

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	ENVIRONMENTAL ENGINEERING							
Course Code	ACE015	ACE015						
Programme	B.Tech	B.Tech						
Semester	VII C	VII CE						
Course Type	Core							
Regulation	IARE - R16							
		Theory		Practic	cal			
Course Structure	Lectures	5 Tutorials	Credits	Laboratory	Credits			
3 1 4 3								
Chief Coordinator	Ms. KoppoliAnushaHadassa, Assistant Professor							
Course Faculty	Mr .R. Suresh, Assistant Professor, Ms. KoppoliAnushaHadassa, Assistant Professor							

I. COURSE OVERVIEW:

This course will cover the study of various waterborne diseases which are very harmful to human beings, population forecasting for designing distribution systems, Designing of water treatment plant and various considerations, to determine the optimum dosage of coagulant, working of filters and troubles in their operation, various disinfection methods, Design principles of distribution system and analysis by hardy cross & equivalent pipe method, methods of conveying sewage to the treatment plant, various valves which are used in distribution system and also the characteristics of sewage and its estimation, various appurtenances in sewers, sewage disposal and farming. This course also cover the study of construction of oxidation pond, sludge digestion tank, skimming tanks, grit chambers, sedimentation tanks and designing of septic tanks and soak pits.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACE015	VII	Water Resources Engineering	4

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Environmental Engineering	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	×	Videos
×	✗ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment patte	ern for CIA
---------------------------	-------------

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT	1 otar Warks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Presentation on
	mathematics, science, engineeringfundamentals, and an		real-world problems
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Guest Lectures
	literature, and analyze complexengineering problems		
	reaching substantiated conclusions using first		
	principles of mathematics, natural sciences, and		
	engineering sciences		
PO3	Design/development of solutions: Design solutions	1	Seminars
	for complex engineering problems and design system		
	components or processes that meet the specified needs		
	with appropriate consideration for the public health and		
	safety, and the cultural, societal, and environmental		
	considerations.		
PO 6	Conduct investigations of complex problems: Use	2	Assignments
	research-based knowledge and research methods		
	including design of experiments, analysis and		
	interpretation of data, and synthesis of the information		
	to provide valid conclusions		

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 7	Environment and sustainability: Understand the	1	Seminar
	impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable		
	development.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Engineering Knowledge: Graduates shall demonstrate	1	Seminar
	sound knowledge in analysis, design, laboratory		
	investigations and construction aspects of civil		
	engineering infrastructure, along with good foundation		
	in mathematics, basic sciences and technical		
	communication		
PSO 2	Broadness and Diversity: Graduates will have a broad	-	-
	understanding of economic, environmental, societal,		
	health and safety factors involved in infrastructural		
	development, and shall demonstrate ability to function		
	within multidisciplinary teams with competence in		
	modern tool usage.		
PSO 3	Self-Learning and Service: Graduates will be	-	-
	motivated for continuous self-learning in engineering		
	practice and/or pursue research in advanced areas of		
	civil engineering in order to offer engineering services		
	to the society, ethically and responsibly.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES :

The cour	The course should enable the students to:					
Ι	Outline the different sources of water and its per capita demand.					
II	Describe the basic characteristics of water and study the procedure for determination					
III	Design the water supply lines, water collection and different distribution networks.					
IV	Construct and design waste water treatment units such as oxidation ponds, sludge digestion					
	tanks, soak pits etc.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe population	CLO 1	Understand the concept and importance of Protected
	forecasts, design period,		water supply.
	water demand, types of	CLO 2	Estimate the Population for the design period by
	demand, factors affecting		using different forecasting methods.
	fluctuations, fire demand,	CLO 3	Calculate and Understand the water demand, types of
	storage capacity, water		demand, factors affecting fluctuations.
	quality and testing.	CLO 4	Calculate the fire demand, storage capacity, water
	Drinking water standards		quality and its testing.
CO 2	Determine Layout and	CLO 5	Understand the concept of Drinking water standards.
	general outline of water		Comparison from quality and quantity and other
	treatment units,		considerations
	sedimentation, uniform	CLO 6	Understand theintakes, infiltration galleries, confined
	settling velocity,		and unconfined aquifers.
	principles, design factors,	CLO 7	Understand the, distribution systems, requirements,
	surface loading, jar test,	<u> </u>	methods and different layouts.
	optimum dosage of	CLO 8	Understand the Layout and general outline of water
	coagulant, coagulation,		treatment system
	flocculation, clarifier	CLO 9	Explain sedimentation, uniform settling
	design, coagulants, and feeding arrangements.	CT 0.10	velocityprinciples, design factors, surface loading.
	filtration	CLO 10	Understand jar test, optimum dosage of coagulant,
	muation		coagulation, flocculation, clarifier design,
00.0		CT 0 11	coagulants, and feeding arrangements.
CO 3	Understand Conservancy	CLO 11	Evaluate Filtration theory, working of slow and rapid
	and water carriage		gravity filters, multimedia filters, design of filters,
	systems, sewage and	CL 0 10	troubles in operation comparison of filters,
	storm water estimation,	CLO 12	Understand disinfection, types of disinfection, theory
	type of concentration, storm water over flows		of chlorination chlorine demand and other disinfection
	combined flow	CLO 13	
	characteristics of sewage,	CL0 15	Different treatment methods. distribution systems, types of layouts of distribution systems, design of
	cycles of decay,		distribution systems
	decomposition of sewage,	CLO 14	AnalyzeHardy Cross and equivalent pipe methods
	and examination of	CLO 14 CLO 15	Understand service reservoirs, joints, valves such as
	sewage.	CLO 15	sluice valves, air valves, scour valves and check
			valves water meters, laying and testing of pipe lines,
			pump house
CO 4	Explore Lay out and	CLO 16	Explain Conservancy and water carriage systems,
001	general outline of	CLO IO	sewage and storm water estimation.
	various units in a waste	CLO 17	Understand type of concentration, storm water over
	water treatment plant,	02017	flows combined flow.
	primary treatment design	CLO 18	Understand characteristics of sewage, cycles of
	of screens, grit		decay, decomposition of sewage, examination of
	chambers, skimming		sewage, B.O.D. and C.O.D. equations.
	principles and design of	CLO 19	Analyze the design of sewers, shapes and materials,
	biologicaltreatment,		sewer appurtenances manhole, inverted siphon, catch
	trickling filters, standard		basins, flushing tanks, ejectors, pumps and pump
	and high rate.		houses, house drainage
		CLO 20	Understand different components requirements,
			sanitary fittings, traps, one pipe and two pipe
			systems of plumbing, ultimate disposal of sewage,
			sewage farming, and dilution.

CO 5	Construction and design	CLO 21	Understand and analyze Lay out and general outline
	of oxidation ponds, sludge		of various units in a waste water treatment plant,
	digestion tanks, factors		primary treatment design of screens, grit chambers,
	effecting, design of		skimming tanks-sedimentation tanks-principles
	digestion tank, sludge	CLO 22	Evaluate the design of biological treatment, trickling
	disposal by drying, septic		filters, standard and high rate.
	tanks working principles	CLO 23	Construction and design of oxidation ponds, sludge
	and design-soak pits.		digestion tanks, factors effecting, design of digestion
	Ultimate disposal of		tank, sludge disposal by drying
	waste water, self-	CLO 24	Understand the septic tanks working principles and
	purification of rivers,		design-soak pits. Ultimate disposal of waste water,
	sewage farming.		self-purification of rivers, sewage farming

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
ACE015.01	CLO 1	Understand the concept and importance of	PO 1, PO 6,	2
		Protected water supply.	PO 7	
ACE015.02	CLO 2	Estimate the Population for the design period by	PO 1	2
		using different forecasting methods.		
ACE015.03	CLO 3	Calculate and Understand the water demand, types	PO 1	3
		of demand, factors affecting fluctuations.		
ACE015.04	CLO 4	Calculate the fire demand, storage capacity, water	PO 2	2
		quality and its testing.		
ACE015.05	CLO 5	Understand the concept of Drinking water	PO 1,	2
		standards. Comparison from quality and quantity	PO 2	
		and other considerations		
ACE015.06	CLO 6	Understand theintakes, infiltration galleries,	PO 2	2
		confined and unconfined aquifers.		
ACE015.07	CLO 7	Understand the, distribution systems, requirements,	PO 3	2
		methods and different layouts		
ACE015.08	CLO 8	Understand the Layout and general outline of water	PO 1,	3
		treatment system	PO 3	
ACE015.09	CLO 9	Explain sedimentation, uniform settling	PO 3,	2
		velocityprinciples, design factors, surface loading	PO 6	
ACE015.10	CLO 10	Understand jar test, optimum dosage of coagulant,	PO 3	2
		coagulation, flocculation, clarifier design,		
		coagulants, and feeding arrangements.		
ACE015.11	CLO 11		PO 1	1
		rapid gravity filters, multimedia filters, design of		
		filters, troubles in operation comparison of filters,		
ACE015.12	CLO 12	Understand disinfection, types of disinfection,	PO 1	3
		theory of chlorination chlorine demand and other		
		disinfection.		
ACE015.13	CLO 13	Different treatment methods. distribution systems,	PO 3, PO 6,	1
		types of layouts of distribution systems, design of	PO 7	
		distribution systems		
ACE015.14	CLO 14	AnalyzeHardy Cross and equivalent pipe methods	PO 2,	3
			PO 6	
ACE015.15	CLO 15	Understand service reservoirs, joints, valves such	PO 3,	1
		as sluice valves, air valves, scour valves and check	PO 7	
		valves water meters, laying and testing of pipe		
		lines, pump house.		
ACE015.16	CLO 16	Explain Conservancy and water carriage systems,	PO 3,	2
		sewage and storm water estimation.	PO 6	
ACE015.17	CLO 17	Understand type of concentration, storm water over	PO 3,	2
		flows combined flow.	PO 6	

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
ACE015.18	CLO 18	Understand characteristics of sewage, cycles of	PO 2,	2
		decay, decomposition of sewage, examination of	PO 3	
		sewage, B.O.D. and C.O.D. equations		
ACE015.19	CLO 19	Analyze the design of sewers, shapes and	PO 2,	1
		materials, sewer appurtenances manhole, inverted	PO 3	
		siphon, catch basins, flushing tanks, ejectors,		
		pumps and pump houses, house drainage.		
ACE015.20	CLO 20	Understand different components requirements,	PO 2, PO 3	2
		sanitary fittings, traps, one pipe and two pipe	PO 7	
		systems of plumbing, ultimate disposal of sewage,		
		sewage farming, and dilution.		
ACE015.21	CLO 21	Understand and analyze Lay out and general	PO 2,	2
		outline of various units in a waste water treatment	PO 3	
		plant, primary treatment design of screens, grit		
		chambers, skimming tanks-sedimentation tanks-		
		principles.		
ACE015.22	CLO 22	Evaluate the design of biological treatment,	PO 3, PO 6	2
		trickling filters, standard and high rate.	PO 7	
ACE015.23	CLO 23	Understand the septic tanks working principles and	PO 6,	2
		design-soak pits. Ultimate disposal of waste water,	PO 7	
		self-purification of rivers, sewage farming		
ACE015.24	CLO 24	Understand the septic tanks working principles and	PO 6,	1
		design-soak pits. Ultimate disposal of waste water,	PO 7	
		self-purification of rivers, sewage farming		
	2 IIIal	· 2 – Modium· 1 – Low		

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes (COs)	Program Outcomes (POs)										
	PO 1	PO 2	PO 3	PO 6	PO 7	PSO1	PSO2				
CO 1	3			2	1	1					
CO 2	3	2	2			1					
CO 3	2	3	2		1	2					
CO 4	3	2	2	2		3					
CO 5	3	2		1		2					

3= High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)										Program Specific Outcomes (PSOs)			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3					2	1						1		

Course					Progr	am O	utcom	es (PO	s)					gram Sp	
Learning													Out	comes (r50s)
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
(CLOs)															
CLO 2	2												2		
CLO 3	3												2		
CLO 4		2											2		
CLO 5	3	1													
CLO 6		2											2		
CLO 7			2												
CLO 8	3		3										2		
CLO 9			2										1		
CLO 10			2												
CLO 11	1												2		
CLO 12	3														
CLO 13			2			1	1						2		
CLO 14		3				3									
CLO 15			1				1						2		
CLO 16			1			3							2		
CLO 17			3			1							3		
CLO 18		3	2												
CLO 19	3	2											2		
CLO 20	2	1													
CLO 21	3	1											2		
CLO 22		2											3		
CLO 23		3				1							1		
CLO 24						1									
	$3 = H^{\dagger}$	- - 1		r - 1°		T	1	1	1	1	I	I	l.	1	

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO1, PO2, PO3, PO 6, PO 7, PSO1		PO1, PO2, PO3, PO 6, PO 7, PSO1	Assignments	PO 6	Seminars	PO 3, PO 7, PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XIV. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

UNIT-I	WATER QUALITY, DEMAND AND SUPPLY							
affecting fluc Comparison	Protected water supply, population forecasts, design period, water demand, types of demand, factors affecting fluctuations, fire demand, storage capacity, water quality and testing. Drinking water standards. Comparison from quality and quantity and other considerations, intakes, infiltration galleries, confined and unconfined aquifers, distribution systems, requirements, methods and layouts.							
UNIT-II	UNIT-II WATER TREATMENT AND DISTRIBUTION							
design factor design, coagu ,multimedia : disinfection, distribution s Cross and eq	Layout and general outline of water treatment units, sedimentation, uniform settling velocity, principles, design factors, surface loading, jar test, optimum dosage of coagulant, coagulation, flocculation, clarifier design, coagulants, and feeding arrangements. filtration, theory, working of slow and rapid gravity filters , multimedia filters, design of filters, troubles in operation comparison of filters, disinfection, types of disinfection, theory of chlorination chlorine demand and other disinfection treatment methods. distribution systems, types of layouts of distribution systems, design of distribution systems, Hardy Cross and equivalent pipe methods, service reservoirs, joints, valves such as sluice valves, air valves, scour valves and check valves water meters, laying and testing of pipe lines, pump house.							
UNIT-III	SEWAGE TREATMENT AND DISPOSAL							
concentration	and water carriage systems, sewage and storm water estimation, type of a,storm water over flows combined flow, characteristics of sewage, cycles of decay, on of sewage, examination of sewage, B.O.D. and C.O.D. equations.							
flushing tank	wers, shapes and materials, sewer appurtenances manhole, inverted siphon, catch basins, is, ejectors, pumps and pump houses, house drainage, components requirements, sanitary , one pipe and two pipe systems of plumbing, ultimate disposal of sewage, sewage farming							
UNIT-IV	WASTEWATER TREATMENT							
screens, grit	Lay out and general outline of various units in a waste water treatment plant, primary treatment design of screens, grit chambers, skimming tanks-sedimentation tanks-principles and design of biological treatment, trickling filters, standard and high rate.							
UNIT-V	DESIGN AND WORKING OF TREATMENT UNITS							
tank, sludge	Construction and design of oxidation ponds, sludge digestion tanks, factors effecting, design of digestion tank, sludge disposal by drying, septic tanks working principles and design-soak pits. Ultimate disposal of waste water, self-purification of rivers, sewage farming.							

Text Books:

- 1. S.K. Garg, "Environmental Engineering", Vol. I: Water Supply Engineering, 20th Edition Khanna Publishers, 2011.
- 2. Birdie, G.S. and Birdie, "Water Supply and Sanitary Engineering", DhanpatRai& Sons, 1992.
- 3. Duggal, K.N. "Elements of Environmental Engineering", S.Chand& Co, 2002.
- 4. Punmia B.C, Ashok Jain & Arun Jain, "Water Supply Engineering", Laxmi Publications, Pvt. Ltd., New Delhi, 2004.

Reference Books:

- 1. Metcalf and Eddy, "Waste Water Engineering, Collection, Treatment and Disposal", Tata McGraw Hill, Inc., New York.
- 2. H.S. Peavy and D.R.Rowe, "Environmental Engineering", 2nd Edition, Mc.Graw Hill Publishing

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning	Reference
110		Outcomes	
		(CLOs)	
1-2	Introduction and importance of Protected water supply.	CLO 1	T2:24.6
3-4	Estimation of Population for the design period by using different	CLO 1	T2:24.8
	forecasting methods.		R1:4.2
5-6	Water demand, types of demand, factors affecting fluctuations	CLO 2	T2:24.7
7-8	Fire demand, storage capacity, water quality and its testing.	CLO 2	T7:12.14
			R1: 7.1
9-10	Drinking water standards. Comparison from quality and quantity and other considerations.	CLO 3	T2:26.8
11-12	Intakes, infiltration galleries, confined and unconfined aquifers.	CLO 3	T2:26.10
13-14	Distribution systems, requirements, methods and different	CLO 4	T2:26.14
	layouts		R2:21.55
15-16	Layout and general outline of water treatment system.	CLO 4	T2:26.15
			R2:21.58
17-19	Sedimentation, uniform settling velocity principles, design	CLO 5	T2:26.16
	factors, surface loading		R2:21.61
20-22	Jar test, optimum dosage of coagulant, coagulation, flocculation	CLO 5	T2:25.12
			R2:21.24
23-25	Clarifier design, coagulants, feeding arrangements	CLO 6	T2:25.16
			R2:21.29
26	Filtration theory, working of slow and rapid gravity filters,	CLO 7	T2:25.14
	multimedia filters,	<u> </u>	R2:21.31
27-30	Design of filters, troubles in operation comparison of filters,	CLO 8	T2:25.14
21.22		CI O O	R2:21.33
31-32	Disinfection, types of disinfection, theory of chlorination chlorine demand and other disinfection	CLO 9	R2:21.33
33-34	Different treatment methods. distribution systems, types of	CLO 10	T2:27.2
	layouts of distribution systems		R2:21.64
35-38	Design of distribution systems and their working	CLO 11	T2:27.2
39-40	Derivation and working principle of Hardy Cross and equivalent	CLO 12	T2:27.2
	pipe methods.		R2:21.67
41-42	Service reservoirs, joints, valves such as sluice valves, air valves, scour valves	CLO 14	T2:27.2
43-44	Check valves water meters, laying and testing of pipe lines,	CLO 14	T2:27.3
	pump house.		R2:21.71

Lecture	Topics to be covered	Course	Reference
No		Learning	
		Outcomes	
		(CLOs)	
45	Conservancy and water carriage systems, sewage and storm	CLO 15	T2:27.4
	water estimation		R2:21.68
46	Concentration, storm water over flows combined flow,	CLO 14	T2:27.7
			R2:21.74
47	Characteristics of sewage, cycles of decay, decomposition of	CLO 16	T2:27.12
	sewage, examination of sewage, B.O.D. and C.O.D. equations		R2:21.75
48	Different components requirements, sanitary fittings, traps, one	CLO 17	T2:27.8
	pipe and two pipe systems of plumbing, ultimate disposal of		R2:21.72
	sewage, sewage farming, and dilution.		
49-51	Lay out and general outline of various units in a waste water	CLO 19	T2:27.8
	treatment plant, primary treatment design of screens, grit		R2:21.73
	chambers, skimming tanks-sedimentation tanks-principles		
52	Design of biological treatment, trickling filters, standard and	CLO 21	T2:27.14
	high rate.		R2:21.78
53	Design of oxidation ponds, sludge digestion tanks, factors	CLO 23	T2:27.19
	effecting, design of digestion tank, sludge disposal by drying		R2:21.814
54	Septic tanks working principles and design-soak pits. Ultimate	CLO 23	T2:27.12
	disposal of waste water, self-purification of rivers, sewage		R2:21.82
	farming		
55	Different components requirements, sanitary fittings, traps, one	CLO 24	T2:27.18
	pipe and two pipe systems of plumbing, ultimate disposal of		R2:21.82
	sewage, sewage farming, and dilution.		

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	RELEVANCE WITH PSOs
1	To improve standards and analyze the concepts in environmental engineering.	Seminars	PO 6	PSO 1
2	Understand the standards in water resource engineering.	Guest lecture	PO 6	PSO 1
3	Encourage students to solve real time applications and prepare towards examinations.	NPTEL	PO 2	PSO 1

Prepared by: Ms. K. Anusha Hadassa, Assistant Professor

HOD, CE