
1

LECTURE NOTES

ON

COMPUTER ORGANIZATION

(ECE)

 III B. Tech V Semester(IARE-R16)

Prepared

by

 Mr. N V Krishna Rao ,

Assistant Professor,CSE

 Mr. P Anjaiah,

Assistant Professor,CSE

 Mr. N Rajasekhar,

 Assistant Professor,CSE

 Ms. B Vijaya Durga,

Assistant Professor,CSE

ELECTRONICS AND COMMUNICATION ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad -500 043

2

Computing and computers

UNIT-I

INTRODUCTION

Today, almost all of us in the world make use of computers in one way or the other. It finds applications in

various fields of engineering, medicine, commercial, research and others. Not only in these sophisticated areas,

but also in our daily lives, computers have become indispensable. They are present everywhere, in all the dev ices

that we use daily like cars, games, washing machines, microwaves etc. and in day to day computations like

banking, reservations, electronic mails, internet and many more.

The word computer is derived from the word compute. Compute means to calculate. The computer was originally

defined as a super fast calculator. It had the capacity to solve complex arithmetic and scientific problems at very

high speed. But nowadays in addition to handling complex arithmetic computations, computers perform many

other tasks like accepting, sorting, selecting, moving, comparing various types of information. They also perform

arithmetic and logical operations on alphabetic, numeric and other types of information. This information

provided by the user to the computer is data. The information in one form which is presented to the computer is

the input information or input data.

Information in another form is presented by the computer after performing a process on it. This information is the

output information or output data.

The set of instructions given to the computer to perform various operations is called as the computer program.

The process of converting the input data into the required output form with the help of the computer program is

called as data processing. The computers are therefore also referred to as data processors

Therefore a computer can now be defined as a fast and accurate data processing system that accepts data,

performs various operations on the data, has the capability to store the data and produce the results on the basis of

detailed step by step instructions given to it. The terms hardware and software are almost always used in

connection with the computer.

The Hardware:

The hardware is the machinery itself. It is made up of the physical parts or devices of the computer system like

the electronic Integrated Circuits (ICs), magnetic storage media and other mechanical devices like input devices,

output devices etc. All these various hardware are linked together to form an effective functional unit.The

3

various types of hardware used in the computers, has evolved from vacuum tubes of the first generation to Ultra

Large Scale Integrated Circuits of the present generation.

The Software

The computer hardware itself is not capable of doing anything on its own. It has to be given explicit instructions

to perform the specific task. The computer program is the one which controls the processing activities of the

computer. The computer thus functions according to the instructions written in the program. Software mainly

consists of these computer programs, procedures and other documentation used in the operation of a computer

system. Software is a collection of programs which utilize and enhance the capability of the hardware

Elements of a computer

Computer is a very effective and efficient machine which performs several activities in few minutes, which

otherwise would have taken several days if performed naturally. Besides there would have been a doubt about the

accuracy, finish etc. The computer may be faster; more accurate but it cannot compete with human brain.

However there are some similarities between the human and the computer which would make the computer more

understandable.

Human Computer

Like human beings has ears, nose, eyes
etc.

Computers have input devices such as keyboard,
scanner, touch screen, mouse etc to get information.

Like we remember things Computer also stores information.

We recollect certain information as
required.

The computer also retrieves information when times,

We express ourselves by speech,
writing etc

Computer expresses through screen, Printouts etc
which We call as output.

When we watch, hear, learn certain
things and analyze.

with the help of software, computer also can analyze
Information and draw conclusions.

The place where we store, analyze, The computer brain is known as CPU conclude
information is known as the brain (Central Processing
Unit) where it analyses information.

The computer has storage devices like floppies, hard disks, compact disks to store and retrieve information.

However computer does not understand emotions, it does not understand meaning beyond words, it cannot read

between the lines like the human. We learn many things unknowingly, certain things knowingly; we call it as

upbringing. But computers can learn everything only knowingly. We learn many things on our own, but computer

has to be taught to do everything.

The basic parts of computer system are:

 Input Unit

 The Central Processing Unit

 Output Unit

Fig. 1.9 Central Processing Unit.

4

The Input Unit:

Input devices are the dev ices which are used to feed programs and data to the computer. The input system

connects the external environment with the computer system. The input devices are the means of communication

between the user and the computer system. Typical input devices include the keyboard, floppy disks, mouse,

microphone, light pen, joy stick, magnetic tapes etc. The way in which the data is fed into the computer through

each of these devices is different. However, a computer can accept data only in a specific form. Therefore these

input devices transform the data fed to them, into a form which can be accepted by the computer. These devices

are a means of communication and inter1 station between the user and the computer systems.

Thus the functions of the input unit are :

 accept information (data) and programs.

 convert the data in a form which the computer can accept.

 provide this converted data to the computer for further

processing. The Central Processing Unit:

This is the brain of any computer system. The central processing unit or CPU is made of three parts:

 The control nit.

 The arithmetic logic unit

 Te primary storage unit

The Control Unit:

The Control Unit controls the operations of the entire computer system. The control unit gets the instructions

from the programs stored in primary storage unit interprets these instruction an subsequently directs the other

units to execute the instructions. Thus it manages and coordinates the entire computer system.

The Arithmetic Logic Unit:

The Arithmetic Logic Unit (ALU) actually executes the instructions and performs all the calculations and

decisions. The data is held in the primary storage unit and transferred to the ALU whenever needed. Data can be

moved from the primary storage to the arithmetic logic unit a number of times before the entire processing is

complete. After the completion, the results are sent to the output storage section and the output devices.

The Primary Storage Unit:

This is also called as Main Memory. Before the actual processing starts the data and the instructions fed to the

computer through the input units are stored in this primary storage unit. Similarly, the data which is to be output

from the computer system is also temporarily stored in the primary memory. It is also the area where intermediate

results of calculations are stored. The main memory has the storage section that holds the computer programs

during execution.

Thus the primary unit:

5

 Stores data and programs during actual processing

 Stores temporary results of intermediate processing

 Stores results of execution temporarily

Output Unit:

The output devices give the results of the process and computations to

the outside world. The output units accept the results produced by the computer, convert them into a human

readable form and supply them to the users. The more common output devices are printers, plotters, display

screens, magnetic tape drives etc.

Limitations of Computers:

Although the computers of today are highly intelligent and sophisticated they have their own limitations. The

computer cannot think on its own, since it does not have its own brain. It can only do what is has been

programmed to do. It can execute only those jobs that can be expressed as a finite set of instructions to achieve a

specific goal. Each of the steps has to be clearly defined. The computers do not learn from previous experience

nor can they arrive at a conclusion without going through all the intermediate steps. However the impact of

computers on today’s society in phenomenal and they are today an important part of the society.

HISTORY AND EVALUATION OF COMPUTERS

A Brief History and Evaluation of Computers

History of computers dates back to the 1800s with English mathematician Charles Babbage inventing different

machines for automatic calculations. However, history of computing dates back to as ancient as 2,700 BC. While

the development and use of Abacus around 2700 BC in different world civilizations marked the beginning of

computing, innovations such as the Jacquard Loom (1805) and Charles Babbage's “Analytical Engine”

(1834) signified the new age continuation of this development.

The modern history of computers primarily comprises the development of mechanical, analog and digital

computing architectures. During the early days of electronic computing devices, there was much discussion about

the relative merits of Analog vs. Digital computers. While Analog Computers use the continuously changeable

aspects of physical phenomena such as electrical, mechanical, or hydraulic quantities to model the problem that is

being solved, Digital Computers use varying quantities symbolically with their numerical values changing.

As late as the 1960s, mechanical devices, such as the Merchant Calculator have widespread application in

6

science and engineering. Until this period, analog computers were routinely used to solve systems of finite

difference equations arising. However, in the end, digital computing devices proved to have the power,

economics and scalability that were necessary to deal with large scale computations, and found universal

acceptance.

Digital computers now dominate the computing world in all areas ranging from the hand calculator to the

super computer and are pervasive throughout society.

Therefore, this brief sketch of the development of scientific computing is limited to the area of digital,

electronic computers.

The Mechanical Era (1623 - 1945)

Indeed, the history and evolution of computers is quite extraordinary. The history of computers can be traced

back to 2700 BC in different civilizations such as Sumerian, Roman and Chinese,

which made use of Abacus for mathematical calculations. Abacus, a wooden rack

holding two horizontal wires with beads strung on them. Numbers are represented

using the position of beads on the rack. Fast and simple calculations can be carried

out by appropriately placing the beads. In 1620, an English mathematician by the

name William Oughtred invented the slide rule – a calculating device based on the

principle of logarithms. It consisted of two graduated scales devised in such a

manner that suitable alignment of one scale against the other, made it possible to

perform additions, compute products etc. just by inspection.

Blaise Pascal, a French mathematician, is usually credited for building the first digital computer in 1642. He

invented the mechanical calculating machine. Numbers were entered in this machine by dialing a series of

numbered wheels. Another series of toothed wheels transferred the movements to a dial, which showed the

results.

In 1671, Gottfried von Leibnitz, a German mathematician, invented a calculating machine which was able to

add and perform multiplications. He invented a special stepped gear mechanism for introducing the addend

digits, which is still being used.

It was only about a century later that Thomas of Colmar created the first successful mechanical calculator

which could add, subtract, multiply, and divide. A lot of improved desktop calculators by various

inventors followed, such that by 1890 arrange of improvements like accumulation of partial results,

storage of past results, and printing of results were taking place.

7

The First Computer

Charles Babbage, a professor of mathematics at Cambridge University, England, realized that many long

calculations usually consisted of a series of actions that were constantly repeated and hence could possibly be

automated. By 1822, he designed an automatic calculating machine that he called the ‘Difference Engine’. It

was intended to be steam powered and fully automatic (including printing of result tables), commanded by a

fixed instruction program. In short, he developed a prototype of a computer which was 100 years ahead of

time and is, therefore, considered as the Father of modern day computers.

The idea of using machines to solve mathematical problems can be traced at least as far as the early 17th

century. Mathematicians who designed and implemented calculators that were capable of addition,

subtraction, multiplication, and division included Wilhelm Schickard, Blaise Pascal and Gottfried

Leibnitz.

The first multi-purpose, i.e. programmable computing device was probably Charles Babbage's Difference

Engine, which was begun in 1823 but never completed. A more ambitious machine was the Analytical

Engine was designed in 1842, but unfortunately it also was only partially completed by Babbage. Babbage

was truly a man ahead of his time: many historians think the major reason he was unable to complete these

projects was the fact that the technology of the day was not reliable enough. The first computers were

designed by Charles Babbage in the mid-1800s, and are sometimes collectively known as the Babbage

Engines.

8

The Difference Engine was constructed from designs by Charles Babbage. These early computers were

never completed during Babbage’s lifetime, but their complete designs were preserved. Eventually, one was

built in2002.

A step towards automated computing was the development of punched cards which were first successfully

used by Herman Hollerith in 1890. He along with James Powers developed devices that could read

information that had been punched into cards, without any human help. This resulted in reduced reading

errors, increased workflow and availability of unlimited memory. These advantages were seen by various

commercial companies and soon led to the development of improved punch-card using computers by

companies like International Business Machines (IBM) and Remington.

Some Well Known First Generation Computers

Mark I

After World War II there was a need for advanced calculations. Howard A. Aiken of Harvard University,

while working on his doctorate in physics designed a machine that could automatically perform a sequence

of arithmetic operations in 1937. He completed this in 1944 and named it Mark I. This machine performed a

multiplication and division at an average of about four and eleven seconds respectively. The results were

printed at a rate of one result per five seconds.

ENIAC

The World War II also produced a large need for computer capacity especially for the military. New

weapons were made for which calculating tables and other essential data were needed. In 1942, Professors

John P. Eckert and John W. Mauchly at the Moore School of Engineering of the University of

Pennsylvania, USA, decoded to build a high speed computer to do the job. This was called the Electronic

Numeric Integrator and Calculator (ENIAC). It used 18,000 vacuum tubes; about 1,800 square feet of

floor space, and consumed about 180,000 watts of electrical power. It had punched cards I/O and its

programs were wired on boards. ENIAC is accepted as the first successful high-speed electronic digital

computer and was used from 1946 to1955.

9

EDVAC

Fascinated by the success of ENIAC, John Von Neumann, a mathematician, undertook an abstract study

of computation in 1945. In this he aimed to show that a computer should be able to execute any kind of

computation by means of a proper programmed control. His ideas, referred to as ‘stored program

technique’, became essential for future generations of high-speed digital computers and were universally

accepted. The basic idea behind the stored program concept was that data as well as instructions can be

stored in the computer’s memory to enable automatic flow of operations. Between 1947 and 1950, the

More School personnel and the Ballistics Research Laboratory of the US Army built a computer named

Electronic Discrete Variable Automatic Computer (EDVAC), which was based on Von Neumann’s

concept of stored program.

UNIVAC

The Universal Automatic Computer (UNIVAC), developed in 1951, was the first digital computer to be

produced and was installed in the Census Bureau. The first generation stored-program computers needed a

lot of maintenance. EDVAC and UNIVAC fell into this group of computers and were the first

commercially available computers.

Mid-1950s: Transistor Computers (Second Generation)

The development of transistors led to the replacement of vacuum tubes,

and resulted in significantly smaller computers. In the beginning, they

were less reliable than the vacuum tubes they replaced, but they also

consumed significantly less power. IBM 350 RAMAC used disk drives.

These transistors also led to developments in computer peripherals. The first disk drive, the IBM 350

RAMAC, was the first of these introduced in 1956.

1960s: The Microchip and the Microprocessor (Third Generation Computers)

The microchip (or integrated circuit) is one of the most important advances in computing technology.

Many overlaps in history existed between microchip-based computers and transistor-based computers

10

throughout the 1960s. Microchips allowed the manufacturing of smaller computers. The micro chipspurred

the production of minicomputers and microcomputers, which were small and inexpensive enough for

small businesses and even individuals to own. The microchip also led to the microprocessor, another

breakthrough technology that was important in the development of the personal computer.

The first processors were 4-bit, but 8-bit models quickly followed by 1972. 16-bit models were produced in

1973, and 32-bit models soon followed. AT&T Bell Labs created the first fully 32-bit single-chip

microprocessor, which used 32-bit buses, 32- bit data paths, and 32-bit addresses, in 1980. The first 64-bit

microprocessors were in use in the early 1990s in some markets, though they didn’t appear in the PC

market until the early2000s.

1970s: Personal Computers (Fourth Generation)

The first personal computers were built in the early 1970s. Most of these were runs, and worked based

on small-scale integrated circuits and multi-chip CPUs.

The Commodore PET was a personal computer in the 70s. The Altair 8800 was the first popular computer

using a single-chip microprocessor. Clones of this machine quickly

 cropped up, and soon there was an entire market based on the design

 and architecture of the 8800. It also spawned a club based around

hobbyist computer builders, the Homebrew Computer Club. 1977

 saw the rise of the "Trinity" the Commodore PET, the Apple II, and the Tandy Corporation’s TRS-80.

These three computer models eventually went on to sell millions.

These early PCs had between 4kB and 48kB of RAM. The Apple II was the only one with a full-color,

graphics-capable display, and eventually became the best-seller among the trinity, with more than 4 million

units sold.

1980s-1990s: The Early Notebooks and Laptops

One particularly notable development in the 1980s was the advent of the

commercially available portable computer. Osborne 1 was small and portable

enough to transport.

The first of these was the Osborne 1, in 1981. It had a tiny 5" monitor and was large and heavy compared

to modern laptops (weighing in at 23.5 pounds). Portable computers continued to develop, though, and

eventually became streamlined and easily portable, as the notebooks we have today are. These early

portable computers were portable only in the most technical sense of the word. Generally, they were

11

anywhere from the size of a large electric typewriter to the size of a suitcase. The Gavilan SC was the first

PC to be sold as a "laptop". The first laptop with a flip form factor was produced in 1982, but the first

portable computer that was actually marketed as a "laptop" was the Gavilan SC in1983. Early models had

monochrome displays, though there were color displays available starting in 1984 (the Commodore SX-

64). Laptops grew in popularity as they became smaller and lighter.

2000s: The Rise of Mobile Computing (Present and Beyond) Mobile

computing is one of the most recent major milestones in the history of

computers. Many smart phones today have higher processor speeds and more

memory than desktop PCs had even ten years ago. With phones like the

iPhone and the Motorola Droid,

it’s becoming possible to perform most of the functions once reserved for desktop PCs from anywhere. The

Droid is a Smartphone capable of basic computing tasks such as emailing and web browsing.

Mobile computing really had its start in the 1980s with the pocket PCs of the era. These were something

like a cross between a calculator, a small home computer and a PDA. During the 1990s, PDAs (Personal

Digital Assistant) became popular.

A number of manufacturers had models, including Apple and Palm. The main feature PDAs had that not all

pocket PCs had was a touch screen interface. Most basic computing functions can now be done on a

Smartphone, such as email, browsing the internet, and uploading photos and videos.

Late 2000s: Notebooks (Artificial Intelligence)

Another recent progression in computing history is the development of notebook computers. Notebooks

are smaller and more portable than standard laptops. Some notebooks go as far as to have not only built-in

Wi-Fi capabilities, but also built-in mobile broadband connectivity options.

The Asus EEE PC 700 was the first notebook to enter mass production. The first

mass-produced notebook was the Asus Eee PC 700, released in 2007. They were

originally released in Asia,

but were released in the US not long afterward. Other manufacturers quickly followed suit, releasing

additional models throughout 2008 and 2009.

VLSI era

Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining hundreds

of thousands of transistors or devices into a single chip. VLSI began in the 1970s when

complex semiconductor and communication technologies were being developed. The microprocessor is a VLSI

https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Transistors
https://en.wikipedia.org/wiki/Semiconductor
https://en.wikipedia.org/wiki/Communication
https://en.wikipedia.org/wiki/Microprocessor

12

device. Before the introduction of VLSI technology most ICs had a limited set of functions they could perform.

An electronic circuit might consist of a CPU, ROM, RAM and other glue logic. VLSI lets IC designers add all

of these into one chip.

VLSI integrated-circuit

The electronics industry has achieved a phenomenal growth over the last few decades, mainly due to the rapid

advances in large scale integration technologies and system design applications. With the advent of very large

scale integration (VLSI) designs, the number of applications of integrated circuits (ICs) in high-performance

computing, controls, telecommunications, image and video processing, and consumer electronics has been

rising at a very fast pace.

The current cutting-edge technologies such as high resolution and low bit-rate video and cellular

communications provide the end-users a marvelous amount of applications, processing power and portability.

This trend is expected to grow rapidly, with very important implications on VLSI design and systems design.

VLSI Design Flow

The VLSI IC circuits design flow is shown in the figure below. The various levels of design are numbered and

the blocks show processes in the design flow.

Specifications comes first, they describe abstractly, the functionality, interface, and the architecture of the

digital IC circuit to be designed.

https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Random_Access_Memory
https://en.wikipedia.org/wiki/Glue_logic

13

Behavioral description is then created to analyze the design in terms of functionality, performance, compliance

to given standards, and other specifications. RTL description is done using HDLs. This RTL description is

simulated to test functionality. From here onwards we need the help of EDA tools. RTL description is then

converted to a gate-level net list using logic synthesis tools. A gate level net list is a description of the circuit in

terms of gates and connections between them, which are made in such a way that they meet the timing, power

and area specifications. Finally, a physical layout is made, which will be verified and then sent to fabrication.

Design Hierarchy-Structural

The design hierarchy involves the principle of "Divide and Conquer." It is nothing but dividing the task into

smaller tasks until it reaches to its simplest level. This process is most suitable because the last evolution of

design has become so simple that its manufacturing becomes easier. We can design the given task into the

design flow process's domain (Behavioral, Structural, and Geometrical). To understand this, let’s take an

example of designing a 16-bit adder, as shown in the figure below.

14

Here, the whole chip of 16 bit adder is divided into four modules of 4-bit adders. Further, dividing the 4-bit

adder into 1-bit adder or half adder. 1 bit addition is the simplest designing process and its internal circuit is also

easy to fabricate on the chip. Now, connecting all the last four adders, we can design a 4-bit adder and moving

on, we can design a 16-bit adder.

15

Computer System Design:

A computer is a large and complex system in which system objects are the components of the computer.

These components are connected to perform a specific function. The function of such system is determined

by the functions of its components and how the components are connected.

System Representation

We can represent a system using a graph or a block diagram. A computer system is usually represented by

a block diagram. A system has its own structure and behavior. The structure and behavior are the two

properties of the system. We can define the structure of a system as the abstract graph consisting of its

block diagram with no functional information, as shown in Fig. below. As shown in figure, the structure

gives the components and their interconnection. A behavioral description, on the other hand, describes the

function of each component and thus the function of the system. The behavior of the system may be

represented by Boolean function or by truth table in case of logic circuit.

The behavior of logic circuits can also be described by Hardware description language such as VHDL.

They can provide precise, technology-independent descriptions of digital circuits at various levels of

abstraction, primarily the gate and register levels.

(a) A block diagram representing EX-NOR logic circuit

(b) Structure of a system as an abstract graph

16

Design Process

For a given system's structure, the task of determining its function or behavior is termed analysis. On the

other hand, the problem of determining a system structure that exhibits a given behavior is design or

synthesis.

The design process starts with the construction of initial design. In this process, with given a desired range

of behavior and set of available components we have to determine a structure (Design).

The next step is to evaluate its cost and performance. The cost and performance should be in the acceptable

range. Then we have to confirm that whether the formed structure achieves the desired behavior. If not we

have to modify the design to meet the design goals. The Fig. below illustrates the design process.

Figure Design

Computer-aided Design

The computer-aided design (CAD) tool provides designers with a range of programs to support their design

goals. They are used to automate fully or party the more tedious design and evaluate its steps. They

contribute mainly in three important ways to the overall design process.

 CAD editors or translators convert design data into forms such as HDL descriptions or schematic

diagrams, which can be efficiently processed by the humans, computers or both.

 Simulators create the computer model for the design and can mimic the design's behavior. It helps

designer to determine how well the design meets various performance and cost goals.

 Synthesizers derive structures that implement all or part of some design step.

17

Gate Level Design

Gate level design concerned with processing binary variables: 0 and 1. In this level, the design components

are logic gates and flip-flops. Logic gates are memory less elements; however flip-flops are bit storage

devices. Using these elements gate level design is used to build the combinational and sequential circuits.

When logic gates are connected together to produce a specified output for certain specified combinations of

input variables, with no storage involved, the resulting circuit is called combinational logic. In

combinational logic, the output variables are at all times dependent on the combination of input variables.

A combinational circuit consists of input variables, logic gates, and output variables. The logic gates accept

signals from the input variables and generate output signals. This process transforms binary information

from the given input data to the required output data. Fig. below shows the block diagram of a

combinational circuit. As shown in figure, the combinational Circuit accepts n-input binary variables and

generates output variables depending on the logical combination of gates.

Figure: Block diagram of a combinational circuit

The design of combinational circuits starts from the outline of the problem statement and ends in a logic

circuit diagram or a set of Boolean functions from which the logic diagram can be easily obtained. The

design procedure of the combinational circuit involves following steps :

1. The problem definition.

2. The determination of number of available input variables and required output variables.

3. Assigning letter symbols to input and output variables.

4. The derivation of truth table indicating the relationships between input and output variables.

5. Obtain simplified Boolean expression for each output.

6. Obtain the logic diagram.

Example: Design a combination logic circuit with three input variables that will produce logic 1 output

when more than one input variables are logic 1.

18

Sol.: Given problem specifies that there are three input variables and one output variable. We assign A, B

and C letter symbols to three input variables and assign Y letter symbol to one output variable. The

relationship between input variables and output variable can be tabulated as shown in truth table below:

Table : Truth table

Now we obtain the simplified Boolean expression for output variable Y using K-map simplification.

Logic Diagram

There are many applications in which digital outputs are required to be generated in accordance with the

sequence in which the input signals are received. This requirement cannot be satisfied using a

combinational logic system. These applications require outputs to be generated that are not only dependent

on the present input conditions but they also depend upon the past history of these inputs. The past history

is provided by feedback from the output back to the input.

Fig. below shows the block diagram of sequential circuit. As shown in the figure below, memory elements

are connected to the combinational circuit as a feedback path.

19

Fig: Block diagram of sequential circuit

The information stored in the memory elements at any given time defines the present state of the

sequential circuit. The present state and the external inputs determine the outputs and the next state of the

sequential circuit. Thus we can specify the sequential circuit by a time sequence of external inputs,

internal states (present states and next states), and outputs.

Latches and flip-lops both are bistable elements. These are the basic building blocks of most sequential

circuits. The main difference between latches and lip-lops is in the method used for changing their state.

We use the name lip-lop for a sequential device that normally samples its inputs and changes its outputs

only at times determined by clocking signal. On the other hand, we use the name latch for a sequential

device that checks all of its inputs continuously and changes its outputs accordingly at any time

independent of a clocking signal. Many times enable signal is provided with the latch. When enable signal

is active output changes occur as input changes. But when enable signal is not activated input changes do

not affect output. There are various types of flip-lops such as SR flip-flop, D flip-flop, JK flip-flop, T lip-

lop and master- slave lip-lop. Each flip-flop has different characteristic equation. Flip-flops and if

necessary basic gates are used to design sequential circuits.

Design Levels:

The design of a computer system can be carried at several levels of abstraction. The three such

recommended levels are:

• The processor level also called the architecture, behavior, or system level.

• The register level, also called the register-transfer level(RTL).

• The gate level, also called the logic level.

The Table below shows the comparison between these levels.

20

Table: Comparison between design levels

To design a complex system usually we have to

• Specify the processor-level structure of the system.

• Specify the register-level structure of each component type identified in step1.

• Specify the gate-level structure of each component type identified in step2.

This design approach is known as top-down design approach and it is extensively used in both hardware

and software designs. Well, it is up to the designer to decide whether to design a system using medium

scale ICs, small scale ICs or a single IC composed of standard cells. If the system is to be designed using

medium-scale ICs or standard cells, then the third step, gate-level design, is no longer needed. In the

following section we discuss the register level and processor level design approaches.

Register Level Design

At the register or register transfer level, related information bits are grouped to form words or vectors.

These words are processed by small combinational or sequential circuits

Register Level Components

The Table below shows the commonly used register level components and their functions. These components

are link to form circuits.

Fig: Commonly used register level components

21

Fig: Generic block representation of a register level component

The Fig. above shows the generic block representation of a register-level component.

 The "/m" on the input lines indicate it is a m-bit input bus.

 A slash'/' with number or letter next to it indicates the multi-bit bus.

 A bubble on the start or end of the line indicates an active low signal; otherwise it is
an active high signal.

 The input and output data lines are shown separately.

 Similarly the input and output control lines are also shown separately.

 The input control lines associated with a multifunction block fall into two broad
categories: select lines and enable lines. The select lines specify one of several possible
operations that the unit is to perform and enable lines specify the time or condition for a
selected operation to be performed.

 The output control signals, if any, indicate when or how the unit completes its processing.

Word Gate: Bit-wise logical functions can be performed on the m-bit binary words using word gate

operators. Let A = (al, a2,.., am) and B = (b1, b2,…, bm) be the two m-bit words we can perform the bitwise

AND operation on them to result another m-bit result, as shown in the Fig. below

Fig.: Two-Input, m-bit AND word gate

22

Multiplexers

Multiplexer is a digital switch. It allows digital information from several sources to be routed onto a single

output line, as shown in the Fig. below. The basic multiplexer has several data-input lines and a single

output line. The selection of a particular input line is controlled by a set of selection lines. Normally, there

are 2n input lines and n selection lines whose bit combinations determine which input is selected.

Therefore, multiplexer is 'many into one' and it provides the digital equivalent of an analog selector

switch.

Fig: Analog selector switch

Decoder

A decoder is a multiple-input, multiple-output logic circuit which converts coded inputs into coded outputs,

where the input and output codes are different. The input code generally has fewer bits than the output

code. Each input code word produces a different output code word, i.e., there is one-to-one mapping from

input code words into output code words. This one-to-one mapping can be expressed in a truth table.

Fig : general structure of decoder

The Fig. above shows the general structure of the decoder circuit. As shown in the Figure, the encoded

information is presented as n inputs producing 2" possible outputs. The 2" output values are from 0 through

2" - 1. Sometimes an n-bit binary code is truncated to represent fewer output values than 2n. For example,

in the BCD code, the 4-bit combinations 0000 through 1111 are not used. Usually ,a decoder is provided

with enable inputs to activate decoded output based on data inputs. When any one enable input is

unasserted, all outputs of decoder are disabled.

Encoder

An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2" (or

fewer) input lines and n output lines. In encoder the output lines generate the binary code corresponding to

23

the input value. The Fig. below shows the general structure of the encoder circuit. As shown in the Fig.

below, the decoded information is presented as 2" inputs producing n possible outputs.

Fig: General structure of encoder

A priority encoder is an encoder circuit that includes the priority function. In priority encoder, if two or

more inputs are equal to 1 at the same time, the input having the highest priority will take precedence.

Table : shows truth table of 4-bit priority encoder.

Table: Truth table of 4-bit priority encoder

Table above shows D3 input with highest priority and D0 input with lowest priority. When D3 input is

high, regardless of other inputs output is 1 1. The D2 has the next priority. Thus, when D3 = 0 and D2 =

1, regardless of other two lower priority input, output is 10. The output for D, is generated only if higher

priority inputs are 0, and so on. The output V (a valid output indicator) indicates, one or more of the inputs

are equal to 1. If all inputs are 0, V is equal to 0, and the other two outputs (Y, and Y0) of the circuit are

not used.

Demultiplexer

A demultiplexer is a circuit that receives information on a single line and transmits this information on one

of 2" possible output lines. The selection of specific output line is controlled by the values of n selection

lines. Fig. 2.18 shows1:4demultiplexer. The single input variable Dm has a path to all four outputs, but the

input information is directed to only one of the output lines.

24

Table: Function table for 1:4 demultiplexers

Fig: logic diagram

Fig: Block Diagram

Arithmetic Elements

The arithmetic functions such as addition and subtraction of fixed point numbers can be implemented by

combinational register-level components. Most forms of fixed-point multiplication and division and

essentially all floating-point operations are too complex to be realized by single component at this design

level. However, adders and subtractors for fixed- point binary numbers are basic register level

25

components from which we can derive a variety of other arithmetic circuits. The Fig. (a) shows a

component that adds two 8-hit data words and an input carry bit; it is called a 8-bit adder. One such

component can be cascaded to form an adder to add numbers of arbitrary size.

However, addition time increases with the number size.

Register

A register is a group of flip-flops. A flip-flop can store 1-bit information. So an n-bit register has a group of

n lip-lops and is capable of storing any binary information/number containing n-bits. Buffer Register

Figure below shows the simplest register constructed with four D flip-flops. This register is also called

buffer register. Each D-lip-lop is triggered with a common negative edge clock pulse. The input X bits set

up the flip-lops for loading. Therefore, when the first negative clock edge arrives, the stored binary

information becomes, QAQBQCQD = ABCD

Fig: Buffer register

In this register, four D flip-flops are used. So it can store 4-hit binary information. Thus the number of flip-

flop stages in a register determines its total storage capacity.

Shift Registers

The binary information (data) in a register can be moved from stage to stage within the register or into or

out of the register upon application of clock pulses. This type of bit movement or shifting is essential for

certain arithmetic and logic operations used in microprocessors. This gives rise to a group of registers

called 'shift registers'. They are very important in applications involving the storage and transfer of data in

a digital system.

26

Fig below gives the symbolical representation of the different types of data movement in shift register

operations.

Fig: 4-bit right shift register (a) Logic diagram (b) Symbol

The Fig. above shows the register level implementation of right shift register using D flip-flops.

A right shift is accomplished by activating the SHIFT enable line connected to the clock input CLK of

each flip-flop. In addition to the serial data lines, m input and output lines are often provided to permit

parallel data transfers to or from the shift register. Additional control lines are required to select the serial

or parallel input modes. The shift register further can be refined to permit both left and right shift

27

operations. The Fig. below shows the shift register with parallel and serial modes along with the right and

left shifts operations.

 Counters

A register is used solely for storing and shifting data which is in the form of is and/or Os, entered from an

external source. It has no specific sequence of states except in certain very specialized applications. A

counter is a register capable of counting the number of clock pulses arriving at its clock input. Count

represents the number of clock pulses arrived. A specified sequence of states appears as the counter output.

This is the main difference between a register and a counter. A specified sequence of states is different for

different types of counters.

There are two types of counters, synchronous and asynchronous. In synchronous counter, the common

clock input is connected to all of the flip-flops and thus they are clocked simultaneously. In asynchronous

counter, commonly called, ripple counters, the first flip-flop is clocked by the external clock pulse and then

each successive flip-flop is clocked by the Q or Q output of the previous flip-flop. Therefore in an

asynchronous counter, the lip-lops are not clocked simultaneously.

The Fig. below shows the symbol for a Enable (dock) modulo 2" up-down counter. On receiving positive

going edge on the Enable (clock signal) input counter increments its count by 1. As it is an n-bit counter, its

counting is modulo-2"; that is, the counter's modulus k = 2", and it has 2" states So, St,, S,„ 1The output of

counter is an n-bit binary number. The CLEAR input of the counter when activated resets the counter and

UP/DOWN input selects the operation of the counter.

Fig: A modulo 2" up-down counter

Programmable Logic Devices

There are many applications for digital logic where the market is not great enough to develop a special-

purpose MSI or LSI chip. This situation has led to the development of programmable logic devices (PLDs)

which can be easily configured by the individual user for specialized applications.

Basically, there are three types of PLDs:

• Read Only Memory(ROM)

28

• Programmable Logic Array(PLA)

• Programmable Array Logic(PAL)

Here, we examine programmable logic devices as a new class of components.

Fig. :Block diagram of ROM

A read only memory(ROM)is a device that includes both the encoder and the OR gates within a single IC

package.

The Fig. above shows the block diagram of ROM. It consists of n input lines and m output lines. Each bit

combination of the input variables is called an address. Each bit combination that comes out of the output

lines is called a word. The number of bits per word is equal to the number of output lines, m. The address

specified in binary number denotes one of the minterms of n variables. The number of distinct addresses

possible with n input variables is 2°. An output word can be selected by a unique address, and since there

are 2" distinct addresses in a ROM, there are 2" distinct words in the ROM. The word available on the

output lines at any given time depends on the address value applied to the input lines.

Let us consider 64 x 4 ROM. The ROM consists of 64 words of 4 bits each. This means that there are four

output lines and particular word from 64 words presently available on the output lines is determined from

the six input lines. There are only six inputs in a 64 x 4 ROM because 2b = 64, and with six variables, we

can specify 64 addresses or minterms. For each address input, there is a unique selected word. Thus, if the

input address is 000000, word number 0 is selected and applied to the output lines. If the input address is

111111, word number 63 is selected and applied to the output lines.

Programmable Read Only Memory (PROM)

Programmable Read Only Memory (PROM) allows user to store data/program. PROMs use the fuses with

material like nichrome and polycrystalline. The user can blow these fuses by passing around 20 to 50 mA

29

of current for the period 5 to 20 us. The blowing of fuses according to the truth table is called programming

of ROM. The user can program PROMS with special PROM programmer. The PROM programmer

selectively burns the fuses according to the bit pattern to be stored..This process is also known as burning

of PROM. The PROMs are one time programmable. Once programmed, the information stored is

permanent.

EPROM (Erasable Programmable Read Only Memory)

Erasable programmable ROMs use MOS circuitry. They store is and Os as a packet of charge in a buried

layer of the IC chip. EPROMs can be programmed by the user with a special EPROM programmer. The

important point for now is that we can erase the stored data in the EPROMs by exposing the chip to

ultraviolet light through its quartz window for 15 to 20 minutes. In EPROMs, it is not possible to erase

selective information; when erased, the entire information is lost. The chip can be reprogrammed. This

memory is ideally suitable for product development, experimental projects, and college laboratories, since

this chip can be reused many times.

EEPROM (Electrically Erasable Programmable Read Only Memory)

Electrically erasable programmable ROMs also use MOS circuitry very similar to that of EPROM. Data is

stored as charge or no charge on an insulated layer or an insulated floating gate in the device. The insulating

layer is made very thin (< 200 A). There fore, a voltage as low as 20 to 25V can be used to move charges

across the thin barrier in either direction for programming or erasing. EEPROM allows selective erasing at

the register level rather than erasing all the information since the information can be changed by using

electrical signals. The EEPROM memory also has a special chip erase mode by which entire chip can be

erased in 10 ms. This time is quite small as compared to time required to erase EPROM, and it can be

erased and reprogrammed with device right in the circuit. However, EEPROMs are most expensive and the

least dense ROMs.

Field Programmable Gate Arrays

In mid-1980s, an important class of PLDs was introduced, called field-programmable gate array. The Fig.

below shows the general structure of FPGA chip. It consists of a large number of programmable logic

blocks surrounded by programmable I/O block. The programmable logic blocks of FPGA are smaller and

less capable than a PLD, but an FPGA chip contains a lot more logic blocks to make it more capable. As

30

shown in the Fig. below, the logic blocks are distributed across the entire chip. These logic blocks can be

interconnected with programmable inter connections. As compared to standard gate arrays, the field

programmable gate arrays are larger devices. The basic cell structure for FPGA is somewhat complicated

than the basic cell structure of standard gate array. The FPLA use read/write memory cell to control the

state of each connection. The word field in the name refers to the ability of the gate arrays to be

programmed for a specific function by the user instead of by the manufacturer of the device. The word

array is used to indicate a series of columns and rows of gates that can be programmed by the end user.

Two types of logic cells found in FPGAs are those based on multiplexers and those based on PROM table-

lookup memories.

Register Level Design:

At register level design, a set of registers are linked by combinational data transfer and data-processing

circuits. A block diagram defines its structure and the set of operations it performs on data words can

define its behavior. Each operation can be defined in the form: Cond : Z = f (A1, A2, A3, ... ,AL)

where f is a function to be performed or an instruction to be executed in one clock cycle, and A1, A2, Ay

..., Ak and Z denote data words or the registers that store data. The prefix 'cond' denotes a control condition

that must be satisfied (cond = 1) for the indicated operation to take place. Therefore, when 'con& = 1 the

function f is computed on AI, A2, A, ... and Ai, and result is stored in the Z data word.

Data and Control

The Fig.(a) below shows simplest register level system. It performs operation Z = A + B. The Fig (b)

shows a more complicated system that can perform several different operations. Such a multifunction

system can perform only one operation at a time. he operation to be perform is decided by the control

signals. Therefore, the multifunction system is partitioned into a data-processing part called a data path,

and a controlling part called a control unit. The control unit is responsible for selecting and controlling the

actions of the data path.

Fig. (a) Simple registers level system

31

As shown in Fig. (b) below, control unit (CU) selects the operation for the ALU to perform in each clock

cycle. It also determines the input operands to apply to the ALU and the destination of its results. The large

extension to this multifunction unit is the computer's CPU. The computer's CPU is responsible for the

interpretation of instructions and generation of required control signals for the execution of the instructions.

This unit of computer called I-unit and the data path unit of computer is called E-unit.

A Description Language

Fig. (b) Multifunction registers level system

The HDL can be used to provide both behavioral and structural description at the register level. For

example, if cond = 1 then Z = f (A1, A2, A3, , Ak) ; where f can be any function. For example, Z = A +

B or Z = A - B. Here, + represents the adder and - represents the subtractor. The input connections in both

the cases from registers A and B are inferred from the fact that A and B are the arguments of + and -, while

the output connection from the adder/subtractor is inferred.

Let us see the formal language description of an 8-bit binary multiplier. We know that, the multiplication

can be performing in two ways: 1. Repetitive addition 2. Shift and add. Here, our intention is to study the

language descriptions, hence we prefer simple method of multiplication, i.e. multiplication by reparative

addition.

32

In the above program, two 8-bit buses INBUS and OUTBUS form multipliers input and output ports,

respectively. The program initializes these buses with statement: bus INBUS (0:7), OUTBUS (0:7) and

initialize 8-bit registers A, B, Z and C with statement: register A (0: 7), B (0: 7), Z(: 7) and C (0:). The

registers Z and C are initialized to store the lower byte and higher byte of multiplication, respectively.

Initially, the result (Z and C) is made 0, and register A and B are loaded with multiplicand and multiplier

from the INBUS, respectively. The multiplicand is added repeated for multiplier times and result is stored

in the Z and C registers. The carry after addition of lower byte is used to increment the value in the higher

byte register, i.e. C register. The final result is then transferred 8 bits at a time to OUTBUS.

Design Techniques

The general approach to the design problem for register level system is as follows:

1. Define the desired behavior of the system by a set of sequences of register-transfer operations, such

that each operation can be implemented directly using the available design components. This gives the

desired algorithm.

2. Analyze the algorithm, to determine the types of components and the number of each type required

for the datapath.

3. Construct a block diagram for datapath using the components identified in step 2. Make the

connections between the components so that all data paths implied by algorithm are present and the

given performance-cost constraints are met.

4. Analyze algorithm and datapath to identify the control signals needed. Introduce the logic or control

points necessary to apply these signals into data path.

i. Design a control unit for datapath that meets all the requirements of algorithm.

ii. Check whether the final design operates correctly and meets all performance-cost goals.

33

A design of algorithm in step 1 is a creative design process. It is similar to writing computer program and

depends heavily on the skill and experience of the designer. The second step is to identify the data processing

components. It is a straight forward process. However, it becomes complicated when the possibility of sharing

components exists. For example, the perform operation Cond: A = A + B, C = C + D; requires two adders,

because the operation has to perform in parallel. However, if we use single adder and perform operations

serially we can lower the cost by sharing a single adder. Thus: Cond (to): A = A + B Cond (to + 1): C = C + D.

The step3 requires defining an interconnection structure that links the component needed by the various parts of

algorithm. Identifying the control signals and design of control unit in step 4 and step 5, respectively, is a

relatively independent process. The step 6, design verification plays an important role in the development

process. The simulation via CAD tool can be used to identify and correct functional errors before new design is

committed to hardware.

Processor Level Design:

The processor level which is also called system level is the highest in the hierarchy of computer design. The

storage and processing of information are the major objectives of this level. Processing involves execution of

programs and processing of data files. The components required for performing these functions are complex.

Usually sequential circuits are used which are based on VLSI technology. A slight design theory is necessary at

this level of abstraction.

Processor Level Components

The different types of components which ac generally used at this level can be divided mainly into four

groups as

• Processors

• Memories

• I/O devices

• Inter connection networks

Central Processing Unit

The primary function of a central processing unit is to execute sequences of instructions stored in a memory,

which is external to the central processing unit. When the functions of the processor are restricted, those

processors become more specialized processor such as I/O processor. Most of the times CPUs are

microprocessors whose physical implementation is a single VLSI chip. Fig. below shows a typical CPU

structure and its connection to memory: The CPU contains different units such as control unit, arithmetic logic

unit, register unit, decoding unit which are necessary for the execution of instructions. The sequence of

operations involved in processing an instruction constitutes an instruction cycle. This can be subdivided into

three major phases: fetch cycle, decode cycle and execute cycle. The address of the next instruction which is to

34

be fetched from memory is in the program counter (PC). During fetch phase CPU

loads this address in address register (AR). This is the register which gives address to the memory. Once

the address is available on the address bus, the read command from control unit copies the contents of

addressed memory location to the instruction register (IR). During decode phase, the instruction in the IR is

decoded by instruction decoder. In the next, i.e. execute phase CPU has to perform a particular set of

micro-operation depending on the instruction.

All these operations are synchronized with the help of clock signal. The frequency of this signal is nothing

but the operating frequency of CPU. Thus the CPU is a synchronous sequential circuit and its clock period

is the computer's basic unit of time.

Fig.: Typical CPU structure

35

Memories: For the storage of programs and data required by the processors, external memories are

necessary. Ideally, computer memory should be fast, large and inexpensive. Unfortunately, it is

impossible to meet all the three of these requirements simultaneously. Increased speed and size arc

achieved at increased cost. Very fast memory system can be achieved if SRAM chips are used. These

chips are expensive and for the cost reason it is impracticable to build a large main memory using SRAM

chips. The only alternative is to use 'DRAM chips for large main memories. Processor fetches the code

and data from the main memory to execute the program. The DRAMs which form the main memory are

slower devices. So it is necessary to insert wait states in memory read/write cycles. This reduces the speed

of execution. The solution for this problem is come out with the fact that most of the computer programs

work with only small sections of code and data at a particular time. In the memory system small section

of SRAM is added along with main memory, referred to as cache memory. The program which is to be

executed is loaded in the main memory, but the part of program (code) and data that work at a particular

time is usually accessed from the cache memory. This is accomplished by loading the active part of code

and data from main memory to cache memory. The cache controller looks after this swapping between

main memory and cache memory with the help of DMA controller. The cache memory just discussed is

called secondary cache. Recent processors have the built-in cache memory called primary cache. DRAMs

along with cache allow main memories in the range of tens of megabytes to be implemented at a

reasonable cost, the size and better speed performance. But the size of memory is still small compared to

the demands of large programs with voluminous data. A solution is provided by using secondary storage,

mainly magnetic disks and magnetic tapes to implement large memory spaces. Very large disks are

available at a reasonable price, sacrificing the speed. From the above discussion, we can realize that to

make efficient computer system it is not possible to rely on a single memory component, but to employ a

memory hierarchy. Using memory hierarchy all of different types of memory units are employed to give

efficient computer system. A typical memory hierarchy is illustrated in Fig. above. In summary, we can

say that a huge amount of cost-effective storage can be provided by magnetic disks. A large, yet

affordable, main memory can be built with DRAM technology along with the cache memory to achieve

better speed performance.

I 0 Devices

A computer communicates with outside world by means of input-output (I 0) system. The main function of

I/O system is to transfer information between CPU or memory and the outside world. The important point

36

to be noted here is, I/O devices (peripherals) cannot be connected directly to the system bus. The reasons

are discussed here.

i. A variety of peripherals with different methods of operation are available. So it would be impractical

to incorporate the necessary logic within the CPU to control a range of devices.

ii. The data transfer rate of peripherals is often much slower than that of the memory or CPU. So it is

impracticaltousethehighspeedsystembustocommunicatedirectlywiththeperipherals.

iii. Generally, the peripherals used in a computer system have different data formats and word

lengths than that of CPU used in it.

So to overcome all these difficulties, it is necessary to use a module in between system bus and peripherals,

called as 1/0 module or I/O system.

This I/O system has two major functions,

• Interface to the CPU and memory via the system bus,

• Interface to one or more I/O devices by tailored data links.

The table below gives list of representative I 0devices.

37

Interconnection Networks

The processor level components, CPU, memories, I 0 devices communicate via system bus (address bus, data

bus and control bus). In a computer system, when many components are used, communication between these

components may be controlled by a subsystem called an interconnection network. Switching network,

communications controller, bus controller are the examples of such subsystem. Under the control of

interconnection network, dynamic communication paths among the components via the buses can be

established. The communication paths are shared by the components, to reduce cost. At any time,

communication and hence use of shared bus is possible between any two components. When more than two

components request use of the bus, it results in bus contention. The function of the interconnecting network is to

resolve such contention. For performing this function, interconnecting network selects one of the requesting

devices on some priority basis and connects it to the bus. The remaining requesting devices are kept in a queue.

Some evolutionary steps in the I/O function arc summarized here.

1. In simple microprocessor-controlled devices, a peripheral device is directly controlled by CPU.

2. AcontrolleristhenaddedtoCPUtocontrolperipheraldeviceswithprogrammingfacility.

3. Nowinterruptsareemployedintheconfigurationmentionedinstep2.ThissavestheCPUtime which was

required for a polling of I/O device.

4. DMA controller is introduced to give direct access to memory for I/O module.

5. The I/O module is then enhanced to become a processor with a specialized instruction set tailored for

I/0. The I/0 processor is capable of executing an I/O program in memory with directions given by CPU.

It can execute I/O program without intervention of CPU.

6. The I/O module is further enhanced to have its own local memory. This makes it possible to control a

large set of I/O devices with minimal CPU involvement.

In step 5 and step 6 we have seen that the I/O module is capable of executing programs. Such I/0 modules is

commonly known as I/0 channels. Generally the communication between processor-level components is

asynchronous since they cannot access some unit or bus simultaneously and hence components cannot be

synchronized directly by a common clock signal. The following different causes can be stated regarding this

synchronization problem.

38

 The speed of operation of different components varies over a wide range. e.g. CPUs are faster than

main memories and main memories are faster than I/O devices.

 The different components work more independently. e.g. execution of different programs by CPUs

and10Ps.

 It is practically difficult to allow synchronous transmission of information between components due

to large physical distance between them.

Processor-Level Design

While designing any system, it is very much difficult to give a precise description of the desired system

behavior. Because of this reason, the processor level design job is critical as compare to register level design.

Generally to design at this level, a prototype design of known performance is taken. Then according to the

necessity new technologies are added and new performance requirements are achieved.

Performance characteristics

Year by year, the cost of computer systems continues to drop dramatically, while the performance and

capacity of those systems continue to rise equally dramatically. In this section we introduce some basic

aspects of computer system performance characteristics. The total time needed to execute application

programs is the most important measure of computer system performance. In other words we can say that the

speed of the computer system is an important characteristic to define the performance of the computer

system. The speed of the computer system depends on various factors. Let us discuss those factors.

➢ Hardware: The speed of the processor used in the computer systems basically decides the speed

of the computer system. For example, system having processor Pentium IV runs faster than system

having Pentium 1. However, system speed is not only depends on the processor speed, but it is

also affected by the supported hardware.

Each processor has its own address bus width and data bus width, internal registers, on chip memory and the

instruction set. Higher data bus width allows the transfer of data with more number of bits at a time. For

example, data bus width of 64-bit allows 64 bits transfer of data at a time and data bus width of 32-bit allows

32-bits transfer of data at a time. Higher address bus width gives higher addressing capacity. More number of

internal registers allow to store partial results and avoid unnecessary memory accesses resulting faster

operation. Similarly, on-chip memory allows to store currently executing program module, required data and

partial results in CPU itself which can be accessed quickly resulting faster operation. The system speed is

also depends on the speed of the secondary memory, the speed of the I/O parts and the speed of data transfer

between them.

39

➢ Programming Language : Now a days, programs are usually written in a high-level

languages. These languages require separate compiler to translate programs into machine level

language. Therefore, the computer system is affected by the performance of the compiler and

hence the language used for the program.

➢ Pipelining: The processor executes the instruction in steps or phrases such as fetch, decode

and execute. By overlapping these phases of successive instructions we can achieve a substantial

improvement in the performance of the computer system. This technique is known as pipelining.

➢ Parallelism: It is possible to perform transfers to and from secondary memory like storage

disk or tapes in parallel with program execution in the processor or with activity in other I/O

devices. Such technique is known as parallelism. The most of computer system use this

parallelism to the improve the system performance.

➢ Types of memory and I 0 devices: The performance of the computer depends on the type of

memory and 10 devices supported by it.

➢ Compatibility with other types of computer cost: The performance of a computer system is also

decided by the total cost of the system.

All these performance specifications are considered while designing a new computer system. Even though

the new computer design is closely based on a known design, accurate performance prediction of the new

system may not be possible. For accurate performance, the understanding of the relation between the

structure of a computer and its performance is very important. Using some mathematical analysis, a little

amount of useful performance evaluation can be done. For performance evaluation, experiments during the

design process are to be performed. For this purpose computer simulation can be used or performance of the

copy of the machine under working conditions can be measured.

Prototype Structures

The processor-level design using prototype-structures involve following steps in the design process. First

select a prototype design as per the system requirements and adapt it to satisfy the given performance

constraints.

1. Determine the performance of proposed system.

2. If the performance is unsatisfactory, design is to be modified. Repeat step1.

3. The above steps are to be continued until the acceptable design is obtained and the desired

performance constraints are achieved.

These steps are widely followed for designing a computer system. While designing new systems, the

precautions are always taken to remain compatible with existing hardware and software standards. The

40

reason is that when these standards are to be changed, computer owners have to spend money to retrain users

and programmers.

Also the well tested software is to be replaced by the modified software. So in the new design of the

computer system the drastic changes in the previous design are generally avoided. Because of all these

reasons, there is slow evolution of computer architecture.

Fig. :Basic computer structure

Figure above shows the structure of first-generation computers. This is the basic computer structure. The

second and subsequent generations of computer involve special-purpose 10 processors and cache memory in

addition to basic components used within the basic system. This advanced structure is shown on nest page.

Fig.: Computer structure with 10 processors and cache memory

The more advanced structure involves more than one CPU, i.e. a multiprocessor system. Fig. below gives the

computer structure with two CPUs, main memory banks.

41

Fig: Computer structure with two CPUs, main memory banks

If we link several copies of the foregoing prototype structures, more complex structures of computer can be

obtained. Computer Network is an example of such a structure.

Queuing Models

In this section we will discuss an analytic performance model of a computer system. The model which is

discussed here is based on queuing theory. The model which is considered here is, M/M/1 model. The first

M indicates the inter arrival time between two successive items requiring service from the server.

The items are served in their order of arrival. i.e. First Come First Service (FCFS) scheduling. The second

M indicates service time distribution. I indicate number of service facility centers. Fig. below shows simple

queuing model of a computer.

Fig. : Simple queuing model of a computer system

CPU is used as a server. The items or tasks requiring service by the CPU are queued in a memory. One task

is processed at a time by the CPU. The tasks from the queue are processed (serviced) by the CPU on FCFS

basis. There are different performance parameters which can characterize the steady-state performance of the

single-server queuing system.

42

1. Traffic Intensity: It is denoted by p and given by p = X / p. It is the average fraction of time the server

is busy. Thus p is nothing but utilization of the server.

2. Average number of tasks queued in the system: It includes the number of tasks waiting for service and

the number of tasks actually being served. It is also known as mean queue length. Let E(N) be the average

number of tasks in the system. Then,

Where 13,, is the probability that there are n tasks in the system. It is given by

Substituting in equation (i) gives,

3. Average time that tasks spend in the system: It involves waiting time in queue and actual service

time. This is also called Average response time or mean waiting time. Let E (V) be the average time that

tasks spend in the system. The quantities E (V) and E(N) are related directly. When average number of

tasks are E(N) and tasks enter the system at rate X, then we can write,

Combining equations (ii) and (iii), we get

4. Average time spent waiting in the queue excluding service time : Let it beE(W).

43

where1/ is the average time required to service at ask.

5. Average number of tasks waiting in the queue excluding those being served is denoted by E(Q). The

average number of tasks being serviced is X,. Hence subtracting this from E(N) yields E(Q).

From equation (iv) and (v), we get

CPU ORGANIZATION:

Central processing unit (CPU) is the electronic circuitry within a computer that carries out the instructions of a

computer program by performing the basic arithmetic, logical, control and input/output (I/O) operations

specified by the instructions. In the computer all the all the major components are connected with the help of the

system bus. Data bus is used to shuffle data between the various components in a computer system. To

differentiate memory locations and I/O devices the system designer assigns a unique memory address to each

memory element and I/O device. When the software wants to access some particular memory location or I/O

device it places the corresponding address on the address bus. Circuitry associated with the memory or I/O

device recognizes this address and instructs the memory or I/O device to read the data from or place data on the

data bus. Only the device whose address matches the value on the address bus responds.

The control bus is an eclectic collection of signals that control how the processor communicates with the rest of

the system. The read and write control lines control the direction of data on the data bus. When both contain

logic one the CPU and memory-I/O are not communicating with one another. If the read line is low (logic zero)

the CPU is reading data from memory (that is the system is transferring data from memory to the CPU). If the

write line is low the system transfers data from the CPU to memory. The CPU controls the computer. It fetches

instructions from memory, supply the address and control signals needed by the memory to access its data.

Internally, CPU has three sections as shown in the fig below

44

Fig 1.3: CPU Organization

1. The register section, as its name implies, includes a set of registers and a bus or other communication

mechanism.

2. The register in a processor’s instruction set architecture are found in the section of the CPU.

3. The system address and data buses interact with this section of CPU. The register section also contains

other registers that are not directly accessible bytheprogrammer.

4. The fetch portion of the instruction cycle, the processor first outputs the address of the instruction

onto the address bus. The processor has a register called the“programcounter”.

5. The CPU keeps the address of the next instruction to be fetched in this register. Before the CPU

outputs the address on to the system bus, it retrieves the address from the program counter register.

6. At the end of the instruction fetch, the CPU reads the instruction code from the system data bus.

7. It stores this value in an internal register, usually called the“instructionregister”.

8. The arithmetic / logic unit (or) ALU performs most arithmetic and logic operations such as adding and

ANDing values. It receives its operands form the register section of the CPU and stores its result back in

the registersection.

9. Just as CPU controls the computer, the control unit controls the CPU. The control unit receives some data

values from the register unit, which it used to generate the control signals. This code generates the

instruction codes & the values of some flag registers.

10. The control unit also generates the signals for the system control bus such as READ,WRITE,IO/

signals.

45

DATA REPRESENTATION

DATA TYPES

The data types found in the registers of digital computers may be classified as being one of the following

categories:

 numbers used in arithmetic computations,

 Letters of the alphabet used in data processing.
 Other discrete symbols used for specific purposes.

 All types of data, except binary numbers, are represented in computer registers in binary form. This is

because registers are made up of flip-flops and flip-flops are two-state devises that can store only l's and
O's.

 The binary number system is the most natural system to use in a digital computer. But sometimes it is

convenient to employ different number systems.

Number systems

 A number system of base, or radix, r is a system that uses distinct symbols for r digits. Numbers are

represented by a string of digit symbols.

 To determine the quantity that the number represents, it is necessary to multiply each digit by an integer

power of r and then form the sum of all weighted digits. For example, the decimal number system in
everyday use employs the radix 10system.

 The 10 symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The string of digits.

 724.5 is interpreted to represent the quantity.

 7 X 102 + 2 X 101 + 4 X 10° + 5 X10-1

The binary number system uses the radix 2. The two digit symbols used are 0 and 1. The string of digits 101101

is interpreted to represent the quantity

To distinguish between different radix numbers, the digits will be enclosed in parentheses and the radix of the

number inserted as a subscript. For example, to show the equality between decimal and binary forty-five we will

write (101101)2 = (45)10.

The octal (radix 8) and hexadecimal (radix 16) are important in digital computer work. The eight symbols of the

octal system are 0, 1, 2, 3, 4, 5, 6, and 7. The 16 symbols of the hexadecimal system are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
A, B, C, 0, E, and F. When used to represent hexadecimal digits, the symbols A, B, C, D, E, F correspond to the

decimal numbers 10, 11, 12, 13, 14, 15, respectively.

Octal 736.4 is converted to decimal as follows:

The equivalent decimal number of hexadecimal F3 is obtained from the following calculation:

46

Binary Numeral System - Base-2

Binary numbers uses only 0 and 1 digits.

B denotes binary prefix.

Examples:

101012 = 10101B = 1×24+0×23+1×22+0×21+1×20 = 16+4+1= 21

101112 = 10111B = 1×24+0×23+1×22+1×21+1×20 = 16+4+2+1= 23

1000112 = 100011B = 1×25+0×24+0×23+0×22+1×21+1×20 =32+2+1= 35

Octal Numeral System - Base-8

Octal numbers uses digits from 0..7.

Examples:

278 = 2×81+7×80 = 16+7 = 23

308 = 3×81+0×80 = 24

43078 = 4×83+3×82+0×81+7×80= 2247

Decimal Numeral System - Base-10

Decimal numbers uses digits from 0...9.

These are the regular numbers that we use.

Example:

253810 = 2×103+5×102+3×101+8×100

Hexadecimal Numeral System - Base-16

Hex numbers uses digits from 0...9 and

A...F. H denotes hex prefix.

Examples:

47

2816 = 28H = 2×161+8×160 = 40

2F16 = 2FH = 2×161+15×160 = 47

BC1216 = BC12H = 11×163+12×162+1×161+2×160= 48146

TYPES OF INSTRUCTIONS

The basic computer has three 16-bit instruction code formats:

1. Memory Reference Instructions

2. Register Reference Instructions

3. Input/output Instructions

MEMORY REFERENCE INSTRUCTIONS

In Memory reference instruction: First 12 bits (0-11) specify an address.

 Next 3 bits specify operation code (oppose).

 Left most bit specify the addressing mode I

 I = 0 for direct address I = 1 for indirect address

Memory Reference Instructions

In Memory reference instruction: first 12 bits (0-11) specify an address.

 The address field is denoted by three axes (in hexadecimal notation) and is equivalent to 12-bitaddress.

The last mode bit of the instruction represents by symbol I.

 When I = 0, the last four bits of an instruction havea
 Hexadecimal digit equivalent from 0 to 6 since the last bit is zero (0). When I = 1 the last four bits of an

instruction have a hexadecimal digit equivalent from 8 to E since the last bit is one (1).

Memory Reference Instructions

 Hexadecimal code

Symbol I = 0 I = 1 Description

AND 0xxx 8xxx AND memory word to AC

ADD 1xxx 9xxx ADD memory word to AC

LDA 2xxx Axe LOAD Memory word to AC

STA 3xxx Bxxx Store content of AC in memory

BUN 4xxx Cxxx Branch unconditionally

BSA 5xxx Cxxx Branch and save return address

ISZ 6xxx Cxxx Increment and Skip if zero

48

Register Reference Instructions

In Register Reference Instruction: First 12 bits (0-11) specify the register operation.

 The next three bits equals to 111 specifyopcode.

 The last mode bit of the instruction is0.
 Therefore, left most 4 bits are always 0111 which is equal to hexadecimal7.

I/O Reference Instructions

In I/O Reference Instruction: First 12 bits (0-11) specify the I/O operation.

 The next three bits equals to 111 specifyopcode.
 The last mode bit of the instruction is1.

 Therefore, left most 4 bits are always 1111 which is equal to hexadecimal.

 Acomputerisuselessunless theinformationiscommunicationbetweenI/Oterminalsandtheprocessor. In a

computer, instructions and data stored in memory come from some input device and computational
results must be transmitted to the user through some output device.

 The terminal sends and receives serial information. Each quantity of information has 8 bits of an

alphanumeric code. Two basic computer resisters INPR and OUTR communicate with acommunication

interface.

Input-Output Configuration

 The terminals send and receive serial information the 8-bits information is shifted from the keyboard into
the input register (INPR). The serial information for the printer is stored in OUTR. These two registers

communicateinthecommunicationinterfaceseriallyandwiththeaccumulatorinparallel.

 Thetransmitterinterfacereceives theinformationandtransfertoINPR.Thereceiverinterfacereceives from

OUTR and transmits to the printer.

 The input register INPR consists of 8-bits and stores alphanumeric information. FGI is 1-bit controlled
flip-flop or flag. A flag bit is set to1.

 When new information is available in input device and cleared to zero and the information is accepted by
the computer. Initially, the input flag FGI clear to zero. When a key in a keyboard is pressed,8-bits

49

alphanumeric code is shifted into INPR is transferred into accumulator and FGI is cleared to zero. The output flag

FGO is initially set to one the computer checks FGO and if it is one (1) then the content of accumulator(AC) is

transferred into OUTR and FGO is cleared to zero. Once the content of OUTR is transmitted to the printer FGO is
again set to 1. Therefore, if FGO=1, then the data from input device can't be transferred into INPR and similarly, if

FGO=0, then the content of AC can't be transferred into OUTR.

Input-Output Instruction

I/O instructions are needed to transferring information to and from AC register, for checking the flag bits and for

controlling the interrupt facility.

I/O instruction

Program Interrupt

 InputandOutputinteractionswithelectromechanicalperipheraldevicesrequirehugeprocessingtimes

compared with CPU processing times. – I/O (milliseconds) versus CPU(nano/microseconds)

 Interrupts permit other CPU instructions to execute while waiting for I/O to complete.

 The I/O interface, instead of the CPU, monitors the I/Odevice.

 WhentheinterfacefoundthattheI/Odeviceis readyfordatatransfer,itgenerates aninterruptrequestto theCPU

 Upon detecting an interrupt, the CPU stops momentarily the task it is doing, branches to the

service routine to process the data transfer, and then returns to the task it was performing.

50

Interrupt Cycle

This is a hardware implementation of a branch and save return address operation.

Flowchart of interrupt cycle

 An alternative to the program controlled procedure is to let the internal device inform the computer when

it is ready for data transfer. At The same time, the processor can execute other tasks. This method uses

the interrupt facility when the computer is w=executing a program, it doesn't check the flags. But, when

the flag is set , the computer is momentarily interrupted from executing the current program and is

informed that the flag has been set.

 In this case, the computer momentarily deviates from what it is executing currently and starts the

I/Transfers. Once the I/O transfer is complete, the computer returns back to its original job.

 The interrupt enables flip-flop IEN can be set and cleared with two instructions. When IEN is cleared to

zero with IOF instruction. Then, the flag can't interrupt the computer, when IEN is set to 1 with ION

instruction the computer can be interrupted.

Register transfer operation in interrupt cycle

Register Transfer Statements for Interrupt Cycle

-RF/F←1ifIEN(FGI+FGO)T0’T1’T2’↔T0’T1’T2’(IEN)(FGI+FGO):R←1

The fetch and decode phases of the instruction cycle must be modified: Replace T0,T1,T2 with R'T0,R'T1,R'T2

The interrupt cycle: RT0:AR←0,TR←PC

RT1:M[AR]←TR,PC←0

RT2:PC←PC+1,IEN←0,R←0,SC← 0

51

Complete Computer Description Flowchart

fig. Instruction cycle including Interrupt cycle

Fixed Point Representation

Fixed Point Notation is a representation of our fractional number as it is stored in memory. In Fixed Point

Notation, the number is stored as a signed integer in two’s complement format.

On top of this, we apply a notional split, locating the radix point (the separator between integer and fractional

parts) a fixed number of bits to the left of its notational starting position to the right of the least significant bit.

I’ve illustrated this in the diagram below.

https://andybargh.com/2014/03/11/signed-numbers-in-binary/

52

When we interpret the bits of the signed integer stored in memory we reposition the radix point by multiplying

the stored integer by a fixed scaling factor. The scaling factor in binary is always 2 raised to a fixed exponent.

As the scaling factor is a power of 2 it relocates the radix point some number of places to the left or right of its

starting position.

During this conversion there are three directions that the radix point can be moved:

 The radix point is moved to the right: This is represented by a scaling factor whose exponent is 1 or

more. In this case additional zeros are appended to the right of the least-significant bit and means that the

actual number being represented is larger than the binary integer that was stored.

 The radix point remains where it is: This is represented by a scaling factor whose exponent is 0 and

means that the integer value stored is exactly the same as the integer value being represented.

 The radix point is moved to the left: This is represented by a scaling factor whose exponent is negative.

This means that the number being represented is smaller than the integer number that was stored and

means that the number being represented has a fractional component.

Let’s take a look at a couple of examples.

Examples of Fixed Point Numbers

Lets assume we have an 8-bit signed binary number 000110112 that is stored in memory using 8-bits of storage

(hence the leading zeros).

In our first scenario, lets also assume this number was stored as a signed fixed-point representation with a scale

factor of 22.

As our scale factor is greater than 1, when we translated the bits stored in memory into the number we are

actually representing, we move the radix point two places to the right. This gives us the number: 11011002 (Note

the additional zeros that are appended to the right of the least significant bit).

In our second scenario, let us assume that we start off with the same binary number in memory but this time we’ll

assume that it is stored as a signed fixed-point representation with a scale factor of 2-3. As the exponent is

negative we move the radix point three places to the left. This gives us the number00011.0112

Advantages and Disadvantages of Fixed Point Representation

The major advantage of using a fixed-point representation is performance. As the value stored in memory is an

integer the CPU can take advantage of many of the optimizations that modern computers have to perform integer

53

Arithmetic without having torelyon additional hardware or software logic. This in turn can lead to increases in

performance and when writing your apps, can therefore lead to an improved experience for your users.

However, there is a downside! Fixed Point Representations have a relatively limited range of values that they

can represent.

So how do we work out the maximum and minimum numbers that can be stored in a fixed-point representation

and determine whether it is suitable for our needs? All we do is take the largest and smallest integer values that

can be stored in the given number of bits and multiply that by the scale factor associated with our fixed-point

representation. For a given signed binary number using b bits of storage with a scale factor of f the maximum

and minimum values that can be store dare:

Minimum: −2b−1/2f

Maximum: (2b−1−1)/2f

If the number you want to represent fits into this range then things are great. If it doesn’t though, you have to

look for an alternative! This is where Floating Point Notation comes in.

Floating Point Notation

Floating Point Notation is an alternative to the Fixed Point notation and is the representation that most modern

computers use when storing fractional numbers in memory. Floating Point Notation is a way to represent very

large or very small numbers precisely using scientific notation in binary. In doing so, Floating Point

Representation provides a varying degrees of precision depending on the scale of the numbers that you are using.

For example, the level of precision we need when we are talking about the distance between atoms (10-10 m) is

very different from the precision we need when we’re talking about the distance between the earth and the sun

(1011 m). This is a major benefit and allows a much wider range of numbers to be represented than is possible in

Fixed Point Notation.

Floating Point Representation is based on Scientific Notation. You may have used Scientific Notation in school.

When we use Scientific Notation in decimal (the form you’re probably most familiar with), we write numbers in

the following form:

+/- mantissa x 10exponent

In this form, there is an optional sign indicating whether the overall number is positive or negative, followed by a

mantissa (also known as a significant) which is a real (fractional) number which in turn is multiplied by a number

base (or radix) raised by an exponent. As we know, in decimal this number base is 10.

Floating Point Representation is essentially Scientific Notation applied to binary numbers. In binary, the only

real difference is that the number base is 2 instead of 10. We would therefore write Floating Point Numbers in

the following form:

+/- mantissa x 2exponent

54

Now, you may not have realized it but when we write numbers in scientific notation (whether they be binary or

decimal) we can write them in a number of different ways.

In decimal we could write 1.5 x 102, 15 x 101 and 150 x 100 and yet all these numbers have exactly the same

value.

This provides flexibility but with this flexibility also comes confusion. To try and address this confusion a

common set of rules known as normalized scientific notation are used to define how numbers in scientific

notation are normally written.

Normalized Scientific Notation

Normalized Scientific Notation is a nomenclature that standardizes the way we write numbers in scientific

notation. In the normalized form we have a single key rule:

“We choose an exponent so that the absolute value of the mantissa remains greater than or equal to 1 but less

than the number base.”

Let’s look at a couple of examples!

If we had the decimal number 50010 and wanted to write it in scientific notation we could write it as either 500

x 100 or 50 x 101.

In normalized form though, we would apply the rule above and move the radix point so that only a single digit,

greater than or equal to 1 and less than (in this case) 10 were to the left of the radix point.

In this case this would mean moving our radix point two places to the left so we had 5.0 x 10?.

We would then need to work out our exponent. To get back to our original number we would need to move our

radix point two places to the right. Remember what we learnt earlier? If we have to move our radix point to the

right to get back to our original number that means the exponent is positive. This gives us: 5.0 x 102.

Lets look at a slightly more complicated example, this time in binary.

What if we had the binary number 10.12? What would this be in scientific notation? Again we apply the rules:

We need to have a mantissa that is greater than or equal to 1 and less than our number base (which this time is

2).

That would mean our mantissa would need to be 1.01 x 2?. To get back to our original number we would

need to move our radix point 1 place to the right. What does right mean? That means the exponent is positive.

Last example. This time one that is a little more tricky!

Imagine I had the number 0.1112 and wanted to write it in normalized scientific notation? Again, we apply the

rules. We need a mantissa greater than or equal to 1 and less than 2.

That means we want to write our mantissa as 1.11 x 2?.

Now, to get back to our original number we would need to move our radix point 1 place to the… left. What did

we learn about moving to the left? That means our exponent is negative. That gives us: 1.11 x 2-1.

55

Instruction formats:

 The basic computer has three instruction code formats, as shown in Fig below. Each format has 16 bits.

The operation code (opcode) part of the instruction contains three bits and the meaning of the remaining

13 bits depends on the operation code encountered.

 A memory reference instruction uses 12 bits to specify an address and one bit to specify the addressing

mode I. I is equal to 0 for direct address and to 1 for indirect address.

 The register-reference instructions are recognized by the operation code 111 with a 0 in the leftmost bit

(bit 15) of the instruction. A register-reference instruction specifies an Operation on or a test of the AC

register. An operand from memory is not needed therefore the other 12 bits are used to specify the

operation or test to be executed.

 Similarly, an input-output instruction does not need a reference to memory and is recognized by the

operation code 111 with a 1 in the leftmost bit of the instruction. The remaining12 bits are used to

specify the type of input-output operation or test performed. The type of instruction is recognized by
the computer control from the four bits in positions 12 through 15 of the instruction. If the three op

code bits in positions 12 through 14 are not equal to 111, the instruction is a memory-reference type

and the bit in position 15 is taken as the addressing mode I. If the 3-bit op code is equal to 111, control

then inspects the bit in position15. If this bit is 0, the instruction is a register-reference type. If the bit is
1, the instruction is an I/O type.

 The instruction for the computer is shown the table below. The symbol designation is a three letter word

and represents an abbreviation intended for programmers and users. The hexa decimal code is equal to
the equivalent hexadecimal number of the binary code used for the instruction. By using the

hexadecimal equivalent we reduced the 16 bits of an instruction code to four digits with each

hexadecimal digit being equivalent to four bits.

 A memory-reference instruction has an address part of 12 bits. The address part is denoted by three x’s
and stand for the three hexadecimal digits corresponding to the 12-bit address. The last bit of the

instruction is designated by the symbol I. When I = 0, the last four bits of an instruction have a

hexadecimal digit equivalent from 0 to 6 since the last bit is 0. When I = 1, the hexadecimal digit

equivalent of the last four bits of the instruction ranges from 8 to E since the last bit is I.

 Register-reference instructions use 16 bits to specify an operation. The leftmost four bits are always

0111, which is equivalent to hexadecimal 7. The other three hexadecimal digits give the binary
equivalent of the remaining 12bits.

 The input-output instructions also use all 16 bits to specify an operation. The last four bits are always

1111, equivalent to hexadecimal F.

56

Symb Hexadecimal code Description

AND 0xxx 8xxx AND memory word to AC

ADD 1xxx 9xxx ADD memory word to AC

LDA 2xxx Axx Load memory word to AC

STA 3xxx Bxx Store content of AC in memory

BUN 4xxx Cxx Branch Unconditionally

BSA 5xxx Dxx Branch and save return address

ISZ 6xxx Exx Increment & skip if skip

CLA 7800 Clear AC

CLE 7400 Clear E

CMA 7200 Complement AC

CME 7100 Complement E

CIR 7080 Circulate right AC & E

CIL 7040 Circulate left AC & E

INC 7020 Increment AC

SPA 7010 Skip next address if AC is +ve

SNA 7008 Skip next address if AC is -ve

SZA 7004 Skip next address if AC is zero

SZE 7002 Skip next address if E is zero

HLT 7001 Halt computer

INP F800 Input character to AC

OUT F400 output character from AC

SKI F200 Skip on input flag

SKO F100 Skip on output flag

ION F080 Interrupt on

IOF F040 Interrupt off

Fig: Basic computer instructions

Instruction types:

Assembly languages instructions are grouped together based on the operation they performed.

 Data transfer instructions

 Data operational instructions

 Program control instructions Data transfer instructions:

 Load the data from memory into the microprocessor: These instructions copy data from memory

into a microprocessor register

 Store the data from the microprocessor into the memory: This is similar to the load data expect data

is copied in the opposite direction from a microprocessor register to memory.

 Move data within the microprocessor: These operations copies data from one microprocessor register

to another. Input the data to the microprocessor: The microprocessor inputs the data from the input

devices ex: keyboard in to one of its registers.

57

 Output the data from the microprocessor: The microprocessor copies the data from one of the

registers to an input device such as digital display of a microwave oven.

1) Data operational instructions:

 Dataoperationalinstructionsdomodifytheirdatavalues.Theytypicallyperformsomeoperationsusing one or

two data values (operands) and store result.

 Arithmetic instructions make up a large part of data operations instructions. Instructions that add,

subtract, multiply, or divide values fall into this category. An instruction that increment or decrement

also falls in to this category.

 Logical instructions perform basic logical operations on data. They AND, OR, or XOR two data values

or complement a single value.

 Shift operations as their name implies shift the bits of a data values also comes under this category.

2) Program control instructions:

 Program control instructions are used to control the flow of a program. Assembly language instructions

may include subroutines like in high level language program may have subroutines, procedures, and

functions.

 A jump or branch instructions are generally used to go to another part of the program or subroutine.

 A microprocessor can be designed to accept interrupts. An interrupt causes the processor to stop what is

doing and start other instructions. Interrupts may be software or hardware.

 One final type of control instructions is halt instruction. This instruction causes a processor to stop

executing instructions such as end of a program.

ADDRESSING MODES

Addressing mode is the way of addressing a memory location in instruction. Microcontroller needs data or
operands on which the operation is to be performed. The method of specifying source of operand and output of

result in an instruction is known as addressing mode.

There are various methods of giving source and destination address in instruction, thus there are various types of
Addressing Modes. Here you will find the different types of Addressing Modes that are supported in Micro

Controller 8051. Types of Addressing Modes are explained below:

Also Read: Introduction to Microcontroller 8051

Types Of Addressing Modes:

Following are the types of Addressing Modes:

 Register Addressing Mode

 Direct Addressing Mode

 Register Indirect Addressing Mode

 Immediate Addressing Mode

 Index Addressing Mode

 Also Read: How Microcontroller Works

58

Explanation:

 Register Addressing Mode: In this addressing mode, the source of data or destination of result is

Register. In this type of addressing mode the name of the register is given in the instruction where the

data to be read or result is to be stored.

Example: ADD A, R5 (The instruction will do the addition of data in Accumulator with data in register R5)

For example,

MOV DX, TAX_RATE ; Register in first operand

MOVCOUNT, CX ; Register in second operand

MOVEAX,EBX ; Both the operands are in registers

 Direct Addressing Mode: In this type of Addressing Mode, the address of data to be read is directly

given in the instruction. In case, for storing result the address given in instruction is used to store the

result.

Example: MOV A, 46H (This instruction will move the contents of memory location 46H to Accumulator)

For example,

BYTE_VALUEDB150 ; A byte value is defined

WORD_VALUEDW300 ; A word value isdefined

ADD BYTE_VALUE,65 ; An immediate operand 65 is added

MOV AX,45H ; Immediate constant 45H is transferred to AX

 Mode Register Indirect Addressing: In Register Indirect Addressing Mode, as its name suggests the
data is read or stored in register indirectly. That is, we provide the register in the instruction, in which the
address of the other register is stored or which points to other register where data is stored or to be stored.

Example: MOV A, @R0 (This instruction will move the data to accumulator from the register whose address is
stored in register R0).

Also Read: Architecture of 8051

 Immediate Addressing Mode: In Immediate Addressing Mode, the data immediately follows the

instruction. This means that data to be used is already given in the instruction itself.

Example: MOV A, #25H (This instruction will move the data 25H to Accumulator. The #sign show that
preceding term is data, not the address.)

59

 Index Addressing Mode: Offset is added to the base index register to form the effective address if the

memory location. This Addressing Mode is used for reading lookup tables in Program Memory. The
AddressoftheexactlocationofthetableisformedbyaddingtheAccumulatorDatatothebasepointer.

Example: MOVC, @A+DPTR (This instruction will move the data from the memory to Accumulator; the
address is made by adding the contents of Accumulator and Data Pointer.

Floating Point Arithmetic

Floating point arithmetic derives its name from something that happens when you use exponential

notation. Consider the number 123: it can be written using exponential notation as:

1. 1.23 *102

2. 12.3 *101

3. 123 *100

4. .123 * 103

5. 1230 * 10-1etc.

All of these representations of the number 123 are numerically equivalent. The differ only in their

"normalization": where the decimal point appears in the first number. In each case, the number before

the multiplication operator ("*") represents the significant figures in the number (which distinguish it

from other numbers with the same normalization and exponent); we will call this number the

"significand" (also called the "mantissa" in other texts, which call the exponent the "characteristic").

Notice how the decimal point "floats" within the number as the exponent is changed. This phenomenon

gives floating point numbers their name. Only two of the representations of the number 123 above are

in any kind of standard form. The first representation, 1.23 * 102, is in a form called "scientific

notation", and is distinguished by the normalization of the significand: in scientific notation, the

significand is always a number greater than or equal to 1 and less than 10. Standard computer

normalization for floating point numbers follows the fourth form in the list above: the significand is

greater than or equal to .1, and is always less than1.

Of course, in a binary computer, all numbers are stored in base 2 instead of base 10; for this reason, the

normalization of a binary floating point number simply requires that there be no leading zeroes after the

binary point (just as the decimal point separates the 100 place from the 10-1 place, the binary point

separates the 20 place from the 2-1 place). We will continue to use the decimal number system for our

numerical examples, but the impact of the computer's use of the binary number system will be felt as we

discuss the way those numbers are stored in the computer.

http://kias.dyndns.org/comath/11.html#binary

60

Floating Point Formats:

Over the years, floating point formats in computers have not exactly been standardized. While the IEEE (Institute

of Electrical and Electronics Engineers) has developed standards in this area, they have not been universally

adopted. This is due in large part to the issue of "backwards compatibility": when a hardware manufacturer

designs a new computer chip, they usually design it so that programs which ran on their old chips will continue to

run in the same way on the new one. Since there was no standardization in floating point formats when the first

floating point processing chips (often called "coprocessors" or "FPU"s: "Floating Point Units") were designed,

there was no rush among computer designers to conform to the IEEE floating point standards (although the

situation has improved with time).

For this reason, we will discuss both the IEEE standards as well as the floating point formats implemented in the

very common Intel chips (such as the 80387, 80486 and the Pentium series). Each of these formats has a name

like "single precision" or "double precision", and specifies the numbers of bits which are used to store both the

exponent and the significand. We will defined the notion of "precision" in the following way: if the significand

is stored in n bits, it can represent a decimal number between 0 and 2n - 1 (since a significand is stored as an

unsigned integer). If we find the largest number "m" such that 10m - 1 is less than or equal to 2n - 1, m will be the

precision. Consider the following:

24 - 1 = 15 101 - 1 = 9

28 - 1 = 255 102 - 1 = 99

212 - 1 = 4,095 103 - 1 = 999

216 - 1 = 65,535 104 - 1 = 9,999

220 - 1 = 1,048,575 106 - 1 = 999,999

From the last example, it is easy to see that a 20 bit significand provides just over 6 decimal digits of precision.

In the other examples, there is more precision than we have indicated. For example, a 16 bit significand is

certainly sufficient to represent many decimal numbers with more than 4 digits; however, not all 5 digit decimal

numbers can be represented in 16 bits, and so the precision of a 16 bit significand is said to be "> 4" (but less

than 5). Some texts attempt to more accurately describe the precision using fractions, but we do not feel the need

to do so.

http://kias.dyndns.org/comath/11.html#bit
http://kias.dyndns.org/comath/13.html#uint

61

The following table describes the IEEE standard formats as well as those used in common Intel processors:

Precision Sign Exponent Significand Total Length Decimal digits

 (# of bits) (# of bits) (# of bits) (in bits) of precision

IEEE / Intel single 1 8 23 32 > 6

IEEE single extended 1 >= 11 >= 32 >= 44 > 9

IEEE / Intel double 1 11 52 64 > 15

IEEE double extended 1 >= 15 >= 64 >= 80 > 19

Intel internal 1 15 64 80 > 19

62

UNIT-II

DATA PATH DESIGN

Fixed point arithmetic:

Floating point (FP) representations of decimal numbers are essential to scientific computation using scientific

notation. The standard for floating point representation is the IEEE 754 Standard. In a computer, there is a

tradeoff between range and precision - given a fixed number of binary digits (bits), precision can vary inversely

with range. In this section, we overview decimal to FP conversion, MIPS FP instructions, and how registers are

used for FP computations.

We have seen that an n-bit register can represent unsigned integers in the range 0 to 2n-1, as well as signed

integers in the range -2n-1 to -2n-1-1. However, there are very large numbers (e.g., 3.15576 · 1023), very small

numbers (e.g., 10-25), rational numbers with repeated digits (e.g., 2/3 = 0.666666...), irrationals such as 21/2, and

transcendental numbers such as e = 2.718..., all of which need to be represented in computers for scientific

computation to be supported.

We call the manipulation of these types of numbers floating point arithmetic because the decimal point is not

fixed (as for integers). In C, such variables are declared as the float data type.

Scientific Notation and FP Representation:

Scientific notation has the following configuration:

Figure – Scientific Notation

and can be in normalized form (mantissa has exactly one digit to the left of the decimal point, e.g., 2.3425 · 10-19)

or non-normalized form. Binary scientfic notation has the following configuration, which corresponds to the

decimal forms.

Figure – Binary Scientific Notation

63

Assume that we have the following normal format for scientific notation in Boolean numbers:

+1.xxxxxxx2 · w
yyyyy,2where "xxxxxxx" denotes the significand and "yyyyy" denotes the exponent and we assume

that the number has sign S. This implies the following 32-bit representation for FP numbers:

Figure – 32-Bit representation for FP numbers

Overflow and Underflow:

In FP, overflow and underflow are slightly different than in integer numbers. FP overflow (underflow) refers to

the positive (negative) exponent being too large for the number of bits alloted to it. This problem can be

somewhat ameliorated by the use of double precision, whose format is shown as follows:

Figure – 32-Bit representation for FP numbers

Here, two 32-bit words are combined to support an 11-bit signed exponent and a 52-bit significand. This

representation is declared in C using the double data type, and can support numbers with exponents ranging from

- 30810 to 30810. The primary advantage is greater precision in the mantissa. The following chart illustrates

specific types of overflow and underflow encountered in standard FP representation:

Figure – Standard FP representation

IEEE 754 Standard:

Both single- and double-precision FP representations are supported by the IEEE 754 Standard, which is used in

the vast majority of computers since its publication in 1980. IEEE 754 facilitates the porting of FP programs, and

64

ensures minimum standards of quality for FP computer arithmetic. The result is a signed representation - the sign

bit is 1 if the FP number represented by IEEE754 is negative. Otherwise, the sign is zero. A leading value of 1 in

the significand is implicit for normalized numbers.

Thus, the significand, which always has a value between zero and one, occupies 23 + 1 bits in single-precision FP

and 52 + 1 bits in double precision. Zero is represented by a zero significand and a zero exponent - there is no

leading value of one in the significand. The IEEE 754 representation is thus computed as:

FP number = (-1)S · (1 + Significand) · 2Exponent .

As a parenthetical note, the significand can be translated into decimal values via the following expansion:

With IEEE 754, it is possible to manipulate FP numbers without having special-purpose FP hardware. For

example, consider the sorting of FP numbers. IEEE 754 facilitates breaking FP numbers up into three parts (sign,

significant, exponent). The numbers to be sorted are ordered first according to sign (negative < positive), second

according to exponent (larger exponent => larger number), and third according to significand (when one has at

least two numbers with the same exponents).

Another issue of interest in IEEE 754 is biased notation for exponents. Observe that twos complement notation

does not work for exponents: the largest negative (positive) exponent is 000000012(111111112). Thus, we must

add a bias term to the exponent to center the range of exponents on the bias number, which is then equated to

zero. The bias term is 127 (1023) for the IEEE 754 single-precision (double-precision) representation. This

implies that FP number = (-1)S · (1 + Significand) · 2(Exponent-Bias) .

As a result, we have the following example of binary to decimal floating point conversion:

Figure – Binary to Decimal floating point conversion

65

FP Arithmetic:

Applying mathematical operations to real numbers implies that some error will occur due to the floating point

representation. This is due to the fact that FP addition and subtraction are not associative, because the FP

representation is only an approximation to a real number.

Example 1. Using decimal numbers for clarity, let x = -1.5 · 1038, y = 1.5 · 1038, and z = 1.0. With floating point

representation, we have:

x + (y + z) = -1.5 · 1038 + (1.5 · 1038 + 1.0) = 0.0

and

(x + y) + z = (-1.5 · 1038 + 1.5 · 1038) + 1.0 = 1.0

The difference occurs because the value 1.0 cannot be distinguished in the significand of 1.5 · 1038 due to

insufficient precision (number of digits) of the significand in the FP representation of these numbers (IEEE 754

assumed).

The preceding example leads to several implementation issues in FP arithmetic. Firstly, rounding occurs when

performing math on real numbers, due to lack of sufficient precision. For example, when multiplying two N-bit

numbers, a 2N-bit product results. Since only the upper N bits of the 2N bit product are retained, the lower N bits

are truncated. This is also called rounding toward zero.

Another type of rounding is called rounding to infinity. Here, if rounding toward +infinity, then we always round

up. For example, 2.001 is rounded up to 3, -2.001 is rounded up to 2. Conversely, if rounding toward -infinity,

then we always round down. For example, 1.999 is rounded down to 1, -1.999 is rounded down to -2. There is a

more familiar technique, for example, where 3.7 is rounded to 4, and 3.1 is rounded to 3. In this case, we resolve

rounding from n.5 to the nearest even number, e.g., 3.5 is rounded to 4, and -2.5 is rounded to2.

A second implementation issue in FP arithmetic is addition and subtraction of numbers that have nonzero

significands and exponents. Unlike integer addition, we can't just add the significands. Instead, one must:

1. Denormalize the operands and shift one of the operands to make the exponents of both numbers equal

(we denote the exponent by E).

2. Add or subtract the significands to get the resulting significand.

3. Normalize the resulting significand and change E to reflect any shifts incurred by

normalization. WewillreviewseveralapproachestofloatingpointoperationsinMIPSinthefollowingsection.

There are many different criteria’s to check when considering the "best" scheduling algorithm, they are:

66

CPU Utilization:

To make out the best use of CPU and not to waste any CPU cycle, CPU would be working most of the

time(Ideally 100% of the time). Considering a real system, CPU usage should range from 40% (lightly loaded) to

90% (heavily loaded.

Throughput:

It is the total number of processes completed per unit time or rather say total amount of work done in a unit of

time. This may range from 10/second to 1/hour depending on the specific processes.

Turnaround Time:

It is the amount of time taken to execute a particular process, i.e. The interval from time of submission of the

process to the time of completion of the process (Wall clock time).

Waiting Time:

The sum of the periods spent waiting in the ready queue amount of time a process has been waiting in the ready

queue to acquire get control on the CPU.

Load Average:

It is the average number of processes residing in the ready queue waiting for their turn to get into the CPU.

Response Time:

Amount of time it takes from when a request was submitted until the first response is produced. Remember, it is

the time till the first response and not the completion of process execution(final response).

In general CPU utilization and Throughput are maximized and other factors are reduced for proper optimization.

Addition, Subtraction:

Arithmetic instructions in digital computers manipulate data to produce results necessary for the

solutions of computational problems. These instructions perform arithmetic calculations and are

responsible for the bulk of activity involved in processing data in a computer. The four basic arithmetic

operations are addition, subtraction, multiplication and division.

From these four basic operations, it is possible to formulate other arithmetic functions and solve

problems by means of numerical analysis methods. An arithmetic processor is the part of a processor

unit that executes arithmetic operations.

An arithmetic instruction may specify binary or decimal data, and in each case, the data may be in fixed-

point or floating point form. Negative numbers may be in signed magnitude or signed compliment

representation. Fixed point numbers may represent integers or fractions. The addition and subtraction

67

algorithm for data represented in signed magnitude and again data represented in signed-2’s

complement. It is important to realize that the adopted representation for negative numbers refers to the

representation of numbers in the register before and after the execution of the arithmetic operations.

Addition and Subtraction with Signed-magnitude Data:

The representation of numbers in signed-magnitude is familiar because it is used in everyday arithmetic

calculation. The procedure for adding or subtracting two signed binary numbers with paper and pencils

simple and straight-forward. A review of this procedure will be helpful for deriving the hardware

algorithm. We designated the magnitude of the two numbers by A and B. when the signed numbers are

added or subtracted, we find that there are eight different conditions to consider, depending on the sign

of the numbers and the operation performed. These conditions are listed in the first column of the table

below. The other column in the table shows the actual operation to be performed with the magnitude of

the numbers.

The last column is needed to prevent negative zero. In other words, when two equal numbers are

subtracted, the result should be +0 not -0.

The algorithms for addition and subtraction are derived from the table and can be stated as follows (the

words inside parentheses should be used for the subtraction algorithm).

Addition (subtraction) algorithm: when the signs of A and B are identical (different), add the two

magnitude and attach the sign of A to the result. When the sign of A and B are different (identical),

compare the magnitudes.

Figure: Table for Addition and Subtraction of Signed-Magnitude Numbers

68

Hardware implementation:

To implement the two arithmetic operations with hardware, it is first necessary that the two numbers be

stored in registers. Let A and B be two registers that hold the magnitude of the numbers, and As and Bs

be two flip-flops that hold the corresponding signs. The results of the operation may be transferred to a

third register however, a saving achieved if the result is transferred into A and A’s. Thus A and As

together from an accumulator register.

Consider now the hardware implementation of the algorithms above. First, a parallel adder is needed to

perform the micro operation A+B. second, comparator circuit is needed to establish if A>B, A=B, or

A<B. third, two parallel subtractor circuits are needed to perform the micro operation A-B and B-A.

The sign relationship can be determined from an exclusive-OR gate with As andBs as inputs.

Figure: Hardware for Signed-Magnitude Addition and Subtraction.

The output carry is transferred to flip-flop E. The complementer consists of exclusive-OR gates and the parallel

adder consists of full adder circuit.

69

Hardware algorithm:

Figure: Hardware Algorithm.

The two signs As and Bs are compared by an exclusive-OR gate. For an add operation, identical signs dictate

that the magnitudes be added, for subtract operation different signs dictate that the magnitudes be

added. The magnitudes are added with a micro operation E AßA+B. Where E A is a register that

combines E and A. For A 0 indicates that A<B, for this case it is necessary to take the 2’s compliment

of the value in A .this operation can be done with one micro operationAßĀ+1.

However, we assume that A register as circuits for micro operation compliment and increment, so the

2’s compliment is obtain from these two micro operations… The value in AVF provides an overflow

indication. The final value of E is immaterial.

Addition and Subtraction with signed2’s complement data:

The left most bit of binary number represents the sign bit; 0 for positive and 1 for negative. If the sign

bit is 1, the entire the entire number is represented in 2’s compliment form. The addition of two

numbers in signed-2’s complement form consists of adding the number with the sign bits treated the

same as the other bits of the number. A carry out of the sign bit position is discarded. The subtraction

consists of first taking the 2’s compliment of the subtrahend and then adding it to the minu end When

70

two numbers of n digits each are added and the sum occupies n+1 Digits, we say that an overflow

occurred. When the two carriers are applied to an exclusive-OR gate, the overflow is detected when the

output of the gate is equal to 1.

Figure:--Hardware for Signed 2's Compliant Addition and Subtraction

The left most bit in AC and BR represents the sign bits of the numbers. The over flow flip-flops V is set

to 1 if there is an overflow. The outputs carry in this case.is discarded.

Figure:--Algorithm for Adding and Subtracting numbers in Signed 2's Compliment representation.

71

The sum is obtained by adding the contents of AC and BR(including their sign bits). The overflow bit V

is set to 1 if the ex-OR of the last two carries is 1, and it is cleared to 0 otherwise.

Multiplication and Division:

Reading Assignments and Exercises:

Multiplication is more complicated than addition, being implemented by shifting as well as addition.

Because of the partial products involved in most multiplication algorithms, more time and more circuit

area is required to compute, allocate, and sum the partial products to obtain the multiplication result.

Multiplier Design:

We herein discuss three versions of the multiplier design based on the pencil-and-paper algorithm for

multiplication that we all learned in grade school, which operates on Boolean numbers, as follows:

Multiplicand: 0010 # Stored in register r1

Multiplier: x 1101 # Stored in register r2

Partial Prod 0010 # No shift for LSB of Multiplier

" " 0000 # 1-bit shift of zeroes (can omit)

" " 0010 # 2-bit shift for bit 2 of Multiplier

" “ 0010 # 3-bit shift for bit 3 of Multiplier

-------------------- # Zero-fill the partial products and add

PRODUCT 0011010 # Sum of all partial products -> r3

A flowchart of this algorithm, adapted for multiplication of 32-bit numbers, is shown in Figure below;

together with a schematic representation of a simple ALU circuit that implements this version of the

algorithm. Here, the multiplier and the multiplicand are shifted relative to each other, which is more

efficient than shifting the partial products alone.

https://www.cise.ufl.edu/~mssz/CompOrg/PatHen-Readings.html#ExSec3.3

72

(a)

(b)

Figure: Pencil-and-paper multiplication of 32-bit Boolean number representations:

(a) algorithm, and (b) simple ALU circuitry

73

The second version of this algorithm is shown in Figure. Here, the product is shifted with respect to the

multiplier, and the multiplicand is shifted after the product register has been shifted. A 64-bit register is

used to store both the multiplicand and the product.

(a)

(b)

Figure: Second version of pencil-and-paper multiplication of 32-bit Boolean number representations:

(a) algorithm, and (b) schematic diagram of ALU circuitry.

Thus, we have the following shift-and-add scheme for multiplication:

74

The preceding algorithms and circuitry does not hold for signed multiplication, since the bits of the

multiplier no longer correspond to shifts of the multiplicand. The following example is illustrative:

A solution to this problem is Booth's Algorithm, whose flowchart and corresponding schematic

hardware diagram are shown in Figure. Here, the examination of the multiplier is performed with look

ahead toward the next bit. Depending on the bit configuration, the multiplicand is positively or

negatively signed, and the multiplier is shifted or un shifted.

(a)

75

(b)

Figure. Booth's procedure for multiplication of 32-bit Boolean number representations: (a) algorithm,

and (b) schematic diagram of ALU circuitry.

Observe that Booth's algorithm requires only the addition of a subtraction step and the comparison

operations for the two-bit codes, versus the one-bit comparison in the preceding three algorithms. An

example of Booth's algorithm follows:

Here N = 4 iterations of the loop are required to produce a product from two N = 4 digit operands. Four

shifts and two subtractions are required. From the analysis of the algorithm shown in Figure 3.18a, it is

easily seen that the maximum work for multiplying two N-bit numbers is given by O(N) shift and

addition operations. From this, the worst-case computation time can be computed given CPI for the

shift and addition instructions, as well as cycle time of the ALU.

76

Design of Arithmetic Division Hardware:

Division is a similar operation to multiplication, especially when implemented using a procedure similar

to the algorithm shown in Figure 3.18a. For example, consider the pencil-and-paper method for dividing

the byte 10010011 by the nybble 1011:

The governing equation is as follows:

Dividend = Quotient · Divisor + Remainder.

Unsigned Division. The unsigned division algorithm that is similar to Booth's algorithm is shown in

Figure a, with an example shown in Figure b. The ALU schematic diagram in given in Figure c. The

analysis of the algorithm and circuit is very similar to the preceding discussion of Booth's algorithm.

(a)

77

(b)

(c)
Figure . Division of 32-bit Boolean number representations: (a) algorithm, (b) example using division of

the unsigned integer 7 by the unsigned integer 3, and (c) schematic diagram of ALU circuitry.

Signed Division

With signed division, we negate the quotient if the signs of the divisor and dividend disagree. The

remainder and the divident must have the same signs. The governing equation is as follows:

Remainder = Divident - (Quotient · Divisor) ,

78

and the following four cases apply:

We present the preceding division algorithm, revised for signed numbers, as shown in Figure a. Four

examples, corresponding to each of the four preceding sign permutations, are given in Figure b and c.

(a)

79

(b)

(c)
Figure. Division of 32-bit Boolean number representations: (a) algorithm, and (b,c) examples using

division of +7 or -7 by the integer +3 or -3;

Division in MIPS

MIPS supports multiplication and division using existing hardware, primarily the ALU and shifter. MIPS needs

one extra hardware component - a 64-bit register able to support sll and sra instructions. The upper (high) 32 bits

of the register contains the remainder resulting from division. This is moved into a register in the MIPS register

stack (e.g., $t0) by themfhi command. The lower 32 bits of the 64-bit register contains the quotient resulting from

division. This is moved into a register in the MIPS register stack by the mflo command.

In MIPS assembly language code, signed division is supported by the div instruction and unsigned division, by

the divu instruction. MIPS hardware does not check for division by zero. Thus, divide-by-zero exception must be

80

detected and handled in system software. A similar comment holds for overflow or underflow resulting from

division.

Figure: MIPS ALU supporting the integer arithmetic operations (+,-,x,/)

Combinational ALU’s:

An ALU is the fundamental unit of any computing system.

Understanding how an ALU is designed and how it works is essential to building any advanced logic circuits.

Using this knowledge and experience, we can move on to designing more complex integrated circuits.

The ALU is the “heart” of a processor—you could say that everything else in the CPU is there to support the

ALU.

Typical Schematic Symbol of an ALU:

A and B: the inputs to the ALU (aka operands)

R: Output or Result

F: Code or Instruction from the control Unit (aka as op-code)

D: Output status; it indicates cases

Such as:

 Carry-in

81

 Carry-out,

 Overflow,

 Division-by-zero

 And . ..

Combinational Circuits:

1. Combinational Circuits are made of logic gates.

2. Doesn’t contain memory element, that’s why they can’t store any information.

3. Value of present output is determined by present input.

4. Examples of combinational circuits are half adders, full adders, sub tractor set c.

Block Diagram of Combinational Circuits:

82

Figure: Combinational Circuits Based ALU

An ALU using Combinational Circuits:

83

Examples of Combinational Circuits:

1. Multiplexer

2. Demultiplexer

3. Encoder

4. Decoder

5. Half Adder

6. Full Adder

Multiplexer:

A multiplexer is a combinational circuit where binary information from one of many input lines is

selected and directs it to a single output line.

Demultiplexer:

Demultiplexing is the reverse process of multiplexing; i.e., a Demultiplexer is a combinational circuit

that receives information on a single line and transmits this information on one of 2n possible output

lines.

Encoder:

An encoder is a combinational circuit that Produces the reverse function from that of a Decoder.

Decoder:

Decoder is a combinational logic circuit that receives coded information on n input lines and feeds

them to maximum of 2n unique output lines after conversion

Half Adder:

A half-adder is a combinational circuit that performs the addition of two bits.

Full Adder:

This type of adder is a little more difficult to implement than a half-adder.

The main difference between a half-adder and a full adder is that the full-adder has three inputs and

two outputs.

Design Procedure for Combinational Circuits:

1. This procedure involves the following steps:

2. The problem is stated.

3. The number of available input variables and output variables is determined.

84

4. The input and output variables are assigned letter symbols.

5. Truth table is drawn

6. Boolean function for output is obtained.

7. The logic diagram is drawn.

Design Procedure for Combinational Circuits:

1. To determine the output functions as algebraic expressions.

2. It is the reverse process of design procedure.

3. Logic diagram of the circuit is given.

4. Obtain the truth table from the diagram.

5. Obtain Boolean function from the Truth Table for output.

Sequential ALU's

An ALU is the fundamental unit of any computing system.

Understanding how an ALU is designed and how it works is

essential to building any advanced logic circuits.

Using this knowledge and experience, we can move on to designing more complex integrated circuits.

The ALU is the “heart” of a processor—you could say that everything else in the CPU is there to support the

ALU.

Typical Schematic Symbol of an ALU:

A and B: the inputs to the ALU (aka operands)

R: Output or Result

F: Code or Instruction from the Control Unit (aka asop-code)

D: Output status; it indicates cases

Such as:

 Carry-in

 Carry-out,

 Overflow,

 Division-by-zero

 And . . .

Sequential Logic Circuits:

1) Made up of combinational circuits and memory elements.

2) These memory elements are devices capable of storing ONE-BIT information.

3) Output depends on input and previous state.

4) Examples of sequential circuits are flip flops, counters, shift registers.

85

Block Diagram of Sequential Circuits:

Figure: Sequential Circuits Based ALU

An ALU using Sequential Circuits:

86

Examples of Sequential Circuits:

1) Flip-Flops

a. JK Flip-Flop

b. RS Flip-Flop

c. PR Flip-Flop

d. D Flip-Flop

2) Registers

3) Counters.

Flip-Flops:

 Flip-Flops are the basic building blocks of sequential circuits.

 A flip-flop is a binary cell which can store a bit of information.

 A basic function of flip-flop is storage, which means memory. A flip-flop (FF) is capable of storing 1

(one) bit of binary data.

 It has two stable states either ’1’ or ‘0’. A flip-flop maintains any one of the two stable states which can

be treated as zero or one depending on presence and absence of output signals.

87

Registers and Counters:

A circuit with flip-flops is considered a sequential circuit even in the absence of combinational logic.

Circuits that include flip-flops are usually classified by the function they perform.

Two such circuits are registers and counters:

Registers-

a. It is a group of flip-flops.

b. Its basic function is to hold information within a digital system so as to make it available

to the logic units during the computing process.

Counters:-

a. It is essentially a register that goes through a predetermined sequence of states.

Types of Sequential Circuits:

Sequential circuits are of two types:

1. Synchronous Sequential Circuits

2. Asynchronous Sequential Circuits

Synchronous Sequential Circuits:

 In synchronous sequential circuits, the state of the device changes only at discrete times in

response to a clock Pulse.

 In a synchronous circuit, an electronic oscillator called a clock generates a sequence of

repetitive pulses called the clock signal which is distributed to all the memory elements in the

circuit

Asynchronous Sequential Circuits:

 Asynchronous circuit is not synchronized by a clock signal; the outputs of the circuit

change directly in response to changes in Inputs.

 The advantage of asynchronous logic is that it can be faster than synchronous logic, because the

circuit doesn't have to wait for a clock signal to process inputs.

 The speed of the device is potentially limited only by the propagation delays of the logic gates

used.

88

Design Procedure for Sequential Circuits:

This process involves the following steps:

 Make a state table based on the problem statement. The table should show the present states,

inputs, next states and outputs. (It may be easier to find a state diagram first, and then convert

that to a table)

 Assign binary codes to the states in the state table, if you haven’t already. If you have n states,

your binary codes will have at least [log2 n] digits, and your circuit will have at least [log2 n]

flip-flops

 For each flip-flop and each row of your state table, find the flip-flop input values that are needed

to generate the next state from the present state. You can use flip-flop excitation tables here.

 Find simplified equations for the flip-flop inputs and the outputs.

 Build the circuit!

Logic Diagram for Analysis Example:

The circuit has 3 inputs A, B, C and 2 outputs F1, F2:

The Boolean function for outputs is:

 T1=A+B+C

 T2=ABC

 T3=F2’T1

Outputs functions for gates are:

89

 F1=T3+T2

 F2=AB+AC+BC

Substituting and Simplifying, we get:

Truth table drawn from the logic diagram:

Boolean functions obtained for output are:

 F2=AB+AC+BC

 F1=A’BC’+A’B’C+AB’C’+ABC

90

 Carry look ahead adder:

Motivation behind Carry Look-Ahead Adder:

In ripple carry adders, for each adder block, the two bits that are to be added are available instantly. However,

each adder block waits for the carry to arrive from its previous block. So, it is not possible to generate the sum

and carry of any block until the input carry is known.

The ith block waits for the i- 1th block to produce its carry. So there will be a considerable time delay which is

carry propagation delay.

Figure – Digital Logic

Consider the above 4-bit ripple carry adder. The sum S4 is produced by the corresponding full adder as

soon as the input signals are applied to it. But the carry input C4 is not available on its final steady state

value until carry C3 is available at its steady state value. Similarly C3 depends on C2 and C2 on C1.

Therefore, though the carry must propagate to all the stages in order that output S3 and carry C4 settle

their final steady-state value. The propagation time is equal to the propagation delay of each adder

block, multiplied by the number of adder blocks in the circuit. For example, if each full adder stage has

a propagation delay of 20 nanoseconds, then S3 will reach its final correct value after 60 (20 × 3)

nanoseconds. The situation gets worse, if we extend the number of stages for adding more number of

bits.

91

Carry Look-ahead Adder:

A carry look-ahead adder reduces the propagation delay by introducing more complex hardware. In this design,

the ripple carry design is suitably transformed such that the carry logic over fixed groups of bits of the adder is

reduced to two-level logic. Let us discuss the design in detail.

Figure - Design.

Figure – Truth table.

92

Generally, we perform many mathematical operations in our daily life such as addition, subtraction,

multiplication, division, and so on. Let us consider the multiplication process that can be performed in different

methods. Different types of algorithms can be used to perform multiplication like grid multiplication method,

long multiplication, lattice multiplication, peasant or binary multiplication, and soon.

Binary multiplication is usually performed in digital electronics by using an electronic circuit called as binary

multiplier. These binary multipliers are implemented using different computer arithmetic techniques. Booth

multiplier that works based on booth algorithm is one of the most frequently used binary multipliers.

Booth Algorithm

A Booth multiplication algorithm or Booth algorithm was named after the inventor Andrew Donald Booth. It can

be defined as an algorithm or method of multiplying binary numbers in two’s complement notation. It is a simple

method to multiply binary numbers in which multiplication is performed with repeated addition operations by

following the booth algorithm. Again this booth algorithm for multiplication operation is further modified and

hence, named as modified booth algorithm.

http://www.efxkits.us/get-a-chance-to-win-free-electronics-project-kits-by-edgefxkits/

93

Modified Booth's Algorithm:

Booth multiplication algorithm consists of three major steps as shown in the structure of booth algorithm figure

that includes generation of partial product called as recoding, reducing the partial product in two rows, and

addition that gives final product. For a better understanding of modified booth algorithm & for multiplication, we

must know about each block of booth algorithm for multiplication process.

Figure - Modified Booth Algorithm.

.

Modified Booth Algorithm Encoder:

This modified booth multiplier is used to perform high-speed multiplications using modified booth

algorithm. This modified booth multiplier’s computation time and the logarithm of the word length of

operands are proportional to each other. We can reduce half the number of partial product. Radix-4

booth algorithm used here increases the speed of multiplier and reduces the area of multiplier circuit. In

this algorithm, every second column is taken and multiplied by 0 or +1 or +2 or -1 or -2 instead of

multiplying with 0 or 1 after shifting and adding of every column of the booth multiplier. Thus, half of

the partial product can be reduced using this booth algorithm. Based on the multiplier bits, the process

of encoding the multiplicand is performed by radix-4 booth encoder. The overlapping is used for

comparing three bits at a time. This grouping is started from least significant bit (LSB), in which only

two bits of the booth multiplier are used by the first block and a zero is assumed as third bit as shown in

the figure.

http://www.efxkits.us/electrical-engineering-projects-for-final-year-beng-and-meng-honours/

94

Figure - Bit Pairing as per Booth Recoding

The figure shows the functional operation of the radix-4 booth encoder that consists of eight different types of

states. The outcomes or multiplication of multiplicand with 0, -1, and -2 are consecutively obtained during these

eight states.

Figure - Booth Recoding Table for Radix-4

The steps given below represent the radix-4 booth algorithm:

 Extend the sign bit 1 position if necessary to ensure that n iseven.

 Append a 0 to the right of the least significant bit of the boothmultiplier.

 According to the value of each vector, each partial product will be 0, +y, -y, +2y or-2y.

95

Figure - Booth’s Encoder.

Modified booth multiplier’s (Z) digits can be defined with the following equation:

The figure shows the modified booth algorithm encoder circuit. Now, the product of any digit of Z with

multiplicand Y may be -2y, -y, 0, y, 2y. But, by performing left shift operation at partial products generation

stage, 2y may be generated. By taking 1’s complement to this 2y, negation is done, and then one is added in

appropriate 4-2 compressor. One booth encoder shown in the figure generates three output signals by taking three

consecutive bit inputs so as to represent all five possibilities -2X, -X, 0, X,2X.

Figure - Partial Product Generator.

If we take the partial product as -2y, -y, 0, y, 2y then, we have to modify the general partial product generator.

Now, every partial product point consists of two inputs (consecutive bits) from multiplicand and, based on the

requirement, the output will be generated and its complements also generated in case if required. The figure

shows the partial product generator circuit. The 2’s complement is taken for negative values of y. There are

different types of adders such as conventional adders, ripple-carry adders, carry-look-ahead adders, and carry

select adders. The carry select adders (CSLA) and carry-look-ahead adders are considered as fastest adders and

are frequently used. The multiplication of y is done by after performing shift operation on y – that is – y is shifted

http://www.efxkits.us/radio-frequency-remote-controlled/

96

to the left by one bit. Hence, to design n-bit parallel multipliers only n2 partial products are generated by using

booth algorithm. Thus, the propagation delay to run circuit, complexity of the circuit, and power consumption can

be reduced. A simple practical example to understand modified booth algorithm is shown in the figure below.

Figure -Practical Multiplication Example using Modified Booth Algorithm.

Robertson Algorithm

Recall that the `pencil-and-paper' algorithm is in that each product term (obtained by multiplying each bit of the

multiplier to the multiplicand) has to be saved till all such product terms are obtained. In machine

implementations, it is desirable to add all such product terms to form the partial product. Also, instead of

shifting the product terms to the left, the partial product is shifted to the right before the addition takes place. In

other words, if Pi is the partial product after i steps and if Y is the multiplicand and X is the multiplier, the and

the process repeats

,…

http://www.efxkits.us/how-op-amp-use-as-comparator/

97

Note that the multiplication of signed magnitude numbers requires a straightforward extension of the

unsigned case. The magnitude part of the product can be computed just as in the unsigned magnitude

case. The sign p0 of the product P is computed from the signs of X and Y as p0 x0y0.

Figure – Two's complement Multiplication - Robertson's Algorithm.

Consider the case that we want to multiply two 8 bit numbers X = x0x1:::x7 and Y = y0y1:::y7. Depending on

the sign of the two operands X and Y , there are 4 cases to be considered : x0 = y0 = 0, that is, both X and Y are

positive. Hence, multiplication of these numbers is similar to the multiplication of unsigned numbers. In other

words, the product P is computed in a series of add-and-shift steps of the form.

98

Note that all the partial product are non-negative. Hence, leading 0s are introduced during right shift of the

partial product. x0 = 0; y0 = 1, that is, X is positive and Y is negative. In this case, the partial product is positive

and hence leading 0s are shifted into the partial product until the rst 1 in X is encountered. Multiplication of Y

by this 1, and addition to the result causes the partial product to be negative, from which point on leading 1s are

shifted in (rather than 0s). X0 = 1; y0 = 1, that is, both X and Y are negative. Once again, leading 1s are shifted

into the partial product once the rst 1 in X is encountered. Also, sinceX is negative, the correction step

(subtraction as the last step) is also performed.

Booth’s Algorithm

Booth algorithm gives a procedure for multiplying binary integers in signed 2’s complement

representation in efficient way, i.e., less number of additions/subtractions required. It operates on the

fact that strings of 0’s in the multiplier require no addition but just shifting and a string of 1’s in the

multiplier from bit weight 2^k to weight 2^m can be treated as 2^ (k+1) to 2^m.As in all multiplication

schemes, booth algorithm requires examination of the multiplier bits and shifting of the partial

product. Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the

partial product, or left unchanged according to following rules:

1. The multiplicand is subtracted from the partial product upon encountering the first least

significant 1 in a string of 1’s in the multiplier

2. The multiplier is added to the partial product upon encountering the first 0 (provided that there

was a previous ‘1’) in a string of 0’s in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous multiplier

bit.

Hardware Implementation of Booths Algorithm – The hardware implementation of booth algorithm

requires the register configuration.

99

Figure – Register configuration.

We name the register as A, B and Q, AC, BR and QR respectively. Qn designates the least significant bit of

multiplier in the register QR. An extra flip-flop Qn+1is appended to QR to facilitate a double inspection of the

multiplier. Qn+1 is appended to QR to facilitate a double inspection of the multiplier. The flowchart for booth

algorithm is shown below.

Booth’s Algorithm Flowchart –

Figure – Booth’s Algorithm Flowchart

100

AC and the appended bit Qn+1 are initially cleared to 0 and the sequence SC is set to a number n equal

to the number of bits in the multiplier.

When the two bits are equal, the partial product does not change. An overflow cannot occur because the

addition and subtraction of the multiplicand follow each other. As a consequence, the 2 numbers that

are added always have a opposite signs, a condition that excludes an overflow. The next step is to shift

right the partial product and the multiplier (including Qn+1). This is an arithmetic shift right (ashr)

operation which AC and QR ti the right and leaves the sign bit in AC unchanged. The sequence counter

is decremented and the computational loop is repeated times.

Example – A numerical example of booth’s algorithm is shown below for n = 4. It shows the step by

step multiplication of -5 and -7.

MD = -5 = 1011, MD = 1011, MD'+1 = 0101

MR = -7 = 1001

The explanation of first step is as follows: Qn+1

AC = 0000, MR = 1001, Qn+1 = 0, SC = 4

Qn Qn+1 = 10

So, we do AC + (MD)'+1, which gives AC = 0101

On right shifting AC and MR, we get

AC = 0010, MR = 1100 and Qn+1 = 1

OPERATION AC MR Qn+1 SC

 0000 1001 0 4

AC + MD’ + 1 0101 1001 0

ASHR 0010 1100 1 3

AC + MD 1101 1100 1

ASHR 1110 1110 0 2

ASHR 1111 0111 0 1

AC + MD’ + 1 0010 0011 1 0

Product is calculated as follows:

Product = AC MR

Product = 0010 0011 = 35

101

Division using Non-restoring Algorithm:

 Assume-- that there is an accumulator and MQ register, each of k–bits.

 MQ0, (lbs. of MQ) bit gives the quotient, which is saved after a subtraction or addition.

 Total number of additions or subtractions are k -only and total number of shifts = k plus one

addition for restoring remainder if needed.

 Assume ─that X register has (2k − 1) bit for dividend and Y has the k –bit divisor.

 Assume ─ a sign-bit S shows the sign.

1. Load (upper half k − 1 bits of the dividend X) into accumulator k -bit A and load dividend X (lower half

bits into the lower k bits at quotient register.

 Reset sign S=0.

 Subtract the Kbits divisor Y from S-A (1 plus Kbits) and assign MQ0as perS.

2. If sign of A, S= 0, shift S plus 2k-bit register pair A-MQ left and subtract the k-bits divisor Y rom S-A (1

plus k-bits);

 Assign MQ0as perS.

3. Repeat step 2 again till the total number of operations =k.

4. If at the last step, the sign of Ain S= 1, then add Y into S-A to leave the correct remainder into A and also

assign MQ0as per S, else do-nothing.

5. A has the remainder and MQ has the quotient

102

Coprocessor

History Of Co-Processor:

Co-processor for floating point arithmetic first appeared in desktop computers in 1970s. The

coprocessors become common in 1980s and into the early 1990s. Early 8_Bit and 16 Bit processor uses

software to carry out the floating point arithmetic operations. Math co-processor was popular purchase

for users of computer-aided design (CAD) software and scientific and engineering calculations.

Operation Performed by Coprocessor

 Floating point arithmetic

 Graphic & Signal processing.

 String processing.

 Encryption

 Coprocessors are Unable to fetch the code from the memory so they work under the controlof

main processor.

Architecture of 8087:

INTEL 8087

 Numeric Processor.

 Packed in 40 pin ceramic DIP package.

 Available in 5 MHz, 8MHz, 10MHz versions compatible with 8086, 8088, 80186,80188.

 It adds 68 new instructions to the instruction set of8086.

How it works

 The 8087 instruction may lie interleaved in the 8086 program, but it is the task of 8086 to

identify the 8087 instructions from the program, send it to 8087 for further execution & after the

completion of execution cycle the result may be referred back to CPU.

 Operation of 8087 does not require any software support from the system software or

operating system.

103

Architecture of 8087

Figure – Architecture of 8087 Explanation

Two major sections:

1) Control unit

2) Numeric Execution unit

Control Unit

 Function:

 It interfaces the coprocessor to the microprocessor – system data bus.

 Monitors the instruction stream. If the instruction is an Escape (coprocessor) instruction,

the coprocessor executes it; if not the microprocessor executes it.

 It receives, decodes instructions, read and write memory operands and executes the8087

instruction

Numeric Execution Unit (NEU)

Functions:

 Execute all the numeric processor instructions.

 It has 8 register (80 bit) stacks that hold the operands for arithmetic instructions & the result.

 Instruction either addresses data in specific stack data – register or uses push and pop

mechanism to store or retrieve data.

104

Control Word Register of 8087

Coprocessor Control Instructions

The coprocessor has control instructions for initialization, exception handling, and task switching.

All control instructions have two forms.

Coprocessor Control Instructions

FINIT/FNINIT

Performs a reset (initialize) operation on the arithmetic coprocessor. The coprocessor operates with a

Closure of projective (unsigned infinity), rounds to the nearest or even, and uses extended precision

when reset or initialized also sets register 0 as the top of the stack.

FSETPM

Changes the coprocessor to the protected addressing mode used when the microprocessor is

protected mode Protected mode can only be exited by a hardware reset In 80386-Pentium 4, with a

change to the control register

FLDCW

Loads the control register with the word addressed by the operand.

105

FSTCW

Stores the control register into the word-sized memory operand.

FSTSW AX

Copies the contents of the control register to the AX register. not available to 8087

FCLEX

Clears the error flags in the status register and also the busy flag.

Graphics Coprocessor

Noun a high-speed display adapter that is dedicated to graphics operations such as line drawing and plotting. A

coprocessor utilized to accelerate the displaying of graphics, significantly speeding up the updating of the

images on a screen, and freeing the CPU to take care of other tasks. A graphics coprocessor maybe incorporated

into a graphics accelerator, or may be part of a separate subsystem. Also called graphics processor.

Nano Programming

Generally In micro programmed processors, an instruction fetched from memory is interpreted by a micro

program stored in a single control memory CM; whereas in other micro programmed processors, the micro

instructions are not directly used by the decoder to generate control signals. This is achieved by the use of a

second control memory called a Nano control memory (nCM). So now there are two levels of control memories,

a higher level control memory is known as micro control memory (µCM) and a lower level control memory is

known as Nano control memory (nCM). This is shown in Figure. Thus a microinstruction is in primary control-

store memory, it then has the control signals generated for each microinstruction using a secondary control store

memory The output word from the secondary memory is called Nano instruction. The µCM stores micro

instructions whereas nCM stores nano instructions. The decoder uses Nano instructions from nCM to generate

control signals. Thus Nano programming gives an alternative strategy to generate control signals. The process of

generation of control signals using nano instructions is shown in Figure

106

Figure - Nano Programming.

Nano instruction addresses are generated by a nano program counter and nano instructions are placed in a register

nIR. The next address of nIR is directly obtained. The next address is generated by either incrementing the nano

program counter or loading it from external source (branch field or address from micro instruction opcode)

Advantages of Nano programming

1. Reduces total size of required control memory

In two level control design technique, the total control memory size S2can be calculated as

S2=HmxWm+HnxWn

Where H−mn represents the number of words in the high level memory

Wm

represents the size of word in the high level memory

Hn represents the number of words in the low level memory

Wn represents the size of word in the low level memory

Usually, the micro programs are vertically organized so Hm is large and Wm is small. In Nano programming, we

have a highly parallel horizontal organization, which makes Wn large and Hn is small. This gives the

compatible

107

size for single level control unit as S1=Hmx Wn which is larger than S2. The reduced size of control memory

reduces the total chip area.

2. Greater design flexibility

Because of two level memories organization more design flexibility exists between instructions and hardware.

Disadvantage of Nano programming

1. Increased memory access time:

The main disadvantage of the two level memory approaches is the loss of speed due to the extra memory access

required for Nano control memory.

Modified booth‘s Algorithm

Generally, we perform many mathematical operations in our daily life such as addition, subtraction,

multiplication, division, and so on. Let us consider the multiplication process that can be performed in different

methods. Different types of algorithms can be used to perform multiplication like grid multiplication method,

long multiplication, lattice multiplication, peasant or binary multiplication, and soon.

Binary multiplication is usually performed in digital electronics by using an electronic circuit called as binary

multiplier. These binary multipliers are implemented using different computer arithmetic techniques. Booth

multiplier that works based on booth algorithm is one of the most frequently used binary multipliers.

Booth Algorithm

A Booth multiplication algorithm or Booth algorithm was named after the inventor Andrew Donald Booth. It can

be defined as an algorithm or method of multiplying binary numbers in two’s complement notation. It is a simple

method to multiply binary numbers in which multiplication is performed with repeated addition operations by

following the booth algorithm. Again this booth algorithm for multiplication operation is further modified and

hence, named as modified booth algorithm.

Modified Booth Algorithm

Booth multiplication algorithm consists of three major steps as shown in the structure of booth algorithm figure

that includes generation of partial product called as recoding, reducing the partial product in two rows, and

addition that gives final product. For a better understanding of modified booth algorithm & for multiplication, we

must know about each block of booth algorithm for multiplication process.

http://www.efxkits.us/get-a-chance-to-win-free-electronics-project-kits-by-edgefxkits/

108

Figure - Modified Booth Algorithm.

.

Modified Booth Algorithm Encoder

This modified booth multiplier is used to perform high-speed multiplications using modified booth algorithm.

This modified booth multiplier’s computation time and the logarithm of the word length of operands are

proportional to each other. We can reduce half the number of partial product. Radix-4 booth algorithm used here

increases the speed of multiplier and reduces the area of multiplier circuit. In this algorithm, every second column

is taken and multiplied by 0 or +1 or +2 or -1 or -2 instead of multiplying with 0 or 1 after shifting and adding of

every column of the booth multiplier. Thus, half of the partial product can be reduced using this booth algorithm.

Based on the multiplier bits, the process of encoding the multiplicand is performed by radix-4 booth encoder.

The overlapping is used for comparing three bits at a time. This grouping is started from least

significant bit (LSB), in which only two bits of the booth multiplier are used by the first block and a

zero is assumed as third bit as shown in the figure.

Figure - Bit Pairing as per Booth Recoding

http://www.efxkits.us/electrical-engineering-projects-for-final-year-beng-and-meng-honours/

109

The figure shows the functional operation of the radix-4 booth encoder that consists of eight different types of

states. The outcomes or multiplication of multiplicand with 0, -1, and -2 are consecutively obtained during these

eight states.

Figure - Booth Recoding Table for Radix-4

The steps given below represent the radix-4 booth algorithm:

 Extend the sign bit 1 position if necessary to ensure that n is even.

 Append a 0 to the right of the least significant bit of the booth multiplier.

 According to the value of each vector, each partial product will be 0, +y, -y, +2y or-2y.

Figure - Booth’s Encoder.

110

Modified booth multiplier’s (Z) digits can be defined with the following equation:

The figure shows the modified booth algorithm encoder circuit. Now, the product of any digit of Z with

multiplicand Y may be -2y, -y, 0, y, 2y. But, by performing left shift operation at partial products generation

stage, 2y may be generated. By taking 1’s complement to this 2y, negation is done, and then one is added in

appropriate 4-2 compressor. One booth encoder shown in the figure generates three output signals by taking three

consecutive bit inputs so as to represent all five possibilities -2X, -X, 0, X,2X.

Figure - Partial Product Generator.

If we take the partial product as -2y, -y, 0, y, 2y then, we have to modify the general partial product generator.

Now, every partial product point consists of two inputs (consecutive bits) from multiplicand and, based on the

requirement, the output will be generated and its complements also generated in case if required. The figure

shows the partial product generator circuit.

The 2’s complement is taken for negative values of y. There are different types of adders such as conventional

adders, ripple-carry adders, carry-look-ahead adders, and carry select adders. The carry select adders (CSLA) and

carry-look-ahead adders are considered as fastest adders and are frequently used. The multiplication of y is done

by after performing shift operation on y – that is – y is shifted to the left by one bit. Hence, to design n-bit parallel

multipliers only n2 partial products are generated by using booth algorithm. Thus, the propagation delay to run

circuit, complexity of the circuit, and power consumption can be reduced. A simple practical example to

understand modified booth algorithm is shown in the figure below.

http://www.efxkits.us/radio-frequency-remote-controlled/
http://www.efxkits.us/how-op-amp-use-as-comparator/

111

Figure -Practical Multiplication Example using Modified Booth Algorithm.

112

UNIT-III

CONTROL DESIGN
Hardwired control:

There are two major types of control organization: hardwired control and micro programmed control. In the

hardwired organization, the control logic is implemented with gates, flip-flops, decoders, and other digital

circuits. It has the advantage that it can be optimized to produce a fast mode of operation. In the micro

programmed organization, the control information is stored in a control memory.

The control memory is programmed to initiate the required sequence of micro operations. A hardwired control, as

the name implies, requires changes in the wiring among the various components if the design has to be modified

or changed. In the micro programmed control, any required changes or modifications can be done by updating the

micro program in control memory.

The block diagram of the control unit is shown in Fig. 5-6. It consists of two decoders, a sequence counter, and a

number of control logic gates. An instruction read from memory is placed in the instruction register (IR). The

position of this register in the common bus system is indicated. The instruction register is shown again in Fig. 5-

6, where it is divided into three parts: the I bit, the operation code, and bits 0 through1.

The operation code in bits 12 through 14 are decoded with a 3 x 8 decoder. The eight outputs of the decoder are

designated by the symbols D0 through D7• The subscripted decimal number is equivalent to the binary value of

the corresponding operation code. Bit 15 of the instruction is transferred to a flip-flop designated by the symbol I.

Bits 0 through 11 are applied to the control logic gates. The 4-bit sequence counter can count in binary from 0

through 15. The outputs of the counter are decoded into 16 timing signals T0 through T15• The internal logic of

the control gates will be derived later when we consider the design of the computer in detail. The sequence

counter SC can be incremented or cleared synchronously (see the counter of Fig. 2-11). Most of the time, the

counter is incremented to provide the sequence of timing signals out of the 4 x 16 decoder. Once in awhile, the

counter is cleared to 0, causing the next active timing signal to be To. As an example, consider the case where SC

is incremented to provide timing signals T0, Tv T2, T3, and T4 in sequence.

At time T4, SC is cleared to 0 if decoder output D3 is active. This is expressed symbolically by the statement

D3T4: SC <- 0 The timing diagram of Fig. 5-7 shows the time relationship of the control signals. The sequence

counter SC responds to the positive transition of the clock. Initially, the CLR input of SC is active. The first

positive transition of the

Clock clears SC to 0, which in term activates the timing signal T0 out of the decoder.

T0isactiveduringonedockcyde. The positive dock translation abele T0 in the diagram will trigger only those

registers whose control inputs are connected to timing signal To. SC is incremented with every positive dod<

transition, unless its O.R input is active. This produces the sequence of timing signals To. T,, T:z, T,.. T., and so

113

on, as shown in the diagram. (Note the relationship between the timing sigN) and its corresponding positive dod<

transition.)If SC is not cleared, the timing signals wiD continue witli T, T., up to T15 and back toT.

Micro programmed Control:
A control unit with its binary control values stored as words in memory is called a micro programmed

control. Each word in the control memory contains a microin- struction that specifies one or more micro

operations for the system. A sequence of microinstructions constitutes a micro program. The latter is often

fixed at the time of the system design and so is usually stored in ROM. Microprogramming involves placing

some representation for combinations of values of control variables in words of ROM for use by the rest of the

control logic via successive read operations. The contents of a word in ROM at a given address specify the

micro operations to be performed for both the data path and the control unit. A micro program can also be

stored in RAM. In this case, it is loaded initially at system startup from the computer console or

fromsomeformofnonvolatilestorage,suchasamagneticdisk.WitheitherROMorRAM,thememoryin

114

the control unit is called control memory; if RAM is used, the memory is referred to as writable control

memory.

Figure 1 shows the general configuration of a micro programmed control. The control memory is assumed

to be a ROM within which all control information is permanently stored. The control address register

(CAR) specifies the address of the microinstruction. The control data register (CDR), which is optional,

may hold the microinstruction currently being executed by the data path and the control unit.

One of the functions of the control word is to determine the address of the next microinstruction to be

executed. This microinstruction may be the next one in sequence, or it may be located somewhere else in

the control memory. Therefore, one or more bits that specify how to determine the address of the next

microin- struction must be present in the current microinstruction. The next address may also be a

function of status and external control inputs. While a microinstruction is being executed, the next-address

generator produces the next address. This address is transferred to the CAR on the next clock pulse and is

used to read the next microinstruction to be executed from ROM. Thus, the microinstructions contain bits

for activating microoperations in the data path and bits that specify the sequence of microinstructions

executed.

The next-address generator, in combination with the CAR, is sometimes called a microprogram sequencer,

as it determines the sequence of instructions that is read from control memory. The address of the next

microinstruction can be specified in several ways, depending on the sequencer inputs. Typical

115

functions of a microprogram sequencer are incrementing the CAR by one and loading the CAR. Possible sources

for the load operation include an address from control memory, tion.

The CDR holds the present microinstruction while the next address is being computed and the next

microinstruction is being read from memory. The CDR breaks up a long combinational delay path through

the control memory and the data path. Insertion of this register is just like inserting a pipeline platform, as in

Section 7-11; it allows the system to use a higher clock frequency and hence per- form processing faster.

The inclusion of a CDR in a system, however, complicates the sequencing of microinstructions, particularly

when decision making based on status bits is involved. Hence, for simplicity, we omit the CDR and take the

micro- instructions directly from the ROM outputs. The ROM operates as a combinational circuit, with the

address as the input and the corresponding microinstruction as the output. The contents of the specified

word in ROM remain on the output lines of the ROM as long as the address value is applied to the inputs.

No read/write signal is needed, as it is with RAM. Each clock pulse executes the microoperations specified

by the microinstruction and also transfers a new address to the CAR, which, in this case, is the only

component in the control that receives clock pulses and stores state information. The next-address generator

and the control memory are combinational circuits. Thus, the state of the control unit is given by the

contents of the CAR.

The status bits enter the next-address generator and affect the determination of the next state. Unless the

status bits bypass the control unit and directly control the microoperations being executed in the data path, they

can do no more than select the next micro operation by affecting the address generated by the next- address

generator. This has a profound effect on the structure of the ASM charts for micro programmed controls. The

sequential circuits must be Moore-type sequential circuits, and as a consequence, conditional output boxes are

not permit- ted in the ASM charts. This often means that more states will be required in the ASM for a given

hardware algorithm. An ASM chart for the binary multiplier, developed under the restriction that the system

contain no conditional output boxes, is given in Figure 2. Compared to the ASM chart in Figure 8-7 in the text,

this chart has two more states, INIT and ADD, that have been added where originally conditional output boxes

were used. Besides being a Moore-type circuit, this ASM has only single decision boxes determining the

sequencing between states. Although next-state decisions based on multiple values are possible, they are often

excluded in simpler next-address generator designs.

Pipe line control:

Suppose you wanted to make an automobile from scratch. You might gather up the raw materials, form the metal

into recognizable shapes, cast some of the metal into an engine block, connect up fuel lines, wires, etc., to

eventually (one would hope) make a workable automobile. To do this, you would need many skills - all the skills

of the artisans that make autos, and management skills in addition to being an electrician and a metallurgist. This

would not be an efficient way to make a car, but would definitely provide many challenges.

116

That is the way a multi cycle data path works - it is designed to do everything - input, output, and computation

(recall the fetch-decode-execute sequence). We need to ask ourselves if this is really the best way to compute

efficiently, especially when we consider the complexity of control for large (CISC) systems or even smaller RISC

processors.

Fortunately, our analogy with car-making is not so far-fetched, and can actually help us arrive at a more efficient

processor design. Consider the modern way of making cars - on an assembly line. Here, there is an orderly flow

of parts down a conveyor belt, and the parts are processed by different stations (also called segments of the

assembly line). Each segment does one thing, over and over. The segments are coordinated to exploit

the sequentiality inherent in the automobile assembly process. The work gets done more smoothly (because of the

orderly flow of input parts and output results), more efficiently (because each assembler at each segment of the

pipeline does his or her task at what one hopes is maximum efficiency), and more reliably because there is greater

consistencyinonetaskbeingdonerepetitively(providedtheassemblylineisdesignedcorrectly).

A similar analogy exists for computers. Instead of a multi cycle data path with its complex control system that

walks, talks, cries, and computes - let us suppose that we could build an assembly line for computing. Such

objects actually exist, and they are called pipeline processors. They have sequentially-arranged stages or

segments, each of which perform a specific task in a fixed amount of time. Data flows through these pipelines

like cars through an assembly line.

Pipeline Data path Design and Implementation

The work involved in an instruction can be partitioned into steps labeled IF (Instruction Fetch), ID (Instruction

Decode and data fetch), EX (ALU operations or R-format execution), MEM (Memory operations), and WB

(Write-Back to register file). We next discuss how this sequence of steps can be implemented in terms of MIPS

instructions.

MIPS Instructions and Pipelining

In order to implement MIPS instructions effectively on a pipeline processor, we must ensure that the instructions

are the same length (simplicity favors regularity) for easy IF and ID, similar to the multi cycle datapath. We also

need to have few but consistent instruction formats, to avoid deciphering variable formats during IF and ID,

which would prohibitively increase pipeline segment complexity for those tasks. Thus, the register indices should

be in the same place in each instruction. In practice, this means that the rd, rs, and rt fields of the MIPS

instruction must not change location across all MIPS pipeline instructions.

Additionally, we want to have instruction decoding and reading of the register contents occur at the same time,

which is supported by the datapath architecture that we have designed thus far. Observe that we have memory

address computation in the lw and sw instructions only, and that these are the only instructions in our five-

117

instruction MIPS subset that perform memory operations. As before, we assume that operands are

aligned in memory, for straightforward access.

Data path partitioning for Pipelining

Recall the single-cycle data path, which can be partitioned (subdivided) into functional units as shown

in Figure 5.2. Because the single-cycle data path contains separate Instruction Memory and Data

Memory units, this allows us to directly implement in hardware the IF-ID-EX-MEM-WB representation

of the MIPS instruction sequence. Observe that several control lines have been added, for example, to

route data from the ALU output (or memory output) to the register file for writing. Also, there are again

three ALUs, one for ALU op, another for JTA computation, and a third for adding PC+4 to compute the

address of the next instruction.

Pipeline Control Issues and Hardware:

Observe that there is nothing to control during instruction fetch and decode (IF and ID). Thus, we can begin our

control activities (initialization of control signals) during ID, since control will only be exerted during EX, MEM,

and WB stages of the pipeline. Recalling that the various stages of control and buffer circuitry between the

pipeline stages are labelled IF/ID, ID/EX, EX/MEM, and MEM/WB, we have the propagation of control

Here, the following stages perform work as specified:

118

 IF/ID: Initializes control by passing the rs, rd, and rt fields of the instruction, together with the opcode

and funct fields, to the control circuitry.

 ID/EX: Buffers control for the EX, MEM, and WB stages, while executing control for the EX stage.

Control decides what operands will be input to the ALU, what ALU operation will be performed, and

whether or not a branch is to be taken based on the ALU Zerooutput.

 EX/MEM: Buffers control for the MEM and WB stages, while executing control for the MEM stage. The

control lines are set for memory read or write, as well as for data selection for memory write. This stage

of control also contains the branch control logic.

 MEM/WB: Buffers and executes control for the WB stage, and selects the value to be written into the

register file.

Overview of Hazards

Pipeline processors have several problems associated with controlling smooth, efficient execution of instructions

on the pipeline. These problems are generally called hazards, and include the following three types:

 Structural Hazards occur when different instructions collide while trying to access the same piece of

hardware in the same segment of a pipeline. This type of hazard can be alleviated by having redundant

hardware for the segments wherein the collision occurs. Occasionally, it is possible to insert stalls or

reorder instructions to omit this type of hazard.

 Data Hazards occur when an instruction depends on the result of a previous instruction still in the

pipeline, which result has not yet been computed. The simplest remedy inserts stalls in the execution

sequence, which reduces the pipeline's efficiency. The solution to data dependencies is twofold. First, one

can forward the ALU result to the write back or data fetch stages. Second, in selected instances, it is

possible to restructure the code to eliminate some data dependencies. Forwarding paths are shown as thin

blue or red lines in Figure5.4.

 Control Hazards can result from branch instructions. Here, the branch target address might not be ready

in time for the branch to be taken, which results in stalls (dead segments) in the pipeline that have to be

inserted as local wait events, until processing can resume after the branch target is executed. Control

hazards can be mitigated through accurate branch prediction (which is difficult), and by delayed

branch strategies.

We next examine hazards in detail, and discuss several techniques for eliminating or relieving hazards.

119

Nano Programming:

Generally In micro programmed processors, an instruction fetched from memory is interpreted by a micro

program stored in a single control memory CM; whereas in other micro programmed processors, the micro

instructions are not directly used by the decoder to generate control signals. This is achieved by the use of a

second control memory called a Nano control memory (nCM). So now there are two levels of control memories,

a higher level control memory is known as micro control memory (µCM) and a lower level control memory is

known as Nano control memory (nCM). This is shown in Figure. Thus a microinstruction is in primary control-

store memory, it then has the control signals generated for each microinstruction using a secondary control store

memory The output word from the secondary memory is called Nano instruction. The µCM stores micro

instructions whereas nCM stores nano instructions. The decoder uses Nano instructions from nCM to generate

control signals. Thus Nano programming gives an alternative strategy to generate control signals. The process of

generation of control signals using nano instructions is shown in Figure

120

Figure - Nano Programming.

Nano instruction addresses are generated by a nano program counter and nano instructions are placed in a register

nIR. The next address of nIR is directly obtained. The next address is generated by either incrementing the nano

program counter or loading it from external source (branch field or address from micro instruction opcode)

Advantages of Nano programming

1. Reduces total size of required control memory

In two level control design technique, the total control memory size S2can be calculated as

S2=HmxWm+HnxWn

Where H−mn represents the number of words in the high level memory

Wm

represents the size of word in the high level memory

Hn represents the number of words in the low level memory

Wn represents the size of word in the low level memory

Usually, the micro programs are vertically organized so Hm is large and Wm is small. In Nano programming, we

have a highly parallel horizontal organization, which makes Wn large and Hnis small. This gives the compatible

size for single level control unit as S1=Hmx Wn which is larger than S2. The reduced size of control memory

reduces the total chip area.

2. Greater design flexibility

Because of two level memories organization more design flexibility exists between instructions and hardware.

Disadvantage of Nano programming

1. Increased memory access time:

The main disadvantage of the two level memory approaches is the loss of speed due to the extra memory access

required for Nano control memory.

Superscalar Processor

What is superscalar processor ?

Why Superscalar?

Organization of superscalar processor.

Instruction dispatch.

Reservation station.

Reservation station: Centralized vs distributed.

Recorder buffer.

Instruction completion and Retire.

Limitations of superscalar processor.

Superscalar processor:

121

A superscalar processor is a CPU that implements a form of parallelism called instruction-level

parallelism within a single processor.

Simple superscalar pipeline:

By fetching and dispatching two instructions at a time, a maximum of two instructions per cycle can be

completed. (IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory access,

WB = Register write back, i = Instruction number, t = Clock cycle [i.e., time]).

Why superscalar:

 Most operations are on scalar quantities.

 Improve these operations to get an overall improvement.

 Superscalar processor executes multiple independent instructions in parallel.

Superscalar Organization:

122

Instruction Dispatch:

Route decoded instructions to appropriate functional units.

Reservation Station:

 Reservation station decouple instruction decoding and instruction execution.

 Main task: Dispatching -- Waiting--Issuing

Reservation station: Centralized Vs Distributed

123

Fig(a): Centralize reservation station (Intel P6)

Fig(b): Distributed reservation station (Power PC 620)

Reorder Buffer:

 Contain all in–flight instruction.

 Includes instruction in RS + instruction executing in FUs + instruction which are finished

execution but waiting to be completed in program order.

 Only finished and non-speculative instructions can be completed.

Instruction completion and Retire:

 Completion – finish the execution and update the machine state.

 Retire - update the memory.

124

 A store may complete by writing to store buffer, but it retire only when the data is written into

the memory.

 When an interrupt occurs, stop fetching new instructions and finish the execution of all-in-

flight instructions.

 When an exception occurs, the result of the completion may no longer be valid.

Limitation of superscalar processor:

1. Instruction-fetch inefficiencies caused by both branch delays and instruction misalignment

2. Not worthwhile to explore highly- concurrent execution hardware, rather, it is more appropriate

to explore economical execution hardware.

3. Degree of intrinsic parallelism in the instruction stream (instructions requiring the same

computational resources from theCPU).

4. Complexity and time cost of the dispatcher and associated dependency checking logic.

5. Branch instruction processing.

125

UNIT-IV

MEMORY ORGANIZATION

Introduction to Memory:

A memory unit is the collection of storage units or devices together. The memory unit stores the binary

information in the form of bits.

Generally, memory/storage is classified into 2 categories:

1. Volatile Memory: This loses its data, when power is switchedoff.

2. Non-Volatile Memory: This is a permanent storage and does not lose any data when power is

switched off.

Memory Hierarchy:

The total memory capacity of a computer can be visualized by hierarchy of components. The memory hierarchy

system consists of all storage devices contained in a computer system from the slow Auxiliary Memory to fast

Main Memory and to smaller Cache memory.

Auxiliary Memory:-

Auxiliary memory access time is generally 1000 times that of the main memory, hence it is at the bottom of the

hierarchy.

Main Memory:-

The main memory occupies the central position because it is equipped to communicate directly with the CPU

and with auxiliary memory devices through Input/output processor (I/O). When the program not residing in main

126

memory is needed by the CPU, they are brought in from auxiliary memory. Programs not currently needed in

main memory are transferred into auxiliary memory to provide space in main memory for other programs that are

currently in use. The cache memory is used to store program data which is currently being executed in the CPU.

Approximate access time ratio between cache memory and main memory is about 1 to7~10

Memory Access Methods:-

Each memory is a collection of numerous memory locations. To access data from any memory, first it must be

located and then the data is read from the memory location. Following are the methods to access information

from memory locations:

1. Random Access: Main memories are random access memories, in which each memory location has a

unique address. Using this unique address any memory location can be reached in the same amount of

time in any order.

2. Sequential Access: This methods allows memory access in a sequence or in order.

3. Direct Access: In this mode, information is stored in tracks, with each track having a separate read/write

head.

Main Memory:-

The memory unit that communicates directly within the CPU, Auxillary memory and Cache memory, is called

main memory. It is the central storage unit of the computer system. It is a large and fast memory used to store

127

data during computer operations. Main memory is made up of RAM and ROM, with RAM integrated circuit

chips holing the major share.

1. RAM: Random Access Memory

a) DRAM: Dynamic RAM, is made of capacitors and transistors, and must be refreshed every

10~100 ms. It is slower and cheaper than SRAM.

b) SRAM: Static RAM, has a six transistor circuit in each cell and retains data, until powered off.

c) NVRAM: Non-Volatile RAM, retains its data, even when turned off. Example: Flash memory.

2. ROM: Read Only Memory, is non-volatile and is more like a permanent storage for information. It also

stores the bootstrap loader program, to load and start the operating system when computer is turned

on.

Types of ROM

a) PROM(ProgrammableROM)

b) EPROM(Erasable PROM)and

c) EEPROM(Electrically ErasablePROM)

Auxiliary Memory:-

Devices that provide backup storage are called auxiliary memory. For example: Magnetic disks and tapes are

commonly used auxiliary devices. Other devices used as auxiliary memory are magnetic drums, magnetic bubble

memory and optical disks. It is not directly accessible to the CPU, and is accessed using the Input/Output

channels.

Cache Memory:-

The data or contents of the main memory that are used again and again by CPU, are stored in the cache memory

so that we can easily access that data in shorter time. Whenever the CPU needs to access memory, it first checks

the cache memory. If the data is not found in cache memory then the CPU moves onto the main memory. It also

transfers block of recent data into the cache and keeps on deleting the old data in cache to accomodate the new

one.

Hit Ratio

The performance of cache memory is measured in terms of a quantity called hit ratio. When the CPU refers to

memory and finds the word in cache it is said to produce a hit. If the word is not found in cache, it is in main

memory then it counts as a miss. The ratio of the number of hits to the total CPU references to memory is called

hit ratio.

128

Hit Ratio = Hit/(Hit + Miss)

Random Access Memory:-

In random-access memory(RAM) the memory cells can be accessed for information transfer from any

desired random location. That is, the process of locating a word in memory is the same and requires an equal

amount of time no matter where the cells are located physically in memory. Communication between a memory

and its environment is achieved through data input and output lines, address selection lines, and control lines that

specify the direction of transfer.

A block diagram of a RAM unit is shown below:

The n data input lines provide the information to be stored in memory, and the n data output lines supply the

information coming out of particular word chosen among the 2
k
available inside the memory. The two control

inputs specify the direction of transfer desired.

Write and Read Operations:-

The two operations that a random access memory can perform are the write and read operations. The write

signal specifies a transfer-in operation and the read signal specifies a transfer-out operation. On accepting one of

these control signals. The internal circuits inside the memory provide the desired function. The steps that must be

taken for the purpose of transferring a new word to be stored into memory are as follows:

1. Apply the binary address of the desired word into the addresslines.

2. Apply the data bits that must be stored in memory into the data inputlines.

3. Activate the writeinput.

The memory unit will then take the bits presently available in the input data lines and store them in the specified

129

by the address lines. The steps that must be taken for the purpose of transferring a stored word out of

memory are as follows:

1. Apply the binary address of the desired word into the addresslines.

2. Activate the read input.

The memory unit will then take the bits from the word that has been selected by the address and apply them into

the output data lines. The content of the selected word does not change after reading.

Serial Access Memories:-

Sequential access is a process used for retrieving data from a storage device. It is also known as serial

access. In sequential access, the storage device moves through all information up to the point it is attempting to

read or write. An example of sequential access drive is a tape drive where the drive moves the tape forward or

backward until the destination is reached. Sequential access memory can also be called "storage system." The

data is stored and read in a sequential fixed order. Sequential access is the type of memory mostly used for

permanent storage, whereas, random access memory is used for temporary storage.

Serial Access Devices:-

Old recording media such as CDs, DVDs, and magnetic tapes are examples of sequential access memory drives.

Hard drive is also an example of sequential access memory. Examples of random access memory include

memory chips and flash memory (such as memory sticks or memory cards).

Difference between Sequential Access and Random Access:-

Comparing sequential versus random disk operations helps to assess systems efficiency. Accessing data

sequentially is faster than random operations, because it involves more search functions. The search operation is

performed by the right disk cylinder. It occurs when the disk head positions itself to access the data requested for.

More ever, random access delivers a lower rate of output. If the disk access is random, it is advisable to pay

attention and monitor for the emergence of any bottleneck. For workloads of either random or sequential

input/output, it is advisable to use drives with faster rotational speeds. For workloads that are predominantly

random input/output, it is advisable to use a drive with faster search time.

Disadvantages of Sequential Access:-

The number of records that are affected when updating a file refers to its hit rate. Let us consider a file with 5000

records; if there is a delete or an update operation affecting only 50 records, then the hit rate is very low. If there

are 4500 records that are affected by update or delete operations, then the hit rate is high. Sequential access is

found to be slow when the hit rate is low. It is due to the fact that sequential access has to search all the records in

130

a particular order. Moreover, sequential files are executed in a batched transaction to overcome the problem of

low hit rate.

RAM interfaces:-

Data RAM:-

The data RAM shown below is organized as 8 ways 256-bit wide contiguous memories. It supports the following

accesses:

1. 8 word data reads

2. n * 8 bits data writes with byte enables controls

3. 8 word data writes for linefills.

Data RAM organization:-

131

Dirty RAM:-

The dirty RAM shown below is organized as a 16-bit wide memory, 2 bits per 8-word cache line. The dirty

RAM address is the same as the tag RAM address bus. It supports the following accesses:

 16 bit dirty reads for write-back eviction on alinefill.

 16 bit dirty reads for cache maintenance operations.

 1 or 2 bit dirty writes for writes and allocations.

Dirty RAM organization:-

132

The above figure shows the dirty RAM connectivity.

Dirty RAM connectivity:-

133

Tag RAM:-

There is one tag RAM for each way of the L2 cache. A tag RAM is organized as a 21-bit wide memory. 18 bits

are dedicated to address tag, 1 bit for security information, 1 bit for valid information, and optionally 1 bit for

parity. The tag RAM address bus is also the address bus for the dirty RAM. The tag RAM support the following

accesses:

 20-bit tag reads for Tag lookup

 20-bit tag writes for allocations.

The NS bit takes the value of 1 for NS data, and 0 for secure data.

Note:-You require a 21-bit wide memory to support the parity option.

Tag RAM organization:-

Cache lookup:-

The tag RAM format:

134

Tag RAMformat:-

Each line is marked as secure or NS depending on the value of the AWPROT[1] or ARPROT[1] value on the

original transaction. The security setting of the access, AWPROT[1] or ARPROT[1], is used for Cache Lookup

and compared with the NS attribute in the Tag. The tag RAM contains a field to hold the NS attribute bit

corresponding for each cache line. This is required so that the NS attribute bit for all cache ways is compared to

generate the cache hit.

Note

 The cache is not automatically flushed when the processor changes security state.

 If an access is performed, and has an AWPROT[1]/ARPROT[1] value of 1'b1, then the NS attribute

must be HIGH. Cache lookups are performed on lines marked as NS, the NS cache line attribute = 1,

according to Physical Address(PA).

 If any access is performed in secure state, and the transaction has an AWPROT[1]/ARPROT[1] value of

1'b0), then the NS attribute must be LOW. Cache lookups are performed on lines marked as secure (NS

cachelineattribute=0)accordingtoPA.AsecureaccessonlyhitsontagswithasecureNSattribute.

RAM sizes:-

The below table shows the different sizes of RAM.

L2 cache size Data RAM Tag RAM Dirty RAM

128KB 1 × (256 + 32) × (ways × 512) Ways × (20 + 1) × 512 1 × (2 × ways) × 512

256KB 1 × (256 + 32) × (ways × 1024) Ways × (19 + 1) × 1,024 1 × (2 × ways) × 1,024

512KB 1 × (256 + 32) × (ways × 2048) Ways × (18 + 1) × 2,048 1 × (2 × ways) × 2,048

1MB 1 × (256 + 32) × (ways × 4096) Ways × (17 + 1) × 4,096 1 × (2 × ways) × 4,096

2MB 1 × (256 + 32) × (ways × 8192) Ways × (16 + 1) × 8,192 1x (2 × ways) × 8,192

135

Note:-

1. The format for RAM sizes are:

 Number of RAM × (width + parity) × number of address location.

2. The dirty ram does not have parity. Width for the tag RAM consists of Valid + NS +address.

Magnetic Surface Recording:

A disk is a circular platter constructed of nonmagnetic material, called the substrate, coated with a magnetizable

material. Traditionally, the substrate has been an aluminum or aluminum alloy material. More recently, glass

substrates have been introduced. The glass substrate has a number of benefits, including the following:

1. Improvement in the uniformity of the magnetic film surface to increase diskreliability;

2. A significant reduction in overall surface defects to help reduce readwrite errors;

3. Ability to support lower fly heights (described subsequently);

4. Better stiffness to reduce disk dynamics;and

5. Greater ability to withstand shock and damage

Magnetic Read and Write Memory:-

Magnetic disks remain the most important component of external memory. Both removable and fixed, or hard,

disks are used in systems ranging from personal computers to mainframes and supercomputers. Data are recorded

on and later retrieved from the disk via a conducting coil named the head. In many systems, there are two heads,

a read head and a write head. During a read or write operation, the head is stationary while the platter rotates be

neat hit.

Inductive write/Magetoresistive Read Head

136

The write mechanism exploits the fact that electricity flowing through a coil produces a magnetic field. Electric

pulses are sent to the write head, and the resulting magnetic patterns are recorded on the surface below, with

different patterns for positive and negative currents. The traditional read mechanism exploits the fact that a

magnetic field moving relative to a coil produces an electrical current in the coil. When the surface of the disk

passes under the head, it generates a current of the same polarity as the one already recorded. The structure of the

head for reading is in this case essentially the same as for writing and therefore the same head can be used for

both. Such single heads are used in floppy disk systems and in older rigid disk systems. The read head consists of

a partially shielded magneto resistive (MR) sensor. The MR material has an electrical resistance that depends on

the direction of the magnetization of the medium moving under it.

Optical Memories:

Optical memories are used for large, storage of data. These devices provide the option of variety of data storage.

These can save up to 20 GB of information. The data or information is read or written using a laser beam. Due to

its low cost and high data storage capacity these memories are being freely used. Apart from low cost these

memories have long life. But the problem is that of low access time.

Some Examples of Optical Memory:

CD-ROM: CD ROM or Compact-Disk Read Only Memory are optical storage device which can be easily read

by computer but not written. CD-ROMs are stamped by the vendor, and once stamped, they cannot be erased and

filled with new data. To read a CD, CD-ROM player is needed. All D-ROMs conform to a standard size and

format, so any type of CD-ROM can be loaded into any CD-ROM player. In addition, CD-ROM players are

capable of playing audio CDs, which share the same technology. CD-ROMs are particularly well-suited to

information that requires large storage capacity This includes large software applications that support colour,

graphics. sound and especially video.

Advantages of CD ROM:

1. Storage capacity is high.

2. Data storage cost per bit is reasonable.

3. Easy to carry.

4. Can store variety of data.

Disadvantages of CD ROM:-

1. CD ROMs are read only.

2. Access time is more than hard disk.

137

WORM:

WORM or Write Once Read Many or CD-R or CD-Record able are a kind of optical device which provides the

user the liberty to write once on the CD R. The user can write on the disk using the CD R disk drive unit. But this

data or information cannot be overwritten or changed. CD R does not allow re-writing though reading can be

done many times.

Advantages of WORM:-

1. Storage capacity is high.

2. Can be recorded once.

3. Reliable.

4. Runs longer.

5. Access time is good.

Disadvantages or limitations of WORM:-

1. Can be written only once.

Erasable Optical Disk:-

Erasable Optical Disks are also called CD RW or CD rewritable. It gives the user the liberty of erasing data

already written by burning the microscopic point on the disk surface. The disk can be reused.

Advantages of CD RW:-
Storage capacity is very high.

1. Reliability is high.

2. Runs longer.

3. Easy to rewrite.

Limitations of CD RW:-

 Access time is high.

DVD-ROM, DVD-R and DVD-RAM:-

DVD or Digital Versatile Disk is another form of optical storage. These are higher in capacity than the CDs. Pre-
recorded DVDs are mass-produced using molding machines that physically stamp data onto the DVD. Such disks

are known as DVD-ROM, because data can only be read and not written nor erased. DVD Rs are the blank record

able DVDs which can be recorded once using optical disk recording technologies by using DVD recorders and
then function as a DVD-ROM. DVD-ROM. Re writable DVDs DVD-RAM can be recorded.

Multilevel memories:

Memory Hierarchy

138

Memory System Organization

No matter how big the main memory, how we can organize effectively the memory system in order to

store more information than it can hold. The traditional solution to storing a great deal of data is a

memory hierarchy.

Major design objective of any memory system:

1. To provide adequate storage capacity

2. An acceptable level of performance
3. At a reasonable cost

Four interrelated ways to meet this goal

1. Use a hierarchy of storage devices.

2. Develop automatic space allocation methods for efficient use of the memory.
3. Through the use of virtual memory techniques, free the user from memory management tasks.

4. Design the memory and its related interconnection structure so that the processes.

Multilevel Memories Organization:-

Three key characteristics increase for a memory hierarchy. They are the access time, the storage capacity and the

cost. The memory hierarchy is illustrated in figure 9.1.

The memory hierarchy

We can see the memory hierarchy with six levels. At the top there are CPU registers, which can be accessed at

full CPU speed. Next commes the cache memory, which is currently on order of 32 KByte to a few Mbyte. The

main memory is next, with size currently ranging from 16 MB for entry-level systems to tens of Gigabytes. After

that come magnetic disks, the current work horse for permanent storage. Finally we have magnetic tape and

optical disks for archival storage.

139

Basis of the memory hierarchy

1. Registers internal to the CPU for temporary data storage (small in number but very fast)

2. External storage for data and programs (relatively large and fast)

3. External permanent storage (much larger and much slower)

Typical Memory Parameters

Characteristics of the memory hierarchy

1. Consists of distinct “levels” of memory components

2. Each level characterized by its size, access time, and cost per bit

3. Each increasing level in the hierarchy consists of modules of larger capacity, slower access time,

and lower cost/bit

Memory Performance

Goal of the memory hierarchy. Try to match the processor speed with the rate of information transfer

from the lowest element in the hierarchy.

The memory hierarchy speed up the memory performance.

The memory hierarchy works because of locality of reference.

– Memory references made by the processor, for both instructions and data, tend to cluster together

+ Instruction loops, subroutines

+ Data arrays, tables

– Keep these clusters in high speed memory to reduce the average delay in accessing data

– Over time, the clusters being referenced will change -- memory management must deal with this

 Performance of a two level memory

140

Example: Suppose that the processor has access to two level of memory:

– Two-level memory system

– Level 1 access time of 1us

– Level 2 access time of 10us

– Ave access time = H(1) + (1-H)(10)ns

where: H is a fraction of all memory access that are found in the faster memory (e.g cache)

Performance of a two level memory

Cache & virtualmemory:-

Cache memory:-

A cache memory is a fast random access memory where the computer hardware stores copies of information

currently used by programs (data and instructions), loaded from the main memory. The cache has a significantly

shorter access time than the main memory due to the applied faster but more expensive implementation

technology. The cache has a limited volume that also results from the properties of the applied technology. If

information fetched to the cache memory is used again, the access time to it will be much shorter than in the case

if this information were stored in the main memory and the program will execute faster.

Time efficiency of using cache memories results from the locality of access to data that is observed during

program execution.

We observe here time and space locality:

141

1. Time locality consists in a tendency to use many times the same instructions and data in programs during

neighbouring time intervals,

2. Space locality is atendencytostoreinstructionsanddatausedinaprograminshortdistancesoftime under

neighbouring addresses in the main memory.

Due to these localities, the information loaded to the cache memory is used several times and the execution time

of programs is much reduced. Cache can be implemented as a multi-level memory. Contemporary computers

usually have two levels of caches. In older computer models, a cache memory was installed outside a processor

(in separate integrated circuits than the processor itself). The access to it was organized over the processor

external system bus. In today's computers, the first level of the cache memory is installed in the same integrated

circuit as the processor. It significantly speeds up processor's co-operation with the cache. Some microprocessors

have the second level of cache memory placed also in the processor's integrated circuit. The volume of the first

level cache memory is from several thousands to several tens of thousands of bytes. The second level cache

memory has volume of several hundred thousand bytes. A cache memory is maintained by a special processor

subsystem called cache controller. If there is a cache memory in a computer system, then at each access to a

main memory address in order to fetch data or instructions, processor hardware sends the address first to the

cache memory. The cache control unit checks if the requested information resides in the cache. If so, we have a

"hit" and the requested information is fetched from the cache. The actions concerned with a read with a hit are

shown in the figure below.

Read implementation in cache memory on hit

If the requested information does not reside in the cache, we have a "miss" and the necessary information is

fetchedfromthemainmemorytothecacheandtotherequestingprocessorunit.Theinformationisnotcopiedin

142

the cache as single words but as a larger block of a fixed volume. Together with information block, a part of the

address of the beginning of the block is always copied into the cache. This part of the address is next used at

readout during identification of the proper information block. The actions executed in a cache memory on "miss"

are shown below.

Read implementation in cache memory on miss

To simplify the explanations, we have assumed a single level of cache memory below. If there are two cache

levels, then on "miss" at the first level, the address is transferred in a hardwired way to the cache at the second

level. If at this level a "hit" happens, the block that contains the requested word is fetched from the second level

cache to the first level cache. If a "miss" occurs also at the second cache level, the blocks containing the

requested word are fetched to the cache memories at both levels. The size of the cache block at the first level is

from 8 to several tens of bytes (a number must be a power of 2). The size of the block in the second level cache is

many times larger than the size of the block at the firstlevel.

The cache memory can be connected in different ways to the processor and the main memory:

 as an additional subsystem connected to the system bus that connects the processor with the

main memory,

 as a subsystem that intermediates between the processor and the main memory,

 as a separate subsystem connected with the processor, in parallel regarding the main

memory. The third solution is applied the most frequently.

We will now discuss different kinds of information organization in cache memories.

There are three basic methods used for mapping of information fetched from the main memory to the cache

memory:

1. associative mapping

2. direct mapping

3. set-associative mapping.

143

In today's computers, caches and main memories are byte-addressed, so we will refer to byte-addressed

organization in the sections on cache memories that follow.

Virtual memory organization:-

In early computers, freedom of programming was seriously restricted by a limited volume of main memory

comparing program sizes. Small main memory volume was making large programs execution very troublesome

and did not enable flexible maintenance of memory space in the case of many co-existing programs. It was very

uncomfortable, since programmers were forced to spend much time on designing a correct scheme for data and

code distribution among the main memory and auxiliary store. The solution to this problem was supplied by

introduction of the virtual memory concept. This concept was introduced at the beginning of years 1970 under the

name of one-level storage in the British computer called Atlas. Only much later, together with application of this

idea in computers of the IBM Series 370, the term virtual memory was introduced. Virtual memory provides a

computer programmer with an addressing space many times larger than the physically available addressing space

of the main memory. Data and instructions are placed in this space with the use of virtual addresses, which can

be treated as artificial in some way. In the reality, data and instructions are stored both in the main memory and in

the auxiliary memory (usually disk memory). It is done under supervision of the virtual memory control system

that governs real current placement of data determined by virtual addresses. This system automatically (i.e.

without any programmer's actions) fetches to the main memory data and instructions requested by currently

executed programs. The general organization scheme of the virtual memory is shown in the figure below.

144

General scheme of the virtual memory:-

Virtual memory address space is divided into fragments that have pre-determined sizes and identifiers that are

consecutive numbers of these fragments in the set of fragments of the virtual memory. The sequences of virtual

memory locations that correspond to these fragments are called pages or segments, depending on the type of the

virtual memory applied. A virtual memory address is composed of the number of the respective fragment of the

virtual memory address space and the word or byte number in the given fragment.

We distinguish the following solutions for contemporary virtualmemory systems:

 paged (virtual)memory

 segmented (virtual)memory

 segmented (virtual) memory with paging.

When accessing data stored under a virtual address, the virtual address has to be converted into a physical

memory address by the use of address translation. Before translation, the virtual memory system checks if the

segment or the page, which contains the requested word or byte, resides in the main memory. It is done by tests

of page or segments descriptors in respective tables residing in the main memory. If the test result is negative, a

physical address sub-space in the main memory is assigned to the requested page or segment and next it is loaded

into this address sub-space from the auxiliary store. Next, the virtual memory system up-dates the page or

segment descriptions in the descriptor tables and opens access to the requested word or byte for the processor

instruction, which has emitted the virtual address.

The virtual memory control system is implemented today as partially hardware and software system. Accessing

descriptor tables and virtual to physical address translation is done by computer hardware. Fetching missing

pages or segments and up-dating their descriptors is done by the operating system, which, however, is strongly

supported by special memory management hardware. This hardware usually constitutes a special functional unit

for virtual memory management and special functional blocks designed to perform calculations concerned with

virtual address translation.

Memory allocation:-

Memory is the processes by which information is encoded, stored and retrieved. Encoding allow information that

is from the outside world to reach our senses in the forms of chemical and physical stimuli. Memory allocation is

a process by which computer programs and services are assigned with physical or virtual memory space. Memory

allocation is the process of reserving a partial or complete portion of computer memory for the execution of

programs and processes. Memory allocation is achieved through a process known as memory management.

Memory allocation is primarily a computer hardware operation but is managed through operating system and

software applications. Memory allocation process is quite similar in physical and virtual memory management.

145

Programs and services are assigned with a specific memory as per their requirements when they are executed.

Once the program has finished its operation or is idle, the memory is released and allocated to another program or

merged within the primary memory.

Memory allocation has two core types;

 Static Memory Allocation: The program is allocated memory at compile time.

 Dynamic Memory Allocation: The programs are allocated with memory at runtime.

Static memory allocation:-

In static memory allocation, size of the memory may be required for the calculation that must be define

before loading and executing the program.

Dynamic memory allocation:

There are two methods which are used for dynamic memory allocation:

1. Non-Preemptive Allocation

2. Preemptive Allocation

Non Preemptive allocation:-

Consider M1 as a main memory and M2 as secondary memory and a block K of n words is to be

transferred from M2 to M1. For such memory allocation it is necessary to find or create an available

reason of n or more words to accommodate K. This process is known as non preemptive allocation.

First Fit

In this algorithm, searching is started either at the beginning of the memory or where the previous first search

ended.

Best fit

In this algorithm, all free memory blocks are searched and smallest free memory block which is large enough to

accommodate desired block K is used to allocate K.

146

Preemptive allocation:-

Non preemptive allocation can’t make efficient use of memory in all situation. Due scattered memory blocks

larger free memory blocks may not be available. Much more efficient us of the available memory space is

possible if the occupied space can be re allocated to make room for incoming blocks by a method called as

Compaction.

Associative Memory:-

A memory unit accessed by content is called associative memory or content addressable memory(CAM) or

associative storage or associative array. Memory is capable of finding empty unused location to store the word.

To search particular data in memory, data is read from certain address and compared if the match is not found

content of the next address is accessed and compared. This goes on until required data is found. The number of

access depend on the location of data and efficiency of searching algorithm.

Hardware Organization of Associative Memory

Hardware Organization

Associative Memory is organized in such a way.

147

Argument register(A) : It contains the word to be searched. It has n bits(one for each bit of the word).

Key Register(K) : This specifies which part of the argument word needs to be compared with words in memory.

If all bits in register are 1, The entire word should be compared. Otherwise, only the bits having k bit set to 1 will

be compared.

Associative memory array : It contains the words which are to be compared with the argument word.

Match Register(M): It has m bits, one bit corresponding to each word in the memory array. After the matching

process, the bits corresponding to matching words in match register are set to 1.

Key register provide the mask for choosing the particular field in A register. The entire content of A register is

compared if key register content all 1. Otherwise only bit that have 1 in key register are 0compared. If the

compared data is matched corresponding bits in the match register are set. Reading is accomplished by sequential

access in memory for those words whose bit a reset.

Match Logic:-

Let us include key register. If Kj=0 then there is no need to compare Aj and Fij.

1. Only when Kj=1, comparison isneeded.

2. This achieved by ORing each term withKj.

148

Read Operation:-

When a word is to be read from an associative memory, the contents of the word, or a prt of the word is specified.

Write operations:-

If the entire memory is loaded with new information at once prior to search operation then writing can be done by

addressing each location in sequence. Tag register contain as many bits as there are words in memory. It contain

1 for active word and 0 for inactive word. If the word is to be inserted, tag register is scanned until 0 is found and

word is written at that position and bit is change to1.

Advantages:-

This is suitable for parallel searches. It is also used where search time needs to be short.

1. Associative memory is often used to speed up databases, in neural networks and in the page tables

used by the virtual memory of modern computers.

2. CAM-design challenge is to reduce power consumption associated with the large amount

of parallel active circuitry, without sacrificing speed or memory density.

Disadvantages:-

1. An associative memory is more expensive than a random access memory because each cell must have an

extra storage capability as well as logic circuits for matching its content with an external argument.

2. Usually associative memories are used in applications where the search time is very critical and must be

very short.

149

UNIT-V

SYSTEM ORGANIZATION

Communication methods

Basic Concepts:

Bus is a group of wires that connects different components of the computer. It is used for transmitting data,

control signal and memory address from one component to another. A bus can be 8 bit, 16 bit, 32 bit and 64 bit.

A 32 bit bus can transmit 32 bit information at a time. A bus can be internal or external.

Types of bus:

· Databus

Data bus carries data from on component to another. It is uni-directional for input and output devices and bi-

directional for memory and CPU.

· Controlbus

Control bus carries control signal. CU of CPU uses control signal for controlling all the components. It is uni-

directional from CPU to all other components.

· Addressbus

Address bus carries memory address. A memory address is a numerical value used for identifying a memory

location. Computer performs all its task through the memory address. CU of CPU sends memory address to all

the components. So, address bus is also uni-directional from CPU to all other components.

Bus Interconnection Scheme

Long distance communication

The equipment for long distance communication is very important. Communication takes place either through

heliograph signaling using a flashing mirror, electrical lamps, spot lights, colored disks, etc., or it is accomplished

electrically by radio or by wires within the confined areas of the space station.

In communicating with the ground, use of heliograph signaling has the disadvantage of being unreliable because

itdependsonthereceivingstationontheEarthbeingcloudless.Therefore,thespacestationhasatitsdisposal

150

large radio equipment that makes possible both telegraph and telephone communications with the ground at any

time. Overcoming a relatively significant distance as well as the shielding effect exerted by the atmosphere on

radio waves (Heaviside layer),* are successful here (after selecting an appropriate direction of radiation) by using

shorter, directed waves and sufficiently high transmission power, because conditions for this transmission are

favorable since electric energy can be generated in almost any quantities by means of the solar power plant and

because the construction of any type of antenna presents no serious problems as a result of the existing

weightlessness.

Computer Network | Types of area networks – LAN, MAN and WAN

The Network allows computers to connect and communicate with different computers via any medium. LAN,

MAN and WAN are the three major types of the network designed to operate over the area they cover. There are

some similarities and dissimilarities between them. One of the major differences is the geographical area they

cover, i.e. LAN covers the smallest area; MAN covers an area larger than LAN and WAN comprises the largest

of all.

There are other types of Computer Networks also, like :

 PAN (Personal Area Network)

 SAN (Storage Area Network)

 EPN (Enterprise Private Network)

 VPN (Virtual Private Network)

Local Area Network (LAN) –

LAN or Local Area Network connects network devices in such a way that personal computer and workstations

can share data, tools and programs. The group of computers and devices are connected together by a switch, or

stack of switches, using a private addressing scheme as defined by the TCP/IP protocol. Private addresses are

unique in relation to other computers on the local network. Routers are found at the boundary of a LAN,

connecting them to the larger WAN.

Data transmits at a very fast rate as the number of computers linked are limited. By definition, the connections

must be high speed and relatively inexpensive hardware (Such as hubs, network adapters and Ethernet cables).

LANs cover smaller geographical area (Size is limited to a few kilometers) and are privately owned. One can use

it for an office building, home, hospital, schools, etc. LAN is easy to design and maintain. A Communication

medium used for LAN has twisted pair cables and coaxial cables. It covers a short distance, and so the error and

noise are minimized.

151

Early LAN’s had data rates in the 4 to 16 Mbps range. Today, speeds are normally 100 or 1000 Mbps.

Propagation delay is very short in a LAN. The smallest LAN may only use two computers, while larger LANs

can accommodate thousands of computers. A LAN typically relies mostly on wired connections for increased

speed and security, but wireless connections can also be part of a LAN. The fault tolerance of a LAN is more and

there is less congestion in this network. For example : A bunch of students playing Counter Strike in the same

room (without internet).

Metropolitan Area Network (MAN) –

MAN or Metropolitan area Network covers a larger area than that of a LAN and smaller area as compared to

WAN. It connects two or more computers that are apart but resides in the same or different cities. It covers a

large geographical area and may serve as anISP(InternetServiceProvider).MANisdesignedforcustomerswho need

a high-speed connectivity. Speeds of MAN ranges in terms of Mbps. It’s hard to design and maintain a

Metropolitan AreaNetwork.

The fault tolerance of a MAN is less and also there is more congestion in the network. It is costly and may or may

not be owned by a single organization. The data transfer rate and the propagation delay of MAN is moderate.

Devices used for transmission of data through MAN are: Modem and Wire/Cable. Examples of a MAN are the

part of the telephone company network that can provide a high-speed DSL line to the customer or the cable TV

network in a city.

Wide Area Network (WAN) –

WAN or Wide Area Network is a computer network that extends over a large geographical area, although it

might be confined within the bounds of a state or country. A WAN could be a connection of LAN connecting to

other LAN’s via telephone lines and radio waves and may be limited to an enterprise (a corporation or an

organization) or accessible to the public. The technology is high speed and relatively expensive.

There are two types of WAN: Switched WAN and Point-to-Point WAN. WAN is difficult to design and

maintain. Similar to a MAN, the fault tolerance of a WAN is less and there is more congestion in the network. A

Communication medium used for WAN is PSTN or Satellite Link. Due to long distance transmission, the noise

and error tend to be more in WAN.

WAN’s data rate is slow about a 10th LAN’s speed, since it involves increased distance and increased number of

servers and terminals etc. Speeds of WAN ranges from few kilobits per second (Kbps) to megabits per second

(Mbps). Propagation delay is one of the biggest problems faced here. Devices used for transmission of data

through WAN are: Optic wires, Microwaves and Satellites. Example of a Switched WAN is the asynchronous

152

transfer mode (ATM) network and Point-to-Point WAN is dial-up line that connects a home computer to the

Internet.

BusControl

Network Topology

Network Topology is an arrangement of nodes, nodes are basically components of network. This arrangement

define the network layout or the structure of the network in both the ways physically and logically which enable

communication between components of network. Nodes are connected to each other in different ways that we are

going to discuss further in types of network topologies and communication take place. Physical layout of

topology define the layout of nodes, cables and workstations in the network whereas logical topology determine

how the information flow and communication done between the components of the network .So now we are

going to discuss the types of Network topologies and how they connect computer network in any organization.

Types of Network Topologies

Point-to-Point Topology

Point-to-Point is one of the simplest topology and basic model of conventional telephony that provide permanent

link between two endpoints. The purpose of this topology is to establish communication between two endpoints.

Example of this topology is children’s tin can telephone that associated with the two endpoints. This topology is

easy to understand, use circuit-switching and packet-switching technology for the information flow and can be

dropped when not needed by the user anymore.

153

Bus Topology

Bus is a type of network topology in which all the devices are connected to a main single cable called the bus. In

other words we can say a line connected to devices in the network. From bus only all the devices are connected to

each other and share resources and file. This network is simple to maintain because if one node fails to fail then

rest can communicate with the others. Advantage of bus topology is easy to connect a computer to a linear bus

which require less wired cable because a single cable wire is required. But one of the major disadvantage of this

topology is once the main cable get fail then it will broke down the whole network. This network is easy to

expand by adding additional nodes to thebus.

Ring Topology

Ring is a type of network topology in which all the devices are connected in a closed loop and share data and

resources to their adjacent nodes. Data can be shared with only two devices connected adjacent to a single node

and flow of data has to be done in one followed direction only. Each node can receive data or can send data to the

destination place. Basically this topology follow the token passing technology where each token contain data,

sender and receiver information. Advantage of this topology is this is very organized and each node have equal

access resource right. But the major drawback is if one device get fail it will break down the whole network.

Star Topology

Star is a type of network topology in which all the devices are connected to central hub through it communication

take place between devices. A central hub can be a router or switch and all the devices are connected to central

device with point-to-point connection. Central device act as a junction which manage and control all the data that

pass from it before going to intended destination. Advantages of using this topology is easy to install such

network. If one device is failed no need to disturb the whole network while remove that device from the network.

Easy to detect faults and remove that part. But it also has some of the disadvantages like it require more cable as

compared to linear bus topology and if central device fail then also disabled the attached nodes.

Tree Topology

Tree is a type of network topology that integrates the advantages of both bus and star topology. Basically it

connect one star network with the another by the help of bus network and as many other star networks.

Advantages of this technology is expansion is easy to add other devices, error detection and correction is easy, if

one segment is damaged it doesn’t affect another device or segment. But this affect the maintenance of the

network by adding additional nodes to the network and scalability depends on type of cable used.

Mesh Topology

Mesh is a type of topology in which each of the network node interconnected with one another and each node

sends signal as well as relay data from other nodes. A true mesh is the one in which each node in the network

connect to every node in the network which is also termed as full mesh or fully connected topology. But to

154

establish such network is very expensive but still it is used in wireless networks. The techniques used by this

network is Flooding or Routing. A device of network can transmit data to different devices at the same time. If

one device get damage it doesn’t affect another device or sub-network in the same network. But cost is very high

and set-up of this network is difficult to maintain, also network administration is difficult.

Bus interfacing

Consider a computer system using different interface standards. Let us look in to Processor bus and Peripheral

Component Interconnect (PCI) bus. These two buses are interconnected by a circuit called bridge. It is a bridge

between processor bus and PCI bus. An example of a computer system using different interface standards is

shown in figure 4.38. The three major standard I/O interfaces discussed here are:

– PCI (Peripheral Component Interconnect)

– SCSI (Small Computer System Interface)

– USB (Universal Serial Bus)

PCI (Peripheral Component Interconnect)

The topics discussed under PCI are: Data Transfer, Use of a PCI bus in a computer system, A read operation on

the PCI bus, Device configuration and Other electrical characteristics. Use of a PCI bus in a computer system is

shown in figure 4.39 as a representation.

Host, main memory and PCI bridge are connected to disk, printer and Ethernet interface through PCI bus. At

any given time, one device is the bus master. It has the right to initiate data transfers by issuing read and write

commands. A master is called an initiator in PCI terminology. This is either processor or DMA controller. The

addressed device that responds to read and write commands is called a target. A complete transfer operation on

the bus, involving an address and a burst of data, is called a transaction. Device configuration is also discussed.

SCSI Bus

It is a standard bus defined by the American National Standards Institute (ANSI). A controller connected to a

SCSI bus is an initiator or a target. The processor sends a command to the SCSI controller, which causes the

following sequence of events to take place:

• The SCSI controller contends for control of the bus(initiator).

• When the initiator wins the arbitration process, it selects the target controller and hands over control of the bus

to it.

• The target starts an output operation. The initiator sends a command specifying the required read operation.

• The target sends a message to the initiator indicating that it will temporarily suspends the connection between

them. Then it releases the bus. The target controller sends a command to the disk drive to move the read

head to the first sector involved in the requested read operation.

• The target transfers the contents of the data buffer to the initiator and then suspends the connection again.

155

• The target controller sends a command to the disk drive to perform another seek operation.

• As the initiator controller receives the data, it stores them into the main memory using the DMA approach.

• The SCSI controllers ends an interrupt to the processor to inform it that the requested operation has been

completed.

The bus signals, arbitration, selection, information transfer and reselection are the topics discussed in addition to

the above.

Universal Serial Bus (USB)

The USB has been designed to meet several key objectives such as:

• Provide a simple, low-cost and easy to use interconnection system that overcomes the difficulties due to the

limited number of I/O ports available on a computer

• Accommodate a wide range of data transfer characteristics for I/O devices, including telephone and Internet

connections

• Enhance user convenience through a “plug-and-play” mode of operation Port Limitation Here to add new

ports, a user must open the computer box to gain access to the internal expansion bus and install a new interface

card. The user may also need to know how to configure the device and the software. And also it is to make it

possible to add many devices to a computer system at any time, without opening the computer box.

Device Characteristics

The kinds of devices that may be connected to a computer cover a wide range of functionality - speed, volume

and timing constraints. A variety of simple devices attached to a computer generate data in different

asynchronous mode. A signal must be sampled quickly enough to track its highest-frequency components.

Plug-and-play Whenever a device is introduced, do not turn the computer off/restart to connect/disconnect a

device. The system should detect the existence of this new device automatically, identify the appropriate device-

driver software and any other facilities needed to service that device, and establish the appropriate addresses and

logical connections to enable them to communicate.

156

Asynchronous data transfer

Strobe: a pulse supplied to indicate the time at which data is being transmitted

Handshaking: a control signal is transmitted along with the data; another signal is sent by the receiver

Asynchronous data communication is used when transmitting data between two devices which cannot share a

common clock. For example, data transmitted via modem would be sent asynchronously, whereas data

transmitted within a single computer would be transmitted synchronously. A strobe is a pulse used by one

computer to alert the other that it will send data. In some systems, the receiving unit sends an acknowledge signal

back to the sender. This is handshaking.

Source-initiated strobe

There are four general methods for transmitting data asynchronously, depending on whether the source or

destination initiates the transfer and on whether or not handshaking is used. In source-initiated strobe, the source

first places data onto the data bus. After giving it some time to settle down, it activates the strobe signal. This

alerts the destination device that data is ready and the destination device reads in the data. After some set amount

of time, the source unit de-asserts the strobe and then removes data from the bus. Some devices may load in data

on the falling edge of the strobe, so the order of the last two operations is important.

Note that the source device never receives confirmation that the data was received successfully. That is a tradeoff

inherent in this type of transfer. The advantage gained is that hardware requirements are reduced. This type of

transfer could be useful for such operations as updating remote LED displays.

Destination-initiated strobe

157

Destination-initiated strobe is similar to source-initiated strobe except, as its name implies, the destination device

initiates the data transfer by asserting the strobe. This causes data to be placed on the data bus; the destination

device then reads in the data. After some preset amount of time, it releases the strobe, which signals the source

unit to stop sending valid data. A circuit that uses this form of transmission might have a tri-state buffer as part of

the source unit. The data from the source unit is input to the trisate buffer. The output of the buffer is connected

to the data bus. The strobe is connected to the buffer enable.

As with the source-initiated strobe, there is no guarantee that the data read in by the destination device is valid.

For instance, if the source device was turned off, the strobe would still be initiated, all zeroes would be read in

and the strobe would be de-asserted. The destination device cannot tell if the all-zero data was read in from an

active device or a powered-down device.

Source-initiated transfer using handshaking

Handshaking removes the uncertainty in asynchronous data transfers by providing confirmation that data was

read in successfully. The tradeoff is the increased hardware requirements. In source-initiated data transfer using

handshaking, the source unit places valid data onto the data bus and then asserts a data valid signal. So far this is

the same as before, with the data valid signal replacing the strobe.

But now something different happens. The data valid signal does not stay high for some predetermined amount of

time. Instead it stays high until the destination unit tells it to stop. The destination unit reads in the data and then

asserts a data accepted signal. This tells the source that the data has been accepted and to remove it from the bus.

It de-asserts the data valid signal and removes data from the bus. The destination unit acknowledges this by de-

asserting its data accepted signal, which in turn tells the source device that it may now initiate another data

transfer.

One thing not noted here is what to do if the destination device never accepts the data (for example, if it is turned

off). The source unit might include a timer that will check for this condition and report an error when it occurs.

158

Destination-initiated transfer using handshaking

Destination-initiated transfer using handshaking is also similar to its non-handshaking counterpart. The ready for

data signal replaces the strobe and is asserted by the destination device to request data. The source device

responds by placing data onto the bus and then, after some predetermined amount of time to allow for settling, it

asserts the data valid signal. This tells the destination device that it can now read in the data. It does so and

signals the source device by de-asserting the ready for data signal. This is followed by the source unit removing

the data from the data bus and resetting the data valid signal. This notifies the destination unit that it can now

request another data transfer.

Both source- and destination-initiated transfer using handshaking are similar to the process used by the Basic

Computer.

Synchronous serial transmission

1. Share a common clock (short distance)

2. Separate clocks with synchronization signals (long distance)

3. Bits are transmitted continuously

Serial data transmission may be synchronous or asynchronous. In synchronous transmission, the source and

destination units share a common clock. This is useful when data must be transmitted within a computer or over

very short distances for which both devices may access a single clock.

Data can also be transmitted over longer distances synchronously. To do this, both the source and destination

units must also send synchronization signals periodically to maintain calibration between the twoclocks.

Unlike asynchronous data transmission, in which the transmission line is used only when sending data,

synchronous data transmission requires that transmission occurs continuously. When no data is to be sent, bits

must still be transmitted to maintain synchronization.

Bus Arbitration

° The arbitration procedure comes into picture whenever there are more than one processors requesting the

159

services of bus.

° Because only one unit may at a time be able to transmit successfully over the bus, there is some selection

mechanism is required to maintain such transfers. This mechanism is called as Bus Arbitration.

° Bus arbitration decides which component will use the bus among various competing requests.

° A selection mechanism must be based on fairness or priority basis.

° Various methods are available that can be roughly classified as either centralized or distributed.

 1. Centralized Arbitration

o In centralized bus arbitration, a single bus arbiter performs the required arbitration. Thebus

arbiter may be the processor or a separate controller connected to thebus.

o There are three different arbitration schemes that use the centralized bus arbitration

approach. There schemes are:

a. Daisy chaining

b. Polling method

c. Independent request

 a) Daisy chaining

o The system connections for Daisy chaining method are shown in fig below.

 It is simple and cheaper method. All masters make use of the same line for bus request.

 In response to the bus request the controller sends a bus grant if the bus is free.

 The bus grant signal serially propagates through each master until it encounters the first one that is

requesting access to the bus. This master blocks the propagation of the bus grant signal, activities the

busy line and gains control of the bus.

 Therefore any other requesting module will not receive the grant signal and hence cannot get the bus

access.

b) Polling method

160

 The system connections for polling method are shown in figure above.

 In this the controller is used to generate the addresses for the master. Number of address line required

depends on the number of master connected in the system.

 For example, if there are 8 masters connected in the system, at least three address lines are required.

 In response to the bus request controller generates a sequence of master address. When the requesting

master recognizes its address, it activated the busy line ad begins to use thebus.

c) Independent request

 The figure below shows the system connections for the independent request scheme.

 In this scheme each master has a separate pair of bus request and bus grant lines and each pair has a

priority assigned to it.

 The built in priority decoder within the controller selects the highest priority request and asserts

the corresponding bus grant signal.

2. Distributed Arbitration

 In distributed arbitration, all devices participate in the selection of the next bus master.

 In this scheme each device on the bus is assigned a4-bit identification number.

 The number of devices connected on the bus when one or more devices request for the control of bus,

they assert the start-arbitration signal and place their 4-bit ID numbers on arbitration lines, ARB0 through

ARB3.

 These four arbitration lines are all open-collector. Therefore, more than one device can place their 4-bit

ID number to indicate that they need to control of bus. If one device puts 1 on the bus line and another

device puts 0 on the same bus line, the bus line status will be 0. Device reads the status of all lines

through inverters buffers so device reads bus status 0as logic 1. Scheme the device having highest ID

number has highest priority.

 When two or more devices place their ID number on bus lines then it is necessary to identify the highest

IDnumberonbuslinesthenitisnecessarytoidentifythehighestIDnumberfromthe status of busline.

161

Consider that two devices A and B, having ID number 1 and 6, respectively are requesting the use of the

bus.

 Device A puts the bit pattern 0001, and device B puts the bit pattern 0110. With this combination the

status of bus-line will be 1000; however because of inverter buffers code seen by both devices is0111.

 Each device compares the code formed on the arbitration line to its own ID, starting from the most

significant bit. If it finds the difference at any bit position, it disables its drives at that bit position and for

all lower-order bits.

 It does so by placing a 0 at the input of their drive. In our example, device detects a different on line

ARB2 and hence it disables its drives on line ARB2, ARB1 and ARB0. This causes the code on the

arbitration lines to change to 0110. This means that device B has won the race.

 The decentralized arbitration offers high reliability because operation of the bus is not dependent on any

single device.

IO System:

Accessing I/O Devices

I/O interface

Input/output mechanism

 Memory-mappedI/O

 ProgrammedI/O

 Interrupts

 Direct Memory Access

• Buses

 Synchronous Bus

 Asynchronous Bus

IO in Computer Organization and Operating System:

1. ProgrammedI/O

2. Interrupts

3. DMA (Direct memoryAccess

162

An IO interface consists of the circuitry required to connect an input/ output device to a computer system.

Figure – Bus Connection IO devices to Processor and memory.

A bus is a shared communication link, which uses one set of wires to connect multiple subsystems.

The two major advantages of the bus organization are versatility and low cost.

Accessing I/O Devices:

 Most modern computers use single bus arrangement for connecting I/O devices to CPU &Memory.

 The bus enables all the devices connected to it to exchange information.

163

 Bus consists of 3 set of lines: Address, Data, and Control.

 Processor places a particular address (unique for an I/O Dev.) on addresslines.

 Device which recognizes this address responds to the

 Commands issued on the Control lines.

 Processor requests for either Read /Write.

 The data will be placed on Data lines.

Hardware to connect I/O devices to bus:

Interface Circuit

 Address Decoder

 Control Circuits

 Data registers

 Status registers

The Registers in I/O Interface – buffer and control.

Flags in Status Registers, like SIN, SOUT

Data Registers, like Data-IN, Data-OUT

Figure – IO interface for an input device:

164

Input Output mechanism:

 Memory mappedI/O

 ProgrammedI/O

 Interrupts

 DMA (Direct memory Access)

Memory mapped I/O:

I/O devices and the memoryshare the same address space, the

arrangement is called Memory- mappedI/O.

In Memory-mappedI/Oportions of address space are assigned to I/O

devices and reads and writes to those addresses are interpreted as

commands to the I/Odevice.

“DATAIN” is the address of the input buffer associated with the

keyboard.

- Move DATAIN,R0

Reads the data from DATAIN and stores them into processor

register R0;

- Move R0,DATAOUT

Sends the contents of register R0 to location DATAOUT.

Option of special I/O address space or incorporate as a part of memory address space (address bus is same

always).

Figure – IO operation involving keyboard and display devices.

Registers: DATAIN, DATAOUT, STATUS, CONTROL

165

Flags: SIN, SOUT - Provides status information for keyboard and display unit

KIRQ, DIRQ – Keyboard, Display Interrupt request bits.

DEN, KEN –Keyboard, Display Enable bits

Programmed I/O

• CPU has direct control over I/O

– Sensing status

– Read/write commands

– Transferring data

• CPU waits for I/O module to

Complete operation

• Wastes CPU time

 In this case, use dedicated I/O instructions in the processor. These I/O instructions can specify both

the device number and the command word (or the location of the command word in memory).

 The processor communicates the device address via a set of wires normally included as part of the I/O

bus. The actual command can be transmitted over the data lines in the bus. (Example - IntelIA-32).

 By making the I/O instructions illegal to execute when not in kernel or supervisor mode, user programs

can be prevented from accessing the devices directly.

 The process of periodically checking status bits to see if it is time for the next I/O operation is

called polling. Polling is the simplest way for an I/O device to communicate with the processor.

 The I/O device simply puts the information in a Status register, and the processor must come and get the

information.

 The processor is totally in control and does all the work.

Interrupts:

When I/O Device is ready, it sends the INTERRUPT signal to processor via a dedicated controller line.

• Using interrupt we are ideally eliminating WAIT period.

Figure – Interrupts.

• In response to the interrupt, the processor executes the Interrupt Service Routine(ISR).

• All the registers, flags, program counter values are saved by the processor before running ISR

166

• The time required to save status & restore contribute to execution overhead “Interrupt Latency”.

Direct Memory Access (DMA):

For I/O transfer, Processor determines the status of I/O devices, by

– Polling

– Waiting for Interrupt signal

• Considerable overhead is incurred in above I/O transfer processing

• To transfer large blocks of data at high Speed, between EXTERNAL devices & Main Memory, DMA approach

is often used

• DMA controller allows data transfer directly between I/O device and Memory, with minimal intervention

of processor.

DMA controller acts as a Processor, but it is controlled by CPU

• To initiate transfer of a block of words, the processor sends the following data to controller

– The starting address of the memory block

– The word count

– Control to specify the mode of transfer such as read or write

– A control to start the DMA transfer

DMA controller performs the requested I/O operation and sends a interrupt to the processor upon

completion.

In DMA interface

 First register stores the starting address.

 Second register stores Word count.

 Third register contains status and control flags.

167

Figure:--Use of DMA Controller in a computer system

IO Interface Circuits:

An I/O interface consists of the circuitry required to connect an input/ output device to a computer system.

On one side of the interface have bus signals for address, data and control.

On the other hand data path with its associated controls to transfer data between the interface and the input/

output device.

This side is called a port. It can be classified as

1. Serial port

2. Parallel port

168

Figure – Keyboard to Processor Connections Interface

Parallel Port:

 It transfers data simultaneously to (or) from the device.

 It uses multiple pin connector.

 Circuit is simple.

 Parallel port is used to send (or) receive data having group of bits(8 bits or 16 bits)simultaneously.

 Parallel ports are classified as input port and output port. Input port – used to receive the data

 Output port- used to send the data.

 It transfers data simultaneously to (or) from the device. It uses multiple pin connector.

 Circuit is simple.

Serial port:

 It transmits and receives data one bit at a time.

 For long distance, it is convenient and cost effective.

 It is used to transmit/ receive data serially. i.e one at a time.

 A key feature of an interface circuit in serial port is that it is capable of communicating in a bit-serial on

the device side and in a bit-parallel on the bus side.

I/O interface:

1. It provides a storage buffer for at least one word of data.

169

2. Contains status flags that can be accessed by the processor to determine whether the buffer is full(or)

empty.

3. Address decoding circuitry to determine when it is being addressed by the processor.

4. Performs any format conversion that may be necessary to transfer data between the bus and the input/

output device such as parallel – serial conversion in the case of a serial port.

Input port:

 Commonly used i/p device is a keyboard.

 A key is pressed , corresponding signal alters and encoder circuits generates ASCII code for the

corresponding key.

Output port:

 The output port contains a data register DATA OUT and a status flag SOUT.

 SOUT set to 1- when output device ready to accept another character. When it is cleared to 0 then the

processor load the data.

Figure – Printer to Processor Connection

Serial port:

 It is used to transmit/ receive data serially. i.e one at a time.

 A key feature of an interface circuit in serial port is that it is capable of communicating in a bit-serial on

the device side and in a bit-parallel on the bus side.

 The input shift register accepts bi-serial input from input/output device.

 When all 8 bits of data have been received, the contents of this shift register are loaded in parallel into

the DATAIN register.

 Similarly, output data in the DATAOUT register are loaded into the output shift register.

 The status flag SIN -1 new data loaded in DATAINSIN0- processor read the data of DATAIN

170

 SOUT 0 –processor writes new data into DATA OUT

 SOUT 1- DATAOUT to output shift register.

Handshaking:

The handshaking method solves the problem of strobe method by introducing a second control signal that

provides a reply to the unit that initiates the transfer.

Principle of Handshaking:

The basic principle of the two-wire handshaking method of data transfer is as follow:

One control line is in the same direction as the data flows in the bus from the source to destination. It is used by

source unit to inform the destination unit whether there a valid data in the bus. The other control line is in the

other direction from the destination to the source. It is used by the destination unit to inform the source whether it

can accept the data. The sequence of control during the transfer depends on the unit that initiates the transfer.

171

Source Initiated Transfer using Handshaking:

The sequence of events shows four possible states that the system can be at any given time. The source unit

initiates the transfer by placing the data on the bus and enabling its data valid signal. The data accepted signal is

activated by the destination unit after it accepts the data from the bus. The source unit then disables its data

accepted signal and the system goes into its initial state.

Figure – Block Diagram

Figure – Sequence of Events

Destination Initiated Transfer Using Handshaking:

The name of the signal generated by the destination unit has been changed to ready for data to reflects

its new meaning. The source unit in this case does not place data on the bus until after it receives the

ready for data signal from the destination unit. From there on, the handshaking procedure follows the

same pattern as in the source initiated case.

The only difference between the Source initiated and the Destination initiated transfer is in their choice

of initial sate.

172

(a)

(b)

Figure – Destination initiated transfer using Handshaking

(a) Block Diagram and (b)Sequence of Events

Advantage of the Handshaking method:

 The Handshaking scheme provides degree of flexibility and reliability because the successful completion

of data transfer relies on active participation by both units.

 If any of one unit is faulty, the data transfer will not be completed. Such an error can be detected by

means of a Timeout mechanism which provides an alarm if the data is not completed with in time.

173

IOP organization:-

Input/output Processor:-

An input-output processor (IOP) is a processor with direct memory access capability. In this, the computer

system is divided into a memory unit and number of processors. Each IOP controls and manage the input-output

tasks. The IOP is similar to CPU except that it handles only the details of I/O processing. The IOP can fetch and

execute its own instructions. These IOP instructions are designed to manage I/O transfers only.

Block Diagram of IOP:-

Below is a block diagram of a computer along with various I/O Processors. The memory unit occupies the central

position and can communicate with each processor. The CPU processes the data required for solving the

computational tasks. The IOP provides a path for transfer of data between peripherals and memory. The CPU

assigns the task of initiating the I/O program. The IOP operates independent from CPU and transfer data between

peripherals and memory.

The communication between the IOP and the devices is similar to the program control method of transfer. And

the communication with the memory is similar to the direct memory access method. In large scale computers,

each processor is independent of other processors and any processor can initiate the operation. The CPU can act

as master and the IOP act as slave processor. The CPU assigns the task of initiating operations but it is the IOP,

who executes the instructions, and not the CPU. CPU instructions provide operations to start an I/O transfer. The

IOP asks for CPU through interrupt. Instructions that are read from memory by an IOP are also called commands

to distinguish them from instructions that are read by CPU. Commands are prepared by programmers and are

stored in memory. Command words make the program for IOP. CPU informs the IOP where to find thedata.

OPERATING SYSTEM:-

A computer system has many resources (hardware and software), which may be require to complete a task. The

commonly required resources are input/output devices, memory, file storage space, CPU etc. The operating

system acts as a manager of the above resources and allocates them to specific programs and users, whenever

necessary to perform a particular task. Therefore operating system is the resource manager i.e. it can manage the

resource of a computer system internally. The resources are processor, memory, files, and I/O devices. In simple

terms, an operating system is the interface between the user and themachine.

174

Functions of Operating System

1. Operating system boots the computer.

2. Operating system performs basic computer tasks e.g. managing the various peripheral devices e.g.

mouse, keyboard.

3. Operating system provides a user interface, e.g. command line, graphical user interface(GUI).

4. Operating system handles system resources such as computer's memory and sharing of the central

processing unit (CPU) time by various applications or peripheral devices.

5. Operating system provides file management which refers to the way that the operating

system manipulates stores, retrieves and saves data.

6. Error Handling is done by the operating system. It takes preventive measures whenever required to

avoid errors.

Process

A process is basically a program in execution. The execution of a process must progress in a sequential fashion.

A process is defined as an entity which represents the basic unit of work to be implemented in the system. To put

it in simple terms, we write our computer programs in a text file and when we execute this program, it becomes a

process which performs all the tasks mentioned in the program. When a program is loaded into the memory and it

becomes a process, it can be divided into four sections ─ stack, heap, text and data. The following image shows a

simplified layout of a process inside main memory−

175

S.

No.
Component

Description

1 Stack
The process Stack contains the temporary data such as method/function
parameters, return address and local variables.

2
Heap This is dynamically allocated memory to a process during its run time.

3
Text

This includes the current activity represented by the value of Program Counter
and the contents of the processor's registers.

4
Data This section contains the global and static variables.

Program

A program is a piece of code which may be a single line or millions of lines. A computer program is

usually written by a computer programmer in a programming language. For example, here is a simple

program written in C programming language −

#include

<stdio.h>int

main() {

printf("Hello, World! \n");

return 0; }

176

A computer program is a collection of instructions that performs a specific task when executed by a computer.

When we compare a program with a process, we can conclude that a process is a dynamic instance of a computer

program. A part of a computer program that performs a well-defined task is known as an algorithm. A collection

of computer programs, libraries and related data are referred to as software.

Process Life Cycle:-
When a process executes, it passes through different states. These stages may differ in different operating

systems, and the names of these states are also not standardized.

In general, a process can have one of the following five states at a time.

S.

No.
Component Description

1 Start This is the initial state when a process is first started/created.

2

Ready

The process is waiting to be assigned to a processor. Ready processes are

waiting to have the processor allocated to them by the operating system so that

they can run. Process may come into this state after Start state or while

running it by but interrupted by the scheduler to assign CPU to someother

process.

3 Running
Once the process has been assigned to a processor by the OS scheduler, the

process state is set to running and the processor executes its instructions.

4 Waiting
Process moves into the waiting state if it needs to wait for a resource, such as

waiting for user input, or waiting for a file to become available.

5 Terminated

or Exit

Once the process finishes its execution, or it is terminated by the operating

system, it is moved to the terminated state where it waits to be removed from

main memory.

177

Process Control Block (PCB)

A Process Control Block is a data structure maintained by the Operating System for every process. The PCB is

identified by an integer process ID (PID). A PCB keeps all the information needed to keep track of a process as

listed below in the table

S. No. Component Description

1 Process

State

The current state of the process i.e., whether it is ready, running, waiting, or

whatever.

2 Process
privileges

This is required to allow/disallow access to system resources.

3
Process ID

Unique identification for each of the process in the operating system.

4
Pointer

A pointer to parent process.

5 Program

Counter

Program Counter is a pointer to the address of the next instruction to be

executed for this process.

The architecture of a PCB is completelydependentonOperatingSystemandmaycontaindifferentinformation in

different operating systems. Here is a simplified diagram of a PCB

The PCB is maintained for a process throughout its lifetime, and is deleted once the process terminates.

Deadlock:-

Deadlocks are a set of blocked processes each holding a resource and waiting to acquire a resource held

by another process.

178

How to avoid Deadlocks
Deadlocks can be avoided by avoiding at least one of the four conditions, because all this four conditions are

required simultaneously to cause deadlock.

1. Mutual Exclusion

Resources shared such as read-only files do not lead to deadlocks but resources, such as printers

and tape drives, requires exclusive access by a single process.

2. Hold and Wait

In this condition processes must be prevented from holding one or more resources while

simultaneously waiting for one or more others.

3. No Preemption

Preemption of process resource allocations can avoid the condition of deadlocks, where ever

possible.

4. Circular Wait

Circular wait can be avoided if we number all resources, and require that processes request

resources only in strictly increasing(or decreasing) order.

Handling Deadlock

The above points focus on preventing deadlocks. But what to do once a deadlock has occured.
Following three strategies can be used to remove deadlock after its occurrence.

179

1. Preemption

We can take a resource from one process and give it to other. This will resolve the deadlock situation,but

sometimes it does causes problems.

2. Rollback

In situations where deadlock is a real possibility, the system can periodically make a record of

the state of each process and when deadlock occurs, roll everything back to the last checkpoint,

and restart, but allocating resources differently so that deadlock does not occur.

3. Kill one or more processes

This is the simplest way, but it works.

Multiprocessors:-

A multiprocessor system is an interconnection of two or more CPU’s with memory and input- output

equipment. Multiprocessors system are classified as multiple instruction stream, multiple data stream

systems(MIMD). There exists a distinction between multiprocessor and multi computers that though

both support concurrent operations. In multi computers several autonomous computers are connected

through a network and they may or may not communicate but in a multiprocessor system there is a

single OS Control that provides interaction between processors and all the components of the system to

cooperate in the solution of the problem. VLSI circuit technology has reduced the cost of the computers

to such a low Level that the concept of applying multiple processors to meet system performance

requirements has become an attractive design possibility.

Benefits of Multiprocessing:-

1. Multiprocessing increases the reliability of the system so that a failure or error in one part has

limited effect on the rest of the system. If a fault causes one processor to fail, a second

processor can be assigned to perform the functions of the disabled one.

2. Improved System performance. System derives high performance from the fact

that computations can proceed in parallel in one of the two ways:

a) Multiple independent jobs can be made to operate in parallel.

b) A single job can be partitioned into multiple parallel tasks. This can be achieved in two

ways:

i). The user explicitly declares that the tasks of the program be executed in parallel.

ii). The compiler provided with multiprocessor s/w that can automatically detect

parallelism in program. Actually it checks for Data dependency.

180

Coupling of processors:-

Tightly Coupled System/Shared Memory:-

1. Tasks and/or processors communicate in a highly synchronized fashion

2. Communicates through a common global shared memory

3. Shared memory system doesn’t preclude each processor from having its own local memory(cache

memory)

Loosely Coupled System/Distributed Memory:-

1. Tasks or processors do not communicate in a synchronized fashion.

2. Communicates by message passing packets consisting of an address, the data content, and some

error detection code.

3. Overhead for data exchange is high.

4. Distributed memory system.

Memory

Shared (Global) Memory:-

1. A Global Memory Space accessible by all processors.

2. Processors may also have some local memory.

Distributed (Local, Message-Passing) Memory:-

1. All memory units are associated with processors

2. To retrieve information from another processor's memory a message must be sent.

Uniform Memory:-

1. All processors take the same time to reach all memory locations Non uniform (NUMA)Memory.

2. Memory access is not uniform.

181

Shared Memory Multiprocessors:-

All processors have equally direct access to one large memory address space.

Disadvantage:-

1. Memory access latency.

2. Hot spot problem.

Message Passing Multiprocessors:-

In Message Passing Multiprocessors, all the computers are interconnected to each other. Each processor

has its own memory and communicate via message-passing.

182

Disadvantage:-

1. Communication is over headed.

2. It is hard to programming.

Fault tolerance:-

Fault-tolerant technology is a capability of a computer system, electronic system or network to deliver

uninterrupted service, despite one or more of its components failing. Fault tolerance also resolves potential

service interruptions related to software or logic errors. The purpose is to prevent catastrophic failure that could

result from a single point of failure. VMware vSphere 6 Fault Tolerance is a branded, continuous data availability

architecture that exactly replicates a VMware virtual machine on an alternate physical host if the main host server

fails. Fault-tolerant systems are designed to compensate for multiple failures. Such systems automatically detect a

failure of the computer processor unit, I/O subsystem, memory cards, motherboard, power supply or network

components. The failure point is identified, and a backup component or procedure immediately takes its place

with no loss of service. To ensure fault tolerance, enterprises need to purchase an inventory of formatted

computer equipment and a secondary uninterruptible power supply device. The goal is to prevent the crash of key

systems and networks, focusing on issues related to uptime and downtime. Fault tolerance can be provided with

software embedded in hardware, or by some combination of the two.

In a software implementation, the operating system (OS) provides an interface that allows a programmer to

checkpoint critical data at predetermined points within a transaction. In a hardware implementation (for example,

with Stratus and its Virtual Operating System), the programmer does not need to be aware of the fault-tolerant

capabilities of the machine. At a hardware level, fault tolerance is achieved by duplexing each hardware

component. Disks are mirrored. Multiple processors are lock stepped together and their outputs are compared for

correctness. When an anomaly occurs, the faulty component is determined and taken out of service, but the

machine continues to function as usual.

Fault tolerance vs. high availability:-

Fault tolerance is closely associated with maintaining business continuity via highly available

computer systems and networks. Fault-tolerant environments are defined as those that restore service

instantaneously following a service outage, whereas a high-availability environment strives for five

nines of operational service.

In a high-availability cluster, sets of independent servers are coupled loosely together to

guarantee system-wide sharing of critical data and resources. The clusters monitor each other's health

183

and provide fault recovery to ensure applications remain available. Conversely, a fault-tolerant cluster consists of

multiple physical systems that share a single copy of a computer's OS. Software commands issued by one system

are also executed on the other system. The tradeoff between fault tolerance and high availability is cost. Systems

with integrated fault tolerance incur a higher cost due to the inclusion of additional hardware.

RISC processors:-

RISC (Reduced Instruction Set Computer) is used in portable devices due to its power efficiency. For

Example, Apple iPod and Nintendo DS. RISC is a type of microprocessor architecture that uses highly-

optimized set of instructions. RISC does the opposite, reducing the cycles per instruction at the cost of

the number of instructions per program Pipelining is one of the unique feature of RISC. It is performed

by overlapping the execution of several instructions in a pipeline fashion. It has a high performance

advantage over CISC.

RISC processors take simple instructions and are executed within a clock cycle

184

RISC ARCHITECTURE CHARACTERISTICS:-

1. Simple Instructions are used in RISC architecture.

2. RISC helps and supports few simple data types and synthesize complex data types.

3. RISC utilizes simple addressing modes and fixed length instructions for pipelining.

4. RISC permits any register to use in any context.

5. One Cycle Execution Time

6. The amount of work that a computer can perform is reduced by separating “LOAD” and “STORE”

instructions.

7. RISC contains Large Number of Registers in order to prevent various number of interactions with

memory.

8. In RISC, Pipelining is easy as the execution of all instructions will be done in a uniform interval of time

i.e. one click.

9. In RISC, more RAM is required to store assembly level instructions.

10. Reduced instructions need a less number of transistors in RISC.

11. RISC uses Harvard memory model means it is Harvard Architecture.

12. A compiler is used to perform the conversion operation means to convert a high-level language statement

into the code of its form.

RISC & CISC Comparison:-

Comparison between CISC & RISC:-

MUL instruction is divided into three instructions

1. “LOAD” – moves data from the memory bank to a register.

2. “PROD” – finds product of two operands located within the registers.

185

3. “STORE” – moves data from a register to the memory banks.

The main difference between RISC and CISC is the number of instructions and its complexity.

CISC Processors:

The CISC approach attempts to minimize the number of instructions per program, sacrificing the number of

cycles per instruction. Computers based on the CISC architecture are designed to decrease the memory cost.

Because, the large programs need more storage, thus increasing the memory cost and large memory becomes

more expensive. To solve these problems, the number of instructions per program can be reduced by embedding

the number of operations in a single instruction, thereby making the instructions more complex.

186

1. MUL loads two values from the memory into separate registers in CISC.

2. CISC uses minimum possible instructions by implementing hardware and executes operations.

3. Instruction Set Architecture is a medium to permit communication between the programmer and the

hardware. Data execution part, copying of data, deleting or editing is the user commands used in the

microprocessor and with this microprocessor the Instruction set architecture is operated.

The main keywords used in the above Instruction Set Architecture are as below

Instruction Set: Group of instructions given to execute the program and they direct the computer by

manipulating the data. Instructions are in the form – Opcode (operational code) and Operand. Where,

opcode is the instruction applied to load and store data, etc. The operand is a memory register where

instruction applied.

Addressing Modes: Addressing modes are the manner in the data is accessed. Depending upon the type

of instruction applied, addressing modes are of various types such as direct mode where straight data is

accessed or indirect mode where the location of the data is accessed. Processors having identical ISA

may be very different in organization. Processors with identical ISA and nearly identical organization is

still not nearly identical.

CPU performance is given by the fundamental law

Thus, CPU performance is dependent upon Instruction Count, CPI (Cycles per instruction) and Clock

cycle time. And all three are affected by the instruction set architecture.

Instruction Count of the CPU

This underlines the importance of the instruction set architecture. There are two prevalent instruction set

architectures

187

Examples of CISC PROCESSORS

1. IBM 370/168:– It was introduced in the year 1970. CISC design is a 32 bit processor and four

64-bit floating point registers.

2. VAX 11/780:– CISC design is a 32-bit processor and it supports many numbers of addressing

modes and machine instructions which is from Digital Equipment Corporation.

3. Intel 80486:– It was launched in the year 1989 and it is a CISC processor, which has

instructions varying lengths from 1 to 11 and it will have 235instructions.

CHARACTERISTICS OF CISC ARCHITECTURE:-

1. Instruction-decoding logic will be Complex.

2. One instruction is required to support multiple addressing modes.

3. Less chip space is enough for general purpose registers for the instructions that are 0operated directly on

memory.

4. Various CISC designs are set up two special registers for the stack pointer, handling interrupts, etc.

5. MUL is referred to as a “complex instruction” and requires the programmer for storing functions.

Superscalar and vector processor:-

A Scalar processor is a normal processor, which works on simple instruction at a time, which operates on single

data items. But in today's world, this technique will prove to be highly inefficient, as the overall processing of

instructions will be very slow.

Vector(Array) Processing:-
There is a class of computational problems that are beyond the capabilities of a conventional computer. These

problems require vast number of computations on multiple data items, that will take a conventional

computer(with scalar processor) days or even weeks to complete.

Such complex instructions, which operates on multiple data at the same time, requires a better way of instruction

execution, which was achieved by Vector processors.

Scalar CPUs can manipulate one or two data items at a time, which is not very efficient. Also, simple instructions

like ADD A to B, and store into C are not practically efficient. Addresses are used to point to the memory

location where the data to be operated will be found, which leads to added overhead of data lookup. So until the

data is found, the CPU would be sitting ideal, which is a big performance issue. Hence, the concept of

Instruction Pipeline comes into picture, in which the instruction passes through several sub-units in turn. These

sub-units perform various independent functions, for example: the first one decodes the instruction, the second

sub-unit fetches the data and the third sub-unit performs the math itself. Therefore, while the data is fetched for

one instruction, CPU does not sit idle, it rather works on decoding the next instruction set, ending up working like

an assembly line. Vector processor, not only use Instruction pipeline, but it also pipelines the data, working on

188

multiple data at the same time. A normal scalar processor instruction would be ADD A, B, which leads to

addition of two operands, but what if we can instruct the processor to ADD a group of numbers(from 0 to n

memory location) to another group of numbers(lets say, n to k memory location). This can be achieved by vector

processors.

In vector processor a single instruction, can ask for multiple data operations, which saves time, as instruction is

decoded once, and then it keeps on operating on different data items.

Applications of Vector Processors:-

Computer with vector processing capabilities are in demand in specialized applications. The following are some

areas where vector processing is used:

1. Petroleum exploration.

2. Medical diagnosis.

3. Data analysis.

4. Weather forecasting.

5. Aerodynamics and space flight simulations.

6. Image processing.

7. Artificial intelligence.

Superscalar Processors:-

It was first invented in 1987. It is a machine which is designed to improve the performance of the scalar

processor. In most applications, most of the operations are on scalar quantities. Superscalar approach produces

the high performance general purpose processors. The main principle of superscalar approach is that it executes

instructions independently in different pipelines. As we already know, that Instruction pipelining leads to parallel

processing thereby speeding up the processing of instructions. In Superscalar processor, multiple such pipelines

are introduced for different operations, which further improves parallel processing.

There are multiple functional units each of which is implemented as a pipeline. Each pipeline consists of multiple

stages to handle multiple instructions at a time which support parallel execution of instructions. It increases the

throughput because the CPU can execute multiple instructions per clock cycle. Thus, superscalar processors are

much faster than scalar processors.

A scalar processor works on one or two data items, while the vector processor works with multiple data items.

A superscalar processor is a combination of both. Each instruction processes one data item, but there are

multiple execution units within each CPU thus multiple instructions can be processing separate data items

concurrently.

While a superscalar CPU is also pipelined, there are two different performance enhancement techniques. It is

189

possible to have a non-pipelined superscalar CPU or pipelined non-superscalar CPU. The superscalar technique is

associated with some characteristics, these are:

1. Instructions are issued from a sequential instruction stream.

2. CPU must dynamically check for data dependencies.

3. Should accept multiple instructions per clock cycle.

Vector processor:-

Vector (Array) Processor and its Types:-

Array processors are also known as multiprocessors or vector processors. They perform computations on large

arrays of data. Thus, they are used to improve the performance of the computer.

Types of Array Processors:-

There are basically two types of array processors:

1. Attached Array Processors

2. SIMD Array Processors

Attached Array Processors:-

An attached array processor is a processor which is attached to a general purpose computer and its purpose is to

enhance and improve the performance of that computer in numerical computational tasks. It achieves high

performance by means of parallel processing with multiple functional units.

190

SIMD Array Processors:-

SIMD is the organization of a single computer containing multiple processors operating in parallel. The

processing units are made to operate under the control of a common control unit, thus providing a single

instruction stream and multiple data streams.

A general block diagram of an array processor is shown below. It contains a set of identical processing elements

(PE's), each of which is having a local memory M. Each processor element includes an ALU and registers. The

master control unit controls all the operations of the processor elements. It also decodes the instructions and

determines how the instruction is to be executed.

The main memory is used for storing the program. The control unit is responsible for fetching the instructions.

Vector instructions are send to all PE's simultaneously and results are returned to the memory.

The best known SIMD array processor is the ILLIAC IV computer developed by the Burroughs corps. SIMD

processors are highly specialized computers. They are only suitable for numerical problems that can be expressed

in vector or matrix form and they are not suitable for other types of computations.

Use of the Array Processor:-

1. Array processors increases the overall instruction processing speed.

2. As most of the Array processors operates asynchronously from the host CPU, hence it improves the

overall capacity of the system.

3. Array Processors has its own local memory, hence providing extra memory for systems with low

memory.

	ELECTRONICS AND COMMUNICATION ENGINEERING
	(Autonomous)
	Computing and computers
	The Hardware:
	The Software
	Elements of a computer
	The basic parts of computer system are:
	The Input Unit:
	The Control Unit:
	The Arithmetic Logic Unit:
	The Primary Storage Unit:
	Output Unit:
	Limitations of Computers:
	HISTORY AND EVALUATION OF COMPUTERS
	The Mechanical Era (1623 - 1945)
	The First Computer
	Some Well Known First Generation Computers
	ENIAC
	EDVAC
	UNIVAC
	Mid-1950s: Transistor Computers (Second Generation)
	1960s: The Microchip and the Microprocessor (Third Generation Computers)
	1970s: Personal Computers (Fourth Generation)
	1980s-1990s: The Early Notebooks and Laptops
	VLSI era
	VLSI Design Flow
	Design Hierarchy-Structural
	Computer System Design:
	System Representation
	Design Process
	Gate Level Design
	Logic Diagram

	Design Levels:
	• The processor level also called the architecture, behavior, or system level.
	Register Level Design
	Register Level Components
	Multiplexers
	Decoder
	Encoder
	Demultiplexer
	Arithmetic Elements
	Register
	Shift Registers
	Counters
	Programmable Logic Devices
	Programmable Read Only Memory (PROM)
	EPROM (Erasable Programmable Read Only Memory)
	EEPROM (Electrically Erasable Programmable Read Only Memory)

	Register Level Design:
	Data and Control
	Design Techniques
	Processor Level Design:
	Processor Level Components
	Central Processing Unit
	Memories: For the storage of programs and data required by the processors, external memories are necessary. Ideally, computer memory should be fast, large and inexpensive. Unfortunately, it is impossible to meet all the three of these requirements sim...
	I 0 Devices
	Interconnection Networks
	Processor-Level Design
	Performance characteristics
	Prototype Structures
	Queuing Models
	CPU ORGANIZATION:
	DATA REPRESENTATION DATA TYPES
	Number systems
	TYPES OF INSTRUCTIONS
	MEMORY REFERENCE INSTRUCTIONS
	Memory Reference Instructions
	Memory Reference Instructions (1)
	I/O Reference Instructions
	Input-Output Configuration
	Input-Output Instruction
	Program Interrupt
	Interrupt Cycle
	Flowchart of interrupt cycle
	Fixed Point Representation
	Instruction formats:
	Instruction types:
	1) Data operational instructions:
	2) Program control instructions:
	ADDRESSING MODES

	Floating Point Arithmetic
	Floating point arithmetic derives its name from something that happens when you use exponential notation. Consider the number 123: it can be written using exponential notation as:
	UNIT-II
	DATA PATH DESIGN
	Scientific Notation and FP Representation:
	Overflow and Underflow:
	FP Arithmetic:
	CPU Utilization:
	Throughput:
	Turnaround Time:
	Waiting Time:
	Load Average:
	Response Time:
	Addition, Subtraction:
	Hardware algorithm:
	Combinational ALU’s:

	 Carry-in
	Combinational Circuits:

	Block Diagram of Combinational Circuits:
	Figure: Combinational Circuits Based ALU

	Design Procedure for Combinational Circuits:
	Sequential ALU's
	Sequential Logic Circuits:
	1) Made up of combinational circuits and memory elements.

	Flip-Flops:
	Registers and Counters:
	Carry look ahead adder:
	Figure - Design.

	Booth Algorithm
	Modified Booth's Algorithm:
	Figure - Modified Booth Algorithm.
	Figure - Booth’s Encoder.
	Figure - Partial Product Generator.
	Figure -Practical Multiplication Example using Modified Booth Algorithm.
	,…

	Booth’s Algorithm
	Booth algorithm gives a procedure for multiplying binary integers in signed 2’s complement representation in efficient way, i.e., less number of additions/subtractions required. It operates on the fact that strings of 0’s in the multiplier require no ...

	Booth’s Algorithm Flowchart –
	Figure – Booth’s Algorithm Flowchart
	Division using Non-restoring Algorithm:

	Coprocessor
	Co-processor for floating point arithmetic first appeared in desktop computers in 1970s. The coprocessors become common in 1980s and into the early 1990s. Early 8_Bit and 16 Bit processor uses software to carry out the floating point arithmetic operat...

	Control Unit
	 Function:
	FSTCW

	FSTSW AX
	FCLEX
	Graphics Coprocessor
	Nano Programming
	Figure - Nano Programming.

	Advantages of Nano programming
	Modified booth‘s Algorithm
	Booth Algorithm (1)
	Modified Booth Algorithm
	Figure - Modified Booth Algorithm.
	The overlapping is used for comparing three bits at a time. This grouping is started from least significant bit (LSB), in which only two bits of the booth multiplier are used by the first block and a zero is assumed as third bit as shown in the figure.
	Figure - Partial Product Generator.

	UNIT-III
	CONTROL DESIGN
	Micro programmed Control:
	Pipe line control:
	Pipeline Data path Design and Implementation
	MIPS Instructions and Pipelining
	instruction MIPS subset that perform memory operations. As before, we assume that operands are aligned in memory, for straightforward access.

	Overview of Hazards
	Nano Programming:
	Figure - Nano Programming.

	Advantages of Nano programming (1)
	Superscalar Processor
	 Includes instruction in RS + instruction executing in FUs + instruction which are finished execution but waiting to be completed in program order.
	UNIT-IV
	MEMORY ORGANIZATION
	Memory Hierarchy:
	Auxiliary Memory:-

	Main Memory:-
	Memory Access Methods:-
	Main Memory:-
	Types of ROM

	Cache Memory:-
	Hit Ratio
	Hit Ratio = Hit/(Hit + Miss)
	A block diagram of a RAM unit is shown below:

	Write and Read Operations:-
	Serial Access Memories:-
	Serial Access Devices:-
	Difference between Sequential Access and Random Access:-
	Disadvantages of Sequential Access:-
	RAM interfaces:- Data RAM:-
	Data RAM organization:-
	Dirty RAM organization:-
	Dirty RAM connectivity:-
	Tag RAM organization:-
	The tag RAM format:
	Note

	RAM sizes:-
	Note:-

	Magnetic Surface Recording:
	Magnetic Read and Write Memory:-
	Optical Memories:
	Some Examples of Optical Memory:
	Advantages of CD ROM:

	Advantages of WORM:-
	1. Storage capacity is high.

	Advantages of CD RW:-
	Limitations of CD RW:-

	Multilevel Memories Organization:-
	The memory hierarchy

	Basis of the memory hierarchy
	Typical Memory Parameters
	Memory Performance
	Goal of the memory hierarchy. Try to match the processor speed with the rate of information transfer from the lowest element in the hierarchy.

	Cache & virtualmemory:- Cache memory:-
	Virtual memory organization:-
	General scheme of the virtual memory:-
	 paged (virtual)memory

	Memory allocation:-
	Static memory allocation:-
	In static memory allocation, size of the memory may be required for the calculation that must be define

	Non Preemptive allocation:-
	Consider M1 as a main memory and M2 as secondary memory and a block K of n words is to be transferred from M2 to M1. For such memory allocation it is necessary to find or create an available reason of n or more words to accommodate K. This process is ...
	First Fit
	Best fit

	Preemptive allocation:-
	Associative Memory:-
	Hardware Organization of Associative Memory
	Hardware Organization
	Match Logic:-

	Read Operation:-
	Write operations:-
	Advantages:-
	Disadvantages:-
	UNIT-V
	SYSTEM ORGANIZATION
	Databus
	Controlbus
	Addressbus
	Bus Interconnection Scheme
	Computer Network | Types of area networks – LAN, MAN and WAN
	Local Area Network (LAN) –
	Metropolitan Area Network (MAN) –
	Wide Area Network (WAN) –
	BusControl Network Topology
	Types of Network Topologies
	Bus Topology
	Ring Topology
	Star Topology
	Tree Topology
	Mesh Topology
	Bus interfacing
	PCI (Peripheral Component Interconnect)
	Universal Serial Bus (USB)
	Device Characteristics
	Asynchronous data transfer
	Source-initiated strobe
	Destination-initiated strobe
	Source-initiated transfer using handshaking
	Destination-initiated transfer using handshaking
	Synchronous serial transmission
	Bus Arbitration
	 1. Centralized Arbitration
	 a) Daisy chaining
	b) Polling method
	c) Independent request
	2. Distributed Arbitration
	IO System:

	Accessing I/O Devices:
	Figure – IO interface for an input device:

	Memory mapped I/O:
	DEN, KEN –Keyboard, Display Enable bits

	Interrupts:
	Figure – Interrupts.
	DMA controller acts as a Processor, but it is controlled by CPU
	Figure:--Use of DMA Controller in a computer system
	2. Parallel port
	Serial port:

	I/O interface:
	Input port:
	Output port:
	Figure – Printer to Processor Connection
	Handshaking:

	Source Initiated Transfer using Handshaking:
	Figure – Block Diagram

	IOP organization:-
	Input/output Processor:-

	Block Diagram of IOP:-
	OPERATING SYSTEM:-
	Functions of Operating System
	Process
	Program
	A program is a piece of code which may be a single line or millions of lines. A computer program is usually written by a computer programmer in a programming language. For example, here is a simple program written in C programming language −

	Process Life Cycle:-
	Process Control Block (PCB)
	The PCB is maintained for a process throughout its lifetime, and is deleted once the process terminates.

	1. Mutual Exclusion
	Resources shared such as read-only files do not lead to deadlocks but resources, such as printers and tape drives, requires exclusive access by a single process.

	2. Rollback
	In situations where deadlock is a real possibility, the system can periodically make a record of the state of each process and when deadlock occurs, roll everything back to the last checkpoint, and restart, but allocating resources differently so that...

	Multiprocessors:-
	A multiprocessor system is an interconnection of two or more CPU’s with memory and input- output equipment. Multiprocessors system are classified as multiple instruction stream, multiple data stream systems(MIMD). There exists a distinction between mu...

	Loosely Coupled System/Distributed Memory:-
	1. Tasks or processors do not communicate in a synchronized fashion.

	Fault tolerance vs. high availability:-
	Fault tolerance is closely associated with maintaining business continuity via highly available computer systems and networks. Fault-tolerant environments are defined as those that restore service instantaneously following a service outage, whereas a ...

	RISC processors:-
	RISC (Reduced Instruction Set Computer) is used in portable devices due to its power efficiency. For Example, Apple iPod and Nintendo DS. RISC is a type of microprocessor architecture that uses highly- optimized set of instructions. RISC does the oppo...

	RISC & CISC Comparison:-
	MUL instruction is divided into three instructions
	Instruction Set: Group of instructions given to execute the program and they direct the computer by manipulating the data. Instructions are in the form – Opcode (operational code) and Operand. Where, opcode is the instruction applied to load and store...
	Vector(Array) Processing:-
	Applications of Vector Processors:-
	7. Artificial intelligence.

	Vector processor:-
	Types of Array Processors:-
	Attached Array Processors:-
	SIMD Array Processors:-
	Use of the Array Processor:-

