

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	DATA STRUCTURES						
Course Code	ACSB0	3					
Programme	B.Tech						
Semester	III	CS	E IT ECE CE	ME			
Schiester	IV	AE	EEE				
Course Type	Core						
Regulation	IARE - R18						
			Theory		Practic	tical	
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits	
	3		0	3	3	1.5	
Chief Coordinator	Dr. K Suvarchala, Associate Professor						
Course Faculty	Dr. P Govardhan, Associate Professor Ms. S J Sowjanya, Assistant Professor						

I. COURSEOVERVIEW:

The course covers some of the general-purpose data structures and algorithms, and software development. Topics covered include managing complexity, analysis, static data structures, dynamic data structures and hashing mechanisms. The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter in real life. This course reaches to student by power point presentations, lecture notes, and lab which involve the problem solving in mathematical and engineeringareas.

II. COURSEPRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACSB01	II	Programming for Problem Solving	3

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Data Structures	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONALMETHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	x	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	✗ Open Ended Experiments						

V. EVALUATIONMETHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component		Theory			
Type of Assessment	CIE Exam	Quiz	AAT	Total Marks	
CIA Marks	20	05	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz – Online Examination:

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES AREASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Assignments/Quiz
	mathematics, science, engineering fundamentals, and		
	anengineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research	2	Seminar
	literature, and analyze complex engineering problems reaching		
	substantiated conclusions using first principles of mathematics,		
	natural sciences, and engineering sciences		
PO 3	Design/development of solutions: Design solutions for	2	Seminar
	complex engineering problems and design system components		
	or processes that meet the specified needs with		
	appropriateconsideration for the public health and safety, and		
	the cultural, societal, and environmental considerations.		
PO 5	Modern tool usage: Create, select, and apply appropriate	2	Seminar/Videos
	techniques, resources, and modern engineering and IT tools		
	including prediction and modeling to complex		
	engineeringactivities with an understanding of the limitations.		
PO11	Life-long learning: Recognize the need for, and have	2	Seminar
	thepreparation and ability to engage independent and life-long		
	learning in the broadest context of technological change.		

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency
			assessed by
PSO 1	Professional Skills: The ability to research, understand and	3	Seminar
	implement computer programs in the areas related to		
	algorithms, system software, multimedia, web design, big data		
	analytics, and networking for efficient analysis and design of		
	Computer-based systems of varying complexity.		

	Program Specific Outcomes (PSOs)	Strength	Proficiency
			assessed by
PSO 2	Broadness and Diversity: Graduates will have a broad	-	-
	understanding of economical, environmental, societal, health		
	and safety factors involved in infrastructural development, and		
	shall demonstrate ability to function within multidisciplinary		
	teams with competence in modern tool usage.		
PSO 3	Self-Learning and Service: Graduates will be motivated for	1	Seminar/Guest
	continuous self-learning in engineering practice and/ or pursue		Lecture
	research in advanced areas of civil engineering in order to offer		
	engineering services to the society, ethically and responsibly.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The course	The course should enable the students to:				
I	Learn the basic techniques of algorithm analysis.				
II	Demonstrate searching and sorting algorithms and analyze their time complexities.				
III	Implement linear data structures viz. stack, queue and linked list.				
IV	Demonstrate non-linear data structures viz. tree and graph traversal algorithms.				
V	Study and choose appropriate data structure to solve problems in real world.				

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	of data structures and	CLO 1	Understand algorithms and data structures in terms of time and space complexity of basic operations.
	apply algorithm for solving problems like	CLO 2	Choose a suitable algorithm to organize the data in ascending or descending order.
	sorting, searching, insertion and deletion of data.	CLO 3	Explore an algorithm to find the location of an element in a given list.
	uata.	CLO 4	Compare the time complexities of various searching and sorting algorithms.
CO 2	Understand linear data structures for processing	CLO 5	Implementation of stack and queues using an underlying array.
	of ordered or unordered data.	CLO 6	Understand application of stacks in arithmetic expression conversion and evaluation.
			Understand working of circular queues and double ended queue.
CO 3	Explore various operations on dynamic	CLO 8	Understand dynamic data structures and their real time applications.
	data structures like single linked list, circular	CLO 9	Understand the basic insertion and deletion operations associated with linked list.
	linked list and doubly linked list.	CLO 10	Organize the data in various linked representation format.
CO 4	Explore the concept of non linear data structures	CLO 11	Understand the concept of non-linear data structures viz. trees and graphs.
	such as trees and graphs.	CLO 12	Application of trees, graphs and graph traversal techniques.
CO 5	Understand the binary search trees, hash	CLO 13	Compare and Contrast the operations of binary search trees and AVL trees.

COs	Course Outcome	CLOs	Course Learning Outcome
	function, and concepts of collision and its	CLO 14	Understand the concept of M-way search trees, operations and applications.
	resolution methods.	CLO 15	Understand the implementation of hashing using hash table and hash function.
		CLO 16	Describe the concept of collision and its resolving methods in applications.
		CLO 17	Strengthen the knowledge of data structures and algorithms for employability.

X. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
ACSB03.01	CLO 1	Understand algorithms and data structures in terms of time and space complexity of basic operations.	PO 1	3
ACSB03.02	CLO 2	Choose a suitable algorithm to organize the data in ascending or descending order.	PO3,PO4	2
ACSB03.03	CLO 3	Explore an algorithm to find the location of an element in a given list.	PO2,PO5	2
ACSB03.04	CLO 4	Compare the time complexities of various searching and sorting algorithms.	PO 1	3
ACSB03.05	CLO 5	Implementation of stack and queues using an underlying array.	PO2, PO3,PO5	3
ACSB03.06	CLO 6	Understand application of stacks in arithmetic expression conversion and evaluation.	PO1,PO2	3
ACSB03.07	CLO 7	Understand working of circular queues and double ended queue.	PO1,PO5	2
ACSB03.08	CLO 8	Understand dynamic data structures and their real time applications.	PO1,PO2, PO5	3
ACSB03.09	CLO 9	Understand the basic insertion and deletion operations associated with linked list.	PO1,PO2, PO5	3
ACSB03.10	CLO 10	Organize the data in various linked representation format.	PO1,PO2	3
ACSB03.11	CLO 11	Understand the concept of non-linear data structures viz. trees and graphs.	PO1,PO2	2
ACSB03.12	CLO 12	Application of trees, graphs and graph traversal techniques.	PO1	3
ACSB03.13	CLO 13	Compare and Contrast the operations of binary search trees and AVL trees.	PO1,PO2,PO5	3
ACSB03.14	CLO 14	Understand the concept of M-way search trees, operations and applications.	PO1,PO2,PO5	2
ACSB03.15	CLO 15	Understand the implementation of hashing using hash table and hash function.	PO1,PO2, PO5	3
ACSB03.16	CLO 16	Describe the concept of collision and its resolving methods in applications.	PO1,PO2, PO5, PO11	2
ACSB03.17	CLO 17	Strengthen the knowledge of data structures and algorithms for employability.	PO1,PO2, PO5, PO11	2

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes (COs)	Program Outcomes (POs)										
	PO 1	PO 2	PO 3	PO 5	PO 11	PSO1	PSO2	PSO3			
CO 1	3	3	2	2		3					
CO 2	3	3	2	2		2					
CO 3	3	3	2	2		2					
CO 4	2	3		2		2					
CO 5	3	3		2	3	3		3			

^{3 =} High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

CLOs					Progr	am Oı	itcome	es (PO	s)					gram Sj comes (
CLOS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3														
CLO 2		3	2										3		
CLO 3		3			2								3		
CLO 4	3														
CLO 5		3	3		2										
CLO 6	3	3											3		
CLO 7	3				2								2		
CLO 8	3	3	2										3		
CLO 9	2	3			2								3		
CLO 10	3	3											2		
CLO 11	3	3													
CLO 12	3														3
CLO 13	3	3			2								3		
CLO 14	2	3			2								3		
CLO 15	3	3			2								3		
CLO 16	2	3			2						2				3
CLO 17	2	3			2						3				3

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES -DIRECT

CIE Exams	PO1,PO3, PO5, PO 11,PSO1, PSO3	SEE Exams	PO1,PO2, PO3, PO5, PO11, PSO1, PSO 3	Assignments	PO 1	Seminare	PO 2, PO 3, PO 5, PO 11, PSO 1, PSO 3
Laboratory Practices	_	Student Viva	-	Mini Project		Certification	-
Term Paper	-						

XIV. ASSESSMENT METHODOLOGIES -INDIRECT

/	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

MODULE-I INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING

Basic concepts: Introduction to data structures, classification of data structures, operations on data structures, abstract data type, algorithms, different approaches to design an algorithm, recursive algorithms; Searching techniques: Linear search, binary search and Fibonacci search; Sorting techniques: Bubble sort, selection sort, insertion sort, quick sort, merge sort, and comparison of sorting algorithms.

MODULE-II LINEAR DATA STRUCTURES

Stacks: Primitive operations, implementation of stacks using Arrays, applications of stacks arithmetic expression conversion and evaluation; Queues: Primitive operations; Implementation of queues using Arrays, applications of linear queue, circular queue and double ended queue (deque).

MODULE-III LINKED LISTS

Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single linked list; Applications of linked lists: Polynomial representation and sparse matrix manipulation.

Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of Stack, linked list representation and operations of queue.

MODULE-IV NON LINEAR DATA STRUCTURES

Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree traversal, binary tree variants, application of trees; Graphs: Basic concept, graph terminology, graph implementation, graph traversals, Application of graphs, Priority Queue.

MODULE-V BINARY TREES AND HASHING

Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees; Introduction to M-Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash functions, collisions, applications of hashing.

Text Books:

- 1. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley StudentEdition.
- 2. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.

Reference Books:

- 1. S. Lipschutz, "Data Structures", Tata McGraw Hill Education, 1stEdition,2008.
- 2. D. Samanta, "Classic Data Structures", PHI Learning, 2ndEdition,2004.

Web References:

- $1.\ https://www.tutorialspoint.com/data_structures_algorithms/algorithms_basics.htm$
- 2. https://www.codechef.com/certification/data-structures-and-algorithms/prepare
- $3.\ https://www.cs.auckland.ac.nz/software/AlgAnim/dsToC.html$
- 4. https://online-learning.harvard.edu/course/data-structures-and-algorithms

XVI. COURSEPLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1 – 2	Basic concepts: Introduction to Data Structures.	CLO 1	T1:1.1.3 R2:1.2
3 – 4	Classification of data structures	CLO 2	T1:1.1.3 R2:1.4
5 – 6	Operations on data Structures	CLO 2	T1:1.2
7 – 8	Searching techniques: Linear search and binary search	CLO 4	T1:5.1
9 – 10	Sorting techniques:Bubble sort, selection sort	CLO 4	R1:14.5
11 – 14	Insertion sort and comparison of sorting algorithms.	CLO 7	T1:5.2 R2:10.2
15 – 16	Stacks: Primitive operations, implementation of stacks using Arrays.	CLO 9	T1:7.1
17 – 20	Applications of stacks arithmetic expression conversion and evaluation.	CLO 9	T1:7.2
21 – 22	Queues: Primitive operations; Implementation of queues using Array.	CLO 11	T1:8.1
23 - 24	Applications of linear queue, circular queue.	CLO 11	T1:8.4
25 – 26	Double ended queue (deque).	CLO 13	R2:5.4
27 – 28	Linked lists: Introduction, singly linked list,representation of a linked list in memory.	CLO 11	T1:9.1
29–30	Operations on a single linked list, Applications of linked lists: Polynomial representation, Circular linked lists, doubly linked lists;	CLO 9	T1:9.2
31 - 32	Sparse matrix manipulation.	CLO 14	T2:9.2
33 – 35	Linked list representation and operations of Stack, Linked list representation and operations of queue.	CLO 14	T1:9
36 – 38	Trees: Basic concept, binary tree, binary tree representation, array and linked representations	CLO 14	T1:13.1-13.2
39 – 40	Binary tree traversal, binary tree variants, application of trees.	CLO 14	T1:13.2.3
41 – 43	Graphs: Basic concept, graph terminology, graph implementation.	CLO 14	R2:8.2
44 – 46	Graph traversals, Application of graphs,	CLO 17	T2:6.2
47 – 50	Priority Queue.	CLO 17	T1:6.1 T2:5.6
51 – 52	Binary search trees, properties and operations.	CLO 16	T1:14.1
53 – 55	Balanced search trees: AVL trees, Introduction to M-Way search trees, B trees.	CLO 16	T1:14.3
56 – 58	Hashing and collision: Introduction, hash tables, hash functions,	CLO 15	R2 : 6.4
59 - 60	Collisions, applications of hashing.	CLO 15	R2:6.4

$\ensuremath{\mathsf{XVII}}. \ensuremath{\mathsf{GAPS}}$ in the syllabus - to meet industry / profession requirements:

S no	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Familiarizing different	Seminar/NPTEL	PO3	PSO1
	Tree techniques viz,			
	Threaded binary trees, B+			
	trees			
2	Familiarizing the role of	Industrial visits	PO1,PO2	PSO3
	Python language in developing			
	application level programs.			
3	Solving different problems	Extra Lab Sessions,	PO2	PSO3
	and Practicing various	Participating in		
	debugging strategies to	Coding contests.		
	become a good programmer			

Prepared by: Dr. K Suvarchala, Associate Professor

HOD, CE