
THEORY OF COMPUTATION
Course Code: AITB03
B.Tech IV Semester
Regulation: IARE R-18

By
Dr. K Srinivasa Reddy

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) DUNDIGAL,
HYDERABAD - 500 043.

1

CO’s Course Outcomes

CO 1 Understand the functionality of deterministic finite automata and
Non-deterministic finite automata

CO 2 Apply the regular languages , regular expressions to construct
finite automata

CO 3 Apply the context free grammars to construct derivation trees
and the accept various strings

CO 4 Compare the functionality of push down automata with
deterministic finite automata

CO 5 Apply the concept of Turing machines to solve the complex
functions 2

UNIT– I
FINITE AUTOMATA

3

Course Learning Outcome

CLOs Course Learning Outcome

CLO 1 Able to show the importance of alphabets, strings and
languages to construct finite automata

CLO 2 Analyze the construction of finite automata for a given regular
expressions

CLO 3 Apply the Chomsky normal form and Greibach normal forms to
eliminate the Ambiguity in context free grammars

CLO 4 Able to construct the deterministic push down automata to
accept the context free languages

CLO 5 Analyze the functionality of different types of Turing machines

4

Unit – I

Syllabus:

Fundamentals: Alphabet, strings, language, operations;
Introduction to finite automata: The central concepts of
automata theory, deterministic finite automata,
nondeterministic finite automata, an application of finite
automata, finite automata with epsilon transitions.

What is Automata Theory?

55

 Study of abstract computing devices, or “machines”

 Automaton = an abstract computing device
 Note: A “device” need not even be a physical

hardware!

 A fundamental question in computer science:
 Find out what different models of machines can do and

cannot do

 The theory of computation

 Computability vs. Complexity

TOC :A Historical Perspective

7 64

8 75

Languages & Grammars

Languages & Grammars

 Languages: “A language is a
collection of sentences of
finite length all constructed
from a finite alphabet of
symbols”

 Grammars: “A grammar can
be regarded as a device that
enumerates the sentences of
a language” - nothing more,
nothing less

 N. Chomsky, Information
and Control, Vol 2, 1959

Alphabet

An alphabet is a finite, non-empty set of symbols

 We use the symbol ∑ (sigma) to denote an alphabet

 Examples:

 Binary: ∑ = {0,1}

 All lower case letters: ∑ = {a,b,c,..z}

 Alphanumeric: ∑ = ,a-z, A-Z, 0-9}

 DNA molecule letters: ∑ = {a,c,g,t}

 …

Strings

A string or word is a finite sequence of symbols chosen from ∑
 Empty string is є (or “epsilon”)

 Length of a string w, denoted by “|w|”, is equal to the
number of (non- є) characters in the string

 E.g., x = 010100

 x = 01 є 0 є 1 є 00 є

|x| = 6

|x| = ?

 xy = concatentation of two strings x and y

1100

The Chomsky Hierachy

•A containment hierarchy of classes of formal languages

(DFA)

Regular Context-

free

(PDA)

Context-

sensitive

(LBA)

Recursively-

enumerable

(TM)

1133

Let ∑ be an alphabet.

 ∑k = the set of all strings of lengthk

 ∑* = ∑0 U ∑1 U ∑2 U …

 ∑+ = ∑1 U ∑2 U ∑3 U …

Powers of an alphabet

1144

L is a said to be a language over alphabet ∑, only if L є ∑*

 Let L = {}; Is L=Ø? NO

this is because ∑* is the set of all strings (of all
possible length including 0) over the given
alphabet ∑

Examples:
1. Let L be the language of all strings consisting of

n 0’s followed by n 1’s:
L = {є, 01, 0011, 000111,…-

2. Let L be the language of all strings of with equal
number of 0’s and 1’s:L = {є, 01, 10, 0011, 1100,
0101, 1010, 1001,…- Canonical ordering of strings in
the language

Definition: Ø denotes the Empty language

abba

bbbaaa

wv a1a2anb1b2bm

W =a1a2 є an

v =b1b2 єbm

Concatenation

abbabbbaaa

String Operations

13 1135

wR ana2a1

w a1a2 an ababaaabbb

Reverse

bbbaaababa

String Length

 Examples:

a 1

aa 2

w a1a2 an

 Length: w n

abba 4

 For any letter:

 For any string

 Example:

a 1

wa w 1

 ab 11

: abba abb1

 a 111

1111

 416

Recursive Definition of Length

Length of Concatenation

uv u v

u aab, u 3

v abaab, v 5
 Example:

uv aababaab 8

uv u v 3 5 8

INTRODUCTION TO FINITE AUTOMATA
Deterministic Finite State Automata (DFA)

…

….

.

 One-way, infinite tape, broken into cells

 One-way, read-only tape head.

 Finite control, i.e.,

 finite number of states, and

 transition rules between them, i.e.,

 a program, containing the position of the read
head, current symbol being scanned, and the
current “state.”

Finite

Control

0 1 1 0 0

A string is placed on the tape, read head is positioned at the left
end, and the DFA will read the string one symbol at a time until

all symbols have been read. The DFA will then either
accept or reject the string.

The finite control can be described by a transition
diagram or table

Example #1:

1

0q0
q1

0

1

1 0 0 1 1

q0 q0 q1 q0 q0 q0

 One state is final/accepting, all others are
rejecting.

 The above DFA accepts those strings that contain
an even number of 0’s, including the null string,
over Sigma = {0,1}

L = {all strings with zero or more 0’s}
 Note, the DFA must reject all other strings

NOTE:
• Machine is for accepting a language, language is the

purpose!
• Many equivalent machines may accept the same

language, but a machine cannot accept multiple
languages!

M1 M2 …. M-inf

L
• Id’s of the characters or states are irrelevant,

you can call them by any names!
Sigma = {0, 1} ≡ {a, b}
States = {q0, q1} ≡ {u, v}, as long as they have

identical (isomorphic) transition table

a

q0

b

a

q1

b

c c

a/b/c

q2

Inductive Proof (sketch): that the machine correctly accepts
strings with at least two c’s
Proof goes over the length of the string.
Base: x a string with |x|=0. state will be q0 => rejected.
Inductive hypothesis: |x|= integer k, & string x is rejected - in
state q0 (x must have zero c),

OR, rejected – in state q1 (x must have one c),
OR, accepted – in state q2 (x has already with
two c’s)

Inductive
bol p =a, b or c

Formal Definition of a DFA
 A DFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states Σ

A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from

Q x Σ to Q

δ: (Q x Σ) –> Q

δ(q,s) = q’

δ is defined for any q in Q and s
in Σ, and is equal to some state q’
in Q, could be q’=q

Intuitively, δ(q,s) is the state entered by M after reading
symbol s while in state q.

 Revisit example #1:

Q = {q0, q1}

Σ = ,0, 1}

Start state is q

F = {q0}

q0
q1

0

1

1

0 1

q1 q0

q0 q1

q0

q1

Revisit example #2:
Q = {q , q , q }

0 1 2
Σ = ,a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q1

q1 q1 q2

q2 q2 q2

q0

q1

q2

 Since δ is a function, at each step M has exactly one option.

 It follows that for a given string, there is exactly
one computation.

q1q0
q2

a

b

a

b

c c

a/b/c

Extension of δ to Strings

δ^ : (Q x Σ*) –> Q

δ^(q,w) – The state entered after reading string w
having started in state q.

Formally:

1)δ^(q, ε) = q, and
2) For all w in Σ* and a

in Σ δ^(q,wa) = δ
(δ^(q,w), a)

 Recall Example #1:

δ^(q0, 011) = δ (δ^(q0,01), 1)

= δ (δ (δ^(q0,0), 1), 1)

= δ (δ (δ (δ^(q0, λ), 0), 1), 1)

= δ (δ (δ(q0,0), 1), 1)

= δ (δ (q1, 1), 1)

= δ (q1, 1)

= q1

by rule #2

by rule #2

by rule #2

by rule #1

by definition of δ
by definition of δ

by definition of δ

q0
q1

0

0

 What is δ^(q0, 011)? Informally, it is the state entered by
M after
processing 011 having started in state q0.

 Formally:

1

1

 Is 011 accepted? No, since δ^(q0, 011) = q1 is not a finalstate.

 Note
that:

by definition of δ^,

rule #2

by definition of δ^,

δ^ (q,a) = δ(δ^(q, ε),
a)

= δ(q, a)
rule #1

 Therefore:

δ^ (q, a1a2…an) = δ(δ(…δ(δ(q, a1), a2)…), an)

 However, we will abuse notations, and use δ in place
of δ^:

δ^(q, a1a2…an) = δ(q, a1a2…an)

 Example #3:

δ(q0, 011) = δ (δ(q0,01), 1)

= δ (δ (δ(q0,0), 1), 1)

= δ (δ (q1, 1), 1)

= δ (q1, 1)

= q1

by rule #2

by rule #2

by definition of δ

by definition of δ

by definition of δ

 Is 011 accepted? No, since δ(q0, 011) = q1 is not a final state.

 Language?

 L ={ all strings over {0,1} that has 2 or more 0 symbols}

q0 q1
q2

1 1

0
0

1

0

 What is δ(q0, 011)? Informally, it is the state entered by M after

processing 011 having started in state q0.

 Formally:

 Let M = (Q, Σ, δ,q0,F) be a DFA and let w be in Σ*. Then w is accepted
by M iff δ(q0,w) = p for some state p in F.

 Let M = (Q, Σ, δ,q0,F) be a DFA. Then the language accepted by M is
the set:

L(M) = {w | w is in Σ* and δ(q0,w) is in F}

 Another equivalent definition:

L(M) = {w | w is in Σ* and w is accepted by M}

 Let L be a language. Then L is a regular language iff there exists a
DFA M such that L = L(M).

 Let M1 = (Q1, Σ1, δ1, q0, F1) and M2 = (Q2, Σ2, δ2, p0, F2) be DFAs.
Then M1 and M2 are equivalent iff L(M1) = L(M2).

Definitions related to DFAs

 Notes:
 A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ*

into two sets: L(M) and Σ* - L(M).
 If L = L(M) then L is a subset of L(M) and L(M) is a

subset of L (def. of set equality).
 Similarly, if L(M1) = L(M2) then L(M1) is a subset

of L(M2) and L(M2) is a subset of L(M1).
 Some languages are regular, others are not. For

example, if
Regular: L1 = {x | x is a string of 0's and 1's
containing an even

number of 1's} and Not-
regular: L2 = {x | x = 0n1n for
some n >= 0}

 Can you write a program to “simulate” a given
DFA, or any arbitrary input DFA?

 Question we will address later:

 How do we determine whether or not a given
language is regular?

 Give a DFA M such that:

L(M) = {x | x is a string of (zero or more) a’s, b’s and c’s

such

that x does not contain the substring aa}

q2q0

a

a/b/c

a
q1

b/c

Logic:

In Start state (q0): b‟s and c‟s: ignore – stay in same state

q0 is also “accept” state

First „a‟ appears: get ready (q1) to reject

But followed by a „b‟ or „c‟: go back to start state q0

When second „a‟ appears after the “ready” state: go to reject state

b/c

 Give a DFA M such that:

L(M) = {x | x is a string of a’s and b’s such that x

contains both aa and bb}

First do, for a language where „aa‟ comes before „bb‟

Then do its reverse; and then parallelize them.

Remember, you may have multiple “final” states, but only one

“start” state

q0

b

q7

q5q4 q6

b

b

a

b

q2q1 q3

a

a

a

b

a/bb

a

a

a b

DFA

 Let Σ = {0, 1}. Give DFAs for {}, {ε}, Σ*, and Σ+.

For {}: For {ε}:

For Σ*: For Σ+:

0/1

q0

0/1

q0

q1q0

0/1

0/1

0/

1q0 q1

0/1

 Problem: Third symbol from last is 1

0/1

q1q0
q3

1 0/1 q2

0/1

Is this a DFA?

No, but it is a Non-deterministic Finite Automaton

Nondeterministic Finite State Automata
(NFA) An NFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q = A finite set of

states

Σ= A finite input

alphabet

Q0 = The initial/starting state, q0 is in Q

F= A set of final/accepting states, which is a
subset of Q

δ =A transition function, which is a total function
from Q x Σ to 2Q

:2Q is the power set of Q, the set of all subsets
:The set of all states p such that there is a

δ: (Q x Σ) –> 2Q

of δ(q,s) transition

δ(q,s) is a function from Q x S to 2Q (but
not only to Q)

labeled s from q to p

 Example #1: one or more 0’s followed by one or more 1’s

Q = {q0, q1, q2}

Σ = {0, 1}

Start state is q0

F = {q2}

δ: 0 1

q0

q1

q2

{q0, q1} {}

{} {q1, q2}

{q2} {q2}

q1q0
q2

0 1

0 1

0/1

Example #2: pair of 0’s or pair of 1’s as

substring

Q = {q0, q1, q2 , q3 , q4}

Σ = {0, 1}

Start state is q0

F = {q2, q4}

δ: 0 1

q0

q1

q2

q3

q4

{q0, q3} {q0, q1}

{} {q2}

{q2} {q2}

{q4} {}

{q4} {q4}

q0

0/1

0 0
q3

q4

0/1

q1
q2

0/11

1

 Notes:

 δ(q,s) may not be defined for some q and s (what
does that mean?)

 δ(q,s) may map to multiple q’s

 A string is said to be accepted if there exists a path
from q0 to some state in F

 A string is rejected if there exist NO path to any
state in F

 The language accepted by an NFA is the set of all
accepted strings

 Question: How does an NFA find the correct/accepting path
for
a given string?

 NFAs are a non-intuitive computing model

 You may use backtracking to find if there exists a path
to a final state (following slide)

 Why NFA?

 We are primarily interested in NFAs as language
defining capability, i.e., do NFAs accept languages
that DFAs do not?

 Other secondary questions include practical ones such as
whether

 Determining if a given NFA (example #2) accepts a
given string
(1) can be done algorithmically:

q0 q0 q0 q0

q3 q3 q1

accepted

0 0 1

q4 q4

 Each level will have at most n states:

Complexity: O(|x|*n), for running
over a string x

0/1

0
q0 q3 q4

0

1 0/1

1
q2q1

0/1

 Question: Why non-determinism is useful?
 Non-determinism = Backtracking

 Compressed information

 Non-determinism hides backtracking

 Programming languages, e.g., Prolog, hides
backtracking => Easy to program at a higher
level: what we want to do, rather than how to
do it

 Useful in algorithm complexity study

 Is NDA more “powerful” than DFA, i.e., accepts

type of languages that any DFA cannot?

 Let Σ = ,a, b, c}. Give an NFA M that accepts:
L = {x | x is in Σ* and x contains ab}

Is L a subset of L(M)?Or, does M accepts all string in L? Is

L(M) a subset of L? Or, does M rejects all strings not in L?

 Is an NFA necessary? Can you draw a DFA for this L?

 Designing NFAs is not as trivial as it seems: easy to create bug

accepting string outside language

q1q0
q2

a

a/b/c

b

a/b/c

Is L a subset of L(M)? Is L(M) subset of L?

Give an equivalent DFA as an exercise.

q1q0

b q3
a/

b

 Let Σ = ,a, b}. Give an NFA M that accepts:
L = {x | x is in Σ* and the third to the last symbol
in x isb}
a/b

q2

a/

b

Extension of δ to Strings and Sets of States

q0

0 1

q4q3

0

q1 q2

1 0
0

1

 What we currently have:δ : (Q x Σ) –> 2Q

 What we want (why?): δ : (2Q x Σ*) –> 2Q

 We will do this in two steps, which will be slightly
different from the book, and we will make use of
the following NFA.

0

0

Extension of δ to Strings and Sets of States

 Step #1:
Given δ: (Q x Σ) –> 2Q define δ#: (2Q x Σ) –> 2Q as
follows:

#1) δ (R, a) = δ(q, a)for all subsets R of Q, and
symbols a in Σ

 Note that:

by definition of δ#, rule
#1 above

= δ(p, a)

 Hence, we can use δ for δ#

These now make sense, but
δ(,q0, q2}, 0)

previously
δ(,q0, q1, q2}, 0) they did not.

qR

δ#({p},a) = δ(q,a)
q{ p }

 Example:

δ(,q0, q2}, 0) = δ(q0, 0) U δ(q2, 0)

= {q1, q3} U {q3, q4}

= {q1, q3, q4}

δ(,q0, q1, q2}, 1) = δ(q0, 1) U δ(q1, 1) U δ(q2,1)

= {} U {q2, q3} U {}

= {q2, q3}

 Step #2:
Given δ: (2Q x Σ) –> 2Q define δ^: (2Q x Σ*) –> 2Q as follows:
δ^(R,w) – The set of states M could be in after processing
string w, having started from any state in R.
Formally:

2) δ^(R, ε) = R

3) δ^(R,wa) = δ (δ^(R,w), a)

for any subset R of Q

for any w in Σ*, a in Σ,
and subset R of Q

 Note that:
δ^(R, a)= δ(δ^(R, ε), a)

= δ(R, a) by definition of δ^, rule #3

above by definition of δ^, rule

#2 above
 Hence, we can use δ for δ^

These now make sense, butδ(,q0, q2}, 0110)
previously

δ(,q0, q1, q2}, 101101) they did not.

 Example:

Formall
y:

δ(,q0}, 10) = δ(δ(,q0}, 1), 0)

= δ(,q0}, 0)

= {q1, q2, q3}Is 10 accepted? Yes!

q0
0 1q1

q3

What is δ(,q0}, 10)?

Informally: The set of states the NFA could be in after

processing 10, having started in state q0, i.e., {q1, q2, q3}.

0 1

q2

1

1 0

 Example:
What is δ(,q0, q1}, 1)?
δ({q0 , q1}, 1)= δ(,q0}, 1) δ(,q1}, 1)

= {q0} {q2, q3}

= {q0, q2, q3}
What is δ(,q0, q2}, 10)?

δ(,q0 , q2}, 10) = δ(δ(,q0 , q2}, 1), 0)

= δ(δ(,q0}, 1) U δ(,q2}, 1), 0)

= δ(,q0} {q3}, 0)

= δ(,q0,q3}, 0)

= δ(,q0}, 0) δ(,q3}, 0)

= {q1, q2, q3} {}

= {q1, q2, q3}

 Example:

δ({q0}, 101) = δ(δ(,q0}, 10), 1)

= δ(δ(δ(,q0}, 1), 0), 1)

= δ(δ(,q0}, 0), 1)

= δ(,q1 , q2, q3}, 1)

= δ(,q1}, 1) U δ(,q2}, 1) U δ(,q3}, 1)

= {q2, q3} U {q3} U {}

= {q2, q3}

Is 101 accepted? Yes! q3 is a final state.

 Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*.Then w is
accepted by M iff δ(,q0}, w) contains at least one state in F.

 Let M = (Q, Σ, δ,q0,F) be an NFA. Then the language
accepted by M is the set:
L(M) = {w | w is in Σ* and δ(,q0},w) contains at least one state
in F}

 Another equivalent definition:
L(M) = {w | w is in Σ* and w is accepted byM}

Definitions for NFAs

Equivalence of DFAs and NFAs

 Do DFAs and NFAs accept the same class of languages?

 Is there a language L that is accepted by a DFA, but not
by any NFA?

 Is there a language L that is accepted by an NFA, but not
by any DFA?

 Observation: Every DFA is an NFA, DFA is only restricted NFA.
 Therefore, if L is a regular language then there exists an NFA

M such that L = L(M).
 It follows that NFAs accept all regular languages.
 But do NFAs accept more?

 Consider the following DFA: 2 or more c’s

Q = {q0 , q1 , q2 }

Σ = {a, b, c}

Start state is q0

F = {q2}
δ: a b c

q0 q0 q1

q1 q1 q2

q2 q2 q2

q0

q1

q2

q1q0
q2

a

b

a

b

c c

a/b/c

 An Equivalent NFA:

Q = {q , q , q }0 1 2

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

{q0} {q0} {q1}

{q1} {q1} {q2}

{q2} {q2} {q2}

q0

q1

q2

q1q0
q2

a

b

a

b

c c

a/b/c

 Lemma 1:Let M be an DFA. Then there exists a
NFA M’ such that L(M) = L(M’).

 Proof: Every DFA is an NFA. Hence, if we let M’ =
M, then it follows that L(M’) = L(M).

The above is just a formal statement of the
observation from the previous slide.

 Lemma 2: Let M be an NFA.
 Then there exists a DFA M’ such that L(M) = L(M’).

Proof: (sketch)Let M = (Q, Σ, δ,q0,F).
Define a DFA M’ = (Q’, Σ, δ’, q0 , F’) as:

Q’ = 2Q

= {Q0, Q1,…,-

Each state in M’

corresponds to a subset

of states from M
where Qu = [qi0, qi1,…qij]

F’ = {Qu | Qu contains at least one state in F}

q’
0 = [q0]

δ’(Qu, a) = Qv iff δ(Qu, a) = Qv

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ: 0 1

q0

q1

{q1} {}

{q0, q1} {q1}

q1q0

0

 Example: empty string or start and end
with 0

0/1

0

 Example of creating a DFA out of an NFA (as per the
constructive proof):

0 1 q1δ for DFA:

->q0

[q1]

[]

q1q0

0

0/1

0

-->q0

{q1}

write as

[q1]

{}

write as

[]

 Example of creating a DFA out of an NFA (as per the

constructive proof):

δ: 0 1

->q0

[q1]

[]

[q01]

q1q0

0

0/1

0

{}{q1}

write as

[q1]

{q0,q1}

write as

[q01]

{q1}

 Example of creating a DFA out of an NFA (as per the

constructive proof):

δ: 0 1

->q0

[q1]

[]

[q01]

q1q0

0

0/1

0

{q1}

write as

[q1]

{}

{q0,q1}

write as

[q01]

{q1}

[] []

 Example of creating a DFA out of an NFA (as per the
constructive proof):

δ: 0 1

->q0

[q1]

[]

[q01]

q1q0

0

0/1

0

{q1}

write as

[q1]

{}

{q0,q1}

write as

[q01]

{q1}

[] []

[q01] [q1]

 Construct DFA M’ as follows:

δ({q0}, 0) = {q1} => δ’([q0], 0) = [q1]

δ({q0}, 1) = {} => δ’([q0], 1) = []

δ({q1}, 0) = {q0, q1} => δ’([q1], 0) = [q0q1]

δ({q1}, 1) = {q1} => δ’([q1], 1) = [q1]

δ({q0, q1}, 0) = {q0, q1} => δ’([q0q1], 0) = [q0q1]

δ({q0, q1}, 1) = {q1} => δ’([q0q1], 1) = [q1]

δ({}, 0) = {} => δ’([], 0) = []

δ({}, 1) = {} => δ’([], 1) = []

[]
1 0

1

[q1]

0/1

[q0]

0

1

[q0q1]

0

 Theorem: Let L be a language. Then there exists an
DFA M such that L = L(M) iff there exists an NFA M’
such that L = L(M’).

 Proof:

(if) Suppose there exists an NFA M’ such that L =
L(M’). Then by Lemma 2 there exists an DFA M such
that L = L(M).
(only if) Suppose there exists an DFA M such that L
= L(M). Then by Lemma 1 there exists an NFA M’
such that L = L(M’).

 Corollary: The NFAs define the regular languages.

 Note: Suppose R = {}

δ(R, 0) = δ(δ(R, ε), 0)

= δ(R, 0)

Since R = {}

 Exercise - Convert the following NFA to a DFA:

δ: 0 1

{q0, q1} { }

{q1} {q2}

{q2} {q2}

Q = {q0, q1, q2}

Σ = {0, 1}

Start state is q0

F = {q0}
q 0

q1

q2

= δ(q,0)
qR

= { }

 Problem: Third symbol from last is 1

0/1

q1q0 q3
1 0/1 q2

0/1

Now, can you convert this NFA to a DFA?

 Some Applications
 Software for designing and checking the behavior

of digital circuits

 Lexical analyzer of a typical compiler
 Software for scanning large bodies of text (e.g.,

web pages) for pattern finding
 Software for verifying systems of all types that

have a finite number of states (e.g., stock market
transaction, communication/network protocol)

Finite Automata

NFAs with ε Moves

 An NFA-ε is a five-tuple:
M = (Q, Σ, δ, q0, F)
Q = A finite set of
states
Σ= A finite input
alphabet

Q0 = The initial/starting state, q0 is in Q

F = A set of final/accepting states, which is a subset
of Q,δ A transition function, which is a total
function from Q x Σ U ,ε- to 2Q

δ: (Q x (Σ U {ε})) –> 2Q

δ(q,s)
-The set of all states p such that there

is a

transition labeled a from q to p,

where a is in Σ U ,ε-
 Sometimes referred to as an NFA-ε other times, simply as7a3n

NFA.

 Example:

δ: 0 1 ε

q0 - A string w = w1w2…wn is

pro

q1

q2

as w = ε*w1ε*w2ε* … ε*wnε*

- Example: all computations on 00:

0 ε 0

q0 q0 q1 q2

:

q3

q0

ε

0/1

q2

1

0

q1

0

q3

ε

0

{q0}
cessed

{ } {q1}

{q1, q2} {q0, q3} {q2}

{q2} {q2} { }

{ } { } { }

1

 Let M = (Q, Σ, δ,q0,F) be an NFA-ε.

 A String w in Σ* is accepted by M iff there exists a path in M
from q0 to a state in F labeled by w and zero or more ε
transitions.

 The language accepted by M is the set of all strings from Σ*

that are
accepted by M.

Informal Definitions

ε-closure

 Define ε-closure(q) to denote the set of all states

reachable from q by zero or more ε transitions.

 Examples: (for the previous NFA)

ε-closure(q0) = {q0, q1, q2}

ε-closure(q1) = {q1, q2}

ε-closure(q2) = {q2}

ε-closure(q3) = {q3}

 ε-closure(q) can be extended to sets of states by

defining:

 Examples:

ε-closure({q1, q2}) = {q1, q2}

ε-closure({q0, q3}) = {q0, q1, q2, q3}

ε-closure(P) =ε-closure(q)

qP
0/1

q2
ε

1

0

q0

0

q1

q3

1

ε

0

75

Extension of δ to Strings and Sets of States

1 0

 What we currently have: δ : (Q x (Σ U ,ε-)) –> 2Q

 What we want (why?): δ : (2Q x Σ*) –> 2Q

 As before, we will do this in two steps, which will be
slightly different from the book, and we will make use of
the following NFA.

q3

1
0 0 0/1

ε ε

q0 q1 q2

76

 Step #1:

Given δ: (Q x (Σ U {ε})) –> 2Q define δ#: (2Q x (Σ U {ε})) –> 2Q as

follows:
#1) δ (R, a)

=

δ(q, a) for all subsets R of Q, and symbols a in Σ

U {ε}

δ#({p},a) = δ(q, a) by definition of δ#, rule #1 above

= δ(p, a)

 Hence, we can use δ for δ#

These now make sense, butδ({q0, q2}, 0)

previously

δ({q0, q1, q2}, 0) they did not.

qR

 Note that:

q{ p }

78

 Examples:

What is δ(,q0 , q1, q2}, 1)?

δ(,q0 , q1, q2}, 1) = δ(q0, 1) U δ(q1, 1) U δ(q2,1)

= { } U {q0, q3} U {q2}

= {q0, q2, q3}

78

What is δ(,q0, q1}, 0)?

δ(,q0 , q1}, 0) = δ(q0, 0) U δ(q1, 0)

= {q0} U {q1, q2}

= {q0, q1, q2}

 Step #2:
Given δ: (2Q x (Σ U ,ε-)) –> 2Q define δ^: (2Q x Σ*) –> 2Q

as
follows:
δ^(R,w) – The set of states M could be in after
processing string w, having starting from any state in
R.
Formally:
2)δ^(R, ε) = ε-closure(R) - for any subset R of Q

3)δ^(R,wa) = ε-closure(δ(δ^(R,w), a)) - for any w in Σ*,
a in Σ, and subset R of Q

 Can we use δ for δ^?

79

 Consider the following example:
δ({q0}, 0) = {q0} By rule #3

By rule #2
By ε-closure

By rule

δ^({q0}, 0) = ε-closure(δ(δ^({q0-, ε), 0))

= ε-closure(δ(ε-closure({q0}), 0))

= ε-closure(δ(,q0, q1, q2}, 0))
= ε-closure(δ(q0, 0) U δ(q1, 0) U δ(q2, 0))

#1

= ε-closure({q0} U {q1, q2} U {q2})

= ε-closure({q0, q1, q2})

= ε-closure({q0-) U ε-closure({q1}) U ε-
closure({q2})

= {q0, q1, q2} U {q1, q2} U {q2}

= {q0, q1, q2}
So what is the difference? - Processes 0 as a single symbol,

without ε transitions.
- Processes 0 using as many ε transitions as are

δ(q0, 0)
δ^(q0 , 0)
possible. 81

 Example
:

81

δ^({q0-, 01) = ε-closure(δ(δ^({q0}, 0), 1)) #3

= ε-closure(δ(,q0, q1, q2}), 1)

= ε-closure(δ(q0, 1) U δ(q1, 1) U δ(q2, 1))
#1 = ε-closure({ } U {q0, q3} U {q2})

= ε-closure({q0, q2, q3})

= ε-closure({q0-) U ε-closure({q2}) U ε-
closure({q3})

= {q0, q1, q2} U {q2} U {q3}

= {q0, q1, q2, q3}

Definitions for NFA-ε Machines

82

 Let = (Q, Σ, δ,q0,F) be an NFA-ε and let w be in Σ*.
Then w is accepted by M iff δ^({q0}, w) contains at
least one state in F.

 Let M = (Q, Σ, δ,q0,F) be an NFA-ε. Then the
language accepted by M is M the set:
L(M) = {w | w is in Σ* and δ^({q0},w) contains at least
one statein F}

 Another equivalent definition:
L(M) = {w | w is in Σ* and w is accepted byM}

Equivalence of NFAs and NFA-εs

 Do NFAs and NFA-ε machines accept the same
class of languages?

 Is there a language L that is accepted by a NFA, but
not by any
NFA-ε?

 Is there a language L that is accepted by an NFA-ε,
but not by any DFA?

 Observation: Every NFA is an NFA-ε.
 Therefore, if L is a regular language then there exists an

NFA-ε M such that L = L(M).
 It follows that NFA-ε machines accept all regular

languages.
 But do NFA-ε machines accept more?

 Lemma 1Let M be an NFA.Then there exists a NFA-ε
M’ such that L(M) = L(M’).

 Proof: Every NFA is an NFA-ε. Hence, if we let M’ =
M, then it follows that L(M’) = L(M).

The above is just a formal statement of the
observation from the previous slide.

85

 Lemma 2: Let M be an NFA-ε.Then there exists a NFA M’
such that L(M) = L(M’).

 Proof: (sketch)
Let M = (Q, Σ, δ,q0,F) be an NFA-ε.
Define an NFA M’ = (Q, Σ, δ’,q0,F’) as:F’ = F U ,q- if ε-
closure(q) contains at least one statefrom F

F’ = F otherwise
δ’(q, a) = δ^(q, a) for all q in Q and a in Σ

 Notes:

 δ’: (Q x Σ) –> 2Q is afunction

 M’ has the same state set, the same alphabet, and
the same start state as M

86

Example:

 Step #1:

 Same state set as M

 q0 is the starting state

q0

ε

0/1

q2

1

0

q1

0

ε

0

q3

1

q2q1

q3

q0

86

Example:

 Step #2:

 q0 becomes a final state

q0

ε

0/1

q2

1

0

q1

0

ε

0

q3

1

q2q1

q3

q0

87

 Example:

 Step #3:

q0

ε

0/1

q2

1

0

q1

0

ε

0

q3

1

q2q1

q3

q0

0

0

0

88

 Step #4:

q0

ε

0/1

q2

1

0

q1

0

ε

0

q3

1

q2q1

q3

q0

0/1

0/1

0/1

1

89

 Step #5:

q0

ε

0/1

q2

1

0

q1

0

ε

0

q3

1

q2q1

q3

q0

0/1

0/1

0/1

1

0

0

90

 Step #6:

q0

ε

0/1

q2

1

0

q1

0

ε

0

q3

1

q2q1

q3

q0

0/1

0/1

1

0/1

0/10/1

1

1

91

 Step #7:

q0

ε

0/1

q2

1

0

q1

0

ε

0

q3

1

q2

q3

q0

0/1

0/1

1

0/1

0/10/1

1

1 0

q1

[use table of e-closure] Step #8:

 Done!

q0

ε

0/1

q2

1

0

q1

0

ε

0

q3

1

q2q1

q3

q0

0/1

0/1

1

0/1

0/10/1

1

1 0/1

93

 Theorem:Let L be a language. Then there exists an NFA M
such that L= L(M) iff there exists an NFA-ε M’ such that L =
L(M’).

 Proof:

(if) Suppose there exists an NFA-ε M’ such that L = L(M’).

Then by Lemma 2 there exists an NFA M such that L = L(M).
(only if) Suppose there exists an NFA M such that L = L(M). Then
by Lemma 1 there exists an NFA-ε M’ such that L = L(M’).

 Corollary: The NFA-ε machines define the regular languages.

Theory of Computation
Unit- II

Unit – II

Syllabus:

Regular sets, regular expressions, identity rules,
constructing finite automata for a given regular
expressions, conversion of finite automata to regular
expressions, pumping lemma of regular sets, closure
properties of regular sets (proofs not required), regular
grammars-right linear and left linear grammars,
equivalence between regular linear grammar and finite
automata, inter conversion.

.

Regular Sets

Family of languages

 Seed elements:

 Empty language

 Language containing the empty string

 Singleton language for each letter in the
alphabet

 Closure Operations:

 Union: collects strings from languages

 Concatenation: generates longer strings

 Kleene Star: generates infinite languages

Regular Sets over

are

 Inductive Step: Let X and Y be regular

 Closure:…

Basis: ,{}, anda :{a}

regular sets over .

sets over

XY

X*

Then so are:X Y

Examples
 Bit strings containing at least a ―1‖

({0}{1}) *{1}({0}{1})*

 Bit strings containing exactly one ―1‖

{0}*{1}{0}*

 Bit strings beginning or ending with a ―1‖

{1}{0,1}* {0,1}*{1}

Regular Expressions

 Regular expressions
are an algebraic way to describe languages.

 They describe exactly the regular languages.

 If E is a regular expression, then L(E) is the language it
defines.

 We’ll describe RE’s and their languages
recursively.

Definition

 Basis 1: If a is any symbol, then a is a RE, and L(a) = {a}.

 Note: {a} is the language containing one string, and
that string is of length 1.

 Basis 2: ε is a RE, and L(ε) = {ε}.

 Basis 3: ∅ is a RE, and L(∅) = ∅.

 Induction 1: If E1 and E2 are regular expressions,
then E1+E2 is a regular expression, and L(E1+E2)
= L(E1)L(E2).

 Induction 2: If E1 and E2 are regular expressions,
then E1E2 is a regular expression, and L(E1E2) =
L(E1)L(E2).

Concatenation : the set of strings wx such that w
Is in L(E1) and x is in L(E2).

 Induction 3: If E is a RE, then E* is a RE, and L(E*) = (L(E))*.

Closure, or “Kleene closure” = set of strings w1w2…wn,
for some n > 0, where each wi is in L(E).
Note: when n=0, the string is ε.

Precedence of Operators

 Parentheses may be used wherever needed to
influence the grouping of operators.

 Order of precedence is * (highest), then
concatenation, then + (lowest).

Examples

 L(01) = {01}.

 L(01+0) = {01, 0}.

 L(0(1+0)) = {01, 00}.

 Note order of precedence of operators.

 L(0*) = {ε, 0, 00, 000,… }.

 L((0+10)*(ε+1)) = all strings of 0’s and 1’s without two

consecutive 1’s.

Equivalence of RE’s and Automata

 We need to show that for every RE, there is an
automaton that accepts the same language.

 Pick the most powerful automaton type: the
ε-NFA.

 And we need to show that for every automaton,
there is a RE defining its language.

 Pick the most restrictive type: the DFA.

Converting a RE to an ε-NFA

 Proof is an induction on the number of operators
(+, concatenation, *) in the RE.

 We always construct an automaton of a special form

(next slide).

Form of ε-NFA’s Constructed

No arcs from outside,
no arcs leaving

Start state:
Only state
with external
predecessors

“Final” state:
Only state
with external
successors

RE to ε-NFA: Basis

 Symbol a:

 ε:

 ∅:

a

ε

RE to ε-NFA: Induction 1 – Union

For E1

For E2

For E1 E2

ε

ε ε

ε

RE to ε-NFA: Induction 2 – Concatenation

For E1 For E2

For E1E2

ε

For E

RE to ε-NFA: Induction 3 – Closure

ε

Ε

For E*

εε

CONVERSION OF DFA-to-RE

 A strange sort of induction.

 States of the DFA are assumed to be 1,2,…,n.

 We construct RE’s for the labels of restricted sets of
paths.

 Basis: single arcs or no arc at all.

 Induction: paths that are allowed to traverse next
state in order.

k-Paths

 A k-path is a path through the graph of the DFA
that goes though no state numbered higher than k.

 Endpoints are not restricted; they can be any
state.

Example: k-Paths

3

1 2
0

0 0
1 1

1 0-paths from 2 to 3:

RE for labels = 0.

1-paths from 2 to 3:
RE for labels = 0+11.

2paths from 2 to 3:
RE for labels =
(10)*0+1(01)*1

3paths from 2 to 3:
RE for labels = 1?1?6

k-Path Induction

 Let R k be the regular expression forthe
ij

set of labels of k-paths from state i to

state j.

i
j

 Basis: k=0. R 0 = sum of labels ofarc

from i to j.

 ∅ if no such arc.

 But add ε if i=j.

Example: Basis

12 R 0 =0.

11 R 0 = ∅ + ε =ε.

1

3

2

0
0 0

1

1 1

k-Path Inductive Case

 A k-path from i to j either:

1. Never goes through state k, or

2. Goes through k one or more times.

R k = R k-1 + R k-1(R k-1)* R k-1.
ij ij ik kk kj

Doesn’t go
through k

Goes from
i to k the
first time Zero or

more times
from k to k

Then, from
k to j

Illustration of Induction

States < k

k

i
j

through k

From k
to j

From k to k
Several times

Path to k
Paths not going

Final Step

 The RE with the same language as

ij
the DFA is the sum (union) of R n,

where:

1. n is the number of states; i.e., paths are
unconstrained.

2. i is the start state.

3. j is one of the final states.

Example

 R 3 =R
23 23 23

2 + R 2(R 2)*R
33
2 =

23 33
R 2(R 2)*

 R23 = (10)*0+1(01)*12

 R33 = 0(01)*(1+00) + 1(10)*(0+11)2

23
 R 3 = [(10)*0+1(01)*1] [(0(01)*(1+00)+

1(10)*(0+11))]*

1

3

2
0

0 0

1

1 1

Algebraic Laws for RE’s

 Union and concatenation behave sort of like addition
and multiplication.

 + is commutative and associative;
concatenation is associative.

 Concatenation distributes over +.

 Exception: Concatenation is not
commutative.

Identities and Annihilators

 ∅ is the identity for +.

 R + ∅ = R.

 ε is the identity for concatenation.

 εR = Rε = R.

 ∅ is the annihilator for concatenation.

 ∅R = R∅ = ∅.

Closure Properties of Regular Languages

Union, Intersection, Difference, Concatenation,
Kleene Closure, Reversal, Homomorphism,

Inverse Homomorphism

Closure Properties

 Recall a closure property is a statement that a certain
operation on languages, when applied to languages in a
class (e.g., the regular languages), produces a result that
is also in that class.

 For regular languages, we can use any of its
representations to prove a closure property.

Closure Under Union

 If L and M are regular languages, so is L M.

 Proof: Let L and M be the languages of regular
expressions R and S, respectively.

 Then R+S is a regular expression whose
language is L M.

Closure Under Concatenation and Kleene
Closure

 Same idea:

 RS is a regular expression whose
language is LM.

 R* is a regular expression whose language is L*.

Closure Under Intersection

 If L and M are regular languages, then so is L M.

 Proof: Let A and B be DFA’s whose languages are L
and M, respectively.

 Construct C, the product automaton of A and B.

 Make the final states of C be the pairs consisting of final
states of both A and B.

Example: Product DFA for Intersection

A

C D

0

0, 1

1

1

0
0

[A,D]
1 0

B [A,C]

[B,C]

0

1

0

1 1

[B,D]

0

1

Closure Under Difference

 If L and M are regular languages, then so is L – M =
strings in L but not M.

 Proof: Let A and B be DFA’s whose languages are L
and M, respectively.

 Construct C, the product automaton of A and B.

 Make the final states of C be the pairs where A-state is
final but B-state is not.

Example: Product DFA for Difference

A

C D

0

0, 1

1

1

0
0

[A,D]
1 0

B [A,C]

[B,C]

0

1

0

1 1

[B,D]

0

1

Notice: difference
is the empty language

Closure Under Complementation

 The complement of a language L (with respect to an
alphabet Σ such that Σ* contains L) is Σ* – L.

 Since Σ* is surely regular, the complement of a
regular language is always regular.

Closure Under Reversal

 Recall example of a DFA that accepted the binary
strings that, as integers were divisible by 23.

 We said that the language of binary strings whose
reversal was divisible by 23 was also regular, but
the DFA construction was very tricky.

 Good application of reversal-closure.

Closure Under Reversal – (2)

 Given language L, LR is the set of strings whose
reversal is in L.

LR

 Example: L = {0, 01, 100};
= {0, 10, 001}.

 Proof: Let E be a regular expression for L.

 We show how to reverse E, to provide a regular
expression ER forLR.

Reversal of a Regular Expression

 Basis: If E is a symbol a, ε, or ∅, then ER =E.

 Induction: If E is

 F+G, then ER = FR +GR.

 FG, then ER =GRFR

 F*, then ER =(FR)*.

Example: Reversal of a RE

 Let E = 01* + 10*.

 ER = (01* + 10*)R = (01*)R + (10*)R

= (1*)R0R +(0*)R1R

= (1R)*0 + (0R)*1

= 1*0 + 0*1.

Homomorphisms

 A homomorphism on an alphabet is a function that
gives a string for each symbol in that alphabet.

 Example: h(0) = ab; h(1) = ε.

 Extend to strings by h(a1…an) = h(a1)…h(an).

 Example: h(01010) = ababab.

Closure Under Homomorphism

 If L is a regular language, and h is a homomorphism on
its alphabet, then h(L)
= {h(w) | w is in L} is also a regular language.

 Proof: Let E be a regular expression for L.

 Apply h to each symbol in E.

 Language of resulting RE is h(L).

Example: Closure under Homomorphism

 Let h(0) = ab; h(1) = ε.

 Let L be the language of regular expression 01* + 0*.

 Then h(L) is the language of regular expression abε* + ε(ab)*.

 Note: use parentheses to enforce the proper grouping.

Example – Continued

 abε* + ε(ab)* can be simplified.

 ε* = ε, so abε* = abε.

 ε is the identity under concatenation.

 That is, εE = Eε = E for any RE E.

 Thus, abε* + ε(ab)* = abε + ε(ab)* = ab+ (ab)*.

 Finally, L(ab) is contained in L((ab)*),

 so a RE for h(L) is (ab)*.

Inverse Homomorphisms

 Let h be a homomorphism and L a language whose
alphabet is the output language of h.

 h-1(L) = {w | h(w) is in L}.

Example: Inverse Homomorphism

 Let h(0) = ab; h(1) = ε.

 Let L = {abab, baba}.

 h-1(L) = the language with two 0’s and any number of 1’s
= L(1*01*01*).

Notice: no string maps to baba; any string with exactly
two 0’s maps to abab.

Linear Grammars

 Grammars with

 at most one variable at the right side

 of a production

S Ab A

aAb A S aSb S

A Non-Linear Grammar

Grammar G : S SS

S

S aSb S

 bSa

na(w) nb(w)}
L(G) {w:

Another Linear Grammar

 Grammar :

B Ab

A aB |

L(G) {anbn :n 0}

G: S A

Right-Linear Grammars

 Example:

 All productions have form:

A xB

or
A x

S a

S abS

148

Left-Linear Grammars

 All productions have form:

A Bx

or

A x

 Example: S Aab

A Aab |B

B a

149

Regular Grammars

Regular Grammars

149

 A regular grammar is any

 right-linear or left-linear grammar

 Examples:

S abS

S a

G1
G2

S Aab

A Aab| B B a

Observation

150

S->abS,S a

L(G1) (ab)*a

G1 G2

S Aab

A Aab| B B a

L(G2) aab(ab)*

 Regular grammars generateregular languages

152

Regular Grammars Generate Regular Languages

Language generated
by Regular
Grammars

Regular
Languages

152

Theorem - Part 1

Languages
Generated by
Regular Grammars

Regular
Languages

153

Any regular grammar generates
a regular language

Theorem - Part 2

Languages
Generated by
Regular Grammars

Regular
Languages

154

Any regular language is generated
by a regular grammar

Generated by
Regular Grammars

Regular
Languages

155

generated by
is regular

L(G)

The language
any regular grammar

G

157

The case of Right-Linear Grammars

 Let

 We will prove: is regular

with

G:

be a right-linear grammar L(G)

M

L(M) L(G)

 Proof idea: We will construct NFA

158

Example:

 Grammar G is right-linear

S aA | B A

aa B Bb B | a

159

such that

 every state is a grammar variable:

 Construct NFA M

S aA | B A

aa B Bb B | a

S VF
A

B

special
final state

 Add edges for each production:

S VF

Aa

B

S aA

159

S VF

Aa

B

S aA |B

160

S VF

a

B

S aA| B

A aaB

A

a

a

161

S VF

a

B

S aA |B

A

a

a

b
A aaB

B bB

162

164

S VF

B

a

S aA| B

A aa B

BbB | a

A

a

a

b

a

S VF

a

A

a

a

B

b

S aA aaaB aaabB aaaba

a

164

S VF

B

a

a

b

a

165

A

M

a

Grammar

G

S aA| B

A aa B BbB | a

NFA

L(M) L(G)

aaab*a b*a

In General

166

 A right-linear grammar

 has variables:

 and productions:

G

V0,V1,V2,

Vi a1a2amVj

Vi a1a2 am

or

such that:

 Each variable node:

 We construct the NFA M

Vi corresponds to a

V0

V1

V2

V3

V4

VF

special
final
state

167

 For each production: Vi

 we add transitions and intermediate

iV jV
……

…

168

1

naodes
a2 am

 For each production:

 we add transitions and intermediate

nodes Vi a1a2 am

Vi VF
………

a1 a2 am

169

V0

VF

V

2V

3V1

170

a

3a

1 a3

a4

4a2 a

a5

a8 a9

V4
5a

 Resulting NFA M looks like this:

a9

L(G) L(M)It holds that:

Proof - Part 2
Languages
Generated by
Regular Grammars

Regular
Languages

171

Any regular language is generated
by some regular grammar

L G

Any regular language L

by some regular grammar

172

is generated G

Proof idea:

Let M be the NFA with L L(M)

Construct from M a regular grammar G
such that

L(M) L(G)

 Since

 there is an NFA

L is regular

L L(M)

Example:

a

173

Mb such that

a

b

L ab*ab(b*ab)*

L L(M)

M

1
q

2
q

q3

0
q

M

a

174

to a right-linear grammar

b

a

 Convert

M

0
q

1
q

2
q

b

q3

q0 aq1

 a

175

b

a
M

q0
q1 q2

b

q3

q0 aq1

q1 bq1

q1aq2

a

176

b

a
M

q0 q1 q2

b

q3

0 1

q1 bq1

q1 aq2

q2 bq3

q aq

a

177

b

a
M

q0 q1 q2

b

q3

1 1

q1 aq2

q2 bq3

q3 q1

q3

q bq

G

q0 aq1

L(G) L(M) L

In General

For any transition:
a

q
p

Add
production:

q ap

variable terminal variable

178

For any final state: q f

179

Add production: q f

 Since

180

is right-linear grammar

 is also a regular grammar

G

G

L(G) L(M) L

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

Computer Science and Engineering Department
IV Semester

Theory of Computation

Unit- III

Unit – III

Syllabus:

Context free grammars and languages: Context free

grammar, derivation trees, sentential forms, right most and

leftmost derivation of strings, applications.

Ambiguity in context free grammars, minimization of

context free grammars, Chomsky normal form, Greibach

normal form, pumping lemma for context free languages,

enumeration of properties of context free language (proofs

omitted)..

Introduction

 A context-free grammar:is a notation for describing
languages.

 It is more powerful than finite automata or RE’s, but still
cannot define all possible languages.

 Useful for nested structures, e.g., parentheses in
programming languages.

 Basic idea is to use “variables” to stand for sets of
strings (i.e., languages).

 These variables are defined recursively, in terms of
one another.

 Recursive rules (“productions”) involve only
concatenation.

 Alternative rules for a variable allow union.

Example: CFG for { 0n1n | n > 1}

 Productions:

S -> 01 S -

> 0S1

 Basis: 01 is in the language.

 Induction: if w is in the language, then so is 0w1.

CFG Formalism

 Terminals = symbols of the alphabet of the
language being defined.

 Variables = nonterminals = a finite set of
other symbols, each of which represents a language.

 Start symbol = the variable whose
language is the one being defined.

Productions

 A production has the form variable -> string
of variables and terminals.

 Convention:

 A, B, C,… are variables.

 a, b, c,… are terminals.

 …, X, Y, Z are either terminals or variables.

 …, w, x, y, z are strings of terminals only.

 , , ,… are strings of terminals and/or
variables.

Example: Formal CFG

 Here is a formal CFG for { 0n1n | n >1}.

 Terminals = {0, 1}.

 Variables = {S}.

 Start symbol = S.

 Productions =

S -> 01 S -

> 0S1

Derivations – Intuition

 We derive strings in the language of a CFG by
starting with the start symbol, and repeatedly
replacing some variable A by the right side of one of
its productions.

 That is, the “productions for A” are those that
have A on the left side of the ->.

Derivations – Formalism

 We say A => if A -> is a

production.

 Example: S -> 01; S -> 0S1.

 S => 0S1 => 00S11 => 000111.

Iterated Derivation

 =>* means “zero or more derivation steps.”

 Basis: =>* for any string .

 Induction: if =>* and => , then
=>* .

Example: Iterated Derivation

 S -> 01; S -> 0S1.

 S => 0S1 => 00S11 => 000111.

 So S =>* S; S =>* 0S1; S =>* 00S11; S
=>* 000111.

Sentential Forms

 Any string of variables and/or terminals derived from
the start symbol is called a sentential form.

 Formally, is a sentential form iff S
=>* .

Language of a Grammar

 If G is a CFG, then L(G), the language of G, is {w | S
=>* w}.

 Note: w must be a terminal string, S is the start
symbol.

 Example: G has productions S -> ε and S -> 0S1.

 L(G) = {0n1n | n >0}. Note: ε is a legitimate

right side.

Context-Free Languages

 A language that is defined by some CFG is
called a context-free language.

 There are CFL’s that are not regular
languages, such as the example just given.

 But not all languages are CFL’s.

 Intuitively: CFL’s can count two things, not
three.

BNF Notation

 Grammars for programming languages

are often written in BNF (Backus-Naur

Form).

 Variables are words in <…>; Example:

<statement>.

 Terminals are often multicharacter

strings indicated by boldface or

underline; Example: while or WHILE.

BNF Notation – (2)

 Symbol ::= is often used for ->.

 Symbol | is used for “or.”

 A shorthand for a list of productions with the
same left side.

 Example: S -> 0S1 | 01 is shorthand for S -> 0S1 and
S -> 01.

BNF Notation – Kleene Closure

 Symbol … is used for “one or more.”

 Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9

<unsigned integer> ::= <digit>…

 Note: that’s not exactly the * of RE’s.

 Translation: Replace … with a new variable A and
productions A -> A| .

Example: Kleene Closure

 Grammar for unsigned integers can be replaced by:

U -> UD | D

D -> 0|1|2|3|4|5|6|7|8|9

BNF Notation: Optional Elements

 Surround one or more symbols by *…+ to make
them optional.

 Example: <statement> ::= if <condition>
then <statement> [; else <statement>]

 Translation: replace [] by a new variable A with

productions A -> | ε.

Example: Optional Elements

 Grammar for if-then-else can be replaced
by:

S -> iCtSA

A -> ;eS | ε

BNF Notation – Grouping

 Use ,…- to surround a sequence of symbols that
need to be treated as a unit.

 Typically, they are followed by a … for “one or
more.”

 Example: <statement list> ::=
<statement> *,;<statement>-…+

Translation: Grouping

 You may, if you wish, create a new

variable A for {}.

 One production for A: A -> .

 Use A in place of {}.

Example: Grouping

A -> ;S

L -> S *,;S-…+

 Replace by L -> S *A…+

 A stands for {;S}.

 Then by L -> SB B -> A… | ε A -> ;S

 B stands for *A…+ (zero or more A’s).

 Finally by L -> SB B -> C | ε

C -> AC | A A -> ;S

 C stands for A… .

Leftmost and Rightmost Derivations

 Derivations allow us to replace any of the
variables in a string.

 Leads to many different derivations of the same
string.

 By forcing the leftmost variable (or alternatively,
the rightmost variable) to be replaced, we avoid
these “distinctions without a difference.”

Leftmost Derivations

 Say wA =>lm w if w is a string of terminals only and

A -> is a production.

 Also, =>*lm if becomes by a sequence of 0 or

more =>lm steps.

Example: Leftmost Derivations

 Balanced-parentheses grammmar: S -> SS |

(S) | ()

 S =>lm SS =>lm (S)S =>lm (())S =>lm (())()

 Thus, S =>*lm (())()

 S => SS => S() => (S)() => (())() is a
derivation, but not a leftmost derivation.

Rightmost Derivations

 Say Aw =>rm w if w is a string of

terminals only and A -> is a production.

 Also, =>*rm if becomes by a

sequence of 0 or more =>rm steps.

Example: Rightmost Derivations

 Balanced-parentheses grammmar: S -> SS |

(S) | ()

 S =>rm SS =>rm S() =>rm (S)() =>rm (())()

 Thus, S =>*rm (())()

 S => SS => SSS => S()S => ()()S =>
()()() is neither a rightmost nor a leftmost derivation.

Parse Trees

 Parse trees are trees labeled by
symbols of a particular CFG.

 Leaves: labeled by a terminal or ε.

 Interior nodes: labeled by a variable.

 Children are labeled by the right side of a
production for the parent.

 Root: must be labeled by the start symbol.

Example: Parse Tree

S -> SS | (S) | ()

S

S S

(S) ()

()

Yield of a Parse Tree

 The concatenation of the labels of the leaves in
left-to-right order

 That is, in the order of a preorder traversal.

is called the yield of the parse tree.

is (())()

S

 Example: yield of
S

S

(S) ()

()

Parse Trees, Left- and Rightmost Derivations

 For every parse tree, there is a unique leftmost,
and a unique rightmost derivation.

 We’ll prove:

1. If there is a parse tree with root labeled A and
yield w, then A =>*lm w.

2. If A =>*lm w, then there is a parse tree with
root A and yield w.

Proof – Part 1

 Induction on the height (length of the
longest path from the root) of the tree.

 Basis: height 1. Tree looks like

 A -> a1…an must be a
production.

 Thus, A =>*lm a1…an.

A

a1 . . . an

Part 1 – Induction

 Assume (1) for trees of height < h, and

let this tree have height h:

 By IH, Xi =>*lm wi.

 Note: if Xi is a terminal, then
= wi.

 Thus, A =>lm X1…Xn =>*lm w1X2…Xn

=>*lm w1w2X3…Xn =>*lm … =>*lm w1…wn.

A

X1 . . . Xn

Xi

w1 wn

Proof: Part 2

 Given a leftmost derivation of a terminal string, we
need to prove the existence of a parse tree.

 The proof is an induction on the length of the

derivation.

Part 2 – Basis

 If A =>*lm a1…an by a one-step derivation, then
there must be a parse tree

A

a1 . . . an

Part 2 – Induction

 Assume (2) for derivations of fewer than k > 1 steps,
and let A =>*lm w be a k- step derivation.

 First step is A =>lm X1…Xn.

 Key point: w can be divided so the first portion is
derived from X1, the next is derived from X2, and so
on.

 If Xi is a terminal, then wi =Xi.

Induction – (2)

 That is, Xi =>*lm wi for all i such that Xi is a variable.

 And the derivation takes fewer than k
steps.

 By the IH, if Xi is a variable, thenthere

is a parse tree with root Xi and yieldwi.

 Thus, there is a parse tree

X1

A

. . . Xn

w1 220 wn

Parse Trees and Rightmost Derivations

 The ideas are essentially the mirror image of
the proof for leftmost derivations.

 Left to the imagination.

Parse Trees and Any Derivation

 The proof that you can obtain a parse tree from a
leftmost derivation doesn’t really depend on
“leftmost.”

 First step still has to be A => X1…Xn.

 And w still can be divided so the first portion is
derived from X1, the next is derived from X2, and
so on.

Ambiguous Grammars

 A CFG is ambiguous if there is a string in
the language that is the yield of two or more parse
trees.

 Example: S -> SS | (S) | ()

 Two parse trees for ()()() on next slide.

Example – Continued

S

S

S S

S S S

SS () () S

() () () ()

Ambiguity, Left- and Rightmost Derivations

 If there are two different parse trees, they must
produce two different leftmost derivations by the
construction given in the proof.

 Conversely, two different leftmost derivations
produce different parse trees by the other
part of the proof.

 Likewise for rightmost derivations.

Ambiguity, etc. – (2)

 Thus, equivalent definitions of
“ambiguous grammar’’ are:

1. There is a string in the language that has two
different leftmost derivations.

2. There is a string in the language that has two
different rightmost derivations.

Ambiguity is a Property of Grammars, not Languages

 For the balanced-parentheses language, here is
another CFG, which is unambiguous.

B -> (RB | ε

R ->) | (RR

B, the start symbol,
derives balanced strings.

R generates strings that
have one more right paren
than left.

Example: Unambiguous Grammar

B -> (RB | ε R ->) | (RR

 Construct a unique leftmost derivation for a given
balanced string of parentheses by scanning the string
from left to right.

 If we need to expand B, then use B -> (RB if the
next symbol is “(” and ε if at the end.

 If we need to expand R, use R ->) if the next symbol
is “)” and (RR if it is “(”.

The Parsing Process

Remaining Input: (())() Steps of leftmost
derivation:

B

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Steps of leftmost
derivation:

B

(RB

Remaining Input: ())()

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Steps of leftmost
derivation:

B

(RB

((RRB

Remaining Input:

))()

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Steps of leftmost
derivation:

B

(RB

((RRB

(()RB

Remaining Input:

)()

Next
symbol

B -> (RB | ε R ->) | (RR

The Parsing Process

Steps of leftmost
derivation:

B

(RB

((RRB

Remaining Input: ()

Next
symbol

(()RB

(())B

B -> (RB | ε R ->) | (RR

The Parsing Process

Steps of leftmost
derivation:

(())(RBB

(RB

((RRB

Remaining Input:

)

Next
symbol

(()RB

(())B

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input: Steps of leftmost
derivation:

(())(RB

(())()B

B

(RB

((RRBNext
symbol

(()RB

(())B

B -> (RB | ε R ->) | (RR

The Parsing Process

Remaining Input: Steps of leftmost

derivation:

B (())(RB

(RB (())()B

((RRB (())()
Next
symbol

(()RB

(())B

B -> (RB | ε R ->) | (RR

LL(1) Grammars

 As an aside, a grammar such B -> (RB | ε R ->) | (RR,
where you can always figure out the production to use
in a leftmost derivation by scanning the given string
left-to-right and looking only at the next one symbol is
called LL(1).

 “Leftmost derivation, left-to-right scan, one
symbol of lookahead.”

LL(1) Grammars – (2)

 Most programming languages have LL(1)
grammars.

 LL(1) grammars are never ambiguous.

Inherent Ambiguity

 It would be nice if for every ambiguous grammar,
there were some way to “fix” the ambiguity, as we
did for the balanced-parentheses grammar.

 Unfortunately, certain CFL’s are inherently
ambiguous, meaning that every grammar for
the language is ambiguous.

Example: Inherent Ambiguity

 The language {0i1j2k | i = j or j = k} is inherently
ambiguous.

 Intuitively, at least some of the strings of the form
0n1n2n must be generated by two different parse
trees, one based on checking the 0’s and 1’s, the
other based on checking the 1’s and 2’s.

One Possible Ambiguous Grammar

S -> AB | CD

A -> 0A1 | 01 B -

> 2B | 2

C -> 0C | 0

D -> 1D2 | 12

A generates equal 0’s and 1’s

B generates any number of 2’s

C generates any number of 0’s

D generates equal 1’s and 2’s

And there are two derivations of every string
with equal numbers of 0’s, 1’s, and 2’s. E.g.:
S => AB => 01B =>012
S => CD => 0D => 012 241

Normal Forms for CFG’s

Eliminating Useless Variables Removing Epsilon

Removing Unit Productions Chomsky Normal

Form

242

Variables That Derive Nothing

 Consider: S -> AB, A -> aA | a, B -> AB

 Although A derives all strings of a’s, B derives no
terminal strings (can you prove this fact?).

 Thus, S derives nothing, and the language
is empty.

Testing Whether a Variable Derives Some
Terminal String

 Basis: If there is a production A -> w, where w has no
variables, then A derives a terminal string.

 Induction: If there is a production A -> , where

consists only of terminals and variables known to derive a
terminal string, then A derives a terminal string.

Testing – (2)

 Eventually, we can find no more variables.

 An easy induction on the order in which variables
are discovered shows that each one truly derives a
terminal string.

 Conversely, any variable that derives a terminal
string will be discovered by this algorithm.

Proof of Converse

 The proof is an induction on the height of the least-
height parse tree by which a variable A derives a
terminal string.

 Basis: Height = 1. Tree looks like:

 Then the basis of the algorithm tells us that

A will be discovered.

A

a1 . . . an

Induction for Converse

 By IH, those Xi’s that are

variables are discovered.

 Thus, A will also be discovered,

because it has a right side of terminals and/or

discovered variables.

 Assume IH for parse trees of height < h, and suppose
A derives a terminal strinAg via a parse tree of height h:

X1 . . . Xn

w1 wn

Algorithm to Eliminate Variables That Derive
Nothing

1. Discover all variables that derive terminal
strings.

2. For all other variables, remove all
productions in which they appear either on
the left or the right.

Example: Eliminate Variables

S -> AB | C, A -> aA | a, B -> bB, C -> c

 Basis: A and C are identified because of A -> a and
C -> c.

 Induction: S is identified because of S -> C.

 Nothing else can be identified.

 Result: S -> C, A -> aA | a, C -> c

Unreachable Symbols

 Another way a terminal or variable deserves to be
eliminated is if it cannot appear in any derivation
from the start symbol.

 Basis: We can reach S (the start symbol).

 Induction: if we can reach A, and there is a production A

-> , then we can reach all symbols of.

Unreachable Symbols – (2)

 Easy inductions in both directions show that when we
can discover no more symbols, then we have all and
only the symbols that appear in derivations from S.

 Algorithm: Remove from the grammar all symbols not
discovered reachable from S and all productions that
involve these symbols.

Eliminating Useless Symbols

 A symbol is useful if it appears in some
derivation of some terminal string from the
start symbol.

 Otherwise, it is useless. Eliminate all useless
symbols by:

1. Eliminate symbols that derive no terminal
string.

2. Eliminate unreachable symbols.

Example: Useless Symbols – (2)

S -> AB, A -> C, C -> c, B -> bB

 If we eliminated unreachable symbols first, we
would find everything is reachable.

 A, C, and c would never get eliminated.

Why It Works

 After step (1), every symbol remaining derives
some terminal string.

 After step (2) the only symbols remaining are
all derivable from S.

 In addition, they still derive a terminal string,
because such a derivation can only involve symbols
reachable from S.

Epsilon Productions

 We can almost avoid using productions of the form A ->

ε (called ε-productions).

 The problem is that ε cannot be in the
language of any grammar that has no ε–
productions.

 Theorem: If L is a CFL, then L-{ε} has a CFG with no ε-
productions.

Nullable Symbols

 To eliminate ε-productions, we first need to

discover the nullable variables

= variables A such that A =>* ε.

 Basis: If there is a production A -> ε, then A is

nullable.

 Induction: If there is a production A -> , and all
symbols of are nullable, then A is nullable.

Example: Nullable Symbols

S -> AB, A -> aA | ε, B -> bB | A

 Basis: A is nullable because of A -> ε.

 Induction: B is nullable because of B
-> A.

 Then, S is nullable because of S -> AB.

Proof of Nullable-Symbols Algorithm

 The proof that this algorithm finds all and only the
nullable variables is very much like the proof that
the algorithm for symbols that derive terminal
strings works.

 Do you see the two directions of the proof?

 On what is each induction?

Eliminating ε-Productions

A Key idea: turn each production
-> X1…Xn into a family ofproductions.

 For each subset of nullable X’s, there is one
production with those eliminated from the right side
“in advance.”

 Except, if all X’s are nullable, do not make a
production with ε as the right side.

Example: Eliminating ε- Productions

S -> ABC, A -> aA | ε, B -> bB | ε, C -> ε

 A, B, C, and S are all nullable.

 New grammar:

S -> ABC | AB | AC | BC | A | B | C

A -> aA | a

B -> bB | b
Note: C is now useless.
Eliminate its productions.

Why it Works

 Prove that for all variables A:

1. If w ε and A =>*old w, then A =>*new w.

2. If A =>*new w then w ε and A =>*old w.

 Then, letting A be the start symbol proves

that L(new) = L(old) – {ε}.

 (1) is an induction on the number of steps by
which A derives w in the old grammar.

Proof of 1 – Basis

 If the old derivation is one step, then A

-> w must be a production.

 Since w ε, this production also

appears in the new grammar.

 Thus, A =>new w.

Proof of 1 – Induction

 Let A =>*old w be an n-step derivation,

and assume the IH for derivations of

less than n steps.

 Let the first step be A =>old X1…Xn.

 Then w can be broken into w = w1…wn,

 where Xi =>*old wi, for all i, in fewer than

n steps.

Induction – Continued

 By the IH, if wi ε, then Xi =>*newwi.

 Also, the new grammar has a
production with A on the left, and just
those Xi’s on the right such that wi ε.

 Note: they all can’t be ε, because w ε.

 Follow a use of this production by the

derivations Xi =>*new wi to show that A

derives w in the new grammar.

Proof of Converse

 We also need to show part (2) – if w is

derived from A in the new grammar,

then it is also derived in the old.

 Induction on number of steps in the

derivation.

 We’ll leave the proof for reading in the

text.

Unit Productions

 A unit production is one whose right

side consists of exactly one variable.

 These productions can be eliminated.

 Key idea: If A =>* B by a series of unit

productions, and B -> is a non-unit-

production, then add production A -> .

 Then, drop all unit productions.

Unit Productions – (2)

 Find all pairs (A, B) such that A =>* B

by a sequence of unit productions only.

 Basis: Surely (A, A).

 Induction: If we have found (A, B), and

B -> C is a unit production, then add (A,

C).

Proof That
We Find
Exactly
the Right
Pairs By induction on the order in which pairs

(A, B) are found, we can show A =>* B

by unit productions.

 Conversely, by induction on the number

of steps in the derivation by unit

productions of A =>* B, we can show

that the pair (A, B) is discovered.

Proof The the Unit-Production-
Elimination Algorithm Works

 Basic idea: there is a leftmost derivation

A =>*lm w in the new grammar if and

only if there is such a derivation in the

old.

 A sequence of unit productions and a

non-unit production is collapsed into a

single production of the new grammar.

Cleaning Up a Grammar

 Theorem: if L is a CFL, then there is a
CFG for L – {ε} that has:

1. No useless symbols.

2. No ε-productions.

3. No unit productions.

 I.e., every right side is either a single

terminal or has length > 2.

Cleaning Up – (2)

 Proof: Start with a CFG for L.

 Perform the following steps in order:
1. Eliminate ε-productions.

2. Eliminate unit productions.

3. Eliminate variables that derive no

terminal string.

4. Eliminate variables not reached from the
start symbol. Must be first. Can create

unit productions or useless

variables. 271

Chomsky Normal Form

 A CFG is said to be in Chomsky

Normal Form if every production is of

one of these two forms:

1. A -> BC (right side is two variables).

2. A -> a (right side is a single terminal).

 Theorem: If L is a CFL, then L – {ε}

has a CFG in CNF.

Proof of CNF Theorem

 Step 1: ―Clean‖ the grammar, so every

production right side is either a single

terminal or of length at least 2.

 Step 2: For each right side a single

terminal, make the right side all variables.

 For each terminal a create new variable Aa

and production Aa -> a.

 Replace a by Aa in right sides of length > 2.

Example: Step 2

 Consider production A -> BcDe.

 We need variables Ac and Ae. with

productions Ac -> c and Ae -> e.

 Note: you create at most one variable for

each terminal, and use it everywhere it is

needed.

 Replace A -> BcDe by A -> BAcDAe.

CNF Proof – Continued

 Step 3: Break right sides longer than 2

into a chain of productions with right

sides of two variables.

 Example: A -> BCDE is replaced by

A -> BF, F -> CG, and G -> DE.

 F and G must be used nowhere else.

Example of Step 3 – Continued

 Recall A -> BCDE is replaced by A -> BF, F -> CG, and G ->
DE.

 In the new grammar, A => BF => BCG
=> BCDE.

 More importantly: Once we choose to replace A by BF, we must
continue to BCG and BCDE.

 Because F and G have only one

production.
276

CNF Proof – Concluded

 We must prove that Steps 2 and 3

produce new grammars whose

languages are the same as the previous

grammar.

 Proofs are of a familiar type and involve

inductions on the lengths of derivations.

277

The Pumping Lemma for

CFL’s

Statement

Applications

278

Intuition

 Recall the pumping lemma for regular

languages.

 It told us that if there was a string long

enough to cause a cycle in the DFA for

the language, then we could ―pump‖ the

cycle and discover an infinite sequence

of strings that had to be in the language.

Intuition – (2)

 For CFL’s the situation is a little more

complicated.

 We can always find two pieces of any

sufficiently long string to ―pump‖ in

tandem.

 That is: if we repeat each of the two pieces

the same number of times, we get another

string in the language.

Statement of the CFL Pumping Lemma

For every context-free language L

There is an integer n, such that

For every string z in L of length > n

There exists z = uvwxy such that:

1. |vwx| < n.

2. |vx| > 0.

3. For all i > 0, uviwxiy is in L.

Proof of the Pumping Lemma

 Start with a CNF grammar for L – {ε}.

 Let the grammar have m variables.

 Pick n = 2m.

 Let |z| > n.

 We claim (―Lemma 1 ‖) that a parse tree

with yield z must have a path of length

m+2 or more.

Proof of Lemma 1

 If all paths in the parse tree of a CNF

grammar are of length < m+1, then the

longest yield has length 2m-1, as in:

m variables

one terminal

2m-1 terminals 283

Back to
the Proof
of the
Pumping
Lemma

 Now we know that the parse tree for z

has a path with at least m+1 variables.

 Consider some longest path.

 There are only m different variables, so

among the lowest m+1 we can find two

nodes with the same label, say A.

 The parse tree thus looks like:

Parse Tree in the Pumping- Lemma
Proof

< 2m = n because a

longest path chosen

A

A

u v yw x

Can’t both
be ε.

Pump Zero Times

y

A

u v x

A

w
u y

A

w

Pump Twice

y

A

u v x

A

w
y

A

w

A

A

u v

v

x

x

Pump Thrice

y

A

u v x

A

w
y

A

w

A

A

A

u v

v

v

x

x

x

Etc., Etc.

Using the Pumping Lemma

 Non-CFL’s typically involve trying to

match two pairs of counts or match two

strings.

 Example: The text uses the pumping

lemma to show that {ww | w in (0+1)*} is

not a CFL.

Using the Pumping Lemma – (2)

 {0i10i | i > 1} is a CFL.

 We can match one pair of counts.

 But L = {0i10i10i | i > 1} is not.

 We can’t match two pairs, or three counts

as a group.

 Proof using the pumping lemma.

 Suppose L were a CFL.

 Let n be L’s pumping-lemma constant.

Using the Pumping Lemma – (3)

 Consider z = 0n10n10n.

|vwx| We can write z = uvwxy, where

< n, and |vx| > 1.

 Case 1: vx has no 0’s.

 Then at least one of them is a 1, and uwy

has at most one 1, which no string in L

does.

Using the Pumping Lemma – (4)

 Still considering z = 0n10n10n.

 Case 2: vx has at least one 0.

 vwx is too short (length < n) to extend to all

three blocks of 0’s in 0n10n10n.

 Thus, uwy has at least one block of n 0’s,

and at least one block with fewer than n

0’s.

 Thus, uwy is not in L.

Properties of
Context-Free
Languages

Decision Properties Closure Properties

293

Summary of Decision Properties

 As usual, when we talk about ―a CFL‖

we really mean ―a representation for

the CFL, e.g., a CFG or a PDA

accepting by final state or empty stack.

 There are algorithms to decide if:

1. String w is in CFL L.

2. CFL L is empty.

3. CFL L is infinite.

Non-Decision Properties

 Many questions that can be decided for

regular sets cannot be decided for CFL’s.

 Example: Are two CFL’s the same?

 Example: Are two CFL’s disjoint?

 How would you do that for regular languages?

 Need theory of Turing machines and

decidability to prove no algorithm exists.

Testing Emptiness

 We already did this.

 We learned to eliminate variables that

generate no terminal string.

 If the start symbol is one of these, then

the CFL is empty; otherwise not.

Testing Membership

 Want to know if string w is in L(G).

 Assume G is in CNF.

 Or convert the given grammar to CNF.

 w = ε is a special case, solved by testing if

the start symbol is nullable.

 Algorithm (CYK) is a good example of

dynamic programming and runs in time

O(n3), where n = |w|.

CYK Algorithm

 Let w = a1…an.

 We construct an n-by-n triangular array

of sets of variables.

 Xij = {variables A | A =>* ai…aj}.

 Induction on j–i+1.

 The length of the derived string.

 Finally, ask if S is in X1n.

CYK Algorithm – (2)

 Basis: Xii = {A | A -> ai is aproduction}.

 Induction: Xij = {A | there is a production

A -> BC and an integer k, with i < k < j,

such that B is in Xik and C is in Xk+1,j.

Example: CYK Algorithm

Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

Example: CYK Algorithm

Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X44={B,C} X55={A,C}

X12={B,S} X45={A}

X13={}
Yields nothing

X23={A} X34={B,S}

X22={B,C} X33={A,C}

Example: CYK Algorithm

Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X13={A} X24={B,S} X35={A}

Example: CYK Algorithm

Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X12={B,S} X23={A} X34={B,S} X45={A}

X24={B,S} X35={A}

X14={B,S}

X13={A}

Example: CYK Algorithm

Grammar: S -> AB, A -> BC | a, B -> AC | b, C -> a | b

String w = ababa

X14={B,S} X25={A}

X13={A}

X12={B,S}

X24={B,S}

X23={A}

X35={A}

X34={B,S} X45={A}

X11={A,C} X22={B,C} X33={A,C} X44={B,C} X55={A,C}

X15={A}

Testing Infiniteness

 The idea is essentially the same as for

regular languages.

 Use the pumping lemma constant n.

 If there is a string in the language of

length between n and 2n-1, then the

language is infinite; otherwise not.

 Let’s work this out in class.

Closure Properties of CFL’s

 CFL’s are closed under union,

concatenation, and Kleene closure.

 Also, under reversal, homomorphisms

and inverse homomorphisms.

 But not under intersection or difference.

Closure of CFL’s Under Union

 Let L and M be CFL’s with grammars G

and H, respectively.

 Assume G and H have no variables in

common.

 Names of variables do not affect the

language.

 Let S1 and S2 be the start symbols of G

and H.

Closure Under Union – (2)

 Form a new grammar for L M by

combining all the symbols and

productions of G and H.

 Then, add a new start symbol S.

 Add productions S -> S1 | S2.

Closure Under Union – (3)

 In the new grammar, all derivations start

with S.

 The first step replaces S by either S1 or

S2.

 In the first case, the result must be a

string in L(G) = L, and in the second

case a string in L(H) = M.

Closure of
CFL’s
Under
Concatena
tion Let L and M be CFL’s with grammars G

and H, respectively.

 Assume G and H have no variables in

common.

 Let S1 and S2 be the start symbols of G

and H.

Closure Under Concatenation – (2)

 Form a new grammar for LM by starting

with all symbols and productions of G

and H.

 Add a new start symbol S.

 Add production S -> S1S2.

 Every derivation from S results in a

string in L followed by one in M.

Closure Under Star

 Let L have grammar G, with start symbol S1.

 Form a new grammar for L* by introducing to
G a new start symbol S and the productions
S -> S1S | ε.

 A rightmost derivation from S generates a

sequence of zero or more S1’s, each of

which generates some string in L.

Closure of
CFL’s
Under
Reversal

 If L is a CFL with grammar G, form a

grammar for LR by reversing the right

side of every production.

 Example: Let G have S -> 0S1 | 01.

 The reversal of L(G) has grammar S

-> 1S0 | 10.

Closure of
CFL’s
Under
Homomor
phism Let L be a CFL with grammar G.

 Let h be a homomorphism on the

terminal symbols of G.

 Construct a grammar for h(L) by

replacing each terminal symbol a by

h(a).

Example:
Closure
Under
Homomor
phism

 G has productions S -> 0S1 | 01.

 h is defined by h(0) = ab, h(1) = ε.

 h(L(G)) has the grammar with

productions S -> abS | ab.

Closure of CFL’s Under Inverse
Homomorphism

 Here, grammars don’t help us.

 But a PDA construction serves nicely.

 Intuition: Let L = L(P) for some PDA P.

 Construct PDA P’ to accept h-1(L).

 P’ simulates P, but keeps, as one

component of a two-component state a

buffer that holds the result of applying h

to one input symbol.

Architecture of P’

Buffer

State of P

Input: 0 0 1 1
h(0)

Stack

of P

Read first remaining

symbol in buffer as

if it were input to P.

Formal Construction of P’

 States are pairs [q, b], where:

1. q is a state of P.

2. b is a suffix of h(a) for some symbol a.

 Thus, only a finite number of possible values

for b.

 Stack symbols of P’ are those of P.

 Start state of P’ is [q0 ,ε].

Construction of P’ – (2)

 Input symbols of P’ are the symbols to

which h applies.

 Final states of P’ are the states [q, ε]

such that q is a final state of P.

Transitions of P’

1. δ’([q, ε], a, X) = {([q, h(a)], X)} for any

input symbol a of P’ and any stack

symbol X.

 When the buffer is empty, P’ can reload it.

2. δ’([q, bw], ε, X) contains ([p, w],) if

δ(q, b, X) contains (p,), where b is

either an input symbol of P or ε.

 Simulate P from the buffer.

Proving Correctness of P’

 We need to show that L(P’) = h-1(L(P)).

 Key argument: P’ makes the transition
([q0, ε], w, Z0)⊦*([q, x], ε,) if

and only if P makes transition
(q0, y, Z0) ⊦*(q, ε,), h(w) = yx, and x is

a suffix of the last symbol of w.

 Proof in both directions is an induction

on the number of moves made.

Nonclosure Under Intersection

 Unlike the regular languages, the class of

CFL’s is not closed under .

 We know that L1 = {0n1n2n | n > 1} is not

a CFL (use the pumping lemma).

 However, L2 = {0n1n2i | n > 1, i > 1} is.

 CFG: S -> AB, A -> 0A1 | 01, B -> 2B | 2.

 So is L3 = {0i1n2n | n > 1, i >1}.

 But L1 = L2 L3.

Nonclosure Under Difference

 We can prove something more general:

 Any class of languages that is closed

under difference is closed under

intersection.

 Proof: L M = L – (L – M).

 Thus, if CFL’s were closed under

difference, they would be closed under

intersection, but they are not.

Intersection with a Regular Language

 Intersection of two CFL’s need not be

context free.

 But the intersection of a CFL with a

regular language is always a CFL.

 Proof involves running a DFA in parallel

with a PDA, and noting that the

combination is a PDA.

 PDA’s accept by final state.

DFA and PDA in Parallel

DFA

PDA

S

t

a

c

k

Input
Accept

if both

accept

Looks like the

state of one PDA

Formal Construction

 Let the DFA A have transition function δA.

 Let the PDA P have transition function δP.

 States of combined PDA are [q,p], where

q is a state of A and p a state of P.

 δ([q,p], a, X) contains ([δA(q,a),r],) if

δP(p, a, X) contains (r,).

 Note a could be , in which case δA(q,a) = q.

Formal Construction – (2)

 Accepting states of combined PDA are

those [q,p] such that q is an accepting

state of A and p is an accepting state of

P.

 Easy induction: ([q0,p0], w, Z0)⊦* ([q,p],

,) if and only if δA(q0,w) = q and in P:

(p0, w, Z0)⊦*(p, ,).

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad - 500 043

Computer Science and Engineering Department
IV Semester

Theory of Computation

Unit- IV

Unit – IV
Syllabus:

Pushdown automata, definition, model, acceptance of context free

language, acceptance by final state and acceptance by empty stack and

its equivalence, equivalence of context free language and pushdown

automata, inter conversion;(Proofs not required);Introduction to

and deterministic pushdowndeterministic context free languages

automata

Hierarchy of languages

Regular Languages Finite State Machines, Regular Expression

Context Free Languages Context Free Grammar, Push-down Automata

Context-Free Languages

Regular Languages

Recursively Enumerable Languages

Recursive Languages

Non-Recursively EnumerableLanguages

Pushdown Automata (PDA)

 Informally:

 A PDA is an NFA-ε with a stack.

 Transitions are modified to accommodate stackoperations.

 Questions:

 What is a stack?

 How does a stack help?

 A DFA can ―remember‖ only a finite amount of information, whereas a PDA can

―remember‖ an infinite amount of (certain types of) information, in one memory-

stack

 Example:

{0n1n | 0=<n} is not regular, but

{0n1n | 0nk, for some fixed k} is regular, for any fixed k.

 For k=3:

L = {ε, 01, 0011, 000111}

0/1

q0

q7

q1

11

q2

1
q5

0
q3

11

q4

0 0

1

0
0

0/1 q6

0

 In a DFA, each state remembers a finite amount of information.

 To get {0n1n | 0n} with a DFA would require an infinite number of

states using the preceding technique.

 An infinite stack solves the problem for {0n1n | 0n} as follows:

 Read all 0’s and place them on a stack

 Read all 1’s and match with the corresponding 0’s on the stack

 Only need two states to do this in a PDA

 Similarly for {0n1m0n+m | n,m0}

Formal Definition of a PDA

 A pushdown automaton (PDA) is a seven-tuple:

M = (Q, Σ, Г, δ, q0, z0, F)

Q A finite set of states

Σ A finite input alphabet

Г A finite stack alphabet

q0 The initial/starting state, q0 is in Q

z0 A starting stack symbol, is in Г // need not always remain at the bottom

of stack

F

δ

A set of final/accepting states, which is a subset of Q

A transition function, where

δ: Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*

 Consider the various parts of δ:

Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*

 Q on the LHS means that at each step in a computation, a PDA must

consider its’ current state.

 Г on the LHS means that at each step in a computation, a PDA must

consider the symbol on top of its’ stack.

 Σ U {ε} on the LHS means that at each step in a computation, a PDA may or

may not consider the current input symbol, i.e., it may have epsilon

transitions.

 ―Finite subsets‖ on the RHS means that at each step in a computation, a

PDA may have several options.

 Q on the RHS means that each option specifies a new state.

 Г* on the RHS means that each option specifies zero or more stack

symbols that will replace the top stack symbol, but in a specific sequence.

 Two types of PDA transitions:

δ(q, a, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

 Current state is q

 Current input symbol is a

 Symbol currently on top of the stack z

 Move to state pi from q

 Replace z with γi on the stack (leftmost symbol on top)

 Move the input head to the next input symbol

:

q

p1

p2

a/z/ γ1

a/z/ γ2

a/z/ γm

pm

 Two types of PDA transitions:

δ(q, ε, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)}

 Current state is q

 Current input symbol is not considered

 Symbol currently on top of the stack z

 Move to state pi from q

 Replace z with γi on the stack (leftmost symbol on top)

 No input symbol is read

:

q

p1

p2

ε/z/ γ1

ε/z/ γ2

ε/z/ γm

pm

 Example: 0n1n, n>=0

M = ({q1, q2}, {0, 1}, {L, #}, δ, q1, #, Ø)

δ:

(1) δ(q1, 0, #) = {(q1, L#)} // stack order: L on top, then # below

(2) δ(q1, 1, #) = Ø // illegal, string rejected, When will it

happen?

(3)(8)

δ(q1, 0, L) = {(q1, LL)}

δ(q1, 1, L) = {(q2, ε)}

δ(q2, 1, L) = {(q2, ε)}

δ(q2, ε, #) = {(q2, ε)} //if ε read & stack hits bottom, accept

δ(q2, ε, L) = Ø // illegal, string rejected

δ(q1, ε, #) = {(q2, ε)} // n=0, accept

 Goal: (acceptance)

 Read the entire input string

 Terminate with an empty stack

 Informally, a string is accepted if there exists a computation that uses

up all the input and leaves the stack empty.

 How many rules should be there in delta?

 Language: 0n1n, n>=0

δ:

δ(q1, 0, #) = {(q1, L#)} // stack order: L on top, then # below

δ(q1, 1, #) = Ø // illegal, string rejected, When will ithappen?

δ(q1, 0, L) = {(q1, LL)}

δ(q1, 1, L) = {(q2,ε)}

δ(q2, 1, L) = {(q2,ε)}

(1)

(2)

(3)

(4)

(5)

(6)

(7)

//if ε read & stack hits bottom,accept

// illegal, stringrejected

δ(q2, ε, #) = {(q2,ε)}

δ(q2, ε, L) = Ø

δ(q1, ε, #) = {(q2,ε)} // n=0,accept(8)

 0011

accept

 (q1, 0 011, #) |-

(q1, 0 11, L#) |-

(q1, 1 1, LL#) |-

(q2, 1, L#) |-

(q2, e, #) |-

(q2, e, e):

 011

 (q1, 0 11, #) |-

(q1, 1 1, L#) |-

(q2, 1, #) |-

Ø : reject

 Try 001

340

 Example: balanced parentheses,

 e.g. in-language: ((())()), or (())(), but not-in-language: ((())

M = ({q1}, {―(―, ―)‖}, {L, #}, δ, q1, #, Ø)

δ:

δ(q1,), #) = Ø // illegal, string rejected

δ(q1, (, L) = {(q1, LL)}

δ(q1,), L) = {(q1, ε)}

δ(q1, ε, #) = {(q1, ε)} //if ε read & stack hits bottom, accept

(1) δ(q1, (, #) = {(q1, L#)} // stack order: L-on top-then- # lower

(2)

(3)

(4)

(5)

(6) δ(q1, ε, L) = Ø // illegal, string rejected

// What does it mean? When will it

happen?

 Goal: (acceptance)

 Read the entire input string

 Terminate with an empty stack

 Informally, a string is accepted if there exists a computation that uses

up all the input and leaves the stack empty.

 How many rules should be in delta?

341

StackCurrent Input

(())

())

L#

Transition

-- initial status

(1) - Could have applied rule

(5), but

)) LL# (3) it would have done no

good

) L#

#ε

ε -

(4)

(4)

(5)

q0

 Transition Diagram:

(, # | L#

ε, # | ε (, L | LL

), L | ε

 Example Computation:

 Example PDA #1: For the language {x | x = wcwr and w in {0,1}*, but

sigma={0,1,c}}

 Is this a regular language?

 Note: length |x| is odd

M = ({q1, q2}, {0, 1, c}, {#, B, G}, δ, q1, #, Ø)

δ:

(9) δ(q1, 1, #) = {(q1, G#)}

(10) δ(q1, 1, B) = {(q1, GB)}

(11) δ(q1, 1, G) = {(q1, GG)}

(12) δ(q2, 1, G) = {(q2, ε)}

(1) δ(q1, 0, #) = {(q1, B#)}

(2) δ(q1, 0, B) = {(q1, BB)}

(3) δ(q1, 0, G) = {(q1, BG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

 Notes:

 Stack grows leftwards

 Only rule #8 is non-deterministic.

 Rule #8 is used to pop the final stack symbol off at the end of acomp3ut4at2ion.

343

 Example Computation:

(9) δ(q1, 1, #) = {(q1, G#)}

(10) δ(q1, 1, B) = {(q1, GB)}

(11) δ(q1, 1, G) = {(q1, GG)}

(12) δ(q2, 1, G) = {(q2, ε)}

(1) δ(q1, 0, #) = {(q1, B#)}

(2) δ(q1, 0, B) = {(q1, BB)}

(3) δ(q1, 0, G) = {(q1, BG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied Rules Applicable

q1 01c10 # (1)

q1 1c10 B# (1) (10)

q1 c10 GB# (10) (6)

q2 10 GB# (6) (12)

q2 0 B# (12) (7)

q2 ε # (7) (8)

q2 ε ε (8) -

344

 Example Computation:

(9) δ(q1, 1, #) = {(q1, G#)}

(10) δ(q1, 1, B) = {(q1, GB)}

(11) δ(q1, 1, G) = {(q1, GG)}

(12) δ(q2, 1, G) = {(q2, ε)}

(1) δ(q1, 0, #) = {(q1, B#)}

(2) δ(q1, 0, B) = {(q1, BB)}

(3) δ(q1, 0, G) = {(q1, BG)}

(4) δ(q1, c, #) = {(q2, #)}

(5) δ(q1, c, B) = {(q2, B)}

(6) δ(q1, c, G) = {(q2, G)}

(7) δ(q2, 0, B) = {(q2, ε)}

(8) δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied

q1 1c1 #

q1 c1 G# (9)

q2 1 G# (6)

q2 ε # (12)

q2 ε ε (8)

 Questions:

 Why isn’t δ(q2, 0, G) defined?

 Why isn’t δ(q2, 1, B) defined?

 TRY: 11c1

 Example PDA #2: For the language {x | x = wwr and w in {0,1}*}

 Note: length |x| is even

M = ({q1, q2}, {0, 1}, {#, B, G}, δ, q1, #, Ø)

δ:

(1) δ(q1, 0, #) = {(q1, B#)}

(2) δ(q1, 1, #) = {(q1, G#)}

(3) δ(q1, 0, B) = {(q1, BB), (q2, ε)} (6) δ(q1, 1, G) = {(q1, GG), (q2, ε)}

(4) δ(q1, 0, G) = {(q1, BG)} (7) δ(q2, 0, B) = {(q2, ε)}

(5) δ(q1, 1, B) = {(q1, GB)} (8) δ(q2, 1, G) = {(q2, ε)}

(9) δ(q1, ε, #) = {(q2, #)}

(10) δ(q2, ε, #) = {(q2, ε)}

 Notes:

 Rules #3 and #6 are non-deterministic: two optionseach

 Rules #9 and #10 are used to pop the final stack symbol off at the end of a

computation.

 Example Computation:

(6)

(7)

(8)

(1)

(2)

(3)

(4)

(5)

δ(q1, 0, #) = {(q1, B#)}

δ(q1, 1, #) = {(q1, G#)}

δ(q1, 0, B) = {(q1, BB), (q2, ε)}

δ(q1, 0, G) = {(q1, BG)}

δ(q1, 1, B) = {(q1, GB)}

(9)

(10)

δ(q1, 1, G) = {(q1, GG), (q2, ε)}

δ(q2, 0, B) = {(q2, ε)}

δ(q2, 1, G) = {(q2, ε)}

δ(q1, ε, #) = {(q2, ε)}

δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied Rules Applicable

q1 000000 # (1), (9)

q1 00000 B# (1) (3), both options

q1 0000 BB# (3) option #1 (3), both options

q1 000 BBB# (3) option #1 (3), both options

q2 00 BB# (3)option #2 (7)

q2 0 B# (7) (7)

q2 ε # (7) (10)

q2 ε ε (10)

 Questions:

 What is rule #10 used for?

 What is rule #9 used for?

 Why do rules #3 and #6 have options?

 Why don’t rules #4 and #5 have similar options? [transition not possible if the previous
input symbol was different]

 Negative Example Computation:

(6)

(7)

(8)

(1)

(2)

(3)

(4)

(5)

δ(q1, 0, #) = {(q1, B#)}

δ(q1, 1, #) = {(q1, G#)}

δ(q1, 0, B) = {(q1, BB), (q2, ε)}

δ(q1, 0, G) = {(q1, BG)}

δ(q1, 1, B) = {(q1, GB)}

(9)

(10)

δ(q1, 1, G) = {(q1, GG), (q2, ε)}

δ(q2, 0, B) = {(q2, ε)}

δ(q2, 1, G) = {(q2, ε)}

δ(q1, ε, #) = {(q2, ε)}

δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied

q1 000 #

q1 00 B# (1)

q1 0 BB# (3) option #1

(q2, 0, #) by option 2

q1 ε BBB# (3) option #1 -crashes, no-rule to apply-

(q2, ε, B#) by option 2

-rejects: end of string but not emptystack-

 Example Computation:

(6)

(7)

(8)

(1)

(2)

(3)

(4)

(5)

δ(q1, 0, #) = {(q1, B#)}

δ(q1, 1, #) = {(q1, G#)}

δ(q1, 0, B) = {(q1, BB), (q2, ε)}

δ(q1, 0, G) = {(q1, BG)}

δ(q1, 1, B) = {(q1, GB)}

(9)

(10)

δ(q1, 1, G) = {(q1, GG), (q2, ε)}

δ(q2, 0, B) = {(q2, ε)}

δ(q2, 1, G) = {(q2, ε)}

δ(q1, ε, #) = {(q2, ε)}

δ(q2, ε, #) = {(q2, ε)}

State Input Stack Rule Applied

q1 010010 #

q1 10010 B# (1) From (1) and (9)

q1 0010 GB# (5)

q1 010 BGB# (4)

q2 10 GB# (3) option #2

q2 0 B# (8)

q2 ε # (7)

q2 ε ε (10)

 Exercises:

 0011001100 // how many total options the machine (or you!) may need to try before
rejection?

 011110

 0111

Formal Definitions for PDAs

 Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA.

 Definition: An instantaneous description (ID) is a triple (q, w, γ), where q is in

Q, w is in Σ* and γ is in Г*.

 q is the current state

 w is the unused input

 γ is the current stack contents

 Example: (for PDA #2)

(q1, 111, GBR) (q1, 11, GGBR)

(q1, 111, GBR) (q2, 11, BR)

(q1, 000, GR) (q2, 00, R)

 Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA.

 Definition: Let a be in Σ U {ε}, w be in Σ*, z be in Г, and α and β both be in Г*.

Then:

(q, aw, zα) |—M (p, w, βα)

if δ(q, a, z) contains (p, β).

 Intuitively, if I and J are instantaneous descriptions, then I |— J means that J

follows from I by one transition.

 Examples: (PDA #2)

(q1, 111, GBR) |— (q1, 11, GGBR)

w=11, and

(6) option #1, with a=1, z=G, β=GG,

α= BR

(q1, 111, GBR) |— (q2, 11, BR)

and

(6) option #2, with a=1, z=G, β= ε, w=11,

α= BR

(q1, 000, GR) |— (q2, 00, R) Is not true, For any a, z, β, w and α

 Examples: (PDA #1)

(q1, (())), L#) |— (q1, ())),LL#) (3)

 Definition: |—* is the reflexive and transitive closure of |—.

 I |—* I for each instantaneous description I

 If I |— J and J |—* K then I |—* K

 Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J

follows from I by zero or more transitions.

 Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by

empty stack, denoted LE(M), is the set

{w | (q0, w, z0) |—* (p, ε, ε) for some p in Q}

 Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by

final state, denoted LF(M), is the set

{w | (q0, w, z0) |—* (p, ε, γ) for some p in F and γ in Г*}

 Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by

empty stack and final state, denoted L(M), is the set

{w | (q0, w, z0) |—* (p, ε, ε) for some p in F}

 Lemma 1: Let L = LE(M1) for some PDA M1. Then there exits a PDA M2 such

that L = LF(M2).

 Lemma 2: Let L = LF(M1) for some PDA M1. Then there exits a PDA M2 such

that L = LE(M2).

 Theorem: Let L be a language. Then there exits a PDA M1 such that L = LF(M1)

if and only if there exists a PDA M2 such that L = LE(M2).

 Corollary: The PDAs that accept by empty stack and the PDAs that accept by

final state define the same class of languages.

 Note: Similar lemmas and theorems could be stated for PDAs that accept by

both final state and empty stack.

Back to CFG again:

PDA equivalent to CFG

 Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form

A –> aα

Where A is in V, a is in T, and α is in V*, then G is said to be in Greibach Normal

Form (GNF).

Only one non-terminal in front.

 Example:

S –> aAB | bB

A –> aA | a

B –> bB | c Language: (aa++b)b+c

 Theorem: Let L be a CFL. Then L – {ε} is a CFL.

 Theorem: Let L be a CFL not containing {ε}. Then there exists a GNF grammar

G such that L = L(G).

 Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

 Proof: Assume without loss of generality that ε is not in L. The construction can

be modified to include ε later.

Let G = (V, T, P, S) be a CFG, and assume without loss of generality that G is in

GNF. Construct M = (Q, Σ, Г, δ, q, z, Ø) where:

Q = {q}

Σ = T

Г = V

z = S

δ: for all a in Σ and A in Г, δ(q, a, A) contains (q, γ)

if A –> aγ is in P or rather:

δ(q, a, A) = {(q, γ) | A –> aγ is in P and γ is in Г*},

for all a in Σ and A in Г

 For a given string x in Σ* , M will attempt to simulate a leftmost derivation of x

with G.

 Example #1: Consider the following CFG in GNF.

S –> aS

S –> a

G is in GNF

L(G) = a+

Construct M as:

Q = {q}

Σ = T = {a}

Г = V = {S}

z = S

δ(q, a, S) = {(q, S), (q, ε)}

δ(q, ε, S) = Ø

 Is δ complete?

 Example #2: Consider the following CFG in GNF.

G is in GNF

L(G) = a+ b+ // This looks ok to me, one, two or more a’s in the

(1) S –> aA

(2) S –> aB

(3) A –> aA

(4)A –> aB
start

[Can you write a simpler equivalent CFG? Will itbe

(5) B –> bB

(6) B –> b
GNF?]

Construct M as:

Q = {q}

Σ = T = {a, b}

Г = V = {S, A, B}

z = S

From productions #1 and 2, S->aA, S->aB

From productions #3 and 4, A->aA,A->aB

From productions #5 and 6, B->bB,B->b

(1) δ(q, a, S) = {(q, A), (q, B)}

(2) δ(q, a, A) = {(q, A), (q, B)}

(3) δ(q, a, B) = Ø

(4) δ(q, b, S) = Ø

(5) δ(q, b, A) = Ø

(6) δ(q, b, B) = {(q, B), (q, ε)}

(7) δ(q, ε, S) = Ø

(8) δ(q, ε, A) = Ø

(9) δ(q, ε, B) =Ø Is δ complete?

360

 For a string w in L(G) the PDA M will simulate a leftmost derivation ofw.

 If w is in L(G) then (q, w, z0) |—* (q, ε, ε)

 If (q, w, z0) |—* (q, ε, ε) then w is in L(G)

 Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost
derivation has form:

=> t1t2…ti A1A2…Am

terminals non-terminals

 And each step in the derivation (i.e., each application of a production) adds a terminal and
some non-terminals.

A1 –> ti+1α

=> t1t2…ti ti+1 αA1A2…Am

 Each transition of the PDA simulates one derivation step. Thus, the ith step of thePDAs’
computation corresponds to the ith step in a corresponding leftmost derivation with the
grammar.

 After the ith step of the computation of the PDA, t1t2…ti+1 are the symbols that have already
been read by the PDA and αA1A2…Amare the stackcontents.

 For each leftmost derivation of a string generated by the grammar, there is an

equivalent accepting computation of that string by the PDA.

 Each sentential form in the leftmost derivation corresponds to an instantaneous

description in the PDA’s corresponding computation.

 For example, the PDA instantaneous description corresponding to the sentential

form:

=> t1t2…ti A1A2…Am

would be:

(q, ti+1ti+2…tn , A1A2…Am)

 Example: Using the grammar from example #2:

S => aA (1)

=> aaA (3)

=> aaaA (3)

=> aaaaB (4)

=> aaaabB (5)

=> aaaabb (6)

 The corresponding computation of the PDA:

(rule#)/right-side#

 (q, aaaabb, S) |— (q, aaabb, A) (1)/1

|— (q, aabb, A) (2)/1

|— (q, abb, A) (2)/1

|— (q, bb, B) (2)/2

|— (q, b, B) (6)/1

|— (q, ε, ε) (6)/2

 String is read

 Stack is emptied

 Therefore the string is accepted by thePDA

G is in GNF
L(G) = a+b+

Grammar:
(1)
(2)
(3)
(4)
(5)
(6)

S –> aA
S –> aB
A –> aA
A –> aB
B –> bB
B –> b

(1) δ(q, a, S) = {(q, A), (q, B)}
(2) δ(q, a, A) = {(q, A), (q,B)}
(3) δ(q, a, B) = Ø
(4) δ(q, b, S) = Ø
(5) δ(q, b, A) = Ø
(6) δ(q, b, B) = {(q, B), (q, ε)}
(7) δ(q, ε, S) = Ø
(8) δ(q, ε, A) = Ø

(9) δ(q, ε, B) = Ø

 Another Example: Using the PDA from example #2:

(q, aabb, S) |— (q, abb, A) (1)/1

|— (q, bb, B) (2)/2

|— (q, b, B) (6)/1

|— (q, ε, ε) (6)/2

 The corresponding derivation using the grammar:

S => aA (1)

=> aaB (4)

=> aabB (5)

=> aabb (6)

 Example #3: Consider the following CFG in GNF.

G is in GNF

(1) S –> aABC

(2) A –> a

(3) B –> b

(4) C –> cAB

(5) C –> cC

Construct M as:

Q = {q}

Σ = T = {a, b, c}

Г = V = {S, A, B, C}

z = S

S->aABC

A->a

(9) δ(q, c, S) = Ø

(10) δ(q, c, A) = Ø

(11) δ(q, c, B) = Ø

(12) δ(q, c, C) = {(q, AB), (q, C))} // C->cAB|cC

B->b

(1) δ(q, a, S) = {(q,ABC)}

(2) δ(q, a, A) = {(q, ε)}

(3) δ(q, a, B) = Ø

(4) δ(q, a, C) = Ø

(5) δ(q, b, S) = Ø

(6) δ(q, b, A) = Ø

(7) δ(q, b, B) = {(q, ε)}

(8) δ(q, b, C) = Ø

(13)

(14)

(15)

(16)

δ(q, ε, S) = Ø

δ(q, ε, A) = Ø

δ(q, ε, B) = Ø

δ(q, ε, C) = Ø

Language?
aab cc* ab

 Notes:

 Recall that the grammar G was required to be in GNF before the construction could be

applied.

 As a result, it was assumed at the start that ε was not in the context-free languageL.

 What if ε is in L? You need to add ε back.

 Suppose ε is in L:

1) First, let L’ = L – {ε}

Fact: If L is a CFL, then L’ = L – {ε} is a CFL.

By an earlier theorem, there is GNF grammar G such that L’ = L(G).

2) Construct a PDA M such that L’ =

LE(M) How do we modify M to accept

ε?

Add δ(q, ε, S) = {(q, ε)}? NO!!

 Counter Example:

Then L’ = {b, ab, aab, aaab,Consider L = {ε, b, ab, aab, aaab, …}= ε + a*b

…} = a*b

 The GNF CFG for L’:

P:

(1) S –> aS

(2) S –> b

 The PDA M Accepting L’:

Q = {q}

Σ = T = {a, b}

Г = V = {S}

z = S

δ(q, a, S) = {(q, S)}

δ(q, b, S) = {(q, ε)}

δ(q, ε, S) = Ø

How to add ε to L‟now?

δ(q, a, S) = {(q, S)}

δ(q, b, S) = {(q, ε)}

δ(q, ε, S) = Ø

 If δ(q, ε, S) = {(q, ε)} is added then:

L(M) = {ε, a, aa, aaa, …, b, ab, aab, aaab, …}, wrong!

It is like, S -> aS | b | ε

which is wrong!

Correct grammar should be:

(1) S1 -> ε | S, with new starting non-terminal S1

(2) S –> aS

(3) S –> b

For PDA, add a new Stack-bottom symbol S1, with new transitions:

δ(q, ε, S1) = {(q, ε), (q, S)}, where S was the previous stack-bottom of M

Alternatively, add a new start state q’ with transitions:

δ(q’, ε, S) = {(q’, ε), (q, S)}

 Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

 Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that LE(M)

= L(G).

 Can you prove it?

 First step would be to transform an arbitrary PDA to a single state PDA!

 Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff

there exists a PDA M such that L = LE(M).

 Corollary: The PDAs define the CFLs.

Sample CFG to GNF transformation:
 0n1n, n>=1

 S -> 0S1 | 01

 GNF:

 S -> 0SS1 | 0S1

 S1 -> 1

 Note: in PDA the symbol S will float on top, rather

than stay at the bottom!

 Acceptance of string by removing last S1 at stack

bottom

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

Computer Science and Engineering

Department

IV Semester

Theory of Computation

Unit- V

Unit – V

Syllabus:

Turing machine: Turing machine, definition, model,
design of Turing machine, computable functions,
recursively enumerable languages, Church's
hypothesis, counter machine, types of Turing machines
(proofs not required), linear bounded automata and
context sensitive language, Chomsky hierarchy of
languages.

Turing Machines
(TM)

 Generalize the class of CFLs:

Recursively Enumerable Languages

Recursive Languages

Context-Free Languages

Regular Languages

Non-Recursively EnumerableLanguages

 Another Part of the Hierarchy:

Non-Recursively EnumerableLanguages

Recursively Enumerable Languages

Recursive Languages

Context-Sensitive Languages

Context-Free Languages - ε

Regular Languages - ε

 Recursively enumerable languages are also

known as type 0

languages.

 Context-sensitive languages are also known

as type 1 languages.

 Context-free languages are also known as

type 2 languages.

 Regular languages are also known as type 3

languages.

375

 TMs model the computing capability of a general purpose computer,
which informally can be described as:

 Effective procedure

 Finitely describable

 Well defined, discrete, ―mechanical‖ steps

 Always terminates

 Computable function

 A function computable by an effective procedure

 TMs formalize the above notion.

 Church-Turing Thesis: There is an effective procedure for solving a
problem if and only if there is a TM that halts for all inputs and solves
the problem.

 There are many other computing models, but all are equivalent to
or subsumed by TMs. There is no more powerful machine
(Technically cannot be proved).

 DFAs and PDAs do not model all effective procedures or computable

functions, but only a subset.

376

Deterministic Turing Machine
(DTM)

…….. ……..

Two-way, infinite tape, broken into cells, each
containing one symbol.

Two-way, read/write tape head.

An input string is placed on the tape, padded to the
left and right infinitely with blanks, read/write head is
positioned at the left end of input string.

Finite

Control

B B 0 1 1 0 0 B B

Finite control, i.e., a program, containing the position of the
read head, current symbol being scanned, and the current
state.

 In one move, depending on the current state and the current
symbol being scanned, the TM 1) changes state, 2) prints a
symbol over the cell being scanned, and 3) moves its’ tape
head one cell left or right.

Many modifications possible, but Church-Turing declares
equivalence of possible, but Church-Turing declares
equivalence of all

Formal Definition of a DTM
 A DTM is a seven-tuple:

M = (Q, Σ, Γ, δ, q0, B, F)

Q A finite set of states

Σ A finite input alphabet, which is a subset of Γ– {B}

Γ A finite tape alphabet, which is a strict superset of Σ

B A distinguished blank symbol, which

is in Γ q0 The initial/starting state, q0 is

in Q

F A set of final/accepting states, which is a subset of Q

δ A next-move function, which is a mapping (i.e., may be

undefined) from

Q x Γ –> Q x Γ x {L,R}

Intuitively, δ(q,s) specifies the next state, symbol to be written, and the

direction of tape head movement by M after reading symbol s while in

state q.

 Example #1: {w | w is in {0,1}* and w

ends with a 0}

0

00

10

10110

Not ε

Q = {q0, q1, q2}

Γ = {0, 1, B}

Σ = {0, 1} F = {q2}

δ:
0 1 B

->q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, 0, R) - -
q2* - - -

 q0 is the start state and the ―scan right‖ state, until hits B

 q1 is the verify 0 state

 q2 is the final state

 Example #2: {0n1n | n ≥ 1}
0 1 X Y B

->q0 (q1, X, R) - - (q3, Y, R)0’s finished-

q1 (q1, 0, R)ignore1 (q2, Y, L) - (q1, Y, R) ignore2 - (more 0’s)

q2 (q2, 0, L) ignore2 - (q0, X, R) (q2, Y, L) ignore1 -

q3 - - (more 1’s) - (q3, Y, R) ignore (q4, B, R)

q4* - - - - -

 Sample Computation: (on 0011), presume state q looks rightward

q00011BB.. |— Xq1011

|— X0q111

|— Xq20Y1

|— q2X0Y1

|— Xq00Y1

|— XXq1Y1

|— XXYq11

|— XXq2YY

|— Xq2XYY

|— XXq0YY

|— XXYq3Y B…

|— XXYYq3 BB…

|— XXYYBq4

Making a TM for {0n1n | n >= 1}
Try n=2 or 3 first.

• q0 is on 0, replaces with the character to X, changes state to q1, moves right

• q1 sees next 0, ignores (both 0’s and X’s) and keeps moving right

• q1 hits a 1, replaces it with Y, state to q2, moves left

• q2 sees a Y or 0, ignores, continues left

• when q2 sees X, moves right, returns to q0 for looping step 1 through 5

• when finished, q0 sees Y (no more 0’s), changes to pre-final state q3

•q3 scans over all Y’s to ensure there is no extra 1 at the end (to crash on seeing

any 0 or 1)

• when q3 sees B, all 0’s matched 1’s, done, changes to final state q4

• blank line for final state q4

Try n=1 next.

Make sure unbalanced 0’s and 1’s, or mixture of 0-1’s,

―crashes‖ in a state not q4, as it should be

q00011BB.. |— Xq1011

|— X0q111

|— Xq20Y1

|— q2X0Y1

|— Xq00Y1

|— XXq1Y1

|— XXYq11

|— XXq2YY

|— Xq2XYY

|— XXq0YY

|— XXYq3Y B…
|— XXYYq3 BB…
|— X3X8YY0Bq4

 Same Example #2: {0n1n | n ≥ 1}

0 1 X Y B

q0 (q1, X, R) - - (q3, Y, R) -

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) -

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) -

q3 - - - (q3, Y, R) (q4, B, R)

q4 - - - - -

Logic: cross 0’s with X’s, scan right to look for corresponding 1, on finding it cross it with Y,

and scan left to find next leftmost 0, keep iterating until no more 0’s, then scan right looking

for B.

 The TM matches up 0’s and 1’s

 q1 is the ―scan right‖ state, looking for 1

 q2 is the ―scan left‖ state, looking for X

 q3 is ―scan right‖, looking forB

 q4 is the finalstate

Can you extend the machine to includen=0?

How does the input-tape look like for stringepsilon?

 Other Examples:

00

001

000111

11

011

 Roger Ballard’s TM for Example #2, without any extra Tape Symbol: {0n1n |

n ≥ 0}

q0

0

(q1, B, R)

1 B

(q4, B, R)

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 - (q3, B, L) -

q3 (q3, 0, L) (q3, 1, L) (q0, B, R)

*q4 - - -

Logic: Keep deleting 0 and corresponding 1 from extreme ends, until none left.

 q0 deletes a leftmost 0 and let q1 scan through end of string, q0 accepts on epsilon

 q1 scans over the string and makes q2 expecting 1 on the left

 q2 deletes 1 and let q3 ―scan left‖ looking for the start of current string

 q3 lets q0 start the next iteration

 q4 is the finalstate

Any bug?

Try on:

00

001

000111

11

011

 And his example of a correct TM for the language that goes on infinite loop outside language: {0n1n

| n ≥ 0}

q4
*

Logic: This machine still works correctly for all strings in the language,but start

a string with 1 (not in the language),

and it loops on B1 for ever.

q0

0

(q1, B, R)

1

(q3, 1, L)

B

(q4, B, R)

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 - (q3, B, L) -

q3 (q3, 0, L)
-

(q3, 1, L)
-

(q0, B, R)
-

 Exercises: Construct a DTM for each of the

following.

 {w | w is in {0,1}* and w ends in 00}

 {w | w is in {0,1}* and w contains at least two

0’s}

 {w | w is in {0,1}* and w contains at least one

0 and one 1}

 Just about anything else (simple) you can

think of

385

Formal Definitions for DTMs

 Let M = (Q, Σ, Г, δ, q0, B, F) be a TM.

 Definition: An instantaneous description (ID) is a triple
α1qα2, where:

 q, the current state, is in Q

 α1α2, is in Г*, and is the current tape contents up to
the rightmost non-blank symbol, or the symbol to the
left of the tape head, whichever is rightmost

 The tape head is currently scanning the first symbol of
α2

 At the start of a computation α1= ε

 If α2= ε then a blank is being scanned

 Example: (for TM #1)

q00011 Xq1011 X0q111 Xq20Y1 q2X0Y1

Xq00Y1

XXq0YY

XXq1Y1

XXYq3Y

XXYq11

XXYYq3

XXq2YY

XXYYBq4

Xq2XYY

 Suppose the following is the current ID of a DTM

x1x2…xi-1qxixi+1…xn

Case

1) δ(q, xi) = (p, y, L)

(a)if i = 1 then qx1x2…xi-1xixi+1…xn |— pByx2…xi-

1xixi+1…xn

(b)else x1x2…xi-1qxixi+1…xn |— x1x2…xi-2pxi-

1yxi+1…xn

 If any suffix of xi-1yxi+1…xn is blank then it is

deleted.

Case 2) δ(q, xi) = (p, y, R)

x1x2…xi-1qxixi+1…xn |— x1x2…xi-1ypxi+1…xn

If i>n then the ID increases in length by 1 symbol

x1x2…xnq |— x1x2…xnyp

 Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and
let w be a string in Σ*.
Then w is accepted by M iff

q0w |—* α1pα2

where p is in F and α1 and α2 are in Г*

 Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The
language accepted by M, denoted L(M), is the set

,w | w is in Σ* and w is accepted by M}

Notes:
 In contrast to FA and PDAs, if a TM simply passes

through a final state then the string is accepted.
 Given the above definition, no final state of a TM

need to have any
transitions. Henceforth, this is our assumption.

 If x is NOT in L(M) then M may enter an infinite
loop, or halt in a non- final state.

 Some TMs halt on ALL inputs, while others may
not. In either case the language defined by TM is
still well defined.

 Definition: Let L be a language. Then L is recursively
enumerable if there exists a TM M such that L = L(M).

 If L is r.e. then L = L(M) for some TM M, and

 If x is in L then M halts in a final (accepting) state.
 If x is not in L then M may halt in a non-final (non-

accepting) state or no transition is available, or loop
forever.

 Definition: Let L be a language. Then L is recursive if there exists a
TM M
such that L = L(M) and M halts on all inputs.

 If L is recursive then L = L(M) for some TM M, and

 If x is in L then M halts in a final (accepting) state.
 If x is not in L then M halts in a non-final (non-accepting)

state or no transition is available (does not go to infinite
loop).

Notes:

 The set of all recursive languages is a subset of the set
of all recursively enumerable languages

 Terminology is easy to confuse: A TM is not
recursive or recursively enumerable, rather a
language is recursive or recursively enumerable.

 Recall the

Hierarchy:

Non-Recursively Enumerable Languages

Recursively Enumerable Languages

Recursive Languages Context-Sensitive Languages

Context-Free Languages - ε

Regular Languages - ε

 Observation: Let L be an r.e. language. Then there is an
infinite list M0, M1, … of TMs such that L = L(Mi).

 Question: Let L be a recursive language, and M0, M1, … a
list of all TMs such that L = L(Mi), and choose any i>=0.
Does Mi always halt?

 Answer: Maybe, maybe not, but at least one in the list
does.

 Question: Let L be a recursive enumerable language, and
M0, M1, … a list of
all TMs such that L = L(Mi), and choose any i>=0. Does Mi
always halt?

 Answer: Maybe, maybe not. Depending on L, none
might halt or some may halt.

 If L is also recursive then L is recursively enumerable, recursive is
subset of r.e.

 Question: Let L be a r.e. language that is not recursive (L is
in r.e. – r), and M0, M1, … a list of all TMs such that L =
L(Mi), and choose any i>=0. Does Mi always halt?

 Answer: No! If it did, then L would not be in r.e. – r

L is Recursively enumerable:
TM exist: M0, M1, …
They accept string in L, and do not accept any string outside L

L is Recursive:
at least one TM halts on L and on ∑*-L, others may or may not

L is Recursively enumerable but not Recursive:
TM exist: M0, M1, …
but none halts on all x in ∑*-L
M0 goes on infinite loop on a string p in ∑*-L, while M1 on q in ∑*-L
However, each correct TM accepts each string in L, and none in ∑*-L

L is not R.E:
no TM exists

 Let M be a TM.

 Question: Is L(M) r.e.?

 Answer: Yes! By definition it is!

 Question: Is L(M) recursive?

 Answer: Don’t know, we don’t have enough

information.

 Question: Is L(M) in r.e – r?

 Answer: Don’t know, we don’t have enough

information.

 Let M be a TM that halts on all inputs:

 Question: Is L(M) recursively enumerable?

 Answer: Yes! By definition it is!

 Question: Is L(M) recursive?

 Answer: Yes! By definition it is!

 Question: Is L(M) in r.e – r?

 Answer: No! It can’t be. Since M always halts,
L(M) is recursive.

 Let M be a TM.
 As noted previously, L(M) is recursively

enumerable, but may or may not be recursive.
 Question: Suppose, we know L(M) is recursive.

Does that mean M always halts?

 Answer: Not necessarily. However, some TM M’
must exist such that L(M’)
= L(M) and M’ always halts.

 Question: Suppose that L(M) is in r.e. – r. Does M
always halt?

 Answer: No! If it did then L(M) would be recursive
and therefore not in r.e. –r.

 Let M be a TM, and suppose that M loops
forever on some string x.
 Question: Is L(M) recursively enumerable?

 Answer: Yes! By definition it is. But, obviously x is not
in L(M).

 Question: Is L(M) recursive?

 Answer: Don’t know. Although M doesn’t always halt,
some other TM M’may exist such that L(M’) = L(M)
and M’ always halts.

 Question: Is L(M) in r.e. – r?

 Answer: Don’t know.

May be another M’ will halt on x, and on all strings!
May be no TM for this

L(M) does halt on all strings! We just do not know!

Modifications of the Basic TM Model

 Other (Extended) TM Models:
 One-way infinite tapes

 Multiple tapes and tape heads

 Non-Deterministic TMs

 Multi-Dimensional TMs (n-dimensional tape)

 Multi-Heads

 Multiple tracks

All of these extensions are equivalent to the
basic DTM model

Closure Properties for Recursive and Recursively
Enumerable Languages

 TMs model General Purpose (GP) Computers:
 If a TM can do it, so can a GP computer

 If a GP computer can do it, then so can a TM

If you want to know if a TM can do X, then some equivalent
question are:
 Can a general purpose computer do X?

 Can a C/C++/Java/etc. program be written to do X?

For example, is a language L recursive?
 Can a C/C++/Java/etc. program be written that always halts and accepts

L?

398

 Conceivably, M could be provided with an output for ―no,‖ but this output
cannot be counted on. Consequently, we simply ignore it.

 TM Block Diagrams:

 If L is a recursive language, then a TM M that accepts L and always halts
can be pictorially represented by a ―chip‖ or ―box‖ that has one input and
two outputs.

yes

w M

no

 If L is a recursively enumerable language, then a TM M that accepts L can
be pictorially represented by a ―box‖ that has one output.

yes

w M

 Note That:

 M‟ accepts iff M does not

 M‟ always halts since M always halts

From this it follows that the complement of L is recursive.

 Question: How is the construction achieved? Do we simply complement the
final states in the TM? No! A string in L could end up in the complement of L.
 Suppose q5 is an accepting state in M, but q0 is not.

 If we simply complemented the final and non-final states, then q0 would be an
accepting state in M‟ but q5 wouldnot.

 Since q0 is an accepting state, by definition all strings are accepted by M‟

now M

no

 Theorem 1: The recursive languages are closed with respect to
complementation, i.e., if L is a recLursive*lanLguage, then so is

 Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M‟
as follows:

M’
yes

yes

is recursive.

 Theorem 2: The recursive languages are closed with respect to union,

i.e., if L1 and L2 are recursive languages,Lth
3
en Lso1is L 2

 Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and

M1 and M2 always halts. Construct TM M‟ asfollows:

w

yes

no

M1

yes

M2 no

start

M’

It follows from this that L3 L1 L 2

 Note That:

 L(M’) = L(M1) L(M2)

 L(M’) is a subset of L(M1) U L(M2)

 L(M1) U L(M2) is a subset of L(M’)

 M‟ always halts since M1 and M2 always halt

 Note That:

 L(M’) = L

 L(M’) is a subset of L
 L is a subset of L(M’)

 M’ is TM for L

 M’ always halts since either M1 or M2 halts for any
given string

 M’ shows that L is recursive

It follows from this that L (and therefore its’
complement) is recursive.

So, L is also recursive (we proved it before).

is recursively enumerable but not recursive, and the other

is not recursively enumerable, or

is recursively enumerable

 Corollary of Thm 4: Let L be a subset of Σ*. Then one
of the following must be true
 Both L and L are recursive.
 One of L andL

 Neither L norL

 In other words, it is impossible to have both L and

Lr.e. but not recursive

 In terms of the hierarchy: (possibility #1)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L

 In terms of the hieararchy: (possibility #2)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages
L L

 In terms of the hierarchy: (possibility #3)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L L

 In terms of the hierarchy: (Impossibility #1)

Recursive Languages

Non-Recursively Enumerable Languages

L L

Recursively Enumerable Languages

 In terms of the hierarchy: (Impossibility #2)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively Enumerable Languages

L

L

 In terms of the hierarchy: (Impossibility #3)

Recursive Languages

Recursively Enumerable Languages

Non-Recursively EnumerableLanguages

L

L

 Note: This gives/identifies three
approaches to show that a language is not
recursive.
 Show that the language’s complement is not

recursive, in one of the two ways:
 Show that the language’s complement is

recursively enumerable but not recursive

 Show that the language’s complement is not
even recursively enumerable

 A Related Problem We Will Consider First: (P3)
Input: Turing machine M with input alphabet Σ and one
final state, and string w in Σ*.
Question: Is w in L(M)?

 Analogy:

Input: DFA M with input alphabet Σ and

string w in Σ*. Question: Is w in L(M)?
Is this problem (regular language) decidable? Yes! DFA
always accepts or rejects.

412

The Halting Problem - Background
 Definition: A decision problem is a problem having a

yes/no answer (that one presumably wants to solve
with a computer). Typically, there is a list of parameters
on which the problem is based.

 Given a list of numbers, is that list sorted?

 Given a number x, is x even?

 Given a C program, does that C program contain any
syntaxerrors?

 Given a TM (or C program), does that TM contain an
infinite loop?

-

Statement of the Halting Problem

 Practical Form: (P1)

Input: Program P and input I.

Question: Does P terminate on input I?
 Theoretical Form: (P2)

Input: Turing machine M with input alphabet Σ and string w in

Σ*. Question: Does M halt on w?

 A Related Problem We Will Consider First: (P3)
Input: Turing machine M with input alphabet Σ and one final state, and
string w in Σ*.
Question: Is w in L(M)?

 Analogy:

Input: DFA M with input alphabet Σ and string w in Σ*.

Question: Is w in L(M)?
Is this problem (regular language) decidable? Yes! DFA always
accepts or rejects.

 From a practical perspective, many decision problems do
not seem all that interesting. However, from a theoretical
perspective they are for the following two reasons:

 Decision problems are more convenient/easier to work
with when proving complexity results.

 Non-decision counter-parts can always be created & are
typically at least as difficult to solve.

 Over-All Approach:

 We will show that a language Ld is not recursively enumerable

 From this it will follow that is not recursive

 Using this we will show that a language Lu is not recursive

 From this it will follow that the halting problem is undecidable.

 As We Will See:

 P3 will correspond to the language Lu

 Proving P3 (un)decidable is equivalent to proving Lu (non)recursive

Ld

Converting the Problem to a Language
 Let M = (Q, Σ, Γ, δ, q1, B, {qn}) be a TM,where

Q = {q1, q2, … , qn}, order the states from 1 throughn Σ = {x1, x2} = {0, 1}

Γ = {x1, x2, x3} = {0, 1, B}

 Encode each transition:

δ(qi, xj) = (qk , xl,dm) where qi and qk are in ordered Q

xj and xl are in Σ,

and dm is in {L, R} = {d1, d2}

as:

0i10j10k10l10m where the number of 0’s indicate the corresponding id, and single

1 acts as a barrier

 The TM M can then be encoded as:

111code111code211code311 … 11coder111

where each codei is one transitions’ encoding, and 11’s are barriers between transitions

from the table row-major. Let this encoding of M be denoted by<M>.

Less Formally:

 Every state, tape symbol, and movement symbol is encoded as a sequence of 0’s:

q1, 0

q2, 00

q3

:

000

0 0

1 00

B 000

L 0

R 00

 Note that 1’s are not used to represent the above, since 1 is used as a special separator symbol.

 Example:

δ(q2, 1) = (q3 , 0,R)

Is encoded as:

00100100010100

0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

What is the L(M)?

Coding for the above table:

1110101010100110100101001001101000100100010110010100010100111

Are the followings correct encoding of a TM?

01100001110001

111111

 Definition:

Lt = {x | x is in {0, 1}* and x encodes a TM}

 Question: Is Lt recursive?

 Answer: Yes. [Check only for format, i.e. the order and number of 0’s and

1’s, syntax checking]

 Question: Is Lt decidable:

 Answer: Yes (same question).

The Universal Language

 Define the language Lu as follows:

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in

L(M)}

 Let x be in {0, 1}*. Then either:

1. x doesn’t have a TM prefix, in which case x is not in Lu

2. x has a TM prefix, i.e., x = <M,w> and either:

a) w is not in L(M), in which case x is not in Lu

b) w is in L(M), in which case x is in Lu

 Recall:

0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

 Which of the following are in Lu?

1110101010100110100101001001101000100100010110010100010100111

1110101010100110100101001001101000100100010110010100010100111011

10

1110101010100110100101001001101000100100010110010100010100111001

10111

01100001110001

111111

 Compare P3 and Lu:

(P3):

Input: Turing machine M with input alphabet Σ and one final state, and string w

in Σ*.

Question: Is w in L(M)?

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in

L(M)}

 Universal TM (UTM) is the machine for Lu

 presuming it is r.e.! Can you write a program to accept strings inLu?

 Notes:

 Lu is P3 expressed as a language

 Asking if Lu is recursive is the same as asking if P3 is decidable.

 Can you write a Halting program for accept/reject of strings in Sigma* ?

 We will show that Lu is not recursive, and from this it will follow that P3 is

un-decidable.

 From this we can further show that the Halting problem is un-decidable.

=> A general concept: a decision problem ≡ a formal language

 Define another language Ld as follows:
 [Ld_bar = {self accepting TM encodings}, everything else is Ld]

Ld = {x | x is in {0, 1}* and (a) either x is not a TM,

(b) or x is a TM, call it M, and x is not in L(M)} (1)
 Note, there is only one string x

 And, the questionreally is the complement of “does a TM accept its own encoding?” (Ld-bar‟s

complement)

 Let x be in {0, 1}*. Then either:

1. x is not a TM, in which case x is in Ld

2. x is a TM, call it M, and either:

a) x is not in L(M), in which case x is in Ld

b) x is in L(M), in which case x is not in Ld

 Recall:

0 1 B

q1 (q1, 0, R) (q1, 1, R) (q2, B, L)

q2 (q3, 0, R) - -

q3 - - -

 Which of the following are in Ld?

11101010101001101001010010011010001000100010110010100010100111

01100001110001

Change above machine to accept strings ending with 1: the encoding will not be in

Ld

 Lemma: Ld is not recursively enumerable. [No TM for Ld!!!]

Proof: (by contradiction)

Suppose that Ld is recursively enumerable. In other words, there exists a TM M suchthat:

Ld = L(M) (2)

Now suppose that w is a string encoding of M. (3)

Case 1) w is in Ld (4)

By definition of Ld given in (1), either w does not encode a TM, or w does encode a TM, call it M, and w is

not in L(M). But we know that w encodes a TM (3: that’s where it came from). Therefore:

w is not in L(M) (5)

But then (2) and (5) imply that w is not in Ld contradicting(4).

Case 2) w is not in Ld (6)

By definition of Ld given in (1), w encodes a TM, call it M,and:

w is in L(M) (7)

But then (2) and (7) imply that w is in Ld contradicting (6).

Since both case 1) and case 2) lead to a contradiction, no TM M can exist such that Ld = L(M). ThereforeLd

is not recursively enumerable.

L_u is recursively enumerable

(you may ignore this slide, for now)

Input the string

Decode the TM prefix, if it doesn't have one then the string is not in Lu

Otherwise, run/simulate the encoded TM on thesuffix

If it terminates and accepts then the original string is in Lu.

If a given string is in Lu, then the above algorithm will correctly determine that, halt and say yes.

If the given string is not in Lu, then there are threecases:

1)the string doesn't have a TM as a prefix. In this case the above algo correctly detects this fact, and

reports the string is not in Lu.

2)the string has a TM prefix, and the TM halts and rejects on the suffix. In this case the above algo

correctly reports the string is not in Lu.

3)the string has a TM prefix, but it goes into an infinite loop on the suffix. In this case the above algo

also goes into an infinite loop, but that’s ok since the string as a whole is not in Lu anyway, and we are

just trying to show there exists a TM for only accepting strings in Lu.

From this proof note that if the prefix TM is a DFA or PDA, then our machinewill also halt in the 3rd case

above, no matter what the suffix is.

-- due to Dr. Bernhard (edited by me)

 Define another language Lh:

Lh = {x | x is in {0, 1}* and x = <M,w> where M is

a TM encoding and M halts on

w}

Note that Lh is P2 expressed as a language:

(P2):
Input: Turing machine M with input alphabet
Σ and string w in Σ*. Question: Does M halt
on w?

430

 Theorem: Lh is not recursive.

 Proof: (by contradiction)

Suppose that Lh is recursive. Recall that:

Lh = {x | x is in {0, 1}* and x = <M,w> where M

is a TM encoding and M halts on w}

and

Lu = {x | x is in {0, 1}* and x = <M,w> where M

is a TM encoding and w is in L(M)}

Suppose that Lh = L(M’) where M’ is a TM that

always halts. Construct an algorithm (i.e., a TM

that always halts) for Lu as follows:

Suppose that M‟ always halts and Lh =

L(M’). It follows that:

 M’’ always halts

 L(M’’) = Lu

 The over-all logic of the proof is as follows:

1. If Lh is recursive, then so is Lu

2. Lu is not recursive

3. It follows that Lh is not recursive.

The second point was established previously.

The first point was established by the theorem on the

preceding slide.

This proof is also a reduction. Specifically, the problem of

recognizing Lu was reduced

to the problem of recognizing Lh.

[Lu and Lh both are recursively enumerable: for proof see

Dr. Shoaff!]

Examples of non-halting program:

http://cs.fit.edu/~ryan/tju/russell.c

http://cs.fit.edu/~ryan/tju/russell.scm

http://cs.fit.edu/~ryan/tju/russell.py

https://ex.fit.edu/owa/redir.aspx?REF=nf4ayQ_HIZ9wMJROFON1EyLzfOoI-O1XK1IlKfzU7yeEJSqPV2XTCAFodHRwOi8vY3MuZml0LmVkdS9-cnlhbi90anUvcnVzc2VsbC5j
http://cs.fit.edu/~ryan/tju/russell.scm
http://cs.fit.edu/~ryan/tju/russell.py

 Define another language Lq:

Lq = {x | x is in {0, 1}*, x encodes a TM M, and M does contain

an infinite loop} Or equivalently:

Lq = {x | x is in {0, 1}*, x encodes a TM M, and there exists no

string w in {0, 1}* such that M does not terminate on w}

Note that:

Lq = {x | x is in {0, 1}*, and either x does not encode a TM, or it does

encode a TM, call

it M,

and there exists a string w in {0, 1}* such that M does not

terminate on w}

Note that the above languages correspond to the

following problem: (P0):

Input: Program P.

Question: Does P contain an infinite loop?

Using the techniques discussed, what can we prove about Lq or its‟

complement?

More examples of non-recursive languages:
Lne = {x | x is a TM M and L(M) is not empty} is r.e.
but not recursive.
Le = {x | x is a TM M and L(M) is empty} is not r.e.
Lr = {x | x is a TM M and L(M) is recursive} is not r.e
Note that Lr is not the same as Lh = {x | x is a TM M
that always halts}

but Lh is in Lr.
Lnr = {x | x is a TM M and L(M) is not recursive} is not
r.e.

Roger‟s TM for balanced parenthesis:

() B

findPair (findPair2, "(", R) - (final, B, R)

findPair2 (findPair2, "(", R) (removePair, ")", L) -

removePair (fetch, "(", R) (fetch, ")", R) (goBack, B, L)

fetch (retrieve, "(", R) (retreive, ")", R) (retreive, B, R)

retreive (returnOpen, "(", L) (returnClosed, ")", L) (returnBlank, B, L)

returnOpen (writeOpen, "(", L) (writeOpen, ")", L) (writeOpen, B, L)

returnClosed (writeClosed, "(", L) (writeClosed, ")", L) (writeClosed, B, L)

returnBlank (writeBlank "(", L) (writeBlank, ")", L) (writeBlank, B, L)

writeOpen (removePair, "(", R) (removePair, "(", R) -

writeClosed (removePair, ")", R) (removePair, ")", R) -

writeBlank (removePair, B, R) (removePair, B, R) -

goBack - - (backAgain, B, L)

backAgain - - (seekFront, B, L)

seekFront (seekFront, "(", L) (seekFront, ")", L) (findPair, B, R)

final* - - -

On 111 111 as a TM encoding

<Quote> It was ambiguous, in my opinion, based on the definition in the Hopcroft book,
i.e., the definition in the Hopcroft book was not clear/precise enoughtto

account this special case. I don't have the book in front of me right now, but I think this is
the example I used in class: Consider the TM that has exactly one state, but no
transitions. Perfectly valid TM, and it would give us this encoding (111111). In that case
the encoded machine would accept sigma* because the highest numbered state wouldbe
q0, the only state, and that would be the final state under the Hopcroft encoding. Now
consider the TM that has exactly two states, but no transitions. Also a perfectly valid TM,
and it would give us the same encoding. In that case the encoded machine would not
accept anything because the final state is q1 (highest numbered state), and there is no
way to get to it. I used it only as a way to raise that issue in class, i.e., the the Hopcroft
definition is a bit ambiguous in thiscase.

One way to resolve the ambiguity is to require the encoding to specifically specify the
final state (at the end or something). In that case, 111111 isn't even a valid TM, since it
doesn't specify the final state. Another related question is, does a TM even have to have
any states at all to be a valid TM? The encoding would have to be able to isolate that as a
unique string also. <End Quote>

Phil Bernhard

