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III Semester: EEE / MECH 

Course Code Category Hours / Week Credits Maximum Marks 

 ACS553 Elective 
L T P C CIA SEE Total 

3 0 0 3 30 70 100 

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 60 

 

OBJECTIVES: 

The course should enable the students to: 

I. Understand the role of database management system in an organization and learn the database concepts. 
II. Design databases using data modelling and data normalization techniques. 

III. Construct database queries using relational algebra and calculus. 

IV. Understand the concept of a database transaction and related database facilities. 
V. Learn how to evaluate set of queries in query processing. 

 

   COURSE OUTCOMES (COs): 

1. To understand the features of database management systems and Relational database. 

2. Design databases using data modelling  

3. To use SQL- the standard language of relational databases. 

4. To understand the concept of Transaction and Query processing. 
5. Learn how to evaluate time stamp based protocols and paging. 

 

COURSE LEARNING OUTCOMES (CLOs): 

 
1. Define the terminology, features,  and  characteristics of database system 
2. Differentiate database systems from file systems 
3. Describe  Data Models, Schemes, Instances Three schema Architecture. 
4. Analyze information storage problem and derive an information model expressed in the form of an entity 

relation diagram. 
5. Model the real world database systems using Entity Relationship Diagrams(ERD). 
6. Describe basics of the relational model. 
7. Transform an information model into a relational database schema and implement schema using data 

definition language and/or utilities. 
8. Formulate solutions to a broad range of query problems using relational algebra. 
9. Apply relational calculus to solve broad range of query problems. 
10. Illustrate the  Functional Dependencies , Inference Rules,  Minimal Sets of FDs 
11. Understand normalization theory and improve the design by normalization. 
12. Understand the properties of transaction(ACID) 
13. Demonstrate serializability by taking various schedules 
14. Gain knowledge on transaction processing to maintain consistency and integrity of data in database 

systems. 
15. Describe concurrency control techniques to implement data integrity in database systems. 
16. Illustrate various backup and recovery techniques for database systems.. 
17. Analyze  transaction processing , concurrency control,  Database recovery techniques. 
18. Illustrate various lock based protocols. 
19. Analyze  various time stamp based protocols 
20. Understand the concepts of update and shadow paging 
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SYLLABUS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UNIT-I CONCEPTUAL MODELING 

Introduction to file and database systems: Database system structure, data models, introduction to network 

and hierarchical models, ER model, relational model. 

UNIT -II RELATIONAL APPROACH 

Relational algebra and calculus: Relational algebra, selection and projection, set operations, renaming, 

joins, division, examples of algebra queries, relational calculus, tuple relational calculus 

  UNIT -III BASIC SQL QUERY AND NORMALIZATION 

SQL data definition; Queries in SQL: updates, views, integrity and security, relational database design.  

Normal Forms: 1NF, 2NF, 3NF and BCNF. 

UNIT -IV TRANSACTION MANAGEMENT 

Transaction processing: Introduction, need for concurrency control, desirable properties of transaction, 

schedule and recoverability, serializability and schedules 

    UNIT -V CONCURRENCY CONTROL 

Concurrency control; Types of locks: Two phases locking, deadlock, timestamp based concurrency 
control, recovery techniques, concepts, immediate update, deferred update, shadow paging. 

Text Books: 

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw- Hill, 4th 

Edition, 2002. 

Reference Books: 

1.  Ramez Elmasri, Shamkant B. Navathe, "Fundamental Database Systems", Pearson Education, 3rd 

Edition, 2003. 

2. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 

3rd Edition, 2003. 

3. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", 

Pearson Education, United States, 1st Edition, 2000.  

4. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management", 

Thompson Learning Course Technology, 5th Edition, 2003. 
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UNIT-I 

 
CONCEPTUAL MODELING 

 

1. INTRODUCTION 
 

 Data: data is a collection of raw facts and figures.
 Database: database is a collection of interrelated data.


 DBMS: database is a collection of interrelated data and set of programs can access 

that system.
 

1.1. DATABASE SYSTEM APPLICATIONS: 
 

1. Enter Price Information:  
–   Sales: customers, products, purchases  
–   Accounting: payments, receipts, account balance, assets.  
–   Human Resources: employee records, salaries, tax deductions  
–   Manufacturing: production, inventory, orders, supply chain  
–   Online Retails: order tracking, customized recommendations  

2. Banking and Finance: all transactions  
–   Credit card Transaction: generation of monthly statements.  
–   Finance: storing information about holdings and sales,  

3. Universities: registration, grades  
4. Airlines: reservations, schedules  
5. Telecommunications: keeping records of calls made, generating monthly bills 

 

1.2. PURPOSE OF DATABASE SYSTEMS: 
 

In the early days, database applications were built directly on top of file systems 
 

1.2.1. Drawbacks of using file systems to store data: 

 

 Data redundancy and inconsistency: Multiple file formats, duplication of information             

in different files


 Difficulty in accessing data: Need to write a new program to carry out each new task
 Data isolation: multiple files and formats

 Integrity problems: Hard to add new constraints or change existing ones
 Atomicity of updates: Failures may leave database in an inconsistent
     state with partial updates carried out. Example: Transfer of funds from one account to     

another should either complete or not happen at all 

 Concurrent access anomalies: Example: Two people reading a balance and updating it 

at the same time
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1.3. VIEW OF DATA: 
 

A database is a collection of interrelated data and set of programs that allow users to access 

and modify these data. A major purpose of a database system is to provide users with an 

abstract view of the data. That is, the system hides certain details of how the data stored and 

maintained. 
 

     1.3.1. Data Abstraction: 
 

Major purpose of DBMS is to provide users with abstract view of data i.e. the system hides 

certain details of how the data are stored and maintained. Since database system users are 

not computer trained, developers hide the complexity from users through 3 levels of 

abstraction, to simplify user’s interaction with the system. 

  
     Levels of Abstraction





 Physical level of data abstraction: How the data are actually stored. This s the lowest 

level of abstraction which describes how data are actually stored.



 Logical level of data abstraction: This level hides what data are actually stored in the 

database and what relations hip exists among them. Describes data stored in 

database, and the relationships among the data.



 View Level of data abstraction: View provides security mechanism to prevent user 

from accessing certain parts of database. application programs hide details of data 

types. Views can also hide information (such as an employee’s salary) for security 

purposes.
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.TheThree level of abstraction. 
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1.3.2. Instances and schemas: 
 

Instance: The collection of information stored in the database at a particular movement is    

called an instance of the database. 
 

      Similar to types and variables in programming languages
 

Schema: the overall design of the database is called the database schema. 

 

  Example: The database consists of information about a set of customers and accounts and 

the relationship between them .Analogous to type information of a variable in a program 
 

–   Physical schema: database design at the physical level. 
 

–   Logical schema: database design at the logical level. 
 

 

1.3.3. Data models: 
 

Data Model: Underlying the structure of a database is the data model, 
 
A collection of conceptual tools for describing data, data relationships, data semantics and 

consistency constraints. 

 

 Relational model: The relational model uses a collection of tables to represent both data 

and the relationships among those data. Each table has multiple columns, and each 

column has a unique name, Tables are also called known as relations.



 Entity-Relationship Model: The Entity –Relationship (E-R) data model uses a 

collection of basic objects, called entities, and relationships among these objects.



An entity is a “thing” or “object” in the real world that is distinguishable from other 

object 



 Object-Based Data Models: Object-oriented Programming (especially in Java, C++, or 

C#).



 Semi structured Data Model: The semi structured data model permits the specification 

of data where individual data items of the same type may have different sets of 

attributes.



 Other older models:
–   Network Model 

  –   Hierarchical Model 
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1.4. DATA BASE LANGUAGES: 
 

A Database provides a DDL to specify the database schema and a DML to express 

database queries and updates. 
 

1.4.1 Data-Manipulation Language 
 

A data-manipulation language (DML) is a language that enables users to access or 

manipulate data as organized by the appropriate data model. 
 

The types of access are: 
 

• Retrieval of information stored in the database 
 

• Insertion of new information into the database 
 

• Deletion of information from the database 
 

• Medication of information stored in the database 
 

There are basically two types: 
 

• Procedural DMLs require a user to specify what data are needed and how to get those data. 
 

• Declarative DMLs (also referred to as non procedural DMLs) require user to specify what 

data are needed without specifying how to get those data. 
 

1.4.2. Data- Definition Language (DDL): 
 

We specify a database schema by a set of definitions expressed by a special language 

called a data-definition language (DDL).The DDL is also used to specify additional 

properties of the data. 
 

SQL provides a rich DDL that allows one to define tables, integrity constraints, assertions, 

etc… 
 

Example: create table account ( 
 

account_number char(10), 
 

branch_name char(10), 
 

balance integer) 
 

In addition, the DDL statement updates the data dictionary, which contains metadata; the    

schema of a table is an example of metadata. 
 

 

 

 

 

 

 

 



8 
 

1.5. DATA BASE ACCESS FROM APPLICATION PROGRAMS: 
 

Application programs are programs that are used to interact with the database. 
 

To access the database, DML Statements need to be executed form the host language. ‘ 
 

There are two ways o do this. 

 

 By Providing an Application Program interface (set of procedures) that can be used to 

send DML and DDL statement to the database and retrieve the results.(ODBC and 

JDBC).



 By extending the host language syntax to embed DML calls within the host language 

program. A special character prefaces DML calls and preprocessor called the DML 

pre complier ,converts the DML statements to normal procedure calls in the host 

language
 

SQL: widely used non-procedural language 
 

Example 1: Find the name of the customer with customer-id 192-83-7465 

select customer.customer_name 
 

from customer 
 

where  customer.customer_id = ‘192-83-7465’ 
 

Example 2: Find the balances of all accounts held by the customer with customer-Id 192-83-

7465. 
 

select 
 

from 
 

where 

 
account.balance 
 
depositor, account 
 
depositor.customer_id = ‘192-83-7465’ and 
 
depositor.account_number = account.account_number 

 

Example 3: 
 

select 
 

from 
 

where 

 

Find the name of the customer 
 
customer.customer_name 
 
customer 
 
customer.customer_id = ‘192-83-7465’ 

 

 

with 

 

customer-id 
 

192-83-7465 

 

1.6. TRANSACTION MANAGEMENT: 
 

 A transaction is a collection of operations that performs a single logical function in 

a Database application



 Transaction-management component  ensures that the database remains in a 

Consistent (correct) state despite system failures (e.g., power failures and 

operating System crashes) and transaction failures. 
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 Concurrency-control manager controls the interaction among the concurrent 

Transactions to ensure the consistency of the database.
 

1.7. THE QUERY PROCESSOR 
 

The query processor components include: 

 

 DDL interpreter, which interprets DDL statements and records the definitions in the 

data dictionary.


 DML compiler, which translates DML statements in a query language into an 

evaluation plan consisting of low-level instructions that the query evaluation engine 

understands.
 

A query can usually be translated into any of a number of alternative evaluation plans that all 

give the same result. The DML compiler also performs query optimization; that is, it picks 

the lowest cost evaluation plan from among the alternatives. 
 

Query evaluation engine, which executes low-level instructions generated by the DML 

compiler. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.7.The Query Processor 
 

1.8. DATABASE ARCHITECTURE: 
 

The architecture of database systems is greatly influenced by the underlying computer system 

on which the database is runs: 
 

Database system can be. 
 Client-server

 Parallel (multiple processors and disks)

 Distributed
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Overall System Structure  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

1.8.1. Database Application Architectures: 
  

 Database applications are usually partitioned into two or three parts, as in 

Figure1.8.1..In a   two-tier architecture, the application resides at the client machine, 

where it invokes database system functionality at the server machine through query 

language statements. 
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– Application program interface standards like ODBC and JDBC are used for 

interaction between the client and the server. In contrast, 

 

– In a three-tier architecture, the client machine acts as merely a front end and does not 

contain any direct database calls. 
 

– Instead, the client end communicates with an application server, usually through a 

forms interface. 

 

– The application server in turn communicates with a database system to access data. 

 

– The business logic of the application, which says what actions to carry out under what 

conditions, is embedded in the application server, instead of being distributed across 

multiple clients. 

 

– Three-tier applications are more appropriate for large applications, and for 

applications that run on the World Wide Web. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure1.8.1.Two-tier and Three –tier architecture. 
 

1.9. DATABASE USERS AND ADMINISTRATORS: 
 

A primary goal of a database system is to retrieve information from and store new 
information into the database. People who work with a database can be categorized as 
database users or database administrators.



 

1.9.1.Data base Users and User Interfaces 
 

There are four different types of database system users, differentiated by the way they expect to 
interact with the system.




Different types of user interfaces have been designed for the different types of users.
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 Na¨ıve users are unsophisticated users who interact with the system by invoking one
 

of the application programs that have been written previously. For example, a clerk in 

the university who needs to add a new instructor to Users are differentiated by the 

way they expect to interact with the system department A invokes a program called 

New - hire. This program asks the clerk for the name of the new instructor, her new 

ID, the name of the department (that is, A), and the salary 

 

 Application programmers: are computer professionals who write application 

programs. Application programmers can choose from many tools to develop user 

interfaces. Rapid application development (RAD) tools are tools that en- able an 

application programmer to construct forms and reports with minimal programming 

effort.



 Sophisticated users: interact with the system with out writing programs. In- stead, 

they form their requests either using a database query language or by using tools such 

as data analysis software. Analysts who submit queries to explore data in the 

database fall in this category.



 Specialized users: are sophisticated users who write specialized database applications 

that do not fit into the traditional data-processing framework. Among these 

applications are computer aided design systems, knowledge- base and expert 

systems, systems that store data with complex data types (for example, graphics data 

and audio data),and environment-modeling systems.
 

 

1.9.2. Database Administrator 
 

One of the main reasons for using DBMSs is to have central control of both the 

data and the programs that access those data. A person who has such central control over the 

system is called a data base administrator (DBA). 
 

The functions of a DBA include: 

 

 Schema definition. The DBA creates the original database schema by executing a set of 

data definition statements in the DDL.



 Storage structure and access-method definition.
 

 

 Schema and physical-organization modification.
–   Routine maintenance. 
–   Periodically backing up the database. 
– Ensuring that enough free disk space is available for normal operations, and upgrading 

disk space as required. 
–   Monitoring jobs running on the Data base. 
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1.10. HISTORY OF DATABASE SYSTEMS: 

 

 1950s and early 1960s: Data processing using magnetic tapes for storage Tapes 

provide only sequential access Punched cards for input



 Late 1960s and 1970s:Hard disks allow direct access to data Network and hierarchical 

data models in widespread use Ted Codd defines the relational data model Would win 

the ACM Turing Award for this work IBM Research begins System R prototype UC 

Berkeley begins Ingres prototype High-performance (for the era) transaction 

processing



 1980s: Research relational prototypes evolve into commercial systems SQL becomes 

industry standard Parallel and distributed database systems Object-oriented database 

systems



 1990s: Large decision support and data-mining applications Large multi-terabyte data 

warehouses Emergence of Web commerce



 2000s: XML and XQuery standards Automated database administration Increasing 

use of highly parallel database systems Web-scale distributed data storage systems.
 

EXERCISES 
 

1. List four applications you have used that most likely employed a database system to 

store persistent data.  
2. List four significant differences between a file-processing system and a DBMS.  
3. Explain the concept of physical data independence and its importance in database 

systems. 
 

4. List five responsibilities of a database-management system. For each responsibility, 

explain the problems that would arise if the responsibility were not discharged.  
5. What are the five main functions of a database administrator?  
6. Explain the difference between two-tier and three-tier architectures. Which is better 

suited for Web applications? Why? 
 
 

1.11. INTRODUCTION TO DATABASE DESIGN: 
 

The entity-relationship (ER) data model allows us to describe the data involved in a 

real-world enterprise in terms of objects and their relationships and is widely used to develop 

an initial database design. 
 

1.12. DATA BASE DESIGN 
 

The database design process can be divided into six steps. The ER model is most 

relevant to the first three steps: 
 

(1) Requirements Analysis: The very first step in designing a database application is to 

understand what data is to be stored in the database, what applications must be built on top of 

it, and what operations are most frequent and subject to performance requirements. In other 

words, we must find out what the users want from the database. 
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(2) Conceptual Database Design: The information gathered in the requirements analysis 

step is used to develop a high-level description of the data to be stored in the database, along 

with the constraints that are known to hold over this data. This step is often carried out using 

the ER model, or a similar high-level data model. 
 

(3) Logical Database Design: We must choose a DBMS to implement our database design, 

and convert the conceptual database design into a database schema in the data model of the 

chosen DBMS. We will only consider relational DBMSs, and therefore, the task in the logical 

design step is to convert an ER schema into a relational database schema. 
 

The result is a conceptual schema, sometimes called the logical schema, in the relational data 

model. 
 
 
 
 

1.13. E-R DIAGRAMS 
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1.14. BEYOND ER DESIGN 
 

The ER diagram is just an approximate description of the data, constructed through 

a very subjective evaluation of the information collected during requirements analysis. 
 

Once we have a good logical schema, we must consider performance criteria and 

design the physical schema. Finally, we must address security issues and ensure that users are 

able to access the data they need, but not data that we wish to hide from them. The remaining 

three steps of database design are briefly described below: 

 

(4) Schema Refinement: The fourth step in database design is to analyze the collection of 

relations in our relational database schema to identify potential problems,  
 

(5) Physical Database Design: In this step we must consider typical expected workloads that 

our database must support and further refine the database design to ensure that it meets 

desired performance criteria 
 

(6) Security Design: In this step, we identify different user groups and different roles played 

by various users (e.g., the development team for a product, the customer support 

representatives, the product manager). 
 

For each role and user group, we must identify the parts of the database that they must be 

able to access and the parts of the database that they should not be allowed to access, and take 

steps to ensure that they can access only the necessary parts. 
 

Attributes 

 

Entities are represented by means of their properties, called attributes. All attributes have 

values. For example, a student entity may have name, class, age as attributes. 

 

There exist a domain or range of values that can be assigned to attributes. For example, a 

student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot be 

negative, etc. 

 

Types of attributes 

 

Attributes are properties of entities. Attributes are represented by means of eclipses. Every 

eclipse represents one attribute and is directly connected to its entity (rectangle). 

 

 Simple attribute:



Simple attributes are atomic values, which cannot be divided further. For example, 

student's phone-number is an atomic value of 10 digits. 
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 Composite attribute:



Composite attributes are made of more than one simple attribute. For example, a 

student's complete name may have first_name and last_name. 

 

If the attributes are composite, they are further divided in a tree like structure. Every node is 

then connected to its attribute. That is composite attributes are represented by eclipses that 

are connected with an eclipse. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Image: Composite Attributes] 

 Single-valued attribute:



Single valued attributes contain on single value. For example: 

Social_Security_Number. 



 Multi-value attribute:



Multi-value attribute may contain more than one values. For example, a person can 

have more than one phone numbers, email_addresses etc. 

 

Multivalued attributes are depicted by double eclipse.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Derived attribute:



Derived attributes are attributes, which do not exist physical in the database, but there 

values are derived from other attributes presented in the database. For example, 

average_salary in a department should be saved in database instead it can be derived. 

For another example, age can be derived from data_of_birth. 
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Derived attributes are depicted by dashed eclipse. 
 
 

1.14.2. RELATIONSHIPS AND RELATIONSHIP SETS 

 

The association among entities is called relationship. For example, employee entity 

has relation work 

 

s_at with department. Another example is for student who enrolls in some course. 

Here, Works_at and Enrolls are called relationship. 

 

Relationship Set: 

 

Relationship of similar type is called relationship set. Like entities, a relationship too 

can have attributes. These attributes are called descriptive attributes. 

 

Degree of relationship 

 

The number of participating entities in an relationship defines the degree of the 

relationship. 

 

 Binary = degree 2


 Ternary = degree 3


 n-ary = degree
 
 

 

Mapping Cardinalities: 

 

Cardinality defines the number of entities in one entity set which can be associated to the 

number of entities of other set via relationship set. 

 

 One-to-one: one entity from entity set A can be associated with at most one entity of 

entity set B and vice versa.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             [Image: One-to-one relation] 
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 One-to-many: One entity from entity set A can be associated with more than one 

entities of entity set B but from entity set B one entity can be associated with at most 

one entity.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Image: One-to-many relation] 

 

 Many-to-one: More than one entities from entity set A can be associated with at most 

one entity of entity set B but one entity from entity set B can be associated with more 

than one entity from entity set A.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[Image: Many-to-one relation] 

 

 Many-to-many: one entity from A can be associated with more than one entity from 

B and vice versa.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[Image: Many-to-many relation] 
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 An entity is an object in the real world that is distinguishable from other objects.
 

Examples include the following: the Green Dragonzord toy, the toy department, the 

manager of the toy department, the home address of the manager of the toy department. 

 

 A collection of similar entities is called an entity set.



 A attribute is an property of an entity.
 

1.15. ADDITIONAL FEATURES OF ER MODEL 
 

» Key Constraints  
» Participation Constraints  
» Weak Entities 

» Class Hierarchies  
» Aggregation 

 

1.15.1.KEY CONSTRAINTS 

 

There must be at least one minimal subset of attributes in the relation, which can identify a 

tuple uniquely. This minimal subset of attributes is called key for that relation. If there are 

more than one such minimal subsets, these are called candidate keys. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Key constraints forces that: 

 

 in a relation with a key attribute, no two tuples can have identical value for key 

attributes.


 key attribute can not have NULL values.

Key constrains are also referred to as Entity Constraints. 
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1.15.2. PARTICIPATION CONSTRAINTS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.15.3.WEAK ENTITIES 

 

 A weak entity can be identified uniquely only by considering the primary key of 

another (owner) entity.


 Owner entity set and weak entity set must participate in a one-to-many relationship 

set (one owner, many weak entities).
 Weak entity set must have total participation in this identifying relationship set.

 

1.15.3.1.WEAK ENTITY SETS 

 An entity set that does not have a primary key is referred to as a weak entity set.




 The existence of a weak entity set depends on the existence of a identifying entity set


 

it must relate to the identifying entity set via a total, one-to-many relationship set from the 

identifying to the weak entity set Identifying relationship depicted using a double diamond 

The discriminator (or partial key) of a weak entity set is the set of attributes that 
 

distinguishes among all the entities of a weak entity set. The primary key of a weak entity set 

is formed by the primary key of the strong entity set on which the weak entity set is existence 

dependent, plus the weak entity set’s discriminator depict a weak entity set by double 

rectangles. 
 

Under line the discriminator of a weak entity set with a dashed line. 
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1.15.3.2.More Weak Entity Set Examples 
 

In a university, a course is a strong entity and a course_offering can be modeled as a weak 

entity The discriminator of course_offering would be semester (including year) and 

section_number (if there is more than one section). If we model course_offering as a strong 

entity we would model course_number as an attribute. Then the relationship with course 

would be implicit in the course_number attribute. 

 

 

A weak entity sets is one which does not have any primary key associated with it. 

 

Mapping process (Algorithm):  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[Image: Mapping Weak Entity Sets] 

 

 Create table for weak entity set


 Add all its attributes to table as field


 Add the primary key of identifying entity set


 Declare all foreign key constraints
 

1.15.4. CLASS HIERARCHIES 

 

 Classifying the entities in an entity set into sub classes
 ER specialization or generalization comes in the form of hierarchical entity sets.

 

Mapping process (Algorithm):  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Image: Mapping hierarchical entities] 
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 Create tables for all higher level entities


 Create tables for lower level entities


 Add primary keys of higher level entities in the table of lower level entities


 In lower level tables, add all other attributes of lower entities.


 Declare primary key of higher level table the primary key for lower level table


 Declare foreign key constraints.

 

1.15.4.1.Generalization 

 

As mentioned above, the process of generalizing entities, where the generalized entities 

contain the properties of all the generalized entities is called Generalization. In 

generalization, a number of entities are brought together into one generalized entity based on 

their similar characteristics. For an example, pigeon, house sparrow, crow and dove all can be 

generalized as Birds. 
 
 
 
 

 

 
 
 
 
 
 
 

[Image: Generalization] 

 

1.15.4.2.Specialization 

 

Specialization is a process, which is opposite to generalization, as mentioned above. In 

specialization, a group of entities is divided into sub-groups based on their characteristics. 

Take a group Person for example. A person has name, date of birth, gender etc. These 

properties are common in all persons, human beings. But in a company, a person can be 

identified as employee, employer, customer or vendor based on what role do they play in 

company. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Image: Specialization] 
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1.15.4.3. Aggregation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.16. CONCEPTUAL DESIGN WITH ER MODEL 
 

Developing an ER diagram presents several choices, including the following: 
 

 Should a concept be modeled as an entity or an attribute?
 Should a concept be modeled as an entity or a relationship?
 What are the relationship sets and their participating entity sets?
 Should we use binary or ternary relationships?
 Should we use aggregation?

 


 

Issues involved in making these choices. 
 

 Entity versus Attribute
 Entity Versus Relationship
 Binary versus Ternary Relationship
 Aggregation versus Ternary Relationships
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1.18.1. CONCEPTUAL DESIGN FOR LARGE ENTERPRISES 

 

 The process of conceptual design consists of more than just describing small 

fragments of the application in terms of ER diagrams.



 For a large enterprise, the design may require the efforts of more than one designer 

and span data and application code used by a number of user groups.



 Using a high-level, semantic data model such as ER diagrams for conceptual design 

in such an environment offers the additional advantage that the high-level design can 

be diagrammatically represented and is easily understood by the many people who 

must provide input to the design process.



 An important aspect of the design process is the methodology used to structure the 

development of the overall design and to ensure that the design takes into account all 

user requirements and is consistent.



 The usual approach is that the requirements of various user groups are considered, 

any conflicting requirements are somehow resolved, and a single set of global 

requirements is generated at the end of the requirements analysis phase. Generating a 

single set of global requirements is a difficult task, but it allows the conceptual design 

phase to proceed with the development of a logical schema that spans all the data and 

applications throughout the enterprise.
 

1.17. RELATIONAL MODEL 
 

Codd proposed the relational data model in 1970. At that time most database systems were 

based on one of two older data models (the hierarchical model and the network model); the 

relational model revolutionized the database field and largely supplanted these earlier models. 

 

Today, the relational model is by far the dominant data model and is the foundation for the 

leading DBMS products, including IBM’s DB2 family, Microsoft’s Access and SQL-Server, 

FoxBase, and Paradox. 
 

The relational model is very simple and elegant; a database is a collection of one or more 

relations, where each relation is a table with rows and columns. This simple tabular 

representation enables even novice users to understand the contents of a database, and it 

permits the use of simple, high-level languages to query the data. The major advantages of 

the relational model over the older data models are its simple data representation and the ease 

with which even complex queries can be expressed. 
 

1.17.1. Introduction to the relational model 
 

The main construct for representing data in the relational model is a relation. A relation 

consists of a relation schema and a relation instance. The relation instance is a table, and the 

relation 
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schema describes the column heads for the table. We first describe the relation schema and then 

the relation instance. 

 

The schema specifies the relation’s name, the name of each field (or column, orattribute), and 

the domain of each field. A domain is referred to in a relation schema by the domain name and 

has a set of associated values. 

 

We use the example of student information in a university database from Chapter 1 to illustrate 

the parts of a relation schema: 
 
Students(sid: string, name: string, login: string, age: integer, gpa: real) 

 

This says, for instance, that the field named sid has a domain named string. The set of values 

associated with domain string is the set of all character strings.We now turn to the instances of a 

relation. An instance of a relation is a set of tuples, also called records, in which each tuple has 

the same number of fields as the relation schema. A relation instance can be thought of as a table 

in which each tuple is a row, and all rows have the same number of fields. (The term relation 

instance is often abbreviated to just relation, when there is no confusion with other aspects of a 

relation such as its schema.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1 An Instance of the S1 of the Students Relation 
 Creating and modifying relations using SQL




 Create
 Insert
 Update
 Delete
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1.17.2. INTEGRITY CONSTRAINTS OVER RELATIONS 
 

• IC: condition that must be true for any instance of the database; e.g., domain constraints. 
 
• ICs are specified when schema is defined. 
 
• ICs are checked when relations are modified. 
 
• A legal instance of a relation is one that satisfies all specified ICs. 
 
• DBMS should not allow illegal instances. 
 
• If the DBMS checks ICs, stored data is more faithful to real-world meaning. 
 

1.17.2.1Key constraints 
 

 Candidate Key
 Primary Key
 Super Key

 

1.17.2.2. Foreign Key Constraints 
 

 Specifying Key constraints in SQL
 

1.17.2.3. General Constraints  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1.18. ENFORCING INTEGRITY CONSTRAINTS: 
 

 ICs are specified when a relation is created and enforced when a relation is modified.


 The impact of domain, PRIMARY KEY, and UNIQUE constraints is straightforward: if 

an insert, delete, or update command causes a violation, it is rejected.


 Potential IC violation is generally checked at the end of each SQL statement execution, 

although it can be deferred until the end of the transaction executing the statement.
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 Consider the instance S1 of Students shown in Figure 3.1. The following insertion 

violates the primary key constraint because there is already a tuple with the sid 53688, 

and it will be rejected by the DBMS:
 

 

INSERT INTO Students (sid, name, login, age, gpa) VALUES (53688, ‘Mike’, 

‘mike@ee’, 17, 3.4) 
 

The following insertion violates the constraint that the primary key cannot contain null: 
 

INSERT INTO Students (sid, name, login, age, gpa) VALUES (null, ‘Mike’, 

‘mike@ee’, 17, 3.4) 
 

Of course, a similar problem arises whenever we try to insert a tuple with a value in a 

field that is not in the domain associated with that field, i.e., whenever we violate a 

domain constraint. Deletion does not cause a violation of domain, primary key or unique 

constraints. However, an update can cause violations, similar to an insertion: 
 

 

 

UPDATE Students S SET S.sid = 50000 WHERE S.sid = 53688 
 
 

This update violates the primary key constraint because there is already a tuple with sid 50000. 
 

The impact of foreign key constraints is more complex because SQL sometimes tries to rectifya 

foreign key constraint violation instead of simply rejecting the change. 
 

1. What should we do if an Enrolled row is inserted, with a sid column value that does not 

appear in any row of the Students table? In this case the INSERT command is simply 

rejected. 
 
2.   What should we do if a Students row is deleted? The options are: Delete all Enrolled rows 

that refer to the deleted Students row. Disallow the deletion of the Students row if an 

Enrolled row refers to it. Set the sid column to the sid of some (existing) ‘default’ sudent, 

for every  
 
       Enrolled row that refers to the deleted Students row. For every Enrolled row that refers to it, 

set the sid column to null. In our example, this option conflicts with the fact that sid is part 

of the primary key of Enrolled and therefore cannot be set to null. Thus, we are limited to 

the first three options in our example, although this fourth option (setting the foreign key to 

null) is available in the general case. 

 

3. What should we do if the primary key value of a Students row is updated? The options here 

are similar to the previous case. 
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CREATE TABLE Enrolled ( 
 

sid CHAR(20), 
 

cid CHAR(20), 
 

grade CHAR(10), PRIMARY KEY (sid, cid), 
 

FOREIGN KEY (sid) REFERENCES Students ON DELETE CASCADE ON UPDATE NO 

ACTION ) 
 
 

 

If a Students row is deleted, we can switch the enrollment to a ‘default’ student by using ON 

DELETE SET DEFAULT. The default student is specified as part of the definition of the sid 

field in Enrolled; 
 

For example, sid CHAR(20) DEFAULT ‘53666’. 
 

Although the specification of a default value is appropriate in some situations (e.g., a default 

parts supplier if a particular supplier goes out of business), it is really not appropriate to switch 

enrollments to a default student. The correct solution in this example is to also delete all 

enrollment tuples for the deleted student (that is, CASCADE), or to reject the update. 
 

SQL also allows the use of null as the default value by specifying ON DELETE SET NULL. 
 

1.19. QUERYING RELATIONAL DATA: 
 

Relational data base Query is a Question about the Data and the answer consists of a 

new relation containing the result. 

 

We can retrieve rows corresponding to students who are younger than 18 with the 

following SQL query: 
 

SELECT * FROM Students S WHERE S.age < 18 
 

The symbol * means that we retain all fields of selected tuples in the result. 
 

To understand this query, think of S as a variable that takes on the value of each tuple in 

Students, one tuple after the other. 
 

The condition S.age < 18 in the WHERE clause specifies that we want to select only tuples in 

which the age field has a value less than 18. 
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1.20.LOGICAL DB DESIGN:ER TO RELATIONAL  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Relationship Sets to Tables 
 

• In translating a relationship set to a relation, attributes of the relation must include: 
 

– 
 

• 
 

– 

 

Keys for each participating entity set (as foreign keys). 
 

This set of attributes forms a superkey for the relation. 
 

All descriptive attributes. 
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Review: Key Constraints  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

• Each dept has at most one manager, according to the key constraint on Manages. 
 
 

 

Translating ER Diagrams with Key Constraints 
 

• Map relationship to a table: 
 

– Note that did is the key now! 
 

– Separate tables for Employees and Departments. 
 

• Since each department has a unique manager, we could instead combine Manages and 

Departments. 
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Review: Participation Constraints  
 
 

  If so, this is a participation constraint:  the participation of Departments in 
      

      Manages is said to be total (vs. partial). 

  Every did value in Departments table must appear in a row of the 
 
                  Manages table (with a non-null ssn value!) 
 

Participation Constraints in SQL 
 

• We can capture participation constraints involving one entity set in a binary 

relationship, but little else (without resorting to CHECK constraints). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



32 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Translating Weak Entity Sets 
 

• Weak entity set and identifying relationship set are translated into a single table. 
 

– 
 

When  the  owner  entity  is  deleted,  all  owned  weak  entities  must  also 
 

be 
 
deleted.  
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Binary vs. Ternary Relationships (Contd.) 
 

• The key constraints allow us to combine Purchaser with Policies and Beneficiary with 

Dependents. 

 
• Participation constraints lead to NOT NULL constraints. 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. INTRODUCTION TO VIEWS: 

 

 A relation that is not of the conceptual model but is made visible to a user as a “virtual 

relation” is called a view.



 A view is a table whose rows are not explicitly stored in the database but are computed 

as needed from a view definition.



 Consider the Students and Enrolled relations. Suppose that we are often interested in
finding the names and student identifiers of students who got a grade of B in some 

course, together with the cid for the course. We can define a view for this purpose. 



 CREATE VIEW B-Students (name, sid, course) AS SELECT S.sname, S.sid, E.cid 

FROM Students S, Enrolled E WHERE S.sid = E.sid AND E.grade = ‘B’
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 The view B-Students has three fields called name, sid, andcourse with the same domains 

as the fields sname and sid in Students and cid in Enrolled. (If the optional arguments 

name, sid, and course are omitted from the CREATE VIEW statement, the column 

names sname, sid, and cid are inherited.)



 This view can be used just like a base table, or explicitly stored table, in defining new 

queries or views. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.21.1. Destroying and Altering Tables and Views: 

 

 If we decide that we no longer need a base table and want to destroy it (i.e., delete all the 

rows and remove the table definition information),



 we can use the DROP TABLE command. For example, DROP TABLE Students 

RESTRICT destroys the Students table unless some view or integrity constraint refers to 

Students; if so, the command fails. If the keyword RESTRICT is replaced by
CASCADE, 



 Students is dropped and any ref- erencing views or integrity constraints are (recursively) 

dropped as well; one of these two keywords must always be specified. A view can be 

dropped using the DROP VIEW command, which is just like DROP TABLE.

 

 

   ALTER TABLE modifies the structure of an existing table. To add a column called 

maiden-name to Students, for example, we would use the following command:
 

 

ALTER TABLE Students ADD COLUMN maiden-name CHAR(10) 
 
 

 

The definition of Students is modified to add this column, and all existing rows are padded with 

null values in this column. ALTER TABLE can also be used to delete columns and to add or 

drop integrity constraints on a table; we will not discuss these aspects of the command beyond 

remarking that dropping columns is treated very similarly to dropping tables or views.  
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UNIT-II 
 

RELATIONAL ALGEBRA AND RELATIONAL CALCULUS 

 

2.1. RELATIONAL ALGEBRA 

 

Relational algebra is one of the two formal query languages associated with the re- lational 

model. Queries in algebra are composed using a collection of operators. A fundamental 

property is that every operator in the algebra accepts (one or two) rela- tion instances as 

arguments and returns a relation instance as the result. 

 

a relational algebra expression is recursively defined to be a relation, a unary algebra 

operator applied to a single expression, or a binary algebra operator applied to two 

expressions. 
 
 
 
 

2.1.1. SELECTION: 
 
 

Relational algebra includes operator to select rows from a relation (σ).  
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2.1.2. PROJECTION  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1.3. SET OPERATIONS 
 

Cross-Product  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Each row of S1 is paired with each row of R1.
 Result schema has one field per field of S1 and R1, with field names `inherited’ if 

possible.
 Conflict: Both S1 and R1 have a field called sid.
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2.1.4. RENAMING  
 
 
 
 
 
 

 

2.2.4 JOINS 

 

The Join operation is one of the most useful operations in relational algebra and is the 
most commonly used way to combine information from two or more relations. 

 

The most general version of the join operation accepts a join condition c and a pair of 

relation instances as arguments, and returns a relation instance. 

 

2.2.4.1. CONDITION JOINS 

 

The most general version of the join operation accepts a join condition c and a pair of relation 

instances as arguments, and returns a relation instance. The join condition is identical to a 

      selection condition in form.The operation is defined as follows:  
 
 
 
 

2.2.4.2. EQUIJOIN 

 
A common special case of the join operation is when the join condition consists solely of 

equalities (connected by ∧) of the form R.name1=S.name2, that is, equalities between two fields in R and 
S. 

 

In this case, obviously, there is some redundancy in retaining both attributes in the result. 

For join conditions that contain only such equalities, the join operation is refined by doing an 
additional projection in which S.name2 is dropped. The join operation with this refinement is 

called equijoin. 

 

The schema of the result of an equijoin contains the fields of R (with the same names and 

domains as in R) followed by the fields of S that do not appear in the join conditions. If this 
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set of fields in the result relation includes two fields that inherit the same name from R and S, 

they are unnamed in the result relation. 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2.4.3. NATURAL JOIN 
  

A further special case of the join operation R ./ Sis an equijoin in which equalities are 

specified on all fields having the same name in R and S. In this case, we can simply omit 

the join condition; the default is that the join condition is a collection of equalities on all 

common fields. We call this special case a natural join, and it has the nice property that the 
result is guaranteed not to have two fields with the same name. 

 

The equijoin expression S1 ./R.sid=S.sid R1 is actually a natural join and can simply be 
denoted as S1 ./ R1, since the only common field is sid. If the two relations have no 

attributes in common, S1 ./ R1 is simply the cross-product. 
 

 

Examples of Division A/B  
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2.1.7. EXAMPLES OF ALGEBRA QUERIES 
 

 

1.Find names of sailors who’ve reserved boat #103 

 

Find names of sailors who’ve reserved a red boat 
 

Information about boat color only available in Boats; so need an extra join:  
 
 
 
 

 

2. FIND SAILORS WHO’VE RESERVED A RED OR A GREEN BOAT 

 

Can identify all red or green boats, then find sailors who’ve reserved one of these boats:  
 
 
 
 
 
 
 
 
 

 

2.2. RELATIONAL CALCULUS 
 

Relational calculus is an alternative to relational algebra. In contrast to the algebra, which is 

procedural, the calculus is nonprocedural, or declarative. 
 

Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus 

(DRC). 

 

2.2.1. TUPLE RELATIONAL CALCULUS 
 

A tuple variable is a variable that takes on tuples of a particular relation schema as values. 
 
That is, every value assigned to a given tuple variable has the same number and type of fields. 
 

A tuple relational calculus query has the form { T | p(T) }, 
 

where T is a tuple variable and p(T) denotes a formula that describes T; 
 

The result of this query is the set of all tuples t for which the formula p(T) evaluates totrue 

with T = t. The language for writing formulas 
 

p(T) is thus at the heart of TRC and is essentially a simple subset of first-order logic. 
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2.2.2. DOMAIN RELATIONAL CALCULUS 

 

A domain variable is a variable that ranges over the values in the domain of some attribute 

(e.g., the variable can be assigned an integer if it appears in an attribute whose domain is the 

set of integers). 

 

A DRC formula is defined in a manner that is very similar to the definition of a TRC formula. 

The main difference is that the variables are now domain variables. Let op denote an operator 
 
 

  
in the set{<,>,=,≤,≥,6=}and let X and Y be domain variables. An atomic formula in DRC is 

one of the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.3. EXPRESSIVE POWER OF RELATIONAL ALGEBRA AND CALCULUS 

 

It is possible to write syntactically correct calculus queries that have an infinite number of 

answers! Such queries are called unsafe. 

 

Example. 

 

It is known that every query that can be expressed in relational algebra can be expressed as a 

safe query in DRC / TRC; the converse is also true. 

 

Relational Completeness: Query language (e.g., SQL) can express every query that is 

expressible in relational algebra/calculus. 
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2.4. THE FORM OF A BASIC SQL QUERIES 

 

 The basic form of an SQL query is as follows:


SELECT [ DISTINCT ] select-list 
FROM from-list 
WHERE qualification 

 

Such a query intuitively corresponds to a relational algebra expression involving selec- tions, 

projections, and cross-products. 
 

–   SELECT clause, which specifies columns to be retained in the result, and a  
–   FROM clause, which specifies a cross-product of tables.  
–   The optional WHERE clause specifies selection conditions on the tables mentioned in 

the FROM clause. 
 
 

 

2.4.1. EXAMPLES OF BASIC SQL QUERIES  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q1.Find the names and ages of all sailors. SELECT 

DISTINCT S.sname, S.age FROM Sailors S 

Q2.Find all sailors with a rating above 7. 
 
SELECT S.sid, S.sname, S.rating, S.age FROM Sailors AS S WHERE S.rating > 7 

Q3.Find the names of sailors who have reserved boat number 103.  
It can be expressed in SQL as follows. 
 
SELECT S.sname FROM Sailors S, Reserves R WHERE S.sid = R.sid AND R.bid=103 
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2.5. NESTED QUERIES 

 

 A nested query is a query that has another query embedded within it;



 The embedded query is called a subquery.

 

 When writing a query, we sometimes need to express a condition that refers to a table 
that must itself be computed.

 
 
 

2.5.1. INTRODUCTION TO NESTED QUERIES 
 

(Q1) Find the names of sailors who have reserved boat 103.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Q2)Find the names of sailors who have reserved a red boat.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.5.2. CORRELATED NESTED QUERIES 

 

In general the inner subquery could depend on the row that is currently being examined in the 

outer query (in terms of our conceptual evaluation strategy). 

 

(Q1) Find the names of sailors who have reserved boat number 103. 
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2.5.3. SET-COMPARISON OPERATORS 

 

SQL also supports op ANY and op ALL, whereop is one of the arithmetic comparison operators 

{<,<=,=,<>,>=,>}.(SOME is also available, but it is just a synonym for ANY.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 The set operations union, intersect, and except operate on relations and correspond 

to the relational algebra operations 
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 Each of the above operations automatically eliminates duplicates; to retain all duplicates 

use the corresponding multiset versions union all, intersect all and except all. 
 

 

2.6. AGGREGATE OPERATORS 
 

These functions operate on the multiset of values of a column of a relation, and return a 

value 
 

 avg: average value,
 min: minimum value

 max: maximum value

 sum: sum of values

 count: number of values
 
 

2.6.1. THE GROUP BY AND HAVING CLAUSES 

 

–   Motivation for Grouping  
So far, we’ve applied aggregate operators to all (qualifying) tuples. Sometimes, we want to 

apply them to each of several groups of tuples.  

 consider: Find the age of the youngest sailor for each rating level.
In general, we don’t know how many rating levels exist, and what the rating values 
for these levels are! 
Suppose we know that rating values go from 1 to 10; we can write 10 queries that 
look like this (!):  

– Queries With GROUP BY and 

HAVING The target-list contain 
 

(i) attribute names 

(ii) (ii) terms with aggregate operations (e.g., MIN (S.age)).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The attribute list (i) must be a subset of grouping-list. 

Intuitively, each answer tuple corresponds to a 

group, 
 

and these attributes must have a single value per group. (A group is a set of tuples that 

have the same value for all attributes in grouping-list.) 
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Conceptual Evaluation  
 The cross-product of relation-list is computed, tuples that fail qualification are 

discarded, `unnecessary’ fields are deleted, and the remaining tuples are partitioned 
into groups by the value of attributes in grouping-list.





 The group-qualification is then applied to eliminate some groups. Expressions in group-
qualification must have a single value per group!





 In effect, an attribute in group-qualification that is not an argument of an aggregate op also 
appears in grouping-list. (SQL does not exploit primary key semantics here!)




 One answer tuple is generated per qualifying group.




Find age of the youngest sailor with age 18, for each rating with at least 2 such sailors  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. HAVING clause can also contain a subquery.  
2. Aggregate operations cannot be nested! WRONG: 

 

Examples: 

(Q1).Find the number of depositors for each branch.  
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Q2).Find the names of all branches where the average account balance is more than $1,200.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.7. NULL VALUES 
 

 Field values in a tuple are sometimes unknown (e.g., a rating has not been assigned) 
or inapplicable (e.g., no spouse’s name).



 SQL provides a special value null for such situations.The presence of null complicates 
many issues. E.g.:Special operators needed to check if value is/is not null. Is rating>8 
true or false when rating is equal to null?

 

 

2.7.1. COMPARISON USING NULL VALUES 
 

It is possible for tuples to have a null value, denoted by null, for some of their attributes null 

signifies an unknown value or that a value does not exist.The predicate is null can be used to 

check for null values. 

 

if we compare two null values using <,>,=, and so on, the result is always unknown. For 

example, if we have null in two distinct rows of the sailor relation, any comparison returns 

unknown. 

 

Example: Find all loan number which appear in the loan relation with null values for amount. 
 

select loan_number 
 

from loan 
 

where amount is null 

 

The result of any arithmetic expression involving null is null 
 
Example: 5 + null  returns null However, aggregate functions simply ignore nulls 

 

Any comparison with null returns unknown 
 
Example: 
 
5 < null or null <> null or null = null 
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2.7.2. LOGICAL CONNECTIVES-AND, OR AND NOT 
 

Three-valued logic using the truth value unknown: 
 

OR:  
(unknown or true) = true, 

 
(unknown or false)  = unknown 

 
(unknown or unknown) = unknown 

 

AND:  
(true and unknown) = unknown, 
 

(false and unknown) = false, 
 

(unknown and unknown) = unknown 
 

NOT:  
(not unknown) = unknown 
 
“P is unknown” evaluates to true if predicate P evaluates to unknown 
 
 

 

• All aggregate operations except count(*) ignore tuples with null values on the 

aggregated attributes. 

 

2.7.3. IMPACT ON SQL CONSTRUCTS 

 

“In” Construct:  
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“Some” Construct  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

“All” Construct  
• Find the names of all branches that have greater assets than all branches located 

in Brooklyn. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

“Exists” Construct  
Find all customers who have an account at all branches located in Brooklyn.  
absence of duplicate tuples the unique construct tests whether a sub query has any duplicate 
tuples in its result. 

 

Find all customers who have at most one account at the Perryridge branch.  
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• Find all customers who have at least two accounts at the Perryridge branch.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.7.4.. OUTER JOINS 

 

Join operations take two relations and return as a result another relation.These additional 

operations are typically used as subquery expressions in the from clause 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Join condition – defines which tuples in the two relations match, and what attributes are 

present in the result of the join. 
 
Join type – defines how tuples in each relation that do not match any tuple in the other 

relation (based on the join condition) are treated. Joined Relations – Datasets for Examples 

 

Relation loan  
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• Joined Relations – Examples  
 
 
 
 
 
 
 
 

 

loan inner join borrower on loan.loan_number = borrower.loan_number  
 
 
 
 
 
 
 
 
 
 

Joined Relations – Examples 
 
loan natural inner join borrower  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Joined Relations – Examples  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Natural join can get into trouble if two relations have an attribute with same name that should 

not affect the join condition 
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2.7.5. DISALLOWING NULL VALUES 

We can disallow null values by specifying NOT NULL as part of the field 

definition, for example, sname CHAR(20) NOT NULL. 

 

In addition, the fields in a primary key are not allowed to take on null values. 
 

Thus, there is an implicit NOT NULL constraint for every field listed in a PRIMARY KEY 

constraint. 

 

2.8. COMPLEX INTEGRITY CONSTRAINTS IN SQL 
 

1. Constraints over a Single Table 
 

We can specify complex constraints over a single table using table constraints, 

 

which have the form CHECK conditional-expression. 
 
example, to ensure that rating must be an integer in the range 1 to 10, use: 

 

CREATE TABLE Sailors ( 
 
sid INTEGER, 

 
sname CHAR(10), 

 
rating INTEGER, age REAL, 
 
PRIMARY KEY (sid), 

 
CHECK ( rating >=1AND rating <= 10 )) 

 

To enforce the constraint that Interlake boats cannot be reserved, we could use: 
 
CREATE TABLE Reserves ( sid INTEGER, bid INTEGER, day DATE, FOREIGN KEY 

(sid) REFERENCES Sailors FOREIGN KEY (bid) REFERENCES Boats CONSTRAINT 

noInterlakeRes CHECK ( ‘Interlake’ <> ( SELECT B.bname FROM Boats B WHERE B.bid 

= Reserves.bid ))) 

 

When a row is inserted into Reserves or an existing row is modified, the conditional 

expression in the CHECK constraint is evaluated. If it evaluates to false, the command is 

rejected. 
 

3. Domain Constraints 

 

A user can define a new domain using the CREATE DOMAIN statement, which makes use 

of CHECK constraints. 

 

CREATE DOMAIN ratingval INTEGER DEFAULT 0 CHECK ( VALUE >=1AND 

VALUE <= 10 ) 
 
INTEGER is the base type for the domain ratingval, and every ratingval value must be of this 

type.The optional DEFAULT keyword is used to associate a default value with a domain. 
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3. Assertions: ICs over Several Tables 
 

Table constraints are associated with a single table, although the conditional expression in the 

CHECK clause can refer to other tables. Table constraints are required to hold only if the 

associated table is nonempty. SQL supports the creation of assertions, which are constraints 

not associated with any one table. 
 

Example: enforce the constraint that the number of boats plus the number of sailors should be 

less than 100. 

 

CREATE TABLE Sailors ( 
 

sid INTEGER, 
 

sname CHAR(10), 
 

rating INTEGER, 
 

age REAL, 
 

PRIMARY KEY (sid), 
 

CHECK ( rating >=1AND rating <= 10) CHECK ((SELECT COUNT (S.sid) 
 

FROM Sailors S ) +(SELECT COUNT (B.bid) FROM Boats B ) < 100 )) 

 

The best solution is to create an assertion, as follows: 

 

CREATE ASSERTION smallClub CHECK ((SELECT COUNT (S.sid) FROM Sailors S ) 
 

+(SELECT COUNT (B.bid) FROM Boats B) < 100 ) 

 

 

2.9. TRIGGERS AND ACTIVE DATA BASES 

A trigger is a procedure that is automatically invoked by the DBMS in response to specified 

changes to the database, and is typically specified by the DBA. 

 

A database that has a set of associated triggers is called an active database. A trigger description 

contains three parts: 

 

–   Event: A change to the database that activates the trigger. 

–   Condition: A query or test that is run when the trigger is activated.  
– Action: A procedure that is executed when the trigger is activated and its con- dition is 

true. 
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Example:The trigger called incr count increments the counter for each inserted tuple that 

satisfies the condition age < 18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

CREATE TRIGGER youngSailorUpdate 
 

AFTER INSERT ON SAILORS 
 

REFERENCING NEW TABLE NewSailors 
 

FOR EACH STATEMENT 
 

INSERT 
 

INTO YoungSailors(sid, name, age, rating) 
 

SELECT sid, name, age, rating 
 

FROM NewSailors N 
 

WHERE N.age <= 18 
 

2.9.10. ACTIVE DATABASES 

 

 Triggers offer a powerful mechanism for dealing with changes to a database, but they 
must be used with caution.



 The effect of a collection of triggers can be very complex, and maintaining an active 
database can come very difficult. Often, a judicious use of integrity constraints can 
replace the use of triggers.
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UNIT-III 
 

 INTRODUCTION TO SCHEMA REFINEMENT 

 

Redundant storage of information is the root cause of these problems. Although 

decomposition can eliminate redundancy, it can lead to problems of its own and should be 

used with caution. 

 

3.1. PROBLEMS CAUSED BY REDUNDANCY 
 

Storing the same information redundantly, that is, in more than one place within a database, 

can lead to several problems: 
 

 Redundant storage: Some information is stored repeatedly.
 Update anomalies: If one copy of such repeated data is updated, an inconsis- tency is 

created unless all copies are similarly updated.
 Insertion anomalies: It may not be possible to store some information unless some 

other information is stored as well.
 Deletion anomalies: It may not be possible to delete some information without losing 

some other information as well.

 

3.2. DECOMPOSITIONS 
 

Intuitively, redundancy arises when a relational schema forces an association between 

attributes that is not natural. 

 

Functional dependencies (ICs) can be used to identify such situations and to suggest 

refinetments to the schema. 
 
 
 

 

 rating hourly wages    
        

 8  10     
        

 5  7     

        

ssn  Name  lot rating hours worked 

        

123-22-3666  Attishoo  48 8  40 
        

231-31-5368  Smiley  22 8  30 
        

131-24-3650  Smethurst  35 5  30 
        

434-26-3751  Guldu  35 5  32 
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612-67-4134 Madayan 35 8 40 
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The essential idea is that many problems arising from redundancy can be addressed by replacing 

a relation with a collection of smaller relations. 
 
• Each of the smaller relations contains a subset of the attributes of the original relation.  
• We refer to this process as decomposition of the larger relation into the 
 

Smaller relations.We can deal with the redundancy in Hourly Emps by decomposing it into two 

relations: 
 
• Hourly Emps2(ssn, name, lot, rating, hours worked)  
• Wages(rating, hourly wages) 

 

3.3. PROBLEM RELATED TO DECOMPOSITION 
 

Unless we are careful, decomposing a relation schema can create more problems than it 
 
Solves. Two important questions must be asked repeatedly: 

 

1. Do we need to decompose a relation?  
2. What problems (if any) does a given decomposition cause? 

 

3.4. FUNCTIONAL DEPENDENCIES 

 

Functional dependency (FD) is set of constraints between two attributes in a relation. Functional 

dependency says that if two tuples have same values for attributes A1, A2,..., An then those two tuples 

must have to have same values for attributes B1, B2, ..., Bn. 

 

Functional dependency is represented by arrow sign (→), that is X→Y, where X functionally determines 

Y. The left hand side attributes determines the values of attributes at right hand side. 

 

3.4.1.Armstrong's Axioms 

 

If F is set of functional dependencies then the closure of F, denoted as F
+
, is the set of all functional 

dependencies logically implied by F. Armstrong's Axioms are set of rules, when applied repeatedly 

generates closure of functional dependencies. 

 

 Reflexive rule: If alpha is a set of attributes and beta is_subset_of alpha, then alpha holds beta.


 Augmentation rule: if a → b holds and y is attribute set, then ay → by also holds.
That is adding attributes in dependencies, does not change the basic dependencies. 



 Transitivity rule: Same as transitive rule in algebra, if a → b holds and b → c holds then a → c 

also hold. a → b is called as a functionally determines b.

 

3.4.2. TRIVIAL FUNCTIONAL DEPENDENCY 

 Trivial: If an FD X → Y holds where Y subset of X, then it is called a trivial FD. 


Trivial FDs are always hold. 


 Non-trivial: If an FD X → Y holds where Y is not subset of X, then it is called non-trivial FD.


 Completely non-trivial: If an FD X → Y holds where x intersect Y = Φ, is said to be 

completely non-trivial FD.
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3.5. REASONING ABOUT FDS 

 

Given a set of FDs over a relation schema R, there are typically several additional FDs that hold over 

R whenever all of the given FDs hold. As an example, consider: 

 

Workers(ssn, name, lot, did, since) 
 

We know that ssn → did holds, since ssn is the key, and FD 

did→ lot is given to hold. 

 

Therefore, in any legal instance of Workers, if two tuples have the same ssn value, they must have the 

same did value (from the first FD), and because they have the same did value, they must also have the 

same lot value (from the second FD). 

 

Thus, the FD ssn → lot also holds on Workers. We say that an FD f is implied by a given setFof FDs if f 

holds on every relation instance that satisfies all dependencies in F, that is,f holds whenever all FDs in F 

hold. Note that it is not sufficient for f to hold on some instance that satisfies all dependencies in F; 

rather, f must hold on every instance that satisfies all dependencies in F. 
 

3.6. NORMAL FORMS: 
 

 

• Definition :Normalization is the process of organizing the fields and tables of a relational 

database to minimize redundancy and dependency. 

 

• The normal forms based on FDs are first normal form (1NF), second normal form (2NF), third 

normal form (3NF), and Boyce-Codd normal form (BCNF). 

 

• These forms have increasingly restrictive requirements: Every relation in BCNF is also in 

3NF,every relation in 3NF is also in 2NF, and every relation in 2NF is in 1NF. 

 

• A relation is in first normal form if every field contains only atomic values, that is, not lists or 

sets. 

 

• This requirement is implicit in our definition of the relational model. 
 
  

• Although some of the newer database systems are relaxing this requirement 2NF is 

mainly of historical interest. 3NF and BCNF are important from a database design 

standpoint. 

 

3.6.1. FIRST NORMAL FORM 

 

• A relation schema is said to be in first normal form if the attributes values in the 

relation are atomic, i.e there should be no repeated values in a particular column 

 

• A attribute is said to be value atomic value if it contains only a single. 
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Example First Normal Form  

 
 

Emp_id 

   

Emp_section_i

d 

   

Emp_name 

   

Emp_addres

s 

   

dependents 

  

               
                    

                

                

 

0012 

   

575 

   

Manideep 

   

Hyderabad 

   

Father, 

Mother,Brother 

  

               
                    

                
 

0013 

   

572 

   

Bhaskar 

reddy 

   

Delhi 

   

Wife, Mother, Son 

  

               
                    

                   

 

0014 
   

5A0 
   

Priyanka 
   

Bangalore 
   

Brother, Sister 
  

               
                    

                   

 

0015 
   

5B8 
   

Anusha reddy 
   

Hyderabad 
   

Sister, Mother 
  

               
                    

                     

 

Here,The column dependents have non atomic values, In order to convert this relation in 

INF,we have to convert these non atomic values to atomic values 
  
 

Emp_id 
   

Emp_section_id 
   

Emp_name 
   

Emp_address 
   

Dependents 
 

              
                   

               
               

 

0012 
   

575 
   

Manideep 
   

Hyderabad 
   

Father, 
 

              
                   

               

 

0012 
   

575 
   

Manideep 
   

Hyderabad 
   

Mother 
 

              
                   

                   

                   

 0012    575    Manideep    Hyderabad    Brother  
                   

               

                   

 0013    572    Bhaskar reddy    Delhi    Wife  
                   

               

 

0013 
   

572 
   

Bhaskar reddy 
   

Delhi 
   

Mother 
 

              
                   

               

 

0013 
   

572 
   

Bhaskar reddy 
   

Delhi 
   

Son 
 

              
                   

                  

 

0014 
   

5A0 
   

Priyanka 
   

Bangalore 
   

Brother 
 

              
                   

                  

 

0014 
   

5A0 
   

Priyanka 
   

Bangalore 
   

Sister 
 

              
                   

                  

 

0015 
   

5B8 
   

Anusha reddy 
   

Hyderabad 
   

Sister 
 

              
                   

                  

 

0015 
   

5B8 
   

Anusha reddy 
   

Hyderabad 
   

Mother 
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The relation employee is in 1NF since the column dependents have atomic value But 

the other attributes i.e. emp_id, emp_section_id, emp_name, emp_address are all 

repeating and forming a group called repeated groups. 
 
 
 

 

3.6.2. SECOND NORMAL FORM 

 

• A relation is said to be in 1NF and every non Key attribute is fully 

functionally dependent on primary key attribute 

 

• If any one of the following conditions are satisfied then a relation(which is 

in 1NF) is in 2NF 

 
Rules: 

 

1. There should be only one attribute associated with primary key  
2. There must be no non key attributes in the relation 

 

Example:  
• Student(student_id,class_id,name,cource,time)  
• (student_id,class_id,)is the primary key,  
• A student can attend different course in different classes at different times. 

 

Consider a simple example of student relation           
                   

 

Student_id 
   

Class_id 
   

Name 
   

Cource_id 
   

time 
  

               
                    

                    
           

 

0123 
   

502 
   

Ravi 
   

312 
   

10/10 
  

               
                    

                    
 

0124 
   

503 
   

Kumar 
   

313 
   

10/07 
  

               
                    

                    
 

0125 
   

502 
   

Mahesh 
   

312 
   

10/15 
  

               
                    

                    
 

0126 
   

504 
   

mehta 
   

460 
   

10/08 
  

               
                    

                     
 
 

 

The above relation is not in2NF,as the name of the student can be determined by 

student_id. there ,a non key attribute(name) is functionally depend on a part of key 

(student_id) 

 

3.6.3. THIRD NORMAL FORM 

 

• A relation R in 3NF if and only if it is in 2NF and every non key column does 

not depend on another non key column 
 
• All nonprime attributes of R must be non-transitively functionally dependent on a key 

of the relation 
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• Relation R with FDs F is in 3NF if, for all X A  in  
– A X (called a trivial FD), or 

 
–  X contains a key for R, or 

 
–  A is part of some key for R. 

 
• Minimality of a key is crucial in third condition above!  
• If R is in BCNF, obviously in 3NF.  
• If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not 

achievable (e.g., no ``good’’ decomp, or performance considerations).  
– Lossless-join, dependency-preserving decomposition of R into a collection of 

3NF relations always possible. 

 

SUPPLIER (SNAME, STREET, CITY, STATE, 

TAX) SNAME  STREET, CITY, STATE STATE 

 TAX (non key  non key) SNAME  STATE  

TAX (transitive FD) 

• solution: decompose the relation  
SUPPLIER2 (SNAME, STREET, CITY, STATE) 

TAXINFO (STATE, TAX) 

 

3.6.4.Boyce-Codd NORMAL FORM (BCNF) 

 

• Reln R with FDs F is in BCNF if, for all X A  in 
 

– A X (called a trivial FD), or 
 

–  X contains a key for R. 

 

• In other words, R is in BCNF if the only non-trivial FDs that hold over R are key 

constraints. 

 

–  No dependency in R that can be predicted using FDs alone. 

 

– If we are shown two tuples that agree upon the X value, we cannot infer the A 

value in one tuple from the A value in the other. 

 

– If example relation is in BCNF, the 2 tuples must be identical (since x is a 

key). 
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3.7. PROPERTIES OF DECOMPOSITIONS 
 

 

3.7.1. DECOMPOSITION OF A RELATION SCHEME 

 

• Suppose that relation R contains attributes A1 ... An. A decomposition of R consists of 

replacing R by two or more relations such that: 

 

– Each new relation scheme contains a subset of the attributes of R (and no 

attributes that do not appear in R), and  
–  Every attribute of R appears as an attribute of one of the new relations. 

 

• Intuitively, decomposing R means we will store instances of the relation schemes 

produced by the decomposition, instead of instances of R. 

 

• E.g., Can decompose SNLRWH into SNLRH and RW. 

 

Example Decomposition 

 

Decompositions should be used only when needed. 
 

– SNLRWH has FDs S SNLRWH and R W 
 

–  Second FD causes violation of 3NF; W values repeatedly associated with R 

values.   Easiest way to fix this is to create a relation RW to store these 

associations, and to remove W from the main schema:i.e., we decompose 
 

SNLRWH into SNLRH and RW 
 

The information to be stored consists of SNLRWH tuples. If we just store the projections of 

these tuples onto SNLRH and RW, are there any potential problems that we should be aware 

of? 

 

3.7.2. LOSSLESS JOIN DECOMPOSITIONS: 

 

• Decomposition of R into X and Y is lossless-join w.r.t. a set of FDs F if, for every 

instance r that satisfies F: 
 
 
 
 

• It is always true that 
 

– In general, the other direction does not hold! If it does, the decomposition is 

lossless-join. 
 

• Definition extended to decomposition into 3 or more relations in a straightforward 

way.  
• It is essential that all decompositions used to deal with redundancy be lossless!  
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More on Lossless Join  
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3.8. DEPENDENCY PRESERVING DECOMPOSITION (INTUITIVE) 

 

If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, on 
 
Y and on Z, then all FDs that were given to hold on R must also hold.  (Avoids  Problem (3).) 
 
  

Projection of set of FDs F: If R is decomposed into X, ... projection of F onto X enoted FX 

) is the set of FDs UV in F
+
 (closure of F ) such that U, V are in X. 

Decomposition of R into X and Y is dependency preserving  if (FX  union FY ) 
+
  = F

+ 
 

i.e., if we consider only dependencies in the closure F 
+
 that can be checked in X without 

considering Y, and in Y without considering X, these imply all dependencies in F 
+
. 

Important to consider F 
+

, not F, in this definition: 

ABC, A B, B C, C A, decomposed into AB and BC.Is this dependency preserving? Is C A 

preserved????? Dependency preserving does not imply lossless join:ABC, A B, 

decomposed into AB and BC.And vice-versa! 
 

Decomposition into BCNF 
 

Consider relation R with FDs F. If X Y violates BCNF, decompose R into R - Y and XY. 

Repeated application of this idea will give us a collection of relations that are in BCNF; 

lossless join decomposition, and guaranteed to terminate. 
 

– e.g., CSJDPQV, key C,  JP C, SD P, J S 
 

– To deal with SD P, decompose into SDP, CSJDQV. 
 

– To deal with J S, decompose CSJDQV into JS and CJDQV 
 

In general, several dependencies may cause violation of BCNF. The order in which we 

``deal with’’ them could lead to very different sets of relations! 

 

BCNF and Dependency Preservation  
• In general, there may not be a dependency preserving decomposition into BCNF. 

 
– e.g., CSZ, CS Z,  Z C 

 
– Can’t decompose while preserving 1st FD; not in BCNF. 

 
– Similarly, decomposition  of  CSJDQV  into  SDP,  JS  and  CJDQV  is  

not 
 
dependency preserving (w.r.t. the FDs JP C, SD P and J S).However, it 

is a 
 
lossless join decomposition.In this case, adding JPC to the collection of relations gives us 

a 
 
dependency preserving decomposition. JPC tuples stored only for checking FD! 

(Redundancy!) 
 

Decomposition into 3NF 
 

Obviously, the algorithm for lossless join decomp into BCNF can be used to obtain a 

lossless join decomp into 3NF (typically, can stop earlier). 
 

To ensure dependency preservation, one idea: 
 

If  X Y is not preserved, add relation XY. 
 

Problem is that XY may violate 3NF! e.g., consider the addition of CJP to `preserve’ JP 
 

C. What if we also have J C ? Refinement: Instead of the given set of FDs F, use a 

minimal cover for F. 
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3.9. SCHEMA REFINEMENT IN DATA BASE DESIGN: 

 

Constraints on an Entity Set 

 

Consider the Hourly Emps relation again. The constraint that attribute ssn is a key can be 

expressed as an FD:{ ssn }-> { ssn, name, lot, rating, hourly wages, hours worked} 
 

For brevity, we will write this FD as S -> SNLRWH, using a single letter to denote each 

attribute In addition, the constraint that the hourly wages attribute is determined by the 

rating attribute is an FD: R -> W. 
 

Constraints on a Relationship Set 

 

The previous example illustrated how FDs can help to rene the subjective decisions made 

during ER design, but one could argue that the best possible ER diagram would have led 

to the same nall set of relations. 

 

Our next example shows how FD information can lead to a set of relations that 
 

eliminates some redundancy problems and is unlikely to be arrived at solely through ER design. 
 

Identifying Attributes of Entities 

 

in particular, it shows that attributes can easily be associated with the `wrong' entity set 

during ER design. The ER diagram shows a relationship set called Works In that is similar 

to the Works In relationship set Using the key constraint, we can translate this ER diagram 

into two relations: 

 

Workers(ssn, name, lot, did, since)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Identifying Entity Sets 

 

Let Reserves contain attributes S, B, and D as before, indicating that sailor S has a 

reservation for boat B on day D. 

In addition, let there be an attribute C denoting the credit card to which the reservation is 

charged. 

Suppose that every sailor uses a unique credit card for reservations. This constraint is 

expressed by the FD 
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3.9. MULTIVALUED DEPENDENCIES: 

 

Suppose that we have a relation with attributes course, teacher, and book, which we denote as 

CTB.The meaning of a tuple is that teacher T can teach course C, and book B is a 

recommended text for the course. 

 

There are no FDs; the key is CTB. However, the recommended texts for a course are 

independent of the instructor. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

There are three points to note here: 

 

The relation schema CTB is in BCNF; thus we would not consider decomposing it further if 

we looked only at the FDs that hold over CTB. 

 

There is redundancy. The fact that Green can teach Physics101 is recorded once per 

recommended text for the course. Similarly, the fact that Optics is a text for Physics 101 is 

recorded once per potential teacher. 

 

The redundancy can be eliminated by decomposing CTB into CT and CB.Let R be a relation 

schema and let X and Y be subsets of the attributes of R. Intuitively, the multivalued 

dependency X !! Y is said to hold over R if, in every legal The redundancy in this example is 

due to the constraint that the texts for a course are independent of the instructors, which 

cannot be epressed in terms of FDs. This constraint is an example of a multivalued 

dependency, or MVD. Ideally, we should model this situation using two binary relationship 
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sets, Instructors with attributes CT and Text with attributes CB.Because these are two 

essentially independent relationships, modeling them with a single ternary relationship set 

with attributes CTB is inappropriate.Three of the additional rules involve only MVDs: 

 

MVD Complementation: If X →→Y, then X →→ R − XY 
 
MVD Augmentation: If X →→ Y and W > Z, then WX →→ YZ. 
 
MVD Transitivity: If X →→ Y and Y →→ Z, then X →→ (Z − Y ). 
 
 

3.9.1. FOURTH NORMAL FORM 

 

R is said to be in fourth normal form (4NF) if for every MVD X →→Y that holds over R, 

one of the following statements is true: 

 

• Y subset of  X or XY = R, or  
• X is a super key. 

 

3.10. JOIN DEPENDENCIES 

 

A join dependency is a further generalization of MVDs. A join dependency (JD) ∞{ 
 
R1,….. Rn } is said to hold over a relation R if R1,…. Rn is a lossless-join decomposition of R. 

 

An MVD X ->-> Y over a relation R can be expressed as the join dependency ∞{ 

XY,X(R−Y)} 

 

As an example, in the CTB relation, the MVD C ->->T can be expressed as the join 

dependency ∞{ CT, CB} Unlike FDs and MVDs, there is no set of sound and complete 

inference rules for JDs. 

 

3.11. FIFTH NORMAL FORM 

 

A relation schema R is said to be in fth normal form (5NF) if for every JD ∞{ R1,….  Rn } 
 
that holds over R, one of the following statements is true: 

 

Ri = R for some i, or The JD is implied by the set of those FDs over R in which the left side is 

a key for R. 

 

The following result, also due to Date and Fagin, identies conditions again, detected using 

only FD information under which we can safely ignore JD information. 

 

If a relation schema is in 3NF and each of its keys consists of a single attribute, it is 

also in 5NF. 
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3.12. INCLUSION DEPENDENCIES 

 

MVDs and JDs can be used to guide database design, as we have seen, although they 
 
are less common than FDs and harder to recognize and reason about. In contrast, inclusion 

dependencies are very intuitive and quite common. However, they typically have little 

influence on database design the main point to bear in mind is that we should not split groups 

of attributes that participate in an inclusion dependency. Most inclusion dependencies in 

practice are key-based, that is, involve only keys. 
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UNIT - IV 
 

 TRANSACTION CONCEPT 
 

4.1. TRANSACTION CONCEPT 

 

A Transaction is a unit of program execution that accesses and possibly updates various data 

items. 

 

Example transaction to transfer $50 from account A to account B: 
 

1. read(A)  
2. A:=A–50  
3. write(A)  
4. read(B)  
5. B:=B+50  
6. write(B) 

 
Two main issues to deal with: 
 
Failures of various kinds, such as hardware failures and system crashes 

Concurrent execution of multiple transactions 

 

Example of Fund Transfer Transaction to transfer $50 from account A to account B: 
 

1. read(A)  
2. A:=A–50  
3. write(A)  
4. read(B)  
5. B:=B+50  
6. write(B) 

 

Atomicity requirement 
 

if the transaction fails after step 3 and before step 6, money will be “lost” leading to an 

inconsistent database state 

 

Failure could be due to software or hardware the system should ensure that updates of a 

partially executed transaction are not reflected in the database 

 

Durability requirement — once the user has been notified that the transaction has 

completed (i.e., the transfer of the $50 has taken place), the updates to the database by the 

transaction must persist even if there are software or hardware failures. 

 

Example of Fund Transfer Transaction to transfer $50 from account A to account B: 
 

1. read(A)  
2. A:=A–50  
3. write(A)  
4. read(B) 
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5. B:=B+50  
6. write(B) 

 

Consistency requirement in above example: the sum of A and B is unchanged by the execution 

of the transaction In general, consistency requirements include Explicitly specified integrity 

constraints such as primary keys and foreign keys Implicit integrity constraints Example sum of 

balances of all accounts, minus sum of loan amounts must equal value of cash-in-hand A 

transaction must see a consistent database. During transaction execution the database may be 

temporarily inconsistent. When the transaction completes successfully the database must be 

consistent Erroneous transaction logic can lead to inconsistency 

 

Example of Fund Transfer Isolation requirement — if between steps 3 and 6, another 

transaction T2 is allowed to access the partially updated database, it will see an 

inconsistent database (the sum A + B will be less than it should be). 
 

T1 T2  
1. read(A)  
2. A:=A–50  
3. write(A)  

read(A), read(B), print(A+B)  
4. read(B)  
5. B:=B+50  
6. write(B ) 

 
Isolation can be ensured trivially by running transactions serially that is, one after the other. 

 
However, executing multiple transactions concurrently has significant benefits. 

 

ACID Properties 

 

Atomicity Either all operations of the transaction are properly reflected in the database or 

none are. 

 

Consistency Execution of a transaction in isolation preserves the consistency of the database. 

 

Isolation Although multiple transactions may execute concurrently, each transaction must be 
unaware of other concurrently executing transactions. Intermediate transaction results must be hidden  

from other concurrently executed transactions. That is, for every pair of transactions Ti and Tj, it 

appears to Ti that either Tj, finished execution before Ti started, or Tj started execution after Ti 
finished. 

 

Durability After a transaction completes successfully, the changes it has made to the 

database persist, even if there are system failures. 

 

4.2. TRANSACTION STATE 

 

• Active – the initial state; the transaction stays in this state while it is executing 
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• Partially committed – after the final statement has been executed.  
• Failed -- after the discovery that normal execution can no longer proceed.  
• Aborted – after the transaction has been rolled back and the database restored to its 

State prior to the start of the transaction. Two options after it has been aborted: restart 

the transaction can be done only if no internal logical error kill the transaction  
• Committed – after successful completion.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4.3. IMPLEMENTATION OF ATOMICITY AND DURABILITY 

 

The recovery-management component of a database system implements the support for 
 
atomicity and durability. Example of  the shadow-database scheme:all updates are made on a 
 
shadow copy of the database  db_pointer is made to point to the updated shadow copy  after 
 
the transaction reaches partial commit and all updated pages have been flushed to disk. 
 
db_pointer always points to the current consistent copy of the database.In case transaction 
 
fails, old consistent copy pointed to by db_pointer can be  used, and the shadow copy can be 
 
deleted. 
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The shadow-database scheme: Assumes that only one transaction is active at a time. Assumes 

disks do not fail Useful for text editors, but extremely inefficient for large databases (why?) 

Variant called shadow paging reduces copying of data, but is still not practical for large 

databases does not handle concurrent transactions 

 

4.4. CONCURRENT EXECUTIONS 

 

Multiple transactions are allowed to run concurrently in the system. Advantages are: 
 
Increased processor and disk utilization, leading to better transaction throughput 

 

Example one transaction can be using the CPU while another is reading from or writing to the 

disk reduced average response time for transactions: short transactions need not wait behind 

long ones Concurrency control schemes – mechanisms to achieve isolation that is, to control 

the interaction among the concurrent transactions in order to prevent them from destroying 

the consistency of the database. 

 

Schedule – Sequences of instructions that specify the chronological order in which 

instructions of concurrent transactions are executed a schedule for a set of transactions must 

consist of all instructions of those transactions must preserve the order in which the 

instructions appear in each individual transaction. 

 

A transaction that successfully completes its execution will have commit instructions as the 

last statement by default transaction assumed to execute commit instruction as its last step 
 
A transaction that fails to successfully complete its execution will have an abort instruction as 

the last statement. 
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Schedule 1 

• Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.A 

serial schedule in which T1 is followed by T2 : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Schedule 2  
 
 
 
 
 
 
 
 
 
 
 

 

Schedule 3  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let T1 and T2 be the transactions defined previously. The following schedule is not a serial 

schedule, but it is equivalent to Schedule 1. 

 

4.5. SERIALIZABILITY 

 

Basic Assumption – Each transaction preserves database consistency. Thus serial execution 

of a set of transactions preserves database consistency. A (possibly concurrent) schedule is 

serializable if it is equivalent to a serial schedule. Different forms of schedule equivalence 

give rise to the notions of: 
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1. Conflict serializability 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.  View serializability  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Simplified views of transactions we ignore operations other than read and write 

instructions; we assume that transactions may perform arbitrary computations on data in 

local buffers in between reads and writes. Our simplified schedules consist of only read 

and write instructions. Conflicting Instructions lid and elk of transactions Ti and Tj 

respectively, conflict if and only if there exists some item Q accessed by both li and lj, 

and at least one of these instructions wrote Q. 
 

1. li = read(Q), lj = read(Q).  li and lj don’t conflict.  
2. li = read(Q), lj = write(Q). They conflict. 

3. li = write(Q), lj = read(Q).  They conflict 

4. li = write(Q), lj = write(Q). They conflict 
 

Intuitively, a conflict between li and lj forces a (logical) temporal order between them. 

If li and lj are consecutive in a schedule and they do not conflict, their results would 

remain the same even if they had been interchanged in the schedule. 

 

Conflict Serializability  

If a schedule S can be transformed into a schedule S´ by a series of swaps of non-

conflicting instructions, we say that S and S´ are conflict equivalent. 
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We say that a schedule S is conflict serializable if it is conflict equivalent to a serial 

schedule. 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1, by 

series of swaps of non-conflicting instructions.Therefore Schedule 3 is conflict serializable. 

Example of a schedule that is not conflict serializable: We are unable to swap instructions in 

the above schedule to obtain either the serial schedule < T3, T4 >, or the serial schedule < T4, 

T3 >. 

 

View Serializability 

 

Let S and S´ be two schedules with the same set of transactions. S and S´ are view equivalent 

if the following three conditions are met, for each data item Quid in schedule S, transaction Ti 

reads the initial value of Q, then in schedule S’ also transaction Ti must read the initial value 

of Q. 

 

If in schedule S transaction Ti executes read(Q), and that value was produced by transaction Tj 

(if any), then in schedule S’ also transaction Ti must read the value of Q that was produced by the  

same write(Q) operation of transaction Tj .The transaction (if any) that performs the final 

write(Q) operation in schedule S must also perform the final write(Q) operation in schedule 

S’. As can be seen, view equivalence is also based purely on reads and writes alone. 
 
 
 
 
 
 
 
 
 
 

 

A schedule S is view serializable if it is view equivalent to a serial schedule.Every conflict 

serializable schedule is also view serializable.Below is a schedule which is view-serializable 

but not conflict serializable. 

 

 What serial schedule is above equivalent to?
 Every view serializable schedule that is not conflict serializable has blind 

writes. Other Notions of Serializability
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The schedule below produces same outcome as the serial schedule < T1, T5 >, yet is not 

conflict equivalent or view equivalent to it. Determining such equivalence requires analysis 

of operations other than read and write. 

 

4.6. RECOVERABILITY 
 

Recoverable schedule — if a transaction Tj reads a data item previously written by a 

transaction Ti , then the commit operation of Ti appears before the commit operation of Tj.The 

following schedule (Schedule 11) is not recoverable if T9 commits immediately after the read  
 
 
 
 
 
 
 
 
 
 
 

 

If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent 

database state. Hence, database must ensure that schedules are recoverable. 

 

Cascading Rollbacks 

 

Cascading rollback – a single transaction failure leads to a series of transaction rollbacks. 
 
Consider the following schedule where none of the transactions has yet committed (so the schedule is 

recoverable) 
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If T10 fails, T11 and T12 must also be rolled back.Can lead to the undoing of a significant amount 

of work Cascadeless schedules — cascading rollbacks cannot occur; for each pair of 

transactions Ti and Tj such that Tj reads a data item previously written by Ti, the commit 

operation of Ti appears before the read operation of Tj.Every cascadeless schedule is also 

recoverable It is desirable to restrict the schedules to those that are cascadeless 
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UNIT - V 
 

CONCURRENCY CONTROL 

 

A database must provide a mechanism that will ensure that all possible schedules are 
 
either conflict or view serializable, and are recoverable and preferably cascadeless A policy in 

which only one transaction can execute at a time generates serial schedules, but provides a 

poor degree of concurrency Are serial schedules recoverable/cascadeless? Testing a schedule 

for serializability after it has executed is a little too late! Goal – to develop concurrency 

control protocols that will assure serializability 

 

5.1 IMPLEMENTATION OF ISOLATION 

 

Schedules must be conflict or view serializable, and recoverable, for the sake of database 

consistency, and preferably cascadeless. A policy in which only one transaction can execute 

at a time generates serial schedules, but provides a poor degree of concurrency. Concurrency-

control schemes tradeoff between the amount of concurrency they allow and the amount of 

overhead that they incur. Some schemes allow only conflict-serializable schedules to be 

generated, while others allow view-serializable schedules that are not conflict-serializable. 
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5.2. TESTING FOR SERIALIZABILITY  
 
 
 
 
 
 
 
 
 
 
 

 

 

• Consider some schedule of a set of transactions T1, T2, ..., Tn 
 

• Precedence graph — a direct graph where the vertices are the transactions (names). 

• We draw an arc from Ti to Tj if the two transaction conflict, and Ti accessed the data 

item on which the conflict arose earlier.  
• We may label the arc by the item that was accessed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Test for Conflict Serializability A schedule is conflict serializable if and only if its precedence 

graph is acyclic.Cycle-detection algorithms exist which take order n
2
 time, where n is the 

number of vertices in the graph. (Better algorithms take order n + e where e is the number of 

edges.) 
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If precedence graph is acyclic, the serializability order can be obtained by a topological 

sorting of the graph. This is a linear order consistent with the partial order of the graph.  

For example, a serializability order for Schedule A would be T5  T1  T3  T2  T4 Are 

there others? 

 

Test for View Serializability 

 

The precedence graph test for conflict serializability cannot be used directly to test for view 

serializability.Extension to test for view serializability has cost exponential in the size of the 

precedence graph.The problem of checking if a schedule is view serializable falls in the class 

of NP-complete problems. Thus existence of an efficient algorithm is extremely unlikely. 
 
However practical algorithms that just check some sufficient conditions for view 

serializability can still are used. 

 

5.3. CONCURRENCY CONTROL 

 

Concurrency Control vs. Serializability Tests 

 

Concurrency-control protocols allow concurrent schedules, but ensure that the schedules are 

conflict/view serializable, and are recoverable and cascade less .Concurrency control 

protocols generally do not examine the precedence graph as it is being created Instead a 

protocol imposes a discipline that avoids nonseralizable schedules.Different concurrency 

control protocols provide different tradeoffs between the amount of concurrency they allow 

and the amount of overhead that they incur. Tests for serializability help us understand why a 

concurrency control protocol is correct. 

 

Weak Levels of Consistency 

Some applications are willing to live with weak levels of consistency, allowing schedules that 

are not serializable E.g. a read-only transaction that wants to get an approximate total balance 
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of all Accounts. Example. database statistics computed for query optimization can be 

approximate (why?) Such transactions need not be serializable with respect to other 

transactions Tradeoff accuracy for performance Levels of Consistency in SQL-92 

Serializable — default Repeatable read — only committed records to be read, repeated 

reads of same record must return same value. However, a transaction may not be serializable 

it may find some records inserted by a transaction but not find others. 

 

Read committed — only committed records can be read, but successive reads of recor may 

return different (but committed) values. 

 

Read uncommitted — even uncommitted records may be read.Transaction Definition in 

SQL Data manipulation language must include a construct for specifying the set of actions 

that comprise a transaction. In SQL, a transaction begins implicitly. A transaction in SQL 

ends by: Commit work commits current transaction and begins a new one. 
 
 

 

Rollback work causes current transaction to abort In almost all database systems, by default,  

every SQL statement also commits implicitly if it executes successfully Implicit commit can 

be turned off by a database directive E.g. in JDBC,connection. SetAutoCommit (false); 

 

5.3.1. LOCK BASED PROTOCOLS 

 

A lock is a mechanism to control concurrent access to a data item  
 
 
 
 
 
 
 
 
 
 
 

 

Fig: Lock-compatibility matrix 
 

Data items can be locked in two modes: 

 

1. Exclusive (X) mode. Data item can be both read as well as 

written. X-lock is requested using lock-X instruction. 

 

2. Shared (S) mode. Data item can only be read. S-lock is 

requested using lock-S instruction. 

 

Lock requests are made to concurrency-control manager. Transaction can proceed only after 

request is granted. 
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 A transaction may be granted a lock on an item if the requested lock is compatible 

with locks already held on the item by other transactions



 Any number of transactions can hold shared locks on an item, but if any transaction 
holds an exclusive on the item no other transaction may hold any lock on the item.



 If a lock cannot be granted, the requesting transaction is made to wait till all 
incompatible locks held by other transactions have been released. The lock is then 
granted.
Example: if a transaction performing locking: 

T2: lock-S (A);  
Read (A); 

 
Unlock (A); 

 
Lock-S (B); 

 
Read (B); 

 
Unlock (B); 

 
Display (A+B) 

 
Locking as above is not sufficient to guarantee serializability — if A and B get updated in-

between the read of A and B, the displayed sum would be wrong. 

 

• A locking protocol is a set of rules followed by all transactions while requesting and 

 

Releasing locks. Locking protocols restrict the set of possible schedules.Pitfalls of Lock-

Based Protocols Consider the partial schedule Neither T3 nor T4 can make progress — 

Executing lock-S (B) causes T4 to wait for T3 to release its lock on B, while executing lock-X (A) 

causes T3 to wait for T4 to release its lock on A.Such a situation is called a deadlock. To handle a 

deadlock one of T3 or T4 must be rolled back and its locks released. The potential for 

deadlock exists in most locking protocols. Deadlocks are a necessary evil. 

 

Starvation is also possible if concurrency control manager is badly designed. For example: 

A transaction may be waiting for an X-lock on an item, while a sequence of other 

transactions request and are granted an S-lock on the same item. The same transaction is 

repeatedly rolled back due to deadlocks. Concurrency control manager can be designed to 

prevent starvation. 

 

Two-Phase Locking Protocol 

 

This is a protocol which ensures conflict-serializable schedules. 
 
Phase 1: Growing Phase 
 

–   Transaction may obtain locks  
– Transaction may not release locks 

Phase 2: Shrinking Phase 
 

–   Transaction may release locks  
–   Transaction may not obtain locks 
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The protocol assures serializability. It can be proved that the transactions can be serialized in 

the order of their lock points (i.e. the point where a transaction acquired its final lock). All locks are 

released after commit or abort 

 

Implementation of Locking 

 

A lock manager can be implemented as a separate process to which transactions send lock 
 
And unlock requests the lock manager replies to a lock request by sending a lock grant 
 
Messages (or a message asking the transaction to roll back, in case of a deadlock).The 
 
Requesting transaction waits until its request is answered the lock manager maintains a data- 
 
Structure called a lock table to record granted locks and pending requests the lock table is 
 
Usually implemented as an in-memory hash table indexed on the name of the data item being 
 
Locked. 
 
Two-phase locking does not ensure freedom from deadlocks 
 

• Cascading roll-back is possible under two-phase locking. To avoid this, follow a 

modified protocol called strict two-phase locking. Here a transaction must hold all 

its exclusive locks till it commits/aborts.  
• Rigorous two-phase locking is even stricter: here all locks are held till commit/abort. In 

this protocol transactions can be serialized in the order in which they commit. 

 

5.3. 2. TIMESTAMP BASED PROTOCOLS 
 

Each transaction is issued a timestamp when it enters the system. If an old transaction Ti has 

time-stamp TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti) 

<TS(Tj). 

 

The protocol manages concurrent execution such that the time-stamps determine the 

serializability order.In order to assure such behavior, the protocol maintains for each data Q 

two timestamp values: 

 

W-timestamp(Q) is the largest time-stamp of any transaction that executed 

 

write(Q) successfully. 

 

R-timestamp(Q) is the largest time-stamp of any transaction that executed 

 

read(Q) successfully. 

 

The timestamp ordering protocol ensures 

 

that 

 

any 

 

conflicting 

 

read 

 

and 

 

write  
operations are executed in timestamp order. 

 

Suppose a transaction Ti issues a read(Q)  

If TS(Ti)  W-timestamp(Q), then Ti needs to read a value of Q that was already 

overwritten.Hence, the read operation is rejected, and Ti is rolled back. 
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If TS(Ti) W-timestamp(Q), then the read operation is executed, and 

R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)). 

 

Suppose that transaction Ti issues write(Q).  

If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was 

needed previously, and the system assumed that that value would never be 

produced. Hence, the write operation is rejected, and Ti is rolled back. 

 

If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.  

Hence, this write operation is rejected, and Ti is rolled back.Otherwise, the write operation is 

executed, and W-timestamp(Q) is set to TS(Ti).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A partial schedule for several data items for transactions with 

timestamps 1, 2, 3, 4, 5 
 
Correctness of Timestamp-Ordering Protocol 
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The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence 

graph are of the form: 
 

Thus, there will be no cycles in the precedence graph Timestamp protocol ensures freedom from 

deadlock as no transaction ever waits. But the schedule may not be cascade-free, and may not 

even be recoverable. 

 

Thomas’ Write Rule Modified version of the timestamp-ordering protocol in which obsolete 

write operations may be ignored under certain circumstances. When Ti attempts to write data 

item Q, if TS (Ti) < W-timestamp (Q), then Ti is attempting to write an obsolete value of {Q}. 

Rather than rolling back Ti as the timestamp ordering protocol would have done, this {write} 

operation can be ignored. Otherwise this protocol is the same as the timestamp ordering 
protocol. 
 

 Thomas' Write Rule allows greater potential concurrency.


 Allows some view-serializable schedules that are not conflict-serializable.


 

 

5.3.3. VALIDATION BASED PROTOCOL 
 

Execution of transaction Ti is done in three phases. 

 

1. Read and execution phase: Transaction Ti writes only to temporary local variables 
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2. Validation phase: Transaction Ti performs a ``validation test'' to determine if local 

variables can be written without violating serializability. 

 

3. Write phase: If Ti is validated, the updates are applied to the 

olled back. 

 

Database; otherwise, Ti 

is 

 

The three phases of concurrently executing transactions can be interleaved, but each 
 
Transaction must go through the three phases in that order. Assume for simplicity that the 

validation and write phase occur together, atomically and serially i.e., only one transaction 

executes validation/write at a time. Also called as optimistic concurrency control since 

transaction executes fully in the hope that all will go well during validation. Each transaction 

Ti has 3 timestamps 

 

 Start(Ti) : the time when Ti started its execution


 Validation(Ti): the time when Ti entered its validation phase


 Finish(Ti) : the time when Ti finished its write phase Serializability order is 

determined by timestamp given at validation time, to increase concurrency.
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5.3.4. MULTIPLE GRANULARITIES 
 

Allow data items to be of various sizes and define a hierarchy of data granularities, where the 

small granularities are nested within larger ones Can be represented graphically as a tree (but 

don't confuse with tree-locking protocol) When a transaction locks a node in the tree 

explicitly, it implicitly locks all the node's descendents in the same mode. 

 

Granularity of locking (level in tree where locking is done):ine granularity (lower in tree): 

high concurrency, high locking overhead coarse granularity (higher in tree): low locking 

overhead, low concurrency 
 
 

Example of Granularity Hierarchy 
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The levels, starting from the coarsest (top) level are 
 
– database 
 
– area 
 
– file 
 
– record 

 

In addition to S and X lock modes, there are three additional lock modes with multiple 

granularity: 

 

Intention-shared (IS): indicates explicit locking at a lower level of the tree 

but only with shared locks. 

 

Intention-exclusive (IX): indicates explicit locking at a lower level with exclusive or shared 

locks 

 

Shared and intention-exclusive (SIX): the sub tree rooted by that node is locked explicitly in 

shared mode and explicit locking is being done at a lower level with exclusive-mode locks. 

Intention locks allow a higher level node to be locked in S or X mode without having to 

check all descendent nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5.4. RECOVERY SYSTEM 

 

5.4.1. Failure classification 

 

To see where the problem has occurred we generalize the failure into various categories, as 

follows: 
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Transaction failure 

 

When a transaction is failed to execute or it reaches a point after which it cannot be 

completed successfully it has to abort. This is called transaction failure. Where only few 

transaction or process are hurt. 

 

Reason for transaction failure could be: 

 

 Logical errors: where a transaction cannot complete because of it has some code 

error or any internal error condition


 System errors: where the database system itself terminates an active transaction 

because DBMS is not able to execute it or it has to stop because of some system 

condition. For example, in case of deadlock or resource unavailability systems aborts 

an active transaction. 
 

System crash 

There are problems, which are external to the system, which may cause the system to stop 

abruptly and cause the system to crash. For example interruption in power supply, failure 

of underlying hardware or software failure. 

 

Examples may include operating system errors. 

 

Disk failure: 

In early days of technology evolution, it was a common problem where hard disk drives or 

storage drives used to fail frequently. 

 

Disk failures include formation of bad sectors, unreachability to the disk, disk head crash 

or any other failure, which destroys all or part of disk storage 
 

 

5.5. RECOVERY AND ATOMICITY 

Modifying the database without ensuring that the transaction will commit may leave the 

database in an inconsistent state.Consider transaction Ti that transfers $50 from account 

A to account B; goal is either to perform all database modifications made by Ti or none at 

all. Several output operations may be required for Ti (to output A and B). A failure may 

occur after one of these modifications has been made but before all of them are made. To 

ensure atomicity despite failures, we first output information describing the 
modifications to stable storage without modifying the database itself. We study two 
approaches: 

 

Log-based recovery and shadow-paging. 
 
We assume (initially) that transactions run serially, that are one after the other. 
 

Recovery Algorithms  

Recovery algorithms are techniques to ensure database consistency and transaction 

atomicity and durability despite failures. 
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Recovery algorithms have two parts 

Actions taken during normal transaction processing to ensure enough information exists 

to recover from failures. Actions taken after a failure to recover the database contents to 

a state that ensures atomicity, consistency and durability. 

 

5.5.1.Log-based recovery 

    Log is kept on stable storage. The log is a sequence of log records, and maintains a 

record of update activities on the database. 

 When transaction Ti starts, it registers itself by writing a <Ti 

start>log record Before Ti executes write(X), a log record <Ti, X, V1, 

V2> is written,  
 Where V1 is the value of X before the write and V2 is the value to be written to X.  

 Log record notes that Ti has performed a write on data item Ax Xj had value V1 

before the write, and will have value V2 after the write. 

 

 We assume for now that log records are written directly to stable storage (that is, they 

are not buffered) 

  
Two approaches using logs 

 
– Deferred database modification 

 
– Immediate database modification 

 
 

 Deferred Database Modification 
 

The deferred database modification scheme records all modifications to the 

log, but defers all the writes to after partial commit. 

 

 Immediate Database Modification 
 

The immediate database modification scheme allows database updates of an 
 

uncommitted transaction to be made as the writes are issued since undoing may be 

needed, update logs must have both old value and new value Update log record must 

be written before database item is written We assume that the log record is output 

directly to stable storage Can be extended to postpone log record output, so long as 

prior to execution of an output (B) operation for a data block B, all log records 

corresponding to items B must be flushed to stable storage 

 

Checkpoints  
Problems in recovery procedure: 

 searching the entire log is time-consuming 

 We might unnecessarily redo transactions which have already output their updates to 

the database. 
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Streamline recovery procedure by periodically performing check pointing Output all log 
records currently residing in main memory onto stable storage. Output all modified buffer 
blocks to the disk. Write a log record < checkpoint> onto stable storage. During recovery 

we need to consider only the most recent transaction Ti that started before the checkpoint 

and transactions that started after Ti. Scan backwards from end of log to find the most 

recent <checkpoint> record Continue scanning backwards till a record <Ti start> is 

found. Need only consider the part of log following above start record. Earlier part of log 
can be ignored during recovery, and can be erased whenever desired.For all transactions 

(starting from Ti or later) with no <Ti commit>, execute undo (Ti). (Done only in case of 

immediate modification.) Scanning forward in the log, for all transactions starting from Ti 

or later w <Ti commit>, execute redo (Ti).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.5.2 Recovery with concurrent transactions 
 

We modify the log-based recovery schemes to allow multiple transactions to execute 

concurrently. 

 

All transactions share a single disk buffer and a single logia buffer block can have data items 

updated by one or more transactions .We assume concurrency control using strict two-phase 
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locking; i.e. the updates of uncommitted transactions should not be visible to other 

transactions . 
 
 
  
Otherwise how to perform undo if T1 updates a, then T2 updates A and commits, and finally 

T1 has to abort? Logging is done as described earlier. Log records of different transactions 

may be interspersed in the log. 

 

• The check pointing technique and actions taken on recovery have to be 

changed since several transactions may be active when a checkpoint is performed. 

 

Log Record Buffering 

 

Log record buffering: log records are buffered in main memory, instead of of being output 

directly to stable storage.Log records are output to stable storage when a block of log records 

in the buffer is full, or a log force operation is executed. Log force is performed to commit a 

transaction by forcing all its log records (including the commit record) to stable storage. 

 

5.6. BUFFER MANAGEMENT 

 

Database maintains an in-memory buffer of data blocks. When a new block is needed, if 

buffer is full an existing block needs to be removed from buffer If the block chosen for 

removal has been updated, it must be output to disk If a block with uncommitted updates is 

output to disk, log records with undo information for the updates are output to the log on 

stable storage first (Write ahead logging).No updates should be in progress on a block when 

it is output to disk. Can be ensured as follows. 

 

Before writing a data item, transaction acquires exclusive lock on block containing the data 

item 

 

Lock can be released once the write is completed. Such locks held for short duration are 

called latches. Before a block is output to disk, the system acquires an exclusive latch on the 

block. Ensures no update can be in progress on the block .Database buffer can be 

implemented either in an area of real main-memory reserved for the database, or in virtual 

memory. Implementing buffer in reserved main-memory has drawbacks: Memory is 

partitioned before-hand between database buffer and applications, limiting flexibility. 

Database buffers are generally implemented in virtual memory in spite of some drawbacks: 
 
When operating system needs to evict a page that has been modified, the page is written to 

swap space on disk. When database decides to write buffer page to disk, buffer page may be 

in swap space, and may have to be read from swap space on disk and output to the database on disk, 

resulting in extra I/O! Known as dual paging problem. 

 

5.7. FAILURE WITH LOSS OF NONVOLATILE STORAGE 

 

Technique similar to check pointing used to deal with loss of non-volatile storage 

Periodically dump the entire content of the database to stable storage No transaction may be 

active during the dump procedure; a procedure similar to check pointing must take place 
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Output all log records currently residing in main memory onto stable storage. Output all 

buffer blocks onto the disk. Copy the contents of the database to stable storage. Output a 

record <dump> to log on stable storage. 

 

Recovering from Failure of Non-Volatile Storage 

 

• To recover from disk failure restore database from most recent dump.  
• Consult the log and redo all transactions that committed after the dump Can be 

extended to allow transactions to be active during dump; known as fuzzy dump 

 

5.8. ADVANCED RECOVERY TECHNIQUES 

 

Advanced Recovery: Key Features 

 

Support for high-concurrency locking techniques, such as those used for B
+
-tree concurrency 

control, which release locks early .Supports “logical undo” Recovery based on “repeating 

history”, whereby recovery executes exactly the same actions as normal processing including 

redo of log records of incomplete transactions, followed by subsequent undo Key benefits 

supports logical undo easier to understand/show correctness 

 

Advanced Recovery: Logical Undo Logging 

 

Operations like B
+
-tree insertions and deletions release locks early. They cannot be undone 

by restoring old values (physical undo), since once a lock is released, other transactions may 

have updated the B
+
-tree. Instead, insertions (resp. deletions) are undone by executing a 

deletion (resp. insertion) operation (known as logical undo).For such operations, undo log 

records should contain the undo operation to be executed Such logging is called logical undo 

logging, in contrast to physical undo Logging Operations are called logical operations. 

 

Advanced Recovery: Physical Redo 

 

Redo information is logged physically (that is, new value for each write) even for 
 

Operations with logical undo Logical redo are very complicated since database state on disk 

may not be “operation consistent” when recovery starts Physical redo logging does not 

conflict with early lock release. 

 

Advanced Recovery: Operation Logging 

Operation logging is done as follows: When operation starts, log <Ti, on, operation-begin>. 

Here on is a unique identifier of the operation instance. While operation is executing, normal 
log records with physical redo and physical undo information are logged.  

When operation completes, <Ti, on, operation-end, U> is logged, where U contains 

information needed to perform a logical undo information. 
 
 
 

 

100 
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Advanced Recovery: Crash Recovery 

 

The following actions are taken when recovering from system crash (Redo phase): Scan log 

forward from last < checkpoint L> record till end of log Repeat history by physically 

redoing all updates of all transactions, Create an undo-list during the scan as follows undo-list 

is set to L initially 

 

Whenever <Ti start> is found Ti is added to undo-list Whenever <Ti commit> or <Ti abort> 

is found, Ti is deleted from undo- list This brings database to state as of crash, with 

committed as well as uncommitted transactions having been redone. Now undo-list contains 

transactions that are incomplete, that is, have neither committed nor been fully rolled back. 

(Undo phase): Scan log backwards, performing undo on log records of transactions found in 

undo-list. Log records of transactions being rolled back are processed as re found. 

 

Advanced Recovery: Check pointing 

 

Check pointing is done as follows: 

 

–   Output all log records in memory to stable storage 

–   Output to disk all modified buffer blocks 

–   Output to log on stable storage at < checkpoint L> record. 

 

Transactions are not allowed to perform any actions while check pointing is 

in progress. 

 

Advanced Recovery: Fuzzy Check pointing 

 

Fuzzy check pointing is done as follows:  
–   Temporarily stop all updates by transactions 

–   Write a <checkpoint L> log record and force log to stable storage 

–   Note list M of modified buffer blocks 

–   Now permit transactions to proceed with their actions 

–   Output to disk all modified buffer blocks in list M blocks should not be updated while 

being output  
Follow WAL: all log records pertaining to a block must be output before the block is output Store a 

pointer to the checkpoint record in a fixed position last_checkpoint on disk. 
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When recovering using a fuzzy checkpoint, start scan from the checkpoint record pointed to 

by last_checkpoint Log records before last_checkpoint have their updates reflected in 
 
database on disk, and need not be redone.Incomplete checkpoints, where system had crashed 

while performing checkpoint, are handled safely ARIES ARIES is a state of the art 
 
recovery method Incorporates numerous optimizations to reduce overheads during normal 

processing and to speed up recovery .The “advanced recovery algorithm” we studied earlier is 

modeled after ARIES, but greatly simplified by removing optimizations Unlike the advanced 

recovery algorithm, ARIES Uses log sequence number (LSN) to identify log records.Stores 

LSNs in pages to identify what updates have already been applied to a database page. 
 
 
 

5.9. REMOTE BACKUP SYSTEMS 

 

Remote backup systems provide high availability by allowing transaction processing to 

continue even if the primary site is destroyed.Detection of failure: Backup site must detect 

when primary site has failed . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To distinguish primary site failure from link failure maintain several communication links 

between the primary and the remote backup. Heart-beat messages 
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Transfer of control: 
 

To take over control backup site first perform recovery using its copy of the database and all 

the long records it has received from the primary. Thus, completed transactions are redone 

and incomplete transactions are rolled back. 

 

When the backup site takes over processing it becomes the new primary to transfer control 

back to old primary when it recovers, old primary must receive redo logs from the old backup 

and apply all updates locally. 

 

Time to recover: To reduce delay in takeover, backup site periodically processes the 
 

Redo log records (in effect, performing recovery from previous database state), performs a 

checkpoint, and can then delete earlier parts of the log. 
 

 

Hot-Spare configuration permits very fast takeover: Backup continually processes redo log 

record as they arrive, applying the updates locally. When failure of the primary is detected 

the 
 
Backup rolls back incomplete transactions, and is ready to process new transactions. 

Alternative to remote backup: distributed database with replicated data .Remote backup is 

faster and cheaper, but less tolerant to failure. 

 

Ensure durability of updates by delaying transaction commit until update is logged at backup; 

avoid this delay by permitting lower degrees of durability. One-safe: commit as soon as 

transaction’s commit log record is written at primary Problem: updates may not arrive at 

backup before it takes over. Two-very-safe: commit when transaction’s commit log record is 

written at primary and backup Reduces availability since transactions cannot commit if either 

site fails. Two-safe: proceed as in two-very-safe if both primary and backup are active. If 

only the primary is active, the transaction commits as soon as is commit log record is written 

at the primary. Better availability than two-very-safe; avoids problem of lost transactions in 

one-safe. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
 


