
OBJECT ORIENTED ANALYSIS AND DESIGN PATTERNS
Course Code: ACS015
III B.Tech II Semester

Regulation: IARE R-16

BY
Dr. Y Moahanroopa, Professor

Mr. RM Noorullah, Assistant Professor
Mr. C Raghavendra, Assistant Professor

Ms. N Shalini, Assistant Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500 043

1

CO’s Course Outcomes

CO 1 Understand Object Oriented and UML concepts

CO 2 Apply advanced behavioral modelling techniques in design and
drawing UML diagrams for various systems

CO 3 Apply architectural modelling techniques in design and drawing
UML diagrams for different systems

CO 4 Create design solutions for design problems by using ERASP and
GOF patterns

CO 5 Apply design patterns for some case studies

2

UNIT– I
STRUCTURAL MODELLING

3

CLOs Course Learning Outcome

CLO 1 Able to show the importance of modeling concept for object
oriented development in system.

CLO 2 Demonstrate the Conceptual model of UML and SDLC.

CLO 3 Able to understand the role and function of each UML model in
software development using object-oriented approach.

CLO 4 Illustrate the importance of classes and their associated
relationships by understanding various common mechanisms.

CLO 5 Able to differentiate advance object-oriented approach from the
traditional approach for design and development of System.

4

What is the UML?

5

• “The Unified Modeling Language is a family of graphical
notations, backed by a single meta-model, that help in describing
and designing software systems, particularly software systems
built using the object-oriented style.”

• UML first appeared in 1997

• UML is standardized. Its content is controlled by the Object
Management Group (OMG), a consortium of companies.

5

What is the UML?

6 4

• Unified

– UML combined the best from object-oriented software modeling
methodologies that were in existence during the early 1990’s.

– Grady Booch, James Rumbaugh, and Ivor Jacobson are the primary
contributors to UML.

• Modeling

– Used to present a simplified view of reality in order to facilitate the
design and implementation of object-oriented softwaresystems.

– All creative disciplines use some form of modeling as part of the
creative process.

– UML is a language for documenting design

– Provides a record of what has been built.

– Useful for bringing new programmers up to speed.

6

What is the UML?

7 5

• Language

– UML is primarily a graphical language that follows a precise
syntax.

– UML 2 is the most recent version

– UML is standardized. Its content is controlled by the Object
Management Group (OMG), a consortium of companies.

7

The importance of modeling

 Four principles of modeling

 Object-oriented modeling

8

Why We Model

8

• A successful

9

software organization is one that consistently
deploys quality software that meets the needs of its users.

• An organization that can develop such software in a timely and
predictable fashion, with an
resources, both human and

efficient
material,

and effective use of
is one that has a

sustainable business
What, then, is a model? Simply put,
• A model is a simplification of reality.

• A model provides the blueprints of a system.
• A good model includes those elements that have broad effect

and omits those minor elements that are not relevant to the
given level of abstraction.

Why do we model? There is one fundamental reason.
We build models so that we can better understand the system we
are developing.

The Importance of Modeling

9

Through modeling, we achieve four aims

1. Models help us to visualize a system as it is or as we want it to
be.

2. Models permit us to specify the structure or behavior ofa
system.

3. Models give us a template that guides us in constructinga
system.

4. Models document the decisions we have made.

Modeling is not just for big systems. Even the software equivalent of
a dog house can benefit from some modeling.

We build models of complex systems because we cannot understand
such a system in its entirety.

10

The Importance of Modeling

10

Principles of Modeling

11

Four principles of modeling:

1. The choice of what models to create has a profound
influence on how a problem is attacked and how a
solution is shaped.

2. Every model may be expressed at different levels of
precision.

3. The best models are connected to reality.
4. No singlemodel is sufficient. Every non trivial

system is best approached through a small set of nearly
independent models.

11

Object Oriented Modeling

Two Approaches:
•Traditional Approach
•Objected-Oriented Approach

12

Traditional Approach Object Oriented Approach

Collection of Procedures/Functions Combination of data and functions

Focus on function and procedures,

different styles and methodologies

for each step of process

Focus on object, classes, modules

that can be easily replaced,

modified and reused

Moving from one phase to another

phase is complex

Moving from one phase to another

phase is easier

Increases duration of project Decreases duration of project

Increase complexity Reduces complexity and

redundancy
12

An Overview of the UML

13

The UML is a language for
• Visualizing
• Specifying
• Constructing
• Documenting

The UML Is a Language for Documenting
A healthy software organization produces all sorts of artifacts in addition
to raw executable code. These artifacts include (but are not limited to)
• Requirements
• Architecture
• Design
• Source code
• Project plans
• Tests
• Prototypes
• Releases

13

An Overview of the UML

14

Where Can the UML Be Used?

The UML is intended primarily for software-intensive systems. It has
been used effectively for such domains as

• Enterprise information systems

• Banking and financial services

• Telecommunications

• Transportation

• Defense/aerospace

• Retail

• Medical electronics

• Scientific

• Distributed Web-based services

14

A Conceptual Model of the UML

• A conceptual model needs to be formed by an individual to
understand UML.

• UML contains three types of building blocks: things, relationships,
and diagrams.

• Things

– Structural things

• Classes, interfaces, collaborations, use cases, components,
and nodes.

– Behavioral things

• Messages and states.

13 1315

A Conceptual Model of the UML

16

– Grouping things

• Packages

– Annotational things

• Notes

• Relationships: Dependency, Association, Generalization and
Realization.

• Diagrams: class, object, use case, sequence, collaboration,
statechart, activity, component and deployment.

16

A Conceptual Model of the UML

17

Building Blocks of the UML:

The vocabulary of the UML encompasses three kinds of building
blocks:

1. Things

2. Relationships

3. Diagrams

17

A Conceptual Model of the UML

18

Things in the UML

• There are four kinds of things in theUML:

1. Structural things

2. Behavioral things

3. Grouping things

4. Annotational things

18

A Conceptual Model of the UML

19

Structural Things

• Structural things are the nouns of UML models. These are the
mostly static parts of a model, representing elements that are
either conceptual or physical. In all, there are seven kinds of
structural things.

• Classes

• Interface

• Cases

• Active Classes

• Components

• Nodes

• Collaborations

19

A Conceptual Model of the UML

Figure : Classes

20

Classes:
• a class is a description of a set of

objects that share the same
attributes, operations, relationships, and
semantics.

• A class implements one or more
interfaces.

• Graphically, a class is rendered as a
rectangle, usually including its name,
attributes, and operations

20

A Conceptual Model of the UML

Interfaces

• an interface is a collection of operations that specify a service of
a class or component. An interface rarely stands alone. Rather, it
is typically attached to the class or component that realizes the
interface

Figure :Interfaces

2121

A Conceptual Model of the UML
Collaborations:

• A collaboration defines an interaction. These collaborations
therefore represent the implementation of patterns that make up a
system. Graphically, a collaboration is rendered as an ellipse with
dashed lines, usually including only its name

Figure:
Collaborations

2222

A Conceptual Model of the UML

Use Cases:

• A use case is realized by a collaboration. Graphically, a use case is
rendered as an ellipse with solid lines, usually including only its
name Figure :Use Cases

Active Classes:

• An active class is rendered just like a class, but with heavy lines,

usually including its name, attributes, and operations
Figure :Active Classes

2323

A Conceptual Model of the UML

Components:

• A component typically represents the physical packaging of
otherwise logical elements, such as classes, interfaces, and
collaborations. Graphically, a component is rendered as a
rectangle with tabs, usually including only its name.

Figure :Components

2424

A Conceptual Model of the UML

Nodes:

• A node is a physical element that exists at run time and represents
a computational resource, generally having at least some memory
and, often, processing capability.

• A set of components may reside on a node and may also migrate
from node to node. Graphically, a node is rendered as a cube,
usually including only its name.

Figure :Nodes

2525

A Conceptual Model of the UML

26

 Behavioral Things:

Behavioral things are the dynamic parts of UML models. These
are the verbs of a model, representing behavior over time and
space. In all, there are two primary kinds of behavioral things.

1. Messages

2. States

26

A Conceptual Model of the UML

Messages:

• An interaction is a behavior that comprises a set of messages
exchanged among a set of objects within a particular context to
accomplish a specific purpose. Graphically, a message is rendered
as a directed line, almost always including the name of its
operation.

display

States:

• A state machine is a behavior that specifies the sequences of
states an object or an interaction goes through during its lifetime
in response to events, together with its responses to those events.

2727

A Conceptual Model of the UML
 Grouping Things:

• Grouping things are the organizational parts of UML models.
These are the boxes into which a model can be decomposed.
There is one primary kind of grouping thing, namely, packages.

Packages:

• A package is a general-purpose mechanism for organizing
elements into groups. Graphically, a package is rendered as a
tabbed folder, usually including only its name and, sometimes, its
contents

Figure: Packages

2828

A Conceptual Model of the UML

• Annotational Things:

• Annotational things are the explanatory parts of UML models.
These are the comments you may apply to describe, illuminate,
and remark about any element in a model.

• There is one primary kind of annotation thing, called a note. A note
is simply a symbol for rendering constraints and comments
attached to an element or a collection of elements.

Figure: Notes

2929

Relationships in the UML
There are four kinds of relationships in the UML:

1. Dependency 2. Association 3. Generalization 4. Realization

Dependency is a semantic relationship between two model elements in which a
change to one element (the independent one) may affect the semantics of the
other element (the dependent one). Graphically, a dependency is rendered as a
dashed line, possibly directed, and occasionally including a label.

Association is a structural relationship among classes that describes a set of
links, a link being a connection among objects that are instances of the classes.

Graphically, an association is rendered as a solid line, possibly directed,
occasionally including a label, and often containing other adornments, such as
multiplicity and end names

3030

Relationships in the UML

• Generalization is a specialization/generalization relationship in
which the specialized element (the child) builds on the
specification of the generalized element (the parent).

• The child shares the structure and the behavior of the parent.
Graphically, a generalization relationship is rendered as a solid line
with a hollow arrowhead pointing to the parent.

• Realization is a semantic relationship between classifiers, wherein
one classifier specifies a contract that another classifier
guarantees to carry out. generalization and a dependency
relationship.

3131

UML Diagrams

32

• A diagram is the graphical presentation of a set of elements, most
often rendered as a connected graph of vertices (things) and paths
(relationships).

• A diagram represents an elided view of the elements that make up
a system.

• In theory, a diagram may contain any combination of things and
relationships.

• In practice, a small number of common combinations arise, which
are consistent with the five most useful views that comprise the
architecture of a software intensive system

32

UML Diagrams

33

The UML includes Nine kinds of diagrams:

1. Class diagram
2. Object diagram
3. Use case diagram
4. Sequence diagram
5. Collaboration diagram
6. Statechart diagram
7. Activity diagram
8. Component diagram
9. Deployment diagram

33

UML Diagrams

34

1. Class diagram shows a set of classes, interfaces, and collaborations
and their relationships. These diagrams are the most common
diagram found in modeling object-oriented systems.
diagrams address the static design view of a system.

Class
Class

diagrams that include active classes address the static
process view of a system.

2. Object diagram shows a set of objects and their relationships.
Object diagrams represent static snapshots of instances of the
things found in class diagrams. These diagrams address the static
design view or static process view of a system as do class
diagrams.

3. Use case diagram shows a set of use cases and actors (a special
kind of class) and their relationships. Use case diagrams address
the static use case view of a system.

34

UML Diagrams

35

4. Sequence diagram is an interaction diagram that emphasizes the
time-ordering of messages;

5. Collaboration diagram a communication diagram is an interaction
diagram that emphasizes the structural organization of the objects
or roles that send and receive messages.

6.Statechart diagram shows a state machine, consisting of states,
transitions, events, and activities. A state diagrams shows the
dynamic view of an object.

7.Activity diagram shows the structure of a process or other
computation as the flow of control and data from step to step
within the computation. Activity diagrams address the dynamic
view of a system.

35

UML Diagrams

36

8.Component diagram is shows an encapsulated class and its
interfaces, ports, and internal structure consisting of nested
components and connectors. Component diagrams address the
static design implementation view of a system.

9.Deployment diagram shows the configuration of run-time
processing nodes and the components that live on them.
Deployment diagrams address the static deployment view of an
architecture

36

What is Legal UML?

37

The UML has syntactic and semantic rules for

• Names What you can call things, relationships, and diagrams

• Scope The context that gives specific meaning to a name

• Visibility How those names can be seen and used by others

• Integrity How things properly and consistently relate to one
another

• Execution What it means to run or simulate a dynamic model

37

Architecture

38

• Architecture refers to the different perspectives from which a
complex system can be viewed.

• Visualizing, specifying, constructing, and documenting a software-
intensive system demands that the system be viewed from a
number of perspectives.

• The architecture of a software-intensive system is best described
by five interlocking views:

– Use case view: system as seen by users, analysts and testers.

– Design view: classes, interfaces and collaborations that make up
the system.

– Process view: active classes (threads).

– Implementation view: files that comprise the system.

– Deployment view: nodes on which SW resides.

38

Architecture

• Each view is a projection into the organization and structure of the
system, focused on a particular aspect of that system.

Each of these five views can stand alone so that different
stakeholders can focus on the issues of the system's architecture
that most concern them.

3939

Software Development Life Cycle

40

• UML is involved in each phase of the software development life cycle.

• The UML development process is

– Use case driven

• Use case driven means that use cases are used as a primary artifact for
establishing the desired behavior of the system, for verifying and validating
the system's architecture, for testing, and for communicating among the
stakeholders of the project.

– Architecture-centric

• Architecture-centric means that a system's architecture is used as a primary
artifact for conceptualizing, constructing, managing, and evolving the
system under development.

– Iterative and incremental

• An iterative process is one that involves managing a stream of executable
releases. An is one that involves the continuous integration of the system's
architecture to produce these releases, with each new release embodying
incremental improvements over the other

40

Software Development Life Cycle
Software Development Life Cycle

4141

Software Development Life Cycle

42

• Inception is the first phase of the process, when the seed idea for the development is
brought up to the point of being at least internally - sufficiently well-founded to
warrant entering into the elaboration phase.

• Elaboration is the second phase of the process, when the product vision and its
architecture are defined. In this phase, the system's requirements are articulated,
prioritized, and baselined. A system's requirements may range from general vision
statements to precise evaluation criteria, each specifying particular functional or
nonfunctional behavior and each providing a basis for testing.

• Construction is the third phase of the process, when the software is brought from an
executable architectural baseline to being ready to be transitioned to the user
community. Here also, the system's requirements and especially its evaluation criteria
are constantly reexamined against the business needs of the project, and resources
are allocated as appropriate to actively attack risks to the project.

• Transition is the fourth phase of the process, when the software is turned into the
hands of the user community. Rarely does the software development process end
here, for even during this phase, the system is continuously improved, bugs are
eradicated, and features that didn't make an earlier release are added.

42

CLASSES

43

Classes

share same• A Class is a description of set of objects that
attributes, operations, relationships and semantics .

• Graphically, a class is rendered as a rectangle

Name

• Every class must have a name that distinguishes it from other
classes. A name is a textual string.

• That name alone is known as a simple name;

• a path name is the class name prefixed by the name of the
package in which that class lives.

Temperature sensor

Customer

wall

Business rules::
FraudAgent

43

Attributes

• An attribute is a named property of a class that describes
range of values that instances of the property may hold.

• A class may have any number of attributes or no attributes at
all. An attribute

• represents some property of the thing you are modeling that
is shared by all objects of that class.

• Graphically, attributes are listed in a compartment just below
the class name.

• Attributes may be drawn showing only their names,

44

CLASSES

44

CLASSES
Attributes

further specify an attribute by stating its class and possiblya
default initial value

Attributes and Their Class

4545

Operations
• An operation is the implementation of a service that can be

requested from any object of the class to affect behavior .
• An operation is an abstraction of something you can do toan

object and that is shared by all objects of thatclass.

• A class may have any number of operations or no operationsat
all.

• Operations may be drawn showing only their names.

CLASSES

4646

Organizing attributes and relationships

• When drawing a class, you don't have to show every attribute and
every operation at once.

• Meaning that you can choose to show only some or none of a class's
attributes and operations

• Explicitly specify that there are more attributes or properties than
shown by ending each list with an ellipsis ("...").

• To better organize long lists of attributes and operations you prefix
each group with descriptive category by usingstereotypes

CLASSES

4747

Responsibilities
• A responsibility is a contract or an obligation of aclass.
• When you create a class you are making a statement that all

objects of that class have the same kind of state and behavior .
• Ex: A Wall class is responsible for knowing about height, width,

and thickness; a FraudAgent class, as you might find in a credit
card application, is responsible for processing orders and
determining if they are legitimate, suspect, or fraudulent; a
TemperatureSensor class is responsible for measuring
temperature and raising an alarm if the temperature reaches a
certain point.

• Graphically, responsibilities can be drawn in a separate
compartment at the bottom of the class icon

48

CLASSES

48

CLASSES

Fig: Responsibilities

4949

Common modeling techniques

1. Modeling the vocabulary of a system

To model the vocabulary of a system

1) Identify those things that users to describe the problem .use crc
cards and usecase based analysis to help find these
abstractions.

2) For each abstraction, identify a set of responsibilities. Make sure

that each class is crisply defined and that there is a good balance

of responsibilities among all your classes.

3) Provide the attributes and operations that are needed to carry out

these responsibilities for each class

50

CLASSES

50

Modeling the vocabulary of a systemcontd….

• Fig shows a set of classes drawn from a retail system, including
Customer, Order, and Product. It also includes a few other related
abstractions drawn from the vocabulary of the problem, such as
Shipment (used to track orders), Invoice (used to bill orders), and
Warehouse (where products are located prior to shipment). There
is also one solution-related abstraction, Transaction, which
applies to orders and shipments.

5151

2. Modeling the Distribution of responsibilities in aSystem

To model the distribution of responsibilities in a System

• Identify a set of classes that work together closely to carryout
some behavior.

• Identify a set of responsibilities for each of these classes.

• Look at this set of classes as a whole, split classes that have too
many responsibilities into smaller abstractions, collapse tiny
classes that have trivial responsibilities into larger ones, and
reallocate responsibilities so that each abstraction reasonably
stands on its own.

• Consider the ways in which those classes collaborate with one
another, and redistribute their responsibilities accordingly so
that no class within a collaboration does too much or too little.

52

Modeling the Distribution of responsibilities in a System

52

Modeling the Distribution of responsibilities in a System

Modeling the Distribution of responsibilities in a System

5353

Modeling Non software things

To model the distribution of responsibilities in a System

Model the thing you are abstracting as a class.

• If you want to distinguish these things from the UML's defined
building blocks, create a new building block by using stereotypes
to specify these new semantics and to give a distinctive visual cue.

• If the thing you are modeling is some kind of hardware that itself
contains software, consider modeling it as a kind of node, as well,
so that you can further expand on its structure.

54

Modeling Non Software things

54

Modeling Non Software things

Modeling Non software Things

5555

<<Type>>
Int

{values range
from -2**31-
1 to +2**31}

<<Enumerat
ion>>

Boolean

False
True

<<Enumerati
on>>
status

Idle
Working

error

56

Modeling Non Software things

Modeling Non Software things

56

• At the other extreme, the things you model may be drawn directly
from the programming language you are using to implement a
solution.

57

• Typically, these abstractions involve primitive types, such as
integers, characters, strings, and even enumeration types, that you
might create yourself.

To model primitive types,

• Model the thing you are abstracting as a type or an enumeration,
which is rendered using class notation with the appropriate
stereotype.

• If you need to specify the range of values associated with this type,
use constraints.

Modeling Primitive Types

57

Modeling Primitive Types

Fig: Modeling Primitive Types

5858

Relationships

59

• A relationship is a connection among things.

• The three most important relationships are dependencies,
generalizations, and associations.

• Graphically, a relationship is rendered as a path, with different
kinds of lines used to distinguish the kinds of relationships.

• Dependency
A dependency is a using relationship that states that a change
in specification of one thing (for example, class Event) may
affect another thing that uses it (for example, class Window),
but not necessarily the reverse.

• Graphically, a dependency is rendered as a dashed directed
line.

59

Dependency

6060

Generalization

• A generalization is a relationship between a general thing
(called the super class or parent)and a more specific kind of that
thing (called the subclass or child).

• Generalization is sometimes called an "is-a-kind-of"
relationship: one thing (like the class BayWindow) is-a-kind-of a
more general thing (for example, the class Window).

• Generalization means that objects of the child may be used
anywhere the parent may appear, but not the reverse.

• In other words, generalization means that the child is
substitutable for the parent. A child inherits the properties of its
parents, especially their attributes and operations.

61

Generalization

61

Generalization

6262

Association

• An association is a structural relationship that specifies that
objects of one thing are connected to objects of another.
Given an association connecting two classes, you can navigate
from an object of one class to an object of the other class, and
vice versa.

• It's quite legal to have both ends of an association circle back
to the same class. This means that, given an object of the
class, you can link to other objects of the same class

63

Association

63

Association

There are four adornments that apply to associations.

Name

An association can have a name, and you use that name to
describe the nature of the relationship. So that there is no
ambiguity about its meaning, you can give a direction to the
name by providing a direction triangle that points in the
direction you intend to read the name, as shown in Figure

6464

Association

There are four adornments that apply to associations.

Role

• When a class participates in an association, it has a specific
role that it plays in that relationship;

• A role is just the face the class at the near end of the
association presents to the class at the other end of the
association.

6565

Multiplicity

• An association represents a structural relationship among
objects. In many modeling situations, it's important for you to
state how many objects may be connected across an instance
of an association.

• This "how many" is called the multiplicity of an association's
role, and is written as an expression that evaluates to a range
of values or an explicit value as in Figure

Association

6666

Association
Aggregation
• A plain association between two classes represents a structural

relationship between peers, meaning that both classes are
conceptually at the same level, no one more important than the
other.

• Sometimes, you will want to model a "whole/part" relationship,
in which one class represents a larger thing (the "whole"),
which consists of smaller things (the "parts"). This kind of
relationship is called aggregation, which represents a "has-a"
relationship,

6767

Common Modeling Techniques
Modeling simple dependencies

-To model this using relationship

1) Create a dependency pointing from the class with the
operation to the class used as a parameter in the operation.

6868

Modeling Single Inheritance

69

To model inheritance relationships,

1. Given a set of classes, look for responsibilities, attributes, and
operations that are common to two or more classes.

2. Elevate these common responsibilities, attributes, and
operations to a more general class. If necessary, create a new
class to which you can assign these elements (but be careful
about introducing too many levels).

3. Specify that the more-specific classes inherit from the more-
general class by placing a generalization relationship that is
drawn from each specialized class to its more-general parent.

69

Modeling Single Inheritance

7070

Modeling Structural Relationships

71

To model structural relationships,

1. For each pair of classes, if you need to navigate from objects
of one to objects of another, specify an association between
the two. This is a data-driven view of associations.

2. For each pair of classes, if objects of one class need to
interact with objects of the other class other than as
parameters to an operation, specify an association between
the two. This is more of a behavior-driven view of
associations.

3. For each of these associations, specify a multiplicity
(especially when the multiplicity is not *, which is the
default), as well as role names (especially if it helps to explain
the model).

71

Modeling Structural Relationships contd….

72

4) If one of the classes in an association is structurally or
organizationally a whole compared with the classes at the other
end that look like parts, mark this as an aggregation by adorning
the association at the end near the whole

72

COMMON MECHANISMS

73

• Stereotypes, tagged values, and constraints are the mechanisms
provided by the UML to add new building blocks, create new
properties, and specify new semantics.

• For example, if you are modeling a network, you might want to
have symbols for routers and hubs; then use stereotyped nodes
to make these things appear as primitive building blocks.

• Similarly, if you are part of your project's release team,
responsible for assembling, testing, and then deploying releases,
you might want to keep track of the version number and test
results for each major subsystem.

• Then use tagged values to add this information to your models.

73

COMMON MECHANISMS

Stereotypes, Tagged Values, and constraints

7474

COMMON MECHANISMS

75

A note is a graphical symbol for rendering constraints or comments
attached to an element or a collection of elements. Graphically, a
note is rendered as a rectangle with a dog-eared corner, together
with a textual or graphical comment.

A stereotype is an extension of the vocabulary of the UML, allowing
to create new kinds of building blocks similar to existing ones but
specific to problem. Graphically, a stereotype is rendered as a
name enclosed by guillemets (<< >>) and placed above the name
of another element.

75

COMMON MECHANISMS

76

• A tagged value is an extension of the properties of a UML
element, allowing you to create new information in that element's
specification. Graphically, a tagged value is rendered as a string
enclosed by brackets and placed below the name of another
element.

• A constraint is an extension of the semantics of a UML element,
allowing you to add new rules or to modify existing ones.
Graphically, a constraint is rendered as a string enclosed by
brackets and placed near the associated element or connected to
that element or elements by dependency relationships.

76

COMMON MECHANISMS

Notes

• A note that renders a comment has no semantic impact,
meaning that its contents do not alter the meaning of the
model to which it is attached. Notes are used to specify things
like requirements, observations, reviews, and explanations, in
addition to rendering constraints.

• A note may contain any combination of text or graphics. you can
put a live URL inside a note, or even link to or embed another
document

7777

COMMON MECHANISMS

78

Other Adornments
Adornments are textual or graphical items that are added to
an element's basic notation and are used to visualize details
from the element's specification.

• For example, the basic notation for an association is a line, but
this may be adorned with such details as the role and
multiplicity of each end.

78

COMMON MECHANISMS

• A stereotype is rendered as a name enclosed by guillemets
(for example, <<name>>) and placed above the name of
another element.

• You may define an icon for the stereotype and render that
icon to the right of the name or use that icon as the basic
symbol for the stereotyped item.

7979

Tagged Values

A tagged value is rendered as a string enclosed by brackets
and placed below the name of another element. That string
includes a name (the tag), a separator (the symbol =), and a
value (of the tag). Specify just the value if its meaning is
unambiguous, such as when the value is the name of
enumeration.

COMMON MECHANISMS

8080

Constraints

• A constraint is rendered as a string enclosed by brackets and
placed near the associated element.

• This notation is also used as an adornment to the basic
notation of an element to visualize parts of an element's
specification that have no graphical cue.

• For example, some properties of associations (order and
changeability) are rendered using constraint notation.

COMMON MECHANISMS

8181

Standard Elements

• The UML defines a number of standard stereotypes for
classifiers, components, relationships and other modeling
elements.

• There is one standard stereotype, mainly of interest totool
builders, that lets you model stereotypes themselves.

stereotype
• Specifies that the classifier is a stereotype that may be applied

to other elements

• The UML also specifies one standard tagged value thatapplies
to all modeling elements.

documentation

• Specifies a comment, description, or explanation of the
element to which it is attached

82

COMMON MECHANISMS

82

Common Modeling Techniques

1. Modeling Comments

• To model a comment

1)Put your comment as text in a note and place it adjacent to the
element to which it refers. You can show a more explicit
relationship by connecting a note to its elements using a
dependency relationship.

2) Remember that you can hide or make visible the elements of
your model as you see fit. This means that you don't have to
make your comments visible everywhere the elements to which
it is attached are visible. Rather, expose your comments in your
diagrams only insofar as you need to communicate that
information in that context.

83

COMMON MECHANISMS

83

COMMON MECHANISMS

84

3) If your comment is lengthy or involves something richer than plain
text, consider putting your comment in an external document and
linking or embedding that document in a note attached to your
model.

4) As your model evolves, keep those comments that record
significant decisions that cannot be inferred from the model itself,
and unless they are of historic interest discard the others.

84

COMMON MECHANISMS

8585

COMMON MECHANISMS

86

2. Modeling New Building Blocks

1)Make sure there's not already a way to express what you want by
using basic UML. If you have a common modeling problem,
chances are there's already some standard stereotype that will do
what you want.

2) If you're convinced there's no other way to express these
semantics, identify the primitive thing in the UML that's most like
what you want to model (for example, class, interface,
component, node, association, and so on) and define a new
stereotype for that thing.

3) Specify the common properties and semantics that go beyond the
basic element being stereotyped by defining a set of tagged
values and constraints for the stereotype.

86

COMMON MECHANISMS

4) If you want these stereotype elements to have a distinctive
visual cue, define a new icon for the stereotype.

8787

3) Modeling New Properties

1) First, make sure there's not already a way to express what you
want by using basic UML. If you have a common modeling
problem, chances are that there's already some standard tagged
value that will do what you want.

2)If you're convinced there's no other way to express these
semantics, add this new property to an individual element or a
stereotype. The rules of generalization apply -- tagged values
defined for one kind of element apply to its children.

88

COMMON MECHANISMS

88

COMMON MECHANISMS

Modeling New Properties

8989

4) To model new semantics

1. First, make sure there's not already a way to express what you
want by using basic UML. If you have a common modeling
problem, chances are that there's already some standard
constraint that will do what you want.

90

2. If you're convinced there's no other way to express these
semantics, write your new semantics as text in a constraint and
place it adjacent to the element to which it refers. You can show
a more explicit relationship by connecting a constraint to its
elements using a dependency relationship.

3. If you need to specify your semantics more precisely and
formally, write your new semantics using Object Constraint
Language (OCL).

COMMON MECHANISMS

90

COMMON MECHANISMS

91

Modeling New Semantics

The above diagram shows that each Person may be a member of
zero or more Departments and that each Department must have
at least one Person as a member. This diagram goes on to indicate
that each Department must have exactly one Person as a manager
and every Person may be the manager of zero or more
Departments. All of these semantics can be expressed using
simple UML.

91

DIAGRAMS

92

• A system is a collection of subsystems organized to accomplish a
purpose and described by a set of models, possibly from different
viewpoints.

• A subsystem is a grouping of elements, of which some constitute a
specification of the behavior offered by the other containedelements.

• A diagram is just a graphical projection into the elements that make up
a system.

Static parts of a system Dynamic parts of a system.

Class diagram Use case diagram

Object diagram Sequence diagram

Component diagram Collaboration diagram

Deployment diagram Statechart diagram

Activity diagram

92

DIAGRAMS

93

• The UML's structural diagrams are roughly organized around the major
groups of things you'll find when modeling a system.

Class diagram Classes, interfaces, and collaborations

Object diagram Objects

Component diagram Components

Deployment diagram Nodes

• The UML's behavioral diagrams are roughly organized around the major ways
you can model the dynamics of a system.

Class diagram Classes, interfaces, and collaborations

Use case diagram Organizes the behaviors of the system

Sequence diagram Focused on the time ordering of messages

Collaboration diagram Focused on the structural organization of objects that send
and receive messages

Statechart diagram Focused on the changing state of a system driven by events

Activity diagram Focused on the flow of control from activity to activity

93

DIAGRAMS

94

Common Modeling Techniques
1. Modeling Different Views of a System

• Decide which views you need to best express the architecture of your
system and to expose the technical risks to your project. The five views
of an architecture described earlier are a good startingpoint.

• For each of these views, decide which artifacts you need to create to
capture the essential details of that view. For the most part, these
artifacts will consist of various UML diagrams.

• As part of your process planning, decide which of these diagrams you'll
want to put under some sort of formal or semi-formal control. These are
the diagrams for which you'll want to schedule reviews and to preserve
as documentation for the project.

• Allow room for diagrams that are thrown away. Such transitory diagrams
are still useful for exploring the implications of your decisions and for
experimenting with changes.

94

DIAGRAMS

95

2)Modeling Different Levels of Abstraction

• Consider the needs of your readers, and start with a given model.

• If your reader is using the model to construct an implementation,
she'll need diagrams that are at a lower level of abstraction, which
means that they'll need to reveal a lot of detail. The model to
present a conceptual model to an end user, then use the diagrams
that are at a higher level of abstraction, which means that they'll
hide a lot of detail.

• Depending on where you land in this spectrum of low-to-high
levels of abstraction, create a diagram at the right level of
abstraction by hiding or revealing the following four categories of
things from the model.

95

Building blocks and relationships:
• Hide those that are not relevant to the intent of the diagram or

the needs of the reader.
Adornments:
• Reveal only the adornments of these building blocks and

relationships that are essential to understanding theintent.
Flow:
• In the context of behavioral diagrams, expand only those

messages or transitions that are essential to understanding the
intent.

Stereotypes:
• In the context of stereotypes used to classify lists of things, such

as attributes and operations, reveal only those stereotyped items
that are essential to understanding the intent.

96

DIAGRAMS

96

DIAGRAMS

9797

DIAGRAMS

98

3)Modeling Complex Views

To model complex views,

• First, convince yourself there's no meaningful way to present this
information at a higher level of abstraction, perhaps eliding some parts
of the diagram and retaining the detail in other parts.

• If you've hidden as much detail as you can and your diagram is still
complex, consider grouping some of the elements in packages or in
higher level collaborations, then render only those packages or
collaborations in your diagram.

• If your diagram is still complex, use notes and color as visual cues to
draw the reader's attention to the points you want to make.

• If your diagram is still complex, print it in its entirety and hang it on a
convenient large wall. You lose the interactivity an online version of the
diagram brings, but you can step back from the diagram and study it for
common patterns.

98

UNIT– II
ADVANCED BEHAVIORAL MODELING

99

CLOs Course Learning Outcome

CLO 6 Analyze the Objects and Classes are required for the
development of software system.

CLO 7 Creation of interaction diagram that model the dynamic aspects
of a software system.

CLO 8 Use case and activity studies to illustrate the analysis and design
concepts.

100

Advanced Classes

10
1

• A classifier is a mechanism that describes structural and behavioral
features.

• Classifiers include classes, interfaces, datatypes, signals,
components, nodes, use cases, and subsystems.

• The UML provides a number of other kinds of classifiers to help
you model.

• Interface

A collection of operations that are used to specify a service of a
class or a component

• Data type

A type whose values have no identity, including primitive built-in
types (such as numbers and strings), as well as enumeration types
(such as Boolean)

101

• Signal
The specification of an asynchronous stimulus communicated between
instances

• component
A physical and replaceable part of a system that conforms to and provides
the realization of a set of interfaces

• Node
A physical element that exists at run time and that represents a
computational resource, generally having at least some memory and often
processing capability

• Use case
A description of a set of a sequence of actions, including variants, that a
system performs that yields an observable result of value to a particular
actor

• Subsystem
A grouping of elements of which some constitute a specification of the
behavior offered by the other contained elements

102

Advanced Classes

102

Advanced Classes

103103

Advanced Classes

Visibility - UML, you can specify any of three levels of visibility.
1. public

Any outside classifier with visibility to the given classifier can use the feature
specified by prepending the symbol +.

2. protected
Any descendant of the classifier can use the feature; specified by prepending the
symbol #.

3. private
Only the classifier itself can use the feature; specified by prepending the symbol

-.

104104

Scope- It specifies whether the feature appears in each instance of
the classifier or whether there is just a single instance of the
feature for all instances of the classifier. In the UML, you can
specify two kinds of owner scope.

1. Instance - Each instance of the classifier holds its own value for the
feature.

2. Classifier - There is just one value of the feature for all instances of the
classifier.

• Figure shows, a feature that is classifier scoped is rendered by
underlining the feature's name

Advanced Classes

105105

Multiplicity

• The number of instances a class may have is called its multiplicity.
Multiplicity is a specification of the range of allowable cardinalities an
entity may assume.

• Specify the multiplicity of a class by writing a multiplicity expressionin
the upper-right corner of the class icon.

• Multiplicity applies to attributes, as well. You can specify the multiplicity
of an attribute by writing a suitable expression in brackets just after the
attribute name. For example, in the figure, there are two or more
consolePort instances in the instance of NetworkController.

Advanced Classes

106106

Attributes

• You can Specify the visibility, scope, and multiplicity of each attribute.
There's still more. You can also

• specify the type, initial value, and changeability of each attribute.

• In its full form, the syntax of an attribute in the UML is

• [visibility] name [multiplicity] [: type] [= initial-value] [{property-
string}].

There are three defined properties that you can use with attributes.

107

Advanced Classes

changeable There are no restrictions on modifying the attribute's value.

addOnly For attributes with a multiplicity greater than one, additional
values may be added, but once created, a value may not be
removed or altered

frozen The attribute's value may not be changed after the object is
initialized.

107

Operations

• you can also specify the visibility and scope of each operation.

• You can also specify the parameters, return type, concurrency
semantics, and other properties of each operation.

• The name of an operation plus its parameters (including its returntype,
if any) is called the operation's signature.

• In its full form, the syntax of an operation in the UML is

[visibility] name [(parameter-list)] [: return-type] [{property-string}]

• In an operation's signature, you may provide zero or more parameters,
each of which follows the syntax

• [direction] name : type [= default-value]

• Direction may be any of the following values

1) in 2) out 3) inout

108

Advanced Classes

108

Template Classes
- A template is a parameterized element. In such languages as C++ and

Ada, you can write template classes, each of which defines a family of
classes.

• A template includes slots for classes, objects, and values, and these
slots serve as the template's parameters.

• The most common use of template classes is to specify containers that
can be instantiated for specific elements, making them type-safe

template<class Item, class Value, int Buckets> class Map {
public:

virtual Boolean bind(const Item&, constValue&);
virtual Boolean isBound(const Item&) const;

... };

109

Advanced Classes

109

Standard Elements - The UML defines four standard stereotypes that apply
to classes.

1. metaclass - Specifies a classifier whose objects are all classes

2. powertype - Specifies a classifier whose objects are the children
of a given parent

110

3. stereotype -

4. utility -

Specifies that the classifier is a stereotype that may
be applied to other elements

Specifies a class whose attributes and operations are
all class scoped

Advanced Classes

110

Common Modeling Techniques
1. Modeling semantics of class

• Specify the responsibilities of the class. A responsibility is a contract
or obligation of a type or class and is rendered in a note (stereotyped
as responsibility) attached to the class, or in an extra compartment
in the class icon.

• Specify the semantics of the class as a whole using structured text,
rendered in a note (stereotyped as semantics) attached to the class.

• Specify the body of each method using structured text or a
programming language, rendered in a note attached to the operation
by a dependency relationship.

• Specify the pre- and post conditions of each operation, plus the
invariants of the class as a whole, using structured text. These
elements are rendered in notes (stereotyped as precondition, post
condition, and invariant) attached to the operation or class by a
dependency relationship.

111

Advanced Classes

111

• Specify a state machine for the class. A state machine is a behavior
that specifies the sequences of states an object goes through during
its lifetime in response to events, together with its responses to
those events.

• Specify a collaboration that represents the class. A collaboration is a
society of roles and other elements that work together to provide
some cooperative behavior that's bigger than the sum of all the
elements. A collaboration has a structural part, as well as a dynamic
part, so you can use collaborations to specify all dimensions of a
class's semantics.

• Specify the pre- and postconditions of each operation, plus the
invariants of the class as a whole, using a formal language such as
OCL.

112

Advanced Classes

112

Advanced Relationships

• A relationship is a connection among things. In object-oriented
modeling, the four most important relationships are dependencies,
generalizations, associations, and realizations.

• Graphically, a relationship is rendered as a path, with different kinds of
lines used to distinguish the different relationships.

110113

Dependency
• A dependency is a using relationship, specifying that a change in the

specification of one thing may affect another thing that uses it but not
necessarily the reverse. Graphically, a dependency is rendered as a dashed
line, directed to the thing that is depended on.
Eight Stereotypes that apply to dependency relationships among classes and objects

Advanced Relationships

114

bind the source instatiates the target template

derive the source may be computed from target

friend the source is given special visibility into target

instanceOf source object is an instance of the target classifier

instantiate source object creates instance of the target

powertype target is a powertype of the source

refine source is at a finer degree of abstraction than target

use
the semantics of the source element depends on the

semamtics of the public part of the target

Advanced Relationships

115

among• Two stereotypes that apply to dependency relationships
packages.

– access – source package is granted the right to reference the
elements of the target package.

– import – a kind of access, but only public content.

• Two stereotypes that apply to dependency relationships among use
case.

– extend – target use case extends the behavior of source.

– include – source use case explicitly incorporates the behavior of
another use case at a location specified by the source

Advanced Relationships

116

• Three stereotypes when modeling interactions among objects.
– become – target is the same object of source at later time
– call – source operation invoke the target operation
– copy – target is an exact, but different, copy of source

• In the context of state machine
– send – source operation sends the targetevent

• In the context of organizing the elements of your system into
subsystem and model
– trace – target is an historical ancestor of the source (model

relationship among elements in different models)

Generalization
A generalization is a relationship between a general thing (called the superclass or

parent) and a more specific kind of that thing (called the subclass or child).

There is the one stereotype.

• Implementation: Specifies that the child inherits the implementation
of the parent but does not make public nor support Its interfaces,
thereby violating substitutability

The four constraints that may be applied to generalization relationships.

1.Complete - Specifies that all children in the generalization have
been specified in the model and that no additional children are
permitted

2.Incomplete - Specifies that not all children in the generalization have been
specified and that additional children are permitted

Advanced Relationships

117

3.Disjoint - Specifies that objects of the parent may have no more than
one of the children as a type

4.Overlapping - Specifies that objects of the parent may have more than one
of the children as a type

Association

• An association is a structural relationship, specifying that objects of one
thing are connected to object of another.

• Basic adornments: name, role, multiplicity,aggregation.

• Advanced adornments: navigation, qualification, various flavors of
aggregation

Navigation

- Given a plain, unadorned association between two classes, such as Book
and Library, it's possible to navigate from objects of one kind to objects
of the other kind.

Advanced Relationships

118

Visibility

- An association between two classes, objects of one class can see and
navigate to objects of the other, unless otherwise restricted by an
explicit statement of navigation

Advanced Relationships

119

strong ownership andQualification: A form of aggregation with
coincident lifetime of the parts by the whole.

• Interface specifier : An interface is a collection of operations that are
used to specify a service of a class or a component; every class may
realize many interfaces.

Advanced Relationships

120

• Composition

• In a composite aggregation, an object may be a part of only one
composite at a time.

• For example, in a windowing system, a Frame belongs to exactly one
Window. In a composite aggregation, the whole is responsible for the
disposition of its parts, which means that the composite must manage
the creation and destruction of its parts.

Advanced Relationships

121

Constraints

1. implicit: The relationship is not manifest but, rather, is only

conceptual.

2. ordered: the set of objects at one end of an association are in

an explicit order.

3. changeable: links between objects may be changed.

4. add Only: new links may be added from an object on the

opposite end of association.

5. frozen: a link added may not be modified or deleted.

6. Xor: over a set of associations, exactly one is man fest for

each associated object.

Advanced Relationships

122

Realization

• A realization is a semantic relationship between classifiers in

which one classifier specifies a contract that anther classifier

guarantees to carry out.

• Use in two circumstances:

– In the context of interfaces.

– In the context of collaborations.

– Rendering as:

Advanced Relationships

120123

Common Modeling Techniques
1. Modeling Webs of Relationships

• Apply use cases and scenarios to drive your discovery of the relationships
among a set of abstractions.

• In general, start by modeling the structural relationships that are present.
These reflect the static view of the system and are therefore fairly tangible.

• Next, identify opportunities for generalization/specialization relationships; use
multiple inheritance sparingly.

• Only after completing the preceding steps should you look for dependencies;
they generally represent more-subtle forms of semantic connection.

• For each kind of relationship, start with its basic form and apply advanced
features only as absolutely necessary to express your intent.

• Remember that it is both undesirable and unnecessary to model all
relationships among a set of abstractions in a single diagram or view. Rather,
build up your system's relationships by considering different views on the
system. Highlight interesting sets of relationships in individual diagrams.

Advanced Relationships

124

• An interface is a collection of operations that are used to specify a
service of a class or a component. Graphically, an interface is rendered
(represented) as a circle; in its expanded form, an interface may be
rendered as a stereotyped class(a class with stereotypeinterface)

Names

• Every interface must have a name that distinguishes it from other
interfaces

• Two naming mechanism:

• A simple name (only name of the interface).

• A path name is the interface name prefixed by the name of the
package in which that interface lives represented.

Interfaces, Types and Roles

125

Operations:

• To distinguish an interface from a class, prepend an ‘I’ to every interface
name.

• Operations in an interface may be adorned with visibility properties,
concurrency properties, stereotypes, tagged values, and constraints.

• Interface don't have attributes. interfaces span model boundaries and it
doesn't have direct instances.

Interfaces, Types and Roles

126

Understanding an Interface

• In the UML, you can supply much more information to an interface in
order to make it understandable and approachable.

• First, you may attach pre- and postconditions to each operation and
invariants to the class or component as a whole. By doing this, a client
who needs to use an interface will be able to understand what the
interface does and how to use it, without having to dive into an
implementation.

• We can attach a state machine to the interface. You can use this state
machine to specify the legal partial ordering of an interface's
operations.

Interfaces, Types and Roles

127

• We can attach collaborations to the interface. You can use
collaborations to specify the expected behavior of the interface through
a series of interaction diagrams.

Interface relationships

• An interface may participate in generalization, association, dependency and
realization relationships. Realization is a semantic relationship between two
classifiers in which one classifier specifies a contract that another classifier
guarantees to carry out.

Types and Roles
Type:
• A type is a stereotype of a class used to specify a domain of objects, together with

the operations applicable to the object of that type.
• To distinguish a type from an interface or a class, prepend a ‘T’ to every type.
Role
• A role names(indicates) a behavior of an entity participating in a particular context.

Or, a role is the face that an abstraction presents to the world.
• For example, consider an instance of the class Person. Depending on the context,

that Person instance may play the role of Mother, Comforter, PayerOfBills,
Employee, Customer, Manager, Pilot, Singer, and so on.

• When an object plays a particular role, it presents a face to the world, and clients
that interact with it expect a certain behavior depending on the role that it plays at
the time.

Interfaces, Types and Roles

128

Common Modeling Techniques

1. Modeling the Seams in a Systemeling the Seams in a System

• Within the collection of classes and components in your system, draw a
line around those that tend to be tightly coupled relative to other sets
of classes and components.

• Refine your grouping by considering the impact of change. Classes or
components that tend to change together should be grouped together
as collaborations.

• Consider the operations and the signals that cross these boundaries,
from instances of one set of classes or components to instances of
other sets of classes and components.

• Package logically related sets of these operations and signals as
interfaces.

Interfaces, Types and Roles

129

• For each such collaboration in your system, identify the interfaces it
relies on (imports) and those it provides to others (exports). You model
the importing of interfaces by dependency relationships, and you model
the exporting of interfaces by realizationrelationships.

• For each such interface in your system, document its dynamics by using
pre- and postconditions for each operation, and use cases and state
machines for the interface as a whole.

Interfaces, Types and Roles

130

2. Modeling Static and Dynamic Types
To model a dynamic type

• Specify the different possible types of that object by rendering each
type as a class stereotyped as type (if the abstraction requires
structure and behavior) or as interface (if the abstraction requires only
behavior).

• Model all the roles the class of the object may take on at any point in
time. You can do so in two ways:

 First, in a class diagram, explicitly type each role that the class
plays in its association with other classes. Doing this specifies the
face instances of that class put on in the context of the associated
object.

 Second, also in a class diagram, specify the class-to-type
relationships using generalization.

Interfaces, Types and Roles

131

• In an interaction diagram, properly render each instance of the
dynamically typed class. Display the role of the instance in brackets
below the object's name.

• To show the change in role of an object, render the object once for each
role it plays in the interaction, and connect these objects with a
message stereotyped as become.

• For example, Figure shows the roles that instances of the class
Person might play in the context of a human resources system.

Interfaces, Types and Roles

132

Fig: Modeling Static Types

Interfaces, Types and Roles

130

Figure shows the dynamic nature of a person's type. In this fragment
of an interaction diagram, p (the Person object) changes its role from
Candidate to Employee.

Fig: Modeling Dynamic Types

133

Packages

“A package is a general-purpose mechanism for organizing elements into
groups.” Graphically, a package is rendered as a tabbedfolder.

Names
• Every package must have a name that distinguishes it from other

packages. A name is a textual string.
• That name alone is known as a simple name; a path name is the

package name prefixed by the name of the package in which that
package lives

• We may draw packages adorned with tagged values or with additional
compartments to expose their details.

131134

Packages

Fig: Simple and Extended Package

135

Owned Elements
• A package may own other elements, including classes, interfaces,

components, nodes, collaborations, use cases, diagrams, and even
other packages.

• Owning is a composite relationship, which means that the element is
declared in the package. If the package is destroyed, the element is
destroyed. Every element is uniquely owned by exactly one package.

• Elements of different kinds may have the same name within a package.
Thus, you can have a class named Timer, as well as a component named
Timer, within the same package.

• Packages may own other packages. This means that it's possible to
decompose your models hierarchically.

• We can explicitly show the contents of a package either textually or

graphically.

Packages

136

Packages

137

Fig: Owned Elements

Visibility

• You can control the visibility of the elements owned by a package just as
you can control the visibility of the attributes and operations owned by
a class.

• Typically, an element owned by a package is public, which means that it
is visible to the contents of any package that imports the element's
enclosing package.

• Conversely, protected elements can only be seen by children, and
private elements cannot be seen outside the package in which they are
declared.

• We specify the visibility of an element owned by a package by prefixing
the element's name with an appropriate visibilitysymbol.

Packages

138

• Importing and Exporting

• Suppose you have two classes named A and B sitting side by side. Because they
are peers, A can see B and B can see A, so both can depend on the other. Just
two classes makes for a trivial system, so you really don't need any kind of
packaging.

• In the UML, you model an import relationship as a dependencyadorned
with the stereotype import

• Actually, two stereotypes apply here—import and access— and both
specify that the source package has access to the contents of the target.

• Import adds the contents of the target to the source's namespace

• Access does not add the contents of the target

• The public parts of a package are called its exports.

• The parts that one package exports are visible only to the contents of
those packages that explicitly import the package.

• Import and access dependencies are not transitive

Packages

139

Fig: Importing and Exporting

Packages

140

Generalization
• There are two kinds of relationships you can have between packages:

import and access dependencies used to import into one package
elements exported from another and generalizations, used to specify
families of packages

• Generalization among packages is very much like generalization among
classes.

• Packages involved in generalization relationships follow the same
principle of substitutability as do classes. A specialized package (such as
WindowsGUI) can be used anywhere a more general package (such as

GUI) is used.

Packages

141

• All of the UML's extensibility mechanisms apply to packages. Most often, you'll
use tagged values to add new package properties (such as specifying the
author of a package) and stereotypes to specify new kinds of packages (such as
packages that encapsulate operating system services).

Packages

142

1. facade :

2. framework

3. stub

4. subsystem

5. system

: Specifies a package that is only a view on some
other package

: Specifies a package consisting mainly of patterns

:Specifies a package that serves as a proxy for the
public contents of another package

: Specifies a package representing an independent
part of the entire system being modeled

: Specifies a package representing the entire system
being modeled

Common Modeling Techniques

1. Modeling Groups of Elements

• Scan the modeling elements in a particular architectural view and look
for clumps defined by elements that are conceptually or semantically
close to one another.

• Surround each of these clumps in a package.

• For each package, distinguish which elements should be accessible
outside the package. Mark them public, and all others protected or
private. When in doubt, hide the element.

140

• Explicitly connect packages that build on others via import
dependencies.

• In the case of families of packages, connect specialized packages to
their more general part via generalizations

Packages

143

Packages

144

Fig: Modeling Groups of Elements

2. Modeling Architectural Views

• Identify the set of architectural views that are significant in the context
of your problem. In practice, this typically includes a design view, a
process view, an implementation view, a deployment view, and a use
case view.

• Place the elements (and diagrams) that are necessary and sufficient to
visualize, specify, construct, and document the semantics of each view
into the appropriate package

• As necessary, further group these elements into their own packages.

• There will typically be dependencies across the elements in different
views. So, in general, let each view at the top of a system be open to all
others at that level

Packages

145

Packages

146

Fig: Modeling Architectural Views

set of classes ,interfaces ,collaboration and

Modeling techniques for Class and Objectdiagram

147

Class diagram

• It’s a diagram that shows
either relationships .

Common properties

•It shows the same common properties as all other diagrams.

Contents

Class diagram contain the following things

1. Classes

2. Interfaces

3. Collaboration

4. Dependency ,Generalization, association

1. To model the vocabulary of a system

1. Modeling the vocabulary of a system involves making adecision
about which abstractions

2. are a part of the system under consideration and which fall outside its
boundaries. You use class

3. diagrams to specify these abstractions and their responsibilities.

1. Modeling simple collaboration

To model a collaboration .

1. Identify the mechanism you want to model .

2. For each mechanism identify the classes ,interfaces and collaboration .

3. Use scenarios to walk through these things .

4. Be sure to populate these elements with their contents .

Modeling techniques for Class and Object diagram

148

3. Modeling a logical database schema

To model a schema

1. Identify those classes in the model whose state must transcend the
lifetime of their application.

2. Create class diagram that contain these classes and mark them as
persistent .

3. Explain structural details of these classes .

4. Watch for common pattern that complicate physical database
design .

5. Consider the behavior of these classes by expending operations.

6. Use tools to transform logical design to physical design .

Modeling techniques for Class and Object diagram

149

Fig: Modeling a Logical Database

1..*

School

{ persistent}
name : Name

address : String

phone :Number

addStudent()

removeStudent()

getStudent()

getAllStudents()

addDepartment()

removeDepartment()

getDepartment()

Student

{ persistent}

name : Name

studentId : Number

Instructor

{ persistent}

name : Name

Department
{ persistent}

name : Name

addInstructor()

removeInstructor()
getInstructor()

getAllInstructors()

Course

{ persistent}

name : Name

courseId :Number

getAllDepartments()

1..*

1..*

1..*

1..*

1..*

1..*
*

0..1

0..1 chairperson

** *

147

Modeling techniques for Class and Object diagram

150

Forward Engineering
- It is the process of transforming a model into code through a

mapping to an implementation language .
To forward engineer a class diagram
1) Identify the rules for mapping to your implantation language .
2) Depending upon the semantics of the language you have to

constrain .
3) Use tagged values to specify your tagged values.
4) Use tools to forward engineer your models .
Reverse Engineering
-transforming code to uml model.
To reverse engineer a class diagram
1) Identify the rules for mapping from your language.
2) Use tools point to code you would like to reverse engineer.
3) Use tool, create a class diagram by querying the model

Modeling techniques for Class and Object diagram

151

Object diagram
– It shows set of objects and their relationships at a point in time .
– Object diagrams are used to model the static design view or static

process view of a system.
– An object diagram covers a set of instances of the things found in a class

diagram. An object diagram,
– therefore, expresses the static part of an interaction, consisting of the

objects that collaborate but without any of the messages passed among
them.

– An object diagram is a diagram that shows a set of objects and their
relationships at a point in time. Graphically, an object diagram is a
collection of vertices and arcs.

Contents : commonly it contains
1. objects
2. links
3. Object diagram contains notes and constraints .

Modeling techniques for Class and Object diagram

152

1. Modeling object structures

To model object structures

150

1) Identify the mechanism you would like to model.

2) For each mechanism, identify classes, interfaces, other elements.

3)Consider one scenario that work through this mechanism.

4) Expose the state and attribute value of each such object to
understand .

5) Similarly expose the links, instances, associations amongthem

Modeling techniques for Class and Object diagram

153

Modeling techniques for Class and Object diagram

154

Forward and Reverse Engineer

To reverse engineer an object diagram

1) Choose the target you want to reverse engineer.

2) Use tool or simply walkthrough a scenario.

3) Identify the set of objects that collaborate in the context .

4) As necessary to understand their semantics expose these objects .

5) Identify links among objects .

6) If your diagrams end up complicated ,prune it by eliminating objects
that are not germane.

Modeling techniques for Class and Object diagram

155

INTERACTIONS

156

An interaction is a behavior that comprises a set of messages
exchanged among a set of objects within a context to accomplish
a purpose. A message is a specification of a communication
between objects that conveys information with the expectation
that activity will ensue.

Fig: Messages, Links, and Sequencing

INTERACTIONS

157

Context

• Interaction can find wherever objects are linked to one another.

• Interaction can find in the collaboration of objects that exist in the
context of your system or subsystem.

• It also find interactions in the context of an operation.

• Finally, you'll find interactions in the context of a class.

Object and Roles :

• The objects that participate in an interaction are either concrete
things or prototypical things.

• A concrete thing, an object represents something in the real
world. For example, p, an instance of the class Person, might
denote a particular human.

• A prototypical thing, p might represent any instance ofPerson.

INTERACTIONS

158

Links

• A link is a semantic connection among objects.

• In general, a link is an instance of an association.

• Following fig. shows, wherever a class has an association to
another class, there may be a link between the instances of the
two classes; wherever there is a link between two objects, one
object can send a message to the other object.

INTERACTIONS

159

Following five standard stereotypes you can use

• association – corresponding object is visible by association.

• self

• global

• local

• parameter

– dispatches of operation.

– represents enclosing scope.

– local scope

– parameter visibility.

INTERACTIONS

160

Messages

• A message is the specification of a communication among objects that
conveys information with the expectation that activity willensue.

• The receipt of a message instance may be considered an instance of an
event.

• When you pass a message, the action that results is an executable
statement that forms an abstraction of a computationalprocedure.

• An action may result in a change in state.

• UML can model several kind of actions:

• call - invoke an operation Return - return a value to the caller

• Send - send signal to an object Create - creates an object

• Destroy - destroys an object

INTERACTIONS

Following figure shows visual distinction among different kind of messages

161

INTERACTIONS

162

Sequencing

• When an object passes a message to another object (in effect,
delegating some action to the receiver), the receiving object might
in turn send a message to another object, which might send a
message to yet a different object, and so on. This stream of
messages forms a sequence. Any sequence must have a beginning.

• Most commonly, you can specify a procedural or nested flow of
control, rendered using a filled solid arrowhead, as Figure shows. In
this case, the message findAt is specified as the first message
nested in the second message of the sequence (2.1).

INTERACTIONS

Procedural Sequence

160163

INTERACTIONS

164

Figure below shows, a flat flow of control, rendered using a stick arrowhead, to
model the nonprocedural progression of control from step to step.
In this case, the message assertCall is specified as the second message in the
sequence.

INTERACTIONS

165

Creation , Modification and Destruction :

• To specify if an object or link enters and/or leaves during an
interaction you can attach one of the following constraints to the
element:

• New

• Destroyed

• Transient

– Specifies that the instance or link is created
during execution of the enclosing Interaction

– Specifies that the instance or link is
destroyed prior to completion of execution
of the enclosing interaction

– Specifies that the instance or link is created
during execution of the enclosing

interaction but is destroyed before completion of
execution

INTERACTIONS

166

• When you model an interaction, you typically include both
objects (each one playing a specific role) and messages (each one
representing the communication between objects, with some
resulting action).

• You can visualize those objects and messages involved in an
interaction in two ways:

1. by emphasizing the time ordering of itsmessages

2. by emphasizing the structural organization of the objectsthat
send and receive messages.

• In the UML, the first kind of representation is called a sequence
diagram; the second kind of representation is called a
collaboration diagram.

• Both sequence diagrams and collaboration diagrams are kinds of
interaction diagrams.

INTERACTIONS

167

Common Modeling Techniques

1. Modeling a flow control

To model a flow of control

• Set the context for the interaction, whether it is the system as a
whole, a class, or an individual operation.

• Set the stage for the interaction by identifying which objects
play a role; set their initial properties, including their attribute
values, state, and role.

• If your model emphasizes the structural organization of these
objects, identify the links that connect them, relevant to the
paths of communication that take place in this interaction.
Specify the nature of the links using the UML's standard
stereotypes and constraints, as necessary.

INTERACTIONS

168

Modeling a flow control contd..

• In time order, specify the messages that pass from object to
object. As necessary, distinguish the different kinds of messages;
include parameters and return values to convey the necessary
detail of this interaction.

• Also to convey the necessary detail of this interaction, adorn
each object at every moment in time with its state and role.

INTERACTIONS

169

This figure is an example of a sequence diagram, which emphasizes
the time order of messages. Eg. Flow of control by time

INTERACTIONS

170

Figure is semantically equivalent to the previous one but it is drawn as a collaboration
diagram, which emphasizes the structural organization of the objects. This figure
shows the same flow of control, but it also provides a visualization of the links among
these objects. Eg. Flow of control by organization

INTERACTION DIAGRAMS

171

• Interaction diagrams are not only important for modeling the
dynamic aspects of a system, but also for constructing executable
systems through forward and reverse engineering.

• An interaction diagram shows an interaction, consisting of a set of
objects and their relationships, including the messages that may
be dispatched among them.

• A sequence diagram is an interaction diagram that emphasizes
the time ordering of messages.

• A Collaboration diagram is an interaction diagram that
emphasizes the structural organization of the objects that send
and receive messages.

INTERACTION DIAGRAMS

172

Common Properties

• An interaction diagram is just a special kind of diagram and
shares the same common properties as do all other diagrams

• A name and graphical contents that are a projection into a
model.

Contents

Interaction diagrams commonly contain

• Objects

• Links

• Messages

INTERACTION DIAGRAMS

170

Sequence Diagrams

• Describe the flow of messages, events, actions betweenobjects

• Show concurrent processes and activations

• Show time sequences that are not easily depicted in other
diagrams

• Typically used during analysis and design to document and
understand the logical flow of your system.

• A sequence diagram emphasizes the time orderingmessages

173

INTERACTION DIAGRAMS

174

Sequence Diagram Key Parts

participant: object or entity that acts in thediagram

– diagram starts with an unattached "found message" arrow

message: communication between participant objects

the axes in a sequence diagram:

– horizontal: which object/participant is acting

– vertical: time (down -> forward in time)

SEQUENCE DIAGRAM

175

Sequence Diagram (make a phone call)

INTERACTION DIAGRAMS

176

INTERACTION DIAGRAMS

177

Collaboration Diagrams
• A collaboration diagram emphasizes the organization of the objects that

participate in an interaction.
• In the collaboration diagram, the method call sequence is indicated by

some numbering technique.
• The number indicates how the methods are called one after another.
• Collaboration diagrams have two features that distinguish them from

sequence diagrams.
• First, there is the path. To indicate how one object is linked to another,

you can attach a path stereotype to the far end of a link (suchas
<<local>>, indicating that the designated object is local to the sender).

• Second, there is the sequence number. To indicate the time order of a
message, you prefix the message with a number (starting with the
message numbered 1), increasing monotonically for each newmessage
in the flow of control (2, 3, and so on).

COLLABORATION DIAGRAM

Fig: COLLABORATION DIAGRAM

178

COLLABORATION DIAGRAM

179

Common Modeling Techniques
1. Modeling flow control by Time ordering
• Set the context for the interaction, whether it is a system, subsystem,

operation, or class, or one scenario of a use case orcollaboration.

• Set the stage for the interaction by identifying which objects play a role
in the interaction. Lay them out on the sequence diagram from left to
right, placing the more important objects to the left and their
neighboring objects to the right.

• Set the lifeline for each object. In most cases, objects will persist
through the entire interaction. For those objects that are created and
destroyed during the interaction, set their lifelines, as appropriate, and
explicitly indicate their birth and death with appropriately stereotyped
messages

COLLABORATION DIAGRAM

180

• Starting with the message that initiates this interaction, lay out each
subsequent message from top to bottom between the lifelines,
showing each message's properties (such as its parameters), as
necessary to explain the semantics of the interaction.

• If you need to visualize the nesting of messages or the points in time
when actual computation is taking place, adorn each object's lifeline
with its focus of control.

• If you need to specify time or space constraints, adorn each message
with a timing mark and attach suitable time or spaceconstraints.

• If you need to specify this flow of control more formally, attach pre-
and postconditions to each message.

COLLABORATION DIAGRAM

181

Eg. Modeling Flows of Control by Time Ordering

COLLABORATION DIAGRAM

182

2. Modeling Flows of control by organization

• Set the context for the interaction, whether it is a system, subsystem,
operation, or class, or one scenario of a use case or collaboration.

• Set the stage for the interaction by identifying which objects play a role
in the interaction. Lay them out on the collaboration diagram as
vertices in a graph, placing the more important objects in the center of
the diagram and their neighboring objects to the outside.

• Set the initial properties of each of these objects. If the attribute
values, tagged values, state, or role of any object changes in significant
ways over the duration of the interaction, place a duplicate object on
the diagram, update it with these new values, and connect them by a
message stereotyped as become or copy (with a suitable sequence
number).

COLLABORATION DIAGRAM

180

Modeling Flows of control by organizationcontd..
• Specify the links among these objects, along which messages may pass.

- Lay out the association links first; these are the most important
ones, because they represent structural connections.

- Lay out other links next, and adorn them with suitable path
stereotypes (such as global and local) to explicitly specify how
these objects are related to one another.

• Starting with the message that initiates this interaction, attach each
subsequent message to the appropriate link, setting its sequence number,
as appropriate. Show nesting by using Dewey decimal numbering.

• If you need to specify time or space constraints, adorn each message with
a timing mark and attach suitable time or space constraints.

• If you need to specify this flow of control more formally, attach pre- and
post conditions to each message.

183

COLLABORATION DIAGRAM

Fig: Modeling Flows of control by organization

184

Use Cases

185

• A use case is a description of a set of sequences of actions,
including variants, that a system performs to yield an
observable result of value to an actor.

• Graphically, a use case is rendered as an ellipse.

Names

• Every use case must have a name that distinguishes it from
other use cases. A name is a textual string.

• name alone is known as a simple name; a path name is the use
case name prefixed by the name of the package in which that
use case lives.

• A use case is typically drawn showing only its name.

Use Cases

186

Simple and Path Names

Note

• A use case name may be text consisting of any number of letters,
numbers, and most punctuation marks and may continue over several
lines

Use Cases and Actors

• An actor represents a coherent set of roles that users of use cases play
when interacting with these use cases.

• An actor represents a role that a human, a hardware device, oreven
another system plays with a system.

Use Cases

187

As Figure indicates, actors are rendered as stick figures. You can define
general kinds of actors (such as Customer) and specialize them (such as
CommercialCustomer) using generalization relationships.

Fig: Actors

Use Cases

188

Use Cases and Flow of Events
A use case describes what a system (or a subsystem, class, or
interface) does but it does not specify how it does it. When you
model, it's important that you keep clear the separation of
concerns between this outside and inside view.

For example, in the context of an ATM system, you might describe
the use case ValidateUser in the following way:

Main flow of events:

• The use case starts when the system prompts the Customer for a
PIN number. The Customer can now enter a PIN number via the
keypad. The Customer commits the entry by pressing the Enter
button. The system then checks this PIN number to see if it is
valid. If the PIN number is valid, the system acknowledges the
entry, thus ending the use case.

Exceptional flow of events:

• The Customer can cancel a transaction at any time by pressing
the Cancel button, thus restarting the use case. No changes are
made to the Customer's account.

Exceptional flow of events:

Use Cases

189

anytime before• The Customer can clear a PIN number
committing it and reenter a new PIN number.

Exceptional flow of events:

• If the Customer enters an invalid PIN number, the use case
restarts. If this happens three times in a row, the system cancels
the entire transaction, preventing the Customer from interacting
with the ATM for 60 seconds.

Use Cases

190

Use Cases and Scenarios
A Scenario is a specific sequence of actions that illustrates
behavior.

• Scenarios are to use cases as instances are to classes, meaning
that a scenario is basically one instance of a use case.

Use Cases and Collaborations

• A use case captures the intended behavior of the system (or
subsystem, class, or interface) you are developing, without having
to specify how that behavior is implemented.

• That's an important separation because the analysis of a system
(which specifies behavior) should, as much as possible, not be
influenced by implementation issues (which specify how that
behavior is to be carried out)

Use Cases

191

As Figure shows, you can explicitly specify the realization of a use case by a
collaboration.

Fig: Use Cases and Collaborations

Use Cases

192

Organizing Use Cases
It is also possible to organize use cases by specifying
generalization, include, and extend relationships among them.

• Apply these relationships in order to factor common behavior (by
pulling such behavior from other use cases that it includes) and in
order to factor variants (by pushing such behavior into other use
cases that extend it).

• An include relationship between use cases means that the base
use case explicitly incorporates the behavior of another use case
at a location specified in the base.

• An extend relationship between use cases means that the base
use case implicitly incorporates the behavior of another use case
at a location specified indirectly by the extending usecase.

Fig: Generalization, Include, and Extend

190193

Use Cases

194

Common Modeling Techniques

1. Modeling the Behavior of an Element

To model the behavior of an element,

• Identify the actors that interact with the element. Candidate actors include
groups that require certain behavior to perform their tasks or that are
needed directly or indirectly to perform the element's functions.

• Organize actors by identifying general and more specialized roles.

• For each actor, consider the primary ways in which that actor interacts with
the element. Consider also interactions that change the state of the element
or its environment or that involve a response to some event.

• Consider also the exceptional ways in which each actor interacts with the
element.

• Organize these behaviors as use cases, applying include and extend
common behavior and distinguish exceptionalrelationships to factor

behavior

Fig: Modeling the Behavior of an Element

195

Use Case Diagrams

196

• A use case diagram is a diagram that shows a set of use cases
and actors and their relationships.

Common Properties
• A use case diagram is just a special kind of diagram and shares

the same common properties as do all other diagrams.
• a name and graphical contents that are a projection into a

model.
Contents
Use case diagrams commonly contain
• Use cases
• Actors
• Dependency, generalization, and association relationships Like
all other diagrams, use case diagrams may contain notes and
constraints.

Use Case Diagrams

197

Common Modeling Techniques
1. Modeling the Context of a System
To model the context of a system,
• Identify the actors that surround the system by considering which

groups require help from the system to perform their tasks; which
groups are needed to execute the system's functions; which groups
interact with external hardware or other software systems; and
which groups perform secondary functions for administration and
maintenance.

• Organize actors that are similar to one another in a
generalization/specialization hierarchy.

• Where it aids understandability, provide a stereotype for each such

actor.

• Populate a use case diagram with these actors and specify the paths

of communication from each actor to the system's use cases.

Use Case Diagrams

Fig: Modeling the Context of a System – Credit card validation system

198

Use Case Diagrams

199

2. Modeling the Requirements of a System

To model the requirements of a system,

• Establish the context of the system by identifying the actors that surround
it.

• For each actor, consider the behavior that each expects or requires the
system to provide.

• Name these common behaviors as use cases.

• Factor common behavior into new use cases that are used by others;
factor variant behavior into new use cases that extend more main line
flows.

• Model these use cases, actors, and their relationships in a use case
diagram.

• Adorn these use cases with notes that assert nonfunctional requirements;
you may have to attach some of these to the whole system.

Use Case Diagrams

Fig: Modeling the Requirements of a System

200

Use Case Diagrams

201

3. Forward and Reverse Engineering
Forward engineering is the process of transforming a model intocode
through a mapping to an implementation language

To forward engineer a use case diagram

• For each use case in the diagram, identify its flow of events and its
exceptional flow of events.

• Depending on how deeply you choose to test, generate a test script for
each flow, using the flow's preconditions as the test's initial state and its
postconditions as its success criteria.

• As necessary, generate test scaffolding to represent each actor that
interacts with the use case. Actors that push information to the element
or are acted on by the element may either be simulated or substituted
by its real-world equivalent.

• Use tools to run these tests each time you release the element to which
the use case diagram applies.

To reverse engineer a use case diagram,

• Identify each actor that interacts with the system.

• For each actor, consider the manner in which that actor interacts
with the system, changes the state of the system or its environment,
or responds to some event.

• Trace the flow of events in the executable system relative to each
actor. Start with primary flows and only later consider alternative
paths.

Use Case Diagrams

202

• Cluster related flows by declaring a corresponding use case.
Consider modeling variants using extend relationships, and consider
modeling common flows by applying includerelationships.

• Render these actors and use cases in a use case diagram, and
establish their relationships.

Activity Diagrams

203

• Activity diagrams are one of the five diagrams in the UML for
modeling the dynamic aspects of systems.

• An activity diagram shows the flow from activity to activity.

• Activity diagrams can use to model the dynamic aspects of a
system. It involves modeling the sequential (and possibly
concurrent) steps in a computationalprocess.

• With an activity diagram, you can also model the flow of an
object as it moves from state to state at different points in the
flow of control.

Activity diagrams commonly contain

• Activity states and action states

• Transitions

• Objects

Activity Diagrams

204

Action States and Activity States

• Action states are atomic and cannot be decomposed

– meaning that events may occur, but the work of the action

state is not interrupted. Finally, the work of an action state is

generally considered to take insignificant execution time.Work

of the action state is not interrupted.

• Activity states can be further decomposed

– Their activity being represented by other activity diagrams

– Activity states are not atomic, meaning that they may be

interrupted and, in general, are considered to take some

duration to complete. They may be interrupted.

Activity Diagrams

205

Fig: Action States

Fig: Activity States

Activity Diagrams

206

Transitions

• Triggerless transitions may have guard conditions, meaning that such
a transition will fire only if that condition is met; guard conditions.

• When the action or activity of a state completes, flow of control
passes immediately to the next action or activity state. You specify
this flow by using transitions to show the path from one action or
activity state to the next action or activity state.

Branching

• Branches are a notational convenience, semantically equivalent to
multiple transitions with guards.

• Include a branch, which specifies alternate paths taken based on
some Boolean expression.

• A branch may have one incoming transition and two or more
outgoing ones.

• On each outgoing transition, place a Boolean expression, which is
evaluated only once on entering the branch.

Activity Diagrams

207

Activity Diagrams

208

Forking and Joining
• Use a synchronization bar to specify the forking and joining of

parallel flows of control
• A synchronization bar is rendered as a thick horizontal or vertical

line.
Fork

• A fork may have one incoming transitions and two or more outgoing

transitions

– each transition represents an independent flow of control

– conceptually, the activities of each of outgoing transitions are

concurrent

• either truly concurrent (multiple nodes)

• or sequential yet interleaved (one node)

Activity Diagrams

209

Join

• A join may have two or more incoming transitions and one outgoing

transition

– above the join, the activities associated with each of these paths

continues in parallel

– at the join, the concurrent flows synchronize

• each waits until all incoming flows have reached the join, at

which point one flow of control continues on below the join

Activity Diagrams

210

For example, consider the concurrent flows involved in controlling
an audio-animatronic device that mimics human speech and
gestures.

Figure - Forking and Joining

Activity Diagrams

211

Swimlanes

• In the UML, each group is called a swimlane because, visually,
each group is divided from its neighbor by a vertical solid line.

• A swimlane specifies a locus of activities.

• Each swimlane has a name unique within its diagram. A swimlane
really has no deep semantics, except that it may represent some
real-world entity.

• Each swimlane represents a high-level responsibility for part of
the overall activity of an activity diagram.

• swimlane may eventually be implemented by one or more
classes. In an activity diagram partitioned into swimlanes, every
activity belongs to exactly one swimlane, but transitions may
cross lanes.

Activity Diagrams

212

Fig: Swimlanes

Activity Diagrams
Object Flow

In addition to showing the flow of an object through an activity diagram, you

can also show how its role, state and attribute values change. As shown in the

figure, you represent the state of an object by naming its state in brackets below

the object's name. Similarly, you can represent the value of an object's attributes

by rendering them in a compartment below the object's name.

210213

Activity Diagrams

214

Common Modeling Techniques

1. Modeling a Workflow - To model a workflow,

• Establish a focus for the workflow. For nontrivial systems, it's impossible to
show all interesting workflows in one diagram.

• Select the business objects that have the high-level responsibilities for parts of
the overall workflow. These may be real things from the vocabulary of the
system, or they may be more abstract. In either case, create a swimlane for
each important business object.

• Identify the preconditions of the workflow's initial state and the postconditions
of the workflow's final state. This is important in helping you model the
boundaries of the workflow.

• Beginning at the workflow's initial state, specify the activities and actions that
take place over time and render them in the activity diagram as either activity
states or action states.

• For complicated actions, or for sets of actions that appear multiple times,

collapse these into activity states, and provide a separate activity diagram that

expands on each.

Activity Diagrams

215

• Render the transitions that connect these activity and action
states. Start with the sequential flows in the workflow first,
next consider branching, and only then consider forking and
joining.

• If there are important objects that are involved in the
workflow, render them in the activity diagram, as well. Show
their changing values and state as necessary to communicate
the intent of the object flow.

Activity Diagrams

216

Figure : Modeling a Workflow

Activity Diagrams

217

2. Modeling an Operation - To model an operation

• Collect the abstractions that are involved in this operation.
This includes the operation's parameters (including its return
type, if any), the attributes of the enclosing class, and certain
neighboring classes.

• Identify the preconditions at the operation's initial state and
the postconditions at the operation's final state. Also identify
any invariants of the enclosing class that must hold during the
execution of the operation.

• Beginning at the operation's initial state, specify the activities
and actions that take place over time and render them in the
activity diagram as either activity states or action states.

Activity Diagrams

218

• Use branching as necessary to specify conditional paths and
iteration.

• Only if this operation is owned by an active class, use forking and
joining as necessary to specify parallel flows of control.

Figure : Modeling an Operation

UNIT– III
ARCHITECTURAL MODELING

219

CLOs Course Learning Outcome

CLO 9 Identify, analyze, and model behavioral concepts of the system
and also know the importance of events and signals and their
modeling techniques.

CLO 10 Analyze and understand the uses of process and threads and
time and space to model and development of a system.

CLO 11 Demonstrate state machines and state chart diagrams and their
modeling techniques

CLO 12 Illustrate the uses of component and deployment diagram and
their modeling techniques.

220

• An event is the specification of a significant occurrence that has a
location in time and space.

• In the context of state machines, an event is an occurrence of a
stimulus that can trigger a state transition.

• A signal is a kind of event that represents the specification of an
asynchronous stimulus communicated between instances.

Kinds of Events

• Events may be external or internal. External events are those that
pass between the system and its actors.

• For example, the pushing of a button and an interrupt from a
collision sensor are both examples of external events.

• Internal events are those that pass among the objects that live
inside the system. An overflow exception is an example of an
internal event.

Events and signals

221

Fig: Event

Events and signals

222

Fig: Signal

Events and signals

223

Events and signals

220

1. Signal Event

• A signal event represents a named object that is dispatched
(thrown) asynchronously by one object and then received (caught)
by another. Exceptions are an example of internal signal.

• A signal event is an asynchronous event
• Signal events may have instances, generalization relationships,

attributes and operations. Attributes of a signal serve as its
parameters.

• A signal event may be sent as the action of a state transition in a
state machine or the sending of a message in an interaction.

• Signals are modeled as stereotyped classes and the relationship
between an operation and the events by using a dependency
relationship, stereotyped as send.

224

Events and signals

Fig: Signals

225

Events and signals

226

2. Call Events
• Just as a signal event represents the occurrence of a signal, a call

event represents the dispatch of an operation.
• Whereas a signal is an asynchronous event, a call event is, in

general, synchronous.
• It means when an object invokes an operation on another object

that has a state machine, control passes from the sender to the
receiver, the transition is triggered by the event, the operation is
completed, the receiver transitions to a new state, and control
returns to the sender.

Events and signals

227

3. Time and Change Events

• A time event is an event that represents the passage of time. In
the UML you model a time event by using the keyword after
followed by some expression that evaluates to a period of time.

• A change event is an event that represents a change in state or the
satisfaction of some condition. In the UML you model a change
event by using the keyword when followed by some Boolean
expression.

Events and signals

228

4. Sending and Receiving Events

• Signal events and call events involve at least two objects: the
object that sends the signal or invokes the operation, and the
object to which the event is directed.

• Signals are asynchronous, and asynchronous calls are themselves
signals, the semantics of events interact with the semantics of
active objects and passive objects.

Signals and Active Classes.

Common Modeling Techniques

1. Modeling a Family of Signals

To model a family of signals,

• Consider all the different kinds of signals to which a given set of
active objects may respond.

• Look for the common kinds of signals and place them in a
generalization/specialization hierarchy using inheritance.

• Look for the opportunity for polymorphism in the statemachines
of these active objects.

Events and signals

229

Fig: Modeling Families of Signals

Events and signals

230

Events and signals

231

2. Modeling Exceptions

• For each class and interface, and for each operation of such
elements, consider the exceptional conditions that may be raised.

• Arrange these exceptions in a hierarchy. Elevate general ones,
lower specialized ones, and introduce intermediate exceptions, as
necessary.

• For each operation, specify the exceptions that it may raise. You
can do so explicitly (by showing send dependencies from an
operation to its exceptions) or you can put this in the operation's
specification.

Modeling Exceptions

d signals

Events and signals

232

State Machines

233

Terms and Concepts

• A state machine is a behavior that specifies the sequences of states an
object goes through during its lifetime in response to events, together
with its responses to those events.

• A state is a condition or situation during the life of an object during
which it satisfies some condition, performs some activity, or waits for
some event.

States
A state is a condition or situation during the life of an object during
which it satisfies some condition, performs some activity, or waitsfor
some event. An object remains in a state for a finite amount of time.

A state has several parts.

230

State Machines

Name A textual string that distinguishes the state from other states;a
state may be
anonymous, meaning that it has no name

Entry/exit actions Actions executed on entering and exiting the state, respectively

Internal Transitions Transitions that are handled without causing a change in state

Substates The nested structure of a state, involving disjoint (sequentially
active) or concurrent (concurrently active) substates

Deferred
events

A list of events that are not handled in that state but, rather, are
postponed and queued for handling by the object in another state

234

Fig: shows, you represent a state as a rectangle with rounded corners.

State Machines

235

Initial and Final States
Figure shows, there are two special states that may be defined for an object's state
machine.
First, there's the initial state, which indicates the default starting place for the state
machine or substate. An initial state is represented as a filled black circle.
Second, there's the final state, which indicates that the execution of the state machine or
the enclosing state has been completed. A final state is represented as a filled black circle
surrounded by an unfilled circle.

Transitions
A transition is a relationship between two states indicating that an
object in the first state will perform certain actions and enter the
second state when a specified event occurs and specifiedconditions

are satisfied. A transition has five parts.

State Machines

236

Source state The state affected by the transition; if an object is in the source state,
an outgoing transition may fire when the object receives the trigger
event of the transition and if the guard condition, if any, is satisfied

Event
trigger

The event whose reception by the object in the source state makes
the transition eligible to fire, providing its guard condition is satisfied

Guard
condition

A Boolean expression that is evaluated when the transition is
triggered by the reception of the event trigger; if the expression
evaluates True, the transition is eligible to fire; if the expression
evaluates False, the transition does not fire and if there is no other
transition that could be triggered by that same event, the event is
Lost

Transitions

Action An executable atomic computation that may directly act on the
object that owns the state machine, and indirectly on other objects
that are visible to the object

Target
state

The state that is active after the completion of the transition

State Machines

237

Event Trigger
• An event is the specification of a significant occurrence that has a

location in time and space. An event is an occurrence of a stimulus that
can trigger a state transition.

• A signal or a call may have parameters whose values are available to the
transition, including expressions for the guard condition andaction.

Guard
• A guard condition is rendered as a Boolean expression enclosed in

square brackets and placed after the trigger event.
• A guard condition is evaluated only after the trigger event for its

transition occurs.

Action

• An action is an executable atomic computation. Actions may include
operation calls the creation or destruction of another object, or the
sending of a signal to an object.

State Machines

238

Common Modeling Techniques

1. Modeling the Lifetime of an Object

• Set the context for the state machine, whether it is a class, a use case,
or the system as a whole.

• Establish the initial and final states for the object. To guide the rest of
your model, possibly state the pre- and postconditions of the initial and
final states, respectively.

• Decide on the events to which this object mayrespond.

• Starting from the initial state to the final state, lay out the top-level
states the object may be in. Connect these states with transitions
triggered by the appropriate events. Continue by adding actions to
these transitions.

• Identify any entry or exit actions (especially if you find that the idiom
they cover is used in the state machine).

State Machines

239

• Expand these states as necessary by using substates.

• Check that all actions mentioned in the state machine are sustained by
the relationships, methods, and operations of the enclosingobject.

• Check that all actions mentioned in the state machine are sustained by
the relationships, methods, and operations of the enclosingobject.

• Trace through the state machine, either manually or by using tools, to
check it against expected sequences of events and their responses. Be
especially diligent in looking for unreachable states and states in which
the machine may get stuck.

State Machines

240

• After rearranging your state machine, check it against expected
sequences again to ensure that you have not changed the object's
semantics.

Fig: Modeling the Lifetime of An Object

State Machines

241

Processes and Threads

242

Terms and Concepts

• A process is a heavyweight flow that can execute concurrently with
other processes.

• A thread is a lightweight flow that can execute concurrently with
other threads within the same process.

• An active object is an object that owns a process or thread and can
initiate control activity.

• Processes and threads are rendered as stereotyped activeclasses.

• An active class is a class whose instances are active objects.

Flow of Control

• In a sequential system, there is a single flow of control. i.e, one thing,
and one thing only, can take place at a time.
In a concurrent system, there is multiple simultaneous flow of control
i.e, more than one thing can take place at a time.

Classes and Events
• Active classes are just classes which represents an independent flow

of control
• Active classes share the same properties as all otherclasses.
• When an active object is created, the associated flow of control is

started; when the active object is destroyed, the associated flow of
control is terminated

• two standard stereotypes that apply to active classes are,
<<process>> – Specifies a heavyweight flow that can execute
concurrently with other processes. (heavyweight means, a thing
known to the OS itself and runs in an independent address space)
<<thread>> – Specifies a lightweight flow that can execute
concurrently with other threads within the same process (lightweight
means, known to the OS itself.)

• All the threads that live in the context of a process are peers of one
another.

Processes and Threads

243

Communication
• In a system with both active and passive objects, there are four

possible combinations of interaction.
• First, a message may be passed from one passive object to another.
• Second, a message may be passed from one active object toanother.
• In inter-process communication there are two possible styles of

communication. First, one active object might synchronously call an
operation of another. Second, one active object might
asynchronously send a signal or call an operation of anotherobject.

240

• a synchronous message is rendered as a full arrow and an
asynchronous message is rendered as a half arrow.

• Third, a message may be passed from an active object to a passive
object.

• Fourth, a message may be passed from a passive object to an active
one.

Processes and Threads

244

Synchronization
• Synchronization means arranging the flow of controls of objects so that

mutual exclusion will be guaranteed.
• Three approaches are there to handle synchronization:
• Sequential – Callers must coordinate outside the object so that only one

flow is in the object at a time
• Guarded – multiple flow of control is sequentialized with the help of

object’s guarded operations. in effect it becomes sequential.
• Concurrent – multiple flow of control is guaranteed by treating each

operation as atomic
• synchronization are rendered in the operations of active classes with the

help of constraints

Processes and Threads

245

Fig: Synchronization

Common Modeling Techniques

1. Modeling Multiple Flows of Control

• Identify the opportunities for concurrent action and reify each flow as an active
class. Generalize common sets of active objects into an active class.

• Capture these static decisions in class diagrams, explicitly highlighting each active
class.

• Capture these static decisions in class diagrams, explicitly highlighting each active
class.

• Consider how each group of classes collaborates with one another dynamically.
Capture those decisions in interaction diagrams. Explicitly show active objects as the
root of such flows.

• Identify each related sequence by identifying it with the name of the active object.
Pay close attention to communication among active objects. Apply synchronous and
asynchronous messaging, as appropriate.

• Pay close attention to synchronization among these active objects and the passive
objects with which they collaborate. Apply sequential, guarded, or concurrent
operation semantics, as appropriate.

Processes and Threads

246

Modeling Flows of Control

Processes and Threads

247

2. Modeling Interprocess Communication

• Model the multiple flows of control.

• Consider which of these active objects represent processes andwhich
represent threads.

• Model messaging using asynchronous communication. modelremote
procedure calls using synchronous communication.

• Informally specify the underlying mechanism for communication by
using notes, or more formally by using collaborations.

Processes and Threads

248

Modeling Interprocess
Communication

Processes and Threads

249

Terms and Concepts

• A time expression is an expression that evaluates to an absolute or
relative value of time.

• A timing constraint is a semantic statement about the relative or
absolute value of time. Graphically, a timing constraint is rendered as
for any constraint.

• Location is the placement of a component on a node. Graphically,
location is rendered as a tagged value.

Time

• Real time systems are, by their very name, time-critical systems.

• Events may happen at regular or irregular times; the response to an event
must happen at predictable absolute times or at predictable times relative to
the event itself.

• The passing of messages represents the dynamic aspect of any system, so
when you model the time-critical nature of a system with the UML, you can
give a name to each message in an interaction to be used as a timing mark

Time and Space

250

Time

Time and Space

251

Common Modeling Techniques

1. Modeling Timing Constraints

• For each event in an interaction, consider whether it must start at
some absolute time. Model that real time property as a timing
constraint on the message.

• For each interesting sequence of messages in an interaction, consider
whether there is an associated maximum relative time for that
sequence. Model that real time property as a timing constraint on the
sequence.

• For each time critical operation in each class, consider its time
complexity. Model those semantics as timing constraints on the
operation

Time and Space

252

Modeling Timing Constraint

Time and Space

253

2. Modeling the Distribution of Objects

• For each interesting class of objects in your system, consider its
locality of reference. In other words, consider all its neighbors and
their locations. A tightly coupled locality will have neighboring objects
close by

• Next consider patterns of interaction among related sets of objects.
Co-locate sets of objects that have high degrees of interaction, to
reduce the cost of communication. Partition sets of objects that have
low degrees of interaction.

• Next consider the distribution of responsibilities across the system.
Redistribute your objects to balance the load of eachnode.

• Consider also issues of security, volatility, and quality of service, and
redistribute your objects as appropriate.

250

Time and Space

254

Fig: Modeling the Distribution of Objects

Time and Space

255

3. Modeling Objects that Migrate

• Select an underlying mechanism for physically transportingobjects
across nodes.

• Render the allocation of an object to a node by explicitly indicating
its location as a tagged value.

• Using the become and copy stereotyped messages, render the
allocation of an object to a new node.

• Consider the issues of synchronization (keeping the state of cloned
objects consistent) and identity (preserving the name of the object
as it moves).

Time and Space

256

Fig: Modeling Objects that Migrate

Time and Space

257

Statechart Diagrams

258

• Terms and Concepts
• A statechart diagram shows a state machine,

emphasizing the flow of control from state to
state.

• A state machine is a behavior that specifies the
sequences of states an object goes through
during its lifetime in response to events, together
with its responses to those events. A

• state is a condition or situation in the life of an
object during which it satisfies some condition,
performs some activity, or waits for some event.

Contents

259

• Statechart diagrams commonly contain

• Simple states and composite states

• Transitions, including events and actions

A statechart diagram is basically a projection
of the elements found in a state machine. This
means that statechart diagrams may contain
branches, forks, joins, action states, activity
states, objects, initial states, final states,
history states,

Common Modeling Technique

260

• Modeling Reactive Objects

• To model a reactive object,
• Choose the context for the state machine, whether it is a

class, a use case, or the system as a whole.
•

• Choose the initial and final states for the object. To guide
the rest of your model, possibly state the pre- and
postconditions of the initial and final states, respectively.

•

• Decide on the stable states of the object by considering the
conditions in which the object may exist for some
identifiable period of time. Start with the high-level states
of the object and only then consider its possible substates.

• Decide on the meaningful partial ordering of stable states
over the lifetime of the object.

• Decide on the events that may trigger a transition from
state to state. Model these events as triggers to transitions
that move from one legal ordering of states to another.

• Attach actions to these transitions (as in a Mealy machine)
and/or to these states (as in a Moore machine).

• Consider ways to simplify your machine by using substates,
branches, forks, joins, and history states.

261

Modeling Reactive Objects

262

Forward and Reverse Engineering

263

• Forward engineering(the creation of code
from a model) is possible for statechart
diagrams, especially if the context of the
diagram is a class.

• The forward engineering tool must generate the necessary
private attributes and final static constants.

• Reverse engineering (the creation of a model from code) is
theoretically possible, but practically not very useful. The choice
of what constitutes a meaningful state is in the eye of the
designer.

• Reverse engineering tools have no capacity for abstraction and
therefore
cannot automatically produce meaningful statechart diagrams.

• More interesting than the reverse engineering of a model from
code is the animation of a model against the execution of a
deployed system. For example, given the previous diagram, a tool
could animate the states in the diagram as they were reached in
the running system. Similarly, the firing of transitions could be
animated, showing the receipt of events and the resulting
dispatch of actions

260264

Component

265

• A component

• A component is a physical and replaceable part of a system

that conforms to and provides the realization of a set of

interfaces. Graphically, a component is rendered as a rectangle

with tabs.

• Names

• A component name must be unique within its enclosing

package

Component

266

Components and Classes

267

• There are some significant differences between
components and classes.

• Classes represent logical abstractions; components
represent physical things that live in the world of
bits. In short, components may live on nodes, classes
may not.

• Components represent the physical packaging of
otherwise
logical components and are at a different level of
abstraction.

• Classes may have attributes and operations directly. In
general, components only have operations that are
reachable only through their interfaces.

268

Components and Interfaces

269

• An interface is a collection of operations that are used to
specify a service of a class or a component. The
relationship between component and interface is
important. All the most common component-based
operating system facilities (such as COM+, CORBA, and
Enterprise Java Beans) use interfaces as the glue that binds
components together.

• An interface that a component realizes is called an export
interface, meaning an interface that the component
provides as a service to other components. A component
may provide many export interfaces. The interface that a
component uses is called an import interface, meaning an
interface that the component conforms to and so builds on.
A component may conform to many import interfaces. Also,
a component may both import and export interfaces.

Components and Interfaces

270

Binary Replaceability

271

• The basic intent of every component-based operating system
facility is to permit the assembly of systems from binary
replaceable parts.

• This means that you can create a system out of components
and then evolve that system by adding new components and
replacing old ones, without rebuilding the system.

• Interfaces are the key to making this happen. When you
specify an interface, you can drop into the executable system
any component that conforms to or provides that interface.

• You can extend the system by making the components provide
new services through other interfaces, which, in turn, other
components can discover and use. These semantics explain the
intent behind the definition of components in the UML.

Kinds of Components

272

• Three kinds of components may be distinguished

• First, there are deployment components.

• Second, there are work product components.

• Third are execution components.

• Organizing Components

• You can organize components by grouping them in packages

in the same manner in which you organize classes.

• The UML defines five standard stereotypes that apply to
components

The UML defines five standard stereotypes that apply to
components

1.Executable

2. library

3. table

4. file

5. Document

270273

Common Modeling Techniques

274

• Modeling Executables and Libraries
• To model executables and libraries
• Identify the partitioning of your physical

system. Consider the impact of technical,
configuration management, and reuse issues.

• Model any executables and libraries as components,
using the appropriate standard elements. If your
implementation introduces new kinds of components,
introduce a new appropriate stereotype.

cont…

275

• If it's important for you to manage the seams in your
system, model the significant interfaces that some
components use and others realize.

• As necessary to communicate your intent, model the
relationships among these executables, libraries, and
interfaces. Most often, you'll want to model the
dependencies among these parts in order to visualize
the impact of change.

Cont…

276

Modeling Tables, Files, and Documents

277

• To model tables, files, and documents
• Identify the ancillary components that are part of the

physical implementation of your system.

• Model these things as components. If your
implementation introduces new kinds of artifacts,
introduce a new appropriate stereotype.

• As necessary to communicate your intent, model the
relationships among these ancillary components and the
other executables, libraries, and interfaces in your system.
Most often, you'll want to model the dependencies among
these parts in order to visualize the impact of change.

278

Modeling an API

279

• To model an API, identify the programmatic seams in
your system and model each seam as an interface,
collecting the attributes and operations that form this
edge.

• Expose only those properties of the interface that
are important to visualize in the given context;
otherwise, hide these properties, keeping them in
the interface's specification for reference, as
necessary.

• Model the realization of each API only insofar as it is
important to show the configuration of a specific

implementation.

Modeling an API

280

Modeling Source Code

281

• To model source code, Depending on the constraints
imposed by your development tools, model the files
used to store the details of all your logical elements,
along with their compilation dependencies.

• If it's important for you to bolt these models to
your configuration management and version
control tools, you'll want to include tagged values,
such as version, author, and check in/check out
information, for each file that's under
configuration management.

• As far as possible, let your development tools
manage the relationships among these files, and use
the UML only to visualize and document these
relationships.

Modeling Source Code

282

Deployment

280

• A node is a physical element that exists at run time and

represents a computational resource, generally having at least

some memory and, often, processing capability. Graphically, a

node is rendered as a cube.

• Every node must have a name that distinguishes it from other

nodes. A name is a textual string. That name alone is knownas

a simple name; a path name is the node name prefixed by the

name of the package in which that node lives. A node is

typically drawn showing only its name, as in . Just as with

classes, you may draw nodes adorned with tagged values or

with additional compartments to expose their details.

283

Contd…

284

Nodes and Components

285

• There are some significant differences between
nodes and components.

• Components are things that participate in the
execution of a
system; nodes are things that execute components.

• Components represent the physical packaging of
otherwise logical elements; nodes represent the
physical deployment of components.

Nodes and Components

286

Connections

287

• The most common kind of relationship you'll use among
nodes is an association. In this context, an association
represents a physical connection among nodes, such as an
Ethernet connection, a serial line, or a shared bus, as Figure .

Common Modeling Techniques

288

• Modeling Processors and Devices

• To model processors and devices,

• Identify the computational elements of your system's
deployment view and model each as a node.

• If these elements represent generic processors and
devices, then stereotype them as such. If they are kinds of
processors and devices that are part of the vocabulary of
your domain, then specify an appropriate stereotype with
an icon for each.

• As with class modeling, consider the attributes and
operations that might apply to each node.

cont….

289

Modeling the Distribution of Components

• To model the distribution of components,

• For each significant component in your system, allocate it to a
given node.

• Consider duplicate locations for components. It's not
uncommon for the same kind of component (such as specific
executables and libraries) to reside on multiple nodes
simultaneously.

• Render this allocation in one of three ways.

• Don't make the allocation visible, but leave it as part of the
backplane of your model• that is, in each node's specification.

• Using dependency relationships, connect each node with the
components it deploys.

• List the components deployed on a node in an additional
compartment. 287290

cont…..

291

Component Diagrams

292

• A component diagram shows a set of components and
their relationships. Graphically, a component diagram is a
collection of vertices and arcs.

• Contents

• Component diagrams commonly contain

• Components

• Interfaces

• Dependency, generalization, association, and
realization relationships Like all other diagrams,
component diagrams may contain notes and
constraints.

Common uses

290

• Whenyou model the static implementation view of
a system, you'll typically use component diagrams
in one of four ways.

• To model source code

• 2 model executable releases

• To model physical databases

• To model adaptable systems

293

Common Modeling Techniques

294

Modeling Source Code
• To model a system's source code,

• Either by forward or reverse engineering, identify the set
of source code files of interest and model them as
components stereotyped as files.

• For larger systems, use packages to show groups of source
code files.

• Consider exposing a tagged value indicating such information
as the version number of the source code file, its author, and
the date it was last changed. Use tools to manage the value
of this tag.

• Model the compilation dependencies among these files
using dependencies. Again, use tools to help generate and
manage these dependencies.

contd….

295

Modeling an Executable Release

296

• To model an executable release
• Identify the set of components you'd like to model.

Typically, this will involve some or all the components
that live on one node, or the distribution of these sets of
components across all the nodes in the system.

• Consider the stereotype of each component in this set. For
most systems, you'll find a small number of different kinds
of components (such as executables, libraries, tables, files,
and documents). You can use the UML's extensibility
mechanisms to provide visual cues for these stereotypes.

Cont….

297

• For each component in this set, consider its
relationship to its neighbors. Most often, this
will involve interfaces that are exported
(realized) by certain components and then
imported (used) by others.

• If you want to expose the seams in your system,
model these interfaces explicitly. If you want
your model at a higher level of abstraction, elide
these relationships by showing only
dependencies among the components.

298

Modeling a Physical Database

299

• To model a physical database,
• Identify the classes in your model that represent

your logical database schema.
• Select a strategy for mapping these classes to tables.

You will also want to consider the physical
distribution of your databases. Your mapping strategy
will be affected by the location in which you want
your data to live on your deployed system.

• To visualize, specify, construct, and document your
mapping, create a component diagram that contains
components stereotyped as tables.

• Where possible, use tools to help you transform
your logical design into a physical design.

contd…

300

Modeling Adaptable Systems

301

• Consider the physical distribution of the components that
may migrate from node to node. You can specify the
location of a component instance by marking it with a
location tagged value, which you can then render in a
component diagram (although, technically speaking, a
diagram that contains only instances is an object
diagram).

• If you want to model the actions that cause a component
to migrate, create a corresponding interaction diagram
that contains component instances. You can illustrate a
change of location by drawing the same instance more
than once, but with different values for its location tagged
value.

contd…

302

Forward and Reverse Engineering

303

• To forward engineer a component diagram,

• For each component, identify the classes or
collaborations that the component implements.

• Choose the target for each component. Your choice is
basically between source code (a form that can be
manipulated by development tools) or a binary library
or executable (a form that can be dropped into a
running system).

• Use tools to forward engineer your models.

Forward and Reverse Engineering

304

• To reverse engineer a component diagram,
• Choose the target you want to reverse engineer. Source

code can be reverse engineered to components and then
classes. Binary libraries can be reverse engineered to
uncover their interfaces. Executables can be reverse
engineered the least.

• Using a tool, point to the code you'd like to reverse
engineer. Use your tool to generate a new model or to
modify an existing one that was previously forward
engineered.

• Using your tool, create a component diagram by querying
the model. For example, you might start with one or more
components, then expand the diagram by following
relationships or neighboring components. Expose or hide
the details of the contents of this component diagram as
necessary to communicate your intent.

Forward and Reverse Engineering

305

Deployment Diagrams

306

• A deployment is a diagram that shows the
configuration of run time processing nodes and the
components that live on them. Graphically, a
deployment diagram is a collection of vertices and
arcs.

• Contents
• Deployment diagrams commonly contain

• Nodes

• Dependency and association relationships

• Like all other diagrams, deployment diagrams may
contain notes and constraints

Common Uses

307

• When you model the static deployment view
of a system, you'll typically use deployment
diagrams in one of three ways.

1.To model embedded systems

2.To model client/server systems

3. To model fully distributed systems

Common Modeling Techniques

308

• Modeling an Embedded System

• To model an embedded system,

• Identify the devices and nodes that are unique to your
system.

• Provide visual cues, especially for unusual devices, by
using the UML's extensibility mechanisms to define
system-specific stereotypes with appropriate icons. At the
very least, you'll want to distinguish processors (which
contain software components) and devices (which, at that
level of abstraction, don't directly contain software).

contd….

309

• Model the relationships among these processors and
devices in a deployment diagram. Similarly, specify
the relationship between the components in your
system's implementation view and the nodes in your
system's deployment view.

• As necessary, expand on any intelligent devices by
modeling their structure with a more detailed
deployment diagram.

contd….

310

Modeling a Client/Server System

311

• To model a client/server system,

• Identify the nodes that represent your system's client and
server processors.

• Highlight those devices that are germane to the behavior of
your system. For example, you'll want to model special
devices, such as credit card readers, badge readers, and
display devices other than monitors, because their placement
in the system's hardware topology are likely to be
architecturally significant.

• Provide visual cues for these processors and devices
via stereotyping.

• Model the topology of these nodes in a deployment
diagram. Similarly, specify the relationship between the
components in your system's implementation view and the
nodes in your system's deployment view.

Modeling a Client/Server System

312

Modeling a Fully Distributed System

310

• To model a fully distributed system,

• Identify the system's devices and processors as for
simpler client/server systems.

• If you need to reason about the performance of the
system's network or the impact of changes to the network,
be sure to model these communication devices to the level
of detail sufficient to make these assessments.

• Pay close attention to logical groupings of nodes, which
you can specify by using packages.

313

Modeling a Fully Distributed System

314

• Model these devices and processors using
deployment diagrams. Where possible, use tools
that discover the topology of your system by walking
your system's network.

• If you need to focus on the dynamics of your system,
introduce use case diagrams to specify the kinds of
behavior you are interested in, and expand on these
use cases with interaction diagrams.

Modeling a Fully Distributed System

315

UNIT– IV
DESIGN PATTERN

316

CLOs Course Learning Outcome

CLO 13 Understands how to apply the pattern based analysis and design
to the software to be developed.

CLO 14 Describe how design patterns facilitate development and list
several of the most popular patterns.

CLO 15 Identify and describe design patterns and their application in a
software design project.

CLO 16 Ability to refactor poorly designed solutions by using the
appropriate design patterns.

CLO 17 Develop UML models for design patterns using currently
available software modeling tools.

317

GRASP
• Name chosen to suggest the importance of grasping

fundamental principles to successfully design object-
oriented software.

• General Responsibility Assignment Software Patterns.
• Fundamental principles of object design and responsibility

.
• Strictly speaking, these are not ‘design patterns’, rather

fundamental principles of object design.
• GRASP patterns focus on one of the most important

aspects of object design.
• assigning responsibilities to classes.
• GRASP patterns do not address architectural design.

318

Basic objectives of GRASP

• Which class, in the general case is responsible for a task?

• Responsibilities can include behaviour, data storage, object
creation and more

• As mentioned, they often fall into two categories:

• Doing (creating object, initiating action in other objects,
coordinating action in other objects) Knowing (encapsulated
data, related abject, what it can calculate)

• You want to assign a responsibility to a class

• You want to avoid or minimize additional dependencies.

• You want to maximize cohesion and minimize coupling.

• You want to increase reuse and decrease maintenance.
319

Creator
• Creation of objects is one of the most common activities in an

object-oriented system. Which class is responsible for creating
objects is a fundamental property of the relationship between
objects of particular classes .In general, a class B should be
responsible for creating instances of class A if one, or
preferably more, of the following apply:

• Instances of B contain or compositely aggregate instances of A
• Instances of B record instances of A.
• Instances of B closely use instances of A.
• Instances of B have the initializing information for instances

of A and pass it on creation.

320

Low coupling

• Coupling is a measure of how strongly one element is
connected to, has knowledge of, or relies on other
elements. Low coupling is an evaluative pattern that dictates
how to assign responsibilities to support .

• lower dependency between the classes.

• change in one class having lower impact on other classes.

• higher reuse potential.

High cohesion

• high cohesion is an evaluative pattern that attempts to keep
objects appropriately focused, manageable and
understandable. High cohesion is generally used in support of
low coupling. High cohesion means that the responsibilities of
a given element are strongly related and highly focused. 321

• Design Pattern:

• Structural Pattern:

• In Software Engineering, Structural Design Patterns are
Design Patterns that ease the design by identifying a
simple way to realize relationships between entities.

322

• Adapter: Match interfaces of different classes
• Bridge: Separates an object‘s interface from its

implementation
• Composite: A tree structure of simple and composite objects
• Decorator: Add responsibilities to objects dynamically
• Façade: A single class that represents an entire subsystem
• Flyweight: A fine-grained instance used for efficient sharing.
• Behavioral Pattern:
• Deal with the way objects interact and distribute

responsibility.
• Chain of Responsibility: Avoid coupling the sender of a

request to its receiver by giving more than one object a
chance to handle the request. Chain the receiving objects an
dpass the request along the chain until an object handles it.

323

• Command: Encapsulate a request as an object, thereby
letting you paramaterize clients with different requests,
queue or log requests, and support undoable operations.

• Interpreter: Given a language, define a representation for
its grammar along with an interpreter that uses the
representation to interpret sentences in the language.

• Iterator: Provide a way to access the elements of an
aggregate object sequentially without exposing its
underlying representation.

• Mediator: Define an object that encapsulates how a set
of objects interact. Mediator promotes loose coupling by
keeping objects from referring to each other explicitly,
and lets you vary their interaction independently.

• Memento: Without violating encapsulation, capture and
externalize an object‘s internal state so that the object
can be restored to this state later.

324

• Observer: Define a one-to-many dependency between objects
so that when one object changes state, all its dependents are
notified and updated automatically.

• State: Allow an object to alter its behavior when its internal
state changes. The object will appear to change its class.

• Strategy: Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it. • Template
Method: Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template Method lets sub
classeses redefine certain steps of an algorithm without
changing the algorithm‘s structure.

• Visitor: Represent an operation to be performed on the
elements of an object structure. Visitor lets you define a new
operation without changing the classes of the elements on
which it operates.

325

• APPLYING DESIGN PATTENS
• System sequence diagrams, logical architecture refinement; domain

models, domain model refinement Case study: The next gen POS
system, inception.

• System Sequence Diagrams:
• A system sequence diagram (SSD) illustrates input and output events.
• What are Sequence Diagrams?
• • Sequence Diagrams are interaction diagrams that detail how

operations are carried out.
• • Interaction diagrams model important runtime interactions between

the parts that make up the system.
• • Interactions Diagrams – Sequence diagrams – Interaction overview

diagrams – Timing diagrams – Communication diagrams.

326

• What do Sequence Diagrams model?
• capture the interaction between objects in the context of a

collaboration
• show object instances that play the roles defined in a collaboration.
• show the order of the interaction visually by using the vertical axis of

the diagram to represent time what messages are sent.
• show elements as they interact over time, showing interactions or

interaction instances.
• do not show the structural relationships between objects.
• Model high-level interaction between active objects in a system.
• Model the interaction between object instances within a collaboration

that realises a use case .
• Model the interaction between objects within a collaboration that

realizes an operation .

327

• Participants in a Sequence Diagram
• A sequence diagram is made up of a collection of participants .
• • Participants – the system parts that interact each other during the

sequence .
• • Classes or Objects – each class (object) in the interaction is

represented by its named icon along the top of the diagram.
• Sequence Diagrams
• Frames
• Lifelines
• Messages and Focus Control
• Combined Fragments
• Interaction Occurrences
• States
• Continuations
• Textual Annotation

328

• Sequence Diagrams Dimensions
• Time.: The vertical axis represents time proceedings (or

progressing) down the page. Note that Time in a
sequence diagram is all a about ordering, not duration.
The vertical space in an interaction diagram is not
relevant for the duration of the interaction.

• Objects: The horizontal axis shows the elements that are
involved in the interaction. Conventionally, the objects
involved in the operation are listed from left to right
according to when they take part in the message
sequence. However, the elements on the horizontal axis
may appear in any order.

• Sequence diagrams are organised according to time .
• Each participant has a corresponding lifeline.
• Each vertical dotted line is a lifeline, representing the

time that an object exists. 329

UNIT– V
DESIGN PATTERN

330

CLOs Course Learning Outcome

CLO 18 Evaluate and apply design patterns, architectural patterns and
enterprise patterns to the development of software systems.

CLO 19 Assess the use of Design patterns in the design of software
systems and the refactoring of existing systems.

CLO 20 Analyze software components and case studies of system
architecture and determine how integration with new and
existing systems may be achieved

331

Identification of actors and use cases:

332

Diagram for Library System

333

334

Sequence diagram for use case Return Item:

335

Collaboration diagram for use case Return Item

320336

Sequence diagram for use cases: Checkout Item

337

338

Sequence diagram for use case login:

339

: E m p l o y e e A c t o r : L o g i n W o r k f l o w : U s e r

: U s e r L o c a t o r

: E m p l o y e e L o g i n U I

f in d b y N a m e ()

N U L L ()

d i s p l a y L o g i n F o r m ()

s u b m i t N a m e A n d P a s s w o r d ()

v a lid a t e L o g in ()

I N V A L I D

d i s p l a y E r r o r M e s s a g e ()

collaboration diagram for login

340

Activity diagram for library application:

341

STATE MACHINE DIAGRAM FOR THE TITLE CLASS:

342

STATE DIAGRAM FOR LIBRARY SYSTEM

343

Component diagram for library application:

344

345

Deployment diagram for library applications

330346

331347

331348

A system sequence diagram shows the
interaction between an actor and the
system for one use case scenario.

It shows:

• The system (as a black box)

• The initiating actor

• Each external system which sends messages
to the system

• The messages into and out of the system

• The sequence in which the messages occur

System Sequence Diagram

349

• A system sequence diagram focuses on the
content and structure of the system input.

• It should show whether any messages are
repeated or are alternatives.

• A system sequence diagram is not the place to
show the design of the detailed interaction
between the user and the system.

350

Creating a System Sequence Diagram

• Draw a rectangle representing the system. Label
the rectangle and draw a lifeline beneath it.

• At the left, draw a stick figure for each actor. Label
it with the actor’s name and draw a lifeline
beneath it

• For each system input, draw a message arrow from
the actor’s lifeline to the system’s lifeline. Label it
with the message name and parameters.

• Confirm that the sequence of messages (from top
to bottom) is correct

351

Package Diagrams

• A package diagram is a UML diagram composed only of
packages and the dependencies between them. A
package is a UML construct that enables you to organize
model elements, such as use cases or classes, into
groups. Packages are depicted as file folders and can be
applied on any UML diagram. Create a package diagram
to:

• Depict a high-level overview of your requirements (over
viewing a collection of UML Use Case diagrams)

• Depict a high-level overview of your architecture/design
(over viewing a collection of UML Class diagrams).

• To logically modularize a complex diagram

352

http://www.agilemodeling.com/artifacts/packageDiagram.htm
http://www.agilemodeling.com/essays/umlDiagrams.htm
http://www.agilemodeling.com/artifacts/useCaseDiagram.htm
http://www.agilemodeling.com/essays/initialArchitectureModeling.htm
http://www.agilemodeling.com/artifacts/classDiagram.htm

• General Guidelines

• Give Packages Simple, Descriptive Names
• Apply Packages to Simplify Diagrams
• Packages Should be Cohesive
• Indicate Architectural Layers With Stereotypes on

Packages
• Avoid Cyclic Dependencies Between Packages
• Package Dependencies Should Reflect Internal

Relationships

353

• Class Package Example

354

• Use Case Package Example

355

Logical Architecture

• Logical architecture: Large-scale organization of the software classes into

– packages (or namespaces)

– subsystems

– layers

• Distinct from “deployment architecture”

– No decision about how the elements are deployed

• to different OS processes

• across physical computers in a network

• A layer: A coarse-grained grouping of classes, packages or subsystems
that together have responsibility for one major aspect of a system

• Examples of layers:

– UI layer

– Application logic and domain objects layer

– Technical services (interfacing with a database, error logging)

• Typically application-independent and reusable 356

Architecture

• Strict layered architecture: Each layer only calls upon services of
the layer directly below it.

• Common in network protocol stacks

• Not so common in information systems

• You do NOT have to use a layered architecture

• But it is very common to do so

• What is architecture then?

• The set of significant decisions about

• the organization of a software system

• hierarchical composition of smaller subsystems to
progressively larger subsystems

• the selection of structural elements and interfaces

• the style that guides this organization

• Architecture: Related to large scale, not implementation details. 357

UML Package Diagrams

• UML Package Diagrams:

– Used to illustrate the logical architecture of a
system

• Layers, subsystems, Java packages

– Provides a way to group elements

• Different from (more general than) a Java
package

• Can group anything

–Classes, other packages, diagrams, use cases,
…

• Nesting packages is very common

358

• Alternative UML Package Diagram Notations

Domain::Sales

UI::WebUI::Swing

Sales

WebSwing

UI

Domain

DomainUI

Swing SalesWeb

359

• UML Packages
• A package represents a “namespace”

• Example: A Date class can be defined in two packages

• Fully qualified names: java::util::Date

• Two key architectural principles

• Separation of concerns

• Maintaining high cohesion

• Separation of concerns:

• Discrete layers of distinct, related responsibilities

• Clean cohesive separation of duties:

• Lower layers: Low-level, general services

• Higher layers: More application-specific services

• Easier to define boundaries for different developers

• Collaboration and coupling from higher to lower layers

360

• Limiting dependencies between subsystems:

• Source code changes ripple throughout the
system if many parts are tightly coupled

• Example: If application logic is intertwined with
UI,

• it cannot be distributed to another physical
node

• It cannot be used with a different UI

• General technical services and business logic can
be re-used, replaced or moved to another physical
node

361

UI

(AKA Presentation, View)

Application

(AKA Workflow, Process,

Mediation, App Controller)

Domain

(AKA Business,

Application Logic, Model)

Technical Services

(AKA Technical Infrastructure,

High-level Technical Services)

Foundation

(AKA Core Services, Base Services,

Low-level Technical Services/Infrastructure)

width implies range of applicability

 GUI windows

 reports

 speech interface

 HTML, XML, XSLT, JSP, Javascript, ...

 handles presentation layer requests

 workflow

 session state

 window/page transitions

 consolidation/transformation of disparate

data for presentation

 handles application layer requests

 implementation of domain rules

 domain services (POS, Inventory)

- services may be used by just one

application, but there is also the possibility

of multi-application services

 (relatively) high-level technical services

and frameworks

 Persistence, Security

 low-level technical services, utilities,

and frameworks

 data structures, threads, math,

file, DB, and network I/O

more

app

specific

de
pe

nd
en

cy

Business Infrastructure

(AKA Low-level Business Services)

 very general low-level business services

used in many business domains

 CurrencyConverter

362

NextGen POS Logical Architecture

case study:

• These case study problems were chosen because

they’re familiar to many people, yet rich with

complexity and interesting design problems. That

allows us to concentrate on learning fundamental

OOA/D, requirements analysis, UML and patterns,

rather than explaining the problems.

363

• What is and isn’t Covered in the Case Studies

• Generally, applications include UI elements, core
application logic, database access, and collaboration
with external software or hardware components.

• A typical object-oriented information system is designed
in terms of several architectural layers or subsystems.
The following is not a complete list, but provides an
example.

• User Interface—graphical interface; windows.

364

• Application Logic and Domain Objects—software
objects representing domain concepts (for example, a
software class named Sale) that fulfill application
requirements.

• Technical Services—general purpose objects and
subsystems that provide supporting technical services,
such as interfacing with a database or error logging.
These services are usually application-independent and
reusable across several system

• OOA/D is generally most relevant for modeling the
application logic and technical service layers.

• The NextGen case study primarily emphasizes the
problem domain objects, allocating responsibilities to
them to fulfill the requirements of the application.

365

366

• Case Study Strategy: Iterative Development+ Iterative
Learning

• The NextGen POS System

• A POS system is a computerized application used(in part)
to record sales and handle payments; it is typically used in
a retail store. It includes hardware components such as a
computer and bar code scanner, and software to run the
system. It interfaces to various service applications, such as
a third-party tax calculator and inventory control

367

• These systems must be relatively fault-tolerant. That is,
even if remote services are temporarily unavailable
(such as the inventory system), they must still be
capable of capturing sales and handling at least cash
payments (so that the business is not crippled).

• A POS system must support multiple and varied client-
side terminals and interfaces. These include a thin-client
Web browser terminal, a regular personal computer
with something like a Java Swing graphical user interface,
touch screen input, wireless PDAs, and so forth.

368

• Furthermore, we are creating a commercial POS
system that we will sell to different clients with
disparate needs in terms of business rule
processing. Therefore, we will need a mechanism
to provide this flexibility and customization

• Using an iterative development strategy, we are
going to proceed through requirements, object-
oriented analysis, design, and implementation

369

Inception

Inception : Determine the product scope, vision, and business
case.

Inception is NOT requirements

•Purpose is to decide whether to proceed with development,
not to define requirements.
•Only key requirements are investigated

•Problem statement:
Do the stakeholders have basic agreement on the vision of the
project, and is it worth investing in serious investigation?

370

Inception Artifacts

• Vision and Business Case

• Describes the high level goals and constraints, the
business case, and provides an executive summary.

• Usually has an estimate of costs (+/- 100%) and
expected benefits stated in financial terms.

371

• Use Case Model

• Describes the functional requirements and related non-

functional requirements.

• Preliminary only, usually the names of most of the expected

use cases and actors, but usually only about 10% of the use

cases are detailed.

• Do not confuse a use case diagram with a use case. It is

mostly text.

372

• Inception objectives:

• Establish vision, scope and business case
• Vision: What do we want?
• Scope: What do we include and not include?
• Business case: Who wants it and why?

• Determine primary scenarios as Use Cases
• Completeness not necessary, maybe just 10%

• Estimate feasibility and risks
• Start defining terms in a glossary. Why?

373

• Inception is lightweight

• Artifacts such as use case model should only be
partially completed (10-20%)

• Purpose is feasibility investigation
• Quick prototypes may be useful – why?
• You know you don’t understand inception when it

takes more than “a few” weeks,
or when estimates or plans are expected
to be reliable, etc.

• When will you complete inception for your projects?
What artifacts will you develop?

374

USE CASE

•A use case is a sequence of transactions in a system whose
task is to yield a measurable value to an individual actor of
the system
•Describes WHAT the system (as a “Black Box”) does from a
user’s (actor) perspective
•The Use Case Model is NOT an inherently object oriented
modeling technique

375

• Benefits of Use Cases

• Captures operational requirements from user’s
perspective

• Gives a clear and consistent description of what the
system should do

• A basis for performing system tests
• Provides the ability to trace functional requirements into

actual classes and operations in the system

376

• A Use Case model is described in UML (Unified
Modeling Language) as one or more Use Case
Diagrams (UCDs)

• A UCD has 4 major elements:
• The system described

• The actors that the system interacts with

• The use-cases, or services, that the system knows how
to perform

• The relationships between the above elements

377

• Use Case Relationships

• Generalization: A generalized Use Case describes the
common of other specialized Use Cases.

• Inclusion: A Use Case is a part of another Use Case.

• Extension: A Use Case may extend another Use Case.

378

• Generalization Relationships
• Used when a number of Use Cases all have some subtasks in

common, but each one has something different about it

• The generalized and specialized use cases share the same
goal

• A specialized Use Case may capture an alternative scenario
of the generalized Use Case

• The Specialized use case may interact with new actors.

• The Specialized use case may add pre-conditions and post-
conditions (AND semantics).

Specialized Generalized

379

• Include Relationship

• In older versions: “uses”
• When a number of Use Cases have common behavior, which

can be modeled in a single use case
• X << includes >> Y indicates that the process of doing X

always involves doing Y at least once
• The included Use Case must be complete
• X must satisfy the pre-conditions of Y before including it
• Not necessarily preserves the pre or post conditions.

<< include >>X Y

380

• Extend Relationship

• Serves as extension point to another Use Case

• The extended Use Case must explicitly declare its
extension points

• The extension conditions of the extended Use Case
are part of the pre-conditions (AND semantics)

<< extend >>
(9: OffendersDB replies)

New Offender
Add T.R.

(9: OffendersDB replies)

381

Domain Model Refinement

Things not seen before in the Domain Model:

•Similar to the concepts in the Object Models
•Generalization and specialization
•Conceptual class hierarchies
•Association classes that capture information about the
association
•Time intervals
•Packages as a means of organization

382

• When to use a subclass

• Start with the super-class and look at
differences to find the sub-classes that
make sense.
• Subclass has additional attributes

• Subclass has additional associations

• Subclass usage differs from super class

• Subclass represents an animate entity that behaves
differently

383

• When to define a super class
• Start with a set of sub-classes and look for commonalities

that help the model.

• Potential subclasses represent variations of concept

• Subclasses meet “is-a” rule and 100% rule

• All subclasses have common attributes that can be
factored out

• All subclasses have the same association that can be
factored out

384

• More or Less Generalization

CreditPayment

Approval

Reply

CheckPayment

Approval

Reply

CreditPayment

Approval

Request

CheckPayment

Approval

Request

CreditPayment

Denial

Reply

CheckPayment

Denial

Reply

CheckPayment

Authorization

Reply

CreditPayment

Authorization

Reply

Payment

Authorization

Reply

Payment

Authorization

Request

Payment

Authorization

Transaction

date

time

Concepts too fine grained?

Useful to show this degree of

partitioning?

Each transaction is

handled differently, so

it is useful to partition

them into discrete

classes.

385

• Abstract Conceptual Classes

Payment

CashPayment CreditPayment CheckPayment

Payment

CashPayment CreditPayment CheckPayment

If a Payment instance may

exist which is not a

CashPayment, CreditPayment

or CheckPayment, then

Payment is not an abstract

conceptual class.

Payment is an abstract

conceptual class. A Payment

instance must conform to one

of the subclasses:

CashPayment, CreditPayment

or CheckPayment.

(a)

(b)

abstract conceptual class

386

• Association Classes
• If a class C can simultaneously have multiple values for attribute A, put

these in a separate class

• When to use association class

• An attribute is related to the association, not a class

• Instances of association class have a lifetime dependency on the
association

• Many to many associations between two concepts can produce
multiple values simultaneously.

387

• Aggregation and Composition
• Composition in the Domain.

• If in doubt don’t use it! Should be obvious

• Composition when:

 Whole-part exists

 Lifetime of composite is bound together

 Operation to the composite propagates to parts

• Packages

• Group elements:
• By subject area

• In same class hierarchy

• In same use cases

• Strong associations

388

