

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	FINITE ELEMENT MODELLING						
Course Code	AME014	AME014					
Programme	B. Tech	B. Tech					
Semester	VI N	VI ME					
Course Type	Core						
Regulation	IARE - R16						
Theory				Practic	Practical		
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits	
	3		1	4	-	-	
Chief Coordinator	Mrs. V. Prasanna, Assistant Professor, ME						
Course Faculty	Mrs. V. Prasanna, Assistant Professor, ME						

I. COURSE OVERVIEW:

The Finite Element Method (FEM) is widely used in industry for analyzing and modeling structures and continua, whose physical behavior is described by ordinary and partial differential equations. The FEM is particularly useful for engineering problems that are too complicated to be solved by classical analytical methods. The main objective of this course is to introduce the mathematical concepts of the Finite Element Method for obtaining an approximate solution of ordinary and partial differential equations. In this course you will attend lectures on the fundamentals of the Finite Element Method. The learning process will be enhanced by completing assignments using mathematical software. You will also be introduced to a commercial Finite Element software package

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME002	II	Engineering Mechanics	4
UG	AME004	III	Mechanics of Solids	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Finite Element Modelling	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis	on the question	ns is broadly based	on the following criteria:
1		-	Ũ

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for G	CIA
-----------------------------------	-----

Component		Theory	Total Marks	
Type of Assessment	CIE Exam	Quiz / AAT	I Otal Marks	
CIA Marks 25		05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO1	Engineering Knowledge : Capability to apply the knowledge of mathematics, science and engineering in the field of mechanical engineering.	3	Assignments
PO2	Problem Analysis: An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of mathematics, science and engineering.	2	Assignments
PO3	Design/development of solutions: Competence to design a system, component or process to meet societal needs within realistic constraints.	2	Seminars
PO5	Modern tool usage: An ability to formulate solve complex engineering problem using modern engineering and information Technology tools.	2	Videos

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO1	Professional Skills: To produce engineering professional	2	Assignments
	capable of synthesizing and analyzing mechanical systems		
	including allied engineering streams.		
PSO2	Problem solving skills: An ability to adopt and integrate	3	Seminars
	current technologies in the design and manufacturing		
	domain to enhance the employability.		
PSO3	Successful career and Entrepreneurship: To build the	2	Guest Lectures
	nation, by imparting technological inputs and managerial		
	skills to become technocrats.		

3 = **High; 2** = **Medium; 1** = Low

VIII. COURSE OBJECTIVES (COs):

Ι	Introduce basic concepts of finite element methods including domain discretization, polynomial
	interpolation and application of boundary conditions.
II	Understand the theoretical basics of governing equations and convergence criteria of finite
	element method.
III	Develop of mathematical model for physical problems and concept of discretization of continuum
IV	Discuss the accurate Finite Element Solutions for the various field problems
V	Use the commercial Finite Element packages to build Finite Element models and solve a selected range of engineering problems

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1 Describe the concept of FEM and difference		CLO 1	Describe the basic concepts of FEM and steps involved in it.
	between the FEM with	CLO 2	Understand the difference between the FEM and
	problems based on 1-D	CLO 3	Understand the stress-strain relation for 2-D and their
	bar elements and shape	<u> </u>	field problem.
	functions.	CLO 4	Understand the concepts of shape functions for one dimensional and quadratic elements, stiffness matrix and boundary conditions
CO 2	Derive elemental properties and shape	CLO 5	Apply numerical methods for solving one dimensional bar problems
	functions for truss and beam elements and	CLO 6	Derive the elemental property matrix for beam and bar elements.
related problems.	CLO 7	Solve the equations of truss and beam elements	
	CLO 8	Understand the concepts of shape functions for beam element.	
CO 3	Understand the concept deriving the elemental	CLO 9	Apply the numerical methods for solving truss and beam problems
matrix and solving t basic problems of C	matrix and solving the basic problems of CST and axi-symmetric solids	CLO 10	Derive the element stiffness matrices for triangular elements and axi- symmetric solids and estimate the load vector and stresses.
	and an symmetric solids.	CLO 11	Formulate simple and complex problems into finite elements and solve structural and thermal problems
		CLO 12	Understand the concept of CST and LST and their shape functions.
CO 4	Explore the concept of steady state heat transfer	CLO 13	Understand the concepts of steady state heat transfer analysis for one dimensional slab, fin and thin plate.
	in fin and composite slab.	CLO 14	Derive the stiffness matrix for for fin element.
		CLO 15	Solve the steady state heat transfer problems for fin and composite slab.
		CLO 16	Understand the concepts of mass and spring system and derive the equations for various structural problems
CO 5	Understand the concept of consistent and lumped	CLO 17	Understand the concept of dynamic analysis for all types of elements.
	mass models and slove the dynamic analysis of all types of elements.	CLO 18	Calculate the mass matrices, Eigen values, Eigen vectors, natural frequency and mode shapes for dynamic problems.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of
				Mapping
AME014.01	CLO 1	Understand the numerical methods and	PO 1	3
		development of mathematical models for physical		
		system		
AME014.02	CLO 2	Identify mathematical model for solution of	PO 1	3
		common engineering problems in the field of		
		aeronautical, mechanical and civil		
AME014.03	CLO 3	Understand the concepts of shape functions for one	PO 1	3
		dimensional and quadratic elements, stiffness		
		matrix and boundary conditions		
AME014.04	CLO 4	Remember the steps involved in finite element	PO 2	2
		methods while solving the model of physical		
		problem		
AME014.05	CLO 5	Apply numerical methods for solving one	PO 2	2
		dimensional bar problems		
AME014.06	CLO 6	Identify the mathematical models for two-	PO 2	2
		dimensional, three-dimensional truss and beam		
		elements		
AME014.07	CLO 7	Solve the equations of truss and beam elements	PO 2	1
AME014.08	CLO 8	Calculate stress strain and strain energy for	PO 3	1
		common engineering problems		
AME014.09	CLO 9	Derive element matrix by different methods by	PO 3	2
		applying basic laws in mechanics and integration		
		by parts		
AME014.10	CLO 10	Demonstrate the ability to evaluate and interpret	PO 3	2
		FEA analysis results for design and development		
		purposes		
AME014.11	CLO 11	Formulate simple and complex problems into finite	PO 1	3
		elements and solve structural and thermal problems		
AME014.12	CLO 12	Derive the element stiffness matrices for triangular	PO 5	3
		elements and axisymmetric solids and estimate the		
		load vector and stresses		
AME014.13	CLO 13	Understand the concepts of steady state heat	PO 5	3
		transfer analysis for one dimensional slab, fin and		
		thin plate		
AME014.14	CLO 14	Understand the concepts of mass and spring system	PO 1	3
		and derive the equations for various structural		
	a a a a	problems		
AME014.15	CLO 15	Calculate the mass matrices; Eigen values Eigen	PO 5	2
		vectors and natural frequency for dynamic		
	GT 0 1 (problems	D O #	
AME014.16	CLO 16	Model multi-dimensional structural and heat	PO 5	2
		transfer problems by using automatic and fully		
		automatic software such as ANSYS, NISA,		
AME014.17	CL 0 17	INADIKAN		2
AME014.17		types of elements	PUI	3
		Spes of clonicity.		

AME014.18	CLO 18	Calculate the mass matrices, Eigen values, Eigen	PO 2, PO 5	2
		vectors, natural frequency and mode shapes for		
		dynamic problems.		

3 = High; **2** = Medium; **1** = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course		Program O	utcomes (POs)				
(COs)	PO 1	PO 2	PO 4	PSO1			
CO 1	2	1		1			
CO 2		2					
CO 3		1	1	1			
CO 4	3			1			
CO 5	1	2		1			

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning					Progr	am O	utcom	es (PO	s)				Program Specific Outcomes (PSOs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2		2													
CLO 3	3												1		
CLO 4	3												1		
CLO 5		2													
CLO 6		2													
CLO 7		2													
CLO 8		2													
CLO 9				1											
CLO 10				1											
CLO 11		2											1		
CLO 12		2											1		
CLO 13	3														
CLO 14	3														

Course Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 15	3														
CLO 16	3												1		
CLO 17	3														
CLO 18		2			1									2	

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1,PO2, PO4, PSO1	SEE Exams	PO1, PO2, PO4, PSO1	Assignments	-	Seminars	PO1, PO2, PO4, PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO4, PS01						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I	INTRODUCTION TO FEM							
Introduction displacemen finite eleme vector, finite	Introduction to fem for solving field problems, basic equations of elasticity, stress-strain and strain- displacement relations for 2D-3D elastic problems, boundary conditions, one dimensional problem, finite element modeling coordinates and shape functions, assembly of global stiffness matrix and load vector, finite element equations, quadratic shape functions.							
Unit-II	ANALYSIS OF TRUSSES AND BEAMS							
Analysis of beams: elem simple probl	Analysis of trusses stiffness matrix for plane truss elements, stress calculations and problems analysis of beams: element stiffness matrix for two nodes, two degrees of freedom per node beam element and simple problems.							
Unit-III	2-D ANALYSIS							
Finite eleme of boundary solids subje parametric e	nt modeling of two-dimensional stress analysis with constant strain triangles and treatment conditions, estimation of load vector, stresses. Finite element modeling of axisymmetric acted to axisymmetric loading with triangular elements, two-dimensional four node iso elements.							
Unit-IV	Unit-IV STEADY STATE HEAT TRANSFER ANALYSIS							
Steady state analysis of t	heat transfer analysis: 1-D heat conduction of slab 1D fin elements, 2D heat conduction, hin plates, analysis of a uniform shaft subjected to torsion, problems.							

Unit-V	DYNAMIC ANALYSIS							
Dynamic an vectors for convergence of software	Dynamic analysis: Dynamic equations, lumped and consistent mass matrices, Eigen values and Eigen vectors for a stepped bar, beam; Finite element, formulation to 3D problems in stress analysis, convergence requirements, mesh generation, techniques such as semi-automatic and fully automatic use of software such as ANSYS, NISA, NASTRAN.							
Text Books:								
1. Tirupath 1 st Editio	i K., Chandrapatla, Ashok D. Belagundu, —Introduction to Finite Elements in Engineering, on, 2013.							
2. S. S. Rac	o, —The Finite Element Methods in Engineering, Elsevier, 4 th Edition, 2013.							
3. J. N. Red	ddy, —An Introduction to Finite Element Methods, McGraw-Hill, 1 st Edition, 2013.							
Reference B	Books:							
1. Alavala,	—Finite Element Methodsl, TMH, 1 st Edition, 2012.							
2. O.C. Zie 2013.	 O.C. Zienkowitz, —The Finite Element Method in Engineering Sciencel, McGraw-Hill, 1st Edition, 2013. 							
3. Robert C	Robert Cook, —Concepts and Applications of Finite Element Analysisl, Wiley, 1 st Edition, 2013.							
4. S. Md. J 2010.	alaludeen, —Introduction of Finite Element Analysis ^{II} , Anuradha publications, 1 st Edition,							

XVI. COURSE PLAN: The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-2	Introduction to Finite Element Method for solving field problems	CLO 1	T1:1.4 R1:1.2
3-5	Stress and Equilibrium. Boundary conditions. Strain - displacement relations	CLO 1	T1:1.5 R1:2.4
6-7	One Dimensional Problems: Finite element modeling coordinates	CLO 2	T1:2.5 R1:2.5
7-8	Shape functions, Quadratic shape functions	CLO 3	T1:2.5 R1:2.6
9-11	Assembly of Global stiffness matrix and load vector	CLO 4	T1:22.7
12-13	Finite element equations – Treatment of boundary conditions	CLO 4	T1:6.3 R1:5.3
14-16	Analysis of Trusses: Stiffness matrix for plane Truss Elements stress calculations and problems	CLO 5	T1:6.6 R1:5.3.6
17-19	Analysis of beams: Element stiffness matrix for two noded, two degrees of freedom per node beam element	CLO 6	R1:6.2
20-22	Finite element modeling of two-dimensional stress analysis with constant strain triangles	CLO 7	T1:7.5 R1:6.3
23-25	Treatment of boundary conditions. Estimation of load vector and stresses	CLO 8	T1:8.5 R1:6.8
26-30	Finite element modeling of Axisymmetric solids	CLO 9	T1:12.2 R1:13.1
31-33	Axisymmetric solids subjected to Axisymmetric loading with triangular elements	CLO 10	T1:12.3 R1:13.2
33-34	Two dimensional four noded isoparametric elements, Problems	CLO 11	T1:12.10 R1:13.7
35-38	Steady state Heat Transfer Analysis One dimensional analysis of slab	CLO 12	T1:11.2 R1:10.2

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
38-40	Fin and two-dimensional analysis of thin plate Analysis of a uniform shaft subjected to torsion	CLO 13	T1:11.5 R1:10.3
40-43	Evaluation of Eigen values and Eigen Vectors for a stepped bar, truss	CLO 14	T1:11.12 R1:11.9
44-46	Finite element-formulation to 3D problems in stress analysis convergence requirements, mesh generation	CLO 15	T1:11.8 R1:11.5
47-49	Finite element-formulation to 3D problems in stress analysis	CLO 16	T1:9.9
50-53	Derive the mass matrix for all elements	CLO 17	T1:12.1- 12.2
54-56	Evaluation of Eigen values and Eigen Vectors for a stepped bar, truss	CLO 18	T1:11.3 T2:16.13
57-59	Techniques such as semi-automatic and fully automatic use of software such as ANSYS, NISA, NASTRAN	CLO 18	T1:12.3 R1:11.3

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Gain information about space frames used in the modeling of car body and bicycle frames.	Seminars	PO 1, PO 2	PSO 3
2	Encourage students to perform analysis on composite materials using FEM applications.	Guest Lectures	PO 1, PO 3, PO 5	PSO 2

Prepared by Mrs. V. Prasanna, Assistant Professor

HOD, ME