

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ENGINEERING OPTIMIZATION						
Course Code	AME516	AME516					
Programme	B.Tech						
Semester	V	V ME					
Course Type	PROFESSIONAL ELECTIVE -I						
Regulation	IARE - R16						
	Theory				Practical		
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits	
	3		1	4		1	
Chief Coordinator	Mrs. T Vanaja, Assistant Professor						
Course Faculty	Mrs. T Vanaja, Assistant Professor						

I. COURSE OVERVIEW:

Optimization is one of the most powerful tools in process integration. Optimization involves the selection of the "best" solution from among the set of candidate solutions. The degree of goodness of the solution is quantified using an objective function (e.g., cost) which is to be minimized or maximized. The search process is undertaken subject to the system model and restrictions which are termed constraints. Hence, the purpose of optimization is to maximize (or minimize) the value of a function (called objective function) subject to a number of restrictions (called constraints). These constraints are in the form of equality and inequality expressions.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS011	IV	Mathematical Transformation Techniques	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Engineering Optimization	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	✗ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weight-age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pa	ttern for CIA
------------------------	---------------

Component	Т	Total Marka		
Type of Assessment	CIE Exam	Quiz / AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			by
PO 1	Engineering knowledge: Apply the knowledge of	3	Presentation on
	mathematics, science, engineering fundamentals, and		real-world problems
	an engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Seminar
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first		
	principles of mathematics, natural sciences, and		
	engineering sciences		
PO 4	Conduct investigations of complex problems: Use	1	Assignment
	research-based knowledge and research methods		
	including design of experiments, analysis and		
	interpretation of data, and synthesis of the information		
	to provide valid conclusions.		
	3 = High; 2 = Medium; 1 = Low		

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
D CO 1			by
PSO I	Professional Skills: To produce engineering	1	Seminar
	professional capable of synthesizing and analyzing		
	mechanical systems including allied engineering		
	streams.		
PSO 2	Software Engineering Practices: An ability to adopt	-	-
	and integrate current technologies in the design and		
	manufacturing domain to enhance the employability.		
PSO 3	Successful Career and Entrepreneurship: To build	-	-
	the nation, by imparting technological inputs and		
	managerial skills to become technocrats.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES :

The course	The course should enable the students to:					
Ι	Understand the theory of optimization methods and algorithms developed for solving various types of optimization problems .					
Π	Develop and promote research interest in applying optimization techniques in problems of Engineering and Technology.					
III	Apply the mathematical results and numerical techniques of optimization theory to concrete Engineering problems.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Define and use optimization terminology and concepts, and	CLO 1	Understand implement basic optimization algorithms in a computational setting and apply existing optimization software packages to solve engineering problems
	understand how to classify an optimization	CLO 2	Apply optimization techniques to determine a robust design.
	problem.	CLO 3	Apply optimization methods, exploring the solution, and interpreting results.
		CLO 4	Evaluate model engineering minima/maxima problems as optimization problems
		CLO 5	Solve Matlab to implement optimization algorithms.
CO 2	Apply optimization	CLO 6	Evaluate and measure the performance of an algorithm
	methods to engineering	CLO 7	Describe mathematical translation of the verbal
	problems, including		formulation of an optimization problem.
	developing a model,	CLO 8	Explain design algorithms, the repetitive use of which
	defining an optimization		will lead reliably to finding an approximate solution
	problem, applying	CLO 9	Demonstrate the ability to choose and justify
	optimization methods,		optimization techniques that are appropriate for solving
	exploring the solution,		realistic engineering problems.
	and interpreting results.		

COs	Course Outcome	CLOs	Course Learning Outcome
CO 3	Understand and apply unconstrained	CLO 10	Demonstrate clearly a problem, identify its parts and analyze the individual functions
	optimization theory for continuous problems,	CLO 11	Explain Feasibility study for solving an optimization problem
	including the necessary and sufficient optimality	CLO 12	Understand the gradient and its applications.
	conditions and algorithms such as: steepest descent, Newton's method, conjugate gradient, and quasi-Newton methods.	CLO 13	Compare, study and solve optimization problems.
CO 4	Understand and apply methods for computing	CLO 14	Understand optimization techniques using algorithms.
	derivatives such as: finite differentiating, symbolic	CLO 15	Understand the various direct and indirect search methods
	differentiation, complex step, algorithmic differentiation, and	CLO 16	Understand the Investigate, study, develop, organize and promote innovative solutions for various applications.
	analytic methods (direct and adjoint).	CLO 17	Understand evolutionary algorithms
CO 5	Understand and apply constrained optimization	CLO 18	Enable nonlinear problem through its linear approximation.
	theory for continuous problems, including the Karush-Kuhn-Tucker conditions and algorithms such as: generalized reduced gradient, sequential quadratic programming, and interior- point methods	CLO 19	Enable students to understandoptimal estimation in environmental engineering; production planning in industrial engineering; transportation problem

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AME516.01	CLO 1	Understand implement basic optimization algorithms in a computational setting and apply existing optimization software packages to solve engineering problems	PO 1	3
AME516.02	CLO 2	Apply optimization techniques to determine a robust design.	PO 2	2
AME516.03	CLO 3	Apply optimization methods, exploring the solution, and interpreting results.	PO 1	3
AME516.04	CLO 4	Evaluate model engineering minima/maxima problems as optimization problems	PO 1	3
AME516.05	CLO 5	Solve Matlab to implement optimization algorithms.	PO 2	2
AME516.06	CLO 6	Evaluate and measure the performance of an algorithm.	PO 2	2
AME516.07	CLO 7	Describe mathematical translation of the verbal formulation of an optimization problem.	PO 2	2
AME516.08	CLO 8	Explain design algorithms, the repetitive use of which will lead reliably to finding an approximate solution	PO 2	2
AME516.09	CLO 9	Demonstrate the ability to choose and justify optimization techniques that are appropriate for solving realistic engineering problems.	PO 4	1

AME516.10	CLO 10	Demonstrate clearly a problem, identify its parts	PO 4	1
		and analyze the individual functions		
AME516.11	CLO 11	Explain Feasibility study for solving an optimization problem	PO 2	2
AME516.12	CLO 12	Understand the gradient and its applications.	PO 2	2
AME516.13	CLO 13	Compare, study and solve optimization problems.	PO 1	3
AME516.14	CLO 14	Understand optimization techniques using algorithms.	PO 1	3
AME516.15	CLO 15	Understand the various direct and indirect search methods	PO 1	3
AME516.16	CLO 16	Understand the Investigate, study, develop, organize and promote innovative solutions for various applications.	PO 1, PO 2	3
AME516.17	CLO 17	Understand evolutionary algorithms	PO 1, PO 2	3
AME516.18	CLO 18	Enable nonlinear problem through its linear approximation.	PO 1, PO 2	3
AME516.19	CLO 19	Enable students to understandoptimal estimation in environmental engineering; production planning in industrial engineering; transportation problem	PO 1, PO 2	3

³⁼ High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course	Program Outcomes (POs)							
(COs)	PO 1	PO 2	PO 4	PSO1				
CO 1	3	2		1				
CO 2		2	1					
CO 3	3	2	1					
CO 4	3	2		1				
CO 5	3	2		1				

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)										Program Specific Outcomes (PSOs)			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2		2													
CLO 3	3												1		
CLO 4	3												1		
CLO 5		2													
CLO 6		2													

Course Learning					Progr	am Ou	utcom	es (PO	s)				Program Specific Outcomes (PSOs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 7		2													
CLO 8		2													
CLO 9				1											
CLO 10				1											
CLO 11		2													
CLO 12		2													
CLO 13	3														
CLO 14	3												1		
CLO 15	3														
CLO 16	3	2											1		
CLO 17	3	2											1		
CLO 18	3	2											1		
CLO 19	3	2											1		

3 = **High**; **2** = **Medium**; **1** = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO4,PSO1	SEE Exams	PO1, PO2, PO4,PSO1	Assignments	-	Seminars	PO1, PO2, PO4,PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term	PO1, PO2,						
Paper	PO4,PSO1						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

UNIT-I	INTRODUCTION TO OPTIMIZATION
Introduction:	Optimal problem formulation, design variables, constraints, objective function, variable
bounds; engin	neering optimization problems: Classification and Some examples (just theory and
discussion): tr	uss structure, ammonia structure, transit schedule and car suspension.

UNIT-II	UNIT-II SINGLE VARIABLE OPTIMIZATION						
Single variable	Single variable non-linear optimization problems: Local minimum global minimum and inflection point,						
necessary and sufficient conditions theorems, some problems based on this; Numerical methods:							
Exhaustive set	arch methods, Fibonacci method, golden section method and comparison, interpolation						
methods: quad	ratic.						
UNIT-III	MULTI VARIABLE UNCONSTRAINED OPTIMIZATION						
Multivariable methods: Univ Simplex metho Gradient of a method, conjuş	unconstrained non-linear optimization problems: Numerical methods direct search ariate method, Pattern Search methods: Powell, Hook-Jeeve's, Rosen Brock's search and ods, multivariable unconstrained non-linear optimization problems. Gradient methods: function, importance, gradient direction search based methods: Steepest descent/ascent gate gradient method and variable metric method						
UNIT-IV	MULTI VARIABLE CONSTRAINED OPTIMIZATION						
Multivariable Constraints equ quadratic prob	constrained non-linear optimization problems classical optimization techniques: nations, Lagrangian method, inequalities-Kuhn-Tucker necessary and sufficient conditions, lem, Statement, Wolfe's and Beale's methods.						
UNIT-V	GEOMETRIC AND INTEGER PROGRAMMING						
Geometric pro G.P(\leq type of branch and bot	gramming: posynomials, arithmetic, geometric inequality, unconstrained G.P, constrained nly) integer Programming; Introduction, formulation, Gomory cutting plane algorithm, und method.						
Text Books:							
1. Kalyanmoy 1 st Edition, 20 2. S. D. Sharm	Deb, —Optimization for Engineering Designl, Prentice-Hall of India (Pvt) Ltd, New Delhi, 05. a, —Operations Researchl, Kedar Nath & Ran Nath Co., New Delhi, 1 st Edition, 2013.						
Reference Bo	Reference Books:						
1. Beveridge,	Schechter, —Optimization Theory & Practicel, McGraw-Hill, 1 st Edition, 2010.						

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be covered	Course	Reference
No		Learning	
		Outcomes	
		(CLOs)	
1	Introduction to Optimal problem formulation, design variables, constraints, objective function, variable bounds	CLO 1	T2:2.3
2	Review on engineering optimization problems	CLO 1	R1:2.6
3	Discuss the examples (just theory and discussion): truss structure, ammonia structure	CLO 2	T1:2.6
4	Describe the transition hadred and ear more and an	CLO 2	T2:2.7
4	Describe the transit schedule and car suspension		R1:2.18
5	Describe the Single variable non-linear optimization problems	CLO 3	T2:2.22
6	Discuss Local minimum global minimum and inflection point, necessary and sufficient conditions theorems	CLO 3	T2:2.25
7	Discuss Numerical methods: Exhaustive search methods	CLO 3	T2:2.26 R1:2.55
8	Discuss Fibonacci method, golden section method and comparison	CLO 4	T2:2.16 R1:2.61
9	Discuss the interpolation methods: quadratic.	CLO 4	T2:2.30 R1:2.58
	Introduction to Multivariable unconstrained non-linear	CLO 5	T2:3.6
10	optimization problems: Numerical methods direct search		R1:4.29
	methods: Univariate method, Pattern Search methods		

11	Classifying Powell, Hook-Jeeve's, Rosen Brock's search and	CLO 5	T2:3.14
11	Simplex methods		R1:4.31
12	Discuss Powell, Hook-Jeeve's, Rosen Brock's search and	CLO 6	T2:3.14
12	Simplex methods		R1:4.33
13	Discuss Powell, Hook-Jeeve's, Rosen Brock's search and Simplex methods	CLO 6	R1:4.36
14	Comparison multivariable unconstrained non-linear optimization problems. Gradient methods	CLO 6	T2:3.18 R1:4.64
15	Introduction Gradient of a function, importance, gradient direction search based methods	CLO 7	T2:3.22
16	Demonstration Steepest descent/ascent method, conjugate gradient method and variable metric method	CLO 7	T2:3.28 R1:4.67
17	Demonstration Steepest descent/ascent method, conjugate gradient method and variable metric method	CLO 8	T2:4.2
18	Demonstration Steepest descent/ascent method, conjugate gradient method and variable metric method	CLO 8	T2:4.3 R1:4.71
10	Introduction to Multivariable constrained non-linear optimization	CLO 9	T1:4.8
19	problems classical optimization techniques		R2:4.68
20-21	Demonstration of Multivariable constrained non-linear	CLO 9	T2:4.15
20 21	optimization problems classical optimization techniques	~ ~ ~ ~ ~	R1:5.74
22	Discuss classical optimization techniques	CLO 10	T1:4.12
	Evaluation of Constraints equations	CL 0 11	K2:3.73
23-24	Explanation of Constraints equations	CLU II	R1:5.72
25	Introduction to Lagrangian method	CLO 12	T1:5.8
23			R1:5.73
26-27	Discuss inequalities-Kuhn-Tucker necessary and sufficient	CLO 12	T1:5.14
	conditions	CL O 12	K1:6.78
28	conditions	CL0 13	R1:6.81
29-30	Explain nequalities-Kuhn-Tucker necessary and sufficient conditions	CLO 13	T1:6.4 R2:6.8
31	Describequadratic problem, Statement, Wolfe's and Beale's methods.	CLO 14	T2:7.7 R1:7.74
32-33	Describequadratic problem, Statement, Wolfe's and Beale's methods.	CLO 14	T1:7.12 R2:8.75
34	Describequadratic problem, Statement, Wolfe's and Beale's methods.	CLO 15	T1:7.8 R1:8.72
35	Explain Geometric programming: posynomials, arithmetic,	CLO 15	T1:8.8 R1·8 73
36	Discuss unconstrained G P constrained G P(< type only)	CLO 16	T1.9.14
50	Discuss unconstrained G.r., constrained G.r (2 type only)		R1:10.78
37-38	Describe integer Programming	CLO 17	T2:9.19 R1:10.814
39-40	Describe formulation, Gomory cutting plane algorithm	CLO 18	T1:10.4
11 12	Discuss branch and bound method	CLO 10	T2.11.08
41-43	Discuss oralicit and bound method	CLU 19	R1:12.74
44-45	Discuss branch and bound method.	CLO 19	T1:11.12
			R2:12.75

S No	Description	ProposedActions	Relevance With POs	Relevance With PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	To understand the algorithms and iterations of different optimization techniques.	Seminars / NPTEL	PO 4	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2	PSO 1

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

Prepared by: Mrs. T Vanaja, Assistant Professor

HOD, ME