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UNIT-I 
INTRODUCTORY CONCEPTS AND BASIC LAWS OF HEAT 

TRANSFER 
 
 

Introduction:- We recall from our knowledge of thermodynamics that heat is a form of 

energy transfer that takes place from a region of higher temperature to a region of lower 

temperature solely due to the temperature difference between the two regions. With the 

knowledge of thermodynamics we can determine the amount of heat transfer for any 

system undergoing any process from one equilibrium state to another. Thus the 

thermodynamics knowledge will tell us only how much heat must be transferred to 

achieve a specified change of state of the system. But in practice we are more interested 

in knowing the rate of heat transfer (i.e. heat transfer per unit time) rather than the 

amount. This knowledge of rate of heat transfer is necessary for a design engineer to 

design all types of heat transfer equipments like boilers, condensers, furnaces, cooling 

towers, dryers etc.The subject of heat transfer deals with the determination of the rate of 

heat transfer to or from a heat exchange equipment and also the temperature at any 

location in the device at any instant of time.  
The basic requirement for heat transfer is the presence of a 

“temperature difference”. The temperature difference is the driving force for heat 

transfer, just as the voltage difference for electric current flow and pressure difference 

for fluid flow. One of the parameters ,on which the rate of heat transfer in a certain 

direction depends, is the magnitude of the temperature gradient in that direction. The 

larger the gradient higher will be the rate of heat transfer.  

 

1.2. Heat Transfer Mechanisms:- There are three mechanisms by which heat transfer 

can take place. All the three modes require the existence of temperature difference. 
The three mechanisms are: (i) conduction, (ii) convection and (iii) radiation 

 

1.2.1Conduction:- It is the energy transfer that takes place at molecular levels. 
Conduction is the transfer of energy from the more energetic molecules of a substance to 

the adjacent less energetic molecules as a result of interaction between the molecules. In 

the case of liquids and gases conduction is due to collisions and diffusion of the 

molecules during their random motion. In solids, it is due to the vibrations of the 

molecules in a lattice and motion of free electrons. 
 

Fourier’s Law of Heat Conduction:- The empirical law of conduction based on 

experimental results is named after the French Physicist Joseph Fourier. The law states 

that the rate of heat flow by conduction in any medium in any direction is proportional 

to the area normal to the direction of heat flow and also proportional to the 

temperature gradient in that direction. For example the rate of heat transfer in x-
direction can be written according to Fourier‟s law as 
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 Qx α − A (dT / dx) 

 
 

…………………….(1.1) 

 

or 
 

   Qx = − k A (dT / dx)  W………………….. ..(1.2) 
 

In equation (1.2), Qx is the rate of heat transfer in positive x-direction through area A 

of the medium normal to x-direction, (dT/dx) is the temperature gradient and k is the 
constant of proportionality and is a material property called “thermal conductivity”. 
Since heat transfer has to take place in the direction of decreasing temperature, (dT/dx) 
has to be negative in the direction of heat transfer. Therefore negative sign has to be 

introduced in equation (1.2) to make Qx positive in the direction of decreasing 

temperature, thereby satisfying the second law of thermodynamics. If equation (1.2) is 
divided throughout by A we have 

                                                                            qx = (Qx / A) = − k (dT / dx) W/m
2
………..(1.3) 

qx is called the heat flux. 

 

Thermal Conductivity: - The constant of proportionality in the equation of Fourier‟s 
law of conduction is a material property called the thermal conductivity.The units of 

thermal conductivity can be obtained from equation (1.2) as follows:  
 

Solving for k from Eq. (1.2) we have  k = − qx / (dT/dx) 

 

Therefore units of k = (W/m
2
 ) (m/ K) = W / (m – K) or W / (m – 

0
 C). Thermal 

conductivity is a measure of a material‟s ability to conduct heat. The thermal 
conductivities of materials vary over a wide range as shown in Fig. 1.1.  

It can be seen from this figure that the thermal conductivities of gases such as 

air vary by a factor of 10 
4
 from those of pure metals such as copper. The kinetic theory 

of gases predicts and experiments confirm that the thermal conductivity of gases is 
proportional to the square root of the absolute temperature, and inversely proportional 
to the square root of the molar mass M. Hence, the thermal conductivity of gases 
increases with increase in temperature and decrease with increase in molar mass. It is for 
these reasons that the thermal conductivity of helium (M=4) is much higher than those of 
air (M=29) and argon (M=40).For wide range of pressures encountered in practice the 
thermal conductivity of gases is independent of pressure.  

The mechanism of heat conduction in liquids is more complicated due to the 

fact that the molecules are more closely spaced, and they exert a stronger inter-molecular 

force field. The values of k for liquids usually lie between those for solids and gases. 

Unlike gases, the thermal conductivity for most liquids decreases with increase in 

temperature except for water. Like gases the thermal conductivity of liquids decreases 

with increase in molar mass. 
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Fig.1.2: Radiation exchange:  

 

 
 
is emitted by the surface originates from the thermal energy of matter bounded by the 
surface, and the rate at which this energy is released per unit area is called as the surface 
emissive power E.An ideal surface is one which emits maximum emissive power and is 
called an ideal radiator or a black body.Stefan-Boltzman‟s law of radiation states that 
the emissive power of a black body is proportional to the fourth power of the absolute 

temperature of the body. Therefore if Eb is the emissive power of a black body at 

temperature T 
0
K, then 

 

Eb α T 
4
 

 
(or) 

Eb = ζ T 
4
 ………………………………….(1.7) 

 

ζ  is the Stefan-Boltzman constant (σ = 5.67 x 10 
− 8

 W / (m
2
 – K

4
) ). For a non black 

surface the emissive power is given by 
 

E = ε ζ T 
4
…………………………………(1.8) 

 

where ε is called the emissivity of the surface (0 ≤ ε ≤ 1).The emissivity provides 

a measure of how efficiently a surface emits radiation relative to a black body. 
The emissivity strongly depends on the surface material and finish.   

Radiation may also incident on a surface from its surroundings. The rate at which the 

radiation is incident on a surface per unit area of the surface is calle the “irradiation” of the 

surface and is denoted by G. The fraction of this energy absorbed by the surface is called 

“absorptivity” of the surface and is denoted by the symbol α. The fraction of the 
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incident energy is reflected and is called the “reflectivity” of the surface denoted by ρ 
and the remaining fraction of the incident energy is transmitted through the surface and 

is called the “transmissivity” of the surface denoted by η. It follows from the 
definitions of α, ρ, and η that  

α+ ρ + η = 1 …………………………………….(1.9) 

 

Therefore the energy absorbed by a surface due to any radiation falling on it is given by 
 

Gabs = αG …………………………………(1.10) 

 

The absorptivity α of a body is generally different from its emissivity. However 
in many practical applications, to simplify the analysis α is assumed to be equal to its 

emissivity ε. 

 

Radiation Exchange:- When two bodies at different temperatures “see” each other, 

heat is exchanged between them by radiation. If the intervening medium is filled with a 

substance like air which is transparent to radiation, the radiation emitted from one body 

travels through the intervening medium without any attenuation and reaches the other 

body, and vice versa. Then the hot body experiences a net heat loss, and the cold body a 

net heat gain due to radiation heat exchange between the two. The analysis of radiation 

heat exchange among surfaces is quite complex which will be discussed in chapter 10. 

Here we shall consider two simple examples to illustrate the method of calculating the 

radiation heat exchange between surfaces.  
As the first example‟ let us consider a small opaque plate (for an opaque 

surface η = 0) of area A, emissivity ε and maintained at a uniform temperature Ts. Let 

this plate is exposed to a large surroundings of area Asu (Asu >> A) whish is at a 

uniform temperature Tsur as shown in Fig. 1.2b.The space between them contains air 
which is transparent to thermal radiation. 

 

The radiation energy emitted by the plate is given by 
 

Qem = A ε ζ Ts
4
 

 

The large surroundings can be approximated as a black body in relation to the small 

plate. Then the radiation flux emitted by the surroundings is ζ Tsur
4
 which is also the 

radiaton flux incident on the plate. Therefore the radiation energy absorbed by the plate 
due to emission from the surroundings is given by 

 

Qab = A α ζ Tsur
4
. 

 

The net radiation loss from the plate to the surroundings is therefore given by 
 

Qrad = A ε ζ Ts
4
 − A α ζ Tsur

4
. 
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Assuming α = ε for the plate the above expression for Qnet reduces to 
 
 

Qrad = A ε ζ [Ts
4
 – Tsur

4
 ] ……………….(1.11) 

 

The above expression can be used to calculate the net radiation heat exchange between 
a small area and a large surroundings. 

As the second example, consider two finite surfaces A1 and A2 as shown in Fig. 1.3.  
 
 
 

 

Surroundings  

A2, ε2, T2  

A1, ε1, T1 

 
 
 
 
 
 
 
 

 

Fig.1.3: Radiation exchange between surfaces A1 and A2 

 
 

 

The surfaces are maintained at absolute temperatures T1 and T2 respectively, and have 

emissivities ε1 and ε2. Part of the radiation leaving A1 reaches A2, while the remaining 
energy is lost to the surroundings. Similar considerations apply for the radiation leaving 

A2.If it is assumed that the radiation from the surroundings is negligible when compared 

to the radiation from the surfaces A1 and A2 then we can write the expression for the 

radiation emitted by A1 and reaching A2 as 
 

Q1→2 = F1− 2 A1ε1ζ T1
4
……………………………(1.12) 

 

where F1 – 2 is defined as the fraction of radiation energy emitted by A1 and reaching 

A2. Similarly the radiation energy emitted by A2 and reaching A1 is given by 
 

Q2→1 = F2− 1 A2 ε2 ζ T2
4
 …………………………..(1.13) 

 

where F2 – 1 is the fraction of radiation energy leaving A2 and reaching A1. Hence the 

net radiation energy transfer from A1 to A2 is given by 
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Q1 – 2  = Q1→2  − Q2→1 

 

= [F1− 2 A1ε1ζ T1
4
] − [F2− 1 A2 ε2 ζ T2

4
] 

 

F1-2 is called the view factor (or geometric shape factor or configuration factor) of A2 with 

respect to A1 and F2 - 1 is the view factor of A1 with respect to A2.It will be shown in 

chapter 10 that the view factor is purely a geometric property which depends on the relative 

orientations of A1 and A2 satisfying the reciprocity relation, A1 F1 – 2 = A2 F2 – 1. 
 

Therefore Q1 – 2 = A1F1 – 2 ζ [ε1 T1
4
 − ε2 T2

4
]………………….(1.13) 

 

Radiation Heat Transfer Coefficient:- Under certain restrictive conditions it is possible 
to simplify the radiation heat transfer calculations by defining a radiation heat transfer 

coefficient hr analogous to convective heat transfer coefficient as 
 

Qr = hrA ΔT 

 

For the example of radiation exchange between a surface and the surroundings [Eq. (1. 11)] 

using the concept of radiation heat transfer coefficient we can write 
 

        Qr = hrA[Ts – Tsur] = A ε ζ [Ts
4
 – Tsur

4
 ] 

 ε ζ [Ts
4
 – Tsur

4
 ]ε ζ [Ts

2
 + Tsur

2
 ][Ts + Tsur][Ts – Tsur] 

Or hr = --------------------- = ----------------------------------------------- 

 [Ts – Tsur] [Ts – Tsur] 

Or hr  = ε ζ [Ts
2
 + Tsur 

2
 ][Ts + Tsur] ………………………(1.14) 

 

 

1.3.First Law of Thermodynamics (Law of conservation of energy) as applied to Heat 

Transfer Problems :-  

The first law of thermodynamics is an essential tool for solving many heat transfer 

problems. Hence it is necessary to know the general formulation of the first law of 

thermodynamics.  
First law equation for a control volume:- A control volume is a region in space bounded 

by a control surface through which energy and matter may pass.There are two options of 

formulating the first law for a control volume. One option is formulating the law on a 

rate basis. That is, at any instant, there must be a balance between all energy rates. 

Alternatively, the first law must also be satisfied over any time interval Δt. For such an 
interval, there must be a balance between the amounts of all energy changes. 

 

First Law on rate basis: - The rate at which thermal and mechanical energy enters a 
control volume, plus the rate at which thermal energy is generated within the control 
volume, minus the rate at which thermal and mechanical energy leaves the control 
volume must be equal to the rate of increase of stored energy within the control volume.  
Consider a control volume shown in Fig. 1.4 which shows that thermal and 
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. 

mechanical energy are  entering the control volume at a rate denoted by Ein, thermal and  
 
 
 
 
 
 
 
 
 

 
 .   

 

 
Eg 

. . 
 

 Est Eout  
.  

 

   
 

Ein    
 

 
 
 

 

Fig. 1.4: Conservation of energy for a control volume on rate basis 
 
 

 
. 

mechanical energy are leaving the  control volume at a rate denoted by Eout. The rate at 
 

. 

which energy is generated within the control volume is denoted by Eg and the rate at 
 

. 

which energy is stored within the control volume is denoted by Est. The general form 
of the energy balance equation for the control volume can be written as follows:  

 
. . . . 

Ein + Eg − Eout = Est ……………………………(1.15) 
 

. 

Est is nothing but the rate of increase of energy within the control volume and hence 

can be written as equal to dEst / dt. 

 

First Law over a Time Interval Δt:- Over a time interval Δt, the amount of thermal 
and mechanical energy that enters a control volume, plus the amount of thermal energy 
generated within the control volume minus the amount of thermal energy that leaves the 
control volume is equal to the increase in the amount of energy stored within the control 
volume.  
The above statement can be written symbolically as 

 

Ein + Eg – Eout = ΔEst …………………………..(1.16) 

 
  

The inflow and outflow energy terms are surface phenomena. That is they are associated 
exclusively with the processes occurring at the boundary surface and are proportional to 

the surface area. 
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The energy generation term is associated with conversion from some other form 

(chemical, electrical, electromagnetic, or nuclear) to thermal energy. It is a volumetric 

phenomenon.That is, it occurs within the control volume and is proportional to the magnitude 

of this volume. For example, exothermic chemical reaction may be taking place within the 

control volume. This reaction converts chemical energy to thermal energy and we say that 

energy is generated within the control volume. Conversion of electrical energy to thermal 

energy due to resistance heating when electric current is passed through an electrical 

conductor is another example of thermal energy generation  
Energy storage is also a volumetric phenomenon and energy change within 

the control volume is due to the changes in kinetic, potential and internal energy of 

matter within the control volume. 

 

1.4. Illustrative Examples: A. Conduction 
 

 

Example 1.1:- Heat flux through a wood slab 50 mm thick, whose inner and outer 

surface temperatures are 40 
0
 C and 20 

0
 C respectively, has been determined to 

be 40 W/m
2
. What is the thermal conductivity of the wood slab? 

 

Solution:  
 
 
 
 
 
 

 

T1 

 
 
 
 
 
 
 
 
 

Given:- T1 = 40 
0
 C; T2 = 20 

0
 C; L = 0.05 

m q = Q/A = 40 W / m
2
. 

 

T2 To find: k 

 

. 
 
 

 

L 
 

x 
 
 

 

Assuming steady state conduction across the thickness of the slab and noting that the slab is 

not generating any thermal energy, the first law equation for the slab can be written as 

 

Rate at which thermal energy (conduction) is entering the slab at the surface  x = 0 
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is equal to the rate at which thermal energy is leaving the slab at the surface x = 
L That is 

 

Qx|x = 0 = Qx|x = L = Qx = constant 
 

By Fourier‟s law we have Qx = − kA (dT / dx). 

 

Separating the variables and integrating both sides w.r.t. „x‟ we have 
 

L 
  
T2  

Qx ∫dx = − kA ∫dT . Or Qx = kA (T1 – T2) / L 
0 T1 

 
 

Heat flux = q  = Qx / A = k(T1 – T2) / L 

 

Hence 

 
 

k = q L / (T1 – T2) = 40 x 0.05 / (40 – 20) = 0.1 W / (m – K) 
 

 

 

Example 1.2:- A concrete wall, which has a surface area of 20 m
2
 and thickness 30 cm, 

separates conditioned room air from ambient air.The temperature of the inner surface of 

the wall is 25 
0
 C and the thermal conductivity of the wall is 1.5 W / (m-K).Determine the 

heat loss through the wall for ambient temperature varying from ─ 15 
0
 C to 38 

0
 C 

which correspond to winter and summer conditions and display your results graphically. 
 

Solution:  
 

 

      Data:- T1 = 25 
0
 C ; A = 20 m

2
; L = 0.3 m 

 

    

T1 
K = 1.5 W /(m-K) ; 

 

    
 

      
 

Q      
By Fourier‟s law, 

 

  
T2 

   
 

     

Q = kA(T1 – T2) / L 

 

      
 

      
1.5 x 20 x (25 – T2) 

 

      
 

  L   = ------------------------- 
 

      0.30 
 

      Or Q = 2500 – 100 T2 ………..(1) 
   

Heat loss Q for different values of T2 ranging from – 15 
0
 C to + 38 

0
 C 

are obtained from Eq. (1) and the results are plotted as shown 

Scale x-axis : 1cm= 5 C  
y-axis : 1cm =1000 W 
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Q 1.2 equation:  Q= 2500-100T(2) 
 
 
 
 
 
 
 

 

Q
 ,
w

a
tt

s
 

 

 
5000 

 
4000 

 
3000 

 
2000 

 
1000 

 
 
 
 
 
 
 
 
 
 

 Series2 

 
 

0  
1 2 3 4 5 6 7 8 9 10 11 12  

-1000 

 
-2000 

 
T(2) , celsius 

 
 
 

 

Example 1.3:-What is the thickness required of a masonry wall having a thermal 

conductivity of 0.75 W/(m-K), if the heat transfer rate is to be 80 % of the rate through 

another wall having thermal conductivity of 0.25 W/(m-K) and a thickness of 100 mm? 
Both walls are subjected to the same temperature difference. 

 

Solution:- Let subscript 1 refers to masonry wall and subscript 2 refers to the other wall. 
 

By Fourier‟s law, Q1 = k1A(T1 – T2) / L1 

And Q2 = k2A(T1 – T2) / L2 

Therefore Q1 k1 L2 

 ---- = ---------- 

 Q2 k2 L1 

  Q2 k1 

 L1 = ----------- L2 

  Q1 k2 
 

= (1 / 0.80) x (0.75/0.25) x 100 = 375 mm 
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Air Velocity, V (m/s) : 1 2 4 8 12 

Power,P (W/m) : 450 658 983 1507 1963 

h, (W / (m
2
 – K) ) : 22.04 32.22 48.14 73.8 96.13 

 

(a) A graph of h versus V can now be plotted as shown in Fig. P 1.4 
(a). Scale: X axis 1cm= 1m/s  

Y axis 1cm= 10 W/m
2
k 

 
 

Q 1.4a 
 
 
 
 
 
 
 
 
 
 

h
 

 

 

120 

 

100 

 

80 

 

60 

 

40 

 

20 

 

0 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 
 

velocity, m/s 
 

 

(b) h = CV
n
 

Therefore ln h = ln C + n ln V …………………………(2) 

 

If ln h is plotted against ln V it will be straight line and the slope of which will give the 

value of n. Also the intercept of this line w.r.t the axis on which ln V is plotted will give 

the value of ln C from which C can be determined. The log –log plot is as shown in Fig. P  
1.4(b). Scale X axis 1cm=0.25 

Y axis 1cm=0.5 
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ln
 h

 

 
 
 

 

 Slope: 0.571 

 

5 
 

4 
 

3 
 

2 
 

1 
 

0 
 

1 2 3 4 5 6 7 8 9 10 11 12 
 

ln v 
 

 

ln C = 3.1 or C = 22 

 

(ln h – ln C) (4.55 – 3.10)  
and n = ----------------------- = ------------------- 

ln V 2.5 

 

= 0.571 

 

Therefore h = 22.2 V
0.571

  is the empirical relation between h and V. 
 

Example 1.5:- A large surface at 50 
0
 C is exposed to air at 20 

0
 C. If the heat transfer 

coefficient between the surface and the air is 15 W/(m
2
-K), determine the heat 

transferred from 5 m
2
 of the surface area in 7 hours. 
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Ts =50 0C    
h = 15 W/(m

2
 – K) ; T∞ = 20 0 C 

 

     
  

 
 
 

 

A = 5 m
2
 : time = t = 7 h ; 

 

Q total = Q t = hA(Ts - T∞) t = 15 x 5 x (50 – 20) x 7 x 3600  J 

 

= 56.7 x 10 
6
 J = 56.7 MJ 

 
 
 
 

Example 1.6:- A 25 cm diameter sphere at 120 
0
 C is suspended in air at 20 

0
 C. If 

the convective heat transfer coefficient between the surface and air is 15 W/(m
2
-K), 

determine the heat loss from the sphere. 
 

 

Solution:- 
 
 
 
 

 

h = 15 W/(m
2
-K)  

Ts = 120 
0
C 

 

T∞ = 20 
0

 C 

D = 0.25 m 
 

 
 

 

 

Q = hAs(Ts - T∞) = h 4πR
2
 (Ts - T∞) = 15 x 4π x (0.25/2)

2
 x (120 – 

20) = 294.52 W 
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C. Radiation: 
 

Example 1.7:- A sphere 10 cm in diameter is suspended inside a large evacuated 

chamber whose walls are kept at 300 K. If the surface of the sphere is black and 

maintained at 500 K what would be the radiation heat loss from the sphere to the walls 

of the chamber?. What would be the heat loss if the surface of the sphere has an 

emissivity of 0.8? 

 

Solution:  

 

 
T2 

 T1 = 500 K ; T2 = 300 K ; d1 = 0.10 m 
 

   
 

     Surface area of the sphere = As = 4πR1
2

 
 

     = 4πx (0.1/2)
2
 

 

     = 0.0314 m
2

 
 

    

T1 If the surface of the sphere is black then  

    
 

     
 

     Qblack = ζ As (T1
4
 – T2

4
) 

 

 d1  = 5.67 x 10 
─ 8

x 0.0314 x (500
4
 – 300

4
) 

 

     = 96.85 W 
 

     If the surface is having an emissivity of 0.8 
 

     then 
 

     Q = 0.8 Qblack = 0.8 x 96.85 = 77.48 W. 
 

 
 
 

 

Example 1.8:- A vacuum system as used in sputtering conducting thin films on micro 

circuits, consists of a base plate maintained at a temperature of 300 K by an electric 

heater and a shroud within the enclosure maintained at 77 K by circulating liquid 

nitrogen. The base plate insulated on the lower side is 0.3 m in diameter and has an 

emissivity of 0.25.  
(a) How much electrical power must be provided to the base plate heater? 

 
(b) At what rate must liquid nitrogen be supplied to the shroud if its latent heat 

of vaporization is 125 kJ/kg? 
 

Solution:- T1 = 300 K ; T2 = 77 K ; d = 0.3 m ; ε1 = 0.25 
 

Surface area of the top surface of the base plate = As = (π / 4)d1
2 = (π / 4) x 0.32 
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= 0.0707 m
2

 

(a) Qr = ε1ζ As (T1
4
 – T2

4
) 

 

= 0.25 x 5.67 x 10 
─ 8

 x 0.0707 x (300
4
 – 77

4
) = 8.08 W 

 
. 

(b) If mN2 = mass flow rate of nitrogen that is vapourised then 

 

. 8.08 

mN2 = Qr / hfg = ----------------  = 6.464 x 10
-5

 kg/s or 0.233 kg/s 

 125 x 1000 

 

Example 1.9:- A flat plate has one surface insulated and the other surface exposed to the 

sun. The exposed surface absorbs the solar radiation at a rate of 800 W/m
2
 and 

dissipates heat by both convection and radiation into the ambient at 300 K. If the 

emissivity of the surface is 0.9 and the surface heat transfer coefficient is 12 W/(m
2
-K), 

determine the surface temperature of the plate. 
 

 

Solution:- 
 
 

Qsolar  
T∞  = 300 K ; qsolar = 800 W / m

2
 

 

 
Qr 

 
 

    
 

 

Qconv 
  

Ts ; ε = 0.9 ; h = 12 W / (m
2
 – K) 

 

   
 

     
 

     
  

 

 

Insulated 
 

Energy balance equation for the top surface of the plate is given by 

 

Qsolar = Qr + Qconv 

qsolar As = ε ζ As (Ts
4
 - T∞

4
) + h As (Ts - T∞) 

 

Therefore 800 = 0.9 x 5.67 x 10 
─ 8

x (Ts
4
 – 300

4
) + 12 x (Ts – 300) 

 
 

 

On simplifying the above equation we get 
 

(Ts / 100)
4
 + 2.35 Ts = 943 …………………………(1) 

 

Equation (1) has to be solved by trial and error. 
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Trial 1:- Assume Ts = 350 K. Then LHS of Eq. (1) = 972.6 which is more than RHS 

of Eq.(1). Hence Ts < 350 K. 
 

Trial 2 :- Assume Ts = 340 K. Then LHS of Eq. (1) = 932.6 which is slightly less than 

RHS. Therefore Ts should lie between 340 K and 350 K but closer to 340 K. Trial 3:- 

Assume Ts = 342.5 K. Then LHS of Eq.(1) = 942.5 = RHS of Eq. (1). Therefore Ts = 

342.5 K 

 
. 
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UNIT-II 

GOVERNING EQUATIONS OF CONDUCTION 
 
 

Introduction: In this chapter, the governing basic equations for conduction in 

Cartesian coordinate system is derived. The corresponding equations in cylindrical and 

spherical coordinate systems are also mentioned. Mathematical representations of 

different types of boundary conditions and the initial condition required to solve 

conduction problems are also discussed. After studying this chapter, the student will 

be able to write down the governing equation and the required boundary conditions 

and initial condition if required for any conduction problem.  

 

One – Dimensional Conduction Equation : In order to derive the one-dimensional 
conduction equation, let us consider a volume element of the solid of thickness Δx along 

x – direction at a distance „x‟ from the origin as shown in Fig. 2.1.Qx represents the rate 
 
 
 
 
 

 

A(x) 

   

q’’’ 
 

   
 

Qx Qx + Δx 

 

 
 

 
 
 
 
 
 

 

O  
x 

 

 

Fig. 2.1: Nomenclature for one dimensional conduction equation  
 
 

 

of heat transfer in x – direction entering into the volume element at x, A(x) area of heat 

flow at the section x ,q‟‟‟ is the thermal energy generation within the element per unit  

volume and Qx+Δx is the rate of conduction out of the element at the section x + Δx. 
The energy balance equation per unit time for the element can be written as follows:  
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[ Rate of heat conduction into the element at x + Rate of thermal energy generation 
within the element − Rate of heat conduction out of the element at x + Δx ] 

 

= Rate of increase of internal energy of the element. 

 

i.e., 

 
 

Qx + Qg – Qx+Δx = ∂E / ∂t 
  

or 
  
Qx + q‟‟‟ A(x) Δx – {Qx + (∂Qx / ∂x)Δx + (∂2Qx / ∂x2)(Δx)2 / 2! + …….} 

 
 

= ∂/ ∂t (ρA(x)ΔxCpT) 

 

Neglecting higher order terms and noting that ρ and Cp are constants the above equation 
simplifies to 

 

Qx + q‟‟‟ A(x) Δx – {Qx + (∂Qx / ∂x)Δx = ρA(x)ΔxCp (∂T/ ∂t) 
 

Or 

 
 

− (∂Qx / ∂x) + q‟‟‟ A(x) = ρA(x) Cp (∂T/ ∂t) 
 

 
Using Fourier‟s law of conduction , Qx = − k A(x) (∂T / ∂x), the above 
equation simplifies to  

− ∂/ ∂x {− k A(x) (∂T / ∂x)} + q‟‟‟ A(x) =  ρA(x) Cp (∂T/ ∂t) 
 

Or {1/A(x)} ∂/ ∂x {k A(x) (∂T / ∂x)} + q’’’ = ρ Cp (∂T/ ∂t) ……………(2.1) 

 

Eq. (2.1) is the most general form of conduction equation for one-dimensional 
unsteady state conduction. 

 

2.2.1.Equation for one-dimensional conduction in plane walls :- For plane walls, the 

area of heat flow A(x) is a constant. Hence Eq. (2.1) reduces to the form 
 

∂/ ∂x {k (∂T / ∂x)} + q’’’ = ρ Cp (∂T/ ∂t) …………………(2.2) 

 

(i) If the thermal conductivity of the solid is constant then the above equation reduces to 
 

(∂
2
T / ∂x

2
) + (q’’’ / k) = (1/α )(∂T/ ∂t) ………………………(2.3) 

 
(ii) For steady state conduction problems in solids of constant thermal conductivity 
temperature within the solid will be independent of time (i.e.(∂T/ ∂t) = 0)  
and hence Eq. (2.3) reduces to 

 

(d
2
T / dx

2
 )+ (q’’’ / k) = 0………………………………….(2.4) 
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(iii) For a solid of constant thermal conductivity for which there is no thermal 

energy generation within the solid q‟‟‟ = 0 and the governing for steady state 
conduction is obtained by putting q‟‟‟ = 0 in Eq. (2.4) as 

 

(d
2
T / dx

2
 ) = 0 ………………………………(2.4) 

 

 

2.2.2.Equation for one-dimensional radial conduction in cylinders:-  
 
 
 
 
 
 
 

 

R 

Qr 

 r 
 

 Qr  
 

 

L 
 
 
  

For radial conduction in cylinders, by convention the radial coordinate is denoted by „r‟ 

instead of „x‟ and the area of heat flow through the cylinder of length L,at any radius r 

is given by A(x) = A(r) = 2πrL. Hence substituting this expression for A(x) and 
replacing x by r in Eq. (2.1) we have 

 

{1/(2πrL)∂/ ∂r {k 2πrL (∂T / ∂r)} + q‟‟‟  =  ρ Cp (∂T/∂t) 

 

Or (1/r) ∂/ ∂r {k r (∂T / ∂r)} + q’’’ = ρ Cp (∂T/ ∂t)…………….(2.5) 

 

(i) For cylinders of constant thermal conductivity the above equation reduces to 

 

(1/r) ∂/ ∂r { r (∂T / ∂r)} + q’’’ / k = (1 / α) (∂T/ ∂t)…………….(2.6) 
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(ii) For steady state radial conduction (i.e. (∂T/ ∂t) = 0 ) in cylinders of constant k, the 
above equation 

 

reduces to (1/r) d/ dr { r (dT / ∂r)} + q’’’ / k = 0 ………………………….(2.7) 

 

(iii) For steady state radial conduction in cylinders of constant k and having no 
thermal energy generation (i.e. q‟‟‟ = 0) the above equation reduces to 

 

 

d/ dr { r (dT / ∂r)} = 0 ………………………………(2.8) 

 

2.2.3.Equation for one-dimensional radial conduction in spheres:- For one-imensional 

radial conduction in spheres, the area of heat flow at any radius r is given by A(r) = 4πr
2
. 

Hence Eq.(2.1) for a sphere reduces to 

 

{1/(4π r2 )}∂/ ∂r {k 4π r2 (∂T / ∂r)} + q‟‟‟ = 

 
 

ρCp (∂T/ ∂t) 
 

 

Or 

  
1/r2 ∂/ ∂r {k r2 (∂T / ∂r)} + q’’’ = ρ Cp (∂T/ ∂t) …………………(2.9) 

 
 

(i) For spheres of constant thermal conductivity the above equation reduce to 

 

1/r
2
 ∂/ ∂r { r

2
 (∂T / ∂r)} + q’’’ / k = (1 / α) (∂T/ ∂t) ……………..(2.10) 

 

(ii) For steady state conduction in spheres of constant k the above equation further reduce 

to  

1/r
2
 ∂/ ∂r { r

2
 (∂T / ∂r)} + q’’’ / k   = 0 ……………………………(2.11) 

 
(iii) For steady state conduction in spheres of constant k and without any thermal 
energy generation the above equation further reduces to 

 

1/r
2
 d/ dr { r

2
 (dT / dr)} = 0 ……………………………………(2.12) 

 

 

Equation in compact form:- The general form of one – dimensional conduction 

equations for plane walls, cylinders and spheres {equations (2..2), (2.5) and (2.9)} can 
be written in a compact form as follows: 

 

1/rn ∂/ ∂r {k rn (∂T / ∂r)} + q’’’ = ρ Cp (∂T/ ∂t) ………….(2.13) 

 

Where n = 0 for plane walls, 

n = 1 for radial conduction in cylinders  
n = 2 for radial conduction in spheres,  

and for plane walls it is customary to replace the „r‟ variable by „x‟ variable. 
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2.3.Three dimensional conduction equations: While deriving the one – dimensional 

conduction equation, we assumed that conduction heat transfer is taking place only along 

one direction. By allowing conduction along the remaining two directions and following the 

same procedure we obtain the governing equation for conduction in three dimenions. 

 

2.3.1. Three dimensional conduction equation in Cartesian coordinate system: Let us 

consider a volume element of dimensions Δx, Δy and Δz in x y and z directions 
respectively. The conduction heat transfer across the six surfaces of the element is 

shown in Fig. 2.3. 

 

z Qz + Δz Qy + Δy   

y 
 

 

x 

 
 
 
 

Δz 

 

 

Qx + Δx 

Qx 

 

Δy 

 

Δx  
 

Qy Qz 
 

Fig. 2.3: Conduction heat transfer across the six faces of a volume element  

 

Net Rate of conduction into the element in x-direction = Qx – Qx + Δx 

 

= Qx – [Qx + (∂Qx/∂x) Δx + (∂
2
Qx/∂x

2
)(Δx)

2
 / 2! + ….] 

 

= − (∂Qx/∂x) Δx  by neglecting higher order terms. 
 

= − ∂ / ∂x [− kx Δy Δz(∂T / ∂x)] Δx 
 

= ∂ / ∂x[kx (∂T / ∂x)] Δx Δy Δz 

 

Similarly the net rate of conduction into the element 

in y – direction = ∂ / ∂y[ky (∂T / ∂y)] Δx Δy Δz 
 

and in z – direction = ∂ / ∂z[kz (∂T / ∂z)] Δx Δy Δz. 
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Hence the net rate of conduction into the element from all the three directions 
 

Qin =  {∂ / ∂x[kx (∂T / ∂x)] + ∂ / ∂y[ky (∂T / ∂y)] + ∂ / ∂z[kz (∂T / ∂z)] } Δx Δy Δz 

 

Rate of heat thermal energy generation in the element = Qg  = q‟‟‟ Δx Δy Δz 

 

Rate of increase of internal energy within the element = ∂E / ∂t = ρ Δx Δy Δz Cp (∂T / 

∂t) Applying I law of thermodynamics for the volume element we have 

Qin + Qg = ∂E / ∂t 
 

Substituting the expressions for Qin, Qg and ∂E / ∂t and simplifying we get 
 

{∂ / ∂x[kx (∂T / ∂x)] + ∂ / ∂y[ky (∂T / ∂y)] + ∂ / ∂z[kz (∂T / ∂z)] } + q’’’ = ρ Cp (∂T / ∂t) 

 

……………………(2.14) 

 

Equation (2.14) is the most general form of conduction equation in Cartesian coordinate 
system. This equation reduces to much simpler form for many special cases as 

indicated below.  
Special cases:- (i) For isotropic solids, thermal conductivity is independent of 

direction; i.e., kx = ky = k z = k. Hence Eq. (2.14) reduces to 
 

{∂ / ∂x[k (∂T / ∂x)] + ∂ / ∂y[k (∂T / ∂y)] + ∂ / ∂z[k (∂T / ∂z)] } + q’’’ = ρ Cp (∂T / ∂t) 

 

……………………..(2.15)  
(ii) For isotropic solids with constant thermal conductivity the above equation 
further reduces to 

 

∂
2
T / ∂x

2
  + ∂

2
T / ∂y

2
 + ∂

2
T / ∂z

2
  + q’’’ / k = (1 / α) (∂T / ∂t)…………………….(2.16) 

 

Eq.(2.16) is called as the “Fourier – Biot equation” and it reduces to the following 
forms under specified conditions as mentioned below: 

 

(iii) Steady state conduction [i.e., (∂T / ∂t) = 0] 

 

∂
2
T / ∂x

2
  + ∂

2
T / ∂y

2
 + ∂

2
T / ∂z

2
  + q’’’ / k = 0 …………………………….(2.17) 

 

Eq. (2.17) is called the “Poisson equation”. 

 

(iv) No thermal energy generation [i.e. q‟‟‟ = 0]: 
 

∂
2
T / ∂x

2
  + ∂

2
T / ∂y

2
 + ∂

2
T / ∂z

2
 = (1 / α) (∂T / ∂t)……………………………..(2.18) 
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Eq. (2.18) is called the “diffusion equation”. 

 

(v) Steady state conduction without heat generation [i.e., (∂T / ∂t) = 0 and q‟‟‟ = 0]: 
 

∂
2
T / ∂x

2
  + ∂

2
T / ∂y

2
 + ∂

2
T / ∂z

2
 = 0 …………………………………………(2.19) 

 

Eq. (2.19) is called the “Laplace equation”. 

 

2.3.2. Three dimensional conduction equation in cylindrical coordinate system:  

 

It is convenient to express the governing conduction equation in cylindrical 

coordinate system when we want to analyse conduction in cylinders. Any point P in 

space can be located by using the cylindrical coordinate system r, θ and z and its 
relation to the Cartesian coordinate system (See Fig. 2.4) can be written as follows:   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

y 

 
 

z 

 

P(x,y,z) 
 
 
 
 
 
 
 
 

x 

θ 
 

r 
 
 
 
 

Fig.2.4: Cylindrical coordinate system  

 

 
 

 

x = r cos θ ; y = r sin θ ; z = z. Using these transformations and after 
laborious simplifications Eq. (2.15) simplifies to 

 

1 ∂ ∂T 1 ∂ ∂ T ∂ ∂ T ∂ T 

--- ---- [ k r ---- ] + --- --- [k ------- ] + --- [k ----- ] + q’’’ = ρ Cp ----- 

r ∂r ∂r r
2
  ∂ θ ∂ θ ∂ z ∂ z ∂ t 

……………..(2.20) 

 

The above equation is valid for only for isotropic solids. 
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2.3.2. Three dimensional conduction equation in Spherical coordinate system:  

 

For spherical solids,it is convenient to express the governing conduction equation in 

spherical coordinate system. Any point P on the surface of a sphere of radius r can be 

located by using the spherical coordinate system r, θ and θ and its relation to the 

Cartesian coordinate system (See Fig. 2.5) can be written as follows:   
 

z   
OP‟ = r sin θ.Hence 

 

   
 

  
P(x,y,z) 

x = r sin θ cos θ ; 
 

   
 

   y = r sin θ sin θ ; 
 

 
r 

 z = r cos θ 
 

θ 
  

 

   
 

 

O 
x 

 
 
 
 
 

 

y 

 
θ 

 

 

P’ 
 

Fig: 2.5: Spherical coordinate system  

 

 

Using the relation between x, y ,z and r, θ and θ, the conduction equation (2.15) can be 
transformed into the equation in terms of r, θ and θ as follows. 

 

1 ∂ ∂T 1 ∂ ∂ T 1 ∂ ∂ T 

--- ---- [ kr
2
 ---- ] + ---------- -----[k ------- ] + ----------- --- [k sin θ ----- ] 

r
2
 ∂r ∂r r

2
 sin 

2
 θ ∂ θ ∂ θ r

2
 sin θ ∂ θ ∂ θ 

 

∂ T 

+ q’’’ = ρ Cp ----- …………….(2.21). 
∂ t 

 

2.4.Boundary and Initial Conditions: 

 

The temperature distribution within any solid is obtained by integrating the above conduction 

equation with respect to the space variable and with respect to time.The solution thus 

obtained is called the “general solution” involving arbitrary constants of integration. The 

solution to a particular conduction problem is arrived by obtaining these constants which 

depends on the conditions at the bounding surfaces of the solid as well as 

 
 

 



                                                                                                                                                26 

 

 

the initial condition. The thermal conditions at the boundary surfaces are called the 
“boundary conditions” . Boundary conditions normally encountered in practice are: 

(i) Specified temperature (also called as boundary condition of the first kind),  
(ii) Specified heat flux (also known as boundary condition of the second kind),  
(iii) Convective boundary condition (also known as boundary condition of the third kind) and 
(iv) radiation boundary condition. The mathematical representations of these boundary 

conditions are illustrated by means of a few examples below. 

 

2.4.1. Specified Temperatures at the Boundary:- Consider a plane wall of thickness L 

whose outer surfaces are maintained at temperatures T0 and TL as shown in Fig.2.6. For 
one-dimensional unsteady state conduction the boundary conditions can be written as 

 

 

   
T(x,t) 

 y   
 

       
 

T0   TL  
T = θ(x) 

T(x,y) 
 

       
 

 

L 

     

T2 

 

      
 

      b  
 

    Ψ(y) 
a 

  
 

       
 

       

x 

 

     

T1 

 
 

 

x 

 
 

    
 

     
 

Fig. 2.6: Boundary condition Fig.2.7: Boundary conditions of 
 

of first kind for a plane wall first kind for a rectangular plate 
  

 

(i) at x = 0, T(0,t) = T0 ; (ii) at x = L, T(L,t) = TL. 

 

Consider another example of a rectangular plate as shown in Fig. 2.7. The boundary 

conditions for the four surfaces to determine two-dimensional steady state temperature 
distribution T(x,y) can be written as follows. 

 

(i) at x = 0, T(0,y) =  Ψ(y) ; (ii) at y = 0, T(x,0) = T1 for all values of y 
 

(iii) at x = a, T(a,y) = T2 for all values of y; (iv) at y = b, T(x,b) = θ(x) 

 

2.4.2. Specified heat flux at the boundary:- Consider a rectangular plate as shown in 

Fig. 2.8 and whose boundaries are subjected to the prescribed heat flux conditions as 
shown in the figure. Then the boundary conditions can be mathematically expressed 

as follows. 
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y  

q b T(x,y) 
 
 
 
 
 

 

q0 q a 

 b 
 

a  
x 

insulated 
 

 

Fig.2.8: Prescribed heat flux boundary conditions 
 
 

 

(i) at x = 0, − k (∂T / ∂x)|x = 0  = q 0 for 0 ≤ y ≤ b ; 
 

(ii) at y = 0 , (∂T / ∂y)|y = 0  = 0 for 0 ≤ x ≤ a ; 
 

(iii) at x = a,  k (∂T / ∂x)|x = a  = q a  for 0 ≤ y ≤ b ; 
 

(iv) at y = b, − k (∂T / ∂y)|y = b  = 0 for 0 ≤ x ≤ a ; 
 

 

Boundary surface subjected to convective heat transfer:- Fig. 2.9 shows a plane wall 
whose outer surfaces are subjected to convective boundary conditions.The surface at x = 

0 is in contact with a fluid which is at a uniform temperature Ti and the surface heat 

transfer coefficient is hi. Similarly the other surface at x = L is in contact with another 

fluid at a uniform temperature T0 with a surface heat transfer coefficient h0. This type of 
boundary condition is encountered in heat exchanger wherein heat is transferred from hot 
fluid to the cold fluid with a metallic wall separating the two fluids. This type of 
boundary condition is normally referred to as the boundary condition of third kind. The 
mathematical representation of the boundary conditions for the two surfaces of the plane 
wall can be written as follows. 

 

(i) at x = 0, qconvection = q conduction; i.e., hi[Ti − T|x = 0 ] = − k(dT / dx)|x = 0 

 

(ii) at x = L,  − k(dT / dx)|x = L = h0 [T|x = L − T0] 
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T(x)   

Surface in contact with 

fluid at T0 with surface 

heat transfer coefficient h0 

 

 L  
 

Surface in contact with fluid 

at Ti with surface heat 

transfer coefficient h i 
 
 

 

x 
 

Fig. 2.9: Boundaries subjected to convective heat 

transfer for a plane wall 
 

 

Radiation Boundary Condition:Fig. 2.10 shows a plane wall whose surface at x =L is 
having an emissivity „ε‟ and is radiating heat to the surroundings at a uniform temperature 

Ts. The mathematical expression for the boundary condition at x = L can be written as 

follows: 
 
 

 

T(x,t)   

Surface with emissivity ε is 

radiating heat to the 

surroundings at Ts 
0
K 

 

 L  
 
 
 
 
 
 
 

 

x 
 

Fig. 2.10: Boundary surface at x = L subjected to radiation 

heat transfer 
 

(i) at x = L, qconduction = qradiation ; i.e., − k (dT / dx)| x = L = ζ ε [( T| x = L)
4
 − Ts 

4
] 

 
 

 
 

In the above equation both T| x = L  and Ts should be expressed in degrees Kelvin. 

 
 

 



                                                                                                                                                29 

 

General form of boundary condition (combined conduction, convection and 
radiation boundary condition):  

There are situations where the boundary surface is subjected to combined conduction, 
convection and radiation conditions as illustrated in Fig. 2.11.It is a south wall of a 
house and the outer surface of the wall is exposed to solar radiation. The interior of the 

room is at a uniform temperature Ti. The outer air is at uniform temperature T0 . The 
sky, the ground and the surfaces of the surrounding structures at this location is modeled 

as a surface at an effective temperature of Tsky. 
 
 
 

 

x 
 

L  
 

qradiation 

 

qconduction  αqsolar 

 

 

qconvection 
 
 

 

Schematic for general form of boundary condition 
 
 

 

Energy balance for the outer surface is given by the equation 

 

qconduction + α qsolar = qradiation + qconvection 
 

− k (dT / dx)|x = L + αqsolar = ε ζ [(T|x = L)
4
 − Tsky

4
] + h0[T|x = L − T0] 
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B. Mathematical Formulation of Boundary conditions: 
 

 A plane wall of thickness L is subjected to a heat supply at a rate of q0 W/m2 at one 
boundary surface and dissipates heat from the surface by convection to the ambient 

which is at a uniform temperature of T∞ with a surface heat transfer coefficient of h∞. 
Write the mathematical formulation of the boundary conditions for the plane wall. 

 
 Consider a solid cylinder of radius R and height Z. The outer curved surface of the 

cylinder is subjected to a uniform heating electrically at a rate of q0 W / m2.Both the 
circular surfaces of the cylinder are exposed to an environment at a uniform 
temperature T∞ with a surface heat transfer coefficient h. Write the mathematical 
formulation of the boundary conditions for the solid cylinder. 

 
 A hollow cylinder of inner radius ri, outer radius r0 and height H is subjected to the 

following boundary conditions.  
(a) The inner curved surface is heated uniformly with an electric heater at a 

constant rate of q0 W/m2,  
(b) the outer curved surface dissipates heat by convection into an ambient at a 

uniform temperature, T∞ with a convective heat transfer coefficient, h  
(c) the lower flat surface of the cylinder is insulated, and  
(d) the upper flat surface of the cylinder dissipates heat by convection into the 

ambient at T∞ with surface heat transfer coefficient h. Write the mathematical 
formulation of the boundary conditions for the hollow cylinder. 

 
 

C. Formulation of Heat Conduction Problems: 

 

 A plane wall of thickness L and with constant thermal properties is initially at a 
uniform temperature Ti. Suddenly one of the surfaces of the wall is subjected to 
heating by the flow of a hot gas at temperature T∞ and the other surface is kept 
insulated. The heat transfer coefficient between the hot gas and the surface exposed to 
it is h. There is no heat generation in the wall. Write the mathematical formulation of 
the problem to determine the one-dimensional unsteady state temperature within the 
wall. 

 
 A copper bar of radius R is initially at a uniform temperature Ti. Suddenly the heating 

of the rod begins at time t=0 by the passage of electric current, which generates heat 
at a uniform rate of q’’’ W/m2. The outer surface of the dissipates heat into an ambient 
at a uniform temperature T∞ with a convective heat transfer coefficient h. Assuming 
that thermal conductivity of the bar to be constant, write the mathematical 
formulation of the heat conduction problem to determine the one-dimensional radial 
unsteady state temperature distribution in the rod. 

 
 Consider a solid cylinder of radius R and height H. Heat is generated in the solid at a 

uniform rate of q’’’ W/m3. One of the circular faces of the cylinder is insulated and the 
other circular face dissipates heat by convection into a medium at a uniform 
temperature of T∞ with a surface heat transfer coefficient of h. The outer curved 
surface of the cylinder is maintained at a uniform temperature of T0. Write the 
mathematical formulation to determine the two-dimensional steady state temperature 
distribution T(r, z) in the cylinder. 

 

  Consider a rectangular plate as shown in Fig. P2.10.The plate is generating heat at a uniform rate of 

q
’’’

 W/m
3
. Write the mathematical formulation to determine two-dimensional steady state temperature 

distribution in the plate. 
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Consider the north wall of a house of thickness L. The outer surface of the wall 
exchanges heat by both convection and radiation. The interior of the house is 
maintained at a uniform temperature of Ti, while the exterior of the house is at a 
uniform temperature T0. The sky, the ground, and the surfaces of the surrounding 
structures at this location can be modeled as a surface at an effective temperature of Tsky 
for radiation heat exchange on the outer surface. The radiation heat exchange between 
the inner surface of the wall and the surfaces of the other walls, floor and ceiling are 
negligible. The convective heat transfer coefficient for the inner and outer surfaces of 
the wall under consideration are hi and h0 respectively. The thermal conductivity of the 
wall material is K and the emissivity of the outer surface of the wall is ‘ε0’. Assuming 
the heat transfer through the wall is steady and one dimensional, express the 
mathematical formulation (differential equation and boundary conditions) of the heat 
conduction problem 
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ONE DIMENSIONAL STEADY STATE 

CONDUCTION 
 
  

Conduction Without Heat Generation 

 

The Plane Wall (The Slab):- The statement of the problem is to determine the 

temperature distribution and rate of heat transfer for one dimensional steady state 
conduction in a plane wall without heat generation subjected to specified boundary 

conditions. 
 
 
 
 

 

T = T(x)  
 
 
 

 

T1 T2  

Qx 
R = L /(Ak)  

 
 

 

 

x  
 

L 

 

One dimensional steady state conduction in a slab 
 

The governing equation for one − dimensional steady state conduction without heat 
generation is given by  

 

d
2
T 

----- = 0 ……………………………………(3.1) 

dx
2
 

 

Integrating Eq. (3.1) twice with respect to x we get 
 

T = C1x + C2 ………………………………(3.2) 

 

where C1 and C2 are constants which can be evaluated by knowing the 

boundary conditions. 
Plane wall with specified boundary surface temperatures:- If the surface at x = 0 is 

maintained at a uniform temperature T1 and the surface at x = L is maintained at another 

uniform temperature T2, then the boundary conditions can be written as follows: 

(i) at x = 0, T(x) = T1 ; (ii) at x = L, T(x) = T2. 
 

Condition (i) in Eq.(3.2) gives T1 = C2.  

Condition (ii) in Eq. (3.2) gives T2 = C1L + T1 
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  T2 – T1 

Or C1 = ------------- . 
L  

Substituting for C1 and C2 in Eq. (3.2), we get the temperature distribution in the 
plane wall as 

x 

T(x) = (T2 – T1) --- -- + T1 

L 

Or T(x) – T1 x  
------------ = -------- ……………………………..(3.3) 

(T2 – T1) L 

 

Expression for Rate of Heat Transfer: 

 

The rate of heat transfer at any section x is given by Fourier‟s law as 
 

Qx = − k A(x) (dT / dx) 

 

For a plane wall A(x) = constant = A. From Eq. (3.3), dT/dx = (T2 – T1) / L. 
 

Hence Qx = − k A (T2 – T1) / L. 
 

 

kA(T1 – T2) 

Or Qx = ---------------- ……………………………….. (3.4) 

L 

 

Concept of thermal resistance for heat flow: 

It can be seen from the above equation that Qx is independent of x and is a 
constant. Eq. (3.4) can be written as 

(T1 – T2) (T1 – T2) 

Qx = -------------- = ------------------ ………………..(3.5) 

{L /(kA)} R 

Where R = L / (A k). 
 

Eq. (3.5) is analogous to Ohm‟s law for flow of electric current. In this equation (T1 – T2) 

can be thought of as “thermal potential”, R can be thought of as “thermal resistance”, so 

that the plane wall can be represented by an equivalent “thermal circuit” as shown in 

Fig.3.1.The units of thermal resistance R are 

 

Plane wall whose boundary surfaces subjected to convective boundary conditions:  
 
 
 
 
 
 
 
 
 
 

0
 K / W. 
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The expression for rate of heat transfer Qx can be written as follows: 
 

 Qx = hi A [Ti – T1]  

 (Ti – T1)  (Ti – T1) 

or Qx = --------------- = ---------------- ………………………(3.6a) 

 1 / (hi A)  Rci 

Rci = 1 / (hiA) is called thermal resistance for convection at the surface at x = 0 

 (T1 – T2)   

Similarly Qx = --------------- …………………………………………(3.6b) 

 R   

 

where R = L /(Ak) is the thermal resistance offered by the wall for conduction and   
(T2 – To) 

Qx = --------------- ………………………………………..(3.6c)  
Rco 

 

Where Rco = 1 / (hoA) is the thermal resistance offered by the fluid at the surface at x = 

L for convection. It follows from Equations (3.6a), (3.6b) and (3.6c) that 
 

(Ti – T1) (T1 – T2) (T2 – T0) 

Qx = --------------- = ------------------ = -------------- 

Rci R Rco 

 (Ti – To) 

Or Qx = ------------------- ……………………………………(3.7) 

 [Rci + R + Rco] 
 

Radial Conduction in a Hollow Cylinder: 

 

The governing differential equation for one-dimensional steady state radial conduction in 

a hollow cylinder of constant thermal conductivity and without thermal energy 
generation is given by Eq.(2.10b) with n = 1: i.e.,  

d 

--- [r (dT / dr)] = 0 ………………………….(3.8)  
dr 

 

Integrating the above equation once with respect to „r‟ we get 
 

r (dT / dr) = C1 

 

or (dT / dr) = C1/ r  
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Integrating once again with respect to „r‟ we get 
 

T(r) = C1 ln r + C2 ………………………..(3.9) 

 

where C1 and C2 are constants of integration which can be determined by knowing 

the boundary conditions of the problem. 
 

Hollow cylinder with prescribed surface temperatures: Let the inner surface at r = r1 

be maintained at a uniform temperature T1 and the outer surface at r = r2 be maintained 

at another uniform temperature T2 as shown in Fig. 3.3. 
 

Substituting the condition at r1 in Eq.(3.9) we get 
 

T1 = C1 ln r1 + C2 ………………………….(3.10a) 

 

and the condition at r2 in Eq. (3.9) we get 
 

T2 = C1 ln r2 + C2 ………………………….(3.10b) 

 

Solving for C1 and C2 from the above two equations we get 
 

 

(T1 – T2) (T1 – T2) 

C1 = ---------------- = ------------------- 

[ln r1 – ln r2] ln (r1 / r2) 
 

(T1 – T2) 

and C2 = T1 − ------------------ ln r1 

ln (r1 / r2) 
 

Substituting these expressions for C1 and C2 in Eq. (3.9) we have 

 

(T1 – T2) (T1 – T2) 

T(r) = -------------- ln r  + T1 − ---------------- ln r1 

ln (r1 / r2) ln (r1 / r2) 
 

or [T(r) – T1] ln (r / r1)  
--------------- = ------------------- …………………………………………(3.11) 

[ T2 – T1] ln (r2 / r1) 
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T2  
T1 

 
 

 

r2 

r1  
 
 
 
 
 
 
 

 

Fig.3.3: Hollow cylinder with prescribed surface temperatures 
 
 

 

Eq. (3.11) gives the temperature distribution with respect to the radial direction in a hollow 
cylinder. The plot of Eq. (3.11) is shown in Fig. 3.4.  
Expression for rate of heat transfer:- For radial steady state heat conduction in a hollow 

cylinder without heat generation energy balance equation gives 

 

Qr = Qr|r = r1 = Qr|r = r2 
 

Hence Qr = − k [A(r) (dT / dr)] |r = r1 …………………………….(3.12) 

 

Now A(r) |r = r1 = 2 π r1 L .From Eq. (3.11) we have 

 

(dT / dr) = {[ T2 – T1] / ln (r2 / r1) }(1/r) 

 

Hence (dT / dr)|r = r1 = {[ T2 – T1] / ln (r2 / r1) }(1/ r1). 
 

Substituting the expressions for A(r)|r = r1 and (dT / dr)|r = r1 in Eq. (3.12) we get 

the expression for rate of heat transfer as 
 

2 π L k (T1 – T2) 

Qr = -------------------------- ……………………………….(3.13) 

ln (r2 / r1) 

 

Thermal resistance for a hollow cylinder:  Eq. 3.13 can be written as: 
 

Qr = (T1 – T2) / R ……………………………………….(3.14a)  
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1 
 

 

(T – T1) 

(T2 – T1)  
 

 

0 r / r1 

1.0 r2 / r1 
 
 
 

Fig. 3.4: Radial temperature distribution for a hollow cylinder 
 
 

 
 

Where Am = (A2 – A1) / ln (A2 / A1), when A2 = 2π r2 L = Area of the outer surface of the 

 

cylinder and A1 = 2π r1 L = Area of the inner surface of the cylinder, and Am is logarithmic 

mean area. 

 

Hollow cylinder with convective boundary conditions at the surfaces:- Let for the hollow 

cylinder, the surface at r = r1 is in contact with a fluid at temperature Ti with a surface heat 

transfer coefficient hi and the surface at r = r2 is in contact with another fluid at a temperature 

To as shown in Fig.3.5.By drawing the thermal circuit for this problem and using the concept 
of thermal resistance it is easy and straight forward to write down the expression for the rate 
of heat transfer as shown. 

 

 

Now Qr = hiAi(Ti – T1) = 2π r1L hi (Ti 

 
(Ti – To)  

– T1) = -------------- ……………..(3.15a)  
Rci 

 

where  Rci = 1 / (2π r1Lhi)………………………………………………..(3.15b) 

 

(T1 – T2)  
Also Qr = -------------- …………………………………………………..(3.15c) 

R  
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where R = ln (r2 / r1) / (2πLk)…………………………….(3.15d) 

 

  
Rci + R + Rco 

 

where Rci, R and Rco are given by Eqs.(3.15b), (3.15d) and (3.15f) respectively. 

 

 

d 

--- [r2
 (dT / dr)] = 0 ………………………….(3.17)  

dr 

 

Integrating the above equation once with respect to „r‟ we get 
 

 

r
2
 (dT / dr) = C1 

 

or (dT / dr) = C1/ r
2
 

 

Integrating once again with respect to „r‟ we get 
 

T(r) = − C1 / r + C2 ………………………..(3.18) 

 

where C1 and C2 are constants of integration which can be determined by knowing 

the boundary conditions of the problem. 

Hollow sphere with prescribed surface temperatures: 

(i) Expression for temperature distribution:-Let the inner surface at r = r1 be maintained at a 

uniform temperature T1 and the outer surface at r = r2 be maintained at another uniform 

temperature T2 as shown in Fig. 3.6. 

 

The boundary conditions for this problem can be written as follows: 
 

(i) at r = r1, T(r) = T1 and (ii) at r = r2, T(r) = T2. 

 

Condition (i) in Eq. (3.18) gives 

 
 

T1 = − C1 / r1 + C2 ………………………….(3.19a) 
 

 
Condition (ii) in Eq. (3.18) gives 

  
T2 = − C1 

  
/ r2 + C2 ………………………….(3.19b) 
 

 

Solving for C1 and C2 from Eqs. (3.19a) and (3.19b) we have 

 

(T1 – T2) 

 
 

(T1 – T2)  
C1 = -------------------  and  C2 = T1 

[1 / r2 – 1 / r1] 

 
+ --------------------------  

r1[1 / r2 – 1 / r1] 
 

 

Substituting these expressions for C1 and C2 

  
in Eq. (3.18) we get 
 

 

T(r) = 

  
(T1 – T2) / r (T1 – T2) / r1 

− ----------------------- + T1 + ----------------------  
[1 / r2 – 1 / r1] [1 / r2 – 1 / r1] 
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Surface at temperature T2  
 

Surface at temperature T1  

r2 

 

 

r1 

 
 
 
 

 

Fig. 3.6: Radial conduction in a hollow sphere with prescribed 

surface temperatures 
 
 
 
 

 

Or T(r) – T1 [1 / r2 – 1 / r]  
----------------- = ---------------------- ……………………………(3.20) 

[T1 – T2] [1 / r2 – 1 / r1] 

 

(ii) Expression for Rate of Heat Transfer:- The rate of heat transfer for the hollow sphere 

is given by 
 

Qr = −k A(r)(d T / dr) …………………………………………..(3.21) 

 

Now at any radius for a sphere A(r) = 4π r
2
 and from Eq. (3.20) 

1 

dT / dr = [T1 – T2] ------------------ (1 / r
2
) 

[1 / r2 – 1 / r1] 

Substituting these expressions in Eq. (3.21) and simplifying we get 
 

4 π k r1 r2 [T1 – T2] 

Qr = -------------------------- ……………………………………...(3.22) 

[r2 – r1] 
 

Eq.(3.22) can be written as Qr = [T1 – T2] / R    ……………………………..(3.23a) 

 

Where R is the thermal resistance for the hollow sphere and is given by 
 

R = (r2 – r1) / {4 π k r1 r2} …………………………………….(3.23b)  
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Hollow sphere with convective conditions at the surfaces: - Fig. 3.7 shows a hollow sphere 

whose boundary surfaces at radii r1 and r2 are in contact with fluids at temperatures Ti and T0 

with surface heat transfer coefficients hi and h0 respectively. 
 
 
 
 

 

Surface in contact with 

fluid at T0 and surface heat 

transfer coefficient h0 

 

Surface in contact with 

fluid at Ti and surface 

heat transfer coefficient hi 

 
 
 
 
 
 
 
 
 

 

r2  
 

 

r1 

 
 
 
 

 

Fig. 3.7: Radial conduction in a hollow sphere with convective 

conditions at the two boundary surfaces 
 
 
 

The thermal resistance network for the above problem is shown in Fig.3.8 
 

Qci = Qr = Qco  ………………(3.24) 

 

Where Qci = heat transfer by convection from the fluid at Ti to the inner 

surface of the hollow sphere and is given by 

[Ti – T1] 
 

Qci = hi Ai [Ti – T1] = ---------------  …..(3.25) 
 

Rci 
 
 
 
 
 
 

 

Ti    Qci 
    Qr 

    Qco 
 

              

To 
 

               
 

                  
 

    Rci    R    Rco 
  

 

 

Thermal circuit for a hollow sphere with convective boundary conditions 3.12 
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When T1 = the inside surface temperature of the sphere and 

 

Rci = 1 / (hiAi) = the thermal resistance for convection for the inside surface 

 

Or Rci = 1 / (4 π r1
2
 hi) ……………………………………………………….(3.25b) 

 

Qr = Rate of heat transfer by conduction through the hollow sphere 

 

= [T1 – T2] / R with R = (r2 – r1) / {4 π k r1 r2} 

 

And Qco = Rate of heat transfer by convection from the outer surface of the sphere to 

the outer fluid and is given by  

   [T2 – T0] 
 

 Qco = ho Ao [T2 – To] = ---------------  ……………(3.26a) 
 

   Rco 
 

Where T2 = outside surface temperature of the sphere and 
 

Ao = outside surface area of the sphere = 4 π r2
2
 so that 

 

 Rco = 1 / {4 π r2
2
 ho}…………………………….(3.26b) 

 

Now Eq.(3.24) can be written as   
 

 [Ti – T1] [T1 – T2] [T2 – T1] 
 

Qr = hi Ai [Ti – T1] = -------------- = ---------------- = ---------------- 
 

 Rci R Rco 
 

Qr = ---------------------- 

[Ti – To] 

…………………………………………(3.27) 
 

 
 

[Rci + R + Rco] 

 

Steady State conduction in composite medium: 

There are many engineering applications in which heat transfer takes place through a 

medium composed of several different layers, each having different thermal 

conductivity. These layers may be arranged in series or in parallel or they may be 

arranged with combined series-parallel arrangements. Such problems can be 

conveniently solved using electrical analogy as illustrated in the following sections. 

 

Composite Plane wall:- (i) Layers in series: Consider a plane wall consisting of three layers 

in series with perfect thermal contact as shown in Fig. 3.10.The equivalent thermal 
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resistance network is also shown. If Q is the rate of heat transfer through an area A of 
the composite wall then we can write the expression for Q as follows: 

 

Surface in 

  

L1 
  

L2  L3 
 

 

         
 

              
 

                        
 

                        
 

contact                 Surface in contact with a fluid  

with fluid 
                

 

                at T0 and surface heat  

at Ti and 
  

k1 

  

k2 

 

k3 

   
 

        
transfer coefficient ho 

 

surface         
 

                        
 

heat                         
 

transfer                         
 

coefficient                         
 

hi    T1  T2   T3 T4      
 

             
 

  Rci R1  R2  R3  Rco 
 

Q 

                        

Q 

 

                    

   

 
 

                     
 

 Ti    T1   T2    T3    T4    To 
  

 

A composite plane wall with three layers in series and the equivalent thermal 

resistance network 

 

(T2 – T3) (T1 – T2) (T1 – T2) (T2 – T3) (T3 – Tco) 
Q = -------------- = --------------- = ------------- = ------------ = ----------------  

Rco R1 R2 R3 Rco 

 

(Ti – T0) Ti – T0) 
Or Q = --------------------------------- = ------------…………………………….(3.28)  

Rci + R1 + R2 + R3 + Rco Rtotal 

 

Overall heat transfer coefficient for a composite wall: - It is sometimes convenient to 

express the rate of heat transfer through a medium in a manner which is analogous to the 
Newton‟s law of cooling as follows: 

 

If U is the overall heat transfer coefficient for the composite wall shown in Fig. 
(3.10) then 

Q = U A (Ti – To) …………………………………...(3.29) 

 

Comparing Eq. (3.28) with Eq. (3.29) we have the expression for U as 

1  
U = --------------- ……………………………………..(3.30)  

A Rtotal 
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1 1 

Or  U = ------------------------------------= ----------------------------------------------------- 

A [ Rci + R1 + R2 + R3 ] A[1/(hiA) + L1/(Ak1) + L2/(Ak2) + L3/(Ak3)] 

 

1 

Or  U = --------------------------------------------    ………………………………(3.31) 

[ 1/hi + L1 / k1 + L2 / k2 + L3 / k3 ] 

 

(ii) Layers in Parallel:- Fig.3.11 shows a composite plane wall in which three layers are  
 

 

L 

 

Surface in 
 

 

k1 
 

contact  

 
 

with fluid 
 

 

 
 

at Ti with 
k2 

 

heat  

 
 

transfer  
 

 
 

coefficient  
 

hi 
k3 

 

 
 

  
 

 

    Q1    
 

Ti 

 

T1 

 
R1 

  
 

 

Q2 

  
 

    
 

  

Rci R2 
  

 

      
  

 

Q3  

R3 

 

 

H1 

 

 

H2 
 
 

 

H3 

 

 

Suface in contact 

b with fluid at To 
and surface heat 
transfer 

coefficient ho 
 

T2 
 

To 
 

Rco 
 

  
Q 

 

   
  

 

 

 

Schematic and equivalent thermal circuit for a composite wall with layers in parallel 

 

arranged in parallel. Let „b‟ be the dimension of these layers measured normal to the plane 
of the paper. Let one surface of the composite wall be in contact with a fluid at temperature 

Ti and surface heat transfer coefficient hi and the other surface of the wall be in contact with 

another fluid at temperature To with surface heat transfer coefficient ho. The equivalent 
thermal circuit for the composite wall is also shown in Fig. 3.11. The rate of heat transfer 
through the composite wall is given by 

 

Q = Q1 + Q2 + Q3 ………………………….(3.32)  
 



                                                                                                                                                44 

 

 

where  Q1 = Rate of heat transfer through layer 1, 
 
 

Q2 = Rate of heat transfer through layer 2, and 

 

Q3 = Rate of heat transfer through layer 3. 

 

(T1 – T2)  
Now Q1 = -------------- ……………………………………………………...(3.33a) 

R1 

 

Where R1 = {L / (H1bk1)} 
 

 

Similarly Q2 

 
 

(T1 – T2) 
= -------------- …………………………………………………(3.33b)  

R2 
 

 

Where R2 

  
= {L / (H2bk2)} 
 

 

(T1 – T2) 

and  Q3 
 
= -------------- =  

R3 

 
……………………….. ………………………….(3.33c) 

 

Where R3 =  {L / (H3bk3)} 

 

Substituting these expressions in Eq. (3.32) and simplifying we get 
 

 

(T1 – T2) (T1 – T2) (T1 – T2) (T1 – T2) 
Q = ------------- + ---------------- + ----------------- = -------------------- ……….(3.34)  

R1 R2 R3 Re 
 

 

Where 1 / Re = 1/R1 

 
 

 

+ 1/R2 + 1/R3 
 

 

Hence Q  = 

  
(Ti – T1) (T1 – T2) (T2 – To) (Ti – To) 

----------- = ------------ = ------------- = -------------------- …………(3.35)  
Rci Re Rco [Rci + Re + Rco] 

 

 

Composite Coaxial Cylinders:- Fig. 3.12. shows a composite cylinder having two layers in 
series. The equivalent thermal circuit is also shown in the figure. The rate of heat 
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transfer through the composite layer is given by  

k2  

 

k1 

 
 
 
 
 
 
 
 
 
 

 

Surface in contact with 

fluid at To and surface 

heat transfer coefficient h0 
 

 

 

Ti T1  
 

Q  

 
Rci 

 
R1 

 

  
 

 
 
 
 
 
 
 

 

r2 r3  

r1 

 
 
 
 
 

 

Surface in contact with 

fluid at Ti and surface 
heat transfer coefficient 

hi 

 

 

T2 T3 To  
 

R2 Rco 
 

: Schematic and thermal circuit diagrams for a composite cylinder 
 
 
 

 

 (Ti – T1) (T1 – T2) (T2 – T3)   (T3 – To) (Ti – T0) 

Now Q = ------------- = ------------ = ----------- = ------------- = ----------------------------- 

 Rci R1 R2 Rco [Rci + R1 + R2 + Rco] 

     ……………..(3.36) 

  1  1  

Where Rci = 1 / [hiAi] = -------------- ; R1 = ---------- ln (r2 / r1) 

  2 π r1L hi  2 π L k1  

  1  1  

Rco = 1 / [hoAo] = -------------- ; R2 = ---------- ln (r3 / r2) 

  2 π r3L ho  2 π L k2  
 

The above expression for Q can be extended to any number of layers.  
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Overall Heat Transfer Coefficient for a Composite Cylinder:- For a cylinder the area of heat 
flow in radial direction depends on the radius r we can define the overall heat transfer 
coefficient either based on inside surface area or based on outside surface area of the 

composite cylinder. Thus if Ui is the overall heat transfer coefficient based on inside surface 

area Ai and Uo is the overall heat transfer coefficient based on outside surface area Ao then 
 

Q = UiAi (Ti – To)  ………………………………………………………………….(3.37) 

 

From equations (3.36) and (3.37) we have 
 

 

(Ti – T0) 

Now UiAi (Ti – To) = ----------------------------- 

[Rci + R1 + R2 + Rco] 
 

Substituting the expressions for Ai, Rci,R1,R2 and Rco in the above equation we have 

 

 

1 

2 π r1L Ui = -------------------------------------------------------------------------------------------- 

[1 /(2πr1Lhi)  + {1/(2πLk1)}ln (r2 / r1) + {1/(2πLk2)}ln (r3 / r2) + 1/(2πr3Lho)] 

 

1 

Or Ui = ------------------------------------------------------------------------- ……..(3.38) 

[ 1/hi + (r1 / k1) ln (r2/r1) + (r1/k2) ln (r3/r2) + (r1/r3) (1/ho) ] 
 

Similarly it can be shown that 

 

1 

Uo = ------------------------------------------------------------------------------  …..(3.39) 

[(r3/ r2) (1/hi ) + (r3 / k1) ln (r2/r1) + (r3/k2) ln (r3/r2) + (1/ho) ] 
 
 

 

Composite Concentric Spheres:- Fig.3.13 shows a composite sphere having two layers with 

the inner surface of the composite sphere in contact with fluid at a uniform temperature Ti 

and surface heat transfer coefficient hi and the outer surface in contact with another fluid at a 

uniform temperature To and surface heat transfer coefficient ho. The corresponding thermal 
circuit diagram is also shown in the figure. 
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k2   
 

k1 

 

r1 r2 r1 

 

r3 

 
 
 
 
 

 

Surface in contact with 

fluid at To and surface 

heat transfer coefficient h0 

 
 
 

 

Surface in contact with 

fluid at Ti and surface 

heat transfer coefficient 

hi 

 
 

 Ti  T1  T2 T3 To 
 

              
 

Q 
   

Rci 
 

 R1 
 

R2 
 

Rco  

 

      
  

 
 

 

Fig. 3.13: Schematic and thermal circuit diagrams for a composite sphere 
 
 
 

Eq. (3.36) is also applicable for the composite sphere of Fig. 3.13 except that the expression 
for individual resistance will be different. Thus 

 

(Ti – To)  
Q = --------------------------- …………………………………………….(3.40) 

[Rci + R1 + R2 + Rco] 
 

1 1 (r2 – r1) 

where Rci = ---------- = ----------------- ; R1 = --------------- ; 

hi Ai 4 π r1
2
 hi 4 π k1 r1r2 

 

1 1 (r3 – r2) 

Rco  = ---------- = ----------------- ; R2 = --------------- ; 

hoAo 4 π r3
2
 ho 4 π k2 r2r3 

 

Example 3.2:-Fig. P3.2 shows a frustum of a cone (k = 3.46 W/m-K). It is of circular cross 

section with the diameter at any x is given by D = ax, where a = 0.25. The smaller cross 

section is at x1 = 50 mm and the larger cross section is at x2 = 250 mm. The corresponding 

surface temperatures are T1 = 400 K and T2 = 600 K. The lateral surface of the cone is 

completely insulated so that conduction can be assumed to take place in x-direction only.  
(i) Derive an expression for steady state temperature distribution, T(x) in the solid and  
(ii) calculate the rate of heat transfer through the solid.( T(x) = 400 + 12.5{20 – 1/x} ; Qx 

= - 2.124 W) 
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T2 T1 

 

 

By Fourier‟s law, the rate of  
heat transfer in x-direction 

across any plane at a distance  
x from the origin „o‟ is given 

by  

D2        
D 

   D1     
Qx = ─ k Ax (dT/dx). 

 

                   
 

                     
 

               
X1 

   
For steady state conduction 

 

                  
 

                    without heat generation Qx  

            

x 
      

 

             

  

   

will be a constant. Also at any 
 

                
 

          X2    x, D = ax. 
  

Therefore, Qx = ─ k (πD
2
/4) (dT/dx) = ─ k [π(ax)

2
/4] (dT/dx). 

 

Separating the variables we get, dT = ─ (4/πa
2
k) Qx (dx/x

2
) 

 

 

Integrating the above equation we have 
 

T 
  
x  

∫dT = ─( 4Qx / π a2 k) ∫ (dx /x2) 
T X 

1 1 

 

Or 

 
 

T – T1 = 

 
 

─( 4Qx / π a2 k) [(1 / x)– (1 / X1)] 
 

 

Or 

  
( 4 Qx) 

T = T1 ─ --------------- ( (1 / x )– (1 / X1)) …………(1)  
(π a2 k) 

 
 

At x = X2, T = T2. Substituting this condition in Eq.(1) and solving for Qx we get 
 

 

(π a2 k) (T2 – T1)  
Qx = ----------------------------- …………………….(2)  

4 (1/X2 – 1/X1) 
 

Substituting this expression for Qx in Eq. (1) we get the temperature distribution in 

the cone as follows: 
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(T2 – T1) (1/x – 1/X1) 

T(x) = T1 + --------------------------------- ………………..(3) 

(1/X2 – 1/X1) 
 

Substituting the given numerical values for X1, X2, T1 and T2 in Eq.(3) we get the 

temperature distribution as follows: 

(600 – 400) [ 1/ x – 1/0.05] 

T(x) = 400 + ------------------------------------  
[ 1/0.25 – 1/0.05} 

 

Or T(x) = 400 + 12.5 [20 – 1/x]  


 Temperature distribution 

π x (0.25)
2
 x 3.46 x [600 – 400] 

And Qx = -------------------------------------------- = ─ 2.123 W 

4 x [ 1/0.25 – 1/0.05 ] 
 

 

Example 3.3: -A plane composite wall consists of three different layers in perfect thermal contact. The first 
layer is 5 cm thick with k = 20 W/(m-K), the second layer is 10 cm thick with k = 50 W/(m-K) and the 
third layer is 15 cm thick with k = 100 W/(m-K). The outer surface of the first layer is in contact with a 

fluid at 400 
0
C with a surface heat transfer coefficient of 25 W/ (m 

2
 – K), while the outer surface of 

the third layer is exposed to an ambient at 30 
0
C with a surface heat transfer coefficient of 15 W/(m 

2
-

K).Draw the equivalent thermal circuit indicating the numerical values of all the thermal resistances 
and calculate the heat flux through the composite wall. Also calculate the overall heat transfer 
coefficient for the composite wall. 

 
 

Solution: Data :- L1 = 0.05 m ; L2 = 0.10 m ; L3 = 0.15 m ; k1 = 20 W /(m-K) ; 
 

k2 = 50 W /(m-K) ; k3 = 100 W/(m-K) ; hi = 25 W /(m
2
 – K) ; h0 = 15 W/(m

2
 – K) 

; Ti = 400 
0
 C ; T0 = 30 

0
 C. 

1 

Rci = 1 / (hiA1) = ----------------  = 0.04 m
2
 – K / W (A1 = A2 = A3 = A4 = 1 m2) 

25 x 1 
 
 
 
 

  L1 L2 L3  
 

hi 

    

h0 

 

    
 

  k1 k2 k3  
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Q  

Rci R1 R2 R3  R c0 
 

 0.05 

= 0.0025 m
2
 – K / W. 

    
 

R1 = L1 /(k1A1) = ---------------     
 

 20 x 1      
 

 ----------------
0.10

 

= 0.002 m
2
 – K / W. 

    
 

R2 = L2 / (k2A2) =      
 

 50 x 1      
 

 ------------------
0.15

 

= 0.0015 m
2
 – K / W. 

   
 

R3 = L3/ (k3A3) =     
 

 100 x 1      
 

 ----------------
1

 

= 0.067 m
2
 – K / W. 

    
 

Rco = 1 / (h0A4) =      
 

 15 x 1      
 

∑R = Rci + R1 + R2 + R3 + Rco = 0.04 + 0.0025 + 0.002 + 0.0015 + 0.067 
 

Or ∑R = 0.113 m
2
-K/W.     

 

  (Ti – T0)  (400 – 30) 
 

Heat Flux through the composite slab = q = ---------------  = ------------------  
 

  ∑R  0.113   
 

 

= 3274.34 W / m
2
. 

 

If „U‟ is the overall heat transfer coefficient for the given system then 

 

Q 1 1 

U = ---------------- = ------------- = -------------- 

      (Ti – T0) ∑R 0.113 
 

= 8.85 W / (m
2
 – K). 
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Example 3.4:-A composite wall consisting of four different materials is shown in Fig 
P3.10. Using the thermal resistance concept determine the heat transfer rate per 

m2 of the exposed surface for a temperature difference of 300 0 C between the 
two outer surfaces. Also draw the thermal circuit for the composite wall. 

 

 

T1  
      

k1 = 100 W/(m-K) ; L1 =0.04 m; 
 

      
 

k1 k2 
 k4 

k2 = 0.04 W/(m-K) ; L2 = 0.1 m; 
 

  
 

      
 

     
2 m 

k3 = 20 W/(m-K) ; L3 = 0.1 m ; 
 

      
 

      
k4 = 70 W/(m-K) ; L4 = 0.05 m; 

 

      
 

 

W = Width of the wall 

k3
 perpendicular to the plane of 

paper = 1 m (assumed). 
 

 

4cm 

 

10 cm 

 

5 cm 

 

T1 – T4 = 300 
0
 C. 

 

    
 

    

A1 = A4 = 1 x 2 = 2 m
2
. 

 

       
 

Solution: 

     A2 = A3 = 1 x 1 = 1 m
2
. 

 

      
 

  0.04    
0
 C / W. 

 

R1 = L1 / (A1k1) = ---------------- = 0.0002 
 

   2 x 100     
 

  0.10    
0
 C / W. 

 

R2 = L2 / (A2k2) = ---------------- = 0.00143 
 

   1 x 70     
  

 

0.10 

R3 = L3 / (A3k3) = --------------- = 0.005 
0 

C / W. 

1 x 20  
 

 

 

 0.05 

R4 = L4 / (A4k4) = ------------------ = 0.00036 
0
 C / W. 

 2 x 70 
 

 

Q    R2 
 
 

R1 
   

R4 
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R3  
 

Thermal potential = T1 – T4 

 

 

R2 and R3 are resistances in parallel and they can be replaced by a 

single equivalent resistance Re, where 

  R2 R3 0.00143 x 0.005 
 

1 / Re = 1 / R2 + 1 / R3 or  Re = --------------- = ----------------------- = 0.0011 
0
C/W 

 

  (R2 + R3) (0.00143 + 0.005) 
 

Now R1, Re and R4 are resistances in series so that 
 

(T1 – T4) 
----------------------- ------------- 300 

= 86.705 x 10
3
 W 

 

Q = --------------------- =  
 

(R1 + Re + R4) [0.002 + 0.0011 + 0.00036] 
 

 

Heat transfer per unit area of the exposed surface is given by 
 

q = Q / A1  = 86.705 / 2.0 = 43.35 kW. 
 

 

Example 3.8:- A hollow aluminum sphere with an electrical heater in the centre is used 
to determine the thermal conductivity of insulating materials. The inner and outer radii 
of the sphere are 15 cm and 18 cm respectively and testing is done under steady state 

conditions with the inner surface of the aluminum maintained at 2500 C. In a particular 
test, a spherical shell of insulation is cast on the outer surface of the aluminum sphere 

to a thikness of 12 cm. The system is in a room where the air temperature is 20 0 C and 

the convection coefficient is 30 W/(m2 – K). If 80 W are dissipated by the heater under 
steady state conditions, what is the thermal conductivity of the insulating material? 

 

 

Solution: 
       

ho,To 
 

 

        
 

r3        
 

 

r2 
       

 

 
r1 

   
 

     
 

      
 r1 = 0.15 m ; r2 = 0.18 m ; 

 

      
 

    T1  
r3 = 0.18 + 0.12 = 0.3 m ; 

 

       
 

 k1      
k1 = 204 W/(m-K) from 

 

       
 

 

k2 
    

 tables; k2 = 0.30 W/(m-K) 
 

     
 

         

       ho = 30 W/(m
2
-K);Q = 60 W 

 

       T1 = 250 
0
 C ; To = 20 

0
 C. 
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 (r2 – r1) (0.18 – 0.15) 

R1 = ---------------- = ------------------------------ = 4.335 x 10 
─ 4

     
0
 C / W. 

 4π k1 r1 r2 4 π x 204 x 0.18 x 0.15 

 
 

 (r3 – r2) (0.30 – 0.18) 

R2 = ---------------- = ------------------------------ = 0.177 / k2    
0
 C / W. 

 4π k2 r2 r3 4 π x k2 x 0.30 x 0.18 
 

 1 1 
 

Rco = 1 / (hoAo) = ------------------- = --------------------- = 0.0295 
 

 4π r3
2
 ho 4π x (0.3)

2
 x 30 

 

(T1 – To)   
 

Q = -------------------- or  R2 = (T1 – To) / Q – (R1 + Rco) 
 

R1 + R2 + Rco 
Or  R2 = (250 – 20) / 80 ─ (4.335 x 10 

─ 4
 

 

 
 

Therefore 0.177 / k2 = 2.845 
 

 
 
0 C / W.

 
 
 
 
 

 

+ 0.0295) = 2.874 

 

Or k2 = 0.177 / 2.845 = 0.062 W / (m-K) 

 

 
Example 3.8:- In a hollow sphere of inner radius 10 cm and outer radius 20, the inner 

surface is subjected to a uniform heat flux of 1.6 x 10 5 W/m2 and the outer surface is 
maintained at a uniform temperature of 0 0C.The thermal conductivity of the 
material of the sphere is 40 W /(m – K).Assuming one-dimensional radial steady 
state conduction determine the temperature of the inner surface of the hollow sphere.  

Solution:- 
 

 

T0  
 
 

 

R2 

q0 

R1 

 
 
 
 
 
 
 

 

The governing equation for one-dimensional steady-state radial conduction in a sphere 
without heat generation is given by 

 

d/dr ( r
2
 dT / dr ) = 0 …………………………………..(1) 

 
 

 



                                                                                                                                                54 

 

 

The boundary conditions are : (i) at r = R1, ─ k (dT/dr)|r=R1 = q0  

 (ii) at r = R2 T(r) = 0.  

Integrating Eq. (1) w.r.t. r once, we get    

 r
2
 (dT/dr) = C1   

 or dT / dr = C1 / r
2
 …………………………(2) 

Integrating once again w.r.t. r we get    

 T(r) = ─ C1 / r + C2 ……………….. (3) 

From (2) (dT/dr)r = R1 = C1 / R1
2
   

Hence condition (i) gives     

 ─ kC1 / R1
2
 = q0   

Or C1 = ─ q0 R1
2
 / k  

Condition (ii) in Eq.(2) gives 0 = ─ C1 / R2 + C2   

Or C2 = C1 / R2 = ─ (q0R1
2
) / (kR2)  

Substituting the expressions for C1 and C2 in Eq. (2) we have  

 q0 R1
2
 q0 R1

2
  

 T(r) = -------------- ─ -------------------  

 k r k R2  

Substituting the numerical values for q0, k, R1 and R2 we have  

 1.6 x 10
5
 x 0.1

2
 1.6 x 10

5
 x 0.1

2
  

 T(r) = -------------------- / r ─ --------------------  

  40 40 x 0.2  

Or T(r) = (40 / r) ─ 200   

  

Therefore T(r) |r = R1 = (40 / 0.1) ─ 200 = 200 
0
 C. 
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3.2.5. Thermal Contact Resistance: In the analysis of heat transfer problems for composite 
medium it was assumed that there is “perfect thermal contact” at the interface of two layers. 
This assumption is valid only the two surfaces are smooth and they produce a perfect contact 
at each point.But in reality, even flat surfaces that appear smooth to the naked eye would be 

rather rough when examined under a microscope 
.
as shown in Fig. 3.14 with numerous peaks 

and valleys. 
 

 

T2  
T1 

Rcont 
 

 

LA    LB 

 

 

   Gap between solids 

T1   Enlarged view of the contact surface 

 Tc1  
 
 

Tc2 T2 
 

Fig.3.14: Temperature drop across  
a contact resistance 

 

The physical significance of thermal contact resistance is that the peaks will form good 
thermal contact, but the valleys will form voids filled with air.As a result the air gaps act as 
insulation because of poor thermal conductivity of air.Thus the interface offers some 
resistance to heat conduction and this resistance is called the “thermal contact 

resistance,Rcont”. The value of Rcont is determined experimentally and is taken into account 

while analyzing the heat conduction problems involving multi-layer medium.The procedure 
is illustrated by means of a few examples below. 

 

Example 3.4:- A composite wall consists of two different materials A [k = 0.1 W/(m-k)] of 
thickness 2 cm and B[ k = 0.05 W/(m-K)] of the thickness 4 cm. The outer surface of layer A 
is in contact with a fluid at 2000C with a surface heat transfer coefficient of 15 W/(m2-K) and 
the outer surface of layer B is in contact with another fluid at 50 0 C with a surface heat 
transfer coefficient of 25 W/(m2-K). The contact resistance between layer A and layer B is 
0.33 (m2-K) /W. Determine the heat transfer rate through the composite wall per unit area of 
the surface. Also calculate the interfacial temperatures and the inner and outer surface 
temperatures. 
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Solution: 
 

hi,Ti 

     
h0,T0Ti = 200 

0
 C ; T0 = 50 

0
 C ;  

   

Rcont 

 
 

     

hi = 15 W/(m
2
 – K) ; h0 = 25W/(m

2
– K) 

 

       
 

   
kA 

 
kB 

  
 

       
 

   
LA 

 
LB 

  kA = 0.1 W/(m-K) ; kB = 0.05 W/(m-K) 
 

       
 

        Rcont = 0.33 (m
2
 – K) /W. 

 

        

The equivalent thermal circuit is also 

 

        
 

 
T1 

     shown in the figure. 
 

  
Tc1 

  1 
 

      2 
 

       

 

Rci = 1/(hiAA) = ------- = 0.067 m -K/W 
 

       
 

        (15 x 1) 
 

    Tc2   T2 
 

        R1 = LA/(kAAA) = 0.02 / (0.1 x 1) 
 

        = 0.2 m
2
-K / W. 

  
 
 
 
 
 
 

 

R2 = LB / (kBAB) = 0.04 / (0.05 x 1) = 0.8 m
2
 – K / W. 

 

Rco = 1 / (hoAB) = 1 / ( 25 x 1) = 0.04 m
2
 – K / W. 

 

∑R = Rci + R1 + Rcont + R2 + Rco = 0.067 + 0.2 + 0.33 + 0.8 + 0.04 = 1.437 m
2
 – K / W. 

 

 

 (200 – 50) 

Heat flux = q = (Ti – To) / ∑R = ------------------ = 104.4 W/m
2

 

 1.437 

Now q = (Ti – TA) / Rci or TA = Ti – q Rci = 200 – (104.4 x 0.067) = 193 
0
 C. 

Similarly Tc1 = TA – q R1 = 193 – (104.4 x 0.2) = 172.12 
0
 C. 

 Tc2 = Tc1 – q Rcont = 172.12 – (104.4 x 0.33) = 137.67 
0
 C. 

 TB = Tc2 – q R2 = 137.67 – (104.4 x 0.8) = 54.15 
0
 C. 

Check : To = TB – q Rco = 54.15 – (104.4 x 0.04) = 49.97 
0
 C 
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Example 3.11:- A plane wall of thickness 2L is generating heat according to the law 

q’’’ = q0 [1 – β(T – Tw)] 

 

where qo, β, and Tw are constants and T is the temperature at any section x from 
the mid-plane of the wall. The two outer surfaces of the wall are maintained at a 

uniform temperature Tw. Determine the one-dimensional steady state temperature 
distribution, T(x) for the wall. 

 

Solution: 
 

2L  

 

q’’’ = q0 [1 – β(T – Tw)] 
 
 
 

Tw 
Tw 

 

 
 

 
 
 
 
 
 
 
 
 

 

x 
 

 

Governing differential equation for one-dimensional steady state conduction in a 
plane wall which generating heat is given by 

 

d
2
T / dx

2
  + q‟‟‟ / k = 0. 

 

Substituting for q‟‟‟ we have 
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d
2
T / dx

2
 + qo [ 1 – β(T – Tw)] /k = 0 

 

Defining a new variable θ = T – Tw, the above equation can be written as 

 

d2θ / dx2 + qo [ 1 – βθ] /k = 0 

 

or 

 
 

d2θ / dx2 

 

 

− qo βθ /k = qo / k 
  

or 
  
d2θ / dx2 

  
− m 2θ = qo / k ……………………………..(1a) 

 
 

where 

  
m2 = q0 β /k ……………………………...(1b) 

 
 

Eq.(1a) is a second order linear non-homogeneous differential equation whose solution 
is given by 

 

θ (x) = θh(x) +  θp(x) ………………………………….(2) 
 

where θh(x)  satisfies the differential equation 

 

d
2
θh  / dx

2
  − m 

2
θh  =  0 ……………………………….(3) 

 

Solution to Eq.(3) is given by 
 

θh(x) = A1 e 
mx

 + A2 e 
− mx

…………………………….(4) 

 

θp(x) satisfies the differential equation 

 

d
2
θp  / dx

2
  − m 

2
θ p = qo / k…………………………..(5) 

 

The term qo/k makes the governing differential equation non-homogeneous. Since this is 

a constant θp(x) is also assumed to be constant. Thus let θp(x) = C, where C is a 

constant. Substituting this solution in Eq. (5) we get 
 

− m 2C = qo / k 

 

Or 

 
 

C = - qo /(km2) 

  
Substituting for m2 we get 

  
C = − 1 / β. 
 

 

Hence 

  

θp(x) = − 1 / β …………………………….(6) 
  

The complete solution θ(x) is therefore given by 
 

θ(x) = A1 e mx + A2 e − mx − 1 / β …………………..(7) 
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The constants A1 and A2 in Eq.(7) can be determined by using the two 

boundary conditions, which are: 

 

(i)at x = 0, dT / dx = 0 (axis of symmetry) i.e., dθ / dx = 0 
 

(ii) at x = L, T = Tw ; i.e., θ = 0 
 

From Eq.(7), dθ / dx = m[A1e 
mx

 – A2 e 
− mx

 ] 
 

Substituting condition (i) we get m[A1 – A2] = 0 

 

Or A1 = A2. 

 

Substituting condition (ii) in Eq.(7) we get  A1[e 
mL

 + e 
− mL

] = 1 / β 

 

 (1 / β) 
Or A1 = ---------------------------- 

 [e 
mL

 + e 
− mL

] 
 

Substituting the expressions for A1 and A2 in Eq. (7) we get the temperature 

distribution in the plane wall as 

   (1 / β ) 
[ e 

mx
 + e 

− mx
 ] − 1 / β 

 

 θ(x) = T(x) – Tw = -------------------- 
 

   [e 
mL

 + e 
− mL

]  
 

  1 e mx + e − mx  
 

Or T(x) – Tw = ---- [ -----------------  − 1]  
 

  β e mL + e − mL  
 

   [e m(L – x) + e − m(L – x)] cosh m(L – x) 
 

or T(x) – Tw = (1 / β)---------------------------- = (1 / β)---------------------------- 
 

   [e mL + e − mL] cosh mL 
  

 

3.4. Critical Radius of Insulation:- For a plane wall adding more insulation will result 

in a decrease in heat transfer as the area of heat flow remains constant .But adding 

insulation to a cylindrical pipe or a conducting wire or a spherical shell will result in an 

increase in thermal resistance for conduction at the same will result in a decrease in the 

convection resistance of the outer surface because of increase in surface area for 

convection. Therefore the heat transfer may either increase or decrease depending on 

the relative magnitude of these two resistances. 

 

Critical Radius of Insulation for Cylinder:- Let us consider a cylindrical pipe of outer radius rs 

maintained at a constant temperature of Ts. Let the pipe now be insulated with 
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a material of thermal conductivity k and outer radius r. Let the outer surface of the insulation 

be in contact with a fluid at a uniform temperature T∞ with a surface heat transfer coefficient 

h. Then the thermal circuit for this arrangement will be as shown in Fig.3.15. 
 

 

r 
    

Surface in contact with a fluid at T∞ and 
 

    
 

     surface heat transfer coefficient h    
 

    

Ts 
    

 

        
 

 rs     
 

     
Ts 

  T∞ 
 

         
 

       

Rins 
 

Rco 
 

Q 
 

         
  

 
 
 
 
 
 
 

 

Fig.3.15: Schematic of a cylindrical pipe covered with an insulation 

and exposed to an ambient and the corresponding thermal circuit 

 

The rate of heat transfer from the pipe to the ambient is given by 

 

(Ts - T∞) (Ts – To) 
Q = ------------------ = ----------------------------------- …………………………...(3.44) 

[Rins + Rco] ln (r / rs) 1 

---------- + -------------- 

2 π L k 2 π r L h 
 

It can be seen from Eq. (3.44) that if Ts and h are assumed not to vary with „r‟ then Q 

depends only on r and the nature of variation of Q with r will be as shown in Fig.3.16. 

The value of r at which Q reaches a maximum can be determined as follows. 

(Ts – To)  
Eq. (3.44) can be written as Q = -----------  

F(r) 
 

ln (r / rs) 1  
where F(r) =  ---------- + --------------  

2 π L k 2 π r L h 

 

Hence for Q to be maximum, F(r) has to be minimum: i.e., dF(r) / dr = 0 
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Q 
 

 

Qmax 

 

Qbare 
 
 
 
 
 
 
 
 

 

r 
 

rs rcr = k / h 

 

Fig.3.16: Variation of Q with outer radius of insulation 
 

 

Now dF / dr = 

 
 
 

(1 / 2πLk)(1/r) − (1/2πLh)(1/r2) = 0 

 
 

Or 

  
r = k / h. 
 

This value of r is called “critical radius of insulation, rcr”. 
 

Therefore rcr = k /h ………………………………………...(3.45) 

 

It can be seen from Fig.(3.16) that if the outer radius of the bare tube or bare wire is 

greater than the critical radius then, any addition of insulation on the tube surface 

decreases the heat loss to the ambient. But if the outer radius of the tube is less than the 

critical radius , the heat loss will increase continuously with the addition of insulation 

until the outer radius of insulation equals the critical radius. The heat loss becomes 

maximum at the critical radius and begins to decrease with addition of insulation 

beyond the critical radius.  

The value of critical radius rcr will be the largest when k is large and h 

is small. The lowest value of h encountered in practice is about 5 W/(m
2
 – K) for free 

convection in a gaseous medium and the thermal conductivity of common insulating 

materials is about 0.05 W/(m – K). Hence the largest value of rcr that we may likely to 
encounter is given by  

0.05 

rcr = --------- = 0.01 m = 1 cm 

5 

 

The critical radius would be much less in forced convection (it may be as low as 1mm)  
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because of large values of h associated with forced convection. Hence we can insulate hot 

water or steam pipes freely without worrying about the possibility of increasing the heat loss 
to the surroundings by insulating the pipes.  

The radius of electric wires may be smaller than the critical radius. Therefore, the plastic 

electrical insulation may enhance the heat transfer from electric wires, there by keeping their 
steady operating temperatures at lower and safer levels.  

 

Critical Radius Insulation for a Sphere:- The analysis described above for cylindrical pipes 

can be repeated for a sphere and it can be shown that for a sphere the critical radius of 
insulation is given by  

2k 

rcr = ------- …………………………………..(3.46) 

h 

 

Example 3.12:-A conductor with 8 mm diameter carrying an electric current passes 

through an ambient at 30 0 C with a convection coefficient of 120 W/(m2 – K). 

The temperature of the conductor is to be maintained at 130 0 C. Calculate the 
rate of heat loss per metre length of the conductor when (a) the conductor is 
bare and (b) conductor is covered with bakelite insulation [k = 1.2 W/(m-K)] with 
radius corresponding to the critical radius of insulation. 

 

Solution:     
 

 Ts= 130 0 C   
 

D = 0.008 mm 

 

Dc K = 1.2 W/(m-K) 
 

 
 

   

Ts = 130 
0
 C 

 

     
 

       
 

       
  

 
 
 
 
 

h = 120 W/(m
2
-K) 

T∞ = 30 
0
 C h = 120 W/(m

2 – K) 

T∞ = 30 
0
 C 

(a) Conductor without  

Insulation. (b) Conductor with critical 

thickness of insulation 
 
 
 

 

(a) When the conductor is bare the rate of heat loss to the ambient is given by 
 

Q = h πD L (Ts - T∞) = 120 x π x 0.008 x 1 x (130 – 30) = 301.6 W/m. 

 
(b) When the conductor is covered with critical thickness of insulation, 
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Dc = 2 rc = 2 (k/h) = 2 x ( 1.2 / 120) = 0.02 m. 

 

1   1 

R insulation = -------------- ln (Dc / D) = ----------------------- ln (0.02 / 0.008) 

2π L k   2 π x 1.0 x 1.2 

= 0.1215 (m – 
0
 C) / W.   

 1  1 

Rco = 1 / (h Ac) = ---------------- = 
------ ---- ---- ---- ---- -- = 0.133 (m – 

0
 C)/W. 

 π Dc L h π x 0.02 x 1 x 120 
 

∑R = Rinsulation + Rco = 0.1215 + 0.133 = 0.2545 (m – 
0
 C) / W. 

 
 

 

(Ts - T∞)  (130 – 30) 

Qinsulation = ------------------- = --------------- = 392.93 W / m. 
∑R  0.145 

 

Example 3.13: -An electrical current of 700 A flows through a stainless steel cable 

having a diameter of 5 mm and an electrical resistance of 6x10 
─
 4  

ohms per metre  length  of  the  cable.  The  cable  is  in  an  environment  

at  a  uniform temperature of 30 0 C and the surface heat transfer 

coefficient of 25 W/(m2 – 0C). 

(a) What is the surface temperature of the cable when it is bare?  
(b)What thickness of insulation of k = 0.5 W/(m – K) will yield the lowest value 
of the maximum insulation temperature? What is this temperature when the 
thickness is used? 

 

Solution: (a) When the cable is Bare: - Electrical Resistance = Re = 6 x 10 
─ 4

 Ω / m 

Current through the cable = I = 700 A; D = 0.005 m ; h = 25 W/(m
2
-K) ; T∞ = 30 

0
 

C. Power dissipated = Q = I
2
 Re = (700)

2
 x 6 x 10

─ 4
 = 294 W / m. 

 

But Q = hA(Ts - T∞) or Ts = T∞ + Q / [(πD L) x h] 

 

Or Ts = 30 + 294 / [(π x 0.005 x 1) x 25] = 779 
0
 C. 

 

(b) When the cable is covered with insulation: 
 

k = 0.5 W/(m-K) ; Hence critical radius = rc = k / h = 0.5 / 25 = 0.02 (m-K) / 

W. Thickness of insulation = rc – D/2 = 0.02 – 0.005 / 2 = 0.0175 m 
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1 1  
Rinsulation = --------------- ln (rc / ro) = ------------------- ln (0.02 / 0.0025) = 0.662 (m-K)/W 

(2π L k) (2π x 1 x 0.5) 

 

1 1  
Rco = 1 / (hAo) = ------------------- = ------------------------------ = 0.318 (m-K) / W. 

(2π rcL h) (2 x π x 0.02 x 1 x 25) 

 

(Ts - T∞)  
Q = --------------------- 

 
or 

 
Ts = T∞ + Q (Rinsulation + Rco)  

Rinsulation + Rco 

 

Or 

 
 

Ts = 30 +  294 x (0.662 + 0.318) 
  

= 318.12 0 C. 

 

Example 3.14:- A 2 mm-diameter and 10 m-long electric wire is tightly wrapped With a 
1 mm-thick plastic cover whose thermal conductivity is 0.15 W / (m-K). Electrical 
measurements indicate that a current of 10 A passes through the wire and there is a 

voltage drop of 8 V along the wire. If the insulated wire is exposed to a medium at 30 0C 

with a heat transfer coefficient of 24 W / (m2 – K), determine the temperature at the 

interface of the wire and the plastic cover in steady operation. Also determine if doubling 
the thickness of the plastic cover will increase or decrease this interface temperature. 

 

Given: Outer radius of the bare wire = rs = 1 mm = 0.001 m ; Length of the wire = L = 10 m 

; outer radius of plastic insulation = r = 1 + 1 = 2 mm = 0.002 m ;  
Current through the wire = I = 10 A ; Voltage drop in the wire = V = 8 V ; Ambient 

temperature = T∞ = 30 
0
C ; Thermal conductivity of the plastic cover = k = 0.15 W /(m– K) ; 

Surface heat transfer coefficient = h = 24 W /(m
2
 – K). 

 

To find: (i) Interface temperature = Ts ; (ii) Whether Ts increases or decreases when 

the thickness of insulation is doubled. 

 

Solution: (i)  Q = VI = 8 x 10 = 80 W. 

 

The thermal circuit for the problem is shown in Fig. P3.14. 

 

ln (r / rs) ln ( 0.002 / 0.001) 

Rins  = ------------ = ----------------------------- = 0.0735  K / W 

2 π L k 2 x π x 10 x 0.15 

1 1 1  
Rco = -------------- = -------------- = ------------------------------ = 0.3316 K / W 

h Ao 2 π L r h 2 x π x 10 x 0.002 x 24 
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r 
    

Surface in contact with a fluid at T∞ and 
 

    
 

     surface heat transfer coefficient h   
 

    

Ts 
    

 

        
 

 rs     
 

     
Ts 

  T∞ 
 

         
 

       

Rins 
 

Rco 
 

Q 
 

         
  

 
 
 
 
 
 
 

 

Fig.P3.14: Schematic of an electric wire covered with an insulation and exposed 

to an ambient and the corresponding thermal circuit 
 

Hence  Rtotal = Rins + Rco = 0.0735 + 0.3316 = 0.405 K / W. 
 

Now Q = (Ts - T∞) / Rtotal. 

 

Hence Ts = T∞ + Q Rtotal = 30 + 80 x 0.405 = 62.4 
0
C 

 

(ii)  Critical radius of insulation = rcr = k / h = 0.15 / 24 = 0.00625. 
 

Since rcr > r, increasing the thickness of plastic insulation will increase the heat transfer rate 

if Ts is held constant or for a given heat transfer rate the interface temperature Ts will 

decrease till the critical radius is reached. Now when the thickness is doubled then r = 3 mm 

= 0.003 m . Therefore 
 

 

ln ( 0.003 / 0.001)  
Rins  = ----------------------------- = 0.1166 K / W 

2 x π x 10 x  
1  

Rco =  ------------------------------ = 0.221 K / W 

2 x π x 10 x 0.003 x 24 
 

Therefore Rtotal = 0.1166 + 0.221 = 0.3376 K / W. 
 

and Ts = 30 + 80 x 0.3376 = 57 
0
C 
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3.5. Extended Surfaces (Fins):- 

 

Solution to tutorial problems: 

Example 3.15:- A steel rod of diameter 2 cm and thermal conductivity 50 W/(m – 

K) is exposed to ambient air at 20 0C with a heat transfer coefficient 64 W/(m2 – K). 

One end of the rod is maintained at a uniform temperature of 120 0C. Determine 
the rate of heat from the rod to the ambient and the temperature of the tip of the 
rod exposed to ambient if (i) the rod is very long, (ii) rod is of length 10 cm with 
negligible heat loss from its tip, (ii) rod is of length 25 cm with heat loss from its tip. 

 

Solution: (i) Given:- D = 0.02 m ; k = 50 W/(m-K); T∞ = 20 
0
C; To = 120 

0
C; h = 64 W/(m

2
-K); Very long fin (x → ∞) 

 

m = √ [(hP) / (kA) = √ [(hπD / (πD
2
/4)] = √[(4h) / 

(kD)] 4 x 64 
 

= √ [ --------------------------- ] = 16 
50 x 0.02 

 

For a very long fin the rate of heat transfer is given by 
 

Q = kmA(T0 - T∞) = 50 x 16 x (π / 4) x 0.02
2
 x [ 120 – 20] = 25.13 

W (ii) L = 0.10 m. Hence mL = 16 x 0.1 = 1.6 

 

Q = kmA(T0 - T∞) tanh mL = 50 x 16 x (π / 4) x 0.02
2
 x (120 – 20) x tanh 

1.6 = 23.16 W 

 
(iii) When the heat loss from the rod tip is not negligible, then we can use the 

same formula as in case (ii) with modified length Le given by 
 

Le = L + A /P = L + (πD
2
/4) /(πD) = L + D / 4 = 0.1 + 0.02/4 = 

0.105 Hence mLe = 16 x 0.105 = 1.68 and tanh mLe = tanh 1.68 = 

0.9329 Hence Q = 25.13 x 0.933 = 23.44 W 

 

Example 3.16:-A thin rod of uniform cross section A, length L and thermal conductivity 
k is thermally attached from its ends to two walls which are maintained at 

temperatures T1 and T2. The rod is dissipating heat from its lateral surface to an 

ambient at temperature T∞ with a surface heat transfer coefficient h. 
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(a) Obtain an expression for the temperature distribution along the length of 
the rod  

(b) Also obtain an expression for the heat dissipation from the rod to the ambient 
 

 

Solution: The general solution for the one-dimensional steady-state temperature distribution 

along the length of a rod dissipating heat by convection from its lateral surface is given by 

θ(x) = C1 cosh mx + C2 sinh mx ………………………..(1) 

___________ 

where θ(x) = T(x) - T∞ ; m = √ (hP) / (kA) :  
P = perimeter of the rod = π D and  A = Area of cross section of the rod = π D2 / 4. 

 

The boundary conditions are: (i) at x = 0, T = T1 or θ = T1 

 

 

- T∞ = θo (say). 
 

 

(ii) at x = L, T = T2 or θ = T2 

  
- T∞ = θL (say). 
 

 
Condition(i) in Eq. (1) gives 

  
θo = C1. 
 

 
Condition (ii) in Eq. (1) gives 

  
θL = θ0 cosh mL + C2 sinh mL 
 

 

(θL ─ θo cosh mL) 

C2 = ------------------------ . 
sinh mL 

 

Substituting for C1 and C2 in Eq. (1) we have 

 

(θL ─ θo cosh mL) 

θ(x) = θo cosh mx +  ------------------------ sinh mx 

sinh mL 

 

θo cosh mx sinh mL + θL sinh mx ─ θo cosh mL sinh mx 
0r θ(x) = -----------------------------------------------------------------------

- sinh mL 

 

θL sinh mx + θo sinh m(L – x) 

0r θ(x) = -------------------------------------- ……………………………………..(2)  
sinh mL 

Expression for the rate of heat dissipation from the rod: 
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Qamb  
x 

 
 

3.52 

 

Q|x=0 

Q |x=L 

 

L 

 

Energy balance for the rod is given by 

 

Q amb = Q |x = 0 ─ Q |x = L 
 

= ─ kA (dθ / dx)|x = 0 + kA (dθ / dx)|x = L ……………………………(3) 
 

─ m [θLcosh mx + θ0 cosh m(L – x)]  
From Eq. (2) we have (dθ / dx) = --------------------------------------------------  

sinh mL 

 

─ m [θL + θ0 cosh mL] 

Therefore (dθ / dx)|x = 0 = ------------------------------- 

 sinh mL 

 ─ m [θL cosh mL + θ0] 

and (dθ / dx)|x = L = ------------------------------ 

 sinh mL 

 kmA [θL + θ0 cosh mL ─ θL cosh mL ─ θ0 ] 

Hence Qamb = ---------------------------------------------------------  

 sinh mL 

 kmA [(θL – θ0) ─ (θL ─ θ0) cosh mL ] 

 = ----------------------------------------------------------  

 sinh mL 

 kmA(θL – θ0) (1 ─ cosh mL) 

or Qamb = ------------------------------------- 

 sinh mL 

 

Example 3.17:-Heat is generated at a constant rate of q’’’ W/m3 in a thin circular rod of 
length L and diameter D by the passage of electric current. The two ends of the 

rod are maintained at uniform temperatures with one end at temperature T0 and 

the other end at 0 0 C, while heat is being dissipated from the lateral surface of 

the rod to an ambient at 0 0C with a surface heat transfer coefficient h.  
(a) Derive the one-dimensional steady state energy equation to determine the 

temperature distribution along the length of the rod 
(b) Solve the above equation and obtain the temperature distribution. 
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Solution: Since the rod is generating heat and dissipating heat to the ambient, the governing 
differential equation to determine the one-dimensional steady state temperature distribution 

has to be obtained from first principles as illustrated below.  

0
0
 C h,T∞  q

’’’
 W/m

3
  

    
 

     
  

 
 

 

x 

 
 

T = T0 

 

L  
 

    Qamb    
 

        
 

 Qx   Qx+dx 
 

       

Qg 

 

x 

  

dx 

  
 

    
 

    
 

      
  

 

 

Consider an elemental length „dx‟of the rod as shown in the figure above. The various 

energies crossing the boundaries of the rod as well as the energy generated are also shown in 
the figure. For steady state condition the energy balance equation for the rod element can be 

written as 
 
 
 

 

 Qx + Qg = Qx+dx + Qamb 

Or Qx + Qg = Qx + (dQx/dx) dx + Qamb 

Or (dQx/dx) dx + Qamb  = Qg 

 d/dx(─ kA dT/dx) dx + hPdx (T - T∞) = Adx q
‟‟‟

 

Or (d
2
T / dx

2
) – (hP / kA) (T - T∞) = ─ (q

‟‟‟
 / k) 

 

Let T - T∞ = θ and (hP / kA) = m
2
. then the above equation reduces to 

 

(d
2
 θ /d x

2
) ─ m

2
 θ = ─ (q

‟‟‟
 / k) ………………………….(1) 
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Eq.(1) is a non-homogeneous linear second order ordinary differential equation whose 
solution can be written as 

 

θ(x) = θh(x) + θp(x) ------------------------------------ (2) 

where θh(x) satisfies the homogeneous part of the differential equation namely   

(d
2
 θh /d x

2
) ─ m

2
 θh = 0 ------------------------------------- (3) 

 

and θp(x) is the particular integral which satisfies Eq. (1). Solution to Eq.(3) is given by 

 

θ(x) = C1 e 
mx

 + C2 e 
─ mx

 ----------------------------- (4) 
 

To find θp(x) :- Since the RHS of Eq.(1) is a constant let us assume θp(x) = B, where B is 

a constant. Substituting this solution in Eq.(1) we have 

 

0 – m
2
 B = ─ (q

‟‟‟
 / k) 

 

Or B = (q
‟‟‟

 / km
2
) 

 

Therefore the complete solution for Eq. (1) can be written as 
 

 

θ(x) = C1 e 
mx

 + C2 e 

 

Or T(x) = T∞ + C1 e 
mx

 + C2 e Boundary 

conditions are: (i) at x = 0, T = 0 

(ii) at x = L, T = T0 

 
 

 

─ mx
 + (q

‟‟‟
 / km

2
)
 

 

─ mx
 + (q

‟‟‟
 / km

2
)………………..(5)

 

 

 

Condition (i) in Eq. (5) gives 
 

0 = T∞ + C1 + C2 + (q
‟‟‟

/ km
2
) 

 

Or C1 + C2 = ─ T∞ ─ (q
‟‟‟

/km
2
) ------------------------------- (a) 

 

Condition(ii) in Eq.(5) gives T0 = T∞ + C1 e 
mL

 + C2 e 
─ mL

 + (q
‟‟‟

/km
2
) 

 

Or C1 e 
mL

 + C2 e 
─ mL

 = T0 ─ T∞ ─ (q
‟‟‟

/km
2
) ----------------------------- (b) 

 

From Eq.(a) C2 = ─ C1 ─ T∞ ─ (q
‟‟‟

/km
2
). Substituting this expression in Eq.(b) we 

have C1 e 
mL

 ─ [C1 + T∞ + (q
‟‟‟

/km
2
)] e 

─ mL
 = T0 ─ T∞ ─ (q

‟‟‟
/km

2
) 
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T0 ─ {T∞ + (q
‟‟‟

/km
2
)}{1 ─ e 

─ mL
 } 

Solving for C1 we get  C1 = -------------------------------------------------- 

 { e mL ─ e ─ mL } 

 T0 ─ {T∞ + (q
‟‟‟

/km
2
)}{1 ─ e 

─ mL
 } 

C2 = ─{ T∞ + (q
‟‟‟

/km
2
) }─   -------------------------------------------------- 

 { e 
mL

 ─ e 
─ mL

 } 

 ─{ T∞ + (q
‟‟‟

/km
2
) }{ e 

mL
 ─ e 

─ mL
 } ─  T0 + {T∞ + (q

‟‟‟
/km

2
)}{1 ─ e 

─ mL
 } 

C2 = ------------------------------------------------------------------------------------------------  

 { e mL ─ e ─ mL } 

{ T∞ + (q
‟‟‟

/km
2
) }[ ─ e 

mL
 + e 

─ mL
 + 1 ─ e 

─ mL
] ─ T0 

C2 = -----------------------------------------------------------------------------------------------  

{ e 
mL

 ─ e 
─ mL

 } 
 

{ T∞ + (q
‟‟‟

/km
2
) }[ 1 ─ e 

mL
] ─ T0 

C2 = ---------------------------------------------- 

{ e mL ─ e ─ mL } 

Substituting the expressions for C1 and C2 in Eq. (5)  and simplifying we get 
 

T(x) = T∞ + (q
‟‟‟

/km
2
) + 

[T0 ─ {T∞ + (q
‟‟‟

/km
2
)}{1 ─ e 

─ mL
 }] e 

mx
 

 

-------------------------------------------------{emL─e─mL} 
 

 
 

+ 

[ { T∞ + (q
‟‟‟

/km
2
) }[ 1 ─ e 

mL
] ─ T0] e 

─ mx
 

 

----------------------------------------------------{emL─e─mL} 
 

 
 

T(x) = T∞ + (q
‟‟‟

/km
2
) + 

T0(e 
mx

 - e 
─ mx

) 
 

--------------------- + 
 

 { e 
mL

 ─ e 
─ mL

 } 
 

 

[ ─{T∞ + (q
‟‟‟

/km
2
)}{ 1 ─ e 

─ mL
 }] e 

mx
 +  { T∞ + (q

‟‟‟
/km

2
) }[ 1 ─ e 

mL
] e 

─ mx
] 

---------------------------------------------------------------------------------------------- 

{ e mL ─ e ─ mL } 
 

 

Example 3.18:- Two very long slender rods of the same diameter are given. One rod is 
of aluminum (k = 200 W/(m-K)). The thermal conductivity of the other 
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rod is not known. To determine this, one end of each rod is thermally attached to 

a metal surface maintained at a uniform temperature T0. Both rods are losing 

heat to the ambient air at T∞ by convection with a surface heat transfer 
coefficient h. The surface temperature of each rod is measured at various 
distances from hot base surface. The temperature of the aluminum rod at 40 cm 
from the base is same as that of the rod of unknown thermal conductivity at 20 
cm from the base. Determine the unknown thermal conductivity. 

 

Solution: 
 

 

xa 
   

Ta 
 

ka = 200 W/(m-K) 

 

    
 

         
 

           
 

           
 

 
xb 

 Tb = Ta    
 

        
kb = ? 

 

          
 

           
 

           
 

           
  

 

 

For very long slender rods the steady-state one-dimensional temperature 
distribution along the length of the rod is given by 

 

θ (x) = θ0 e 
─ mx

 

……………………………..(1) where θ(x) = T(x) - T∞ and θ0 = T0 - T∞. 

 

For rod A Eq.(1) can be written as θa(x) = θ0 e 
─ ma xa

 …………………………...(2) 

 

And for rod B it can be written as θb(x) = θ0 e 
─ mb xb

 ……………………………(3) 

 

It is given that when xa = 0.4 m and xb = 0.2 m, θa(xa) = θb(xb) 
 

Therefore we have θ0 e ─ 0.4 ma  =  θ0 e ─ 0.2 mb 

Or mb = 2 ma 

Or √ [(hPb) / (kbAb)] = 2√[ (hPa) / (kaAa)] 

Since Pa = Pb and Aa = Ab, we have   √ ka = 2 √ kb or ka = 4 kb 

Therefore kb =  200/4 = 50 W/(m-K). 
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Example 3.19:- Show that for a finned surface the total heat transfer rate is given 
by 

Qtotal = [η β + (1 – β)] a h θ0 = ή a h θ0 
 

Where η = fin efficiency ; β= af / a : af = surface area of the fin, a = total 

heat transfer area (i.e. finned surface + unfinned surface) ; θ0 = T 0 - T∞, 

with T0 = fin base temperature and T∞ = ambient temperature, and ή = area 

– weighted fin efficiency. 
 

Solution:  
Qtotal = Qfin + Qbare 

 

Where Qtotal = Total heat transfer rate, Qfin = Heat transfer rate from the finned 

surface and Qbare = Heat transfer rate from the bare surface. 

 

Therefore Qtotal = η h af θ0 + h(a – af) θ0 

 

= h a θ0 [(η af) / a + (1 – af/a)] 

here, β= af/a 

= ha θ0 [ηβ + (1 – β)] 
 

= ή ha θ0 , where ή = [ηβ + (1 – β)] 
 

Example 3.20:- The handle of a ladle used for pouring molten lead at 327 0 C is 30 

cm long and is made of 2.5 cm x 1.5 cm mild steel bar stock (k = 43 W/(m-K)). In 
order to reduce the grip temperature, it is proposed to make a hollow handle of mild 
steel plate 1.5 mm thick to the same rectangular shape. If the surface heat transfer 

coefficient is 14.5 W/(m2-K) and the ambient temperature is 27 0C, estimate the 

reduction in the temperature of the grip. Neglect the heat transfer from the inner 
surface of the hollow shape. 

 

Solution: (a) When the handle is made of solid steel bar: 
 
 
  

2.5 cm   

h = 14.5 W/(m
2
-K) ; 

 
 

1.5 cm k = 43 W/(m-K)  
 

θ0 = 327 – 27 = 300 
0
 C 

 

Cross section of the handle 

 

Area of cross section of the bar = A = 2.5 x 1.5 x 10 
─ 4

 m
2
 = 3.75 x 10 

─ 4
 

m
2
 Perimeter of the bar = P = 2 [ 2.5 + 1.5] x 10 

─
 
2
 m = 8 x 10 

─ 2
 m 
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( hP)(1/2) √ [14.5 x 8 x 10 
─ 2

] 
Therefore  m = ------ =   --------------------------  = 8.48 (1/m) 

(kA)(1/2) √[43 x 3.75 x 10 
─ 4

] 
 

 

Therefore mL = 8.48 x 0.3 = 2.54. 

 

When the heat loss from the tip of the handle is neglected the temperature at any 
point along the length of the handle is given by 

 

cosh m(L – x) 

θ(x) = θ0 ---------------------- 

cosh mL 
 
 
 

 

Therefore 

 
 
 

 

θ(x)|x=L = θ0 / cosh mL = 300 / cosh 2.54 = 47 0 C. 
 

 

Or 

  
T(x)|x=L = 47 + 27 = 74 0 C. 
 

 
(b) When the handle is hollow made out of a sheet: 

 
 

       Area of the cross section of the fin is 
 

  

2.5 cm 

   

A = [(2.5 x 1.5) – (2.5 – 0.3) x (1.5 – 0.3)] 

 

     
 

       
 

    

1.5 cm 
= 1.11 cm 

2
 = 1.11 x 10 

− 4
 m

2
 

 

    
 

      
 

       
P = 2 x [ 2.5 + 1.5 ] = 8 cm = 8 x 10 

− 2
 m 

 

       
 

 
1.5 mm thick 

   _________ √(14.5 x 8 x 10 
− 2

) 
 

    m = √(hP) / (kA) = ----------------------------  

       
  

√( 43 x 1.11 x 10 
− 4

) 
 
 
 
 

Or  m = 15.59 1/m. Therefore mL = 15.59 x 0.3 = 4.68 
 

θ0  (327 – 27) 

θ(x)|x=L =  -------------------- = ----------------- = 5.57 
0
 C. 

cosh mL  cosh 4.68 
 

Therefore T(x)|x=L = 5.57 + 27 = 32.57 
0
 C. 

 

Reduction in grip temperature = 74 – 32.57 = 41.43 
0
 C. 
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Example 3.21:- Derive an expression for the overall heat transfer coefficient across 
a plane wall of thickness ‘b’ and thermal conductivity ‘k’ having rectangular fins on 
both sides. Given that over an overall area A of the wall, the bare area on both sides, 

not covered by the fins are Au1 and Au2, the fin efficiencies are η1 and η2, and the 

heat transfer coefficients h1 and h2. 
 

Solution: 
 

Let Ti be the temperature of the fluid in contact with the surface 1, T0 be the 

temperature of the fluid in contact with surface 2, T1 be the temperature of surface 1 and 

T2 be the temperature of surface 2.Let Ti >T0. Then the rate of heat transfer from Ti to 

T0 is given by  
Q = Qbare + Q fin 

= hiAu1 (Ti – T1)  + hi η1Af1(Ti – T1) 
 

 

 

 

(Ti – T1) 

 
 

(Ti 

 
 

– T1)  

Or 
 
Q = 

 
--------------- −  
(1 /h1Au1) 

 
-------------------  

(1/h1η1Af1) 
 

 

(Ti – T1) 
Q = ------------------ ---------------- …………………………(1)  

[(1 /h1Au1) + (1/h1η1Af1) ] 

 

(T2 – T0) 
Q = ------------------ ---------------- …………………………(2)  

[(1 /h2Au2) + (1/h2η2Af2) ] 

 

Rate of heat transfer is also given by  
(T1 – T2) 

Q = ---------------- …………………………………………(3)  
(b/Ak) 

 

Therefore as A/B = C/D = E/F = (A+C+E)/(B+D+F)  

 

(Ti – T1) + (T1 – T2) + (T2 – T0) 
Q = --------------------------------------------------------------------------  

[(1 /h1Au1) + (1/h1η1Af1) + (1 /h1Au1) + (1/h1η1Af1) +(b/Ak)] 

 

(Ti – T0) 
Q = -------------------------------------------------------------------------- ……(4)  

[(1 /h1Au1) + (1/h1η1Af1) + (1 /h1Au1) + (1/h1η1Af1) +(b/Ak)] 

 

If U = overall heat transfer coefficient for the plane wall then 

 

Q = UA(Ti – T0) 

 

(Ti – T0) 
= ----------------- ………………………………….(5) 
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(1/UA) 

 

From Eqs. (4) and (5) we have 

 

1  
U = ------------------------------------------------------------------------------ 

A [(1 /h1Au1) + (1/h1η1Af1) + (1 /h1Au1) + (1/h1η1Af1) +(b/Ak)] 
 
 

 

Example 3.22:- Calculate the effectiveness of the composite pin fin shown in Fig.P3.22. Assume 

k1 = 15 W/(m-K), k2 = 50 W/(m-K) and h = 12 W/(m2 – K). 

Solution: 

 

             
 

             
 

   k1     3 mm = d1 
 

          
d2 = 10 mm 

 

          
 

             
 

 

x 

 

k2 

      
 

        
 

        
 

 

L 

          
 

  
 

        
 

    

K1=15 W/m-k , K2=50W/m-k, 

 

  

Qc 

  
 

    
 

       K3=12 W/m-k. 
 

 

Qx 

    

Qx+dx 
 

(b) Energy transfer across the 

 

     
 

       
 

       surfaces of the fin element  

  

dx 

  
 

          
 

          
 

          
  

 

Energy balance equation for the fin element is given by 

Qx = Qx+dx + Qc 
 

= Qx + (dQx/dx) dx + Qc 

 

Or dQx / dx + Qc = 0 ………………………………………..(1) 

 

Qx consists of two components namely the heat transfer Qx1 through the material 

of thermal conductivity k1 and the rate of heat transfer Qx2 through the material of 

conductivity k2. 
 

Therefore Qx = Qx1 + Qx2 = − k1A1 (dT / dx) − k2A2 (dT / dx) 

 

= − (k1A1 + k2A2) (dT / dx) 
 

And Qc = (hP2 dx) (T - T∞). 
 



                                                                                                                                                77 

 

Substituting these expressions for Qx and Qc in equation (1) we get 

hP2 

(d2T / dx2) − ------------------- (T – T∞) = 0  
(k1A1 + k2A2) 
 

 

Or (d2θ / dx2) − m2 θ = 0 …………………………(2) 

 

Where θ = T – T∞ and m = √ [ hP2 / (k1A1 + k2A2) ]. 

 

When the heat loss from the fin tip is negligible , the solution to equation (2) is given by 

 

cosh [m(L – x)] 

θ(x) = θ0 ---------------------- ………..(3) 
cosh mL 

 

The rate of heat transfer from the fin base is given by 

 

Qx|x=0 = − (k1A1 + k2A2) (dθ / dx)|x=0 

 

− (k1A1 + k2A2) sinh [m(L – x)]x=0 (- m) θ0 

= ----------------------------------------------------  
cosh mL 

 

= mθ0 (k1A1 + k2A2) tanh mL 

 

Now η = Qx|x=0 / Qmax 

 

mθ0 (k1A1 + k2A2) tanh mL 

= ---------------------------------------- 

hP2L θ0 
 

Noting that hP2 / (k1A1 + k2A2) = m
2
, the above expression for η simplifiers to 

 

 

tanh mL  
η = ------------------------ ……………………(4) 

mL 
 

In the given problem A1 = (π / 4) x (0.003)
2
 = 7.1 x 10 

− 6
 m

2
. 

 

A2 = (π / 4) x [ (0.01)
2
 – (0.003)

2
] = 7.15 x 10 

− 5
 

 

P2 = π x 0.01 0.0314 m. 
 

 √ [ 12 x 0.0314]  
 m = ----------------------------------------------------- = 10.12 

 √[(15 x 7.1 x 10 
− 6

 ) + (50 x 7.15 x 10 
− 5

)]  
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Therefore mL = 10.12 x 0.1 = 1.012  
 

 

tanh (1.012)  
η = ------------------ = 0.757 

1.012 
 
 

Example 3.23:- Why is it necessary to derive a fresh differential equation for 
determining the one-dimensional steady state temperature distribution along 
the length of a fin? 

 

Solution:- While deriving the conduction equation in differential form we will have 

considered a differential volume element within the solid so that the heat transfer across 

the boundary surfaces of the element is purely by conduction. But in the case of a fin the 

lateral surface is exposed to an ambient so that the heat transfer across the lateral 

surfaces is by convection. Therefore we have to derive the differential equation afresh 

taking into account the heat transfer by convection across the lateral surfaces of the fin.  

 

Solutions to Problems on Conduction in solids with variable thermal conductivity 
 

 

Example 3.24:- A plane wall 4 cm thick has one of its surfaces in contact with a fluid at 130 
0C with a surface heat transfer coefficient of 250 W/(m2 – K) and the other surface is in 

contact with another fluid at 30 0C with a surface heat transfer coefficient of 500 W/(m2-K). 

The thermal conductivity of the wall varies with temperature according to the law 

 

k = 20 [ 1 + 0.001 T] 

 

where T is the temperature. Determine the rate of heat transfer through the wall and the 

surface temperatures of the wall. 
 

Given:- L = 0.04 m; Ti = 130 0C; hi = 250 W/(m2-k); To = 30 0C; ho = 500 

 
W/(m2-K); k = 20 [ 1 + 0.001 T]. 

 
To find:- (i) Qx (ii) T1 and T2 

 

Solution: 

Rci = Thermal resistance for convection at the surface at Ti = 1/(hiA) = 1 / (250 x 

1) = 0.004 m
2
 – K /W 

 

Rco = Thermal resistance for convection at the surface at To = 1/(hoA) = 1/(500 x 1) 
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Or Rco = 0.002 m
2
-K/W 

 

Now Q = (Ti – T1) / Rci, where T1 = Surface temperature in contact with fluid at Ti. 

Hence T1 = Ti – QRci = 130 – 0.004 Q ………………………………………….(1) 

Similarly Q = (T2 – To) / Rco 

 

Or T2 = To + QRco = 30 + 0.002Q ……………………………………………(2) 

 

From equations (1) and (2) we have 
 

T1 – T2 = 100 – 0.006Q ………………………………………………………….(3) 

 

And Tm = ( T1  + T2) / 2 = 80  – 0.001Q ...……………………………………….(4) 

 

Hence km = ko [ 1 + βTm] = 20 x [1 + 0.001x {80 – 0.001Q}] 

 

= 21.6 – 2 x 10 
− 5

Q 
 

Hence thermal resistance offered by the wall = R = L/(Akm) 

 

 0.04   
Or R = ---------------------------  

 [21.6 – 2 x 10 
− 5

Q]  

 [T1 – T2] [100 – 0.006Q] [21.6 – 2 x 10 
− 5

Q] 

Q = --------------------- = --------------------------- x -------------------------- 

 R 0.04  

Cross multiplying we have  

0.04Q = 2160 – 0.1316Q + 1.2 x 10 
− 7

 Q
2
  

Or Q
2
 – 1.41 x 10 

6
 Q + 1.8 x 10 

10
 = 0.Hence  Q = (1.41 x 10 

6
  ±1.39 x 10 

6
) / 2 

 

For physically meaningful solution T1 should lie between Ti and To. This is possible 

only If  

Q = (1.41 x 10 
6
 − 1.39 x 10 

6
) / 2 = 10000 W. 

Now T1 = Ti – QRci = 130 – 10000 x 0.004 = 90 
0
C 

and T2 = T0 + Q Rco = 30 + 10000 x 0.002 = 50 
0
C. 
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Example 3.25:- The thermal conductivity of a plane wall varies with temperature 
according to the equation 

k(T) = k0 [ 1 + β T2 ] 

where k0 and β are constants.  
(a) Develop an expression for the heat transfer through the wall per unit area of the 

wall if the two surfaces are maintained at temperatures T1 and T2 and the 
thickness of the wall is L.  

(b) Develop a relation for the thermal resistance of the wall if the heat transfer area 
is A. 

Solution: 

 

     
K = k0 [ 1 + βT

2
] 

 

     
 

T1     For steady state conduction we have 
 

     T2 
 

     Qx = − kA(dT / dx) = constant. 
 

 L    Or Qx = − k0[1 +βT
2
]A(dT/dx) 

 

     

Qxdx = − k0[1 +βT
2
]A dT 

 

   

  

 

   
 

  x 
 

     Integrating the above equation between x =  
 

     0 and x = L we have 
  

 
  
 
 

 

 
T2  

 

 

Or 

 

Or 

 
∫Qxdx = − k0A ∫[1 +βT2]dT 

0 T1 
 

QxL = − k0A [(T2 – T1) + (β/3)(T23 – T13)] 

 

Qx = (k0A / L)(T1 – T2) [1 + (β/3)(T12 +T1T2 + T2 

 
 
 
 
 

 

2)] 
 

(T1 – T2) 

Qx  = ------------------------------------------------------- 

1 

--------------------------------------------------- 

(k0A/L) [1 + (β/3)(T1
2
 +T1T2 + T2

2
)] 

 

Therefore thermal resistance of the wall is given by 

1 

R = --------------------------------------------------- 

(k0A/L) [1 + (β/3)(T1
2
 +T1T2 + T2

2
)] 
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Transient Conduction 

 
 

4.1.Introduction:- In general, the temperature of a body varies with time as well as 

position. In chapter 3 we have discussed conduction in solids under steady state 

conditions for which the temperature at any location in the body do not vary with time. 

But there are many practical situations where in the surface temperature of the body is 

suddenly altered or the surface may be subjected to a prescribed heat flux all of a sudden. 

Under such circumstances the temperature at any location within the body varies with 

time until steady state conditions are reached. In this chapter, we take into account the 

variation of temperature with time as well as with position. However there are many 

practical applications where in the temperature variation with respect to the location in 

the body at any instant of time is negligible. The analysis of such heat transfer problems 

is called the “lumped system analysis”. Therefore in lumped system analysis we assume 

that the temperature of the body is a function of time only.  

 

4.2. Lumped system analysis:- Consider a solid of volume V, surface area A, density 

ρ, Specific heat Cp and thermal conductivity k be initially at a uniform temperature 

Ti.Suddenly let the body be immersed in a fluid which is maintained at a uniform 

temperature T∞, which is different from Ti.The problem is illustrated in Fig.4.1.Now if 
 
 
 

Surface in contact with fluid at  
T∞ with surface heat transfer 

Coefficient h 

 

V = volume 

A=surface area  
ρ = density 

Cp = specific heat 

k = conductivity 
 
 

 

Fig.4.1: Nomenclature for lumped system analysis of transient  
Conduction heat transfer 

 

 

T(t) is the temperature of the solid at any time t, then the energy balance equation for the 
solid at time t can be written as 

 

Rate of increase of energy of the solid = Rate of heat transfer from the fluid to the solid 

 

i.e., 

 
 

ρVCp (dT / dt ) = hA[T∞ - T(t)] 
 

 

Or 

  
h A  

dT / dt = ---------- [T∞ − T(t)] 

ρ V Cp 
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For convenience, a new temperature θ(t) = T(t) - T∞ is defined and denoting m = 

(hA)/(ρVCp) the above equation can be written as 

 

(dθ /dt ) = − m θ ………………………………………..(4.1) 

 

Eq.(4.1) is a first order linear differential equation and can be solved by separating 
the variables. Thus 

 

dθ / θ = − m dt 

 

Integrating we get 

 
 

ln θ = − mt + ln C, where ln C is a constant. 
 

 

Or 

  
θ = C e 

  
− mt 

  
………………………………………...(4.2) 
 

At time t = 0 , T(t) = Ti or θ = Ti − T∞ = θi (say). Substituting this condition in Eq. 

(4.2) we get 

C = θi. 

Substituting this value of C in eq. (4.2) we get the temperature θ(t) as follows.  
 

θ(t) = θi e 
− mt

 

 

or θ(t) 

----- = e 
–
 
mt

 …………………………………………(4.3) 

θi  
Since LHS of Eq.(4.3) is dimensionless, it follows that 1/m has the dimension of time and is 
called the time constant.Fig. 4.2 shows the plot of Eq.(4.3) for different values of m. Two 

observations can be made from this figure and Eq. (4.3). 

 

1. Eq. (4.3) can be used to determine the temperature T(t) of the solid at any time t or to 

determine the time required by the solid to reach a specified temperature. 
 
 

2. The plot shows that as the value of m increases the solid approaches the surroundings 

temperature in a shorter time. That is any increase in m will cause the solid to respond 

more quickly to approach the surroundings temperature. 
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θ(t)  

θi   

1.0 
 
 
 
 
 
 
 
 
 

 

m 
 

 

t 
 

Fig.4.2: Dimensionless temperature as a function of time for a 

solid with negligible internal temperature gradients 

 

The definition of m reveals that increasing the surface area for a given volume and the heat 

transfer coefficient will increase m. Increasing the density, specific heat or volume decreases 
m. 

 

4.2.2. Criteria for Lumped System Analysis:- To establish a criterion to neglect 
internal temperature gradient of the solid so that lumped system analysis becomes 

applicable, a Characteristic length Ls is defined as 
 

Ls = V /A …………………………………(4.4) 

 

and the Biot. number Bi as h Ls 

Bi = ---------  ……………………………..(4.5) 

k  
For solids like slabs, infinite cylinder, and sphere, it has been found that the error 
by neglecting internal temperature gradients is less than 5 %, if 

 

Bi < 0.1 ……………………………………(4.6)  
The physical significance of Biot number can be understood better by writing the 
expression for Biot number as follows 
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h Ls (Ls / Ak) Thermal resistance for conduction  
Bi = ------ = -------------- = -------------------------------------------  

k ( 1 / hA) Thermal resistance for convection 

 

Hence a very low value of Biot number indicates that resistance for heat transfer by 
conduction within the solid is much less than that for heat transfer by convection 

and therefore a small temperature gradient within the body could be neglected. 

 

4.2.3.Illustrative examples on lumped system analysis 

 

Example 4.1: - A copper cylinder 10 cm diameter and 15 cm long is removed from 

a liquid nitrogen bath at ─ 196 0 C and exposed to room temperature at 30 0 C.  
Neglecting internal temperature gradients find the time taken by the cylinder to 
attain a temperature of 0 0C, with the following assumptions:  

Surface heat transfer coefficient = 30 W / m2 – K. 

Density of the copper cylinder = 8800 kg / m3. 
Specific heat of the cylinder = 0.38 kJ/(kg-K) Thermal 
conductivity of the cylinder = 350 W / (m-K). 

 

Solution: : 
 

 Ti = − 196 
0
C  Other data:- D = 10 cm or R = 0.05 m; L = 

 

    0.15 m 
 

    

k = 350 W / (m-K) ; ρ = 8800 kg / m
3
 ; 

 

T∞ = 30 0C 
 

 

D cp = 0.38 kJ / (kg-K) ; T(t) = 0 
 

   
   

Let θ(t) = T(t) – T∞ 

 

h = 30 W/m
2
 - K 

 

Biot Number = hR / k = 30 x 0.05 / 350 = 0.0043 which is << 0.1. Hence internal  
temperature gradients can be neglected. In that case we have 

θ(t) = T(t) – Ti = θ0 e 
−(hA/ρVcp) t

, where θ 0 = Ti − T∞ 
 

2{πR
2
 + πRL)h 2{R+L}h 2 x {0.05 +0.15} x30 

 

(hA/ρVcp) = ------------------- = ----------- =   ------------------------------------------ 
 

πR
2
L ρcp ρcpRL 8800 x 0.38 x 1000 x 0.05x 0.15 

 

= 4.785 x 10 
− 4

 1 / s  
 

Now T(t) − T∞ 

= e − (hA/ρVcp) t 
 

------------------ 
 

Ti – T∞ 
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 0 − 30 

Hence ------------------- = exp (− 4.785 x 10 
− 4

 x t) 

 − 196 – 30 

 

Solving for t we get t = 4226 s = 1 hr 10.43 mins. 

 

Example 4.2:- A thin copper wire having a diameter D and length L (insulated at 

the ends) is initially at a uniform temperature of T0. Suddenly it is exposed to a 
gas stream, the temperature of which changes with time according to the equation 

 

Tg = Tf (1 ─ e
─
 ct) + T0 

 

where Tf, T 0 and c are constants. The surface heat transfer coefficient is h. Obtain 

an expression for the temperature of the wire as a function of time t. 

 

Solution: 

 

Let T(t) be the temperature of the cylinder at any time t. Energy balance for the 
cylinder for a time interval dt is given by 

 

hA [T∞ - T(t)] dt = ρVCp dT  
where dT is the increase in temperature of the cylinder in time dt. 

 
 
 

 

h,T∞  
 

T(0) = T0 

 

D  
 
 
 

L 

 

Or dT / dt = (hA/ρVCp) [T∞ - T(t)] 
 

Putting m = (hA/ρVCp), the above equation reduces to 

 

dT / dt + m T(t) = m T∞ 

Substituting the given expression for T∞ we have 

 

dT / dt + m T(t) = m [T0 + Tf (1 – e 
- ct

)] 
 

or dT / dt + m [T(t) – T0] = mTf (1 – e 
–
 
ct

 ) 
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Let θ (t) = T(t) – T0. Then the above equation reduces to 

 

dθ / dt + m θ (t) = mTf (1 – e 
–
 
ct

 )………………………………(1). 

 

This equation is of the form dy / dx + Py = Q, which is solved by multiplying throughout  
by an integrating factor and then integrating. For equation (1) the integrating factor 

is e 
∫mdt

 e 
mt

. therefore multiplying equation (1) by e 
mt

 we get 
 

 e 
mt

 (dθ / dt) + m e 
mt

 θ (t) = mTf [ e 
mt

 – e 
(m

 
–
 
c)t

] 

or d / dt (e
mt

θ) = mTf [ e 
mt

 – e 
(m

 
–
 
c)t

] 
 

Integrating with respect to t we have 
 

 e
mt

θ(t) = mTf [ (e
mt

 / m ) − e
(m

 
–
 
c)t

 / (m – c) ] + C1 

 m 

or θ(t) = Tf  − ---------- Tf e 
− ct

 + C1e 
− mt

 …………………(2) 

 ( m – c ) 

When t = 0 , T(0) = T0 i.e., θ(0) = 0. Substituting this condition in equation (2) we get 

 

 m 

or 0   = Tf  − ---------- Tf   + C1 

 ( m – c ) 

Or C1 = [ c / (m – c)] Tf. 
 

 

Substituting this expression for C1 in equation (2) we get the temperature of the 

cylinder as 

  m c 

 θ(t) = Tf  − ---------- Tf e 
− ct

 + ---------- Tf e 
− mt

 

  ( m – c ) (m – c) 

Or T(t) – T0 = Tf [ 1 − m / (m – c) e 
− ct

 + c / (m – c) e 
− mt

] 
 

Where m = hA / (ρVCp) = πDLh / {(πD
2
/4)LρCp}= (4h) /(ρDCp). 

 

Example 4.3:- A solid sphere of radius R is initially at a uniform temperature T0. At a 
certain instant of time (t = 0), the sphere is suddenly exposed to the surroundings at a 

temperature Tf and the surface heat transfer coefficient, ‘h’. In addition from the same 

instant of time, heat is generated within the sphere at a uniform rate of q’’’  
units per unit volume. Neglecting internal temperature gradients, derive an 
expression for the temperature of sphere as a function of time 
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Solution: 
 

 

T(0) = T0  

 
 
 
 
 
 

 

Energy balance equation for the sphere at any 
time t can be written as 
 

(4/3)πR
3
 q‟‟‟ + 4πR

2
h [Tf – T(t)]  

Q``` for t > 0 
 
 

 

h,Tf 

 
 

R 

 
 

=(4/3)πR
3
 ρCp (dT/dt) 

 

Or (dT/dt) + (3h/ ρRCp)[T(t) – Tf] = (q```/ρCp) 

 

Let θ(t) = T(t) – Tf. Then the above equation reduces  to 

 

(dθ / dt) + mθ = q0 ………………………………..(1) 

Where m = (3h/ ρRCp) and q0 = (q```/ρCp) 

 

Multiplying equation (1) by the integrating factor e 
mt

 we 

have e
mt

 (dθ / dt) + e
mt

 mθ = q0 e
mt

 

 

or d / dt(θe
mt

) = q0e
mt

 

 
 
 

 

Integrating throughout w.r.t. t we get 
 

 θe
mt

 = (q0 / m) e
mt

 + C1 

or θ = (q0 / m) + C1e 
− mt

 …………………...(2) 
 

At t = 0 , T = T0 or θ = T0 – Tf = θ0 (say). Substituting this condition in equation (2) we 

 

get C1 = (T0 – Tf) – (q0 / m). Therefore the temperature in the sphere as a function of 

time is given by 
 

 θ(t) = [(T0 – Tf) – (q0 / m)] e 
− mt

 + (q0 / m) 

or θ(t) = (q0 / m)[ 1 – e 
− mt

 ] + (T0 – Tf) e 
− mt
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q‟‟‟ (ρ R Cp)  
where (q0 / m) =  ----------- x --------------- = 

(ρ Cp) 3h 

 
 

 

(q‟‟‟ R / 3h) 

 

Example 4.4:- A solid steel ball (ρ =8000 kg/m3 ; cp = 0.42 kJ/kg-K) 5 cm in diameter 

is at a uniform temperature of 450 0 C. It is quenched in a controlled environment 

which is initially at 90 0C and whose temperature increases linearly with time at the 

rate of 10 0C per minute. If the surface heat transfer coefficient is 58 W/(m2-K), 
determine the variation of the temperature of the ball with time neglecting internal 
temperature gradients. Find the value of the minimum temperature to which the ball 
cools and the time taken to reach this minimum temperature. 

 

Solution: 
 
 
 

T(0) = Ti = 450
0
C  Other data:- h = 58 W / (m

2
 – K) ; 

 

    

R 

Cp = 0.42 kJ / (kg – K) ; ρ = 8000 kg / m
3
 ; 

 

    
 

    Tf = a + bt, where a and b are constants ; 
 

     at t = 0, Tf = 90 
0
C;(dTf / dt) = 10 

0
C / min 

 

h,Tf 

 

 

 

= (1/6) 
0
 C / s 

 

  
 

Therefore a = 90 
0
 C and b = ;(dTf / dt) = (1/6) 

0
 C / s. 

 

Or Tf = 90 + t / 6 , t in seconds……………….(1) 
 

Energy balance equation for the sphere at any time t can be written as 
 

   ρVCp(dT / dt) = hA [Tf(t) – T(t)] 
 

Or (dT / dt) = (hA/ ρVCp) [Tf(t) – T(t)] 
 

Letting m = (hA/ ρVCp) the above equation can be written as 
 

    (dT / dt) + mT(t) = m Tf(t) 
  

 

Substituting for Tf(t) from equation (1) we have 

 

(dT / dt) + mT(t) = m [90 + t / 6 ] 

 

Multiplying the above equation with the integrating factor e 
mt

  we get 
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 e 
mt

(dT / dt) + mT(t) e
mt

 = m [90 + t / 6 ] e 
mt

 

or d / dt (T e 
mt

) = m [90 + t / 6 ] e 
mt

 

Integrating throughout w.r.t t we have  

 (T e 
mt

) = m ∫[90 + t / 6 ] e 
mt

 dt  + C1 

Or T(t) = m e 
− mt

 ∫[90 + t / 6 ] e 
mt

 dt  + C1 e 
− mt

 

 = m e 
− mt

 [(90e 
mt

 /m) + (te
mt

/6m) − (e 
mt

/6m
2
)] + C1 e 

− mt
 

Or T(t) = [ 90 + (t / 6 ) − (1/6m)] + C1 e 
− mt

 ……………………..(2) 
 

When t = 0 , T(t) = Ti. Substituting this condition in the above equation and solving 

for C1 we get 

C1 = [Ti – 90 + 1 / 6m] 

 

Therefore the temperature of sphere as a function of time is given by 
 

 

T(t) = [ 90 + (t / 6 ) − (1/6m)] + [Ti – 90 + 1 / 6m] e 
− mt

 ………….(3) 

For T(t) to be extremum (dT / dt) = 0.  

Therefore we have (dT / dt) = 1/6 + [Ti – 90 + 1 / 6m] e 
− mt

 (− m) = 0 

Substituting Ti = 450 
0
 C and simplifying we get  

 (360 m + 1/6) e 
− mt

 = 1/6  

Or e 
mt

 = (2160 m + 1) -----------(4) 

 4πR
2
h 3 x 58 

Now m = (hA / ρVCp) = -------------------- = (3h/ ρCpR) = ------------------------------------- 

 [(4/3)πR
3
 ρCp] ( 8000 x 0.025 x 0.42 x 10 

3
) 

= 2.07 x 10 
− 3

.-------- (5)  
 

 

Using (4) & (5) in (3), 
 

T(t)= 90+ (t/6)- (1/(6x2.07x10
-3

)) + [ 240-90+(1/(6x2.07x10
-3

))] x exp{-2.07x10
− 3

 t} 
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T(t)=9.4857+(230.5152)x(0.9979)
t
 

 

T(t) > 0 

 

Hence value of t will be minimum. 
 

Therefore e 
mt

 = [ 2160 x 2.07 x 10 
− 3

 + 1 ] = 5.47 

 

mt = 1.7 

Or t = 1.7 / m = 1.7 / (2.07 x 10 
− 3

) = 821 s = 13.7 min 

 

Substituting this value of t in equation (3) we get the minimum temperature 

as Tminimum = [90 + (821/7) − {1 / (6x 2.07 x 10 
− 3

) } ] 

+ [ 450 − 90 + {1 / (6x 2.07 x 10 
− 3

) } ] e 
− 1.7

 = 226.7 
0
C. 

 

Example 4.5:- A house hold electric iron has a steel base [ρ =7840 kg/m3 ; cp = 450 
J/(kg-K) ;k = 70 W/(m-K)] which weighs 1 kg. The base has an ironing surface area of 

0.025 m2 and is heated from the other surface with a 250 W heating element. Initially 

the iron is at a uniform temperature of 20 0 C with a heat transfer coefficient of 50 

W/(m2-K).  
(b) What would be the equilibrium temperature of the iron if the control of the iron 

box did not switch of the current? 
 

Solution: 
 

 

    Q = 250 W 

         

L       
         

   Qc    h 2= 50 W /(m
2
-K);T∞=20 

0
C 

     A = 0.025 m  

Other data:- ρ = 7840 kg / m
3
 ; Cp = 450 J / (kg – K) ; k = 70 W /(m – K) 

; m = 1 kg ; t = 5 min = 300 s. 
 

V = m / ρ = 1 / 7840 = 0.0001275 m
3
 = 1.275 x 10 

− 4
 m

3
. 

 

1.275 x 10 
− 4

 

L = V / A = ------------------ = 0.005 m  
0.025 
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50 x 0.005  
Bi = (hL / k) = -------------------- = 0.00364 

70 

 

Since Bi < 0.1, it can be assumed that temperature gradients within the plate are negligible. 

Hence the temperature of the plate depends only on time till steady state condition is reached. 

 

Energy balance at any time t for the plate can be written as 
 

 

Q − Qc = ρVCp (dT/dt) 

 

Or Q – hA(T - T∞) = ρVCp (dT/dt) 
 

Or (dT/dt) + m(T - T∞) = (Q / ρVCp) ……………………………..(1) 
 

Where m = (hA / ρVCp). Letting θ = T - T∞, equation (1) can be written as 

 

 (dθ / dt) + m θ = (Q / ρVCp) 

Multiplying the above equation by the integrating factor e 
mt

,( e∫
mdt

=e
mt

) we get 

(dθ / dt) e 
mt

 + m θe 
mt

  = (Q / ρVCp) e
mt

 

Or d/dt (θe 
mt

) = (Q / ρVCp) e
mt

 

Or (θe 
mt

) = (Q / ρVCp) e
mt

 (1/m) + C1 

Or θ = (Q / ρVCpm) + C1e 
− mt

 ……………………………….(2) 

When t = 0, T = Ti or θ = Ti - T∞ = 20 – 20 = 0 
0
 C. 

 

Substituting this condition in equation (2) we get 
 

0 = (Q / ρVCpm) + C1 or C1 = − (Q / ρVCpm) 

Therefore the temperature in the plate as a function of time is given by 

 

θ = (Q / ρVCpm) [ 1 − e 
− mt

 

] But ρVCpm = hA. Therefore 
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 θ = (Q / hA) [ 1 − e 
− mt

 ] …………………………………..(3) 
 

250 50 x 0.025 

= 2.8 x 10
-3

 
 

Q / hA = ------------------- = 200 ; m = ------------------- 
 

50 x 0.025 1 x 450  
 

Therefore θ = 200 [ 1 – e 
−0.028t

]  
 

When t = 300 s, θ = T - T∞ = 200 x [ 1 − e 
− 0.028 x 300

] = 113.7 
 

 
 

 

Or T = 113.7 + 20 = 133.7 
0
 C. 

 

(b) When the control switch is not switched off and the iron is left in the ambient, steady 

state condition will be attained as t tends to ∞ so that the heat transferred to the 
baseplate will be convected to the ambient. i.e., 

 

Q = Qc 

 

Therefore 250 = 50 x 0.025 x [T – 20 ] 
 

Or T = 220 
0
 C. 

 

This answer can also be obtained by putting t = ∞ in equation (3) and solving for T. 

 

4.3 One-dimensional Transient Conduction ( Use of Heissler’s Charts): There are many 

situations where we cannot neglect internal temperature gradients in a solid while analyzing 

transient conduction problems. Then we have to determine the temperature distribution 

within the solid as a function of position and time and the analysis becomes more complex. 

However the problem of one-dimensional transient conduction in solids without heat 

generation can be solved readily using the method of separation of variables.The analysis is 

illustrated for solids subjected to convective boundary conditions and the solutions were 

presented in the form of transient – temperature charts by Heissler. These charts are now 

familiarly known as “Heissler‟s charts”. 

 

4.3.1.One-dimensional transient conduction in a slab:- Let us consider a slab of thickness 

2L, which is initially at a uniform temperature Ti. Suudenly let the solid be exposed to an 

environment which is maintained at a uniform temperature of T∞ with a surface heat transfer 

coefficient of h for time t > 0.Fig.4.3 shows the geometry , the coordinates and the boundary 
conditions for the problem. Because of symmetry in the problem with respect to the centre of 
the slab the „x‟ coordinate is measured from the centre line of the slab as shown in the 
figure. 
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2L 

    
 

        
 

        
 

Surfaces 
       

 

      

T = Ti at t = 0 
 

exposed to a       
 

       
 

fluid at T∞        
 

with heat          
 

transfer 
  

      

T = T(x,t) 
 

      
 

coefficient h        
 

for time t>0        
 

          
  

 

x 
 

Fig.4.3: Geometry, coordinates and boundary conditions for 

transient conduction in a slab 

 

The mathematical formulation of this transient conduction problem is given as follows: 

 

Governing differential equation:  ∂
2
T / ∂x

2
 = (1/α) ∂T / ∂t ………………………..(4.7a) 

 

Initial condition : at t = 0, T = Ti  in 0 < x < L …………………………………….(4.7b) 

 

Boundary conditions are : 

 

(i) at x = 0, ∂T / ∂x = 0 (axis of symmetry) for all t > 0…………………………..(4.7c) 
 

(ii) at x = L, − k (∂T / ∂x)|x = L = h(T|x = L − T∞) for all t > 0 ……………………….(4.7d) 

 

It is more convenient to analyze the problem by using the variable θ(x,t), where 

θ(x,t) = T(x,t) - T∞. Then equations (4.7a) to (4.7d) reduce to the following forms: 

 

∂
2
θ / ∂x

2
 = (1/α) ∂θ / ∂t ………………………..(4.8a) 

 

Initial condition : at t = 0, θ = Ti − T∞ = θi  in 0 < x < L ………………………….(4.8b) 

 

Boundary conditions reduce to : 

 

(i) at x = 0, ∂θ / ∂x = 0 for all t > 0 ………………….…………………………..(4.8c) 
 

(ii) at x = L, − k (∂θ / ∂x)|x = L = hθ|x = L for all t > 0 ……..……………………….(4.8d) 
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Eq.(4.8a) can be solved by the method of separation of variables as shown below. 

 

Let θ(x,t) = X(x) Y(t) ……………………………………………………………..(4.9) 

 

Substituting this in Eq. (4.8a) we get 
 

Y (d2
X / dx

2
) = (X/α) (dY / dt) 

 

Or 1 1 

--- (d
2
X / dx

2
) = ------ (dY / dt) …………………….(4.10) 

X (Yα) 

 

LHS of Eq. (4.10) is a function of x only and the RHS of Eq. (4.10) is a function of t 

only.They can be equal only to a constant say − λ
2
.(The reason to choose the negative 

sign is to get a physically meaningful solution as explained later in this 
section).Hence we have two equations namely 

 

(1 / X) (d
2
X / dx

2
)  =  − λ

2
  and  [1/(Yα)] ((dY / dt) = − λ

2
 

 

Or (d
2
X / dx

2
)  + λ

2
X = 0 ………………………………………………….(4.11) 

 

and (dY/dt) = −αλ
2
 Y ………………………………………………………(4.12) 

 

Solution to Eq. (4.11) is X(x) = C1 cos (λx) + C2 sin (λx)  …………………….(4.13) 

 

and solution to Eq. (4.12) is Y(t) = D exp (− αλ
2
t) ………………………..(4.14) 

 

with C1, C2 and D as constants of integration. Substituting these solutions in Eq.(4.9) 

we have  

θ(x,t) = D exp (− αλ
2
t) [C1 cos (λx) + C2 sin (λx)] 

 

or θ(x,t) = exp (− αλ
2
t) [A1 cos (λx) + A2 sin (λx)]………..(4.15) 

 

Eq.(4.15) is the general solution involving the constants A1, A2 and λ which can be 

determined using the two boundary conditions and the initial condition as 

illustrated below. 
 

Now from Eq. (4.15), ∂θ / ∂x = λ exp (− αλ
2
t) [ −A1 sin (λx) + A2 cos (λx)] 

Substituting boundary condition (i) we have 0 = λ exp (− αλ
2
t) [0 + A2] for all 

t. Hence A2 = 0. Therefore Eq. (4.15) reduce to 
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θ(x,t) = A1 exp (− αλ
2
t) cos (λx)  ……………………….(4.16) 

 

Now θ(L,t) = A1 exp (− αλ
2
t) cos (λL) 

 

and ∂θ / ∂x = λ exp (− αλ
2
t) [ −A1 sin (λx) ] 

 

Hence [∂θ / ∂x ] x = L = −λ A1 exp (− αλ
2
t)  sin (λL) 

 

Therefore boundary condition (ii) can be written as 
 

k λ A1 exp (− αλ
2
t)  sin (λL) = h A1 exp (− αλ

2
t) cos (λL) 

 

or tan (λL)  = h / (kλ) 

 

or λL tan (λL) = Bi ……………………………………………(4.17) 

 

where Bi = hL / k.  
Equation (4.17) is called the “characteristic equation” and has infinite number of roots 

namely λ1, λ2, λ3, .......Corresponding to each value of λ we have one solution and  
hence there are infinite number of solutions. Sum of all these solutions will also be a solution 
as the differential equation is linear. Therefore the solution θ(x,t) can be written as follows.  

θ(x,t) = ∑ An  exp (− αλn 
2
t) cos (λnx) …………………….(4.18) 

 

To find An:- The constants An in Eq. (4.18) can be found using the orthogonal property 

of trigonometric functions as shown below. Substituting the initial condition we have 
 

θi = ∑ An  cos (λnx) 
 

Multiplying both sides of Eq.(4.18) by cos λmx and integrating w.r.t „x‟ between the  
limits 0 and L we have L L 

 ∫ θi cos (λmx) dx =  ∫ ∑ An  cos (λmx) cos (λnx) dx 
 1 1 

Using the orthogonal; property  

 ∫ An  cos (λmx) cos (λnx) dx = 0 for λn ≠ λm 

The above equation reduce to  

 L L 

 ∫ θi cos (λnx) dx =  ∫ An  cos 
2
(λnx) dx 

 0 0 

  L 

 θi  0 ∫cos (λnx) dx 

Or An = ----L------------------- 

  ∫ cos 
2
 (λnx)dx 

  0 
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It is very convenient to express Eq. (4.18) in dimension less form as follows:  

 

θ(x,t) 

----- = ∑ (An
*
  exp (− λn

* 2
 Fo) cos (λn* x / L) ………………………………(4.19) 

θi 
 

where An
*
 = An / θi ; λn

*
 = λnL ; Fo = Fourier Number = α t / L

2
 ; 

 

4.3.2. Heissler’s Charts for transient conduction:- For values of Fo > 0.2 the above series 

solution converges rapidly and the solution will be accurate within 5 % if only the first term 
in the series is used to determine the temperature. In that case the solution reduces to 

θ(x,t) 

----- = A1
*
  exp (− λ1

* 2
 Fo) cos (λ1* x /L) ……………………………………(4.20) 

θi 

 

From the above equation the dimensionless temperature at the centre of the slab (x =0) can be 
written as 

 

θ(0,t) 

----- = A1
*
  exp (− λ1

* 2
 Fo)  ………………………………………………….(4.21)  

θi 
 

The values of A1
*
 and λ1

*
 for different values of Bi are presented in the form of a table (See 

Table 4.1). These values are evaluated using one term approximation of the series solution.It 

can also be concluded from Eq.(4.20) at any time „t‟ the ratio θ(x,t) / θ(0,t) will be 

independent of temperature and is given by 

 

θ(x,t) 

------ = cos (λ1* x /L) ……………………………………………………………(4.22) 

θ(0,t) 

 

Heissler has represented Eq. (4.21) and (4.22) in the form of charts and these charts are 
normally referred to as Heissler‟s charts. Eq. (4.21) is plotted as Fourier number Fo versus 

dimensionless centre temperature θ(0,t) / θi using [Fig.4.4(b)].  
reciprocal of Biot number1 / Bi as the parameter [Fig.4.4(a)], where as Eq. (4.22) is plotted as 

θ(x,t) / θ(0,t) versus reciprocal of Biot number using the dimensionless distance x / L as the 

parameter.In Fig.[4.4(a)], the curve for 1/Bi = 0 corresponds to the case  
h → ∞, or the outer surfaces of the slab are maintained at the ambient temperature T∞. For 

large values of 1 / Bi, the Biot number is small, or the internal conductance is large in 

comparison with the surface heat transfer coefficient. This in turn, implies that the 

temperature distribution within the solid is sufficiently uniform and hence lumped system 
analysis becomes applicable. 

 
 
 

Fig. (4.5) shows the dimensionless heat transferred Q / Q0 as a function of 
dimensionless time for different values of the Biot number for a slab of thickness 2L. Here Q 
represents the total amount of thermal energy which is lost by the slab up to any time t during 

the transient conduction heat transfer. The quantity Q0, defined as 
 

Q0 = ρ V Cp[Ti  - T∞] …………………………..(4.23)  
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represents the initial thermal energy of the slab relative to the ambient temperature. 
  
4.3.3.Transient-Temperature charts for Long cylinder and sphere: The dimensionless 

transient-temperature distribution and the heat transfer results for infinite cylinder and sphere 

can also be represented in the form of charts as in the case of slab. For infinite cylinder and 

sphere the radius of the outer surface R is used as the characteristic length so that the Biot 

number is defined as Bi = hR / k and the dimensionless distance from the centre is r/R where 

r is any radius (0 ≤ r ≤ R).These charts are illustrated in Figs. (4.6) to (4.9).  
4.3.4.Illustrative examples on the use of Transient Temperature Charts:-Use of the 
transient temperature charts for slabs, infinite cylinders and spheres is illustrated in the 
following examples.  

 

4.3.1. Transient conduction in semi-infinite solids:- A semi-infinite solid is an idealized 
body that has a single plane surface and extends to infinity in all directions.The transient 
conduction problems in semi-infinite solids have numerous practical applications in 
engineering. Consider, for example, temperature transients in a slab of finite but large 
thickness, initiated by a sudden change in the thermal condition at the boundary surface. In 
the initial stages, the temperature transients near the boundary surface behave similar to those 
of semi-infinite medium, because some time is required for the heat to penetrate the slab 
before the other boundary condition begins to influence the transients.The earth for example, 
can be considered as a semi-infinite solid in determining the variation of its temperature near 
its surface  

We come across basically three possibilities while analyzing the 
problem of one-dimensional transient conduction in semi-infinite solids.These three 

problems are as follows: 
 

Problem 1:- The solid is initially at a uniform temperature Ti and suddenly at time t>0 The 

boundary-surface temperature of the solid is changed to and maintained at a uniform 

temperature T0 which may be greater or less than the initial temperature Ti. 
 

Problem 2:- The solid is initially at a uniform temperature Ti and suddenly at time t>0 the 

boundary surface of the solid is subjected to a uniform heat flux of q0 W/m
2
. 

 

Problem 3:- The solid is initially at a uniform temperature Ti. Suddenly at time t>0 the 

boundary surface is exposed to an ambience at a uniform temperature T∞ with the surface 

heat transfer coefficient h. T∞ may be higher or lower than Ti. 

 

Solution to Problem 1:- The schematic for problem 1 is shown in Fig. 4.10. The 

mathematical formulation of the problem to determine the unsteady temperature distribution 
in an infinite solid T(x,t) is as follows: 

The governing differential equation is 

 

∂
2
T / ∂x

2
 = (1/α) (∂T /∂t) …………………… 4.24(a) 

The initial condition is at time t = 0, T(x,0) = Ti ………………………………..4.24(b) 
 

and the boundary condition is at x = 0, T(0,t) = T0................................................ 4.24(c) 

It is convenient to solve the above problem in terms of the variable θ(x,t), where θ(x,t) is 
defined as 

 

T(x,t) − T∞  
θ(x,t) = ---------------- ………...…………………4.25 
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Ti − T∞  

The governing differential equation in terms of θ(x,t) will be 
 

∂
2
θ / ∂x

2
 = (1/α) (∂θ /∂t) ……………………4.26(a) 
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For t > 0, the surface at T0  
 

Initially (t=0), solid at Ti 

 
 
 
 

 

0 
x 

 

 
 

 
 
 
 
 
 

 

Fig. 4.10: Semi-infinite solid with specified surface temperature T0 for t > 0 

 

The initial condition will be at time t = 0, θ(x,0) = Ti − T∞ …………………….4.26(b) 

 

And the boundary condition will be at x = 0, θ(0,t) = T0 − T∞ …………………4.26(c) 

 

This problem has been solved analytically and the solution θ(x,t) is represented 

graphically as θ(x,t) as a function of the dimensionless variable x / [2√(αt)] as shown 
in Fig. 4.11.  

In engineering applications, the heat flux at the boundary surface x = 0 
is also of interest. The analytical expression for heat flux at the surface is given by 

 

k(T0 – Ti) 

qs(t) = -------------- ……………………..4.27 

√(παt) 

 

Solution to problem 2:- The schematic for this problem is shown in Fig. 4.12. 
 
 
 
  

 

T(x,t) = Ti at t = 0 

 

 

q0  W/m
2
 

 

for t > 0  x 
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Fig. 4.12: An infinite solid subjected to a constant heat flux at x = 0 for t > 0 
 
 

 

Governing differential equation in terms of T(x,t) and the initial condition are same that for 
problem 1[i.e. equations 4.26(a) and 4.26(b)]. 

 

The boundary condition is : at x = 0, − k (∂θ / ∂x)|x = 0  = q0. 

 

The temperature distribution within the solid T(x,t) is given by 
 

2q0 

T(x, t) = Ti + ------ (αt) 
½

 [ (1 / √π) exp (− ξ
2
) + ξ erf (ξ) − ξ ] …………………..(4.28 a) 

k   
___ 2 ξ 

where ξ = x / (2√ αt ) and erf (ξ) = ------- ∫ exp (− y
2
) dy  ……………………...(4.28b) 

 √π 0 

 

Here erf (ξ) is called the “error function” of argument ξ and its values for different values of 

ξ are tabulated. 
 

Solution to Problem 3 :- The solid is initially at a uniform temperature Ti and suddenly for t 

>0 the surface at x = 0 is brought in contact with a fluid at a uniform temperature T∞ with a 

surface heat transfer coefficient h. For this problem the solution is represented in the form of 
a plot where the dimensionless temperature [1 − θ(x,t)] is plottedagainst dimensionless 
distance x / √(αt), using h√(αt) / k as the parameter. It can be noted that the case h → ∞ is 

equivalent to the boundary surface ay x = 0 maintained at a constant temperature T∞. 
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4.3.2. Illustrative examples on Transient Conduction in Semi – Infinite solids 

 

Example 4.9:-A thick stainless steel slab [α = 1.6 x 10 
─
 5 m2/s and k = 61 W/(m-K)] 

is initially at a uniform temperature of 150 0 C. Its surface temperature is suddenly 

lowered to 20 0 C. By treating this as a one-dimensional transient conduction problem in 
a semi-infinite medium, determine the temperature at a depth 2 cm from the surface 
and the heat flux 1 minute after the surface temperature is lowered 

 

Solution: 
 

Ti = 150 
0
 C ; T0 = T|x=0 = 20 

0
 C ; α = 1.6 x 10 

− 5
 m

2
 / s ; k = 61 W/(m – K) ; x = 0.02 m ; 

 

T = 1 min = 60 s  

 x 0.02 

ξ = -------------- = --------------------------------- = 0.323 

 2 √ (αt) 2 x √ ( 1.6 x 10 
− 5

 x 60) 
 

T(x,t) – T0  
From chart, --------------------- = 0.35 

 Ti – T0   
 

Therefore T(x,t) = T0 + 0.35 (Ti – T0) = 20 + 0.35 x (150 – 20)  = 65.5 
0
 C. 

 

 k(T0 – Ti) ------------------------------
61x(20-150 

= − 435.5 W / m
2

 
 

qs(t) = --------------------- =  
 

 √ (παt) √ (π x 1.6 x 10 
− 5

 x 60) 
 

 

 

Example 4.10:- A semi-infinite slab of copper (α = 1.1 x 10 
─
 4 m 2/s and k = 380 

W/(m-K) is initially at a uniform temperature of 10 0 C. Suddenly the surface at x = 0 is 

raised to 100 0C. Calculate the heat flux at the surface 5 minutes after rising of the 
surface temperature . How long will it take for the temperature at a depth of 5 cm from 

the surface to reach 90 0 C? 
 
 

Solution: 
 

Ti = 10 
0
 C ; T0 = 100 

0
 C ; k = 380 W / (m – K) ; α = 1.1 x 10 

− 4
 m

2
 / s; t = 300 s ; 

 

 k(T0 – Ti) 380 x (100 – 10) 

qs(t) = ------------------- = -------------------------------- = 11012 W / m
2
 = 11.012 kW/m

2
 

 √ (παt) √ (π x 1.1 x 10 
− 4

 x 300) 

 T(x,t) – T0 90 – 100 

θ(x,t) = ------------------ = --------------------- = 0.11 . From chart ξ = 0.1 

 Ti – T0 10 – 100 
 

 

   

x x
2

 0.05 
2
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ξ = -------------- or t = ------------------- = ------------------------------ 

2√ (αt) 4 α ξ 
2
 4 x 1.1 x 10 

− 4
 x (0.1) 

2
 

 

 

= 586 s = 9.46 min 

 

Example 4.11:-A thick bronze [α = 0.86 x 10 
─
 5 m2/s and k = 26 W/(m-K)] is initially 

at 250 0 C. Suddenly the surface is exposed to a coolant at 25 0 C. If the surface heat 

transfer coefficient is 150 W/(m2-K), determine the temperature 5 cm from the surface 
10 minutes after the exposure. 

 

Solution: 
 

Ti = 250 
0
 C; T∞ = 25 

0
 C; h = 150 W/(m

2
 – K) ; k = 26 W /(m – K) ; α = 0.86 x 10 

−5
 m

2
/s 

 

t = 600 s ; x = 0.05 m ; 

 

x   0.05 

ξ = ---------------- = ------------------------------------ = 0.35 

2 √(α t) 2 x √ ( 0.86 x 10 
− 5

 x 600) 

____  __________________ 

h √(α t) 150 x √ [ 0.86 x 10 
− 5

 x 600] 

-------------- = -------------------------------------- = 0.414 

K  26  

   [T(x,t) – T∞] 

Therefore from chart 1 − ------------------------ = 0.15 

   (Ti – T∞) 

Solving for T(x,t) we have T(x,t) = T∞ + (1 – 0.15)(Ti – T∞) 
 

= 25 + 0.85 x (250 – 25 ) = 216.25 
0
 C. 
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UNIT-III 

Basic Concepts of Convective Heat Transfer 

 

 

5.1. Definition of Convective Heat Transfer:- When a fluid flows over a body or inside a 

channel and if the temperatures of the fluid and the solid surface are different, heat transfer 

will take place between the solid surface and the fluid due to the macroscopic motion of the 

fluid relative to the surface. This mechanism of heat transfer is called as “convective heat 

transfer”. If the fluid motion is due to an external force (by using a pump or a compressor) 

the heat transfer is referred to as “forced convection”. If the fluid motion is due to a force 

generated in the fluid due to buoyancy effects resulting from density difference (density 

difference may be caused due to temperature difference in the fluid) then the mechanism of 

heat transfer is called as “natural or free convection”. For example, a hot plate suspended 

vertically in quiescent air causes a motion of air layer adjacent to the plate surface because 

the temperature gradient in the air gives rise to a density gradient which in turn sets up the air 

motion. 

 

5.2. Heat Transfer Coefficient:- In engineering application, to simplify the heat transfer 

calculations between a hot surface say at temperature Tw and a cold fluid flowing over it at a 

bulk temperature T∞ as shown in Fig. 5.1 a term called “heat transfer coefficient,h” is 
defined by the equation 

 

q = h(Tw – T∞)………………………………………………..5.1(a) 

 

where q is the heat flux (expressed in W / m
2
) from the surface to the flowing fluid. 

Alternatively if the surface temperature is lower than the flowing fluid then the heat transfer 
takes place from the hot fluid to the cold surface and the heat flux is given by 

 

 

q = h(T∞ – Tw)………………………………………………..5.1(b) 

 

The heat flux in this case takes place from the fluid to the cold surface.If in equations 5.1(a) 

and 5.1(b) the heat flux is expressed in W / m
2
, then the units of heat transfer coefficient will 

be W /(m 
2
 – K) or W / (m 

2
 – 

0
 C). 

 

The heat transfer coefficient is found to vary with (i) the geometry of the body, (ii) the type of 

flow (laminar or turbulent), (iii) the transport properties of the fluid (density, viscosity and 

thermal conductivity),(iv) the average temperature, (v) the position along the surface of the body, 

and (vi) whether the heat transfer is by forced convection or free convection. For convection 

problems involving simple geometries like flow over a flat plate or flow inside a circular tube, 

the heat transfer coefficient can be determined analytically 
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u∞, T∞ T∞ 

 

Fluid Temperature Profile 
 
 
 
 

 

x Tw 

 

Fig. 5.1: Temperature distribution of the fluid at any x for Tw > T∞ 

 

But for flow over complex configurations, experimental / numerical approach is used to 
determine h. There is a wide difference in the range of values of h for various applications. 

Typical values of heat transfer coefficients encountered in some applications are given in 
Table 5.1. 

 

Table 5.1: Typical Values of heat transfer coefficients  
 

 

Type of flow  h [W /(m
2
 – K) ] 

Free convection air 5 – 15 

-----do --------- oil 25 – 60 

-----do--------- water 400 –800 

Forced Convection air 15 –300 

-------do------------ oil 50 –1700 

-------do----------- water 300 – 12000 

Boiling water 3000 – 55000 

Condensing steam 5500 – 120000 
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5.3. Basic concepts for flow over a body:- When a fluid flows over a body, the velocity and 

temperature distribution at the vicinity of the surface of the body strongly influence the heat 

transfer by convection. By introducing the concept of boundary layers (velocity boundary 

layer and thermal boundary layer) the analysis of convective heat transfer can be simplified.  

 

5.3.1. Velocity Boundary Layer:- Consider the flow of a fluid over a flat plate as shown in Fig. 

5.2. The fluid just before it approaches the leading edge of the plate has a velocity u∞ which is 

parallel to the plate surface. As the fluid moves in x-direction along the plate, 
 

y u∞ 
 
 

 

u(x, y) 
 

u(x, y) 
 
 
 

 

x 
xcr Turbulent Region 

 

 
 

Laminar Region Transition 
 

 
 
 

Fig. 5.2: Velocity boundary layer for flow over a flat plate 
 
 

those fluid particles that makes contact with the plate surface will have the same velocity as that 
of the plate. Therefore if the plate is stationary, then the fluid layer sticking to the plate surface 
will have zero velocity.But far away from the plate (y = ∞) the fluid will have the velocity 

u∞.Therefore starting from the plate surface (y = 0) there will be retardation of the fluid in x-

direction component of velocity u(x,y).This retardation effect is reduced as we move away from 
the plate surface.At distances sufficiently long from the plate(y = ∞) the retardation effect is 

completely reduced: i.e. u → u∞ as y → ∞. This means that there is a region surrounding the 

plate surface where the fluid velocity changes from zero at the surface to the velocity u∞ at the 

outer edge of the region. This region is called the velocity boundary layer. The variation of the x-
component of velocity u(x,y) with respect to y at a particular location along the plate is shown in 
Fig. 5.2.The distance measured normal to the surface from the plate surface to the point at which 

the fluid attains 99% of u∞ is called “velocity boundary layer thickness” and denoted by δ(x) 

Thus for flow over a flat plate, the flow field can be divided into two distinct regions, namely, (i) 
the boundary layer region in which the axial component of velocity u(x,y) varies rapidly with y 

with the result the velocity gradient (∂u /∂y) and hence the shear stress are very large and (ii) 
the potential flow region which is outside the boundary layer region, where the velocity 
gradients and shear stresses are negligible. 
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The flow in the boundary layer, starting from the leading edge of the 
plate will be initially laminar in which the fluid particles move along a stream line in an 
orderly manner. In the laminar region the retardation effect is due to the viscosity of the fluid 
and therefore the shear stress can be evaluated using Newton‟s law of viscosity. The laminar 

flow continues along the plate until a critical distance „xcr‟ is reached. After this the small 

disturbances in the flow begin to grow and fluid fluctuations begin to develop. This 
characterizes the end of the laminar flow region and the beginning of transition from laminar 
to turbulent boundary layer. A dimensionless parameter called Reynolds number is used to 
characterize the flow as laminar or turbulent. For flow over a flat plate the Reynolds number 
is defined as 

u∞ x 

Rex = ---------- …………………………….5.2 

ν  

where u∞ = free-stream velocity of the fluid, x = distance from the leading edge of the plate 
and ν = kinematic viscosity of the fluid. 

 

For flow over a flat plate it has been found that the transition from laminar 

flow to turbulent flow takes place when the Reynolds number is ≈ 5 x 10 
5
.This number is called 

as the critical Reynolds number Recr for flow over a flat plate. Therefore 

u∞ xcr 

Recr = -------------- = 5 x 10 
5
 ……………….5.3 

ν  
The critical Reynolds number is strongly dependent on the surface roughness and the 
turbulence level of the free stream fluid. For example, with very large disturbances in the free 

stream, the transition from laminar flow to turbulent flow may begin at Rex as low as 1 x 10 
5
 

and for flows which are free from disturbances and if the plate surface is smooth transition 

may not take place until a Reynolds number of 1 x 10 
6
 is reached. But it has been found that 

for flow over a flat plate the boundary layer is always turbulent for Rex ≥ 4 x 10 
6
.In the 

turbulent boundary layer next to the wall there is a very thin layer called “the viscous sub-
layer”, where the flow retains its viscous flow character. Next to the viscous sub-layer is a 
region called “buffer layer” in which the effect of fluid viscosity is of the same order of 
magnitude as that of turbulence and the mean velocity rapidly increases with the distance 
from the plate surface. Next to the buffer layer is “the turbulent layer” in which there is large 
scale turbulence and the velocity changes relatively little with distance. 

 

5.3.2. Drag coefficient and Drag force:- If the velocity distribution u(x,y) in the boundary 
layer at any „x‟ is known then the viscous shear stress at the wall can be determined using 

Newton‟s law of viscosity. Thus if ηw(x) is the wall-shear stress at any location x then 
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ηw(x) = μ(∂u / ∂y)y = 0 ………………….5.4 

 

where μ is the absolute viscosity of the fluid. The drag coefficient is dimensionless wall 

shear stress. Therefore the local drag coefficient, Cx at any „x‟ is defined as 
 

ηw(x) 

Cx = ------------- ……………………….5.5  

(1/2) ρu∞
2
 

 

Substituting for ηw(x) in the above equation from Eq. 5.4 and simplifying we get 
 

2ν (∂u / ∂y)y = 0 

Cx = ---------------------- ……………….5.6  

u∞
2
 

 

Therefore if the velocity profile u(x,y) at any x is known then the local drag 

coefficient Cx at that location can be determined from Eq. 5.6.The average value of Cx 
for a total length L of the plate can be determined from the equation 

 
 L  

 

 Cav = (1/L) ∫Cx dx ……………………5.7 
 

 0  
 

Substituting for Cx from Eq. 5.5 we have  
 

 L  
 

 ∫ ηw(x)dx  
 

 Cav = ------------------------ 

2 

 

 L (1/2) ρu∞ 
 

 _  
 

 ηw  
 

Or Cav = -------------------- ……………….5.8 
 

 (1/2) ρu∞
2
 

  
_ 

Where ηw is the average wall-shear stress for total length L of the plate. 

 

The total drag force experienced by the fluid due to the presence of the plate can 
be written as 

 
_ 

FD = As ηw …………………………….5.9 
 

Where As is the total area of contact between the fluid and the plate. If „W‟ is the 

width of the plate then As = LW if the flow is taking place on one side of the plate and 

As = 2LW if the flow is on both sides of the plate. 

 

5.3.3. Thermal boundary layer:- Similar to the velocity boundary layer one can visualize the 

development of a thermal boundary layer when a fluid flows over a flat 
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plate with the temperature of the plate being different from that of the free stream 

fluid.Consider that a fluid at a uniform temperature T∞ flows over a flat plate which is 

maintained at a uniform temperature Tw.Let T(x,y) is the temperature of the fluid at any 
location in the flow field.Let the dimensionless temperature of the fluid θ(x,y) be defined as 

 T(x,y) – Tw 

θ(x,y) = ------------------- …………………………….5.10 

 T∞ − Tw 

 
The fluid layer sticking to the plate surface will have the same temperature as the plate 

surface [T(x,y)y = 0 = Tw] and therefore θ(x,y) = 0 at y = 0.Far away from the plate the fluid 

temperature is T∞ and hence θ(x,y) → 1 as y → ∞. Therefore at each location x along the 

plate one can visualize a location y = δt(x) in the flow field at which θ(x,y) = 0.99. δt(x) is 
called “the thermal boundary layer thickness” as shown in Fig. 5.3. The locus of such 
points at which θ(x,y) = 0.99 is called the edge of the thermal boundary layer. The relative 

thickness of the thermal boundary layer δt(x) and the velocity  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

boundary layer δ(x) depends on a dimensionless number called “Prandtl number” of the 

fluid.It is denoted by Pr and is defined as 

μCp (μ/ρ) ν 

Pr = --------- = ---------- = -------- ………..5.11 

k (k/ρCp) α 

 

 

Where μ is the absolute viscosity of the fluid, Cp is the specific heat at constant pressure 

 

and k is the thermal conductivity of the fluid. The Prandtl number for fluids range from  
0.01 for liquid metals to more than 100,000 for heavy oils. For fluids with Pr = 1 such as 

 
 

 



                                                                                                                                                109 

 

gases δt(x) = δ(x), for fluids with Pr << 1such as liquid metals δt(x) >> δ(x) and for 

fluids with Pr >> 1, like oils δt(x) << δ(x). 
 

5.3.4. General expression for heat transfer coefficient:- Let us assume that Tw > 
 

T∞. Then heat is transferred from the plate to the fluid flowing over the plate.Therefore 
at any „x‟ the heat flux is given by 

 

q = − k (∂T /∂y)y=0 ………………………..5.12(a) 

 

In terms of the local heat transfer coefficient hx, the heat flux can also be written as 

 

q = hx (Tw − T∞) …………………………..5.12(b) 

 

From equations 5.12(a) and 5.12(b) it follows that  

− k (∂T /∂y)y=0  

hx = ------------------ ………………………5.13 

(Tw − T∞)  
 

From equation 5.10 we have (∂T /∂y)y=0 = [T∞ − Tw] (∂θ /∂y)y=0. Substituting this 

expression in Eq.5.13 and simplifying we get the general expression for hx as 
 

hx = k (∂θ /∂y)y=0 ………………………….5.14 

 

The same expression for hx could be obtained even when Tw < T∞. Equation 5.14 can 

be used to determine the local heat transfer coefficient for flow over a flat plate if the 

dimensionless temperature profile θ(x,y) is known. 

 

Average heat transfer coefficient:- For a total length L of the plate the average heat transfer 
coefficient is given by 

 
L 

hav = (1 /L) ∫hxdx ………………………….5.15 
0 

 

Substituting for hx from Eq. 5.14 we get 
 

L 

hav = (1 /L) ∫ k (∂θ /∂y)y=0 dx ………………….5.15 
0 

 

Since (∂θ /∂y)y=0 at any x depends on whether the flow at that section is laminar 

or turbulent the expression for hav can be written as 

 
 
 
 

 

xcr L 

hav = (1 /L) { ∫ k [(∂θ /∂y)y=0]laminar dx + ∫ k [(∂θ /∂y)y=0]turbulent dx }……5.16 
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Example 5.1:- Assuming the transition from laminar to turbulent flow takes place at a 

Reynolds number of 5 x 10 
5
, determine the distance from the leading edge of a flat plate 

at which transition occurs for the flow of each of the following fluids with a velocity of 2 

crm/s at 40 
0
 C.(i) Air at atmospheric pressure;(ii)Hydrogen at atmospheric 

pressure;(iii) water;(iv) Engine oil;(v) mercury. Comment on the type of flow for the 5 
fluids if the total length of the plate is 1 m. 

 

Solution: Data:- Recr = 5 x 10 
5
; u∞ = 2 m/s ; T∞ = 40 

0
 C 

 

(i)Air at atmospheric pressure :- At  40 
0
 C, ν = 17 x 10 

− 6
 m

2
/s. 

 

     u∞ xcr Recr ν 5 x 10 
5
 x 17 x 10 

− 6
 

 

Recr = -----------    or   xcr = -------------------- = ---------------------------- = 4.25 m. 
 

      ν u∞ 2 
 

(ii) Hydrogen :- For hydrogen at 40 
0
 C, ν = 117.9 x 10 

− 6
 m

2
/s. 

 

          5 x 10 
5
 x 117.9 x 10 

− 6
 

 

Therefore     xcr = ------------------------------- = 29.5 m 
 

          2  
 

(iii) Water :- For water at 40 
0
 C, ν = 0.658 x 10 

− 6
 m

2
/s. 

 

          5 x 10 
5
 x 0.658 x 10 

− 6
 

 

Therefore     xcr = ------------------------------- = 0.1645 m 
 

          2  
 

(iv) Engine oil :- For engine oil at 40 
0
 C, ν = 0.24 x 10 

− 3
 m

2
/s. 

 

          5 x 10 
5
 x 0.24 x 10 

− 3
 

 

Therefore     xcr = 
-------------------------------2 

= 60 m 
 

           
 

(v)  Mercury :- For mercury at 40 
0
 C, ν = 0.107 x 10 

−
 
6
 m

2
/s. 

 

          5 x 10 
5
 x 0.107 x 10 

− 6
 

 

Therefore     xcr = ------------------------------- = 0.027 m 
 

          2  
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Comments on the type of flow   

Sl.No Type of fluid xcr xcr  vs  L Type of Flow 

     

1 Air 4.25 xcr > L Flow is Laminar  for entire length 

     

2 Hydrogen 29.5 xcr>> L Flow is laminar for entire length 

     

3 Water 0.1645 xcr  < L Flow is partly Laminar & Partly Turbulent 

     

4 Engine oil 60 xcr >> L Flow is laminar for entire length 

     

5 Mercury 0.027 xcr << L Flow is turbulent for almost entire length 

 

 

Example 5.2:- An approximate expression for the velocity profile u(x,y) for laminar 

boundary layer flow along a flat plate is given by 
 

u(x, y)/ u∞ =2[y / δ(x)] − 2[y / δ(x)] 
3
+ [y / δ(x)] 

4
 

 

where δ(x) is the velocity boundary layer thickness given by the expression 
 

δ(x) / x = 5.83 / (Rex)
1/2

 

 

(a) Develop an expression for the local drag coefficient. 

(b) Develop an expression for the average drag coefficient for a length L of the plate.  
(c) Determine the drag force acting on the plate 2 m x 2 m for flow of air with a 

free stream velocity of 4 m /s and a temperature of 80 
0
C. 

 

Solution:- (a) The velocity profile u(x,y) is given as 
 

u(x, y) = u∞ {2[y / δ(x)] − 2[y / δ(x)] 
3
+  [y / δ(x)] 

4
 } 

 

Therefore (∂u / ∂y)y=0 = 2u∞ / δ(x) 
 

ηw(x) = μ (∂u / ∂y)y=0 = (2 μu∞) / δ(x) 

 

(2 μu∞) Rex (2 μu∞) [(u∞x) / ν]
1/2

 

= ----------------- = ------------------------  = 0.343 (μu∞) [u∞ /(x ν)]
1/2

 ….(1 ) 

5.83 x 5.83 x 
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The local drag coefficient at any x is given by 
 

 ηw(x) 0.343 (μu∞) [u∞ /(x ν)]
1/2

 
 

Cx = ----------------- = -------------------------------------------  
 

 (1/2) ρu∞
2
 (1/2) ρu∞

2
 

 

 0.686 0.686 
 

= ---------------------- = ----------------- 
 

 {(u∞x) / ν}
1/2

 (Rex) 
½

 
 

(b) The average drag coefficient is given by 
 

 L L 
 

Cav = (1/L) ∫ Cx dx = (1/L) ∫ 0.686 (Rex) 
− ½

 dx 
 

 0 0 
 

 { 0.686 (u∞/ν) 
− ½

}  L 
 

 = ----------------------- ∫ x 
− ½

 dx 
 

 L 
0 

 

  
 

Or 2 x 0.686 1.372 
 

Cav =  --------------- = ------------------ 
 

 (u∞L / ν) 
½

 (ReL) 
½

 
 

 

 

(c) At 80 
0
 C for air ν = 20.76 x 10 

− 6
 m

2
 / s ; ρ = 1.00 kg / m 

3
 

 

 u∞L 4 x 2 

ReL = ----------------- = ------------------- = 3.793 x 10 
5
 

ν 21.09 x 10 
− 6

 
 

 1.372 1.372 

Average drag coefficient = Cav = ------------------- = ------------------------ = 2.228 x 10 
− 3

 

 ReL
0.5

 (3.793 x 10 
5
)
0.5

 

 

Drag force assuming that the flow takes place on one side of the plate is given by 
 
 
 
 

 

FD = ηw LW = (1/2)ρ u∞
2
 Cav LW for flow over one side of the plate 

 

= (1/2) x 1.00 x 4
2
 x 2.2228 x 10 

− 3
 x 2 x 2  =0.071 N 
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Example 5.3:- An approximate expression for temperature profile θ(x,y) in the thermal 
boundary layer region is given by 

 

θ(x,y) =  2y / δt −[y / δt]
2
 

 

where the thermal boundary layer thickness δt is given by  
5.5 

δt / x = ----------------- ; Rex is the Reynolds number based on „x‟ and 

Rex0.5Pr 1/3  
Pr is the Prandtl number of the fluid. Develop an expression for (i) the local heat transfer 

coefficient hx and (ii) the average heat transfer coefficient for total length L of the plate. 
 

Solution: (i) The local heat transfer coefficient hx is given by 

  hx = k (∂θ / ∂y)|y = 0. 

Now  θ(x,y) =  2y / δt −[y / δt]
2

 

  2 Rex
0.5

Pr 
1/3

 

Hence  (∂θ / ∂y)|y = 0. = 2 / δt = --------------------- 

  5.5.x 

  2 k Rex
0.5

Pr 
1/3

 

Or hx = ------------------------ = 0.364 (k / x) Rex
0.5

 Pr 
1/3

 

  5.5.x 

Or hx x  

 ----- = 0.364 Rex
0.5

 Pr 1/3 

K 

hx x 

---- is a dimensionless number involving local heat transfer coefficient and is called  
k 

“local Nusselt number”. 

 

(ii) The average heat transfer coefficient for a total length L of the plate is given by 

 
L 

hav = (1 / L) ∫hx dx = (1 / L) ∫ 0.364 (k / x) 
0 

 
   L 

Or = (1 / L) 0.364 Pr
1/3

 k (U∞ / ν)
0.5

 ∫ x − 0.5 
   0 

 
 

 

Rex
0.5

 Pr
1/3

 dx 

 

 

dx 
 

L 0.5  
= (1 / L) ----------- 0.364 Pr

1/3
 k (U∞ / 

ν)
0.5

 0.5 
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= 0.728 (k / L) (U∞L / ν) 
0.5

 Pr 
1/3

 

 

Or hav L / k = 0.728 ReL
0.5

 Pr
1/3

 

 

hav L / k is a dimensionless number involving the average heat transfer coefficient and is 

called the “average Nusselt number”. 

Example 5.4:- The heat transfer rate per unit width from a longitudinal section x2 ─ x1  
of a flat plate can be expressed as q12 = h12 (x2 – x1)(Ts - T∞), where h12 is the average 

heat transfer coefficient for the section length of (x2 – x1). Consider laminar flow over a 

flat plate with a uniform temperature Ts. The spatial variation of the local heat 

transfer coefficient is of the form hx = C x 
─ 0.5

, where C is a constant. 

(a) Derive an expression for h12 in terms of C,x1 and x2. 

(b) Derive an expression for h12 in terms of x1, x2, and the average coefficients h1 and h2 

corresponding to lengths x1 and x2 respectively. 
 
 

 

Solution:  
 

u∞, T∞ q12  
Ts 

 

     
 

      
 

      
 

 

x1 
 

x2 

 
 
 

 

Fig. P5.5: Schematic for problem 5.5 
 
 
 
 
 

 

(a) hx = C x 
− 0.5

  
 

 _ 1 x2 
 

Therefore h12 = -------------- ∫hx dx 
 

  (x2 – x1) x1 
 

  1 x2 
 

 = ------------------- ∫ C x 
− 0.5

 dx 
 

  
(x2 – x1) 

0 
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   2C 
0.5

 – x1 0.5] 

 
 

  = ------------------ [ x2  
 

   (x2 – x1)    
 

  _  x1    
 

(b)  h1 = (1/x1) ∫C x 
− 0.5

 dx   
 

    0    
 

   = 2C / √ x1    
 

  _  ___    
 

Similarly  h2 = 2C / √ x2    
 

 x1  _ 1  x2 x1 
 

Therefore Since ∫  hxdx = x1h1,  h12 = -------------- [ ∫ hxdx -  ∫ hxdx ] 
 

 0   
( x2 – x1) 

0 0 
 

  
_ _ 

  
 

      
 

 _ h2x2  -  h1x1     
 

 h12 = -----------------     
 

  x2 – x1     
 

 

5.4. Basic Concepts For Flow Through Ducts :- The basic concepts developed on the 

development of velocity and thermal boundary layers for flow over surfaces are also 

applicable to flows at the entrance region of the ducts. 

 

5.4.1. Velocity Boundary Layer:- Consider the flow inside a circular tube as shown in Fig.5.4. 

Lat uo be the uniform velocity with which the fluid approaches the tube. As the fluid enters the 

tube, a “velocity boundary layer” starts to develop along the wall-surface. The velocity of the 

fluid layer sticking to the tube-surface will have zero velocity and the fluid layer slightly away 

from the wall is retarded. As a result the velocity in the central portion of the tube increases to 

satisfy the continuity equation (law of conservation of mass).The thickness of the velocity 

boundary layer δ(z) continuously grows along the tube-surface until it fills the entire tube. The 

region from the tube inlet up to little beyond the hypothetical location where the boundary layer 

reaches the tube centre is called “hydrodynamic entrance region or hydrodynamically developing 

region” and the corresponding length is called “hydrodynamic entrance length Lh”. In the 

hydrodynamically developing region the shape of the velocity profile changes both in axial 

and radial direction, i.e., u = u(r,z). The region beyond the hydrodynamic entry length is 

called “Hydrodynamically developed region”, because in this region the velocity profile is 

invariant with distance along the tube,i.e., u = u(r). 
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uo 
  Hydrodynamic Entrance   Hydrodynamically developed  

 

  Region   Region  
 

       
 

                    

r 

 

      δ(z)     
R 

     
 

               
 

                     
 

                     
  

 
 

Lh 
 

 

 

  
 

z Fully developed profile 
 

 u = u(r) 
 

 

Fig. 5.4: development of velocity boundary layer at entrance region of a tube 

  
If the boundary layer remains laminar until it fills the tube, then laminar flow will prevail 

in the developed region. However if the boundary layer changes to turbulent before its 

thickness reaches the tube centre, fully developed turbulent flow will prevail in the 
hydrodynamically developed region. The velocity profile in the turbulent region is flatter 

than the parabolic profile of laminar flow. The Reynolds number, defined as 
 

Red = (um Dh) / ν …………………………………(5.17) 

 

is used as a criterion for change from laminar flow to turbulent flow. In this definition, 

um is the average velocity of the fluid in the tube, Dh is the hydraulic diameter of the tube 

and ν is the kinematic viscosity of the fluid. The hydraulic diameter is defined as 

 

4 x Area of flow  
Dh = ------------------------------ ……………………(5.18) 

Wetted Perimeter 

 

For flows through ducts it has been observed that turbulent flow prevails for 
 

Red ≥ 2300 ………………………………………..(5.19) 

 
 

But this critical value is strongly dependent on the surface roughness, the inlet conditions and the 

fluctuations in the flow. In general, transition may occur in the range 2000 < Red < 4000. It is a 
common practice to assume a value of 2300 fro transition from laminar flow to turbulent 
flow. 
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5.4.2. Friction Factor and Pressure Drop Relations For Hydrodynamically Developed 

Laminar Flow 

 

In engineering applications, the pressure gradient (dp / dz) associated with the flow is a 

quantity of interest, because this decides the pumping power required to overcome thr 
frictional losses in the pipe of a given length.  

Consider a differential length dz of the tube at a distance z from the entrance and 

let this length be in the fully developed region. The various forces acting on the fluid element 
in the direction of flow are shown in Fig.5.5. 

 

Resultant force in the direction of motion = F = (pA)z –(pA)z+dz – ηw Sdz 

 

where S is the perimeter of the duct. 

Using Taylor‟s series expansion and neglecting higher order terms we can write 
 

(pA)z+dz = (pA)z + d/dz(pA) dz 

 

Therefore F = d/dz(pA) dz − ηw Sdz 

 

Rate of change of momentum in the direction of flow = 0 because the velocity u does not 
vary with respect to z in the fully developed region. 

 

Hence d/dz(pA) dz − ηw Sdz = 0 

 

For duct of uniform cross section A is constant. Therefore the above equation reduces to 
 

dp/dz = − ηw S /A ……………………………….(5.20) 
 

For laminar flow ηw = − μ (du / dr)|wall. Hence Eq. (5.20) reduces to 

 

dp μS  
------ = -------- (du/dr)|wall ……………………….(5.21) 

dz A 

 

Eq.(5.21) is not practical for the determination of (dp/dz), because it requires the evaluation f 
the velocity gradient at the wall. Hence for engineering applications a parameter called 

“friction factor, f ” is defined as follows: 
 

 (dp/dz) Dh 

f = − ------------------- ………………………….(5.22a) 

 ½ (ρum
2
) 

Substituting for (dp/dz) from Eq. (5.21) we have 

 (μS/A) (du/dr)|wall Dh 

f =  −  ---------------------------- …………………..(5.22b) 

 ½ (ρum
2
) 
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For a circular tube  S = πDi, and A = πDi
2
 / 4. Hence Dh = Di 

 

Hence for a circular tube Eq. (5.22b) reduces to 

 

8μ 

 f = − -------  (du/dr)|wall …………………………(5.22c) 
 

 (ρum
2
)  

 

Also from Eq. (5.22a) we have 

(½ ) (ρum
2
) f 

 
 

  
 

dp = − ----------------- dz 
 

 Dh  
 

Integrating the above equation over a total length L of the tube we have 
 

p2 (½ ) (ρum
2
) f   L 

 

∫dp = − ------------------- ∫dz 
 

p1 Dh 0 
  

or pressure drop = Δp = (p1 – p2) = ( ½ ) (L/Dh) f ρum
2
 …………………………(5.23) 

 
. 

Pumping power is given by P = V Δp ………………………………………...(5.24) 
 

. 

where V = volume flow rate of the fluid. 

 

5.4.3. Thermal Boundary Layer: In the case of temperature distribution in flow inside a 

tube, it is more difficult to visualize the development of thermal boundary layer and the 

existence of thermally developed region. However under certain heating or cooling 

conditions such as constant wall-heat flux or constant wall-temperature it is possible to have 

thermally developed region.  
Consider a laminar flow inside a circular tube subjected to uniform heat 

flux at the wall. Let „r‟ and „z‟ be the radial and axial coordinates respectively and 
T(r,z) be the local fluid temperature. A dimensionless temperature θ(r,z) is defined as   

 

T(r,z) – Tw(z) 
 

θ(r,z) = ------------------- ………………………………..(5.25a) 

Tm(z) – Tw(z) 

 

where  Tw(r,z) = Tube wall-temperature and Tm(z) = Bulk mean temperature of the fluid.  
The bulk mean temperature at any cross section „z‟ is defined as follows:  

 

∫ ρ(2πrdr) u(r,z) Cp T(r,z) ∫ rdr u(r,z)T(r,z) 

Tm(z) = --------------------------------- = ---------------------- ………………..(5.25b)  
∫ ρ(2πrdr) u(r,z) Cp ∫ rdr) u(r,z) 
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At the tube wall it is clear that θ(r,z) = 0 and attains some finite value at the centre of the 
tube. Thus we can visualize the development of thermal boundary layer along the tube 

surface as shown in Fig. 5.5.The thickness of the thermal boundary layer δt continuously 

grows along the tube surface until it fills the entire tube. The region from the tube inlet to the 
hypothetical location where the thermal boundary layer thickness reaches the tube centre is 
called the “thermal entry section”. In this region the shape of the dimensionless temperature 
profile θ(r,z) changes both in axial and in radial directions. The region beyond the thermal 
entry section is called as the “thermally developed region”, because in this region the 
dimensionless temperature profile θ remains invariant with respect to z. That is in this region 
θ = θ(r).It is difficult to explain qualitatively why θ should be independent of z even though 
the temperature of the fluid T depends both on r and z. However it can be shown 
mathematically that, for both constant wall-heat flux and constant wall-temperature 
conditions, θ depends only on r for large values of z.For constant wall-heat flux condition the 

wall-temperature Tw(z) increases with z. 
 
 
 
 
 
 

 

Tw(z) Tw(z) Tw(z) 
 

  
  

Tfi 
 
 
 
 
 
 
 
 

 

Thermally Developing Region Thermaly 

 Developed Region 
Thermal Entrance Length Lth  

θ = θ(r) 

 

Fig. 5.5: Development of Thermal Boundary Layer In a Flow 

Through A Tube Subjected to Constant Wall-Heat Flux Condition 

 

The variation of wall-temperature and the bulk fluid temperature as we proceed along the 
length of the tube for constant wall-heat flux conditions is shown in Fig. 5.6. 
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Tw(z)|z=L  
 

 

ΔT = Tw(z) – Tm(z) 

Tm(z)|z=L = Tfo 
 
 
 
 
 
 
 

 

0   L 
 

 Lth Thermally developed region 
 

 z θ = θ(r) 
 

   
 

 

 

Fig. 5.6: Variation of tube wall-temperature and bulk fluid temperature 

along the length of the tube  
 

It can be shown that for constant wall-heat flux condition the temperature difference ΔT between 

the tube wall and the bulk fluid remains constant along the length of the tube.  
The growth of the thermal boundary layer for constant wall-temperature conditions 

is similar to that for constant wall-heat flux condition except that the wall temperature does 

not vary with respect to z. Therefore the temperature profile T(r,z) becomes flatter and flatter 

as shown in Fig. 5.7 as we proceed along the length of the tube and eventually the fluid 
temperature becomes equal to the wall temperature. Since the  

 
 

     
Tw 

  Tw   Tw Tw  
 

Tfi 
              

 

             
 

                      
 

                      
 

                      
   

z  

Thermally developing region Thermally developed 

Thermal entrance length Lth region 
 

Fig.5.7: Growth of thermal boundary layer for flow through a tube 

with constant wall-temperature 
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wall-temperature remains constant and the bulk fluid temperature varies along the length  
 
 
 
 
 

Tw  
 
 
 
 

 

ΔTi 

 
 
 
 

 

Tfi 

 

0 

Fig. 5.8: Variation of bulk fluid temperature 

along the length of the tube for 

tube with constant wall-

temperature 

 

the temperature difference between the tube wall and the bulk fluid varies along the length of 
the tube as shown in Fig. 5.8. 

 

5.4.4. Mean Temperature Difference, ΔTm: If Q is the total heat transfer rate between the 

fluid and the tube surface , As is the area of contact between the fluid and the surface, hm is 
the average heat transfer coefficient for the total length of the tube then we can write  

 

Q = hm As ΔTm …………………………….(5.26) 
 

Where ΔTm = mean temperature difference between the tube wall and the bulk fluid. For a 

tube with constant wall-heat flux condition, since the temperature difference between the 

fluid and the tube surface remains constant along the length of the tube it follows that 
 

ΔTm = [Tw(z)|z=0 − Tfi] = [Tw(z)|z=L − Tfo] …………………(5.27a) 

 

For a tube with constant wall-temperature condition the mean temperature difference is given 
by 

 ΔTi – ΔTo 

ΔTm = ----------------------- ………………………………….(5.27b) 

 ln (ΔTi / ΔTo) 
 

 

  

ΔTo 
 

Tfo  
 
 
 
 
 
 
 
 
 
 

 

L 
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Free Convective Heat Transfer 

 

A. Free convection from/to plane surfaces: 

 

7.1. A vertical plate 30 cm high and 1 m wide and maintained at a uniform 

temperature of 120 0 C is exposed to quiescent air at 30 0 C.Calculate the 
average heat transfer coefficient and the total heat transfer rate from the 
plate to air. 

 

7.2. An electrically heated vertical plate of size 25 cm x 25 cm is insulated on one 
side and dissipates heat from the other surface at a constant rate of 600 

W/m2 by free convection into quiescent atmospheric air at 30 0 C. Determine 
the surface temperature of the plate. 

 

7.3. Determine the heat transfer by free convection from a plate 30 cm x 30 cm 

whose surfaces are maintained at 100 0 C and exposed to quiescent air at 20 
0 C for the following conditions: (a) the plate is vertical. (b) Plate is horizontal 

 
7.4. A circular plate of 25 cm diameter with both surfaces maintained at a uniform 

temperature of 100 0 C is suspended in horizontal position in atmospheric air 

at 20 0 C. Determine the heat transfer from the plate. 
 

7.5. Consider an electrically heated plate 25 cm x 25 cm in which one surface is 
thermallt insulated and the other surface is dissipating heat by free 

convection into atmospheric air at 30 0 C. The heat flux over the surface is 

uniform and results in a mean surface temperature of 50 0 C. The plate is 

inclined making an angle of 50 0 from the vertical. Determine the heat loss 
from the plate for (i) heated surface facing up and (ii) heated surface facing 
down. 

 

7.6. A thin electric strip heater of width 20 cm is placed with its width oriented 
vertically. It dissipates heat by free convection from both the surfaces into 

atmospheric air at 20 0 C. If the surface temperature of the heater is not to 

exceed 225 0 C, determine the length of the heater required in order to 
dissipate 1 kW of energy into the atmospheric air. 

 
7.7. A plate 75 cm x 75 cm is thermally insulated on the one side and subjected to 

a solar radiation flux of 720 W/m2 on the other surface. The plate makes an 

angle of 60 0 with the vertical such that the hot surface is facing upwards. If 

the surface is exposed to quiescent air at 25 0 C and if the heat transfer is by 
pure free convection determine the equilibrium temperature of the plate. 

 

B. Free convection from/to Cylinders: 
 

7.8. A 5 cm diameter, 1.5 m long vertical tube at a uniform temperature of 100 0C 

is exposed to quiescent air at 20 0 C. calculate the rate of heat transfer from 
the surface to air. What would be the heat transfer rate if the tube were kept 
horizontally? 

 

7.9. A horizontal electrical cable of 25 mm diameter has a heat dissipation rate of 

30 W/m. If the ambient air temperature is 27 0 C, estimate the surface 
temperature of the cable. 
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7.10. An electric immersion heater, 10 mm in diameter and 300 mm long is rated at 

550 W. If the heater is horizontally positioned in a large tank of water at 20 0 
C, estimate its surface temperature. What would be its surface temperature if 
the heater is accidentally operated in air. 

 

 

A.Free Convection to or from plane surfaces 

 

7.1. Solution: 
 
 
 

 

Tw = 120 
0
 C  

 
 
 

 

 T∞ = 30 
0
C

 

L = 0.3m  
Mean film temperature of air = 0.5 x (120 +30) = 75

0
C 

 

  
 

 x 

Properties of air at 75
0
C are: 

 

  
  

 

β = 1/ (273 + 75) = 2.874 x 10 
− 3

 1/K; Pr = 0.693 

k = 0.03 W/(m-K) ; ν = 20.555 x 10 
− 6

 m 
2
/s ; 

 
\ 

 

First we have to establish whether the flow become turbulent within the given length of 
the plate by evaluating the Rayleigh number at x = L. 

 

 

9.81 x 2.874 x 10 
− 3

 x (120 – 30) x 0.3 
3
 

GrL = (gβΔTL 
3
) / ν 

2
 = ----------------------------------------------------  

20.555 x 10 
− 6

 

 

= 1.62 x 10 
8
 

 

Rayleigh number = RaL = GrLPr = 1.62 x 10 
8
 x 0.693 = 1.12 x 10 

8
. 

 

Since RaL < 10 
9
 flow is laminar for the entire height of the plate. Hence the 

average Nusselt number is given by (from data hand book) 
 

Nuav = 0.59 x (RaL) 
0.25

 = 0.59 x (1.12 x 10 
8
) 

0.25
 = 60.695 
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60.6 x 0.03 

Therefore hav = Nuav k / L = ---------------- = 6.069 W /(m
2
 – K). 

0.3 

 

Total heat transfer fro both sides of the plate per unit width of the plate is given by 
 

Qtotal = hav(2LW) T = 6.06 x (2 x 0.3 x 1) X (120 – 30) = 327.726 W/m. 

 

7.2. Solution:  
 
 
 

 

Insulated 
 

 

qw
 

= 600 W/m2
  T∞ = 30 0C 

 

L = 0.25 m 
 
 
 
 
 
 
 
 
 

 

Since Tw is not known, it is not possible to determine the mean film temperature at which 
fluid properties have to be evaluated. Hence this problem requires a trial and error solution 

either by assuming Tw and then calculate Tw by using the heat balance equation and check 

for the assumed value or assume a value for hav ,calculate Tw and then calculate hav and 

check for the assumed value of hav.Since it is difficult to guess a reasonable value for Tw to 

reduce the number of iterations, it is preferable to guess a reasonable value for hav for air as 

we know that for air hav varies anywhere between 5 and 15 W/(m
2
-K). 

 

Trial 1:- Assume hav = 10 W/(m
2
-K). 

 

Now qw = hav[Tw – T∞] or Tw = T∞ + qw / hav = 30 + 600 / 10 = 90
0
C. 

 

Hence mean film temperature = 0.5 x [90 + 30] = 60 
0
C. 

 

Properties of air at 60 
0
C are: β = 1 / (60 + 273 ) = 3.003 x 10 

− 3
 1/K; Pr = 0.696; 

 

k = 0.02896 W/(m-K); ν = 18.97 x 10 
− 6

 m
2
/s. 
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 9.81 x 3.003 x 10 
− 3

 x 600 x (0.25)
4
 

RaL
*
 = GrL*Pr =[(gβqwx

4
) /(kν

2
)]Pr = ---------------------------------------------- x 0.696 

 0.02896 x (18.97 x 10 
− 6

) 
2
 

Or RaL
*
 = 4.61 x 10 

9
.  

Since RaL 
*
 >10 

9
 flow is turbulent for the entire length of the plate 

Hence Nuav = 1.25 Nux|x=L = 1.25 x 0.17 x (4.61 x 10 
9
) 

0.2
 = 55.37 

Therefore hav = 55.37 x 0.02896 / 0.25 = 6.41 W/(m
2
 – K) 

 

Since the calculated value of hav deviates from the assumed value by about 34 %, 

one more iteration is required. 
 

Trial 2:- Assume hav = 6.41 W/(m
2
-K) 

 

Hence Tw = 30 + 600 / 6.41 = 123.6 
0
C 120 

0
 C 

 

Mean film temperature = 0.5 x (120 + 30) = 75 
0
 C 

 

Properties of air at 75 
0
C are:- β = 1/(75 + 273) = 2.873 x 10 

− 3
 1/K. Pr = 

0.686 k = 0.03338 W /(m-K); ν = 25.45 x 10 
− 6

 m 
2
 /s. 

9.81 x 2.873 x 10 
− 3

 x 600 x 0.25 
4
 

R aL*  =  ------------------------------------------- x 0.686 = 2.06 x 10 
9
 

 0.03338 x (25.45 x 10 
− 6

) 
2
 

Flow is turbulent for the entire length of the plate. 

Hence Nuav = 1.25 Nux|x=L = 1.25 x 0.17 x (2.06 x 10 
9
) 

0.25
 = 45.27 

Therefore hav = 45.27 x 0.03338 / 0.25 = 6.04 W/(m
2
 – K). 

 

Since the calculated value of hav is very close to the assumed value, the iteration 

is stopped. The surface temperature of the plate is therefore given by 
 

Tw = 30 + 600 / 6.04 = 129.3 
0
 C. 

 

7.3. Solution:- Case(i) When the plate is vertical 
 

Data:- Characteristic length = L = height of the plate = 0.3 m; Tw = 100 
0
C;T∞= 20 

0
C; Mean film temperature = 0.5 x (100 + 20) = 60 

0
C. 
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Properties of air at 60 
0
C are: β = 1 / (60 + 273 ) = 3.003 x 10 

− 3
 1/K; Pr = 0.696; 

k = 0.02896 W/(m-K); ν = 18.97 x 10 
− 6

 m
2
/s. 

 

RaL = GrLPr =( gβΔTL 
3
/ ν 

2
) Pr 

 

9.81 x 3.003 x 10 
− 3

 x (100 – 20) x (0.3) 
3
 

= ---------------------------------------------------- x 0.696 

(18.97 x 10 
− 6

 ) 
2
 

 

= 1.23 x 10 
8
 

 

From data hand book corresponding to this value of RaL have 

 

Nuav = 0.59 x (1.23 x 10 
8
) 

0.25
 = 62.13 

 

Therefore hav = 62.13 x 0.02896 / 0.3 = 5.99 W/(m
2
-K). 

 

Rate of heat transfer = Q = hav(2LW)(ΔT) = 5.99 x (2 x 0.3 x 0.3) x (100 – 20) 

 

= 86.256 W 
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UNIT-IV  

Condensation & Boiling 

 
 

Introduction: Knowledge of heat transfer occurring during change of phase i.e. during 

condensation and boiling is very useful in a number of ways. For example in all power and 

refrigeration cycles, it is necessary to convert a liquid into a vapour and vice-versa. This is 

accomplished in boilers or evaporators and condensers. 
Heat transfer coefficients in both condensation and boiling are generally 

much higher than those encountered in single phase processes. Values greater than 1000 

W/(m
2
-K) are almost always obtained. This fact has been used in several recent applications 

where it is desired to transfer high heat fluxes with modest temperature differences. An 
example is the “heat pipe” which is a device capable of transferring a large quantity of heat 
with very small temperature differences. 

8.2. Film-wise and Drop-wise condensation:- Condensation occurs whenever a vapour 

comes into contact with a surface at a temperature lower than the saturation temperature of 

the vapour corresponding to its vapour pressure. The nature of condensation depends on 

whether the liquid thus formed wets the solid surface or does not wet the surface. If the liquid 

wets the surface, the condensate flows on the surface in the form of a film and the process is 

called “film-wise condensation”. If on the other hand, the liquid does not wet the surface, the 

condensate collects in the form of droplets, which either grow in size or coalesce with 

neighboring droplets and eventually roll of the surface under the influence of gravity. This 

type of condensation is called “drop-wise condensation”. 

The rate of heat transfer during the two types of condensation processes 

is quite different. For the same temperature difference between the vapour and the surface, 

the heat transfer rates in drop-wise condensation are significantly higher than those in film-

wise condensation. Therefore it is preferable to have drop-wise condensation from the 

designer‟s point of view if the thermal resistance on the condensing side is a significant part 

of the total thermal resistance. However it is generally observed that, although drop-wise 

condensation may be obtained on new surfaces, it is difficult to maintain drop-wise 

condensation continuously and prolonged condensation results in a change to film-wise 

condensation. Therefore it is still the practice to design condensers under the conservative 

assumption that the condensation is of film type. 

 

8.3. Nusselt’s theory for laminar film-wise condensation on a plane vertical surface:-The 
problem of laminar film-wise condensation on a plane vertical surface was first analytically 

solved by Nusselt in 1916.He made the following simplifying assumptions in his analysis.   
(i) The fluid properties are constant. 

(ii) The plane surface is maintained at a uniform temperature, Tw which is less than the 

saturation temperature Tv of the vapour. 
 

(iii) The vapour is stationary or has a very low velocity and so it does not exert any drag on 
the motion of the condensate: i.e., the shear stress at the liquid-vapour interface is zero.  
(iv) The flow velocity of the condensate layer is so low that the acceleration of the 
condensate is negligible.  
(v) The downward flow of the condensate under the action of gravity is laminar.  
(vi) Heat transfer across the condensate layer is purely by conduction; hence the 
liquid temperature distribution is linear. 
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   ρLdxdyg     ρvdxdyg 
   

(a) Force balance on a condensate 

element 

  
(b) Force balance on a vapour element 

at the same distance x from top 
 

Fig. 8.1: Laminar film condensation on a vertical plate 

 

Consider the film-wise condensation on a vertical plate as illustrated in Fig.8.1. 

Here „x‟ is the coordinate measured downwards along the plate, and „y‟ is the coordinate 

measured normal to the plate from the plate surface. The condensate thickness at any x is 

represented by δ [ δ = δ(x)]. The velocity distribution u(y) at any location x can be 

determined by making a force balance on a condensate element of dimensions dx and dy in x 

and y directions as shown in Fig. 8.1(a). Since it is assumed that there is no acceleration of 

the liquid in x direction, Newton‟s second law in x direction gives 
 

ρLdxdyg + pdy + [η + (∂η/∂y)dy]dx −ηdx − (p + dp)dy = 0 

 

or (∂η/∂y) = (dp/dx) −ρLg …………………………………..(8.1) 

 

Expression for (dp/dx) in terms of vapour density ρv can be obtained by making a force 

 

 

balance for a vapour element as shown in Fig. 8.1(b). The force balance gives 

ρvdxdyg + pdy = (p + dp) dy 

 

or (dp/dx) = ρvg Substituting this expression for dp/dx in 

Eq. (8.1) we have 

 (∂η/∂y) = (ρv−ρL)g    
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Since the flow is assumed to be laminar, η = μL(∂u/∂y)    

Therefore ∂/∂y{μL (∂u/∂y)} = (ρv−ρL)g   

Integrating with respect to y we have μL (∂u/∂y) = (ρv−ρL)g y + C1  

  (ρv−ρL)g y C1  
Or  (∂u/∂y) = --------------- + ------- ……(8.2) 

  μL μL  

Integrating once again with respect to y we get    

  (ρv−ρL)g y
2

 C1 y   

 u(y) = ---------------- + ------------- + C2 ...... (8.3) 

  2 μL μL   

The boundary conditions for the condensate layer are: (i) at y = 0, u = 0;  

(ii) at y = δ, (∂u/∂y) = 0.      

Condition (i) in Eq. (8.3) gives C2 = 0  and condition (ii) in Eq. (8.2) gives  

 (ρv−ρL)g δ C1   

 0 = ------------- + ---------   

  2 μL μL   

  (ρv−ρL)g δ    

Therefore C1 = − --------------   
  2    

 

Substituting for C1 and C2 in Eq.(8.3) we get the velocity distribution in the 

condensate layer as 
 
 

g(ρL − ρv) 

u(y) = --------------- [ δy – (y
2
/2)] …………………(8.4) 

μL 

 

If „m‟ is the mass flow rate of the condensate at any x then 
 

δ  

m = 0∫ρLudy 

 

 
δ 

m = 0∫ ρL{ g(ρL − ρv) / μL}[ δy – (y
2
/2)]dy 
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  g ρL (ρL − ρv) δ 
3
 

 = ------------------ ………………………………..(8.5) 

  3 μL 

  g ρL (ρL − ρv) δ 
2
  dδ 

Hence dm = ---------------------- 

μL 
 

Amount of heat transfer across the condensate element = dq = dm hfg 

 

 

g ρL (ρL − ρv) δ 
2
 dδ hfg  

Or dq = ------------------------- ………………………….(8.6) 

μL 

 

Energy balance for the condensate element shown in the figure can be written as 
 

 

 dq = kL(Tv – Tw)dx / δ 

 g ρL (ρL − ρv) δ 
2
 dδ hfg 

Or ------------------------- = kL(Tv – Tw)dx / δ………….(8.6) 

 μL 

 kL μL (Tv – Tw)dx 

or δ 
3
dδ = ---------------------- 

 g ρL (ρL − ρv) hfg 

Integrating we get  
 

δ 
4
 kL μL (Tv – Tw)x 

----- = ---------------------  + C 3 

4 g ρL (ρL − ρv) hfg 
 

At x = 0, δ = 0. Hence C3 = 0.  

Therefore  δ 
4
 kL μL (Tv – Tw)x 

  ----- = --------------------- 

  4 g ρL (ρL − ρv) hfg 

   4 kL μL (Tv – Tw)x 

or  δ = [-------------------------- ] 
1/ 4

……………………(8.7) 

   g ρL (ρL − ρv) hfg 
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Now kL (Tv – Tw)dx  

 ----------------- = hx dx [Tv – Tw] 

  δ  

 kL g ρL (ρL − ρv) hfg kL
3

 

Therefore hx = --------- = [ -------------------------- ] 1 / 4 

 δ 4  μL (Tv – Tw)x 

 
 
 

 g ρL (ρL − ρv) hfg kL
3
  

Or hx  = 0.707[ --------------------------] 
1 / 4

 ............................... (8.8) 

 μL (Tv – Tw)x  

The local Nusselt number Nux can therefore be written as  

hxx g ρL (ρL − ρv) hfg x
3

  

Nux = ----- = 0.707[ --------------------------] 
1 / 4

 ............................... (8.8) 

kL μL (Tv – Tw)kL  

The average heat transfer coefficient for a length L of the plate is given by 

 L  
hav = (1/L) ∫ hxdx ………………………………………(8.9) 

0  

It can be seen from Eq. (8.8) that hx = C x 
− ¼

 , where C is  a constant given by 

 

 

g ρL (ρL − ρv) hfg kL
3
 

Or C = 0.707[ --------------------------] 
1 / 4

 …………………(8.10) 

  μL (Tv – Tw) 

 
 
 

Hence hav = (1/L) C ∫ x 
− ¼

 dx = (C / L) (4/3) L
−
 
¼

 = (4/3)C L
−
 
¼

 
 0 

Substituting for C from Eq. (8.10) we have 

 g ρL (ρL − ρv) hfg kL
3
 

hav = 0.943[ --------------------------] 
1 / 4

  = (4/3)hx|x = L.........................(8.11) 

μL (Tv – Tw)L 
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8.4. Condensation on Inclined Surfaces : Nusselt,s analysis given above can readily be 

extended to inclined plane surfaces making an angle θ with the horizontal plane as shown 

in Fig. 8.2. 
 

y  
 
 
 
 

 

θ 

 
 
 
 

 

Fig. 8.2 : Condensation on an  
inclined plane surface 

 

g 
 

 
The component of the gravitational force along the length of the pate is g sin θ.The 
expressions for local and average heat transfer coefficients can therefore be written 
as 

 

 

g sin θρL (ρL − ρv) hfg kL
3
 

hx  = 0.707[ ------------------------------------] 
1 / 4

 

μL (Tv – Tw)x 

…………….......(8.12) 
 
 

 

g sin θρL (ρL − ρv) hfg kL
3
 

and hav = 0.943[ ----------------------------------] 
1 / 4

  = (4/3)hx|x = L 

μL (Tv – Tw)L 
 

 

…………………………(8.13) 
 

 

8.5. Condensation on a horizontal tube: The analysis of heat transfer for condensation on 

the outside surface of a horizontal tube is more complicated than that for a vertical surface. 
Nusselt,s analysis for laminar film-wise condensation on the surface of a horizontal tube 
gives the average heat transfer coefficient as 

 

 gρL (ρL − ρv) hfg kL
3
 

hav = 0.725 [ --------------------------------- ] 
1 / 4

 ……………(8.14) 

 μL (Tv – Tw) D 

where D is the outside diameter of the tube. A comparison of equations (8.11) and (8.14) 
for condensation on a vertical tube of length L and a horizontal tube of diameter D gives 

 

[hav]vertical 0.943  

--------------- = ------------(D/L) 
¼

 = 1.3 (D/L) 
1/4

  ..................................... (8.15) 

[hav]horizontal 0.725  
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This result implies that for a given value of (Tv – Tw), the average heat transfer coefficient for a 

vertical tube of length L and a horizontal tube of diameter D becomes  

equal when L = 2.856 D.For example when L = 100 D, theoretically [hav]horizontal would be 

2.44 times [hav]vertical. Therefore horizontal tube arrangements are generally preferred to 
vertical tube arrangements in condenser design. 

 

8.6. Condensation on horizontal tube banks: Condenser design generally involves 
horizontal tubes arranged in vertical tiers as shown in Fig. 8.3 in such a way that the  

 
 
 
 
 
 
 
 
 
 

 

Fig. 8.3 : Film-wise condensation on  
horizontal tubes arranged in a vertical  
tier. 

 
 
 
 
 
 
 
 
 

condensate from one tube drains on to tube just below. If it is assumed that the drainage from one 

tube flows smoothly on to the tube below, then for a vertical tier of N tubes each of diameter D, 

the average heat transfer coefficient for N tubes is given by 
 

gρL(ρL – ρv)hfg kL
3
 

] 
¼

  = 
1 

 

[hav]N tubes = 0.725 [ ----------------------- ------------ [hav] 1 tube ……………(8.16) 
 

μL(Tv – Tw) N D  N 1/ 4 
  

This relation generally gives a conservative value for the heat transfer coefficient. Since some 

turbulence and some disturbance of condensate are unavoidable during drainage, the heat transfer 

coefficient would be more than that given by the above equation. 
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8.7. Reynolds number for condensate flow: Although the flow hardly changes to turbulent 

flow during condensation on a single horizontal tube, turbulence may start at the lower 

portions of a vertical tube. When the turbulence occurs in the condensate film, the average 

heat transfer coefficient begins to increase with the length of the tube in contrast to its 

decrease with the length for laminar film condensation. To establish a criterion for transition 

from laminar to turbulent flow, a “Reynolds number for condensate flow” is defined as 

follows.  
ρL uav Dh 

Re = ----------------- …………………..(8.17) 

μL 
 

where uav is the average velocity of the condensate film and Dh is the hydraulic 

diameter for the condensate flow given by 

4 x (Cross sectional area for condensate flow) 4A 

Dh = --------------------------------------------- --------- = ------- 

 Wetted Perimeter  P 

  4A ρL uav 4M 

Therefore Re = -------------------- = --------------- ……………..(8.18) 

  P μL P μL 

 

where M is mass flow rate of condensate at the lowest part of the condensing surface 

in kg/s. The wetted perimeter depends on the geometry of the condensing surface and 
is given as follows. 

πD …..For vertical tube of outside diameter D ………….(8.19 a)  
P = 2L …...For horizontal tube of length L …………………(8.19 b) 

W ….. For vertical or inclined plate of width W………...(8.19 c) 

 

Experiments have shown that the transition from laminar to turbulent condensation 

takes place at a Reynolds number of 1800. The expression for average heat transfer 
coefficient for a vertical surface [Eq.(8.11)] can be expressed as follows.  
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 g ρL(ρL – ρv) kL
3
 hfg 

hav = 0.943 [ ----------------------------- ] 
1 / 4

 

 μL(Tv – Tw) 

Generally ρL >> ρv. Therefore  

 g ρL
2
 kL

3
 hfg 

hav = 0.943 [ ----------------------------- ] 
1 / 4

 ………………..(8.20) 

μL(Tv – Tw) 

 

The above equation can be arranged in the form 
 

 

hav [νL
2
 / (gkL

3
) ] 

1 / 3
 = 1.47 Re L

− 1/ 3
 ………………………(8.21) 

 

 

 

 

The above equation is valid for ReL < 1800. 
 

It has been observed experimentally that when the value of the film Reynolds number is 
greater than 30, there are ripples on the film surface which increase the value of the 
heat transfer coefficient. Kutateladze has proposed that the value of the local heat 

transfer coefficient be multiplied by 0.8(RE / 4)
0.11

 to account for the ripples effect. 

Using this correction it can be shown that 
 
 

 (hav / kL)( νL
2
 / g) 

1 / 3
 = 

ReL 
 

------------------------ ………………(8.22) 
 

 [1.08 ReL
1.22

 – 5.2] 
 

 

8.8. Turbulent film condensation: For turbulent condensation on a vertical surface, 

Kirkbride has proposed the following empirical correlation based on experimental data. 
 

hav [νL
2
 / (gkL

3
) ] 

1 / 3
 = 0.0077 (ReL) 

0.4
 ……………………(8.23) 

 

In the above correlation the physical properties of the condensate should be evaluated at 

the arithmetic mean temperature of Tv and Tw. 

 

8.9. Film condensation inside horizontal tubes: In all the correlations mentioned above, it 

is assumed that the vapour is either stationary or has a negligible velocity. In practical 

applications such as condensers in refrigeration and air conditioning systems, vapour 

condenses on the inside surface of the tubes and so has a significant velocity. In such 

situations the condensation phenomenon is very complicated and a simple analytical 

treatment is not possible. Consider, for example, the film condensation on the inside surface 

of a long vertical tube.  
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The upward flow of vapour retards the condensate flow and causes thickening of the 

condensate layer, which in turn decreases the condensation heat transfer coefficient. 

Conversely the down ward flow of vapour decreases the thickness of the condensate film and 

hence increases the heat transfer coefficient. 

 

Chato recommends the following correlation for condensation at 
low vapour velocities inside horizontal tubes: 

 

g ρL(ρL – ρv) kL
3
 h*fg 

 hav = 0.555 [ --------------------------- ] 
1 / 4

 ……………..(8.24 –a) 

  μL(Tv – Tw)  D 

where h*fg = hfg + (3/8)cp,L(Tv – Tw) ………………………….(8.24 –b) 

 

This result has been developed for the condensation of refrigerants at low Reynolds number [Rev 

= (ρvuvD) / μv < 35,000 ; Rev should be evaluated at the inlet conditions.] 

 

For higher flow rates, Akers, Deans and Crosser propose the following 
correlation for the average condensation heat transfer coefficient on the inside surface of a 

horizontal tube of diameter D: 
 

hav D 

------ = 0.026 Pr 
1 / 3

 [ReL + Rev(ρL / ρv) 
½

 ] 
0.8

 ………..(8.25) 

k 
 

where ReL = (4ML) / (πDμL) : Rev = (4Mv) / (πDμv) …………………….(8.26) 

 

The above equation correlates the experimental data within 50 % for ReL > 5000 

and Rev > 20,000. 

 

8.10. Illustrative examples on film wise condensation: 

 

Example 8.1: Saturated steam at 1.43 bar condenses on a 1.9 cm OD vertical tube which is 

20 cm long. The tube wall is at a uniform temperature of 109 
0
C . Calculate the average heat 

transfer coefficient and the thickness of the condensate film at the bottom of the tube. 
 

Solution: Data:- Tv = Saturation temperature at 1.43 bar = 110 
0
 C (from steam tables) 

 

Tw = 109 
0
C ; Characteristic length = L = 0.2 m ; D = 0.019 m ; 

 

To find : (i) hav ; (ii) δ(x)|x=L; 

 

Mean film temperature of the condensate (water) = 0.5 x (110 + 109) = 109.5 
0
C. 

Properties of water at 109.5 
0
C are: ρL = 951.0 kg/m

3
; μL = 258.9 x 10 

− 6
 N-s / m

2
; k 

= 0.685 W/(m-K); ν = 0.2714 x 10 
− 6

 m
2
/s; hfg = 2230 kJ/kg. Also ρL >>> ρv. 
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Let us assume that the condensate flow is laminar and later check for this assumption.  
 

 

g ρL
2
 kL

3
 hfg 

] 
1
 / 4 

 

hav = 0.943 [ ----------------------------- 
 

μL(Tv – Tw) L   
 

9.81 x (951)
2
x (0.685)

3
 x 2230 x 10

3
  

 

Hence hav = 0.943 x [--------------------------------------------  ] 1/ 4 
 

258.9 x 10 
− 6

 x (110 – 109) x 0.2   
 

 

= 17,653 W / (m
2
-K) 

 

(ii) hav = (4 / 3)hx|x=L or hx|x=L = ¾ x hav = 0.75 x 17,653 = 13,240 W/(m
2
-K). 

 

Therefore δ(x)|x=L = kL / hx|x=L = 0.685 / 13240 = 5.174 x 10 − 5 m = 0.0517 mm. 
 

Check for Laminar flow assumption:- The relation between hav and Reynolds number 

at the bottom of the tube is given by 
 

hav [νL
2
 / (gkL

3
) ] 

1 / 3
 = 1.47 Re L

− 1/ 3
 or ReL = (1.47 / hav)

3
(gkL

3
 / νL

2
) 

 

 

Hence ReL = (1.47 / 17,653) 
3
 [9.81 x 0.685 

3
 / {0.2714 x 10 

− 6
}

2
] 

 

= 24.72 
 

Since ReL < 1800, our assumption that condensate flow is laminar is correct. 

 

Example 8.2:- Saturated steam at 80 
0
C condenses as a film on a vertical plate 1 m high. 

The plate is maintained at a uniform temperature of 70 
0
C. Calculate the average heat 

transfer coefficient and the rate of condensation. What would be the corresponding values if 
the effect of ripples is taken into consideration. 

 

Solution:Data:- Tv = 80 
0
C; Tw = 70 

0
C; Mean film temperature =0.5 x (80 + 70) = 75 

0
C. 

 

Properties of condensate (liquid water) at 75 
0
C are: ρL = 974.8 kg/m

3
; 

 

kL = 0.672 W /(m-K) ; μL = 381 x 10 
− 6

 N-s/m
2
; hfg at 80 

0
C = 2309 kJ/kg-K; 

 

νL = 0.391 x 10 
− 6

 m
2
/s.Charecteristic length = L = 1.0 m. 

 

Assuming laminar film condensation the average heat transfer coefficient is given by 
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  g ρL
2
 kL

3
 hfg 

 hav = 0.943 [ ----------------------------- ] 1 / 4 

  μL(Tv – Tw) 

 9.81 x (974.8)
2
 x (0.672)

3
 x 2309 x 10

3
 

= 0.943 x [ ------------------------------------------------ ] 
1/ 4

 = 6066.6 W /(m
2
 – K). 

  381.6 x 10 
− 6

 x (80 – 70 ) x 1.0 

 hav L (Tv – Tw) 6066.6 x 1.0 x (80 – 70) 
Condensate rate = M = --------------------- = ------------------------------- 0.0263 kg/s. 

  hfg 2309 x 10 
3
 

   4M 

Check for laminar flow assumption :- ReL = -------------- , where P = width of the plate for 

   μL P 

   4 x 0.0263 

vertical flat plate. Hence ReL = ------------------------- = 276 

   381 x 10 
− 6

 

Since ReL < 1800, the condensate flow is laminar. 

Since ReL > 30, it is clear that the effects of ripples have to be considered. 

 4M 4 hav L (Tv – Tw)  

Now ReL = ------------ = -----------------------  

 μL P μL P hfg  

 ReL μL P hfg  

Hence  hav = ------------------ …………………………………………….(1) 

 4L(Tv – Tw)  
 

When the effects of ripples are considered the relation between ReL and hav is given by  
Eq.(8.22) as follows: 

1.08 ReL
1.22

 
 ReL  

 

– 5.2 = -----------------------   Substituting for hav from Eq.(1) we have 
 

  (hav/kL)(νL
2
 /g)

1 /3
  

 

1.08 ReL
1.22

 – 5.2 = 

4L (Tv – Tw) kL (g / νL
2
) 

1/3
  

 

--------------------------------  
 

  μL P hfg 
− 6)2}1/3 

 

1.08 ReL
1.22

 

 4 x 1 x (80 – 70) x 0.672 x {9.81 /( 0.391 x 10 
 

– 5.2 = ----------------------------------------------------------------------381.6x10−6x1.0x2309x103 
 

    
 

 



                                                                                                                                                140 

 

1.08 ReL
1.22

 – 5.2 = 1221.3. Or ReL = 319.4 

 

  319.4 x 381.6 x 10 
− 6

 x 1.0 x 2309 x 10 
3
 

 

Hence from Eq.(1) we have hav = 
----------------------------------------------------4x1.0x(80–70)  

  
 

 = 7036 W /(m
2
 – K). 

 

hav L (Tv – Tw)  7036 x 1.0 x (80 – 70) 
 

Hence M = --------------------- 
= --------------------- ------- = 0.03047 kg / s. 

 

hfg  2309 x 10 
3
 

 

 

[It can be seen that the ripples on the surface increase the heat transfer coefficient by about 
15 %]. 

 

Example 8.3:- Air free saturated steam at 65 0C condenses on the surface of a vertical tube of 

OD 2.5 cm. The tube surface is maintained at a uniform temperature of 35 0C. Calculate the 

length of the tube required to have a condensate flow rate of 6 x 10 −3kg/s. 
 

Solution: Data:- Tv = 65 
0
C; Tw = 35 

0
C; D0 = 0.025 m; M = 6 x 10 

− 3
 kg/s. 

 

To find length of the tube, L. 
 

Mean film temperature = 0.5 x (65 + 35) = 50 
0
C.Properties of condensate 

 

(liquid water) at 50 
0
C are: kL = 0.640 W/(m-K); μL = 0.562 x 10 

− 3
 N-s/m

2
; ρL = 990 

 

kg/m
3
; At 65 

0
C, hfg = 2346 x 10 

3
 J/(kg-K). 

4M  4 x 6 x 10 
− 3

 

Reynolds number = Re = --------------- = -------------------------------  = 544 

μL πDo 0.562 x 10 
− 3

 x π x 0.025 

 

Since Re < 1800 flow is laminar. It is more convenient to use Eq.(8.21) 
 

hav [νL
2
 / (gkL

3
) ] 

1 / 3
 = 1.47 Re L

− 1/ 3
 

 

or (gkL
3
) 1.47 x (544)

− 1/3
 x [9.81 x 0.64

3
] 

1/3
 

 hav = 1.47 Re L
− 1/ 3

 [ ---------- ] 
1/3

 = ----------------------------------------------  

 νL
2

 (0.562 x 10 
− 3

/ 990)
2
 

 

= 3599 W/(m
2
 – K) 
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Heat balance equation gives M hfg = hav πDoL [Tv – Tw] 
 

  M hfg 6 x 10 
− 3

 x 2346 x 10 
3
 

Therefore L = ---------------------- = ------------------------------------ 

  hav πDo [Tv – Tw] 3599 x π x 0.025 x (65 – 35) 

 = 1.66 m  
 

Example 8.4:- Air free saturated steam at 85 
0
C condenses on the outer surfaces of 225 

horizontal tubes of 1.27 cm OD, arranged in a 15 x 15 array. Tube surfaces are maintained 

at a uniform temperature of 75 
0
C. Calculate the total condensate rate per one metre length 

of the tube. 
 

Solution: Data:- Tv = 85 
0
C; Tw = 75 

0
C; Do = 0.0127 m; L = 1 m; 

 

Number of tubes in vertical tier = N = 15 ; Total number of tubes = n = 225; 
 

Mean film temperature = 0.5 x (85 + 75) = 80 
0
C. Properties of the condensate (liquid 

 

water) are: kL = 0.668 W/(m-K); μL = 0.355 x 10 
− 3

 N-s/m
2
; ρL= 974 kg/m

3
; 

 

At 85 
0
C, hfg = 2296 x 10 

3
 J/(kg-K). 

 

For N horizontal tubes arranged in a vertical tier, hav is given by 

 

g ρL
2
 hfg kL

3
 

hav = 0.725 [ --------------------- ] 1 / 4 
 

μL(Tv – Tw)NDo 
 

0.725 x [9.81 x (974)
2
 x (0.668)

3
] 

1/4
 

= 7142 W/(m
2
 – K) 

 

hav = ------------------------------------------------------ 
 

[0.355 x 10 
− 3

 x (85 – 75) x 15 x 0.0127] 
¼

  
  

Q = hav Atotal (Tv – Tw) = hav n π DoL (Tv – Tw) 

 

= 7142 x 225 x π x 0.0127 x 1 x (85 – 75) = 641.14 x 10 
3
 W 

 

Mass flow rate of condensate = M = Q / hfg = 641.14 x 10 
3
 / 2296 x 10 

3
 = 0.28 kg/ (s-m) 

 

Example 8.5:- Superheated steam at 1.43 bar and 200 0C condenses on a 1.9 cm OD vertical 

tube which is 20 cm long. The tube wall is maintained at a uniform temperature of 109 0C. 
Calculate the average heat transfer coefficient and the thickness of the condensate at the bottom 

of the tube. Assume cp for super heated steam as 2.01 kJ/(kg-K). 
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Solution: With a superheated vapour, condensation occurs only when the surface 

temperature is less than the saturation temperature corresponding to the vapour pressure. 

Therefore for a superheated vapour, the amount of heat to be removed per unit mass to 
condense it is given by 

 

Q / M = hfg + cpv(Tv – Tsat) 
 

Where cp is the specific heat of superheated steam and Tsat is the saturation temperature 

corresponding to the vapour pressure. If it is assumed that the liquid – vapour interphase is at the 

saturation temperature, then Eq.(8.20 ) still holds good with hfg replaced by 

hfg + cpv(Tv – Tsat). 
 

Hence g ρL
2
 kL

3
 { hfg + cpv(Tv – Tsat)} 

hav = 0.943 [ --------------------------------------- ] 
1/ 4

 

 μL(Tsat – Tw)L 
 

At 1.43 bar, Tsat = 110 
0
C.Mean film temperature = 0.5 x (110 + 109) = 109.5 

0
C. 

Properties of the condensate at 109.5 
0
C are: kL = 0.685W/(m-K); μL = 0.259 x 10 

− 3
 N- 

 

s/m
2
; ρL= 951 kg/m

3
;At 1.43 bar, hfg = 2230 x 10 

3
 J/(kg-K). 

9.81 x (951)
2
 x (0.685)

3
x {2230 x 10

3
 + 2010 x (200 – 110)} 

hav = 0.943 x [ -------------------------------------------------------------------------- ] 1/ 4 

0.259 x 10 
− 3

 x (110 – 109) x 0.2 

 

= 18,000 W /(m
2
 – K). 

 

Hence hx|x=L = (¾) x 18000 = 13,500 W / (m
2
 – K). 

 

δ(x)|x=L = kL / hx|x=L = 0.685 / 13,500 = 5.07 x 10 
− 5

m 

 

Example 8.6:- Air free saturated steam at 70 
0
C condenses on the outer surface of a 2.5 cm 

OD vertical tube whose outer surface is maintained at a uniform temperature of  

50 
0
C. What length of the tube would produce turbulent film condensation? 

 

Solution: Data:- Tv = 70 
0
C; Tw = 50 

0
C; Do = 0.025 m; Vertical tube. 

 

To find L such that Re = 1800. 
 

Mean film temperature = 0.5 x (70 + 50) = 60 
0
C. Properties of the condensate (liquid 

water) are : kL = 0.659W/(m-K); μL = 0.4698 x 10 
− 3

 N-s/m
2
; ρL= 983.2 kg/m

3
; 
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At  70 
0
C hfg = 2358 x 10 

3
 J/(kg-K).  

 Re (μLπDo) 1800 x 0.4698 x 10 
− 3

 x π x 0.025 

Re = 4M / (μLπDo) or M = ------------------- = --------------------------------------------- 

 4 4 

= 0.0166 kg / s.  

For turbulent flow hav [νL
2
 / (gkL

3
) ] 

1 / 3
 = 0.0077 (ReL) 

0.4
 

Or hav = 0.0077 (ReL) 
0.4

[νL
2
 / (gkL

3
) ] 

− 1 / 3
 

 

Hence hav = 0.0077 x (1800)
0.4

 x [ (0.4698 x 10 
− 3

/983.2)
2
 / (9.81 x 0.659

3
) ] 

− 

1 / 3
 = 3563.4 W / (m

2
 – K). 

 

Heat balance equation is M hfg = hav π DoL (Tv – Tw) 
 

M hfg 0.0166 x 2358 x 10 
3
  

Hence L = ----------------------- = ------------------------------------- 

hav π Do (Tv – Tw) 3563.4 x π x 0.025 x (70 – 50) 

 

= 7 m 

 

Example 8.7:- Saturated steam at 100 
0
C condenses on the outer surface of a 2 m long 

vertical plate. What is the temperature of the plate below which the condensing film at the 
bottom of the plate will become turbulent? 

 

Solution: Data:- Tv = 100 
0
C; L = 2 m. Since Tw is not known, properties of the condensate 

at the mean film temperature cannot be determined and therefore the problem has to be 

solved by trial and error procedure as follows: 
 

Trial 1:- The properties of the condensate are read at Tv = 100 
0
C. The properties 

are kL = 0.683 W/(m-K); μL = 0.2824 x 10 
− 3

 N-s/m
2
; ρL= 958.4 kg/m

3
; At 100 

0
C, 

hfg = 2257 x 10 
3
 J/kg-K. 

Since the flow has to become turbulent at the bottom of the plate we have 
 

hav = 0.0077 (ReL) 
0.4

[νL
2
 / (gkL

3
) ] 

− 1 / 3
 with ReL = 1800 
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 9.81 x 0.683 
3
  

Hence hav = 0.0077 x (1800)
0.4

 x [ ------------------------------ ] 1 / 3 

 (0.2824 x 10 
− 3

 / 958.4) 
2
  

 

= 5098 W / (m
2
 – K) 

 

Now M hfg = hav L W (Tv – Tw) 
 

Or Tw = Tv – (M/W)hfg / (hav L). But ReL = 4M / (μLW) or M/W = ReL μL / 4. 

 ReL μL hfg 1800 x 0.2824 x 10 
− 3

 x 2257  x 10 
3

 

Therefore  Tw = Tv − -------------------- = 100 − ----------------------------------------------  

 4 hav L 4 x 5098 x 2 

 = 72 
0
C  

 

Trial 2:- Assume Tw = 72 
0
C. Mean film temperature = 0.5 x (100 + 72) = 86 

0
C. Properties 

of the condensate at 86 
0
C ; kL = 0.677 W/(m-K); μL = 0.3349 x 10 

− 3
 N-s/m

2
; 

 

ρL= 968.5kg/m
3
; At 100 

0
C, hfg = 2257 x 10 

3
 J/(kg-K).  

 

 9.81 x 0.677 
3
  

 

Hence hav = 0.0077 x (1800)
0.4

 x [ ------------------------------ ] 1 / 3 
 

 (0.3349 x 10 
− 3

 / 968.5) 
2
 

 

 = 4541 W /(m
2
 – K).  

 

 1800 x 0.3349 x 10 
− 3

 x 2257  x 10 
3
 

= 60 
0
C 

 

Therefore Tw = 100 − -----------------------------------------------  
 

 4 x 4541 x 2  
 

 

Since the calculated value of Tw is quite different from the assumed value, one more iteration 

is required. 
 

Trial 3:- Assuming Tw = 60 
0
C and proceeding on the same lines as shown in trial 2 we 

 

get hav = 4365 W /(m
2
 – K) and hence Tw = 59

0
C. This value is very close to the value 

assumed (difference is within 2 % ). The iteration is stopped. Hence Tw = 59 
0
C. 

 

Example 8.8:- Air free saturated steam at 90 
0
C condenses on the outer surface of a 2.5 cm 

OD, 6 m long vertical tube, whose outer surface is maintained at a uniform temperature of 

60 
0
C. Calculate the total rate of condensation of steam at the tube surface. 
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Solution: Data:- Tv = 90 
0
C; Tw = 30 

0
C; Do = 0.025 m; L = 6 m. Vertical tube. 

 

Mean film temperature = 0.5 x (90 + 60) = 75 
0
C. Properties of the condensate at 75 

0
C 

are: kL = 0.671 W/(m-K); μL = 0.3805 x 10 
− 3

 N-s/m
2
; ρL= 974.8 kg/m

3
; At 90 

0
C, hfg 

= 2283 x 10 
3
 J/(kg-K). 

 
We do not know whether the condensate flow is laminar or turbulent. We start the 
calculations assuming laminar flow and then check for laminar flow condition. For laminar 
flow 

  g ρL
2
 kL

3
 hfg 

] 1 / 4 
 

  hav = 0.943 [ ----------------------------- 
 

  μL(Tv – Tw) L  
 

  9.81 x (974.8)
2
 x (0.671)

3
 x 2283 x 10 

3
 

 

Hence hav = 0.943 x [-------------------------------------------------- ] 1 / 4 
 

  0.3805 x 10 
− 3

 x (90 – 60) x 6  
 

 = 2935.3 W /(m
2
 – K).  

 

For laminar flow hav [νL
2
 / (gkL

3
) ] 

1 / 3
 = 1.47 Re L

− 1/ 3
 

 

Or ReL = (1.47 / hav)
3
(gkL

3
 / νL

2
)  

 

 

= (1.47 / 2935.3)
3
 x [9.81 x 0.671

3
 x 974.8

2
 / (0.3805 x 10 

− 3
)
2
] 

 
= 2443 

 

Since ReL > 1800, flow is turbulent. 
 

For turbulent flow hav [νL
2
 / (gkL

3
) ] 

1 / 3
 = 0.0077 (ReL) 

0.4
 

Or hav = 0.0077 (ReL) 
0.4

 / [νL
2
 / (gkL

3
) ] 

1 / 3
……….(1) 

ReL = 4M / (μLπDo). But Mhfg = havπDoL (Tv – Tw) or M / (πDo) = havL (Tv – Tw) / hfg 

 4 havL (Tv – Tw) 

Therefore ReL = ---------------------- 

 hfg μL 
 

Substituting  this expression for ReL in equation (1) we have 
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4 havL (Tv – Tw) 

] 0.4 [νL
2
 / (gkL

3
) ] 

− 1 / 3
 

 
 

hav = 0.0077 [-------------------------  
 

hfg μL    
 

4 L (Tv – Tw)    
 

(hav )
0.6

 = 0.0077 [------------------------- ] 
0.4

  [νL
2
 / (gkL

3
) ] 

− 1 / 3
 

 

hfg μL    
 

4 x 6 x (90 – 60)  (0.3805 x 10 
− 3

)
2
 

 

= 0.0077 x [--------------------------------------- ] 
0.4

 x [ --------------------------------- ] − 1 / 3 
 

2283 x 10 
3
 x 0.3805 x 10 

− 3
 974.8

2
 x 9.81 x (0.671)

3
 

 

= 192. Hence hav = [192] 
1 / 0.6

 = 6390 W /(m
2
 – K).  

 

havπDoL (Tv – Tw) 6390 x π x 0.025 x 6 x(90 – 60) 
 

Therefore M = ----------------------- 
= - - - - - -- - - - - - -- - - - - - -- - - - - -- - - - - - -- - - - - -- - - 

2283 x 10 
3
 

= 0.0396 kg/s 
 

hfg   
 

 

8.11. Dropwise Condensation: Experimental investigations on condensation have indicated 

that, if traces of oil are present in steam and the condensing surface is highly polished, the 

condensate film breaks into droplets. This type of condensation is called “drop wise 

condensation”. The droplets grow, coalesce and run off the surface, leaving agreater portion 

of the condensing surface exposed to the incoming steam. Since the entire condensing 

surface is not covered with a continuous layer of liquid film, the heat transfer rate for ideal 

drop wise condensation is much higher than that for film wise condensation.  
The heat transfer coefficient may be 2 to 3 times greater for drop wise condensation than for 

film wise condensation. Hence considerable research has been done with the objective of 

producing long lasting drop wise condensation. Various types of chemicals have been tried to 

promote drop wise condensation. Continuous drop wise condensation, obtainable with 

different promoters varies between 100 to 300 hours with pure steam and are shorter with 

industrial steam. Failure occurs because of fouling or oxidation of the surface, or by the flow 

of the condensate or by a combination of these effects.  
It is unlikely that long lasting drop wise condensation can be produced under 

practical conditions by a single treatment of any of the promoters currently available. Therefore 

in the analysis of a heat exchanger involving condensation of steam, it is recommended that film 

wise condensation be assumed for the condensing surface. 

 

8.12. Boiling Types: When evaporation occurs at a solid-liquid interface, it is called as 

“boiling”. The boiling process occurs when the temperature of the surface Tw exceeds the 

saturation temperature Tsat corresponding to the liquid pressure. Heat is transferred from the 
solid surface to the liquid, and the appropriate form of Newton‟s law of cooling is 

 

qw = h [Tw – Tsat] = h ∆Te …………………………(8.27) 
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Where ∆Te = [Tw - Tsat] and is termed as the “excess temperature”. The boiling process is 

characterized by the formation of vapour bubbles which grow and subsequently detach from 
the surface. Vapour bubble growth and dynamics depend, in a complicated manner, on the 

excess temperature ∆Te, the nature of the surface, and the thermo-physical properties of the 

fluid, such as its surface tension. In turn the dynamics of vapour bubble growth affect fluid 
motion near the surface and therefore strongly influence the heat transfer coefficient.  

Boiling may occur under varying conditions. For example if the liquid is 

quiescent and if its motion near the surface is due to free convection and due to mixing 

induced by bubble growth and detachment, then such a boiling process is called “pool 

boiling”. In contrast in “forced convection boiling”, the fluid motion is induced by an 

external means as well as by free convection and bubble induced mixing. Boiling may also 

be classified as “sub-cooled boiling” and “saturated boiling”. In sub-cooled boiling, the 

temperature of the liquid is below the saturation temperature and the bubbles formed at the 

surface may condense in the liquid. In contrast, in saturated boiling, the temperature of the 

liquid slightly exceeds the saturation temeperature, Bubbles formed at the surface are then 

propelled through the liquid by buoyancy forces, eventually escaping from a free surface. 

 

8.13. Pool Boiling Regimes: The first investigator who established experimentally the different 
regimes of pool boiling was Nukiyama. He immersed an electric resistance wire into a body of 
saturated water and initiated boiling on the surface of the wire by passing electric current through 
it. He determined the heat flux as well as the temperature from the measurements of current and 
voltage. Since the work of Nukiyama, a number of investigations on pool boiling have been 
reported. Fig. 8.4 illustrates the characteristics of pool boiling for water at atmospheric pressure. 
This boiling curve illustrates the variation of heat flux or the heat transfer coefficient as a 

function of excess temperature ∆Te. This curve pertains to water at 1 atm pressure.From Eq. 

(8.27) it can seen that qw depends on the heat transfer coefficient h and the excess temperature 

∆Te. 
 

Free Convection Regime(up to point A):- Free convection is said to exist if ∆Te ≤ 5 
0
 C. In 

this regime there is insufficient vapour in contact with the liquid phase to cause boiling at the 

saturation temperature. As the excess temperature is increased, the bubble inception will 

eventually occur, but below point A (referred to as onset of nucleate boiling,ONB), fluid 
motion is primarily due to free convection effects.Therefore,according to whether  

the flow is laminar or turbulent, the heat transfer coefficient h varies as ∆Te
1/4

 or as ∆Te
1/3

 

respectively so that qw varies as ∆Te
5/4

 or as ∆Te
4/3

. 
 

Nucleate Boiling Regime(Between points A and C):- Nucleate boiling exists in the range 5 
0
 C ≤ 

∆Te ≤ 30 
0
 C. In this range, two different flow regimes may be distinguished. In the region A – 

B, isolated bubbles form at nucleation sites and separate from the surface, substantially 

increasing h and qw. In this regime most of the heat exchange is through direct transfer from the 
surface to liquid in motion at the surface, and not through vapour bubbles rising from the 

surface. As ∆Te is increased beyond 10 
0
C (Region B-C), the nucleation sites will be 

numerous and the bubble generation rate is so high that continuous columns of vapour 
appear. As a result very high heat fluxes are obtainable in this region. In practical 
applications, the nucleate boiling regime is most desirable, because large heat fluxes are 
obtainable with small temperature differences. In the nucleate boiling regime, the heat 
increases rapidly with increasing excess temperature 
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    ∆Te = Tw − Tsat   
  

Fig. 8.4: Typical boiling curve for water at 1 atm; surface heat flux qw as function of 

excess temperature ∆Te 
 

∆Te until the peak heat flux is reached. The location of this peak heat flux is called the 

burnout point, or departure from nucleate boiling (DNB), or the critical heat flux (CHF). The 

reason for calling the critical heat flux the burnout point is apparent from the Fig. 

8.4. Such high values of ∆Te may cause the burning up or melting away of the heating 
element.  
Film Boiling Regime:- It can be seen from Fig. 8.4 that after the peak heat flux is reached, any 

further increase in ∆Te results in a reduction in heat flux. The reason for this curious 

phenomenon is the blanketing of the heating surface with a vapour film which restricts liquid 

flow to the surface and has a low thermal conductivity. This regime is called the film boiling 
regime. The film boiling regime can be separated into three distinct regions namely (i) the 

unstable film boiling region, (ii) the stable film boiling region and  
(iii) radiation dominating region. In the unstable film boiling region, the vapour film is 
unstable, collapsing and reforming under the influence of convective currents and the 
iv) surface tension. Here the heat flux decreases as the surface temperature increases, because 

the average wetted area of the heater surface decreases. In the stable film boiling region, the heat 

flux drops to a minimum, because a continuous vapour film covers the heater surface.In the 

radiation dominating region, the heat flux begins to increase as the excess temperature increases, 

because the temperature at the heater surface is sufficiently high for thermal radiation effects to 

augment heat transfer through the vapour film. 
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8.14. Pool Boiling Correlations: 

 

Correlation for The Nucleate Boiling Regime:- The heat transfer in the nucleate 

boiling regime is affected by the nucleation process, the distribution of active nucleation 

sites on the surface, and the growth and departure of bubbles.Numerous experimental 

investigations have been reported and a number of attempts have been made to correlate 

the experimental data corresponding to nucleate boiling regime.The most successful and 

widely used correlation was developed by Rohsenow. By analyzing the significance of 

various parameters in relation to forced - convection effects. He proposed the following 

empirical relation to correlate the heat flux in the entire nucleate boiling regime:   

 

Cpl ∆Te 

------------- = Csf  

hfg Prl
n

 

 
 

qw _______________ 

[ --------- √ ζ* / {g (ρl – ρv)} ] 
0.33

 ………………. (8.28) 

(μl hfg) 
 

where Cpl = specific heat of saturated liquid, J /(kg -
0
C) 

 

Csf = constant to be determined from experimental data depending 

upon Heating surface – fluid combination 
 

hfg = latent heat of vapourization, J / kg 

 

g = acceleration due to gravity, m / s
2
 

 

Prl = Prandtl number of saturated liquid 

 

qw = boiling heat flux, W / m
2

 

 

∆Te = excess temperature as defined in Eq. (8.27) 

 

μl = viscosity of saturated liquid, kg / (m – s) 

 

ρl, ρv = density of liquid and saturated vapour respectively, kg / 

m
3
 ζ

*
 = surface tension of liquid – vapour interface, N / m. 

In Eq. (8.28) the exponent n and the coefficient Csf are the two provisions to adjust the 

correlation for the liquid – surface combination. Table 8-1 gives the experimentally determined 

values Csf for a variety of liquid – surface combinations. The value of n should be taken as 1 for 

water and 1.7 for all other liquids shown in Table 8 – 1. 
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Example 8.10:- A metal clad heating element of 6 mm diameter and emissivity equal to unity 

is horizontally immersed in a water bath. The surface temperature of the metal is 255 
0
C 

under steady state boiling conditions. If the water is at atmospheric pressure estimate the 
power dissipation per unit length of the heater. 

 

Solution: Given:- Tw = 255 
0
C ; Tsat = saturation temperature of water at 1 atm = 100 

0
C; 

 

∆Te = 255 – 100 = 155 
0
C. Since ∆Te > 120 

0
C, film boiling conditions will prevail. 

The heat transfer in this regime is given by Eq.(8.33) namely 
 

 kv
3
 ρv (ρl – ρv) g hfg

*
 

ho = 0.62 [ ----------------------------------- ] 
¼

 

D μv ∆Te 
 

Properties of water at 100 
0
C are: ρl = 957.9 kg/m

3
; hfg = 2257 x 10 

3
 J/kg; 

 

ρv =  4.808 kg/m
3
; Cpv = 2.56 x 10 

3
 J/(kg-K); kv = 0.0331 W / (m-

0
C); 

 

μv = 14.85 x 10 
− 6

 kg / (m-s).  
 

Substituting these values in the expression for ho we have  
 

3 3 3 
 

(0.0331)  x 4.808 x (957.9 – 4.808) x 9.81 x {2257 x 10   + 0.8 x 2.56 x 10 x 155 } 
 

ho = 0.62 x [---------------------------------------------------------------------- 
14.85 x 10 

− 6
 x 0.006 x 155 

] 
¼

 
 

  
 

= 460 W/(m
2
 – K)   

 

1 ζ {Tw
4
 – Tsat

4
}  

 

hr = ---------------------- x ------------------------------  
 

[1/ε + 1/α − 1 ] {Tw – Tsat}  
 

1 5.67 x 10 
− 8

 x { 528 
4
 – 373 

4
}  

 

= ------------------------ x -------------------------------------------  
 

[ 1 / 1 + 1 / 1 − 1 ] { 528 – 373}  
 

 

 

= 21.3 W / (m
2
-K). 

 

Now h ≈ ho + ¾ hr = 460 + ¾ x 21.3 = 476 W /(m
2
 – K). 

 

Hence Q = h A ∆Te = 476 x (π x 0.006 x 1)x 155 = 1.36 x 10 
3
 W / m. 

 

Example 8.11:- A vessel with a flat bottom and 0.1 m
2
 in area is used for boiling water at 

atmospheric pressure. Find the temperature at which the vessel must be maintained if a 
boiling rate of 80 kg/h is desired. Assume that the vessel is made of copper and the boiling is 

nucleate boiling. Take ρv = 0.60 kg/m
3
. 
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Solution: Given:- A = 0.1 m
2
; Tsat = 100 

0
C; M = 80 kg/h = 0.022 kg/s; Prl = 1.75 

 

hfg = 2257 x10 
3
 J /kg; Cpl = 4216 J/(kg-K); ρl = 960.6 kg/m

3
; ζ* = 58.8 x 10 

− 3
 N/m; 

 

μl = 282.4 x 10 
− 6

 kg / (m-s); n = 1; For water-copper combination Csf = 0.0130; 
 

 M hfg 0.022 x 2257 x 10 
3
 

qw = Q / A = -------- = ---------------------------- = 4.965 x 10 
3
 W/m

2
 

 A 0.1 
 

For nucleate boiling Eq.(8.28) is used to calculate the excess temperature .∆Te 

 
 

Cpl ∆Te qw _______________ 

------------- = Csf  [ --------- √  ζ* / {g (ρl – ρv)} ] 
0.33

 

hfg Prl
n

 (μl hfg)  

 

4216 x ∆Te 

2257
-----------------------

x103x1.75 

= 0.013 x {4.965 x 10 
5
/(282.4 x 10

− 6
x 2257 x 10

3
) 

 

_____________________________ 
 

x √ 58.8 x 10 
− 3

 / [9.81 x (960.6 – 0.6)]  } 
0.33

 
 

Or ∆Te = 15.2 
0
C 

 

Hence Tw = 100 + 15.2 = 115.2 
0
C. 
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Example 8.12:- Calculate the heat transfer coefficient during stable film boiling of water 

from a 0.9 cm diameter horizontal carbon tube. The water is saturated and at 100 
0
C and the 

tube surface is at 1000 
0
C. Take the emissivity of the carbon surface to be 0.8 and assume 

that at the average film temperature, the steam has the following properties.  

kv = 0.0616 W/(m-K); ρv = 0.266 kg/m
3
; μv = 28.7 x 10 

−6
 kg/(m-s); Cpv = 2168 J/(kg-K); ρl 

= 958.4 kg/m
3
 

 

Solution: Given:- D = 0.009 m; ∆Te = Tw – Tsat = 1000 – 100 = 900 
0
C; ε = 0.8; α = 

1.0 hfg
*
 = hfg + 0.8 Cpv ∆Te = 2257 x 10 

3
 + 0.8 x 2168 x 900 = 3818 x 10 

3
 J/kg. 

For stable film boiling the convection coefficient is given by Eq.(8.33) 
 

 

 kv
3
 ρv (ρl – ρv) g hfg

*
 

ho = 0.62 [ ----------------------------------- ] 
¼

 

D μv ∆Te 
 

(0.0616)
3
 x 0.266 x (958.4 – 0.266) x 9.81 x 3818 x 10 

3
 

ho = 0.62 x [ ---------------------------------------------------------------------- ] ¼ 

 0.009x (28.7 x 10 
− 6

) x 900 

= 194 W/(m
2
 – K)  

Radiation heat transfer coefficient is given by 

1 ζ (Tw
4
 – Tsat

4
) 

hr = ---------------------- ------------------------- 

[ 1/ε + 1/α – 1] (Tw – Tsat) 
 
 
 
 

1 5.67 x 10 
− 8

 (1273 
4
 − 373 

4
) 

hr = ---------------------- x -------------------------------------- 

[ 1/0.8 + 1/1 – 1] (1273 – 373) 
 

= 131.4 W/(m
2
 – K). 

 

Hence h = ho + ¾ hr = 194 + ¾ x 131.4 = 292.5 
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RADIATION HEAT TRANSFER 

 

 

10.1. INTRODUCTORY CONCEPTS AND DEFINITIONS 

 

10.1.1 THERMAL RADIATION 

 

When a body is placed in an enclosure whose walls are at temperatures below that 
of the body, the temperature of the body will decrease even if the enclosure is evacuated. 
This process by which heat is transferred from a body by virtue of its temperature, 
without the aid of any intervening medium is called “THERMAL RADIATION”. The 
actual mechanism of radiation is not yet completely understood. There are at present two 
theories by means of which radiation propagation is explained. According to Maxwell‟s 
electromagnetic theory, Radiation is treated as electromagnetic waves, while Max 
Planck‟s theory treats radiation as “Photons” or “Quanta of energy”. Neither theory 
completely describes all observed phenomena. It is however known that radiation travels 

with the speed of light, c (c = 3x10
8
 m/s) in a vacuum. This speed is equal to the product 

of the frequency of the radiation and the wavelength of this radiation,  

 

OR c = λν ………………………………….(10.1) 

 

Where  λ = wavelength of radiation (m) and ν = frequency (1/s). 

 

Usually, it is more convenient to specify wavelength in micrometer, which is equal 

to 10
-6

 m. 
 

From the viewpoint of electromagnetic wave theory, the waves travel at the speed 
of light, while from the quantum theory point of view, energy is transported by photons 
which travel at the speed of light. Although all the photons have the same velocity, there 

is always a distribution of energy among them. The energy associated with a photon, ep = 

hν where h is the Planck‟s constant equal to 6.6256 x 10
-34

 Js. The entire energy 
spectrum can also be described in terms of the wavelength of radiation.  

 

Radiation phenomena are usually classified by their characteristic wavelength, λ. 

At temperatures encountered in most engineering applications, the bulk of the thermal 

energy emitted by a body lies in the wavelengths between λ= 0.1 and 100 μm. For this 

reason, the portion of the wavelength spectrum between λ= 0.1 and 100 μm is generally 

referred to as “THERMAL RADIATION”. The wavelength spectrum in the range λ= 0.4 

and 0.7 μm is visible to the naked eye, and this is called „light rays‟. The wavelength 

spectrum of radiation is illustrated in Fig 10.1 
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Light Rays (0.1 μm to 0.3 μm)  

 

λ , μm 
 
 

 

Fig. 10.1 Typical Spectrum of electromagnetic radiation 

 

In the study of radiation transfer, a distinction should be made between bodies 

which are “semi-transparent” to radiation and those which are “opaque”. If the material is 

semitransparent to radiation, such as glass, salt crystals, and gases at elevated 

temperatures, then the radiation leaving the body from its outer surfaces results from 

emissions at all depths within the material. The emission of radiation for such cases is a 

“BULK” or a “VOLUMETRIC PHENOMENON”. If the material is opaque to thermal 

radiation, such as metals, wood, rock etc. then the radiation emitted by the interior 

regions of the body cannot reach the surface. In such cases, the radiation emitted by the 

body originates from the material at the immediate vicinity of the surface (i.e. within 

about 1μm) and the emission is regarded as a “SURFACE PHENOMENON”. It should 

also be noted that a material may behave as a semi transparent medium for certain 

temperature ranges, and as opaque for other temperatures. Glass is a typical example for 

such behaviour. It is semi transparent to thermal radiation at elevated temperatures and 

opaque at intermediate and low temperatures. 

 

10.1.2 DEFINITIONS OF TERMS USED IN THERMAL RADIATION 
 

 Monochromatic Emissive Power (Eλ): The monochromatic emissive power of a 

surface at any temperature T and wavelength λ is defined as the quantity which 

when multiplied by dλ gives the radiant flux in the wavelength range - λ to λ+dλ.



 Emissive Power (E): The emissive power of a surface is the energy emitted by a 
surface at a given temperature per unit time per unit area for the entire wavelength 
range, from λ = 0 to λ = ∞.
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∞ 

E = ∫Eλdλ 
……………………………………………(10.2) 0 

 

 Absorptivity, Reflectivity and Transmissibility of a body: 
 
 

 

Incident Radiation  Energy reflected 
    

 
 
 

 

Energy Absorbed 
 

 

Energy transmitted 
 
 
 

 

Fig.10.2: Effects of radiation incident on a surface 
 

 

When a radiant energy strikes a material surface, part of the radiation is reflected, 

part is absorbed, and part is transmitted, as shown in Fig. 10.2. Reflectivity (ρ) is 
defined as the fraction of energy which is reflected, Absorptivity (α) as the fraction 

absorbed, and Transmissivity (η) as the fraction transmitted. Thus, ρ + α + η = 1. 

 

Most solid bodies do not transmit thermal radiation, so that for many applied 
problems, the transmissivity may be taken as zero. Then 

 

ρ + α = 1 ……………………………………(10.3) 
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 Specular Radiation and Diffuse Radiation: 
 
 

 

Source 
 

 

Φ1 

 
 
 
 
 

 

Source  
Φ2 
 

 

Ф2 = Φ1 
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(a) Specular Radiation (b) Diffuse Radiation 
 
 

 

Fig.10.3: Specular and Diffuse Radiation 

 

When radiation strikes a surface, two types of reflection phenomena may be 

observed. If the angle of incidence is equal to the angle of reflection, the radiation is 

called Specular. On the other hand, when an incident beam is distributed uniformly in 

all directions after reflection, the radiation is called Diffuse Radiation. The two types 

of radiation are depicted in Fig. 10.3. Ordinarily, no real surface is either specular or 

diffuse. An ordinary mirror is specular for visible light, but would not necessarily be 

specular over the entire wavelength range. A rough surface exhibits diffuse behaviour 

better than a highly polished surface. Similarly, a highly polished surface is more 

specular than a rough surface. 

 

 Black Body:

 

A body which absorbs all incident radiation falling on it is called a blackbody. For 

a blackbody, α = 1, ρ = η = 0. For a given temperature and wavelength, no other body 

at the same temperature and wavelength, can emit more radiation than a blackbody. 

Blackbody radiation at any temperature T is the maximum possible emission at that 

temperature. A blackbody or ideal radiator is a theoretical concept which sets an 

upper limit to the emission f radiation. It is a standard with which the radiation 

characteristics of other media are compared. 

 

 Emissivity of a Surface (ε):

 

The emissivity of a surface is the ratio of the emissive power of the surface to the 

emissive power of a black surface at the same temperature. It is denoted by the 

symbol ε. 
 

 

i.e. ε = [E/Eb]T. 

 

 Monochromatic  Emissivity of a Surface (ελ):

 

The monochromatic emissivity of a surface is the ratio of the monochromatic 
emissive power of the surface to the monochromatic emissive power of a black 

surface at the same temperature and same wavelength. 
 

ελ = [Eλ / Ebλ ] λ,T. 

 Gray Body:

 

A gray body is a body having the same value of monochromatic emissivity 
at all wavelengths. i.e. 

ε = ελ, for a gray body. 
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 Radiosity of a Surface (J):


This is defined as the total energy leaving a surface per unit time per unit area of 
the surface. This definition includes the energy reflected by the surface due to some 
radiation falling on it. 

 

 Irradiation of a surface(G):

 

This is defined as the radiant energy falling on a surface per unit time, per unit 
area of the surface.  

Therefore if E is the emissive power, J is the radiosity, ε is the irradiation and ρ 

the reflectivity of a surface, then,  
J = E + ρG 

For an opaque surface, ρ + α = 1 or ρ = (1 – α)  
J = E + (1-α)G …………………………………………. (10.4) 

 

10.2 LAWS OF RADIATION 

 

10.2.1 STEFAN – BOLTZMANN LAW: 

 

This law states that the emissive power of a blackbody is directly proportional to 

the fourth power of the absolute temperature of the body.   

i.e., Eb α T
4

  

Or Eb = ζT
4
 ---------------------------------- (10.5) 

where ζ is called the Stefan – Boltzmann constant. 

In SI units ζ = 5.669x10
-8

 W/(m
2
-K

4
). 

 

10.2.2 PLANCK’S LAW: 

 

This law states that the monochromatic power of a blackbody is given by 
 

C1 

Ebλ  = ------------------------------ ………………………..(10.6) 

λ5 [ e (C2 
/ λT) – 1] 

 

where C1 and C2 are constants whose values are found from experimental 

data; C1 = 3.7415 x 10
-16

 Wm
2
 and C2 = 1.4388 x 10

-2
 m-K. 

λ is the wavelength and T is the absolute temperature in K. 

 

10.2.3 WEIN’S DISPLACEMENT LAW: 
 

It can be seen from Eq. 10.6 that at a given temperature, Ebλ depends only on λ. 

Therefore the value of λ which gives maximum value of Ebλ can be obtained by 

differentiating Eq(10.6) w.r.t λ and equating it to zero. 
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Let C2/λT = y . Then Eq. (10.6) reduces to 
 

  C1 
 

 Ebλ = -----------------------------
[C2/(yT)]5[ey–1] 

 

  
 

Then dEbλ C1 d / dy {[C2 / (yT)] 
5
 [ e 

y
 – 1]} 

 

 
------ = ------------------------------------------ 

{[C2 / (yT)] 
5
 [ e 

y
 – 1]} 

2
 

 

 dy 
 

or d / dy {[C2 / (yT)] 
5
 (e 

y
 – 1)} = 0 

 

Or e
y
(5 – y) = 5 

 

 

By trial and error,  y = 4.965 
 

Therefore, if λm denotes the value of λ which gives maximum Ebλ, then 

 

C2/λmT = 4.965 

 

Or λmT = C2/4.965 = 1.4388x10
-2

 /4.965 

 

λmT = 0.002898 m-K ………………………………. (10.7) 

 
  

Equation (10.7) is called the Wein‟s displacement law. From this equation it can be seen 
that the wavelength at which the monochromatic emissive power is a maximum decreases 

with increasing temperature. This is also illustrated in Fig 10.4(a). Fig 10.4(b) gives a 

comparison of monochromatic emissive powers for different surfaces at a particular 

temperature for different wavelengths. 
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Fig. 10.4 (a) Black body emissive power as a function of wave length 

and Temperature  
 
 
 

 

Monochromatic Black body (ελ = ε = 1) 

emissive power  

 Gray body (ελ = ε < 1) 

 Real Surface  
 
 
 
 
 
 

 

Wavelength  

 

Fig. 10.4 (b) Comparison of emissive powers of different types o  
surfaces as a function of wavelength at a given temperature 
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10.2.4 KIRCHOFF’S LAW: 

 

This law states that the emissivity of a surface is equal to its absorptivity when the 
surface is in thermal equilibrium with the surroundings. 

 

Proof: Consider a perfect black enclosure i.e. the one which absorbs all the incident 
radiation falling on it (see Fig 10.5). Now let the radiant flux from this enclosure per unit 

area arriving at some area be qi W/m
2
. 

 
 
 
 

 

Black Enclosure 

EA 
 

 

Sample 
 
 

 

qi.A.α 

 
 
 
 

 

Fig. 10.5 : Model used for deriving Kirchoff law 

 

Now suppose that a body is placed inside the enclosure and allowed to come to thermal 
equilibrium with it. At equilibrium, the energy absorbed by the body must be equal to the 

energy emitted; otherwise there would be an energy flow into or out of the body, which 
would raise or lower its temperature. At thermal equilibrium we may write 

 

EA = qi A α ………………………………….(10.8) 

 

If we now replace the body in the enclosure with a black body of the same size and shape 

and allow it to come to thermal equilibrium with the enclosure,  
 

EbA = qi A .......………………………………(10.9) 

Since α = 1 for a blackbody. 

 

If Eq. 10.8 is divided by Eq. 10.9 we get 
 

E/Eb = α 

 

But by definition E/Eb = ε, the emissivity of the body, so that ε = α…………(10.10) 

 
 

 



                                                                                                                                                162 

 

Equation 10.10 is called Kirchoff‟s law and is valid only when the body is in thermal 

equilibrium with the surroundings. However, while analyzing radiation problems in practice 

we assume that Kirchoff‟s law holds good even if the body is not in thermal equilibrium with 
the surroundings, as the error involved is not very significant. 

 

10.3 ILLUSTRATIVE EXAMPLES ON BASIC CONCEPTS 

 

Example 10.1: The emission of radiation from a surface can be approximated as 

blackbody radiation at 1000K. 

 

(a) What fraction of the total energy emitted is below λ = 5μm  
(b) What is the wavelength below which the emission is 10.5% of the total emission at 

1000K.  
(c) What is the wavelength at which the maximum spectral emission occurs at 1000K. 

 

Solution: The radiation flux emitted by the blackbody over the wavelength interval 0 – λ 

is given by 

λ 

[Eb]0 – λ = ∫Ebλdλ 

0  
The integration required in the above equation has been done numerically and the results 

are presented in the form of a table. The table gives the value of D 0-λ where 
 

 λ   
 

 ∫Ebλdλ 1 λ 
 

D0-λ = 
0 = ------- ∫ Ebλ dλ  --- -∞----------- 

 

 ∫Ebλdλ ζ T
4
 0 

 

 0   
  

(a) From Table of Radiation properties, for λT = 5 x 1000 = 5000, D0-λ = 0.6337. 

This means that 63.37 % of the total emission occurs below λ = 5 μm. 
 

(b) From the same table, for D0-λ = 0.105, λT = 

2222. Hence λ = 2222/1000 = 2.222 μm. 
 

(c) From Wein‟s displacement law, λmT = 0.002898. 

Hence for T = 1000 K, λm =0.002898 / 1000 = 2.898 x 10 
−6

 m = 2.898 μm. 
 

Example 10.2: The monochromatic emissivity of a surface varies with the wavelength in 

the following manner: 
 

ελ = 0 for λ < 0.3μm  
= 0.9 for 0.3μm < λ < 1μm 

= 0  for λ > 1μm  
Calculate the heat flux emitted by the surface if it is at a temperature of 1500 K 
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Solution:  
Eλ  = ε λ  Ebλ 

 
∞ 0.3 μm 1 μm ∞ 

Therefore E = ∫ ε λ  Ebλ =  ∫ 0.0 Ebλ dλ + ∫ 0.9 Ebλ dλ + ∫ 0.0 Ebλ dλ 
0 0 0.3 μm 1 μm 

 
1 μm 1 μm 0.3 μm 

= 0.9 ∫Ebλ dλ  = 0.9 [ ∫ Ebλ dλ − ∫ Ebλ dλ ] 
0.3 μm 0 0 

 

= 0.9 ζ T 
4
 [ D0-1 – D0 – 0.3] 

 

For λ = 1μm, λT = 1500 μm-K, therefore D0-1 = ½ (0.01972 + 0.00779) = 

0.93755 For λ = 0.3μm, λT = 450 μm-K, therefore D0-3 = 0 

 

Thus E = 0.9x5.67x10
-8

x1500
4
 [0.013755 – 0] = 3553 W/m

2
 

 

Example 10.3: Calculate the heat flux emitted due to thermal radiation from a black 

surface at 6000
0
 C. At what wavelength is the monochromatic emissive power maximum 

and what is the maximum value? 

 

Solution:Temp of the black surface = 6273K 
 

Heat Flux emitted = Eb = ζT
4
 = 5.67x10

-8
x6273

4
 = 87798 KW/m

2
 

Wavelength corresponding to max monochromatic emissive power is given 

by λmT = 0.002898 m-K 

 

λm = 0.002898/6273 = 4.62x10
-7

 m 

 

The maximum monochromatic emissive power is given by 
 

2 π C1 

(Ebλ)max = ------------------------------------ 

λmax [ exp {C2 / (λmaxT)} – 1] 
 

2 x π x 0.596 x 10 
− 16

 

= --------------------------------------------------------------- 

(4.62 x 10 
− 7

) 
5
 x [ exp{ 0.014387 / 0.002898} – 1] 

 

 

= 1.251 x 10 
14

 W / m
2
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Example 10.4: The spectral hemispherical emissivity (monochromatic emissivity) of fire 

brick at 750K as a function of wavelength is as follows: 
 

ε1 = 0.1  for 0 < λ <  2μm    

ε2 = 0.6  for 2μm < λ < 14μm   

ε3 = 0.8  for14 < λ < ∞    

Calculate the hemispherical emissivity, ε for all wavelengths. 

Solution:                 

   ∞        
 E ∫ελ Ebλ dλ 1 λ1 λ2 λ3 

ε = ------ = -
0
------------- = ------ [ ε1 ∫ Ebλ dλ + ε2 ∫ Ebλ dλ + ε3 ∫ Ebλ dλ ] 

 Eb ζ T 
4
  ζ T 

4
 0 λ1 λ2 

 

Where λ1 = 2μm, λ2 = 14μm, λ3 = ∞ 

 

Thus  = ε1D0-λ1 + ε2[D0-λ2 – D0-λ1] + ε3[D0-∞ – D0-λ2] 
 

Now, λ1T = 2x750 = 1500; D0-λ1 = 0.013 

 

λ2T = 14x750 = 10500; D0-λ2 = 0.924 λ3T = ∞; D0-λ3 = 1 

 

Hence ε = 0.1 x 0.013 + 0.6 x [ 0.924 – 0.013] + 0.8 x [1 – 0.924] = 0.609 

 

Example 10.5: the filament of a light bulb is assumed to emit radiation as a black body at 
2400K. if the bulb glass has a transmissivity of 0.90 for radiation in the visible range, 

calculate the percentage of the total energy emitted by the filament that reaches the ambient 
as visible light. 

 

Solution: The wavelength range corresponding to the visible range is taken as 

λ1 = 0.38μm to λ2 = 0.76μm. Therefore the fraction F of the total energy emitted in this range 
is given by 

 
λ2   

∫ Ebλ dλ λ2 λ1  
F = η  [

λ1
--------- ] = η [ ∫Ebλ dλ − ∫Ebλ dλ ] / Eb 

 

Eb (T) 
0 0 

 

  
 

= η [D0-λ2 – D0-λ1]. 
 

Now λ1T = 0.38 x 2400 = 912. Hence D0-λ1 = 0.0002 

 

and  λ2T = 0.76 x 2400 = 1824. Hence D0-λ2 = 0.0436 

 

Therefore F = 0.9 x [0.0436 – 0.0002] =0.039 . 
 

Only 3.9 % of the total energy enters the ambient as light. The remaining energy 
produces heating. 
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10.4 RADIATION HEAT EXCHANGE BETWEEN INFINITE PARALLEL 

SURFACES IN THE PRESENCE OF NON PARTICIPATING MEDIUM 

 

Assumptions:  
(i) The medium does not participate in radiation heat exchange between the two 

surfaces.  
(ii) The surfaces are flat and are at specified uniform temperatures. 

 

10.4.1: RADIATION EXCHANGE BETWEEN TWO PARALLEL BLACK 

SURFACES  
 
 
 
 
 

 

J1 = Eb1 T1, A1, α1 = ε1 = 1.0 
G1 = J2 

 

   
 

G2 = J1 
T2, A2, α2 = ε2 = 1.0 

J2 = Eb2 
 

  
  

 
 
 
 

 

Fig: 10.6 Radiation heat exchange between two parallel black surfaces. 

 

Since both surfaces are parallel, flat and infinite, radiosity of surface 1 = irradiation 

of surface 2 and vice versa. i.e. J1 = G2 and J2 = G1. Since both the surfaces are 

black, J1 = Eb1 = ζT1
4
 and J2 = Eb2 = ζT2

4
 

 

Net radiation leaving A1 = Qr1 = A1(J1 – G1)  All this energy will reach A2. 
 

Net radiation leaving A1 and reaching A2 is given by 

 

Q1-2 = Qr1 = A1(J1 – G1) = A1[J1 – J2] 
 

Or  Q1-2 = A1[Eb1 – Eb2] 
 

Or Q1-2 = ζA1[T1
4
 – T2

4
] (10.11) 
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10.4.2 RADIATION HEAT EXCHANGE BETWEEN TWO PARALLEL INFINITE 

GRAYSURFACES:  
 
 
 
 
 

 

J1  
T1, α1= ε1, A1 G1 = J2 

 

  
 

G2 = J1 

T2, α2 

J2 
 

  = ε2, A2 
  

 
 
 

 

Fig: 10.7 Radiation Heat Exchange Between 2 Parallel Infinite Gray Surfaces.  
 

Since the net radiation leaving A1 will reach 

A2, Q1-2 = Qr1 = A1[J1 – G1] J1 = E1 + (1-

α1)G1 

 

J2 = E2 + (1-α2)G2 

 

J1 = G2 

 

J2 = G1 

 
 
 
 
 

(10.12a) 

 

(10.12b) 

 

(10.12c) 

 

(10.12d) 

 

(10.12e) 
 

 

Equation (10.12b) can be written as 
 

J1 – (1 – α1)G1 = E1 ……………………………..(4.12f) 

 

Equation (4.12c) with the help of Eqns. (10.12d) and Eqns. (10.12e) can be rewritten as 
 

 

– (1 – α2)J1 + G1 = E2 (10.12g) 
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Solving for J1 and G1 from Eq. (10.12f) and (10.12g) we get 
 

 E1 + (1 – α1) E2 
 

 J1 = ---------------------------- 
 

 1 – (1 – α1) (1 – α2) 
 

 ε1E b1 + (1 – α1) ε2E b2 
 

 Or J1 = ----------------------------- ……………………………..(10.13a) 
 

 1 – (1 – α1) (1 – α2) 
 

 ε2E b2 + (1 – α2) ε1E b1 
 

 and  G1 = ----------------------------- ……………………………..(10.13b) 
 

 1 – (1 – α1) (1 – α2) 
 

Substituting these expressions for J1 and G1 in Eq.( 10.12a) we get 
 

 A1  
 

Q1-2 = -------------------------- [ε1E b1 + (1 – α1) ε2E b2 − ε2E b2 − (1 – α2) ε1E b1] 
 

[1 – (1 – α1) (1 – α2)]  
 

 A1 [α2 ε1Eb1 − α1 ε2Eb2 ] 
 

Or  Q1-2  = ------------------------------------ 
[1 – (1 – α1) (1 – α2)]  

 
 

Substituting for Eb1 and Eb2 in terms of temperatures we get 
 

 ζA1 [α2 ε1T1
4
 − α1ε2T2 

4
] 

 

Or  Q1-2 = ------------------------------------ …………………………………….(10.14) 
 

 [1 – (1 – α1) (1 – α2)] 
 

If Kirchoff‟s law holds good then α1 = ε1 and α2 = ε2. 
 

 ζA1 [ε1 ε2T1
4
 − ε1ε2T2 

4
] 

 

Hence  Q1-2 = ------------------------------------ 
 

 [1 – (1 – ε1) (1 – ε2)] 
 

  ζ A1 (T1
4
 – T2

4
) 

 

Or Q1-2 = --------------------------- …………………………(10.15) 
 

  [ 1/ε1 + 1/ε2 − 1 ] 
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10.4.3 PLANE RADIATION SHIELDS: It is possible to reduce the net radiation heat 

exchange between two infinite parallel gray surfaces by introducing a third surface in 

between them. If the third surface, known as the radiation shield is assumed to be very 
thin, then both sides of this surface can be assumed to be at the same temperature. 

 

Fig.10.8 shows a scheme for radiation heat exchange between two parallel infinite 

gray surfaces at two different temperatures T1 and T2 in presence of a radiation shield at 

a uniform temperature, T3. 
 

 

Now Q1-3 ζ (T1
4
 – T3

4
) 

 ------ = --------------------------- ………………………..(10.16a) 

 A1 [ 1/ε1 + 1/ε13 – 1] 

 Q3-2 ζ (T3
4
 – T2

4
) 

And ------ = --------------------------- ………………………..(10.16b) 

 A1 [ 1/ε32 + 1/ε2 – 1] 

     
 
 

 

T3, ε13, A3 = A1   
     T1, α1= ε1, A1

 
 
 

 

T3, ε23, A3 = A1                 
 T2, α2 = ε2, A2

 
 
 
 

 

Fig: 10.8 Radiation Heat Exchange Between Two Parallel Infinite Gray  
surfaces in presence of a radiation shield 

 

 

For steady state conditions, these two must be equal..Therefore we have 
 

 (T1
4
 – T3

4
) (T3

4
 – T2

4
) 

--------------------------- = ---------------------------- 

 [ 1/ε1 + 1/ε13 – 1] [ 1/ε32 + 1/ε2 – 1] 

Let X = [ 1/ε1 + 1/ε13 – 1] 

and Y = [ 1/ε32 + 1/ε2 – 1] 
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Then,   
 

(T1
4
 – T3

4
) (T3

4
 – T2

4
) 

 

--------------- =  ------------------ 
 

X  Y 
 

Solving for T3 we get   
 

-----------------------------
T14+(X/Y)T24 

] 
1 / 4

 …………………(10.16c) 
 

T3 = [  
 

(1 + X /Y)  
 

Substituting this value of T3 in Eq. (10.16a) we get 
 

Q1-3 / A1 = Q3-2 / A1 = (Q1-2 / A)1 Rad.Shield = ζ { T2 
4
 – [{T1

4
 +(X/Y)T2

4
}/(1 + X/Y)] } / X 

 

  …………………….(10.17a) 
 

 

Special case: 

When  ε1 = ε2 = ε13 = ε32 = ε, then  X = Y = (2/ε) − 1 
 

Hence, T3 = [(T1 
4
+ T2

4
) / 2 ] 

¼
………………………..(10.18a) 

 ζ{ T1
4
 − [(T1

4
 + T2

4
) / 2 ] 

and  [Q1-2 / A ]1 rad shield = ------------------------------------- 

 [2/ε − 1] 

 ζ [T1
4 − T2

4
] 

 = ------------------------ ………………………………(10.18b)  

2 [2/ε − 1] 

 

It can be seen from the above equation that when the emissivities of all surfaces 
are equal, the net radiation heat exchange between the surfaces in the presence of single 

radiation shield is 50% of the radiation heat exchange between the same two surfaces 

without the presence of a radiation shield. This statement can be generalised for N 

radiation shields as follows:  
1 

[Q1-2 / A]N shields = --------- [Q1-2 / A] without shield ……………(10.18c) 

(N + 1) 
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10.8.6: NETWORK METHOD FOR THREE ZONE ENCLOSURE 

The network method described above can be readily generalised to enclosures 

involving three or more zones. However when there are more than three zones, the 

analysis becomes more involved and it is preferable to use the more direct “Radiosity 

Matrix” method. The radiation network for a three zone enclosure shown in Fig 4.20(a) is 
shown in Fig 4.20(b) 
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Fig 10.20: Radiation network for a three zone enclosure. 

Reradiating Surface: In many practical situations one of the zones may be thermally 

insulated. In such a case, the net radiation heat flux in that particular zone is zero, 

because that surface emits as much energy as it receives by radiation from the 

surrounding zones. Such a zone is called a “RERADIATION ZONE” or an 

“ADIABATIC ZONE”. Fig 10.21(a) represents a three zone enclosure with surface (3) 
being the reradiating surface and Fig 10.21(b) the corresponding radiation network.  
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Fig 10.21: Radiation Heat Exchange in a 3 zone enclosure with one reradiating surface 
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For a three zone enclosure under steady state conditions, by I law of thermodynamics. 
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4.9 ILLUSTRATIVE EXAMPLES ON NETWORK METHOD: 

 

Example 4.24: Two square plates 1m x 1m are parallel to and directly opposite to each 

other at a distance of 1m. The hot plate is at 800K and has an emissivity of 0.8. The clod 

plate is at 600K and also has an emissivity of 0.8. The radiation heat exchange takes 
place between the plates as well as the ambient at 300K through the opening between the 

plates. Calculate the net radiation at each plate and the ambient.  

 

Solution: 

Data:- 

T1 = 800K, Є1 = 0.8 

T2 = 600K, Є2 = 0.8 

T3 = 300K 

To find:- 

i) Qr1, Qr2, 

ii) Qr3 
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Example 4.25 The configuration of a furnace can be approximated as an equilateral 
triangular duct which is sufficiently long that the end efforts are negligible. The hot wall 

is at 900K with an emissivity of 0.8 and the cold wall is at 400K with emissivity of 0.8. 

The third wall is a reradiating wall. Determine the net radiation flux leaving the hot wall. 
 

Solution: 

A1 = A2 = A3 = 1m
2
 (assumed) 

T1 =900K, Є1 = 0.8 

T2 = 400K, Є2 = 0.8  
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The radiation network for the above problem will be as shown below  
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Example 4.26 A short cylindrical enclosure is maintained at the temperatures as shown 

in Fig P4.26. Assuming Є2= Є3=1; Є1=0.8 determineQr1 and Qr2 

 

Solution:      

From chart, F1-2 = 0.175 = F2-1 (A2=A1) 

Also, F1 -1 + F1-2 + F1-3 = 1 and F1-1 = 0 

So, F1 -3 = 1 – F1-2 = 1 – 0.175 or 
  F1 -3 = 0.825 = F2-3  
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The radiation network for the above problem will be as shown below  
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Example 4.27 A spherical tank with diameter 40cm fixed with a cryogenic fluid at 100K 

is placed inside a spherical container of diameter 60cm and is maintained at 300K. The 

emissivities of the inner and outer tanks are 0.15 and 0.2 respectively. A spherical 

radiation shield of diameter 50cm and having an emissivity of 0.05 on both sides is 

placed between the spheres. Calculate the rate of heat loss from the system by radiation 

and find also the rate of evaporation of the cryogenic liquid if the latent heat of 

vaporization of the fluid is 2.1x10
5
 W-s/Kg 

 

Solution: The schematic and the corresponding network for the problem will be as 

shown in Fig P.10.27 
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