
1

LECTURE NOTES ON

 FUNDAMENTAL OF DATABASE MANAGEMENT

SYSTEMS

EEE | MECH

Ms. K Radhika

Assistant Professor

Ms. P Navya

Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL – 500 043, HYDERABAD

2

III Semester: EEE / MECH

Course Code Category Hours / Week Credits Maximum Marks

 ACS553 Elective
L T P C CIA SEE Total

3 0 0 3 30 70 100

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 60

OBJECTIVES:

The course should enable the students to:

I. Understand the role of database management system in an organization and learn the database concepts.
II. Design databases using data modelling and data normalization techniques.

III. Construct database queries using relational algebra and calculus.

IV. Understand the concept of a database transaction and related database facilities.
V. Learn how to evaluate set of queries in query processing.

 COURSE OUTCOMES (COs):

1. To understand the features of database management systems and Relational database.

2. Design databases using data modelling

3. To use SQL- the standard language of relational databases.

4. To understand the concept of Transaction and Query processing.
5. Learn how to evaluate time stamp based protocols and paging.

COURSE LEARNING OUTCOMES (CLOs):

1. Define the terminology, features, and characteristics of database system
2. Differentiate database systems from file systems
3. Describe Data Models, Schemes, Instances Three schema Architecture.
4. Analyze information storage problem and derive an information model expressed in the form of an entity

relation diagram.
5. Model the real world database systems using Entity Relationship Diagrams(ERD).
6. Describe basics of the relational model.
7. Transform an information model into a relational database schema and implement schema using data

definition language and/or utilities.
8. Formulate solutions to a broad range of query problems using relational algebra.
9. Apply relational calculus to solve broad range of query problems.
10. Illustrate the Functional Dependencies , Inference Rules, Minimal Sets of FDs
11. Understand normalization theory and improve the design by normalization.
12. Understand the properties of transaction(ACID)
13. Demonstrate serializability by taking various schedules
14. Gain knowledge on transaction processing to maintain consistency and integrity of data in database

systems.
15. Describe concurrency control techniques to implement data integrity in database systems.
16. Illustrate various backup and recovery techniques for database systems..
17. Analyze transaction processing , concurrency control, Database recovery techniques.
18. Illustrate various lock based protocols.
19. Analyze various time stamp based protocols
20. Understand the concepts of update and shadow paging

3

SYLLABUS

UNIT-I CONCEPTUAL MODELING

Introduction to file and database systems: Database system structure, data models, introduction to network

and hierarchical models, ER model, relational model.

UNIT -II RELATIONAL APPROACH

Relational algebra and calculus: Relational algebra, selection and projection, set operations, renaming,

joins, division, examples of algebra queries, relational calculus, tuple relational calculus

 UNIT -III BASIC SQL QUERY AND NORMALIZATION

SQL data definition; Queries in SQL: updates, views, integrity and security, relational database design.

Normal Forms: 1NF, 2NF, 3NF and BCNF.

UNIT -IV TRANSACTION MANAGEMENT

Transaction processing: Introduction, need for concurrency control, desirable properties of transaction,

schedule and recoverability, serializability and schedules

 UNIT -V CONCURRENCY CONTROL

Concurrency control; Types of locks: Two phases locking, deadlock, timestamp based concurrency
control, recovery techniques, concepts, immediate update, deferred update, shadow paging.

Text Books:

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw- Hill, 4th

Edition, 2002.

Reference Books:

1. Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, 3rd

Edition, 2003.

2. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company,

3rd Edition, 2003.

3. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation",

Pearson Education, United States, 1st Edition, 2000.

4. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management",

Thompson Learning Course Technology, 5th Edition, 2003.

4

UNIT-I

CONCEPTUAL MODELING

1. INTRODUCTION

 Data: data is a collection of raw facts and figures.
 Database: database is a collection of interrelated data.

 DBMS: database is a collection of interrelated data and set of programs can access

that system.

1.1. DATABASE SYSTEM APPLICATIONS:

1. Enter Price Information:
– Sales: customers, products, purchases
– Accounting: payments, receipts, account balance, assets.
– Human Resources: employee records, salaries, tax deductions
– Manufacturing: production, inventory, orders, supply chain
– Online Retails: order tracking, customized recommendations

2. Banking and Finance: all transactions
– Credit card Transaction: generation of monthly statements.
– Finance: storing information about holdings and sales,

3. Universities: registration, grades
4. Airlines: reservations, schedules
5. Telecommunications: keeping records of calls made, generating monthly bills

1.2. PURPOSE OF DATABASE SYSTEMS:

In the early days, database applications were built directly on top of file systems

1.2.1. Drawbacks of using file systems to store data:

 Data redundancy and inconsistency: Multiple file formats, duplication of information

in different files

 Difficulty in accessing data: Need to write a new program to carry out each new task
 Data isolation: multiple files and formats

 Integrity problems: Hard to add new constraints or change existing ones
 Atomicity of updates: Failures may leave database in an inconsistent
 state with partial updates carried out. Example: Transfer of funds from one account to

another should either complete or not happen at all

 Concurrent access anomalies: Example: Two people reading a balance and updating it

at the same time

5

1.3. VIEW OF DATA:

A database is a collection of interrelated data and set of programs that allow users to access

and modify these data. A major purpose of a database system is to provide users with an

abstract view of the data. That is, the system hides certain details of how the data stored and

maintained.

 1.3.1. Data Abstraction:

Major purpose of DBMS is to provide users with abstract view of data i.e. the system hides

certain details of how the data are stored and maintained. Since database system users are

not computer trained, developers hide the complexity from users through 3 levels of

abstraction, to simplify user’s interaction with the system.

 Levels of Abstraction

 Physical level of data abstraction: How the data are actually stored. This s the lowest

level of abstraction which describes how data are actually stored.

 Logical level of data abstraction: This level hides what data are actually stored in the

database and what relations hip exists among them. Describes data stored in

database, and the relationships among the data.

 View Level of data abstraction: View provides security mechanism to prevent user

from accessing certain parts of database. application programs hide details of data

types. Views can also hide information (such as an employee’s salary) for security

purposes.

Figure 1.TheThree level of abstraction.

6

1.3.2. Instances and schemas:

Instance: The collection of information stored in the database at a particular movement is

called an instance of the database.

 Similar to types and variables in programming languages

Schema: the overall design of the database is called the database schema.

 Example: The database consists of information about a set of customers and accounts and

the relationship between them .Analogous to type information of a variable in a program

– Physical schema: database design at the physical level.

– Logical schema: database design at the logical level.

1.3.3. Data models:

Data Model: Underlying the structure of a database is the data model,

A collection of conceptual tools for describing data, data relationships, data semantics and

consistency constraints.

 Relational model: The relational model uses a collection of tables to represent both data

and the relationships among those data. Each table has multiple columns, and each

column has a unique name, Tables are also called known as relations.

 Entity-Relationship Model: The Entity –Relationship (E-R) data model uses a

collection of basic objects, called entities, and relationships among these objects.

An entity is a “thing” or “object” in the real world that is distinguishable from other

object

 Object-Based Data Models: Object-oriented Programming (especially in Java, C++, or

C#).

 Semi structured Data Model: The semi structured data model permits the specification

of data where individual data items of the same type may have different sets of

attributes.

 Other older models:
– Network Model

 – Hierarchical Model

7

1.4. DATA BASE LANGUAGES:

A Database provides a DDL to specify the database schema and a DML to express

database queries and updates.

1.4.1 Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or

manipulate data as organized by the appropriate data model.

The types of access are:

• Retrieval of information stored in the database

• Insertion of new information into the database

• Deletion of information from the database

• Medication of information stored in the database

There are basically two types:

• Procedural DMLs require a user to specify what data are needed and how to get those data.

• Declarative DMLs (also referred to as non procedural DMLs) require user to specify what

data are needed without specifying how to get those data.

1.4.2. Data- Definition Language (DDL):

We specify a database schema by a set of definitions expressed by a special language

called a data-definition language (DDL).The DDL is also used to specify additional

properties of the data.

SQL provides a rich DDL that allows one to define tables, integrity constraints, assertions,

etc…

Example: create table account (

account_number char(10),

branch_name char(10),

balance integer)

In addition, the DDL statement updates the data dictionary, which contains metadata; the

schema of a table is an example of metadata.

8

1.5. DATA BASE ACCESS FROM APPLICATION PROGRAMS:

Application programs are programs that are used to interact with the database.

To access the database, DML Statements need to be executed form the host language. ‘

There are two ways o do this.

 By Providing an Application Program interface (set of procedures) that can be used to

send DML and DDL statement to the database and retrieve the results.(ODBC and

JDBC).

 By extending the host language syntax to embed DML calls within the host language

program. A special character prefaces DML calls and preprocessor called the DML

pre complier ,converts the DML statements to normal procedure calls in the host

language

SQL: widely used non-procedural language

Example 1: Find the name of the customer with customer-id 192-83-7465

select customer.customer_name

from customer

where customer.customer_id = ‘192-83-7465’

Example 2: Find the balances of all accounts held by the customer with customer-Id 192-83-

7465.

select

from

where

account.balance

depositor, account

depositor.customer_id = ‘192-83-7465’ and

depositor.account_number = account.account_number

Example 3:

select

from

where

Find the name of the customer

customer.customer_name

customer

customer.customer_id = ‘192-83-7465’

with

customer-id

192-83-7465

1.6. TRANSACTION MANAGEMENT:

 A transaction is a collection of operations that performs a single logical function in

a Database application

 Transaction-management component ensures that the database remains in a

Consistent (correct) state despite system failures (e.g., power failures and

operating System crashes) and transaction failures.

9

 Concurrency-control manager controls the interaction among the concurrent

Transactions to ensure the consistency of the database.

1.7. THE QUERY PROCESSOR

The query processor components include:

 DDL interpreter, which interprets DDL statements and records the definitions in the

data dictionary.

 DML compiler, which translates DML statements in a query language into an

evaluation plan consisting of low-level instructions that the query evaluation engine

understands.

A query can usually be translated into any of a number of alternative evaluation plans that all

give the same result. The DML compiler also performs query optimization; that is, it picks

the lowest cost evaluation plan from among the alternatives.

Query evaluation engine, which executes low-level instructions generated by the DML

compiler.

Figure 1.7.The Query Processor

1.8. DATABASE ARCHITECTURE:

The architecture of database systems is greatly influenced by the underlying computer system

on which the database is runs:

Database system can be.
 Client-server

 Parallel (multiple processors and disks)

 Distributed

10

Overall System Structure

1.8.1. Database Application Architectures:

 Database applications are usually partitioned into two or three parts, as in

Figure1.8.1..In a two-tier architecture, the application resides at the client machine,

where it invokes database system functionality at the server machine through query

language statements.

11

– Application program interface standards like ODBC and JDBC are used for

interaction between the client and the server. In contrast,

– In a three-tier architecture, the client machine acts as merely a front end and does not

contain any direct database calls.

– Instead, the client end communicates with an application server, usually through a

forms interface.

– The application server in turn communicates with a database system to access data.

– The business logic of the application, which says what actions to carry out under what

conditions, is embedded in the application server, instead of being distributed across

multiple clients.

– Three-tier applications are more appropriate for large applications, and for

applications that run on the World Wide Web.

Figure1.8.1.Two-tier and Three –tier architecture.

1.9. DATABASE USERS AND ADMINISTRATORS:

A primary goal of a database system is to retrieve information from and store new
information into the database. People who work with a database can be categorized as
database users or database administrators.

1.9.1.Data base Users and User Interfaces

There are four different types of database system users, differentiated by the way they expect to
interact with the system.

Different types of user interfaces have been designed for the different types of users.

12

 Na¨ıve users are unsophisticated users who interact with the system by invoking one

of the application programs that have been written previously. For example, a clerk in

the university who needs to add a new instructor to Users are differentiated by the

way they expect to interact with the system department A invokes a program called

New - hire. This program asks the clerk for the name of the new instructor, her new

ID, the name of the department (that is, A), and the salary

 Application programmers: are computer professionals who write application

programs. Application programmers can choose from many tools to develop user

interfaces. Rapid application development (RAD) tools are tools that en- able an

application programmer to construct forms and reports with minimal programming

effort.

 Sophisticated users: interact with the system with out writing programs. In- stead,

they form their requests either using a database query language or by using tools such

as data analysis software. Analysts who submit queries to explore data in the

database fall in this category.

 Specialized users: are sophisticated users who write specialized database applications

that do not fit into the traditional data-processing framework. Among these

applications are computer aided design systems, knowledge- base and expert

systems, systems that store data with complex data types (for example, graphics data

and audio data),and environment-modeling systems.

1.9.2. Database Administrator

One of the main reasons for using DBMSs is to have central control of both the

data and the programs that access those data. A person who has such central control over the

system is called a data base administrator (DBA).

The functions of a DBA include:

 Schema definition. The DBA creates the original database schema by executing a set of

data definition statements in the DDL.

 Storage structure and access-method definition.

 Schema and physical-organization modification.
– Routine maintenance.
– Periodically backing up the database.
– Ensuring that enough free disk space is available for normal operations, and upgrading

disk space as required.
– Monitoring jobs running on the Data base.

13

1.10. HISTORY OF DATABASE SYSTEMS:

 1950s and early 1960s: Data processing using magnetic tapes for storage Tapes

provide only sequential access Punched cards for input

 Late 1960s and 1970s:Hard disks allow direct access to data Network and hierarchical

data models in widespread use Ted Codd defines the relational data model Would win

the ACM Turing Award for this work IBM Research begins System R prototype UC

Berkeley begins Ingres prototype High-performance (for the era) transaction

processing

 1980s: Research relational prototypes evolve into commercial systems SQL becomes

industry standard Parallel and distributed database systems Object-oriented database

systems

 1990s: Large decision support and data-mining applications Large multi-terabyte data

warehouses Emergence of Web commerce

 2000s: XML and XQuery standards Automated database administration Increasing

use of highly parallel database systems Web-scale distributed data storage systems.

EXERCISES

1. List four applications you have used that most likely employed a database system to

store persistent data.
2. List four significant differences between a file-processing system and a DBMS.
3. Explain the concept of physical data independence and its importance in database

systems.

4. List five responsibilities of a database-management system. For each responsibility,

explain the problems that would arise if the responsibility were not discharged.
5. What are the five main functions of a database administrator?
6. Explain the difference between two-tier and three-tier architectures. Which is better

suited for Web applications? Why?

1.11. INTRODUCTION TO DATABASE DESIGN:

The entity-relationship (ER) data model allows us to describe the data involved in a

real-world enterprise in terms of objects and their relationships and is widely used to develop

an initial database design.

1.12. DATA BASE DESIGN

The database design process can be divided into six steps. The ER model is most

relevant to the first three steps:

(1) Requirements Analysis: The very first step in designing a database application is to

understand what data is to be stored in the database, what applications must be built on top of

it, and what operations are most frequent and subject to performance requirements. In other

words, we must find out what the users want from the database.

14

(2) Conceptual Database Design: The information gathered in the requirements analysis

step is used to develop a high-level description of the data to be stored in the database, along

with the constraints that are known to hold over this data. This step is often carried out using

the ER model, or a similar high-level data model.

(3) Logical Database Design: We must choose a DBMS to implement our database design,

and convert the conceptual database design into a database schema in the data model of the

chosen DBMS. We will only consider relational DBMSs, and therefore, the task in the logical

design step is to convert an ER schema into a relational database schema.

The result is a conceptual schema, sometimes called the logical schema, in the relational data

model.

1.13. E-R DIAGRAMS

15

1.14. BEYOND ER DESIGN

The ER diagram is just an approximate description of the data, constructed through

a very subjective evaluation of the information collected during requirements analysis.

Once we have a good logical schema, we must consider performance criteria and

design the physical schema. Finally, we must address security issues and ensure that users are

able to access the data they need, but not data that we wish to hide from them. The remaining

three steps of database design are briefly described below:

(4) Schema Refinement: The fourth step in database design is to analyze the collection of

relations in our relational database schema to identify potential problems,

(5) Physical Database Design: In this step we must consider typical expected workloads that

our database must support and further refine the database design to ensure that it meets

desired performance criteria

(6) Security Design: In this step, we identify different user groups and different roles played

by various users (e.g., the development team for a product, the customer support

representatives, the product manager).

For each role and user group, we must identify the parts of the database that they must be

able to access and the parts of the database that they should not be allowed to access, and take

steps to ensure that they can access only the necessary parts.

Attributes

Entities are represented by means of their properties, called attributes. All attributes have

values. For example, a student entity may have name, class, age as attributes.

There exist a domain or range of values that can be assigned to attributes. For example, a

student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot be

negative, etc.

Types of attributes

Attributes are properties of entities. Attributes are represented by means of eclipses. Every

eclipse represents one attribute and is directly connected to its entity (rectangle).

 Simple attribute:

Simple attributes are atomic values, which cannot be divided further. For example,

student's phone-number is an atomic value of 10 digits.

16

 Composite attribute:

Composite attributes are made of more than one simple attribute. For example, a

student's complete name may have first_name and last_name.

If the attributes are composite, they are further divided in a tree like structure. Every node is

then connected to its attribute. That is composite attributes are represented by eclipses that

are connected with an eclipse.

[Image: Composite Attributes]

 Single-valued attribute:

Single valued attributes contain on single value. For example:

Social_Security_Number.

 Multi-value attribute:

Multi-value attribute may contain more than one values. For example, a person can

have more than one phone numbers, email_addresses etc.

Multivalued attributes are depicted by double eclipse.

 Derived attribute:

Derived attributes are attributes, which do not exist physical in the database, but there

values are derived from other attributes presented in the database. For example,

average_salary in a department should be saved in database instead it can be derived.

For another example, age can be derived from data_of_birth.

17

Derived attributes are depicted by dashed eclipse.

1.14.2. RELATIONSHIPS AND RELATIONSHIP SETS

The association among entities is called relationship. For example, employee entity

has relation work

s_at with department. Another example is for student who enrolls in some course.

Here, Works_at and Enrolls are called relationship.

Relationship Set:

Relationship of similar type is called relationship set. Like entities, a relationship too

can have attributes. These attributes are called descriptive attributes.

Degree of relationship

The number of participating entities in an relationship defines the degree of the

relationship.

 Binary = degree 2

 Ternary = degree 3

 n-ary = degree

Mapping Cardinalities:

Cardinality defines the number of entities in one entity set which can be associated to the

number of entities of other set via relationship set.

 One-to-one: one entity from entity set A can be associated with at most one entity of

entity set B and vice versa.

 [Image: One-to-one relation]

18

 One-to-many: One entity from entity set A can be associated with more than one

entities of entity set B but from entity set B one entity can be associated with at most

one entity.

[Image: One-to-many relation]

 Many-to-one: More than one entities from entity set A can be associated with at most

one entity of entity set B but one entity from entity set B can be associated with more

than one entity from entity set A.

[Image: Many-to-one relation]

 Many-to-many: one entity from A can be associated with more than one entity from

B and vice versa.

[Image: Many-to-many relation]

19

 An entity is an object in the real world that is distinguishable from other objects.

Examples include the following: the Green Dragonzord toy, the toy department, the

manager of the toy department, the home address of the manager of the toy department.

 A collection of similar entities is called an entity set.

 A attribute is an property of an entity.

1.15. ADDITIONAL FEATURES OF ER MODEL

» Key Constraints
» Participation Constraints
» Weak Entities

» Class Hierarchies
» Aggregation

1.15.1.KEY CONSTRAINTS

There must be at least one minimal subset of attributes in the relation, which can identify a

tuple uniquely. This minimal subset of attributes is called key for that relation. If there are

more than one such minimal subsets, these are called candidate keys.

Key constraints forces that:

 in a relation with a key attribute, no two tuples can have identical value for key

attributes.

 key attribute can not have NULL values.

Key constrains are also referred to as Entity Constraints.

20

1.15.2. PARTICIPATION CONSTRAINTS

1.15.3.WEAK ENTITIES

 A weak entity can be identified uniquely only by considering the primary key of

another (owner) entity.

 Owner entity set and weak entity set must participate in a one-to-many relationship

set (one owner, many weak entities).
 Weak entity set must have total participation in this identifying relationship set.

1.15.3.1.WEAK ENTITY SETS

 An entity set that does not have a primary key is referred to as a weak entity set.

 The existence of a weak entity set depends on the existence of a identifying entity set

it must relate to the identifying entity set via a total, one-to-many relationship set from the

identifying to the weak entity set Identifying relationship depicted using a double diamond

The discriminator (or partial key) of a weak entity set is the set of attributes that

distinguishes among all the entities of a weak entity set. The primary key of a weak entity set

is formed by the primary key of the strong entity set on which the weak entity set is existence

dependent, plus the weak entity set’s discriminator depict a weak entity set by double

rectangles.

Under line the discriminator of a weak entity set with a dashed line.

21

1.15.3.2.More Weak Entity Set Examples

In a university, a course is a strong entity and a course_offering can be modeled as a weak

entity The discriminator of course_offering would be semester (including year) and

section_number (if there is more than one section). If we model course_offering as a strong

entity we would model course_number as an attribute. Then the relationship with course

would be implicit in the course_number attribute.

A weak entity sets is one which does not have any primary key associated with it.

Mapping process (Algorithm):

[Image: Mapping Weak Entity Sets]

 Create table for weak entity set

 Add all its attributes to table as field

 Add the primary key of identifying entity set

 Declare all foreign key constraints

1.15.4. CLASS HIERARCHIES

 Classifying the entities in an entity set into sub classes
 ER specialization or generalization comes in the form of hierarchical entity sets.

Mapping process (Algorithm):

[Image: Mapping hierarchical entities]

22

 Create tables for all higher level entities

 Create tables for lower level entities

 Add primary keys of higher level entities in the table of lower level entities

 In lower level tables, add all other attributes of lower entities.

 Declare primary key of higher level table the primary key for lower level table

 Declare foreign key constraints.

1.15.4.1.Generalization

As mentioned above, the process of generalizing entities, where the generalized entities

contain the properties of all the generalized entities is called Generalization. In

generalization, a number of entities are brought together into one generalized entity based on

their similar characteristics. For an example, pigeon, house sparrow, crow and dove all can be

generalized as Birds.

[Image: Generalization]

1.15.4.2.Specialization

Specialization is a process, which is opposite to generalization, as mentioned above. In

specialization, a group of entities is divided into sub-groups based on their characteristics.

Take a group Person for example. A person has name, date of birth, gender etc. These

properties are common in all persons, human beings. But in a company, a person can be

identified as employee, employer, customer or vendor based on what role do they play in

company.

[Image: Specialization]

23

1.15.4.3. Aggregation

1.16. CONCEPTUAL DESIGN WITH ER MODEL

Developing an ER diagram presents several choices, including the following:

 Should a concept be modeled as an entity or an attribute?
 Should a concept be modeled as an entity or a relationship?
 What are the relationship sets and their participating entity sets?
 Should we use binary or ternary relationships?
 Should we use aggregation?

Issues involved in making these choices.

 Entity versus Attribute
 Entity Versus Relationship
 Binary versus Ternary Relationship
 Aggregation versus Ternary Relationships

24

1.18.1. CONCEPTUAL DESIGN FOR LARGE ENTERPRISES

 The process of conceptual design consists of more than just describing small

fragments of the application in terms of ER diagrams.

 For a large enterprise, the design may require the efforts of more than one designer

and span data and application code used by a number of user groups.

 Using a high-level, semantic data model such as ER diagrams for conceptual design

in such an environment offers the additional advantage that the high-level design can

be diagrammatically represented and is easily understood by the many people who

must provide input to the design process.

 An important aspect of the design process is the methodology used to structure the

development of the overall design and to ensure that the design takes into account all

user requirements and is consistent.

 The usual approach is that the requirements of various user groups are considered,

any conflicting requirements are somehow resolved, and a single set of global

requirements is generated at the end of the requirements analysis phase. Generating a

single set of global requirements is a difficult task, but it allows the conceptual design

phase to proceed with the development of a logical schema that spans all the data and

applications throughout the enterprise.

1.17. RELATIONAL MODEL

Codd proposed the relational data model in 1970. At that time most database systems were

based on one of two older data models (the hierarchical model and the network model); the

relational model revolutionized the database field and largely supplanted these earlier models.

Today, the relational model is by far the dominant data model and is the foundation for the

leading DBMS products, including IBM’s DB2 family, Microsoft’s Access and SQL-Server,

FoxBase, and Paradox.

The relational model is very simple and elegant; a database is a collection of one or more

relations, where each relation is a table with rows and columns. This simple tabular

representation enables even novice users to understand the contents of a database, and it

permits the use of simple, high-level languages to query the data. The major advantages of

the relational model over the older data models are its simple data representation and the ease

with which even complex queries can be expressed.

1.17.1. Introduction to the relational model

The main construct for representing data in the relational model is a relation. A relation

consists of a relation schema and a relation instance. The relation instance is a table, and the

relation

25

schema describes the column heads for the table. We first describe the relation schema and then

the relation instance.

The schema specifies the relation’s name, the name of each field (or column, orattribute), and

the domain of each field. A domain is referred to in a relation schema by the domain name and

has a set of associated values.

We use the example of student information in a university database from Chapter 1 to illustrate

the parts of a relation schema:

Students(sid: string, name: string, login: string, age: integer, gpa: real)

This says, for instance, that the field named sid has a domain named string. The set of values

associated with domain string is the set of all character strings.We now turn to the instances of a

relation. An instance of a relation is a set of tuples, also called records, in which each tuple has

the same number of fields as the relation schema. A relation instance can be thought of as a table

in which each tuple is a row, and all rows have the same number of fields. (The term relation

instance is often abbreviated to just relation, when there is no confusion with other aspects of a

relation such as its schema.)

Figure 3.1 An Instance of the S1 of the Students Relation
 Creating and modifying relations using SQL

 Create
 Insert
 Update
 Delete

26

1.17.2. INTEGRITY CONSTRAINTS OVER RELATIONS

• IC: condition that must be true for any instance of the database; e.g., domain constraints.

• ICs are specified when schema is defined.

• ICs are checked when relations are modified.

• A legal instance of a relation is one that satisfies all specified ICs.

• DBMS should not allow illegal instances.

• If the DBMS checks ICs, stored data is more faithful to real-world meaning.

1.17.2.1Key constraints

 Candidate Key
 Primary Key
 Super Key

1.17.2.2. Foreign Key Constraints

 Specifying Key constraints in SQL

1.17.2.3. General Constraints

1.18. ENFORCING INTEGRITY CONSTRAINTS:

 ICs are specified when a relation is created and enforced when a relation is modified.

 The impact of domain, PRIMARY KEY, and UNIQUE constraints is straightforward: if

an insert, delete, or update command causes a violation, it is rejected.

 Potential IC violation is generally checked at the end of each SQL statement execution,

although it can be deferred until the end of the transaction executing the statement.

27

 Consider the instance S1 of Students shown in Figure 3.1. The following insertion

violates the primary key constraint because there is already a tuple with the sid 53688,

and it will be rejected by the DBMS:

INSERT INTO Students (sid, name, login, age, gpa) VALUES (53688, ‘Mike’,

‘mike@ee’, 17, 3.4)

The following insertion violates the constraint that the primary key cannot contain null:

INSERT INTO Students (sid, name, login, age, gpa) VALUES (null, ‘Mike’,

‘mike@ee’, 17, 3.4)

Of course, a similar problem arises whenever we try to insert a tuple with a value in a

field that is not in the domain associated with that field, i.e., whenever we violate a

domain constraint. Deletion does not cause a violation of domain, primary key or unique

constraints. However, an update can cause violations, similar to an insertion:

UPDATE Students S SET S.sid = 50000 WHERE S.sid = 53688

This update violates the primary key constraint because there is already a tuple with sid 50000.

The impact of foreign key constraints is more complex because SQL sometimes tries to rectifya

foreign key constraint violation instead of simply rejecting the change.

1. What should we do if an Enrolled row is inserted, with a sid column value that does not

appear in any row of the Students table? In this case the INSERT command is simply

rejected.

2. What should we do if a Students row is deleted? The options are: Delete all Enrolled rows

that refer to the deleted Students row. Disallow the deletion of the Students row if an

Enrolled row refers to it. Set the sid column to the sid of some (existing) ‘default’ sudent,

for every

 Enrolled row that refers to the deleted Students row. For every Enrolled row that refers to it,

set the sid column to null. In our example, this option conflicts with the fact that sid is part

of the primary key of Enrolled and therefore cannot be set to null. Thus, we are limited to

the first three options in our example, although this fourth option (setting the foreign key to

null) is available in the general case.

3. What should we do if the primary key value of a Students row is updated? The options here

are similar to the previous case.

28

CREATE TABLE Enrolled (

sid CHAR(20),

cid CHAR(20),

grade CHAR(10), PRIMARY KEY (sid, cid),

FOREIGN KEY (sid) REFERENCES Students ON DELETE CASCADE ON UPDATE NO

ACTION)

If a Students row is deleted, we can switch the enrollment to a ‘default’ student by using ON

DELETE SET DEFAULT. The default student is specified as part of the definition of the sid

field in Enrolled;

For example, sid CHAR(20) DEFAULT ‘53666’.

Although the specification of a default value is appropriate in some situations (e.g., a default

parts supplier if a particular supplier goes out of business), it is really not appropriate to switch

enrollments to a default student. The correct solution in this example is to also delete all

enrollment tuples for the deleted student (that is, CASCADE), or to reject the update.

SQL also allows the use of null as the default value by specifying ON DELETE SET NULL.

1.19. QUERYING RELATIONAL DATA:

Relational data base Query is a Question about the Data and the answer consists of a

new relation containing the result.

We can retrieve rows corresponding to students who are younger than 18 with the

following SQL query:

SELECT * FROM Students S WHERE S.age < 18

The symbol * means that we retain all fields of selected tuples in the result.

To understand this query, think of S as a variable that takes on the value of each tuple in

Students, one tuple after the other.

The condition S.age < 18 in the WHERE clause specifies that we want to select only tuples in

which the age field has a value less than 18.

29

1.20.LOGICAL DB DESIGN:ER TO RELATIONAL

Relationship Sets to Tables

• In translating a relationship set to a relation, attributes of the relation must include:

–

•

–

Keys for each participating entity set (as foreign keys).

This set of attributes forms a superkey for the relation.

All descriptive attributes.

30

Review: Key Constraints

• Each dept has at most one manager, according to the key constraint on Manages.

Translating ER Diagrams with Key Constraints

• Map relationship to a table:

– Note that did is the key now!

– Separate tables for Employees and Departments.

• Since each department has a unique manager, we could instead combine Manages and

Departments.

31

Review: Participation Constraints

 If so, this is a participation constraint: the participation of Departments in

 Manages is said to be total (vs. partial).

 Every did value in Departments table must appear in a row of the

 Manages table (with a non-null ssn value!)

Participation Constraints in SQL

• We can capture participation constraints involving one entity set in a binary

relationship, but little else (without resorting to CHECK constraints).

32

Translating Weak Entity Sets

• Weak entity set and identifying relationship set are translated into a single table.

–

When the owner entity is deleted, all owned weak entities must also

be

deleted.

33

Binary vs. Ternary Relationships (Contd.)

• The key constraints allow us to combine Purchaser with Policies and Beneficiary with

Dependents.

• Participation constraints lead to NOT NULL constraints.

1. INTRODUCTION TO VIEWS:

 A relation that is not of the conceptual model but is made visible to a user as a “virtual

relation” is called a view.

 A view is a table whose rows are not explicitly stored in the database but are computed

as needed from a view definition.

 Consider the Students and Enrolled relations. Suppose that we are often interested in
finding the names and student identifiers of students who got a grade of B in some

course, together with the cid for the course. We can define a view for this purpose.

 CREATE VIEW B-Students (name, sid, course) AS SELECT S.sname, S.sid, E.cid

FROM Students S, Enrolled E WHERE S.sid = E.sid AND E.grade = ‘B’

34

 The view B-Students has three fields called name, sid, andcourse with the same domains

as the fields sname and sid in Students and cid in Enrolled. (If the optional arguments

name, sid, and course are omitted from the CREATE VIEW statement, the column

names sname, sid, and cid are inherited.)

 This view can be used just like a base table, or explicitly stored table, in defining new

queries or views.

1.21.1. Destroying and Altering Tables and Views:

 If we decide that we no longer need a base table and want to destroy it (i.e., delete all the

rows and remove the table definition information),

 we can use the DROP TABLE command. For example, DROP TABLE Students

RESTRICT destroys the Students table unless some view or integrity constraint refers to

Students; if so, the command fails. If the keyword RESTRICT is replaced by
CASCADE,

 Students is dropped and any ref- erencing views or integrity constraints are (recursively)

dropped as well; one of these two keywords must always be specified. A view can be

dropped using the DROP VIEW command, which is just like DROP TABLE.

 ALTER TABLE modifies the structure of an existing table. To add a column called

maiden-name to Students, for example, we would use the following command:

ALTER TABLE Students ADD COLUMN maiden-name CHAR(10)

The definition of Students is modified to add this column, and all existing rows are padded with

null values in this column. ALTER TABLE can also be used to delete columns and to add or

drop integrity constraints on a table; we will not discuss these aspects of the command beyond

remarking that dropping columns is treated very similarly to dropping tables or views.

35

UNIT-II

RELATIONAL ALGEBRA AND RELATIONAL CALCULUS

2.1. RELATIONAL ALGEBRA

Relational algebra is one of the two formal query languages associated with the re- lational

model. Queries in algebra are composed using a collection of operators. A fundamental

property is that every operator in the algebra accepts (one or two) rela- tion instances as

arguments and returns a relation instance as the result.

a relational algebra expression is recursively defined to be a relation, a unary algebra

operator applied to a single expression, or a binary algebra operator applied to two

expressions.

2.1.1. SELECTION:

Relational algebra includes operator to select rows from a relation (σ).

36

2.1.2. PROJECTION

2.1.3. SET OPERATIONS

Cross-Product

 Each row of S1 is paired with each row of R1.
 Result schema has one field per field of S1 and R1, with field names `inherited’ if

possible.
 Conflict: Both S1 and R1 have a field called sid.

37

2.1.4. RENAMING

2.2.4 JOINS

The Join operation is one of the most useful operations in relational algebra and is the
most commonly used way to combine information from two or more relations.

The most general version of the join operation accepts a join condition c and a pair of

relation instances as arguments, and returns a relation instance.

2.2.4.1. CONDITION JOINS

The most general version of the join operation accepts a join condition c and a pair of relation

instances as arguments, and returns a relation instance. The join condition is identical to a

 selection condition in form.The operation is defined as follows:

2.2.4.2. EQUIJOIN

A common special case of the join operation is when the join condition consists solely of

equalities (connected by ∧) of the form R.name1=S.name2, that is, equalities between two fields in R and
S.

In this case, obviously, there is some redundancy in retaining both attributes in the result.

For join conditions that contain only such equalities, the join operation is refined by doing an
additional projection in which S.name2 is dropped. The join operation with this refinement is

called equijoin.

The schema of the result of an equijoin contains the fields of R (with the same names and

domains as in R) followed by the fields of S that do not appear in the join conditions. If this

38

set of fields in the result relation includes two fields that inherit the same name from R and S,

they are unnamed in the result relation.

2.2.4.3. NATURAL JOIN

A further special case of the join operation R ./ Sis an equijoin in which equalities are

specified on all fields having the same name in R and S. In this case, we can simply omit

the join condition; the default is that the join condition is a collection of equalities on all

common fields. We call this special case a natural join, and it has the nice property that the
result is guaranteed not to have two fields with the same name.

The equijoin expression S1 ./R.sid=S.sid R1 is actually a natural join and can simply be
denoted as S1 ./ R1, since the only common field is sid. If the two relations have no

attributes in common, S1 ./ R1 is simply the cross-product.

Examples of Division A/B

39

2.1.7. EXAMPLES OF ALGEBRA QUERIES

1.Find names of sailors who’ve reserved boat #103

Find names of sailors who’ve reserved a red boat

Information about boat color only available in Boats; so need an extra join:

2. FIND SAILORS WHO’VE RESERVED A RED OR A GREEN BOAT

Can identify all red or green boats, then find sailors who’ve reserved one of these boats:

2.2. RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contrast to the algebra, which is

procedural, the calculus is nonprocedural, or declarative.

Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus

(DRC).

2.2.1. TUPLE RELATIONAL CALCULUS

A tuple variable is a variable that takes on tuples of a particular relation schema as values.

That is, every value assigned to a given tuple variable has the same number and type of fields.

A tuple relational calculus query has the form { T | p(T) },

where T is a tuple variable and p(T) denotes a formula that describes T;

The result of this query is the set of all tuples t for which the formula p(T) evaluates totrue

with T = t. The language for writing formulas

p(T) is thus at the heart of TRC and is essentially a simple subset of first-order logic.

40

2.2.2. DOMAIN RELATIONAL CALCULUS

A domain variable is a variable that ranges over the values in the domain of some attribute

(e.g., the variable can be assigned an integer if it appears in an attribute whose domain is the

set of integers).

A DRC formula is defined in a manner that is very similar to the definition of a TRC formula.

The main difference is that the variables are now domain variables. Let op denote an operator

in the set{<,>,=,≤,≥,6=}and let X and Y be domain variables. An atomic formula in DRC is

one of the following:

2.3. EXPRESSIVE POWER OF RELATIONAL ALGEBRA AND CALCULUS

It is possible to write syntactically correct calculus queries that have an infinite number of

answers! Such queries are called unsafe.

Example.

It is known that every query that can be expressed in relational algebra can be expressed as a

safe query in DRC / TRC; the converse is also true.

Relational Completeness: Query language (e.g., SQL) can express every query that is

expressible in relational algebra/calculus.

41

2.4. THE FORM OF A BASIC SQL QUERIES

 The basic form of an SQL query is as follows:

SELECT [DISTINCT] select-list
FROM from-list
WHERE qualification

Such a query intuitively corresponds to a relational algebra expression involving selec- tions,

projections, and cross-products.

– SELECT clause, which specifies columns to be retained in the result, and a
– FROM clause, which specifies a cross-product of tables.
– The optional WHERE clause specifies selection conditions on the tables mentioned in

the FROM clause.

2.4.1. EXAMPLES OF BASIC SQL QUERIES

Q1.Find the names and ages of all sailors. SELECT

DISTINCT S.sname, S.age FROM Sailors S

Q2.Find all sailors with a rating above 7.

SELECT S.sid, S.sname, S.rating, S.age FROM Sailors AS S WHERE S.rating > 7

Q3.Find the names of sailors who have reserved boat number 103.
It can be expressed in SQL as follows.

SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid = R.sid AND R.bid=103

42

2.5. NESTED QUERIES

 A nested query is a query that has another query embedded within it;

 The embedded query is called a subquery.

 When writing a query, we sometimes need to express a condition that refers to a table
that must itself be computed.

2.5.1. INTRODUCTION TO NESTED QUERIES

(Q1) Find the names of sailors who have reserved boat 103.

(Q2)Find the names of sailors who have reserved a red boat.

2.5.2. CORRELATED NESTED QUERIES

In general the inner subquery could depend on the row that is currently being examined in the

outer query (in terms of our conceptual evaluation strategy).

(Q1) Find the names of sailors who have reserved boat number 103.

43

2.5.3. SET-COMPARISON OPERATORS

SQL also supports op ANY and op ALL, whereop is one of the arithmetic comparison operators

{<,<=,=,<>,>=,>}.(SOME is also available, but it is just a synonym for ANY.)

 The set operations union, intersect, and except operate on relations and correspond

to the relational algebra operations

44

 Each of the above operations automatically eliminates duplicates; to retain all duplicates

use the corresponding multiset versions union all, intersect all and except all.

2.6. AGGREGATE OPERATORS

These functions operate on the multiset of values of a column of a relation, and return a

value

 avg: average value,
 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values

2.6.1. THE GROUP BY AND HAVING CLAUSES

– Motivation for Grouping
So far, we’ve applied aggregate operators to all (qualifying) tuples. Sometimes, we want to

apply them to each of several groups of tuples.

 consider: Find the age of the youngest sailor for each rating level.
In general, we don’t know how many rating levels exist, and what the rating values
for these levels are!
Suppose we know that rating values go from 1 to 10; we can write 10 queries that
look like this (!):

– Queries With GROUP BY and

HAVING The target-list contain

(i) attribute names

(ii) (ii) terms with aggregate operations (e.g., MIN (S.age)).

The attribute list (i) must be a subset of grouping-list.

Intuitively, each answer tuple corresponds to a

group,

and these attributes must have a single value per group. (A group is a set of tuples that

have the same value for all attributes in grouping-list.)

45

Conceptual Evaluation
 The cross-product of relation-list is computed, tuples that fail qualification are

discarded, `unnecessary’ fields are deleted, and the remaining tuples are partitioned
into groups by the value of attributes in grouping-list.

 The group-qualification is then applied to eliminate some groups. Expressions in group-
qualification must have a single value per group!

 In effect, an attribute in group-qualification that is not an argument of an aggregate op also
appears in grouping-list. (SQL does not exploit primary key semantics here!)

 One answer tuple is generated per qualifying group.

Find age of the youngest sailor with age 18, for each rating with at least 2 such sailors

1. HAVING clause can also contain a subquery.
2. Aggregate operations cannot be nested! WRONG:

Examples:

(Q1).Find the number of depositors for each branch.

46

Q2).Find the names of all branches where the average account balance is more than $1,200.

2.7. NULL VALUES

 Field values in a tuple are sometimes unknown (e.g., a rating has not been assigned)
or inapplicable (e.g., no spouse’s name).

 SQL provides a special value null for such situations.The presence of null complicates
many issues. E.g.:Special operators needed to check if value is/is not null. Is rating>8
true or false when rating is equal to null?

2.7.1. COMPARISON USING NULL VALUES

It is possible for tuples to have a null value, denoted by null, for some of their attributes null

signifies an unknown value or that a value does not exist.The predicate is null can be used to

check for null values.

if we compare two null values using <,>,=, and so on, the result is always unknown. For

example, if we have null in two distinct rows of the sailor relation, any comparison returns

unknown.

Example: Find all loan number which appear in the loan relation with null values for amount.

select loan_number

from loan

where amount is null

The result of any arithmetic expression involving null is null

Example: 5 + null returns null However, aggregate functions simply ignore nulls

Any comparison with null returns unknown

Example:

5 < null or null <> null or null = null

47

2.7.2. LOGICAL CONNECTIVES-AND, OR AND NOT

Three-valued logic using the truth value unknown:

OR:
(unknown or true) = true,

(unknown or false) = unknown

(unknown or unknown) = unknown

AND:
(true and unknown) = unknown,

(false and unknown) = false,

(unknown and unknown) = unknown

NOT:
(not unknown) = unknown

“P is unknown” evaluates to true if predicate P evaluates to unknown

• All aggregate operations except count(*) ignore tuples with null values on the

aggregated attributes.

2.7.3. IMPACT ON SQL CONSTRUCTS

“In” Construct:

48

“Some” Construct

“All” Construct
• Find the names of all branches that have greater assets than all branches located

in Brooklyn.

“Exists” Construct
Find all customers who have an account at all branches located in Brooklyn.
absence of duplicate tuples the unique construct tests whether a sub query has any duplicate
tuples in its result.

Find all customers who have at most one account at the Perryridge branch.

49

• Find all customers who have at least two accounts at the Perryridge branch.

2.7.4.. OUTER JOINS

Join operations take two relations and return as a result another relation.These additional

operations are typically used as subquery expressions in the from clause

Join condition – defines which tuples in the two relations match, and what attributes are

present in the result of the join.

Join type – defines how tuples in each relation that do not match any tuple in the other

relation (based on the join condition) are treated. Joined Relations – Datasets for Examples

Relation loan

50

• Joined Relations – Examples

loan inner join borrower on loan.loan_number = borrower.loan_number

Joined Relations – Examples

loan natural inner join borrower

Joined Relations – Examples

Natural join can get into trouble if two relations have an attribute with same name that should

not affect the join condition

51

2.7.5. DISALLOWING NULL VALUES

We can disallow null values by specifying NOT NULL as part of the field

definition, for example, sname CHAR(20) NOT NULL.

In addition, the fields in a primary key are not allowed to take on null values.

Thus, there is an implicit NOT NULL constraint for every field listed in a PRIMARY KEY

constraint.

2.8. COMPLEX INTEGRITY CONSTRAINTS IN SQL

1. Constraints over a Single Table

We can specify complex constraints over a single table using table constraints,

which have the form CHECK conditional-expression.

example, to ensure that rating must be an integer in the range 1 to 10, use:

CREATE TABLE Sailors (

sid INTEGER,

sname CHAR(10),

rating INTEGER, age REAL,

PRIMARY KEY (sid),

CHECK (rating >=1AND rating <= 10))

To enforce the constraint that Interlake boats cannot be reserved, we could use:

CREATE TABLE Reserves (sid INTEGER, bid INTEGER, day DATE, FOREIGN KEY

(sid) REFERENCES Sailors FOREIGN KEY (bid) REFERENCES Boats CONSTRAINT

noInterlakeRes CHECK (‘Interlake’ <> (SELECT B.bname FROM Boats B WHERE B.bid

= Reserves.bid)))

When a row is inserted into Reserves or an existing row is modified, the conditional

expression in the CHECK constraint is evaluated. If it evaluates to false, the command is

rejected.

3. Domain Constraints

A user can define a new domain using the CREATE DOMAIN statement, which makes use

of CHECK constraints.

CREATE DOMAIN ratingval INTEGER DEFAULT 0 CHECK (VALUE >=1AND

VALUE <= 10)

INTEGER is the base type for the domain ratingval, and every ratingval value must be of this

type.The optional DEFAULT keyword is used to associate a default value with a domain.

52

3. Assertions: ICs over Several Tables

Table constraints are associated with a single table, although the conditional expression in the

CHECK clause can refer to other tables. Table constraints are required to hold only if the

associated table is nonempty. SQL supports the creation of assertions, which are constraints

not associated with any one table.

Example: enforce the constraint that the number of boats plus the number of sailors should be

less than 100.

CREATE TABLE Sailors (

sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),

CHECK (rating >=1AND rating <= 10) CHECK ((SELECT COUNT (S.sid)

FROM Sailors S) +(SELECT COUNT (B.bid) FROM Boats B) < 100))

The best solution is to create an assertion, as follows:

CREATE ASSERTION smallClub CHECK ((SELECT COUNT (S.sid) FROM Sailors S)

+(SELECT COUNT (B.bid) FROM Boats B) < 100)

2.9. TRIGGERS AND ACTIVE DATA BASES

A trigger is a procedure that is automatically invoked by the DBMS in response to specified

changes to the database, and is typically specified by the DBA.

A database that has a set of associated triggers is called an active database. A trigger description

contains three parts:

– Event: A change to the database that activates the trigger.

– Condition: A query or test that is run when the trigger is activated.
– Action: A procedure that is executed when the trigger is activated and its con- dition is

true.

61

53

Example:The trigger called incr count increments the counter for each inserted tuple that

satisfies the condition age < 18.

CREATE TRIGGER youngSailorUpdate

AFTER INSERT ON SAILORS

REFERENCING NEW TABLE NewSailors

FOR EACH STATEMENT

INSERT

INTO YoungSailors(sid, name, age, rating)

SELECT sid, name, age, rating

FROM NewSailors N

WHERE N.age <= 18

2.9.10. ACTIVE DATABASES

 Triggers offer a powerful mechanism for dealing with changes to a database, but they
must be used with caution.

 The effect of a collection of triggers can be very complex, and maintaining an active
database can come very difficult. Often, a judicious use of integrity constraints can
replace the use of triggers.

62

54

UNIT-III

 INTRODUCTION TO SCHEMA REFINEMENT

Redundant storage of information is the root cause of these problems. Although

decomposition can eliminate redundancy, it can lead to problems of its own and should be

used with caution.

3.1. PROBLEMS CAUSED BY REDUNDANCY

Storing the same information redundantly, that is, in more than one place within a database,

can lead to several problems:

 Redundant storage: Some information is stored repeatedly.
 Update anomalies: If one copy of such repeated data is updated, an inconsis- tency is

created unless all copies are similarly updated.
 Insertion anomalies: It may not be possible to store some information unless some

other information is stored as well.
 Deletion anomalies: It may not be possible to delete some information without losing

some other information as well.

3.2. DECOMPOSITIONS

Intuitively, redundancy arises when a relational schema forces an association between

attributes that is not natural.

Functional dependencies (ICs) can be used to identify such situations and to suggest

refinetments to the schema.

 rating hourly wages

 8 10

 5 7

ssn Name lot rating hours worked

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

55

612-67-4134 Madayan 35 8 40

56

The essential idea is that many problems arising from redundancy can be addressed by replacing

a relation with a collection of smaller relations.

• Each of the smaller relations contains a subset of the attributes of the original relation.
• We refer to this process as decomposition of the larger relation into the

Smaller relations.We can deal with the redundancy in Hourly Emps by decomposing it into two

relations:

• Hourly Emps2(ssn, name, lot, rating, hours worked)
• Wages(rating, hourly wages)

3.3. PROBLEM RELATED TO DECOMPOSITION

Unless we are careful, decomposing a relation schema can create more problems than it

Solves. Two important questions must be asked repeatedly:

1. Do we need to decompose a relation?
2. What problems (if any) does a given decomposition cause?

3.4. FUNCTIONAL DEPENDENCIES

Functional dependency (FD) is set of constraints between two attributes in a relation. Functional

dependency says that if two tuples have same values for attributes A1, A2,..., An then those two tuples

must have to have same values for attributes B1, B2, ..., Bn.

Functional dependency is represented by arrow sign (→), that is X→Y, where X functionally determines

Y. The left hand side attributes determines the values of attributes at right hand side.

3.4.1.Armstrong's Axioms

If F is set of functional dependencies then the closure of F, denoted as F
+
, is the set of all functional

dependencies logically implied by F. Armstrong's Axioms are set of rules, when applied repeatedly

generates closure of functional dependencies.

 Reflexive rule: If alpha is a set of attributes and beta is_subset_of alpha, then alpha holds beta.

 Augmentation rule: if a → b holds and y is attribute set, then ay → by also holds.
That is adding attributes in dependencies, does not change the basic dependencies.

 Transitivity rule: Same as transitive rule in algebra, if a → b holds and b → c holds then a → c

also hold. a → b is called as a functionally determines b.

3.4.2. TRIVIAL FUNCTIONAL DEPENDENCY

 Trivial: If an FD X → Y holds where Y subset of X, then it is called a trivial FD.

Trivial FDs are always hold.

 Non-trivial: If an FD X → Y holds where Y is not subset of X, then it is called non-trivial FD.

 Completely non-trivial: If an FD X → Y holds where x intersect Y = Φ, is said to be

completely non-trivial FD.

57

3.5. REASONING ABOUT FDS

Given a set of FDs over a relation schema R, there are typically several additional FDs that hold over

R whenever all of the given FDs hold. As an example, consider:

Workers(ssn, name, lot, did, since)

We know that ssn → did holds, since ssn is the key, and FD

did→ lot is given to hold.

Therefore, in any legal instance of Workers, if two tuples have the same ssn value, they must have the

same did value (from the first FD), and because they have the same did value, they must also have the

same lot value (from the second FD).

Thus, the FD ssn → lot also holds on Workers. We say that an FD f is implied by a given setFof FDs if f

holds on every relation instance that satisfies all dependencies in F, that is,f holds whenever all FDs in F

hold. Note that it is not sufficient for f to hold on some instance that satisfies all dependencies in F;

rather, f must hold on every instance that satisfies all dependencies in F.

3.6. NORMAL FORMS:

• Definition :Normalization is the process of organizing the fields and tables of a relational

database to minimize redundancy and dependency.

• The normal forms based on FDs are first normal form (1NF), second normal form (2NF), third

normal form (3NF), and Boyce-Codd normal form (BCNF).

• These forms have increasingly restrictive requirements: Every relation in BCNF is also in

3NF,every relation in 3NF is also in 2NF, and every relation in 2NF is in 1NF.

• A relation is in first normal form if every field contains only atomic values, that is, not lists or

sets.

• This requirement is implicit in our definition of the relational model.

• Although some of the newer database systems are relaxing this requirement 2NF is

mainly of historical interest. 3NF and BCNF are important from a database design

standpoint.

3.6.1. FIRST NORMAL FORM

• A relation schema is said to be in first normal form if the attributes values in the

relation are atomic, i.e there should be no repeated values in a particular column

• A attribute is said to be value atomic value if it contains only a single.

58

Example First Normal Form

Emp_id

Emp_section_i

d

Emp_name

Emp_addres

s

dependents

0012

575

Manideep

Hyderabad

Father,

Mother,Brother

0013

572

Bhaskar

reddy

Delhi

Wife, Mother, Son

0014

5A0

Priyanka

Bangalore

Brother, Sister

0015

5B8

Anusha reddy

Hyderabad

Sister, Mother

Here,The column dependents have non atomic values, In order to convert this relation in

INF,we have to convert these non atomic values to atomic values

Emp_id

Emp_section_id

Emp_name

Emp_address

Dependents

0012

575

Manideep

Hyderabad

Father,

0012

575

Manideep

Hyderabad

Mother

 0012 575 Manideep Hyderabad Brother

 0013 572 Bhaskar reddy Delhi Wife

0013

572

Bhaskar reddy

Delhi

Mother

0013

572

Bhaskar reddy

Delhi

Son

0014

5A0

Priyanka

Bangalore

Brother

0014

5A0

Priyanka

Bangalore

Sister

0015

5B8

Anusha reddy

Hyderabad

Sister

0015

5B8

Anusha reddy

Hyderabad

Mother

66

59

The relation employee is in 1NF since the column dependents have atomic value But

the other attributes i.e. emp_id, emp_section_id, emp_name, emp_address are all

repeating and forming a group called repeated groups.

3.6.2. SECOND NORMAL FORM

• A relation is said to be in 1NF and every non Key attribute is fully

functionally dependent on primary key attribute

• If any one of the following conditions are satisfied then a relation(which is

in 1NF) is in 2NF

Rules:

1. There should be only one attribute associated with primary key
2. There must be no non key attributes in the relation

Example:
• Student(student_id,class_id,name,cource,time)
• (student_id,class_id,)is the primary key,
• A student can attend different course in different classes at different times.

Consider a simple example of student relation

Student_id

Class_id

Name

Cource_id

time

0123

502

Ravi

312

10/10

0124

503

Kumar

313

10/07

0125

502

Mahesh

312

10/15

0126

504

mehta

460

10/08

The above relation is not in2NF,as the name of the student can be determined by

student_id. there ,a non key attribute(name) is functionally depend on a part of key

(student_id)

3.6.3. THIRD NORMAL FORM

• A relation R in 3NF if and only if it is in 2NF and every non key column does

not depend on another non key column

• All nonprime attributes of R must be non-transitively functionally dependent on a key

of the relation

60

• Relation R with FDs F is in 3NF if, for all X A in
– A X (called a trivial FD), or

– X contains a key for R, or

– A is part of some key for R.

• Minimality of a key is crucial in third condition above!
• If R is in BCNF, obviously in 3NF.
• If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not

achievable (e.g., no ``good’’ decomp, or performance considerations).
– Lossless-join, dependency-preserving decomposition of R into a collection of

3NF relations always possible.

SUPPLIER (SNAME, STREET, CITY, STATE,

TAX) SNAME STREET, CITY, STATE STATE

 TAX (non key non key) SNAME STATE

TAX (transitive FD)

• solution: decompose the relation
SUPPLIER2 (SNAME, STREET, CITY, STATE)

TAXINFO (STATE, TAX)

3.6.4.Boyce-Codd NORMAL FORM (BCNF)

• Reln R with FDs F is in BCNF if, for all X A in

– A X (called a trivial FD), or

– X contains a key for R.

• In other words, R is in BCNF if the only non-trivial FDs that hold over R are key

constraints.

– No dependency in R that can be predicted using FDs alone.

– If we are shown two tuples that agree upon the X value, we cannot infer the A

value in one tuple from the A value in the other.

– If example relation is in BCNF, the 2 tuples must be identical (since x is a

key).

61

3.7. PROPERTIES OF DECOMPOSITIONS

3.7.1. DECOMPOSITION OF A RELATION SCHEME

• Suppose that relation R contains attributes A1 ... An. A decomposition of R consists of

replacing R by two or more relations such that:

– Each new relation scheme contains a subset of the attributes of R (and no

attributes that do not appear in R), and
– Every attribute of R appears as an attribute of one of the new relations.

• Intuitively, decomposing R means we will store instances of the relation schemes

produced by the decomposition, instead of instances of R.

• E.g., Can decompose SNLRWH into SNLRH and RW.

Example Decomposition

Decompositions should be used only when needed.

– SNLRWH has FDs S SNLRWH and R W

– Second FD causes violation of 3NF; W values repeatedly associated with R

values. Easiest way to fix this is to create a relation RW to store these

associations, and to remove W from the main schema:i.e., we decompose

SNLRWH into SNLRH and RW

The information to be stored consists of SNLRWH tuples. If we just store the projections of

these tuples onto SNLRH and RW, are there any potential problems that we should be aware

of?

3.7.2. LOSSLESS JOIN DECOMPOSITIONS:

• Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every

instance r that satisfies F:

• It is always true that

– In general, the other direction does not hold! If it does, the decomposition is

lossless-join.

• Definition extended to decomposition into 3 or more relations in a straightforward

way.
• It is essential that all decompositions used to deal with redundancy be lossless!

62

More on Lossless Join

63

3.8. DEPENDENCY PRESERVING DECOMPOSITION (INTUITIVE)

If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on

Y and on Z, then all FDs that were given to hold on R must also hold. (Avoids Problem (3).)

Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X enoted FX

) is the set of FDs UV in F
+
 (closure of F) such that U, V are in X.

Decomposition of R into X and Y is dependency preserving if (FX union FY)
+
 = F

+

i.e., if we consider only dependencies in the closure F
+
 that can be checked in X without

considering Y, and in Y without considering X, these imply all dependencies in F
+
.

Important to consider F
+

, not F, in this definition:

ABC, A B, B C, C A, decomposed into AB and BC.Is this dependency preserving? Is C A

preserved????? Dependency preserving does not imply lossless join:ABC, A B,

decomposed into AB and BC.And vice-versa!

Decomposition into BCNF

Consider relation R with FDs F. If X Y violates BCNF, decompose R into R - Y and XY.

Repeated application of this idea will give us a collection of relations that are in BCNF;

lossless join decomposition, and guaranteed to terminate.

– e.g., CSJDPQV, key C, JP C, SD P, J S

– To deal with SD P, decompose into SDP, CSJDQV.

– To deal with J S, decompose CSJDQV into JS and CJDQV

In general, several dependencies may cause violation of BCNF. The order in which we

``deal with’’ them could lead to very different sets of relations!

BCNF and Dependency Preservation
• In general, there may not be a dependency preserving decomposition into BCNF.

– e.g., CSZ, CS Z, Z C

– Can’t decompose while preserving 1st FD; not in BCNF.

– Similarly, decomposition of CSJDQV into SDP, JS and CJDQV is

not

dependency preserving (w.r.t. the FDs JP C, SD P and J S).However, it

is a

lossless join decomposition.In this case, adding JPC to the collection of relations gives us

a

dependency preserving decomposition. JPC tuples stored only for checking FD!

(Redundancy!)

Decomposition into 3NF

Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a

lossless join decomp into 3NF (typically, can stop earlier).

To ensure dependency preservation, one idea:

If X Y is not preserved, add relation XY.

Problem is that XY may violate 3NF! e.g., consider the addition of CJP to `preserve’ JP

C. What if we also have J C ? Refinement: Instead of the given set of FDs F, use a

minimal cover for F.

64

3.9. SCHEMA REFINEMENT IN DATA BASE DESIGN:

Constraints on an Entity Set

Consider the Hourly Emps relation again. The constraint that attribute ssn is a key can be

expressed as an FD:{ ssn }-> { ssn, name, lot, rating, hourly wages, hours worked}

For brevity, we will write this FD as S -> SNLRWH, using a single letter to denote each

attribute In addition, the constraint that the hourly wages attribute is determined by the

rating attribute is an FD: R -> W.

Constraints on a Relationship Set

The previous example illustrated how FDs can help to rene the subjective decisions made

during ER design, but one could argue that the best possible ER diagram would have led

to the same nall set of relations.

Our next example shows how FD information can lead to a set of relations that

eliminates some redundancy problems and is unlikely to be arrived at solely through ER design.

Identifying Attributes of Entities

in particular, it shows that attributes can easily be associated with the `wrong' entity set

during ER design. The ER diagram shows a relationship set called Works In that is similar

to the Works In relationship set Using the key constraint, we can translate this ER diagram

into two relations:

Workers(ssn, name, lot, did, since)

Identifying Entity Sets

Let Reserves contain attributes S, B, and D as before, indicating that sailor S has a

reservation for boat B on day D.

In addition, let there be an attribute C denoting the credit card to which the reservation is

charged.

Suppose that every sailor uses a unique credit card for reservations. This constraint is

expressed by the FD

65

3.9. MULTIVALUED DEPENDENCIES:

Suppose that we have a relation with attributes course, teacher, and book, which we denote as

CTB.The meaning of a tuple is that teacher T can teach course C, and book B is a

recommended text for the course.

There are no FDs; the key is CTB. However, the recommended texts for a course are

independent of the instructor.

There are three points to note here:

The relation schema CTB is in BCNF; thus we would not consider decomposing it further if

we looked only at the FDs that hold over CTB.

There is redundancy. The fact that Green can teach Physics101 is recorded once per

recommended text for the course. Similarly, the fact that Optics is a text for Physics 101 is

recorded once per potential teacher.

The redundancy can be eliminated by decomposing CTB into CT and CB.Let R be a relation

schema and let X and Y be subsets of the attributes of R. Intuitively, the multivalued

dependency X !! Y is said to hold over R if, in every legal The redundancy in this example is

due to the constraint that the texts for a course are independent of the instructors, which

cannot be epressed in terms of FDs. This constraint is an example of a multivalued

dependency, or MVD. Ideally, we should model this situation using two binary relationship

66

sets, Instructors with attributes CT and Text with attributes CB.Because these are two

essentially independent relationships, modeling them with a single ternary relationship set

with attributes CTB is inappropriate.Three of the additional rules involve only MVDs:

MVD Complementation: If X →→Y, then X →→ R − XY

MVD Augmentation: If X →→ Y and W > Z, then WX →→ YZ.

MVD Transitivity: If X →→ Y and Y →→ Z, then X →→ (Z − Y).

3.9.1. FOURTH NORMAL FORM

R is said to be in fourth normal form (4NF) if for every MVD X →→Y that holds over R,

one of the following statements is true:

• Y subset of X or XY = R, or
• X is a super key.

3.10. JOIN DEPENDENCIES

A join dependency is a further generalization of MVDs. A join dependency (JD) ∞{

R1,….. Rn } is said to hold over a relation R if R1,…. Rn is a lossless-join decomposition of R.

An MVD X ->-> Y over a relation R can be expressed as the join dependency ∞{

XY,X(R−Y)}

As an example, in the CTB relation, the MVD C ->->T can be expressed as the join

dependency ∞{ CT, CB} Unlike FDs and MVDs, there is no set of sound and complete

inference rules for JDs.

3.11. FIFTH NORMAL FORM

A relation schema R is said to be in fth normal form (5NF) if for every JD ∞{ R1,…. Rn }

that holds over R, one of the following statements is true:

Ri = R for some i, or The JD is implied by the set of those FDs over R in which the left side is

a key for R.

The following result, also due to Date and Fagin, identies conditions again, detected using

only FD information under which we can safely ignore JD information.

If a relation schema is in 3NF and each of its keys consists of a single attribute, it is

also in 5NF.

67

3.12. INCLUSION DEPENDENCIES

MVDs and JDs can be used to guide database design, as we have seen, although they

are less common than FDs and harder to recognize and reason about. In contrast, inclusion

dependencies are very intuitive and quite common. However, they typically have little

influence on database design the main point to bear in mind is that we should not split groups

of attributes that participate in an inclusion dependency. Most inclusion dependencies in

practice are key-based, that is, involve only keys.

68

UNIT - IV

 TRANSACTION CONCEPT

4.1. TRANSACTION CONCEPT

A Transaction is a unit of program execution that accesses and possibly updates various data

items.

Example transaction to transfer $50 from account A to account B:

1. read(A)
2. A:=A–50
3. write(A)
4. read(B)
5. B:=B+50
6. write(B)

Two main issues to deal with:

Failures of various kinds, such as hardware failures and system crashes

Concurrent execution of multiple transactions

Example of Fund Transfer Transaction to transfer $50 from account A to account B:

1. read(A)
2. A:=A–50
3. write(A)
4. read(B)
5. B:=B+50
6. write(B)

Atomicity requirement

if the transaction fails after step 3 and before step 6, money will be “lost” leading to an

inconsistent database state

Failure could be due to software or hardware the system should ensure that updates of a

partially executed transaction are not reflected in the database

Durability requirement — once the user has been notified that the transaction has

completed (i.e., the transfer of the $50 has taken place), the updates to the database by the

transaction must persist even if there are software or hardware failures.

Example of Fund Transfer Transaction to transfer $50 from account A to account B:

1. read(A)
2. A:=A–50
3. write(A)
4. read(B)

69

5. B:=B+50
6. write(B)

Consistency requirement in above example: the sum of A and B is unchanged by the execution

of the transaction In general, consistency requirements include Explicitly specified integrity

constraints such as primary keys and foreign keys Implicit integrity constraints Example sum of

balances of all accounts, minus sum of loan amounts must equal value of cash-in-hand A

transaction must see a consistent database. During transaction execution the database may be

temporarily inconsistent. When the transaction completes successfully the database must be

consistent Erroneous transaction logic can lead to inconsistency

Example of Fund Transfer Isolation requirement — if between steps 3 and 6, another

transaction T2 is allowed to access the partially updated database, it will see an

inconsistent database (the sum A + B will be less than it should be).

T1 T2
1. read(A)
2. A:=A–50
3. write(A)

read(A), read(B), print(A+B)
4. read(B)
5. B:=B+50
6. write(B)

Isolation can be ensured trivially by running transactions serially that is, one after the other.

However, executing multiple transactions concurrently has significant benefits.

ACID Properties

Atomicity Either all operations of the transaction are properly reflected in the database or

none are.

Consistency Execution of a transaction in isolation preserves the consistency of the database.

Isolation Although multiple transactions may execute concurrently, each transaction must be
unaware of other concurrently executing transactions. Intermediate transaction results must be hidden

from other concurrently executed transactions. That is, for every pair of transactions Ti and Tj, it

appears to Ti that either Tj, finished execution before Ti started, or Tj started execution after Ti
finished.

Durability After a transaction completes successfully, the changes it has made to the

database persist, even if there are system failures.

4.2. TRANSACTION STATE

• Active – the initial state; the transaction stays in this state while it is executing

70

• Partially committed – after the final statement has been executed.
• Failed -- after the discovery that normal execution can no longer proceed.
• Aborted – after the transaction has been rolled back and the database restored to its

State prior to the start of the transaction. Two options after it has been aborted: restart

the transaction can be done only if no internal logical error kill the transaction
• Committed – after successful completion.

4.3. IMPLEMENTATION OF ATOMICITY AND DURABILITY

The recovery-management component of a database system implements the support for

atomicity and durability. Example of the shadow-database scheme:all updates are made on a

shadow copy of the database db_pointer is made to point to the updated shadow copy after

the transaction reaches partial commit and all updated pages have been flushed to disk.

db_pointer always points to the current consistent copy of the database.In case transaction

fails, old consistent copy pointed to by db_pointer can be used, and the shadow copy can be

deleted.

71

The shadow-database scheme: Assumes that only one transaction is active at a time. Assumes

disks do not fail Useful for text editors, but extremely inefficient for large databases (why?)

Variant called shadow paging reduces copying of data, but is still not practical for large

databases does not handle concurrent transactions

4.4. CONCURRENT EXECUTIONS

Multiple transactions are allowed to run concurrently in the system. Advantages are:

Increased processor and disk utilization, leading to better transaction throughput

Example one transaction can be using the CPU while another is reading from or writing to the

disk reduced average response time for transactions: short transactions need not wait behind

long ones Concurrency control schemes – mechanisms to achieve isolation that is, to control

the interaction among the concurrent transactions in order to prevent them from destroying

the consistency of the database.

Schedule – Sequences of instructions that specify the chronological order in which

instructions of concurrent transactions are executed a schedule for a set of transactions must

consist of all instructions of those transactions must preserve the order in which the

instructions appear in each individual transaction.

A transaction that successfully completes its execution will have commit instructions as the

last statement by default transaction assumed to execute commit instruction as its last step

A transaction that fails to successfully complete its execution will have an abort instruction as

the last statement.

72

Schedule 1

• Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.A

serial schedule in which T1 is followed by T2 :

Schedule 2

Schedule 3

Let T1 and T2 be the transactions defined previously. The following schedule is not a serial

schedule, but it is equivalent to Schedule 1.

4.5. SERIALIZABILITY

Basic Assumption – Each transaction preserves database consistency. Thus serial execution

of a set of transactions preserves database consistency. A (possibly concurrent) schedule is

serializable if it is equivalent to a serial schedule. Different forms of schedule equivalence

give rise to the notions of:

73

1. Conflict serializability

2. View serializability

Simplified views of transactions we ignore operations other than read and write

instructions; we assume that transactions may perform arbitrary computations on data in

local buffers in between reads and writes. Our simplified schedules consist of only read

and write instructions. Conflicting Instructions lid and elk of transactions Ti and Tj

respectively, conflict if and only if there exists some item Q accessed by both li and lj,

and at least one of these instructions wrote Q.

1. li = read(Q), lj = read(Q). li and lj don’t conflict.
2. li = read(Q), lj = write(Q). They conflict.

3. li = write(Q), lj = read(Q). They conflict

4. li = write(Q), lj = write(Q). They conflict

Intuitively, a conflict between li and lj forces a (logical) temporal order between them.

If li and lj are consecutive in a schedule and they do not conflict, their results would

remain the same even if they had been interchanged in the schedule.

Conflict Serializability

If a schedule S can be transformed into a schedule S´ by a series of swaps of non-

conflicting instructions, we say that S and S´ are conflict equivalent.

74

We say that a schedule S is conflict serializable if it is conflict equivalent to a serial

schedule.

Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1, by

series of swaps of non-conflicting instructions.Therefore Schedule 3 is conflict serializable.

Example of a schedule that is not conflict serializable: We are unable to swap instructions in

the above schedule to obtain either the serial schedule < T3, T4 >, or the serial schedule < T4,

T3 >.

View Serializability

Let S and S´ be two schedules with the same set of transactions. S and S´ are view equivalent

if the following three conditions are met, for each data item Quid in schedule S, transaction Ti

reads the initial value of Q, then in schedule S’ also transaction Ti must read the initial value

of Q.

If in schedule S transaction Ti executes read(Q), and that value was produced by transaction Tj

(if any), then in schedule S’ also transaction Ti must read the value of Q that was produced by the

same write(Q) operation of transaction Tj .The transaction (if any) that performs the final

write(Q) operation in schedule S must also perform the final write(Q) operation in schedule

S’. As can be seen, view equivalence is also based purely on reads and writes alone.

A schedule S is view serializable if it is view equivalent to a serial schedule.Every conflict

serializable schedule is also view serializable.Below is a schedule which is view-serializable

but not conflict serializable.

 What serial schedule is above equivalent to?
 Every view serializable schedule that is not conflict serializable has blind

writes. Other Notions of Serializability

75

The schedule below produces same outcome as the serial schedule < T1, T5 >, yet is not

conflict equivalent or view equivalent to it. Determining such equivalence requires analysis

of operations other than read and write.

4.6. RECOVERABILITY

Recoverable schedule — if a transaction Tj reads a data item previously written by a

transaction Ti , then the commit operation of Ti appears before the commit operation of Tj.The

following schedule (Schedule 11) is not recoverable if T9 commits immediately after the read

If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent

database state. Hence, database must ensure that schedules are recoverable.

Cascading Rollbacks

Cascading rollback – a single transaction failure leads to a series of transaction rollbacks.

Consider the following schedule where none of the transactions has yet committed (so the schedule is

recoverable)

76

If T10 fails, T11 and T12 must also be rolled back.Can lead to the undoing of a significant amount

of work Cascadeless schedules — cascading rollbacks cannot occur; for each pair of

transactions Ti and Tj such that Tj reads a data item previously written by Ti, the commit

operation of Ti appears before the read operation of Tj.Every cascadeless schedule is also

recoverable It is desirable to restrict the schedules to those that are cascadeless

77

UNIT - V

CONCURRENCY CONTROL

A database must provide a mechanism that will ensure that all possible schedules are

either conflict or view serializable, and are recoverable and preferably cascadeless A policy in

which only one transaction can execute at a time generates serial schedules, but provides a

poor degree of concurrency Are serial schedules recoverable/cascadeless? Testing a schedule

for serializability after it has executed is a little too late! Goal – to develop concurrency

control protocols that will assure serializability

5.1 IMPLEMENTATION OF ISOLATION

Schedules must be conflict or view serializable, and recoverable, for the sake of database

consistency, and preferably cascadeless. A policy in which only one transaction can execute

at a time generates serial schedules, but provides a poor degree of concurrency. Concurrency-

control schemes tradeoff between the amount of concurrency they allow and the amount of

overhead that they incur. Some schemes allow only conflict-serializable schedules to be

generated, while others allow view-serializable schedules that are not conflict-serializable.

84

78

5.2. TESTING FOR SERIALIZABILITY

• Consider some schedule of a set of transactions T1, T2, ..., Tn

• Precedence graph — a direct graph where the vertices are the transactions (names).

• We draw an arc from Ti to Tj if the two transaction conflict, and Ti accessed the data

item on which the conflict arose earlier.
• We may label the arc by the item that was accessed.

Test for Conflict Serializability A schedule is conflict serializable if and only if its precedence

graph is acyclic.Cycle-detection algorithms exist which take order n
2
 time, where n is the

number of vertices in the graph. (Better algorithms take order n + e where e is the number of

edges.)

79

If precedence graph is acyclic, the serializability order can be obtained by a topological

sorting of the graph. This is a linear order consistent with the partial order of the graph.

For example, a serializability order for Schedule A would be T5 T1 T3 T2 T4 Are

there others?

Test for View Serializability

The precedence graph test for conflict serializability cannot be used directly to test for view

serializability.Extension to test for view serializability has cost exponential in the size of the

precedence graph.The problem of checking if a schedule is view serializable falls in the class

of NP-complete problems. Thus existence of an efficient algorithm is extremely unlikely.

However practical algorithms that just check some sufficient conditions for view

serializability can still are used.

5.3. CONCURRENCY CONTROL

Concurrency Control vs. Serializability Tests

Concurrency-control protocols allow concurrent schedules, but ensure that the schedules are

conflict/view serializable, and are recoverable and cascade less .Concurrency control

protocols generally do not examine the precedence graph as it is being created Instead a

protocol imposes a discipline that avoids nonseralizable schedules.Different concurrency

control protocols provide different tradeoffs between the amount of concurrency they allow

and the amount of overhead that they incur. Tests for serializability help us understand why a

concurrency control protocol is correct.

Weak Levels of Consistency

Some applications are willing to live with weak levels of consistency, allowing schedules that

are not serializable E.g. a read-only transaction that wants to get an approximate total balance

80

of all Accounts. Example. database statistics computed for query optimization can be

approximate (why?) Such transactions need not be serializable with respect to other

transactions Tradeoff accuracy for performance Levels of Consistency in SQL-92

Serializable — default Repeatable read — only committed records to be read, repeated

reads of same record must return same value. However, a transaction may not be serializable

it may find some records inserted by a transaction but not find others.

Read committed — only committed records can be read, but successive reads of recor may

return different (but committed) values.

Read uncommitted — even uncommitted records may be read.Transaction Definition in

SQL Data manipulation language must include a construct for specifying the set of actions

that comprise a transaction. In SQL, a transaction begins implicitly. A transaction in SQL

ends by: Commit work commits current transaction and begins a new one.

Rollback work causes current transaction to abort In almost all database systems, by default,

every SQL statement also commits implicitly if it executes successfully Implicit commit can

be turned off by a database directive E.g. in JDBC,connection. SetAutoCommit (false);

5.3.1. LOCK BASED PROTOCOLS

A lock is a mechanism to control concurrent access to a data item

Fig: Lock-compatibility matrix

Data items can be locked in two modes:

1. Exclusive (X) mode. Data item can be both read as well as

written. X-lock is requested using lock-X instruction.

2. Shared (S) mode. Data item can only be read. S-lock is

requested using lock-S instruction.

Lock requests are made to concurrency-control manager. Transaction can proceed only after

request is granted.

81

 A transaction may be granted a lock on an item if the requested lock is compatible

with locks already held on the item by other transactions

 Any number of transactions can hold shared locks on an item, but if any transaction
holds an exclusive on the item no other transaction may hold any lock on the item.

 If a lock cannot be granted, the requesting transaction is made to wait till all
incompatible locks held by other transactions have been released. The lock is then
granted.
Example: if a transaction performing locking:

T2: lock-S (A);
Read (A);

Unlock (A);

Lock-S (B);

Read (B);

Unlock (B);

Display (A+B)

Locking as above is not sufficient to guarantee serializability — if A and B get updated in-

between the read of A and B, the displayed sum would be wrong.

• A locking protocol is a set of rules followed by all transactions while requesting and

Releasing locks. Locking protocols restrict the set of possible schedules.Pitfalls of Lock-

Based Protocols Consider the partial schedule Neither T3 nor T4 can make progress —

Executing lock-S (B) causes T4 to wait for T3 to release its lock on B, while executing lock-X (A)

causes T3 to wait for T4 to release its lock on A.Such a situation is called a deadlock. To handle a

deadlock one of T3 or T4 must be rolled back and its locks released. The potential for

deadlock exists in most locking protocols. Deadlocks are a necessary evil.

Starvation is also possible if concurrency control manager is badly designed. For example:

A transaction may be waiting for an X-lock on an item, while a sequence of other

transactions request and are granted an S-lock on the same item. The same transaction is

repeatedly rolled back due to deadlocks. Concurrency control manager can be designed to

prevent starvation.

Two-Phase Locking Protocol

This is a protocol which ensures conflict-serializable schedules.

Phase 1: Growing Phase

– Transaction may obtain locks
– Transaction may not release locks

Phase 2: Shrinking Phase

– Transaction may release locks
– Transaction may not obtain locks

88

82

The protocol assures serializability. It can be proved that the transactions can be serialized in

the order of their lock points (i.e. the point where a transaction acquired its final lock). All locks are

released after commit or abort

Implementation of Locking

A lock manager can be implemented as a separate process to which transactions send lock

And unlock requests the lock manager replies to a lock request by sending a lock grant

Messages (or a message asking the transaction to roll back, in case of a deadlock).The

Requesting transaction waits until its request is answered the lock manager maintains a data-

Structure called a lock table to record granted locks and pending requests the lock table is

Usually implemented as an in-memory hash table indexed on the name of the data item being

Locked.

Two-phase locking does not ensure freedom from deadlocks

• Cascading roll-back is possible under two-phase locking. To avoid this, follow a

modified protocol called strict two-phase locking. Here a transaction must hold all

its exclusive locks till it commits/aborts.
• Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. In

this protocol transactions can be serialized in the order in which they commit.

5.3. 2. TIMESTAMP BASED PROTOCOLS

Each transaction is issued a timestamp when it enters the system. If an old transaction Ti has

time-stamp TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti)

<TS(Tj).

The protocol manages concurrent execution such that the time-stamps determine the

serializability order.In order to assure such behavior, the protocol maintains for each data Q

two timestamp values:

W-timestamp(Q) is the largest time-stamp of any transaction that executed

write(Q) successfully.

R-timestamp(Q) is the largest time-stamp of any transaction that executed

read(Q) successfully.

The timestamp ordering protocol ensures

that

any

conflicting

read

and

write
operations are executed in timestamp order.

Suppose a transaction Ti issues a read(Q)

If TS(Ti) W-timestamp(Q), then Ti needs to read a value of Q that was already

overwritten.Hence, the read operation is rejected, and Ti is rolled back.

83

If TS(Ti) W-timestamp(Q), then the read operation is executed, and

R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

Suppose that transaction Ti issues write(Q).

If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was

needed previously, and the system assumed that that value would never be

produced. Hence, the write operation is rejected, and Ti is rolled back.

If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.

Hence, this write operation is rejected, and Ti is rolled back.Otherwise, the write operation is

executed, and W-timestamp(Q) is set to TS(Ti).

A partial schedule for several data items for transactions with

timestamps 1, 2, 3, 4, 5

Correctness of Timestamp-Ordering Protocol

84

The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence

graph are of the form:

Thus, there will be no cycles in the precedence graph Timestamp protocol ensures freedom from

deadlock as no transaction ever waits. But the schedule may not be cascade-free, and may not

even be recoverable.

Thomas’ Write Rule Modified version of the timestamp-ordering protocol in which obsolete

write operations may be ignored under certain circumstances. When Ti attempts to write data

item Q, if TS (Ti) < W-timestamp (Q), then Ti is attempting to write an obsolete value of {Q}.

Rather than rolling back Ti as the timestamp ordering protocol would have done, this {write}

operation can be ignored. Otherwise this protocol is the same as the timestamp ordering
protocol.

 Thomas' Write Rule allows greater potential concurrency.

 Allows some view-serializable schedules that are not conflict-serializable.

5.3.3. VALIDATION BASED PROTOCOL

Execution of transaction Ti is done in three phases.

1. Read and execution phase: Transaction Ti writes only to temporary local variables

85

2. Validation phase: Transaction Ti performs a ``validation test'' to determine if local

variables can be written without violating serializability.

3. Write phase: If Ti is validated, the updates are applied to the

olled back.

Database; otherwise, Ti

is

The three phases of concurrently executing transactions can be interleaved, but each

Transaction must go through the three phases in that order. Assume for simplicity that the

validation and write phase occur together, atomically and serially i.e., only one transaction

executes validation/write at a time. Also called as optimistic concurrency control since

transaction executes fully in the hope that all will go well during validation. Each transaction

Ti has 3 timestamps

 Start(Ti) : the time when Ti started its execution

 Validation(Ti): the time when Ti entered its validation phase

 Finish(Ti) : the time when Ti finished its write phase Serializability order is

determined by timestamp given at validation time, to increase concurrency.

86

5.3.4. MULTIPLE GRANULARITIES

Allow data items to be of various sizes and define a hierarchy of data granularities, where the

small granularities are nested within larger ones Can be represented graphically as a tree (but

don't confuse with tree-locking protocol) When a transaction locks a node in the tree

explicitly, it implicitly locks all the node's descendents in the same mode.

Granularity of locking (level in tree where locking is done):ine granularity (lower in tree):

high concurrency, high locking overhead coarse granularity (higher in tree): low locking

overhead, low concurrency

Example of Granularity Hierarchy

87

The levels, starting from the coarsest (top) level are

– database

– area

– file

– record

In addition to S and X lock modes, there are three additional lock modes with multiple

granularity:

Intention-shared (IS): indicates explicit locking at a lower level of the tree

but only with shared locks.

Intention-exclusive (IX): indicates explicit locking at a lower level with exclusive or shared

locks

Shared and intention-exclusive (SIX): the sub tree rooted by that node is locked explicitly in

shared mode and explicit locking is being done at a lower level with exclusive-mode locks.

Intention locks allow a higher level node to be locked in S or X mode without having to

check all descendent nodes.

5.4. RECOVERY SYSTEM

5.4.1. Failure classification

To see where the problem has occurred we generalize the failure into various categories, as

follows:

88

Transaction failure

When a transaction is failed to execute or it reaches a point after which it cannot be

completed successfully it has to abort. This is called transaction failure. Where only few

transaction or process are hurt.

Reason for transaction failure could be:

 Logical errors: where a transaction cannot complete because of it has some code

error or any internal error condition

 System errors: where the database system itself terminates an active transaction

because DBMS is not able to execute it or it has to stop because of some system

condition. For example, in case of deadlock or resource unavailability systems aborts

an active transaction.

System crash

There are problems, which are external to the system, which may cause the system to stop

abruptly and cause the system to crash. For example interruption in power supply, failure

of underlying hardware or software failure.

Examples may include operating system errors.

Disk failure:

In early days of technology evolution, it was a common problem where hard disk drives or

storage drives used to fail frequently.

Disk failures include formation of bad sectors, unreachability to the disk, disk head crash

or any other failure, which destroys all or part of disk storage

5.5. RECOVERY AND ATOMICITY

Modifying the database without ensuring that the transaction will commit may leave the

database in an inconsistent state.Consider transaction Ti that transfers $50 from account

A to account B; goal is either to perform all database modifications made by Ti or none at

all. Several output operations may be required for Ti (to output A and B). A failure may

occur after one of these modifications has been made but before all of them are made. To

ensure atomicity despite failures, we first output information describing the
modifications to stable storage without modifying the database itself. We study two
approaches:

Log-based recovery and shadow-paging.

We assume (initially) that transactions run serially, that are one after the other.

Recovery Algorithms

Recovery algorithms are techniques to ensure database consistency and transaction

atomicity and durability despite failures.

89

Recovery algorithms have two parts

Actions taken during normal transaction processing to ensure enough information exists

to recover from failures. Actions taken after a failure to recover the database contents to

a state that ensures atomicity, consistency and durability.

5.5.1.Log-based recovery

 Log is kept on stable storage. The log is a sequence of log records, and maintains a

record of update activities on the database.

 When transaction Ti starts, it registers itself by writing a <Ti

start>log record Before Ti executes write(X), a log record <Ti, X, V1,

V2> is written,
 Where V1 is the value of X before the write and V2 is the value to be written to X.

 Log record notes that Ti has performed a write on data item Ax Xj had value V1

before the write, and will have value V2 after the write.

 We assume for now that log records are written directly to stable storage (that is, they

are not buffered)

Two approaches using logs

– Deferred database modification

– Immediate database modification

 Deferred Database Modification

The deferred database modification scheme records all modifications to the

log, but defers all the writes to after partial commit.

 Immediate Database Modification

The immediate database modification scheme allows database updates of an

uncommitted transaction to be made as the writes are issued since undoing may be

needed, update logs must have both old value and new value Update log record must

be written before database item is written We assume that the log record is output

directly to stable storage Can be extended to postpone log record output, so long as

prior to execution of an output (B) operation for a data block B, all log records

corresponding to items B must be flushed to stable storage

Checkpoints
Problems in recovery procedure:

 searching the entire log is time-consuming

 We might unnecessarily redo transactions which have already output their updates to

the database.

90

Streamline recovery procedure by periodically performing check pointing Output all log
records currently residing in main memory onto stable storage. Output all modified buffer
blocks to the disk. Write a log record < checkpoint> onto stable storage. During recovery

we need to consider only the most recent transaction Ti that started before the checkpoint

and transactions that started after Ti. Scan backwards from end of log to find the most

recent <checkpoint> record Continue scanning backwards till a record <Ti start> is

found. Need only consider the part of log following above start record. Earlier part of log
can be ignored during recovery, and can be erased whenever desired.For all transactions

(starting from Ti or later) with no <Ti commit>, execute undo (Ti). (Done only in case of

immediate modification.) Scanning forward in the log, for all transactions starting from Ti

or later w <Ti commit>, execute redo (Ti).

5.5.2 Recovery with concurrent transactions

We modify the log-based recovery schemes to allow multiple transactions to execute

concurrently.

All transactions share a single disk buffer and a single logia buffer block can have data items

updated by one or more transactions .We assume concurrency control using strict two-phase

91

locking; i.e. the updates of uncommitted transactions should not be visible to other

transactions .

Otherwise how to perform undo if T1 updates a, then T2 updates A and commits, and finally

T1 has to abort? Logging is done as described earlier. Log records of different transactions

may be interspersed in the log.

• The check pointing technique and actions taken on recovery have to be

changed since several transactions may be active when a checkpoint is performed.

Log Record Buffering

Log record buffering: log records are buffered in main memory, instead of of being output

directly to stable storage.Log records are output to stable storage when a block of log records

in the buffer is full, or a log force operation is executed. Log force is performed to commit a

transaction by forcing all its log records (including the commit record) to stable storage.

5.6. BUFFER MANAGEMENT

Database maintains an in-memory buffer of data blocks. When a new block is needed, if

buffer is full an existing block needs to be removed from buffer If the block chosen for

removal has been updated, it must be output to disk If a block with uncommitted updates is

output to disk, log records with undo information for the updates are output to the log on

stable storage first (Write ahead logging).No updates should be in progress on a block when

it is output to disk. Can be ensured as follows.

Before writing a data item, transaction acquires exclusive lock on block containing the data

item

Lock can be released once the write is completed. Such locks held for short duration are

called latches. Before a block is output to disk, the system acquires an exclusive latch on the

block. Ensures no update can be in progress on the block .Database buffer can be

implemented either in an area of real main-memory reserved for the database, or in virtual

memory. Implementing buffer in reserved main-memory has drawbacks: Memory is

partitioned before-hand between database buffer and applications, limiting flexibility.

Database buffers are generally implemented in virtual memory in spite of some drawbacks:

When operating system needs to evict a page that has been modified, the page is written to

swap space on disk. When database decides to write buffer page to disk, buffer page may be

in swap space, and may have to be read from swap space on disk and output to the database on disk,

resulting in extra I/O! Known as dual paging problem.

5.7. FAILURE WITH LOSS OF NONVOLATILE STORAGE

Technique similar to check pointing used to deal with loss of non-volatile storage

Periodically dump the entire content of the database to stable storage No transaction may be

active during the dump procedure; a procedure similar to check pointing must take place

92

Output all log records currently residing in main memory onto stable storage. Output all

buffer blocks onto the disk. Copy the contents of the database to stable storage. Output a

record <dump> to log on stable storage.

Recovering from Failure of Non-Volatile Storage

• To recover from disk failure restore database from most recent dump.
• Consult the log and redo all transactions that committed after the dump Can be

extended to allow transactions to be active during dump; known as fuzzy dump

5.8. ADVANCED RECOVERY TECHNIQUES

Advanced Recovery: Key Features

Support for high-concurrency locking techniques, such as those used for B
+
-tree concurrency

control, which release locks early .Supports “logical undo” Recovery based on “repeating

history”, whereby recovery executes exactly the same actions as normal processing including

redo of log records of incomplete transactions, followed by subsequent undo Key benefits

supports logical undo easier to understand/show correctness

Advanced Recovery: Logical Undo Logging

Operations like B
+
-tree insertions and deletions release locks early. They cannot be undone

by restoring old values (physical undo), since once a lock is released, other transactions may

have updated the B
+
-tree. Instead, insertions (resp. deletions) are undone by executing a

deletion (resp. insertion) operation (known as logical undo).For such operations, undo log

records should contain the undo operation to be executed Such logging is called logical undo

logging, in contrast to physical undo Logging Operations are called logical operations.

Advanced Recovery: Physical Redo

Redo information is logged physically (that is, new value for each write) even for

Operations with logical undo Logical redo are very complicated since database state on disk

may not be “operation consistent” when recovery starts Physical redo logging does not

conflict with early lock release.

Advanced Recovery: Operation Logging

Operation logging is done as follows: When operation starts, log <Ti, on, operation-begin>.

Here on is a unique identifier of the operation instance. While operation is executing, normal
log records with physical redo and physical undo information are logged.

When operation completes, <Ti, on, operation-end, U> is logged, where U contains

information needed to perform a logical undo information.

100

93

Advanced Recovery: Crash Recovery

The following actions are taken when recovering from system crash (Redo phase): Scan log

forward from last < checkpoint L> record till end of log Repeat history by physically

redoing all updates of all transactions, Create an undo-list during the scan as follows undo-list

is set to L initially

Whenever <Ti start> is found Ti is added to undo-list Whenever <Ti commit> or <Ti abort>

is found, Ti is deleted from undo- list This brings database to state as of crash, with

committed as well as uncommitted transactions having been redone. Now undo-list contains

transactions that are incomplete, that is, have neither committed nor been fully rolled back.

(Undo phase): Scan log backwards, performing undo on log records of transactions found in

undo-list. Log records of transactions being rolled back are processed as re found.

Advanced Recovery: Check pointing

Check pointing is done as follows:

– Output all log records in memory to stable storage

– Output to disk all modified buffer blocks

– Output to log on stable storage at < checkpoint L> record.

Transactions are not allowed to perform any actions while check pointing is

in progress.

Advanced Recovery: Fuzzy Check pointing

Fuzzy check pointing is done as follows:
– Temporarily stop all updates by transactions

– Write a <checkpoint L> log record and force log to stable storage

– Note list M of modified buffer blocks

– Now permit transactions to proceed with their actions

– Output to disk all modified buffer blocks in list M blocks should not be updated while

being output
Follow WAL: all log records pertaining to a block must be output before the block is output Store a

pointer to the checkpoint record in a fixed position last_checkpoint on disk.

94

When recovering using a fuzzy checkpoint, start scan from the checkpoint record pointed to

by last_checkpoint Log records before last_checkpoint have their updates reflected in

database on disk, and need not be redone.Incomplete checkpoints, where system had crashed

while performing checkpoint, are handled safely ARIES ARIES is a state of the art

recovery method Incorporates numerous optimizations to reduce overheads during normal

processing and to speed up recovery .The “advanced recovery algorithm” we studied earlier is

modeled after ARIES, but greatly simplified by removing optimizations Unlike the advanced

recovery algorithm, ARIES Uses log sequence number (LSN) to identify log records.Stores

LSNs in pages to identify what updates have already been applied to a database page.

5.9. REMOTE BACKUP SYSTEMS

Remote backup systems provide high availability by allowing transaction processing to

continue even if the primary site is destroyed.Detection of failure: Backup site must detect

when primary site has failed .

To distinguish primary site failure from link failure maintain several communication links

between the primary and the remote backup. Heart-beat messages

95

Transfer of control:

To take over control backup site first perform recovery using its copy of the database and all

the long records it has received from the primary. Thus, completed transactions are redone

and incomplete transactions are rolled back.

When the backup site takes over processing it becomes the new primary to transfer control

back to old primary when it recovers, old primary must receive redo logs from the old backup

and apply all updates locally.

Time to recover: To reduce delay in takeover, backup site periodically processes the

Redo log records (in effect, performing recovery from previous database state), performs a

checkpoint, and can then delete earlier parts of the log.

Hot-Spare configuration permits very fast takeover: Backup continually processes redo log

record as they arrive, applying the updates locally. When failure of the primary is detected

the

Backup rolls back incomplete transactions, and is ready to process new transactions.

Alternative to remote backup: distributed database with replicated data .Remote backup is

faster and cheaper, but less tolerant to failure.

Ensure durability of updates by delaying transaction commit until update is logged at backup;

avoid this delay by permitting lower degrees of durability. One-safe: commit as soon as

transaction’s commit log record is written at primary Problem: updates may not arrive at

backup before it takes over. Two-very-safe: commit when transaction’s commit log record is

written at primary and backup Reduces availability since transactions cannot commit if either

site fails. Two-safe: proceed as in two-very-safe if both primary and backup are active. If

only the primary is active, the transaction commits as soon as is commit log record is written

at the primary. Better availability than two-very-safe; avoids problem of lost transactions in

one-safe.

.

