

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	DESIG	DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEM							
Course Code	AME51	AME519							
Programme	B.Tech.	B.Tech.							
Semester	V	V ME							
Course Type	Elective	Elective							
Regulation	IARE -	IARE - R16							
			Theory		Practio	ractical			
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits			
	3		1	3	-	-			
Chief Coordinator	Mr. G	Mr. G Musalaiah, Assistant Professor							
Course Faculty	Mr. G	Mr. G Musalaiah, Assistant Professor							

I. COURSE OVERVIEW:

This course provides students with an introduction to principal concepts and methods of fluid mechanics. Topics covered in the course include pressure, hydrostatics, and buoyancy; open systems and control volume analysis; mass conservation and momentum conservation for moving fluids; viscous fluid flows, flow through pipes; dimensional analysis; boundary layers, and lift and drag on objects. Students will work to formulate the models necessary to study, analyze, and design fluid systems through the application of these concepts, and to develop the problem solving skills essential to good engineering practice of fluid mechanics in practical applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME008	IV	Mechanics of fluids and hydraulic machines	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Design of Hydraulic and Pneumatic system	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	>	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Component	Т	Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	i otar warks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and	3	by Presentation on real-world problems
	an engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminar
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	1	Term Paper

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams.	1	Seminar
PSO 2	Software Engineering Practices: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	-	-
PSO 3	Successful Career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become technocrats.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES :

The cour	The course should enable the students to:					
Ι	Understand of basic knowledge of hydraulic and pneumatic systems.					
II	Classification of pumps based on the working phenomenon.					
III	Use of hydraulic power pack in the hydraulic systems.					
IV	Design of hydraulic circuits based on the application.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	To expose the student to	CLO 1	Outline of various systems.
	the different types of	CLO 2	Understand the principles.
	hydraulic and pneumatic systems and their operating principle To learn the fundamentals and working of different pumps used in the	CLO 3	Understand the properties of hydraulic fluid.
	hydraulic system.		
CO 2	Understanding the	CLO 4	Define pump and its types.
	application of hydraulic	CLO 5	Understand the flow rate of pumps and efficiency.
	power pack in the domain	CLO 6	Selection and specifications of different types of
	of a hydraulic system.		pumps.
CO 3	To enhance the different	CLO 7	Discuss about actuators and effect of pressure.
	hydraulic circuits and	CLO 8	Define elements of power pack systems.
	function of accumulator	CLO 9	Discuss about the capacity of hydraulic systems.
	used in the hydraulic system	CLO 10	Understand the importance of safety systems.
	Applying the knowledge of hydraulic and pneumatic systems in the field of automation in the industries and various applications.		
CO 4	To expose the student to	CLO 11	Define hydraulic circuits and valves.
	the different types of	CLO 12	Explain about different hydraulic circuits.
	hydraulic and pneumatic systems and their	CLO 13	Discuss the various types of control valves.
	operating principle.	CLO 14	Understand the working of solenoid valve.
CO 5	To learn the fundamentals and working of different	CLO 15	Understand the hydraulic and pneumatic equipment in detailed.
	pumps used in the hydraulic system.	CLO 16	Describe the importance of filters, grills, registers & Explain the working of fans and blowers.
		CLO 17	Discuss the maintenance and troubleshooting of hydraulic systems.
		CLO 18	Understand the hydraulic and pneumatic equipment in detailed.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AME519.01	CLO 1	Outline of various systems.	PO 1	3
AME519.02	CLO 2	Understand the principles.	PO 2, PO4	3
AME519.03	CLO 3	Understand the properties of hydraulic fluid.	PO 1, PO2	2
AME519.04	CLO 4	Define pump and its types.	PO 2, PO4	2
AME519.05	CLO 5	Understand the flow rate of pumps and efficiency.	PO 1	1
AME519.06	CLO 6	Selection and specifications of different types of	PO 1	1
		pumps.		

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
AME519.07	CLO 7	Discuss about actuators and effect of pressure.	PO 1, PO2	2
AME519.08	CLO 8	Define elements of power pack systems.	PO 1, PO4	1
AME519.09	CLO 9	Discuss about the capacity of hydraulic systems.	PO 2, PO4	2
AME519.10	CLO 10	Understand the importance of safety systems.	PO 1, PO2	3
AME519.11	CLO 11	Define hydraulic circuits and valves.	PO 2, PO4	1
AME519.12	CLO 12	Explain about different hydraulic circuits.	PO 1	3
AME519.13	CLO 13	Discuss the various types of control valves.	PO 1	1
AME519.14	CLO 14	Understand the working of solenoid valve.	PO 1, PO2	2
AME519.15	CLO 15	Understand the hydraulic and pneumatic equipment in detailed.	PO 1, PO4	1
AME519.16	CLO 16	Understand the programmable logic circuits and controllers.	PO 2, PO4	2
AME519.17	CLO 17	Discuss the maintenance and troubleshooting of hydraulic systems.	PO 1, PO2	3
AME519.18	CLO 18	Understand the hydraulic and pneumatic equipment in detailed.	PO 2, PO4	1
	2 11 1	equipment in detailed. 2 - Modium: 1 - Low		

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)						
Outcomes (COs)	PO 1	PO 2	PO 4	PSO1			
CO 1	3			1			
CO 2		2	1				
CO 3	3						
CO 4		2	1	1			
CO 5	3	2		1			

3= High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2											1		
CLO 2	3	2		1											
CLO 3	3												1		
CLO 4		2		1									1		

Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes	PO1	PO2	PO3	PO 4	PO5	P06	P07	POS	POQ	PO10	PO11	PO12	PSO1	PSO2	PSO3
(CLOs)	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	1505
CLO 5	3	2													
CLO 6	3			1											
CLO 7		2													
CLO 8	3	2													
CLO 9		2		1											
CLO 10	3			1											
CLO 11													1		
CLO 12	3	2											1		
CLO 13	3														
CLO 14		2													
CLO 15	3														
CLO 16	3	2											1		
CLO 17				1									1		
CLO 18	3	2											1		

3 = **High; 2** = **Medium; 1** = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO4,PSO1	SEE Exams	PO1, PO2, PO4,PSO1	Assignments	PO1,PO2, PO4,PSO1	Seminars	PO1, PO2, PO4,PSO1
Laboratoy Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO4,PSO1						

XIV. ASSESSMENT METHODOLOGIES – INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I	OIL AND HYDRAULIC SYSTEMS							
Introduction, history of fluid power, Pascal's law, Bramah's press, Bernoulli's principle, Toricelli principle, fluid principle, fluid properties, viscosity, effect of temperature, dust and decay of oils, basic systems of hydraulic, physical units of fluid power, units of measurement, types of hydraulic fluid and selection criteria, properties of hydraulic fluid, physical characteristic, maintenance of hydraulic oils, oil hydraulic element and their representation in the circuits, comparison of mechanical, electrical, hydraulic and pneumatic systems for force and motion, analysis in automation.								
Unit-II	HYDRAULIC PUMPS							
Classification of pumps, gear pump, types of gear pumps, screw pump, vane pump, types of vane pumps, piston pump, bent axis in line piston pump, internal and external gear pumps, selection and sizing specification of pumps, specification of pumps, pump and pressure pulsation, flow rate and power of hydraulic pump, power and pump efficiencies, pressure, flow efficiencies, oil compatibility, size, noise, pump ripple, checklist; Actuators, design of linear actuator, cushioning, seals, mounting details, piston rod diameter and its effect on the pressure, servo controlled valves, hydraulic balanced circuits, sequencing and synchronizing circuits, rotary actuators.								
Unit-III	HYDRAULIC POWER PACK							
Selection, pov	Element of power pack, design of hydraulic power pack, line pressure, discharge and motor. Selection, power pack size and capacity, importance of pressure relief valve and safety systems, heating and cooling systems for hydraulic power pack.							
Unit -IV	HYDRAULIC CIRCUITS AND ACCUMULATOR							
hydraulic circu synchronizing	uits, manual or automatic hydraulic system, regenerative circuit, use of check valves in hit, selection of pump, standard in circuit, circuit diagram representation, sequencing and circuits; accumulator, low cost automation; meter-in circuit, meter-out circuit, bleed-off on control valves, solenoid valves, flow control and pressure control valves, pressure accumulator.							
Unit -V	AUTOMATION							
	Hydraulic and pneumatic equipment in automation, low cost automation, relay circuit, programmable logic circuit, automation, micro controller; maintenance and troubleshooting of hydraulic and pneumatic							
Text Books:								
 S. R. Majumdar, —Oil Hydraulic Systems, Tata McGraw-Hill, 1st Edition,2013. S. R. Majumdar, —Pneumatic Systems, Principles & Maintenance, Tata McGraw-Hill, 1st Edition,2013. T. Jagadeesha, —Hydraulic and Pneumatics, I.K Publishing House (Pvt).Ltd, 1st Edition,2013. 								
Reference Boo	oks:							
	 Andrew Parr, —Hydraulic & Pneumaticl, Butterworth-Heinemann Ltd, 2nd Edition, 2013. Antony Esponssito, —Fluid Power with applicationsl, Prentice Hall, 5th Edition, 2015. 							

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Derivation of Pascal's law, Bramah's press, Bernoulli's principle, Toricelli principle, fluid principle.	CLO 1	T2:2.3
2	Discuss the fluid properties, viscosity, effect of temperature, dust and decay of oils.	CLO 1	R1:2.6

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
3	Understand basic systems of hydraulic, physical units of fluid power, units of measurement.	CLO 2	T1:2.6
4	Classification of hydraulic fluid and selection criteria, properties of hydraulic fluid, physical characteristic.	CLO 2	T2:2.7 R1:2.18
5	Maintenance of hydraulic oils	CLO 3	T2:2.22
6	Discuss oil hydraulic element and their representation in the circuits.	CLO 3	T2:2.25
7	Comparison of mechanical and electrical systems	CLO 3	T2:2.26 R1:2.55
8	Comparison hydraulic and pneumatic systems for force and motion.	CLO 3	T2:2.16 R1:2.61
9	Analysis in automation.	CLO 2	T2:2.30 R1:2.58
10	Classification of pumps, gear pump, types of gear pumps, screw pump.	CLO 5	T2:3.6 R1:4.29
11	Discuss the working of vane pump, types of vane pumps, piston pump, bent axis in line piston pump.	CLO 5	T2:3.14 R1:4.31
12	Explain internal and external gear pumps, selection and sizing specification of pumps.	CLO 4	T2:3.14 R1:4.33
13	Understand pump and pressure pulsation, flow rate and power of hydraulic pump.	CLO 4	R1:4.36
14	Power and pump efficiencies, pressure, flow efficiencies.	CLO 6	T2:3.18 R1:4.64
15	Discuss Oil compatibility, size, noise, pump ripple, checklist.	CLO 5	T2:3.22
16	Actuators, design of linear actuator, cushioning, seals, mounting details.	CLO 4	T2:3.28 R1:4.67
17	Explain piston rod diameter and its effect on the pressure, servo controlled valves.	CLO 5	T2:4.2
18	Describe hydraulic balanced circuits, sequencing and synchronizing circuits, rotary actuators.	CLO 6	T2:4.3 R1:4.71
19	Describe Element of power pack.	CLO 9	T1:4.8 R2:4.68
20-21	Design of hydraulic power pack, line pressure, discharge and motor.	CLO 9	T2:4.15 R1:5.74
22	Describe Selection, power pack size and capacity.	CLO 10	T1:4.12 R2:5.75
23-24	Importance of pressure relief valve	CLO 7	T1:4.8 R1:5.72
25	Importance of safety systems	CLO 10	T1:5.8 R1:5.73
26-27	Heating and cooling systems for hydraulic power pack.	CLO 7	T1:5.14 R1:6.78
28	Describe hydraulic circuits, manual or automatic hydraulic system	CLO 11	T2:5.19 R1:6.81
29-30	Discuss regenerative circuit, use of check valves in hydraulic circuit	CLO 12	T1:6.4 R2:6.8
31	Explain selection of pump, standard in circuit, circuit diagram representation.	CLO 13	T2:7.7 R1:7.74
32-33	Explain sequencing and synchronizing circuits; accumulator, low cost automation.	CLO 14	T1:7.12 R2:8.75
34	Describe meter-in circuit, meter-out circuit, bleed-off circuit.	CLO 14	T1:7.8 R1:8.72
35	Discuss direction control valves, solenoid valves, flow control.	CLO 15	T1:8.8 R1:8.73
36	Describe pressure control valves, pressure compensation, accumulator.	CLO 17	T1:9.14 R1:10.78

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
37-38	Explain hydraulic and pneumatic equipment in automation.	CLO 16	T2:9.19 R1:10.814
39-40	Understand low cost automation.	CLO 18	T1:10.4 R2:11.68
41-43	Discuss relay circuit, programmable logic circuit, automation, micro controller	CLO 17	T2:10.7 R1:12.74
44-45	Explain maintenance and troubleshooting of hydraulic and pneumatic circuit.	CLO 18	T1:11.12 R2:12.75

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With POs	Relevance With PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	To understand the technology of thermo-electric refrigeration, solar powered refrigeration, etc.	Seminars / NPTEL	PO 4	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2	PSO 1

Prepared by: Mr. G Musalaiah, Assistant Professor

HOD, ME