ELECTRONIC DEVICES AND CIRCUITS

III Semester: ECE								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AECB06	Core	L	Т	P	С	CIA	SEE	Total
		3	1	-	4	30	70	100
Contact Classes: 45	Tutorial Classes: 15	Practical Classes: Nil				Total Classes: 60		

OBJECTIVES:

The course should enable the students to:

- I. Introduce components such as diodes, BJTs and FETs.
- II. Know the applications of components.
- III. Know the switching characteristics of components.
- IV. Give understanding of various types of amplifier circuits.

COURSE LEARNING OUTCOMES (CLOs):

- 1. Understand and analyze diodes operation and their characteristics in order to design basic form circuits.
- 2. Explain the operation of Zener diode and its usage in voltage regulating application.
- 3. Explain the operational characteristics of various special purpose diodes such as zener diode, Tunnel diode, varactor diode and photo diode and unijunction transistor.
- 4. Understand the principle of operation and characteristics of silicon controlled rectifier and its application in power supply protection circuit.
- 5. Explain half wave rectifier without and with different filters for the given specifications.
- 6. Design full wave rectifier without filter and different filters for the given specifications.
- 7. Design and selection of appropriate filter to meet the requirements of voltage regulation and ripple factor.
- 8. Write Use of diodes in typical circuits: rectifiers, regulated power supplies, limiting circuits.
- 9. Understand the different parameters of transistors such as depletion width and channel width for understanding the functioning and design of this component.
- 10. Apply small-signal models to field effect transistors and determine the voltage gain and input and output impedances.
- 11. Analyze various transistor configurations and asses merits and demerits for different applications.
- 12. Discuss the construction of MOSFET and steady the VI characteristics, as it is the prime component in VLSI technology.
- 13. Distinguish the constructional features and operation of FET and MOSFET and their applications.
- 14. Develop the capability to analyze and design simple circuits containing non-linear elements such as transistors using the concepts of load lines, operating points and incremental analysis.
- 15. Identify the various transistor biasing circuits and its usage in applications like amplifiers.
- 16. Explain basic circuits like dc and biasing circuits, small-signal ac circuits with emphasis on single-stage amplifiers.
- 17. Explain the role of temperature variations on the performance of the BJT, FET and MOSFET in order to take necessary measures in design for stabilization.
- 18. Discuss and Design small signal amplifier circuits applying the various biasing techniques.
- 19. Apply small-signal models to transistors and determine the voltage gain and input and output impedances.
- 20. Analyze the performance of FETs on the basis of their operation and working.
- 21. Apply the concept of electronic devices and circuits to understand and analyze real time applications.
- 22. Acquire the knowledge and develop capability to succeed national and international level competitive examinations.

Module-I DIODE AND APPLICATIONS

Diode-Static and Dynamic resistances, Equivalent circuit, Load line analysis, Diffusion and Transition Capacitances, Diode Applications: Switch-Switching times. Rectifier - Half Wave Rectifier, Full Wave Rectifier, Bridge Rectifier, Rectifiers With Capacitive Filter, Clippers-Clipping at two independent levels, Clampers-Clamping Operation, types, Clamping Circuit Theorem, Comparators.

Module -II BIPOLAR JUNCTION TRANSISTOR (BJT)

Classes: 10

Classes: 08

Principle of Operation and characteristics - Common Emitter, Common Base, Common Collector Configurations, Operating point, DC & AC load lines, Transistor Hybrid parameter model, Determination of h-parameters from transistor characteristics, Conversion of h-parameters.

Module -III TRANSISTOR BIASING AND STABILIZATION

Classes: 10

Bias Stability, Fixed Bias, Collector to Base bias, Self Bias, Bias Compensation using Diodes and Transistors.

Analysis and Design of Small Signal Low Frequency BJT Amplifiers: Analysis of CE, CC, CB Amplifiers and CE Amplifier with emitter resistance, low frequency response of BJT Amplifiers, effect of coupling and bypass capacitors on CE Amplifier.

Module -IV JUNCTION FIELD EFFECT TRANSISTOR

Classes: 08

Construction, Principle of Operation, Pinch-Off Voltage, Volt- Ampere Characteristic, Comparison of BJT and FET, Biasing of FET, FET as Voltage Variable Resistor, MOSFET Construction and its Characteristics in Enhancement and Depletion modes.

Module -V FET AMPLIFIERS

Classes: 09

Small Signal Model, Analysis of CS, CD, CG JFET Amplifiers. Basic Concepts of MOSFET Amplifiers. Special Purpose Devices: Zener Diode - Characteristics, Voltage Regulator; Principle of Operation - SCR, Tunnel diode, UJT, Varactor Diode.

Text Books:

- 1. Electronic Devices and Circuits Jacob Millman, McGraw Hill Education.
- 2. Electronic Devices and Circuits theory—Robert L. Boylestead, Louis Nashelsky, 11th Edition, Pearson, 2009.

Reference Books:

- 1. The Art of Electronics, Horowitz, 3rdEdition Cambridge University Press, 2018
- 2. Electronic Devices and Circuits, David A. Bell 5th Edition, Oxford.
- 3. Pulse, Digital and Switching Waveforms –J. Millman, H. Taub and Mothiki S. Prakash Rao, 2 Ed., McGraw Hill, 2008.
- 4. Electronic Devices and Circuits, S. Salivahanan, N.Suresh Kumar, A. Vallvaraj, 2nd Edition, TMH.

Web References:

- 1. http://www-mdp.eng.cam.ac.uk/web/library/enginfo/electrical/hong1.pdf
- 2. https://archive.org/details/ElectronicDevicesCircuits
- 3. http://nptel.ac.in/courses/Webcourse-contents/IIT-roorkee/basic electronics/home_page.htm
- 4. http://www.vidyarthiplus.in/2011/11/electronic-device-and-circuits-edc.html
- 5. http://www.satishkashyap.com/2013/03/video-lectures-on-electron-devices-by.html

E-Text Books:

- $1. \ http://services.eng.uts.edu.au/pmcl/ec/Downloads/LectureNotes.pdf$
- 2. http://nptel.ac.in/courses/122106025/
- 3. http://www.freebookcentre.net/electronics-ebooks-download/Electronic-Devices-and-Circuits-(PDF313p).html
- 4. https://www.jntubook.com/electronic-device-circuits-textbook-free-download/
- 5. http://www.faadooengineers.com/threads/32735-Electronic-Devices-And-Circuits-(EDC)-by-J-BGupta-full-book-pdf