8,3

3 14, 25,2 11, 19,2

4 16, 32,2

Thiscomputationiscarriedoutrow-wisefromrow0torow4.Initially,W(i,i)=Q
(i) and C (i, i) = 0 and R (i, i) = 0, 0 <i <4.

Solving for C (0,n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 <i < 4; i = 0, 1, 2 and 3; i

< k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for k =1

W (0, 1) = P (1) + Q (1) + W (0, 0) = 3 + 3 + 2 =8
C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} =8
R (0, 1) = 1 (value of 'K' that is minimum in the above equation). Next

with i = 1; so j = 2; as i < k ≤ j, so the possible value for k =2

W (1, 2) = P (2) + Q (2) + W (1, 1) = 3 + 1 + 3 =7
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} =7
R (1, 2) =2

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k =3

W (2, 3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 =3
C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] =3
R (2, 3) =3

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k =4 W (3,

4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 =3
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] =3
R (3, 4) =4

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 <i < 3; i = 0, 1, 2; i < k

≤ J. Start with i = 0; so j = 2; as i < k ≤ J, so the possible values for k = 1 and2.

W (0, 2) = P (2) + Q (2) + W (0, 1) = 3 + 1 + 8 =12
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2,2))}

= 12 + min {(0 + 7, 8 + 0)} =19

123

R (0, 2) =1
Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and3.

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 7 =9
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3,3)]}

= W (1, 3) + min {(0 + 3), (7 + 0)} = 9 + 3 =12
R (1, 3) =2

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4. W (2,

4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 =5
C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4,4)]

= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 =8
R (2, 4) =3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 <i < 2; i = 0,1;
i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 and3.

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 =14
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2,3)],

[C (0, 2) + C (3,3)]}
= 14 + min {(0 + 12), (8 + 3), (19 + 0)} = 14 + 11 =25

R (0, 3) =2

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and4. W (1, 4)

= P (4) + Q (4) + W (1, 3) = 1 + 1 + 9 =11
C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3,4)],

[C (1, 3) + C (4,4)]}
= 11 + min {(0 + 8), (7 + 3), (12 + 0)} = 11 + 8 =19

R (1, 4) =2

Fourth, Computing all C (i, j) such that j - i = 4; j = i + 4 and as 0 <i < 1; i = 0; i < k

≤J.

Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and4.

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 =16
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2,4)],

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4,4)]}
= 16 + min [0 + 19, 8 + 8, 19+3, 25+0] = 16 + 16 =32

R (0, 4) =2

From the table we see that C (0, 4) = 32 is the minimum cost of a binary search tree for

(a1, a2, a3, a4). The root of the tree 'T04' is'a2'.

124

a2
T04

a1 a3
T01 T24

T00 T11 T22 T34

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the
root of 'T24' isa3.

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is
'a1'

The left and right sub trees for T24 are T22 and T34 respectively.

The root of T24 is'a3'.

The root of T22 is null

The root of T34 isa4.

a4

Example2:

Consider four elements a1, a2, a3 and a4 with Q0 = 1/8, Q1 = 3/16, Q2 = Q3 = Q4 = 1/16
and p1 = 1/4, p2 = 1/8, p3 = p4 =1/16. Construct an optimal binary search tree. Solving
for C (0,n):

First, computing all C (i, j) such that j - i = 1; j = i + 1 and as 0 <i < 4; i = 0, 1, 2 and 3; i

< k ≤ J. Start with i = 0; so j = 1; as i < k ≤ j, so the possible value for k =1

W (0, 1) = P (1) + Q (1) + W (0, 0) = 4 + 3 + 2 =9
C (0, 1) = W (0, 1) + min {C (0, 0) + C (1, 1)} = 9 + [(0 + 0)] =9
R (0, 1) = 1 (value of 'K' that is minimum in the above equation). Next

with i = 1; so j = 2; as i < k ≤ j, so the possible value for k =2

W (1, 2) = P (2) + Q (2) + W (1, 1) = 2 + 1 + 3 =6
C (1, 2) = W (1, 2) + min {C (1, 1) + C (2, 2)} = 6 + [(0 + 0)] =6
R (1, 2) =2

Next with i = 2; so j = 3; as i < k ≤ j, so the possible value for k =3 W (2,

if

do read

while

125

3) = P (3) + Q (3) + W (2, 2) = 1 + 1 + 1 =3

C (2, 3) = W (2, 3) + min {C (2, 2) + C (3, 3)} = 3 + [(0 + 0)] =3

126

R (2, 3) =3

Next with i = 3; so j = 4; as i < k ≤ j, so the possible value for k =4 W (3,

4) = P (4) + Q (4) + W (3, 3) = 1 + 1 + 1 =3
C (3, 4) = W (3, 4) + min {[C (3, 3) + C (4, 4)]} = 3 + [(0 + 0)] =3
R (3, 4) =4

Second, Computing all C (i, j) such that j - i = 2; j = i + 2 and as 0 <i < 3; i = 0, 1, 2; i <

k ≤J

Start with i = 0; so j = 2; as i < k ≤ j, so the possible values for k = 1 and 2. W (0,

2) = P (2) + Q (2) + W (0, 1) = 2 + 1 + 9 =12
C (0, 2) = W (0, 2) + min {(C (0, 0) + C (1, 2)), (C (0, 1) + C (2,2))}

= 12 + min {(0 + 6, 9 + 0)} = 12 + 6 =18
R (0, 2) =1
Next, with i = 1; so j = 3; as i < k ≤ j, so the possible value for k = 2 and3.

W (1, 3) = P (3) + Q (3) + W (1, 2) = 1 + 1+ 6 =8
C (1, 3) = W (1, 3) + min {[C (1, 1) + C (2, 3)], [C (1, 2) + C (3,3)]}

= W (1, 3) + min {(0 + 3), (6 + 0)} = 8 + 3 =11
R (1, 3) =2

Next, with i = 2; so j = 4; as i < k ≤ j, so the possible value for k = 3 and 4. W (2,

4) = P (4) + Q (4) + W (2, 3) = 1 + 1 + 3 =5
C (2, 4) = W (2, 4) + min {[C (2, 2) + C (3, 4)], [C (2, 3) + C (4,4)]

= 5 + min {(0 + 3), (3 + 0)} = 5 + 3 =8
R (2, 4) =3

Third, Computing all C (i, j) such that J - i = 3; j = i + 3 and as 0 <i < 2; i = 0,1;
i < k ≤ J. Start with i = 0; so j = 3; as i < k ≤ j, so the possible values for k = 1, 2 and3.

W (0, 3) = P (3) + Q (3) + W (0, 2) = 1 + 1 + 12 =14
C (0, 3) = W (0, 3) + min {[C (0, 0) + C (1, 3)], [C (0, 1) + C (2,3)],

[C (0, 2) + C (3,3)]}
= 14 + min {(0 + 11), (9 + 3), (18 + 0)} = 14 + 11 =25

R (0, 3) =1

Start with i = 1; so j = 4; as i < k ≤ j, so the possible values for k = 2, 3 and4. W (1, 4)

= P (4) + Q (4) + W (1, 3) = 1 + 1 + 8 =10

C (1, 4) = W (1, 4) + min {[C (1, 1) + C (2, 4)], [C (1, 2) + C (3,4)],

[C (1, 3) + C (4,4)]}
= 10 + min {(0 + 8), (6 + 3), (11 + 0)} = 10 + 8 =18

R (1, 4) =2

Fourth, Computing all C (i, j) such that J - i = 4; j = i + 4 and as 0 <i < 1; i =0;

127

i < k ≤ J. Start with i = 0; so j = 4; as i < k ≤ j, so the possible values for k = 1, 2, 3 and4.

W (0, 4) = P (4) + Q (4) + W (0, 3) = 1 + 1 + 14 =16
C (0, 4) = W (0, 4) + min {[C (0, 0) + C (1, 4)], [C (0, 1) + C (2,4)],

[C (0, 2) + C (3, 4)], [C (0, 3) + C (4,4)]}

= 16 + min [0 + 18, 9 + 8, 18 + 3, 25 + 0] = 16 + 17 =33
R (0, 4) =2

Table for recording W (i, j), C (i, j) and R (i,j)

Column

Row
0 1 2 3 4

0 2, 0,0 1, 0,0 1, 0,0 1, 0,0, 1, 0,0

1 9, 9,1 6, 6,2 3, 3,3 3, 3,4

2 12, 18,1 8, 11,2 5, 8,3

3 14, 25,2 11, 18,2

4 16, 33,2

From the table we see that C (0, 4) = 33 is the minimum cost of a binary search tree for

(a1, a2, a3,a4)

The root of the tree 'T04' is'a2'.

Hence the left sub tree is 'T01' and right sub tree is T24. The root of 'T01' is 'a1' and the
root of 'T24' isa3.

The left and right sub trees for 'T01' are 'T00' and 'T11' respectively. The root of T01 is
'a1'

The left and right sub trees for T24 are T22 and T34 respectively.

The root of T24 is'a3'.

The root of T22 is null.

The root of T34 isa4.

128

a2
T04

a1 a3
T 01 T24

T00 T11 T22 T34

a4

 0/1 –KNAPSACK

We are given n objects and a knapsack. Each object i has a positive weight wi and a

positive value Vi. The knapsack can carry a weight not exceeding W. Fill the knapsack so

that the value of objects in the knapsack isoptimized.

A solution to the knapsack problem can be obtained by making a sequence of decisions
on the variables x1, x2, , xn. A decision on variable xi involves

determiningwhichofthevalues0or1istobeassignedtoit.Letusassume that

decisions on the xi are made in the order xn, xn-1,x1. Following a decision on xn, we

may be in one of two possible states: the capacity remaining in m – wn and a profit of pn
has accrued. It is clear that the remaining decisions xn-1, . . . , x1 must be optimal with

respect to the problem state resulting from the decision on xn. Otherwise, xn,. . . . , x1
will not be optimal. Hence, the principal of optimalityholds.

Fn (m) = max {fn-1 (m), fn-1 (m - wn)+pn} -- 1

For arbitrary fi (y), i > 0, this equation generalization:

Fi (y) = max {fi-1 (y), fi-1 (y - wi)+pi} -- 2

Equation-2 can be solved for fn (m) by beginning with the knowledge fo (y) = 0 for all y

and fi (y) = - 0, y < 0. Then f1, f2, . . . fn can be successively computed using equation–2.

When the wi‟s are integer, we need to compute fi (y) for integer y, 0 <y <m. Sincefi

(y) = - for y < 0, these function values need not be computed explicitly. Since each fi

can be computed from fi - 1 in Θ (m) time, it takes Θ (m n) time to compute fn. When

the wi‟s are real numbers, fi (y) is needed for real numbers y such that 0 <y <m. So, fi

cannot be explicitly computed for all y in this range. Even when the wi‟s are integer, the

explicit Θ (m n) computation of fn may not be the most efficient computation. So, we

explore an alternative method for bothcases.

The fi (y) is an ascending step function; i.e., there are a finite number of y‟s, 0 = y1
< y2 < < yk, such that fi (y1) < fi (y2) < < fi (yk); fi (y) = - , y < y1; fi
(y) = f (yk), y >yk; and fi (y) = fi (yj), yj <y <yj+1. So, we need to compute only fi (yj), 1

<j <k. We use the ordered set Si = {(f (yj), yj) | 1 <j <k} to represent fi (y). Each number

a2

a1 a3

a4

129

of Si is a pair (P, W), where P = fi (yj) and W = yj. Notice that S0 =
{(0, 0)}. We can compute Si+1 from Si by firstcomputing:

Si
1 = {(P, W) | (P – pi, W – wi) Si}

Now, Si+1 can be computed by merging the pairs in Si and Si
1 together. Note that if Si+1

contains two pairs (Pj, Wj) and (Pk, Wk) with the property that Pj <Pk and Wj >Wk, then

the pair (Pj, Wj) can be discarded because of equation-2. Discarding or purging rules such

as this one are also known as dominance rules. Dominated tuples get purged. In the
above, (Pk, Wk) dominates (Pj,Wj).

Example1:

Consider the knapsack instance n = 3, (w1, w2, w3) = (2, 3, 4), (P1, P2, P3) = (1,2,
5) and M =6.

Solution:

Initially, fo (x) = 0, for all x and fi (x) = - if x < 0. Fn

(M) = max {fn-1 (M), fn-1 (M - wn) +pn}

F3 (6) = max (f2 (6), f2 (6 – 4) + 5} = max {f2 (6), f2 (2) +5}

F2 (6) = max (f1 (6), f1 (6 – 3) + 2} = max {f1 (6), f1 (3) +2}

F1 (6) = max (f0 (6), f0 (6 – 2) + 1} = max {0, 0 + 1} =1

F1 (3) = max (f0 (3), f0 (3 – 2) + 1} = max {0, 0 + 1} =1

Therefore, F2 (6) = max (1, 1 + 2} =3

F2 (2) = max (f1 (2), f1 (2 – 3) + 2} = max {f1 (2), - 0+ 2}

F1 (2) = max (f0 (2), f0 (2 – 2) + 1} = max {0, 0 + 1} =1

F2 (2) = max {1, - 0+ 2} =1

130

1

1

S1

S2

Finally, f3 (6) = max {3, 1 + 5} =6

OtherSolution:

For the given data wehave:

S0 ={(0,0)}; S0 = {(1,2)}

S1 = (S0 U S0
1) = {(0, 0), (1,2)}

X - 2 = 0 => x =2. y – 3 = 0 => y =3
X - 2 = 1 => x =3. y – 3 = 2 => y =5

1 = {(2, 3), (3,5)}

S2 = (S1 U S1) = {(0, 0), (1, 2), (2, 3), (3,5)}

X – 5 = 0 => x =5. y – 4 = 0 => y =4
X – 5 = 1 => x =6. y – 4 = 2 => y =6
X – 5 = 2 => x =7. y – 4 = 3 => y =7
X – 5 = 3 => x =8. y – 4 = 5 => y =9

1 = {(5, 4), (6, 6), (7, 7), (8,9)}

S3 = (S2 U S2
1) = {(0, 0), (1, 2), (2, 3), (3, 5), (5, 4), (6, 6), (7, 7), (8,9)}

By applying Dominancerule,

S3 = (S2 U S2
1) = {(0, 0), (1, 2), (2, 3), (5, 4), (6,6)}

From (6, 6) we can infer that the maximum Profit pi xi = 6 and weight xi wi =6

 ReliabilityDesign

131

i

The problem is to design a system that is composed of several devices connected in series.
Let ri be the reliability of device Di (that is ri is the probability that device i will

function properly) then the reliability of the entire system is ri. Even if the individual

devices are very reliable (the ri‟s are very close to one), the reliability of the system may

not be very good. For example, if n = 10 and ri = 0.99, i <i <10, then ri = .904. Hence, it

is desirable to duplicate devices. Multiply copies of the same device type are connected
inparallel.

Ifstage I contains miscopies ofdeviceDi.Thentheprobabilitythatallmi havea

malfunction is (1 -ri)
mi. Hence the reliability of stage i becomes 1 – (1 - r)

mi.

132

The reliability of stage „i‟ is given by a function i(mi).

Our problem is to use device duplication. This maximization is to be carried out under a
cost constraint. Let ci be the cost of each Module of device i and let c be the maximum
allowable cost of the system beingdesigned.

Clearly, f0 (x) = 1 for all x, 0 <x <C and f (x) = -for all x < 0.

Let Si consist of tuples of the form (f, x), where f = fi(x).

There is at most one tuple for each different „x‟, that result from a sequence of decisions
on m1, m2, mn. The dominance rule (f1, x1) dominate (f2, x2) if f1 ≥ f2 and x1 ≤ x2.
Hence, dominated tuples can be discarded fromSi.

DominanceRule:

If Si contains two pairs (f1, x1) and (f2, x2) with the property that f1 ≥ f2 and x1 ≤ x2,

then (f1, x1) dominates (f2, x2), hence by dominance rule (f2, x2) can be discarded.

Discarding or pruning rules such as the one above is known as dominance rule.

Dominating tuples will be present in Si and Dominated tuples has to be discarded fromSi.

Case 1: if f1 ≤ f2 and x1 > x2 then discard (f1, x1)

Case 2: if f1 >f2 and x1 < x2 the discard (f2, x2)

Case 3: otherwise simply write (f1,x1)

S2 = {(0.72, 45), (0.864, 60), (0.8928,75)}

133

S 3

3 (0.63, 105), 1.756, 120, 0.7812,135

If cost exceeds 105, remove thattuples

S3 = {(0.36, 65), (0.437, 80), (0.54, 85), (0.648, 100)}

The best design has a reliability of 0.648 and a cost of 100. Tracing back forthe
solution through Si „s we can determine that m3 = 2, m2 = 2 and m1 = 1.

OtherSolution:

According to the principle ofoptimality:

fn(C) = max {on (mn). fn-1 (C - Cn mn) with fo (x) = 1 and 0 ≤ x ≤C;
1 mn un

Since,wecanassumeachci >0,eachmimustbeintherange1≤mi ≤ ui.

MODULE-IV

BACKTRACKING AND BRANCH AND BOUND

GeneralMethod:
Backtracking is used to solve problem in which a sequence of objects is chosen from a

specified set so that the sequence satisfies some criterion. The desired solution is
expressed as an n-tuple (x1, , xn) where each xi Є S, S being a finite set.

The solution is based on finding one or more vectors that maximize, minimize, or satisfy a

criterion function P (x1, , xn). Form a solution and check at every step if this has

any chance of success. If the solution at any point seems not promising, ignore it. All
solutions requires a set of constraints divided into two categories: explicit and implicit
constraints.
Explicit constraints are rules that restrict each xi to take on values only from a given set

Explicit constraints depend on the particular instance I of problem being
solved. All tuples that satisfy the explicit constraints define a possible
solution space for I.

Implicit constraints are rules that determine which of the tuples in the solution space of I

satisfy the criterion function. Thus, implicit constraints describe the way in

which the xi‟s must relate to eachother.

For 8-queensproblem:

Explicit constraints using 8-tuple formation, for this problem are S= {1, 2, 3, 4, 5, 6, 7,8}.

The implicit constraints for this problem are that no two queens can be the same (i.e., all

queens must be on different columns) and no two queens can be on the same diagonal.

Backtracking is a modified depth first search of a tree. Backtracking algorithms determine

problem solutions by systematically searching the solution space for the given problem

instance. This search is facilitated by using a tree organization for the solution space.

Backtracking is the procedure where by, after determining that a node can lead to nothing

but dead end, we go back (backtrack) to the nodes parent and proceed with the search on

the next child.

A backtracking algorithm need not actually create a tree. Rather, it only needs to keep

track of the values in the current branch being investigated. This is the way we implement

backtracking algorithm. We say that the state space tree exists implicitly in the algorithm

because it is not actually constructed.

Terminology:

Problem state is each node in the depth first search tree.

solution states are the problem states „S‟ for which the path from the root node to „S‟

defines a tuple in the solution space.

Answer states are those solution states for which the path from root node to s defines a

tuple that is a member of the set of solutions.

State space is the set of paths from root node to other nodes. State space tree is the tree

organization of the solution space. The state space trees are called static trees. This

terminology follows from the observation that the tree organizations are independent of

the problem instance being solved. For some problems it is advantageous to use different

tree organizations for different problem instance. In this case the tree organization is

determined dynamically as the solution space is being searched. Tree organizations that

are problem instance dependent are called dynamic trees.

Live node is a node that has been generated but whose children have not yet been

generated.

E-node is a live node whose children are currently being explored. In other words, an E-

node is a node currently being expanded.

Dead node is a generated node that is not to be expanded or explored any further. All

children of a dead node have already been expanded.

Branch and Bound refers to all state space search methods in which all children of an E-

node are generated before any other live node can become the E-node.

Depth first node generation with bounding functions is called backtracking. State

generation methods in which the E-node remains the E-node until it is dead, lead to

branch and bound methods.

N-QueensProblem:
Let us consider, N = 8. Then 8-Queens Problem is to place eight queens on an 8 x 8

chessboard so that no two “attack”, that is, no two of them are on the same row, column,

ordiagonal.All solutions to the 8-queens problem can be represented as 8-tuples (x1,

, x8), where xi is the column of the ithrow where the ithqueen isplaced.
The explicit constraints using this formulation are Si = {1, 2, 3, 4, 5, 6, 7, 8}, 1 ≤i≤8

Therefore the solution space consists of 888-tuples.

The implicit constraints for this problem are that no two xi‟s can be the same (i.e., all
queens must be on different columns) and no two queens can be on the same diagonal.

This realization reduces the size of the solution space from 88 tuples to 8!Tuples.

The promising function must check whether two queens are in the same column or

diagonal:

Suppose two queens are placed at positions (i, j) and (k, l)Then:

 Column Conflicts: Two queens conflict if their xi values are identical.

 Diagonal conflict: Two queens i and j are on the same diagonal

i – j = k –l.

This implies, j – l = i –k

 Diagonal conflict:
i + j = k +l.

This implies, j – l = k –i

Therefore, two queens lie on the same diagonal if and only if:

|j – l|= |i – k|
Where, j be the column of object in row i for the ithqueen and l be the column of object in

row „k‟ for the kthqueen.

To check the diagonal clashes, let us take the following tile configuration:

In this example, we have:

i 1 2 3 4 5 6 7 8

xi 2 5 1 8 4 7 3 6

Let us consider for the case whether the queens on 3rdrow and 8throw are
conflicting or not. In thiscase (i, j) = (3, 1) and (k, l) = (8, 6)

Therefore:
|j – l|= |i – k | is |1 – 6|= |3 –8 | which is 5 =5
In the above example we have, |j – l|= |i – k| , so the two queens are attacking. This is not

a solution.

Example:
Suppose we start with the feasible sequence 7, 5, 3,1.

Step1:
Add to the sequence the next number in the sequence 1, 2, . . . , 8 not yet used.

Step2:
If this new sequence is feasible and has length 8 then STOP with a solution. If the

new sequence is feasible and has length less then 8, repeat Step1.

Step3:
If the sequence is not feasible, then backtrack through the sequence until we find

the most recent place at which we can exchange a value. Go back to Step 1.

On a chessboard, the solution

*

*

*

*

*

*

*

*

*

*

*

4 – QueensProblem:
Let us see how backtracking works on the 4-queens problem. We start with the root node

as the only live node. This becomes the E-node. We generate one child. Let us assume that

the children are generated in ascending order. Let us assume that the children are

generated in ascending order. Thus node number 2 of figure is generated and the path is

now (1). This corresponds to placing queen 1 on column 1. Node 2 becomes the E-node.

Node 3 is generated and immediately killed. The next node generated is node 8 and the

path becomes (1, 3). Node 8 becomes the E-node. However, it gets killed as all its children

represent board configurations that cannot lead to an answer node. We backtrack to node 2

and generate another child, node 13. The path is now (1, 4). The board configurations as

backtracking proceeds is as follows:

(a) (b) (c) (d)

(e) (f) (g) (h)

The above figure shows graphically the steps that the backtracking algorithm goes through

as it tries to find a solution. The dots indicate placements of a queen, which were tried and

rejected because another queen was attacking.

In Figure (b) the second queen is placed on columns 1 and 2 and finally settles on column

3. In figure (c) the algorithm tries all four columns and is unable to place the next queen

on a square. Backtracking now takes place. In figure (d) the second queen is moved to the

next possible column, column 4 and the third queen is placed on column 2. The boards in

Figure (e), (f), (g), and (h) show the remaining steps that the algorithm goes through until

a solution is found.

1

1

. . 2

1

 2
. . . .

1

 2

. 3

1

 2

 3
. . . .

 1

 1

. . . 2

 1

 2

3
. . 4

 = 19, 173, 961nodes

Sum of Subsets:
Given positive numbers wi, 1 ≤ i ≤ n, and m, this problem requires finding all subsets of

wi whose sums are„m‟.All solutions are k-tuples, 1 ≤ k ≤n. Explicit constraints:

xi Є {j | j is an integer and 1 ≤ j ≤n}. Implicit constraints:No two xi can be the same.
The sum of the corresponding wi‟s be m.xi < xi+1 , 1 ≤ i < k (total order in indices) to avoid
generating multiple instances of the same subset (for example, (1, 2, 4) and (1, 4, 2)
represent the samesubset).

A better formulation of the problem is where the solution subset is represented bya n-
tuple (x1, , xn) such that xi Є {0,1}.
The above solutions are then represented by (1, 1, 0, 1) and (0, 0, 1,1). For both

the above formulations, the solution space is 2n distinct tuples.

For example, n = 4, w = (11, 13, 24, 7) and m = 31, the desired subsets are(11,
13, 7) and (24,7).The following figure shows a possible tree organization for two possible
formulations of the solution space for the case n =4.

A possible solution space organisation for the

Sum of subsets problem.

The tree corresponds to the variable tuple size formulation. The edges are labeled such that
an edge from a level i node to a level i+1 node represents a value for xi. At each node, the

solution space is partitioned into sub - solution spaces. All paths from the root node to any
node in the tree define the solution space, since any such path corresponds to a subset
satisfying the explicit constraints.
The possible paths are (1), (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 4), (1, 3, 4), (2), (2,
3), and so on. Thus, the left mot sub-tree defines all subsets containing w1, the next sub-
tree defines all subsets containing w2 but not w1, and soon.

x1=1 1

x1=3

x1=4

2

x2=2

x1=2

3

x2=3

4 5
x2=4

x2=4
x2=3

6 7 8 9 10

x3=3
x3=4 x3=4

x2=4

11

S
12

x4=4

16

1314

S

x3=4

15

 Graph Coloring (for planar graphs):
Let G be a graph and m be a given positive integer. We want to discover whether the

nodes of G can be colored in such a way that no two adjacent nodes have the same color,

yet only m colors are used. This is termed the m-colorabiltiy decision problem. The m-

colorability optimization problem asks for the smallest integer m for which the graph G

can becolored.

Given any map, if the regions are to be colored in such a way that no two adjacent regions

have the same color, only four colors are needed.

For many years it was known that five colors were sufficient to color any map, but no map

that required more than four colors had ever been found. After several hundred years, this

problem was solved by a group of mathematicians with the help of a computer. They

showed that in fact four colors are sufficient for planar graphs.
The function m-coloring will begin by first assigning the graph to its adjacency matrix,
setting the array x [] to zero. The colors are represented by the integers 1, 2, . . . m and the
solutions are given by the n-tuple (x1, x2, . . ., xn), where xi is the color of nodei.

A recursive backtracking algorithm for graph coloring is carried out by invoking the

statement mcoloring(1);

Algorithm mcoloring(k)

// This algorithm was formed using the recursive backtracking schema. The graph is
// represented by its Boolean adjacency matrix G [1: n, 1: n]. All assignments of
// 1, 2, , m to the vertices of the graph such that adjacent vertices are assigned
// distinct integers are printed. k is the index of the next vertex to color.
{

repeat

{ // Generate all legal assignments for x[k].

NextValue(k); // Assign to x [k] a legal color.

 If (x [k] = 0) then return; // No new color possible

 If (k = n)then // at most m colors have been

// used to color the n vertices.

write (x [1:n]);

else mcoloring(k+1);

} until(false);

}

Algorithm NextValue(k)

// x [1] , x [k-1] have been assigned integer values in the range [1, m] such that

// adjacent vertices have distinct integers. A value for x [k] is determined in the range

//[0,m].x[k]Is assigned the next highest numbered color while maintaining distinctness

// from the adjacent vertices of vertex k. If no such color exists, then x [k] is0.

{

repeat

{

x [k]: = (x [k] +1) mod(m+1) // Next highest color.

If (x [k] = 0) thenreturn; // All colors have been used

 for j := 1 to ndo

{ // check if this color is distinct from adjacent colors

 if ((G [k, j] !=0) and (x [k] = x[j]))

// If (k, j) is and edge and if adj. vertices have the same color then break;

}

if (j = n+1) thenreturn; // New color found

}until(false); // Otherwise try to find another color.

}

Example:

Color the graph given below with minimum number of colors by backtracking using state

space tree.

x1

1
2

3

1 2 2 3 1 3 1 2 x2

 1 3 1 2 2 x3

4 3
3 1 2 2 3 1 3

Graph

2 3 2 2
x4

3 3 1 3 1 3 1 3 1 1 2 2 1 2

A 4-node graph and all possible 3-colorings

Hamiltonian cycles

Let G = (V, E) be a connected graph with n vertices. A Hamiltonian cycle (suggested by
William Hamilton) is a round-trip path along n edges of G that visits every vertex once
and returns to its starting position. In other vertices of G are visited in the order v1, v2, . .

. . . , vn+1, then the edges (vi, vi+1) are in E, 1 <i <n, and the vi are distinct expect for v1
and vn+1, which are equal. The graph G1 contains the Hamiltonian cycle 1, 2, 8, 7, 6, 5,

4, 3, 1. The graph G2 contains no Hamiltonian cycle.

Two graphs to illustrate Hamiltoniancycle

The backtracking solution vector (x1, xn) is defined so that xi represents the

ithvisited vertex of the proposed cycle. If k = 1, then x1 can be any of the n vertices. To

avoid printing the same cycle n times, we require that x1 = 1. If 1 < k < n, then xk can be

any vertex v that is distinct from x1, x2, . . . , xk–1 and v is connected by an edge to kx-1.

The vertex xn can only be one remaining vertex and it must be connected to both xn-1
andx1.

Using NextValue algorithm we can particularize the recursive backtracking schema to find

all Hamiltonian cycles. This algorithm is started by first initializing the adjacency matrix

G[1: n, 1: n], then setting x[2: n] to zero and x[1] to 1, and then executing Hamiltonian(2).

The traveling salesperson problem using dynamic programming asked for a tour that has

minimum cost. This tour is a Hamiltonian cycles. For the simple case of a graph all of

whose edge costs are identical, Hamiltonian will find a minimum-cost tour if a tour exists.

Algorithm NextValue(k)

// x [1: k-1] is a path of k – 1 distinct vertices . If x[k] = 0, then no vertex has been

// assigned to x [k]. After execution, x[k] is assigned to the next highest numberedvertex

// which does not already appear in x [1 : k – 1] and is connected by an edge to x [k –1].

// Otherwise x [k] = 0. If k = n, then in addition x [k] is connected to x[1].

{

repeat

1 2 3 4 1 2 3

8 7 6 5 5 4

GraphG1 GraphG2

143

{

 x [k] := (x [k] +1) mod(n+1); //Nextvertex.

 If (x [k] = 0) then return;

 If (G [x [k – 1], x [k]] !=0)then

 { // Is there an edge?

for j := 1 to k – 1 do if (x [j] = x [k]) then break;

// check for distinctness.

If (j = k) then // If true, then the vertex is distinct.

 If ((k < n) or ((k = n) and G [x [n], x [1]] 0))

Then return;

}

} until(false);

}

Algorithm Hamiltonian(k)

// This algorithm uses the recursive formulation of backtracking to find all
theHamiltonian

// cycles of a graph. The graph is stored as an adjacency matrix G [1: n, 1: n]. All cycles
begin

// at node1.

{

repeat

{ // Generate values for x[k].

NextValue(k); //Assign a legal Next value to

x[k]. if (x [k] = 0) then return;

if (k = n) then write (x

[1:n]); else Hamiltonian (k

+1)

} until(false);

}

144

 BRANCH AND BOUND

 Generalmethod:

Branch and Bound is another method to systematically search a solution space. Just like

backtracking, we will use bounding functions to avoid generating subtrees that do not

contain an answer node. However branch and Bound differs from backtracking in two

ways:

1. It has a branching function, which can be a depth first search, breadth first search

or based on bounding function.

2. It has a bounding function, which goes far beyond the feasibility test as a mean to

prune efficiently the search tree.

Branch and Bound refers to all state space search methods in which all children of the E-

node are generated before any other live node becomes the E-node

Branch and Bound is the generalization of both graph search strategies, BFS and D-

search.

 A BFS like state space search is called as FIFO (First in first out) search as
the list of live nodes in a first in first out list (or queue).

 A D search like state space search is called as LIFO (Last in first out)
search as the list of live nodes in a last in first out (or stack).

Definition 1: Live node is a node that has been generated but whose children have not yet

been generated.

Definition 2: E-node is a live node whose children are currently being explored. In other

words, an E-node is a node currently being expanded.

Definition 3: Dead node is a generated node that is not to be expanded or explored any

further. All children of a dead node have already been expanded.

Definition 4: Branch-an-bound refers to all state space search methods in which all

children of an E-node are generated before any other live node can become

the E-node.

145

 Least Cost (LC)search:

In both LIFO and FIFO Branch and Bound the selection rule for the next E-node in rigid

and blind. The selection rule for the next E-node does not give any preference to a node

that has a very good chance of getting the search to an answer node quickly.

The search for an answer node can be obtained by using an “intelligent” ranking
function C(.) for live nodes. The next E-node is selected on the basis of this ranking

function. The node x is assigned a rank using:

c(x)=f(h(x))+g(x)

where, c(x) is the cost of x.

h(x) is the cost of reaching x from the root and f(.) is any non-decreasing function.

 is g(x) is an estimate of the additional effort needed to reach an answer node from x.

A search strategy that uses a cost function

c(x)=f(h(x))+g(x) to select next

E-node would always choose for its next E-node a live node with least c(.) is is is

known as LC–search (Least Cost search)

BFS and D-search are special cases of LC-search.If

g

= 0 and f(h(x)) = levelof

node x, then an LC search generates nodes by levels. This is eventually the sameas

a BFS. If f(h(x)) = 0 and

essentially aD-search.
g

(x)> g

(y)wheneveryisachildofx,thenthesearchis

An LC-search coupled with bounding functions is called an LC-branch and bound search

We associate a cost c(x) with each node x in the state space tree. It is not possibleto
easily compute the function c(x). So we compute aestimate c

(x)ofc(x).

 Control Abstraction forLC-Search:
Let t be a state space tree and c() a cost function for the nodes in t. If x is a node in t, then

c(x) is the minimum cost of any answer node in the subtree with root x. Thus, c(t) is the

cost of a minimum-cost answer node int.

Aheuristic
c

(.)isusedtoestimatec().Thisheuristicshouldbeeasytocomputeand

generally has the property that if x is either an answer node or a leaf node, then

c(x)= c

(x) .

146

LC-search usesc

to find an answer node. The algorithm usestwofunctionsLeast()and Add()

to delete and add a live node from or to the list of live nodes, respectively.

Least() finds a live node with least c(). This node is deleted from the list of live nodes

andn returned.

Add(x) adds the new live node x to the list of live nodes. The list of live nodes be

implemented as a min-heap.

Algorithm LCSearch outputs the path from the answer node it finds to the root node

t. This is easy to do if with each node x that becomes live, we associate a field parent

which gives the parent of node x. When the answer node g is found, the path from g to t

can be determined by following a sequence of parent values starting from the current E-

node (which is the parent of g) and ending at node t.

Listnode =record

{

Listnode * next, *parent; float cost;

}

AlgorithmLCSearch(t)

{ //Search t for an answernode

if *t is an answer node then output *t and

return; E:=t; //E-node.

initialize the list of live nodes to be empty;

repeat

{

for each child x of Edo

{

if x is an answer node then output the path from x to t and

return;

 Add (x); //x is a new livenode.

(x parent):=E; // pointer for path to root

}

if there are no more live nodes then

147

{

write (“No answer

node”); return;

}

E :=Least();

} until(false);

}

The root node is the first, E-node. During the execution of LC search, this list contains all

live nodes except the E-node. Initially this list should be empty. Examine all the

children of the E-node, if one of the children is an answer node, then the algorithm

outputs the path from x to t and terminates. If the child of E is not an answer node, then it

becomes a live node. It is added to the list of live nodes and its parent field set to E. When

all the children of E have been generated, E becomes a dead node. This happens only if

none of E‟s children is an answer node. Continue the search further until no live nodes

found. Otherwise, Least(), by definition, correctly chooses the next E-node and the search

continues from here.

LC search terminates only when either an answer node is found or the entire state space

tree has been generated and searched.

 Bounding:
A branch and bound method searches a state space tree using any search mechanism in

which all the children of the E-node are generated before another node becomes the E-

node. We assume that each answer node x has a cost c(x) associated with it and that a

minimum-cost answer node is to be found. Three common search strategies are FIFO,

LIFO, and LC. The three search methods differ only in the selection rule used to obtain

the nextE-node.

good bounding helps to prune efficiently the tree, leading to a faster exploration of the

solutionspace.

A costfunctionc

(.)suchthatc

(x)<c(x) is used to provide lower bounds on

solutionsobtainablefromanynodex.Ifupperisanupperboundonthecostofa

minimum-cost solution, then all live nodes x with c(x)>c

(x)> upper. The starting

value for upper can be obtained by some heuristic or can be set .

As long as the initial value for upper is not less than the cost of a minimum-cost answer

node, the above rules to kill live nodes will not result in the killing of a live node that can

reach a minimum-cost answer node. Each time a new answer node is found, the value of

upper can beupdated.

Branch-and-bound algorithms are used for optimization problems where, we deal directly

only with minimization problems. A maximization problem is easily converted to a

minimization problem by changing the sign of the objective function.

To formulate the search for an optimal solution for a least-cost answer node in a state

space tree, it is necessary to define the cost function c(.), such that c(x) is minimum for all

148

nodes representing an optimal solution. The easiest way to do this is to use the objective

function itself forc(.).

 For nodes representing feasible solutions, c(x) is the value of the objective
function for that feasible solution.

 For nodes representing infeasible solutions, c(x) =0.

 For nodes representing partial solutions, c(x) is the cost of the minimum-cost node

in the subtree with root x.

Since, c(x) is generally hard to compute, the branch-and-bound algorithm will usean

Estimate

(x)suchthat(x)<c(x)forallx.

Sum-of-Subsets problem

 In this problem, we are given a vector of N values, called weights. The weights are

usually given in ascending order of magnitude and are unique.

 For example, W= (2, 4, 6, 8, 10) is a weight vector. We are also given a value M, for

example 20.

 The problem is to find all combinations of the weights that exactly add to M.

 In this example, the weights that add to 20 are:

(2, 4, 6, 8); (2, 8, 10); and (4, 6, 10).

 Solutions to this problem are often expressed by an N-bit binary solution vector, X,

where a 1 in position i indicates that Wiis part of the solution and a 0 indicates it is

not.

 In this manner the three solutions above could be expressed as: (1,1,1,1,0);

(1,0,0,1,1); (0,1,1,0,1)

Sum-of-Subsets problem

 We are given „n‟ positive numbers called weights and we have to find all
combinations of these numbers whose sum is M. this is called sum of subsets
problem.

 If we consider backtracking procedure using fixed tuple strategy , the elements X(i)
of the solution vector is either 1 or 0 depending on if the weight W(i) is included or
not.

 If the state space tree of the solution, for a node at level I, the left child corresponds
to X(i)=1 and right to X(i)=0.

Sum of Subsets Algorithm

void SumOfSub(float s, int k, float r)

{

// Generate left child.

x[k] = 1;

if (s+w[k] == m)

{ for (int j=1; j<=k; j++)

149

Print (x[j])

}

else if (s+w[k]+w[k+1] <= m)

SumOfSub(s+w[k], k+1, r-w[k]);

// Generate right child and evaluate

if ((s+r-w[k] >= m) && (s+w[k+1] <= m)) { x[k] = 0;

SumOfSub(s, k+1, r-w[k]);

}

}

Sum of Subsets State Space Tree

Example n=6, w[1:6]={5,10,12,13,15,18},m=30

Branch and Bound Principal

 The term branch-and-bound refers to all state space search methods in which all
children of the £-node are generated before any other live node can become the £-
node.

 We have already seen two graph search strategies, BFS and D-search, in
which the exploration of a new node cannot begin until the node currently
being explored is fully explored.

 Both of these generalize to branch-and-bound strategies.

150

 In branch-and-bound terminology, a BFS-like state space search will be called FIFO
(First In First Out) search as the list of live nodes is a first-in-first-out list (or queue).

 A D-search like state space search will be called LIFO (Last In First Out) search as

the list of live nodes is a last-in-first-out list (or stack).

Control Abstraction for Branchand Bound(LC Method)

LC Method Control AbstractionExplanation

 The search for an answer node can often be speeded by using an "intelligent"

ranking function, c(.), for livenodes.

 The next £-node is selected on the basis of this rankingfunction.

 Let T be a state space tree and c() a cost function for the nodes in T. If X is a node

in T then c(X) is the minimum cost of any answer node in the subtree with root X.

Thus, c(T) is the cost of a minimum cost answer node

 The algorithm uses two subalgorithms LEAST(X) and ADD(X) to respectively

delete and add a live node from or to the list of livenodes.

 LEAST{X) finds a live node with least c(). This node is deleted from the list of

live nodes and returned in variableX.

 ADD(X) adds the new live node X to the list of livenodes.

 Procedure LC outputs the path from theanswer

151

The 0/1 knapsack problem

The 0/1 knapsack problem

The Branching Mechanism in the Branch-and-Bound Strategy toSolve 0/1KnapsackProblem.

How to find the upper bound?

Ans: by quickly finding a feasible solution in a greedy manner: starting from the

smallest available i, scanning towards the largest i‟s until M is exceeded. The

upper bound can be calculated.

152

How to find the ranking Function

How to expand the tree?

 By the best-first searchscheme

 That is, by expanding the node with the best lower bound. If two nodes have the

same lower bounds, expand the node with the lower upper bound.

0/1 Knapsack algorithm using BB

0/1 Knapsack Example usingLCBB (Least Cost)

153

 Example (LCBB)

 Consider the knapsackinstance:

 n = 4;

 (pi, p2,p3, p4) = (10, 10, 12, 18);

 (wi. w2, w3, w4) = (2, 4, 6, 9)and

 M = 15.

0/1 Knapsack State Space tree ofExample using LCBB

0/1 Knapsack State Space tree ofExample using FIFO BB

154

The traveling salesperson problem

 Given a graph, the TSP Optimization problem is to find a tour, starting from

any vertex, visiting every other vertex and returning to the starting vertex,

with minimalcost.

The basic idea

 There is a way to split the solution space (branch)

There is a way to predict a lower bound for a class of solutions. There is also a way tofind a

upper bound of an optimal solution. If the lower bound of a solution exceeds the upper

bound, this solution cannot be optimal and thus we should terminate the branching

associated with thissolution.

Example- TSP

 Example with Cost Matrix(a) and its Reduced Cost Matrix (b)

 Reduced matrix means every row and column of matrix should contain at least one

Zero and all other entries should be non negative.

155

Reduced Matrix for node 2,3…10 ofState Space tree using LC Method

State Space tree of Example using LCMethod

156

157

MODULE-V

NP –HARD AND NP-COMPLETE PROBLEMS.

Basic concepts:

NP Nondeterministic Polynomial time.

The problems has best algorithms for their solutions have “Computing times”, that cluster into

two groups.

Group-1

 Problems with solution time bound by a polynomial of a small degree. They are also

called “Tractable Algorithms”. Most Searching & Sorting algorithms are polynomial time

algorithms. Ex: Ordered Search (O (log n)), Polynomial evaluation O(n)

Sorting O(n.log n)

Group-II

 Problems with solution times not bound by polynomial (simply non polynomial). These

are hard or intractable problems. None of the problems in this group has been solved by any

polynomial time algorithm. Ex: Traveling Sales Person O(n
2
 2

n
), Knapsack O(2

n/2
)

No one has been able to develop a polynomial time algorithm for any problem in the

group –II. So, it is compulsory and finding algorithms whose computing times are greater

than polynomial very quickly because such vast amounts of time to execute that even

moderate size problems cannot be solved.

Theory of NP-Completeness:

Show that may of the problems with no polynomial time algorithms are computational time

algorithms are computationally related.

There are two classes of non-polynomial time problems

1. NP-Hard

2. NP-Complete

NP Complete Problem: A problem that is NP-Complete can solved in polynomial time if and

only if (iff) all other NP-Complete problems can also be solved in polynomial time.

NP-Hard: Problem can be solved in polynomial time then all NP-Complete problems can be

solved in polynomial time.

All NP-Complete problems are NP-Hard but some NP-Hard problems are not know to be NP-

Complete.

158

Nondeterministic Algorithms:

Algorithms with the property that the result of every operation is uniquely defined are termed

as deterministic algorithms. Such algorithms agree with the way programs are executed on a

computer.

Algorithms which contain operations whose outcomes are not uniquely defined but are limited

to specified set of possibilities. Such algorithms are called nondeterministic algorithms.

The machine executing such operations is allowed to choose any one of these outcomes

subject to a termination condition to be defined later.

To specify nondeterministic algorithms, there are 3 new functions.

Choice(S) arbitrarily chooses one of the elements of sets S

Failure () Signals an Unsuccessful completion

Success () Signals a successful completion.

Example for Non Deterministic algorithms:

Algorithm Search(x){

//Problem is to search an element x

//output J, such that A[J]=x; or J=0 if x is not in A

J:=Choice(1,n);

if(A[J]:=x) then

{

 Write(J);

 Success();

 }

else{

 write(0);

 failure();

}

Whenever there is a set of choices that leads to a successful completion then one such set of

choices is always made and the algorithm terminates.

A Nondeterministic algorithm terminates unsuccessfully if and only if (iff) there exists no set

of choices leading to a successful signal.

Nondeterministic Knapsack algorithm

Algorithm DKP(p, w, n, m, r, x)

{

159

W:=0;

P:=0;

for i:=1 to n do{

x[i]:=choice(0, 1);

W:=W + x[i]*w[i];

P:=P + x[i]*p[i];

}

if((W>m) or (P<r)) then Failure();

else Success();

}

p given Profits w given Weights

n Number of elements (number of p or w) m Weight of bag limit

P Final Profit W Final weight

The Classes NP-Hard & NP-Complete:

For measuring the complexity of an algorithm, we use the input length as the parameter. For

example, An algorithm A is of polynomial complexity p() such that the computing time of A

is O(p(n)) for every input of size n.

Decision problem/ Decision algorithm: Any problem for which the answer is either zero or

one is decision problem. Any algorithm for a decision problem is termed a decision algorithm.

Optimization problem/ Optimization algorithm: Any problem that involves the

identification of an optimal (either minimum or maximum) value of a given cost function is

known as an optimization problem. An optimization algorithm is used to solve an optimization

problem.

P is the set of all decision problems solvable by deterministic algorithms in polynomial time.

NP is the set of all decision problems solvable by nondeterministic algorithms in polynomial

time.

Since deterministic algorithms are just a special case of nondeterministic, by this we

concluded that P ⊆NP

 Commonly believed relationship between P & NP

The most famous unsolvable problems in Computer Science is Whether P=NP or P≠NP

In considering this problem, s.cook formulated the following question.

If there any single problem in NP, such that if we showed it to be in „P‟ then that would imply

that P=NP.

160

Cook answered this question with

Theorem: Satisfiability is in P if and only if (iff) P=NP

Notation of Reducibility

Let L1 and L2 be problems, Problem L1 reduces to L2 (written L1 α L2) iff there is a way to

solve L1 by a deterministic polynomial time algorithm using a deterministic algorithm that

solves L2 in polynomial time

This implies that, if we have a polynomial time algorithm for L2, Then we can solve L1 in

polynomial time.

Here α is a transitive relation i.e., L1 α L2 and L2 α L3 then L1 α L3

A problem L is NP-Hard if and only if (iff) satisfiability reduces to L ie., Statisfiability α L

A problem L is NP-Complete if and only if (iff) L is NP-Hard and L Є NP

Commonly believed relationship among P, NP, NP-Complete and NP-Hard

Most natural problems in NP are either in P or NP-complete.

Examples of NP-complete problems:

Packing problems: SET-PACKING, INDEPENDENT-SET.

Covering problems: SET-COVER, VERTEX-COVER.

Sequencing problems: HAMILTONIAN-CYCLE, TSP.

Partitioning problems: 3-COLOR, CLIQUE.

Constraint satisfaction problems: SAT, 3-SAT.

Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK.

