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COURSE OBJECTIVES (COs): 
 

The course should enable the students to: 

I I.   Understand the basic modes of heat transfer like conduction, convection and radiation with and 

without phase change in solid liquids and gases. 

II Design and analyze thermal fluidic components in engineering systems to energy mechanisms (in 

the form of heat transfer) for steady and unsteady state. 

III Conduct experiments in laboratories and analyze the results with theoretical ones to evolve 

research oriented projects in the field of heat transfer as well as propulsion. 

IV Apply the concepts of heat transfer with convective mode in internal and external flows involved 

in engineering components and work in real time problems in Industry. 

 
 

COURSE LEARNING OUTCOMES (CLOs): 

Students, who complete the course, will have demonstrated the ability to do the following: 

 

AME016.01 Understand basic concepts of heat transfer modes, Fourier Law and First law of thermodynamics. 

AME016.02 Remember the basic laws of energy involved in the heat transfer mechanisms. 

AME016.03 
Understand the physical system to convert into mathematical model depending upon the mode of 

Heat Transfer. 

AME016.04 
Understand the thermal response of engineering systems for application of Heat Transfer mechanism 

in both steady and unsteady state problems. 

AME016.05 
Understand heat transfer process and systems by applying conservation of mass and energy into a 

system. 

AME016.06 Understand the steady state condition and mathematically correlate different forms of heat transfer 

AME016.07 Analyse finned surfaces, and assess how fins can enhance heat transfer 
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AME016.08 Remember dimensionless numbers which are used for forced and free convection phenomena. 

AME016.09 
Understand the applications of Buckingham Pi Theorem in deriving various non dimensional 

numbers and their applications in heat transfer 

AME016.10 Remember and use the methodology presented in tutorial to solve a convective heat transfer problems 

AME016.11 
Understand the various forms of free and forced convection and the application of the same in day to 

day problems 

AME016.12 Calculate local and global convective heat fluxes using Nusselt’s Theory. 

AME013.13 
Understand the method to evolve hydrodynamic and thermal boundary layers applied mathematically 
to vertical plates and Tubes 

AME016.14 
Understand the physical mechanisms of phase change involving pool, nucleate and film boiling 

processes 

AME016.15 Understand Nusselt’s theory of condensation for the application in film and dropwise condensation 

AME016.16 
Correlate the empirical relations in terms of vertical and horizontal cylinders during film 

condensation 

AME016.17 Understand the concepts of black and gray body radiation heat transfer. 

AME016.18 Understand the concept of shape factor and evolve a mechanism for conducive radiation shields 

AME016.19 
Understand the various classifications of heat exchangers based on arrangement and correlate the 

effects of fouling 

AME016.20 
Understand the LMTD and NTU methods and apply the same for solving real time problems in heat 

exchangers 

 
SYLLABUS  

UNIT-I BASIC CONCEPTS Classes: 10 

Modes and mechanisms of heat transfer, basic laws of heat transfer, applications of heat transfer; 
conduction heat transfer: Fourier rate equation, general three dimensional heat conduction equations in 

cartesian, cylindrical and spherical coordinates; Simplification and forms of the field equation, steady and 

unsteady and periodic heat transfer, initial and boundary conditions. 

UNIT -II 
ONE DIMENSIONAL STEADY STATE AND TRANSIENT 

CONDUCTION HEAT TRANSFER 
Classes: 14 

One dimensional steady state conduction heat transfer: Homogeneous slabs, hollow cylinders and spheres, 

overall heat transfer coefficient, electrical analogy, Critical radius of insulation; one dimensional steady 

state conduction; heat transfer: with variable thermal conductivity and systems with internal heat 

generation, extended surfaces (Fins) long, short and insulated tips; one dimensional transient heat 
conduction: Systems with negligible internal resistance, significance of Biot and Fourier numbers, chart 

solutions of transient conduction systems. 

UNIT -III CONVECTIVE HEAT TRANSFER Classes: 11 

Classification of systems based on causation of flow, condition of flow, configuration of flow and medium 
of flow, dimensional analysis as a tool for experimental investigation, Buckingham Pi Theorem and 

method, application for developing semi, empirical non-dimensional correlation for convection heat 
transfer, significance of non dimension numbers, concepts of continuity, momentum and energy 
equations;  

Forced convection: external flows: Concepts of hydrodynamic and thermal boundary layer and use of 

empirical correlations for convective heat transfer, flat plates and cylinders; Internal flows, Concepts about 
Hydrodynamic and thermal entry lengths, division of internal flows based on this, use of empirical 

correlations for horizontal pipe flow and annulus flow; free convection: Development of hydrodynamic and 

thermal boundary layer along a vertical plate, use of empirical relations for vertical plates and pipes 
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UNIT -IV HEAT TRANSFER WITH PHASE CHANGE Classes: 11 

Boiling: Pool boiling- regimes Calculations on Nucleate boiling, Critical heat flux, Film boiling; 

Condensation: Film wise and drop wise condensation, Nusselt‘s theory of condensation on a vertical plate 

Film condensation on vertical and horizontal cylinders using empirical correlations;  
Radiation heat transfer: Emission characteristics, laws of black-body radiation, Irradiation, total and 

Monochromatic quantities, laws of Planck, Wien, Kirchhoff, Lambert, Stefan and Boltzmann, heat 

exchange between two black bodies, concepts of shape factor, emissivity, heat exchange between grey 
bodies, radiation shields, electrical analogy for radiation networks. 

UNIT -V HEAT EXCHANGERS  Classes: 10 

Classification of heat exchangers, overall heat transfer Coefficient and fouling factor, Concepts of LMTD 

and NTU methods, Problems using LMTD and NTU methods. 

Text Books: 

1. Yunus A. Cengel, “Heat Transfer A Practical Approach”, Tata McGraw hill Education (P) Ltd, New 

Delhi, India. 4th Edition, 2012. 

2. R. C. Sachdeva, “Fundamentals of Engineering, Heat and Mass Transfer”, New Age, New Delhi, India, 

3rd Edition, 2012. 

Reference Books: 

1. Holman, ―Heat Transfer, Tata McGraw-Hill education, 10th Edition, 2011. 

2. P. S. Ghoshdastidar, ―Heat Transfer, Oxford University Press, 2nd Edition, 2012. 

3. D. S. Kumar, ―Heat and Mass Transfer, S.K. Kataria & sons, 9th Edition 2015. 
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UNIT-1 

                                      BASIC CONCEPTS 
 

Introduction: - We recall from our knowledge of thermodynamics that heat is a form of energy 

transfer that takes place from a region of higher temperature to a region of lower temperature solely 

due to the temperature difference between the two regions. With the knowledge of thermodynamics 

we can determine the amount of heat transfer for any system undergoing any process from one 

equilibrium state to another. Thus the thermodynamics knowledge will tell us only how much heat 

must be transferred to achieve a specified change of state of the system. But in practice we are more 

interested in knowing the rate of heat transfer (i.e. heat transfer per unit time) rather than the amount. 

This knowledge of rate of heat transfer is necessary for a design engineer to design all types of heat 

transfer equipments like boilers, condensers, furnaces, cooling towers, dryers etc. The subject of heat 

transfer deals with the determination of the rate of heat transfer to or from a heat exchange equipment 

and also the temperature at any location in the device at any instant of time. 

 

The basic requirement for heat transfer is the presence of a “temperature difference”. The temperature 

difference is the driving force for heat transfer, just as the voltage difference for electric current flow 

and pressure difference for fluid flow. One of the parameters, on which the rate of heat transfer in a 

certain direction depends, is the magnitude of the temperature gradient in that direction. The larger the 
gradient higher will be the rate of heat transfer. 

 
Heat Transfer Mechanisms: - There are three mechanisms by which heat transfer can take place. 
All the three modes require the existence of temperature difference. The three mechanisms are: (i) 
conduction, (ii) convection and (iii) radiation 

 
Conduction: - It is the energy transfer that takes place at molecular levels. Conduction is the transfer 

of energy from the more energetic molecules of a substance to the adjacent less energetic molecules 
as a result of interaction between the molecules. In the case of liquids and gases conduction is due to 

collisions and diffusion of the molecules during their random motion. In solids, it is due to the 

vibrations of the molecules in a lattice and motion of free electrons. 

Fourier’s Law of Heat Conduction: - The empirical law of conduction based on experimental results 

is named after the French Physicist Joseph Fourier. The law states that the rate of heat flow by 

conduction in any medium in any direction is proportional to the area normal to the direction of 

heat flow and also proportional to the temperature gradient in that direction. For example the 
rate of heat transfer in x- direction can be written according to Fourier’s law as 
 

                                      Qx  α − A (dT / dx)……………….(1.1) 

           or 

                                      Qx  = − k A (dT / dx)  W………….(1.2) 
 

In equation (1.2), Qx is the rate of heat transfer in positive x-direction through area A of the medium 

normal to x-direction, (dT/dx) is the temperature gradient and k is the constant of proportionality and 
is a material property called “thermal conductivity”. Since heat transfer has to take place in the 
direction of decreasing temperature, (dT/dx) has to be negative in the direction of heat transfer. 

Therefore negative sign has to be introduced in equation (1.2) to make Qx positive in the direction of 

decreasing temperature, thereby satisfying the second law of thermodynamics.  
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If equation (1.2) is divided throughout by A we have 

                                        qx  = (Qx / A) = − k (dT / dx)W/m2……………..(1.3) 

 

qx is called the heat flux. 

Thermal Conductivity: - The constant of proportionality in the equation of Fourier‟s law of 

conduction is a material property called the thermal conductivity.The units of thermal conductivity can 
be obtained from equation (1.2) as follows: 
 

Solving for k from Eq. (1.2) we have k = − qx / (dT/dx) 

Therefore units of k = (W/m
2 

) (m/ K) = W / (m – K) or W / (m – 
0 

C). Thermal conductivity is a 
measure of a material‟s ability to conduct heat. The thermal conductivities of materials vary over a 
wide range as shown in Fig. 1.1. 

 

It can be seen from this figure that the thermal conductivities of gases such as air vary by a factor of 10 
from those of pure metals such as copper. The kinetic theory of gases predicts and experiments 
confirm that the thermal conductivity of gases is proportional to the square root of the absolute 
temperature, and inversely proportional  to the square root of the molar mass M. Hence, the thermal 
conductivity of gases increases with increase in temperature and decrease with increase in molar mass. 
It is for these reasons that the thermal conductivity of helium (M=4) is much higher than those of air 
(M=29) and argon (M=40).For wide range of pressures encountered in practice the thermal 
conductivity of gases is independent of pressure. 

 

The mechanism of heat conduction in liquids is more complicated due to the fact that the molecules 

are more closely spaced, and they exert a stronger inter-molecular force field. The values of k for 

liquids usually lie between those for solids and gases. Unlike gases, the thermal conductivity for most 
liquids decreases with increase in temperature except for water. Like gases the thermal conductivity of 

liquids decreases with increase in molar mass. 
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              Fig. 1.1: Typical range of thermal conductivities of various materials 

 

 

In the case of solids heat conduction is due to two effects: the vibration of  lattice induced by 

the vibration of molecules positioned at relatively fixed positions , and energy transported due 

to the motion of free electrons. The relatively high thermal conductivities of pure metals are 

primarily due to the electronic component. The lattice component of thermal conductivity 
strongly depends on the way the molecules are arranged. For example, diamond, which is 

highly ordered crystalline solid, has the highest thermal conductivity at room temperature. 

 
Unlike metals, which are good electrical and heat conductors, crystalline solids such as 
diamond and semiconductors such as silicon are good heat conductors but poor electrical 

conductors. Hence such materials find widespread use in electronic industry. Despite their high 

price, diamond heat sinks are used in the cooling of sensitive  electronic components because 

of their excellent thermal conductivity. Silicon oils and gaskets are commonly used in the 
packaging of electronic components because they provide both good thermal contact and good 

electrical insulation. 
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One would expect that metal alloys will have high thermal conductivities, because pure 
metals have high thermal conductivities. For example one would expect that the value of the 
thermal conductivity k of a metal alloy made of two metals with thermal conductivities k1 

and k2 would lie between k1 and k2.But this is not the case. In fact k of a metal alloy will be 

less than that of either metal. 

 
The thermal conductivities of materials vary with temperature. But for some materials the 
variation is insignificant even for wide temperature range.At temperatures near absolute zero, 

the thermal conductivities of certain solids are extremely large. For example copper at 20 K 

will have a thermal conductivity of 20,000 W / (m-K), which is about 50 times the 

conductivity at room temperature. The temperature dependence of thermal conductivity makes 

the conduction heat transfer analysis more complex and involved. As a first approximation 
analysis for solids with variable conductivity is carried out assuming constant thermal 

conductivity which is an average value of the conductivity for the temperature range of 

interest. 

 
Thermal Diffusivity:- This is a property which is very helpful in analyzing transient heat 

conduction problem and is normally denoted by the symbol α . It is defined as follows. 

Heat conducted k 

α = -------------------------------------- = -------- (m
2
/s) ……(1.4) 

Heat Stored per unit volume ρCp 

It can be seen from the definition of thermal diffusivity that the numerator represents the 

ability of the material to conduct heat across its layers and the denominator represents the 

ability of the material to store heat per unit volume. Hence we can conclude that larger the 

value of the thermal diffusivity, faster will be the propagation of heat into the medium. A 

small value of thermal diffusivity indicates that heat is mostly absorbed by the material and 

only a small quantity of heat will be conducted across the material. 

 
Convection :- Convection heat transfer is composed of two mechanisms. Apart from energy 

transfer due to random molecular motion, energy is also transferred due to macroscopic motion 

of the fluid. Such motion in presence of the temperature gradient contributes to heat transfer. 

Thus in convection the total heat transfer is due to random motion of the fluid molecules 

together with the bulk motion of the fluid, the major contribution coming from the latter 

mechanism. Therefore bulk motion of the fluid is a necessary condition for convection heat 

transfer to take place in addition to the temperature gradient in the fluid. Depending on the 

force responsible for the bulk motion of the fluid, convective heat transfer is classified into 

“forced convection” and “natural or free convection”. In the case of forced convection, the 

fluid flow is caused by an external agency like a pump or a blower where as in the case of 

natural or free convection the force responsible for the fluid flow (normally referred to as the 

buoyancy force) is generated within the fluid itself due to density differences which are caused 

due to temperature gradient within the flow field. Regardless of the particular nature of 

convection, the rate equation for convective heat transfer is given by 

 

 

q = h ∆T .........................................................(1.5) 
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where q is the heat flux, ∆T is the temperature difference between the bulk fluid and the 
surface which is in contact with the fluid, and „h” is called the “convective heat transfer 
coefficient” or “surface film coefficient”. Eq.(1.5) is generally referred to as the 

Newton‟s law of cooling.If Ts is the surface temperature , Tf is the temperature of the bulk 

fluid and if Ts > Tf, then Eq. (1.5) in the direction of heat transfer can be written as 

q = h [Ts – Tf] ................................................. (1.6a) 

and if Ts < Tf, the equation reduces to 

q = h [Tf – Ts] ................................................. (1.6b) 

The heat transfer coefficient h depends on (i) the type of flow (i.e. whether the flow is laminar 
or turbulent), (ii) the geometry of the body and flow passage area, (iii) the thermo-physical 

properties of the fluid namely the density ρ, viscosity μ, specific heat at constant pressure Cp 

and the thermal conductivity of the fluid k and (iv) whether the mechanism of convection is 
forced convection or free convection. The heat transfer coefficient for free convection will be 
generally lower than that for forced convection as the fluid velocities in free convection are 
much lower than those in forced convection. The heat transfer coefficients for some typical 
applications are given in table 1.2. 

 
Table 1.2: Typical values of the convective heat transfer coefficient h 

------------------------------------------------------------------------------------------------------------ 

 

 

 

 

 

 

 

 

 

 
Thermal Radiation:- Thermal radiation is the energy emitted by matter (solid, liquid or gas) 

by virtue of its temperature. This energy is transported  by electromagnetic waves (or 
alternatively, photons).While the transfer of energy by conduction and convection requires 

the presence of a material medium, radiation does not require.Infact radiation transfer occurs 

most effectively in vacuum. 

 

Consider radiation transfer process for the surface shown in Fig.1.2a.Radiation that 

Type of flow h ,W / (m
2 

– K) 

Free convection   

Gases 2 – 25 

Liquids 50 – 1000 

Forced Convection   

Gases 25 – 250 

Liquids 50 – 20,000 

Convection with change of phase   

Boiling or condensation 
2500 – 100,000 
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Fig.1.2: Radiation exchange: (a) at a surface and (b) between a 

surface and large surroundings 
 

is emitted by the surface originates from the thermal energy of matter bounded by the surface, 
and the rate at which this energy is released per unit area is called as the surface emissive power 
E.An ideal surface is one which emits maximum emissive power and is called an ideal radiator 
or a black body.Stefan-Boltzman‟s law of radiation states that the emissive power of a black 
body is proportional to the fourth power of the absolute temperature of the body. Therefore if 

Eb is the emissive power of a black body at temperature T 
0
K, then 

 

Eb α T 
4
 

(or) 

Eb = ζ T 
4............................................................................................................................................... 

 

ζ is the Stefan-Boltzman constant (ζ = 5.67 x 10 
− 8 

W / (m
2 

– K
4
) ). For a non black 

surface the emissive power is given by 
 

E = ε ζ T 
4........................................................... 

(1.8) 

where ε is called the emissivity of the surface (0 ≤ ε ≤ 1).The emissivity provides a 

measure of how efficiently a surface emits radiation relative to a black body. The 

emissivity strongly depends on the surface material and finish. 
 

Radiation may also incident on a surface from its surroundings. The rate at which the radiation is 

incident on a surface per unit area of the surface is calle the “irradiation” of the surface and is 

denoted by G. The fraction of this energy absorbed by the surface is called “absorptivity” of the 

surface and is denoted by the symbol α. The fraction of the

q 

s q 
surr 

Surface of emissivity ε, area 

A, and temperature T 
s 
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s 

incident energy is reflected and is called the “reflectivity” of the surface denoted by ρ and the 

remaining fraction of the incident energy is transmitted through the surface and is called the 

“transmissivity” of the surface denoted by η. It follows from the definitions of α, ρ, and η 

that 

α+ ρ + η = 1 ....................................................... (1.9) 

 

Therefore the energy absorbed by a surface due to any radiation falling on it is given by 
 

Gabs = αG .................................................. (1.10) 

The absorptivity α of a body is generally different from its emissivity. However in many 
practical applications, to simplify the analysis α is assumed to be equal to its emissivity ε. 

 
Radiation Exchange:- When two bodies at different temperatures “see” each other, heat is 
exchanged between them by radiation. If the intervening medium is filled with a substance 

like air which is transparent to radiation, the radiation emitted from one body travels through 

the intervening medium without any attenuation and reaches the other body, and vice versa. 

Then the hot body experiences a net heat loss, and the cold body a net heat gain due to 

radiation heat exchange between the two. The analysis of radiation heat exchange among 
surfaces is quite complex which will be discussed in chapter 10. Here we shall consider two 

simple examples to illustrate the method of calculating the radiation heat exchange between 

surfaces. 

 

As the first example‟ let us consider a small opaque plate (for an opaque surface η = 0) of 

area A, emissivity ε and maintained at a uniform temperature Ts. Let this plate is exposed to a 

large surroundings of area Asu (Asu >> A) which is at a uniform temperature Tsur as shown in 

Fig. 1.2b.The space between them contains air which is transparent to thermal radiation. 

 

The radiation energy emitted by the plate is given by 

Qem = A ε ζ T 
4
 

The large surroundings can be approximated as a black body in relation to the small plate. 

Then the radiation flux emitted by the surroundings is ζ Tsur
4 

which is also the radiaton flux 
incident on the plate. Therefore the radiation energy absorbed by the plate due to emission 
from the surroundings is given by 

Qab = A α ζ Tsur
4
. 

The net radiation loss from the plate to the surroundings is therefore given by 

Qrad = A ε ζ Ts
4 

− A α ζ Tsur
4
. 
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s sur 
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A2, ε2, T2 

A1, ε1, T1 

Assuming α = ε for the plate the above expression for Qnet reduces to 

 

Qrad = A ε ζ [T 
4 

– T 
4 

] ........................ (1.11) 

The above expression can be used to calculate the net radiation heat exchange between a 

small area and a large surroundings. 

As the second example, consider two finite surfaces A1 and A2 as shown in Fig. 1.3. 
 

 
 

 

 

Fig.1.3: Radiation exchange between surfaces A1 and A2 

 

 
The surfaces are maintained at absolute temperatures T1 and T2 respectively, and have 
emissivities ε1 and ε2. Part of the radiation leaving A1 reaches A2, while the remaining energy 
is lost to the surroundings. Similar considerations apply for the radiation leaving 

A2.If it is assumed that the radiation from the surroundings is negligible when compared to 

the radiation from the surfaces A1 and A2 then we can write the expression for the radiation 

emitted by A1 and reaching A2 as 

Q1→2 = F1− 2 A1ε1ζ T1
4 ................................................... 

(1.12) 

where F1 – 2 is defined as the fraction of radiation energy emitted by A1 and reaching A2. 

Similarly the radiation energy emitted by A2 and reaching A1 is given by 

Q2→1 = F2− 1 A2 ε2 ζ T2
4 ...................................................

(1.13) 

where F2 – 1 is the fraction of radiation energy leaving A2 and reaching A1. Hence the net 

radiation energy transfer from A1 to A2 is given by 
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1 2 

2 2 

Q1 – 2 = Q1→2 − Q2→1 

= [F1− 2 A1ε1ζ T 
4
] − [F2− 1 A2 ε2 ζ T 

4
] 

F1-2  is  called the view factor (or geometric shape factor or configuration factor) of A2  with 

respect to A1 and F2 - 1 is the view factor of A1 with respect to A2.It will be shown in  chapter 10 
that the view factor is purely a geometric property which depends on the relative 

orientations of A1 and A2 satisfying the reciprocity relation, A1 F1 – 2 = A2 F2 – 1. 

Therefore Q1 – 2 = A1F1 – 2 ζ [ε1 T1
4 

− ε   T 
4
] ........................... (1.13) 

Radiation Heat Transfer Coefficient:- Under certain restrictive conditions it is possible to 
simplify the radiation heat transfer calculations by defining a radiation heat transfer 

coefficient hr analogous to convective heat transfer coefficient as 

Qr = hrA ΔT 

 
For the example of radiation exchange between a surface and the surroundings [Eq. (1. 11)] using 
the concept of radiation heat transfer coefficient we can write 
 

4 4 
Qr = hrA[Ts – Tsur] = A ε ζ [Ts – Tsur ] 

ε ζ [Ts
4 

– Tsur
4 

]ε ζ [Ts
2 

+ Tsur
2 

][Ts + Tsur][Ts – Tsur] 

Or hr = --------------------- = ----------------------------------------------- 

 [Ts – Tsur] [Ts – Tsur] 

 
Or hr = ε ζ [Ts

2 
+ Tsur 

2 
][Ts + Tsur] ................................... (1.14) 

 

First Law of Thermodynamics (Law of conservation of energy) as applied to Heat Transfer 

Problems :- 

The first law of thermodynamics is an essential tool for solving many heat transfer problems. 

Hence it is necessary to know the general formulation of the first law of thermodynamics. 

First law equation for a control volume:- A control volume is a region in space bounded by a 

control surface through which energy and matter may pass.There are two options of 

formulating the first law for a control volume. One option is formulating the law on a rate 
basis. That is, at any instant, there must be a balance between all energy rates. Alternatively, 

the first law must also be satisfied over any time interval Δt. For such an interval, there must be 

a balance between the amounts of all energy changes. 

 
First Law on rate basis: - The rate at which thermal and mechanical energy enters a control 
volume, plus the rate at which thermal energy is generated within the control volume, minus 
the rate at which thermal and mechanical energy leaves the control volume must be equal to 
the rate of increase of stored energy within the control volume. Consider a control volume 
shown in Fig. 1.4 which shows that thermal and 
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. 

mechanical energy are entering the control volume at a rate denoted by Ein, thermal and 
 

 

 

 

 

 

 

 

 
.   

Eg 
. . 

Est Eout 
. 

Ein   

 

 

 

Fig. 1.4: Conservation of energy for a control volume on rate basis 

 

 
. 

mechanical energy are leaving the control volume at a rate denoted by Eout. The rate at 

. 

which energy is generated within the control volume is denoted by Eg and the rate at 

. 

which energy is stored within the control volume is denoted by Est. The general form  of the 
energy balance equation for the control volume can be written as follows: 

. . . . 

Ein + Eg − Eout = Est ..................................................... (1.15) 

. 

Est is nothing but the rate of increase of energy within the control volume and hence  
can be written as equal to dEst / dt. 

First Law over a Time Interval Δt:- Over a time interval Δt, the amount of thermal and 
mechanical energy that enters a control volume, plus the amount of thermal energy generated 
within the control volume minus the amount of thermal energy that leaves the control volume 
is equal to the increase in the amount of energy stored within the control volume. 

The above statement can be written symbolically as 
 

Ein + Eg – Eout = ΔEst ................................................ (1.16) 

 
The inflow and outflow energy terms are surface phenomena. That is they are associated 
exclusively with the processes occurring at the boundary surface and are proportional to the 

surface area. 
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T1 

L 

x 

The energy generation term is associated with conversion from some other form (chemical, 

electrical, electromagnetic, or nuclear) to thermal energy. It is a volumetric phenomenon.That 

is, it occurs within the control volume and is proportional to the magnitude of this volume. 

For example, exothermic chemical reaction may be taking place within the control volume. 

This reaction converts chemical energy to thermal energy and we say that energy is generated 

within the control volume. Conversion of electrical energy to thermal energy due to 

resistance heating when electric current is passed through an electrical conductor is another 

example of thermal energy generation 

Energy storage is also a volumetric phenomenon and energy change within the control 
volume is due to the changes in kinetic, potential and internal energy of matter within the 
control volume. 

 
 Illustrative Examples: A. Conduction 

 
 

Example 1.1:- Heat flux through a wood slab 50 mm thick, whose inner and  outer 

surface temperatures are 40 
0 

C and 20 
0 

C respectively, has been determined to 

be 40 W/m
2
. What is the thermal conductivity of the wood slab? 

Solution: 
 
 

 

 

Given:- T1 = 40 
0 

C; T2 = 20 
0 

C; L = 0.05 

m q = Q/A = 40 W / m
2
. 

 
T2 To find: k 

. 
 

 
 

 

 

 

 

 

Assuming steady state conduction across the thickness of the slab and noting that the slab is 

not generating any thermal energy, the first law equation for the slab can be written as 

 

Rate at which thermal energy (conduction) is entering the slab at the surface  x = 0 
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is equal to the rate at which thermal energy is leaving the slab at the surface x = 
L That is 

 

Qx|x = 0 = Qx|x = L = Qx = constant 

By Fourier‟s law we have Qx = − kA (dT / dx). 

Separating the variables and integrating both sides w.r.t. „x‟ we have 

L T2 

Qx ∫dx = − kA ∫dT . Or Qx = kA (T1 – T2) / L 
0 T1 

 
 

Heat flux = q = Qx / A = k(T1 – T2) / L 
 

Hence k = q L / (T1 – T2) = 40 x 0.05 / (40 – 20) = 0.1 W / (m – K) 

 

 
Example 1.2:- A concrete wall, which has a surface area of 20 m

2 
and thickness 30 cm, 

separates conditioned room air from ambient air.The temperature of the inner surface of 

the wall is 25 
0 

C and the thermal conductivity of the wall is 1.5 W / (m-K).Determine the 

heat loss through the wall for ambient temperature varying from ─ 15 
0 

C to 38 
0 

C 
which correspond to winter and summer conditions and display your results graphically. 

Solution: 
 
 

Data:- T1 = 25 
0 

C ; A = 20 m
2
; L = 0.3 m 

K = 1.5 W /(m-K) ; 

By Fourier‟s law, 
 

Q = kA(T1 – T2) / L 

1.5 x 20 x (25 – T2) 
= ------------------------- 

0.30 

Or Q = 2500 – 100 T2 ................ (1) 

Heat loss Q for different values of T2 ranging from – 15 
0 

C to + 38 
0 

C 

are obtained from Eq. (1) and the results are plotted as shown 

Scale x-axis : 1cm= 5 C 

y-axis : 1cm =1000 W 

T1 

Q 

T2 

L 
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Example 1.3:-What is the thickness required of a masonry wall having a thermal 

conductivity of 0.75 W/(m-K), if the heat transfer rate is to be 80 % of the rate through 

another wall having thermal conductivity of 0.25 W/(m-K) and a thickness of 100 mm? 
Both walls are subjected to the same temperature difference. 

 

Solution:- Let subscript 1 refers to masonry wall and subscript 2 refers to the other wall. 

 

By Fourier‟s law, Q1 = k1A(T1 – T2) / L1 

And Q2 = k2A(T1 – T2) / L2 

Therefore Q1 k1 L2 

 ---- = ---------- 

 Q2 k2 L1 

  Q2 k1 

 L1 = ----------- L2 

  Q1 k2 

= (1 / 0.80) x (0.75/0.25) x 100 = 375 mm 

 
B. Convection: 

Example 1.4:- Air at 40 
0 

C flows over a long circular cylinder of 25 mm diameter with an 

embedded electrical heater. In a series of tests, measurements were made of power 

Q 1.2 equation: Q= 2500-100T(2) 

5000 

 
4000 

 
3000 

 
2000 

Series2 
1000 

 
0 

1 2 3 4 5 6 7 8 9 10 11 12 

-1000 

 
-2000 

T(2) , celsius 

Q
 ,
w

a
tt

s
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per unit length, P required to maintain the surface temperature of the cylinder at 300 
0 

C 

for different stream velocities V of the air. The results are as follows: 

Air velocity, V (m/s) : 1 2 4 8 12 

Power, P (W/m) : 450 658 983 1507 1963 

 
(a) Determine the convective heat transfer coefficient for each velocity and display 

your results graphically. (h = P / 20.43) 

(b) Assuming the dependence of the heat transfer coefficient on velocity to 

be of the form h = CV 
n 

, determine the parameters C and n from the 
results of part (a). 

 

Solution:- 

 

 
 

Ts 

 

 
V,T∞ 

 

 

 

 

 

Data:- D = 0.025 m : Ts = 300 
0 

C ; T∞ = 40 
0 

C; 

 
 

If h is the surface heat transfer coefficient then the power dissipated by the cylinder 
by convection is given by 

 
P = hAs  (Ts  - T∞) 

 

Where As is the area of contact between the fluid and the surface of the cylinder. Therefore 

P = h πDL (Ts  - T∞) 

Or h = P / [πDL(Ts - T∞)] = P / [π x 0.025 x 1 x(300 – 40)] 

Or h = P / 20.42 W/m2-k .................................................. (1) 

 
Values of h for different flow velocities are obtained and tabulated as follows: 

D 
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Air Velocity, V (m/s) :  1 2 4 8 12 

Power,P (W/m) : 450 658 983 1507 1963 

h, (W / (m
2 

– K) ) : 22.04 32.22 48.14 73.8 96.13 
 

(a) A graph of h versus V can now be plotted as shown in Fig. P 1.4 
(a). Scale: X axis 1cm= 1m/s 

Y axis 1cm= 10 W/m
2
k 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

(b) h = CV
n

 

Therefore ln h = ln C + n ln V ...................................... (2) 
 

If ln h is plotted against ln V it will be straight line and the slope of which will give the 

value of n. Also the intercept of this line w.r.t the axis on which ln V is plotted will give 

the value of ln C from which C can be determined. The log –log plot is as shown in Fig. P 

1.4(b). Scale X axis 1cm=0.25 

Y axis 1cm=0.5 

Q 1.4a 

120 

 
100 

 
80 

 
60 

 
40 

 
20 

 
0 

1 2 3 4 5 6 7 8 9 10 11 12 13 

velocity, m/s 

h
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ln C = 3.1 or C = 22 

 

(ln h – ln C) (4.55 – 3.10) 

and n = ----------------------- = ------------------- 

ln V 2.5 

 

= 0.571 

Therefore h = 22.2 V
0.571 

is the empirical relation between h and V. 

Example 1.5:- A large surface at 50 
0 

C is exposed to air at 20 
0 

C. If the heat transfer 

coefficient between the surface and the air is 15 W/(m
2
-K), determine the heat  

transferred from 5 m
2 

of the surface area in 7 hours. 

1.4b Slope: 0.571 

5 

4 

3 

2 

1 

0 

1 2 3 4 5 6 7 8 9 10 11 12 

ln v 

ln
 h
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Ts =50 0C       

h = 15 W/(m
2 

– K) ; T∞ = 20 0 C 
 
 

 

A = 5 m
2 

: time = t = 7 h ; 

Q total = Q t = hA(Ts - T∞) t = 15 x 5 x (50 – 20) x 7 x 3600 J 

= 56.7 x 10 
6 

J = 56.7 MJ 

 
 

Example 1.6:- A 25 cm diameter sphere at 120 
0 

C is suspended in air at 20 
0 

C. If 

the convective heat transfer coefficient between the surface and air is 15 W/(m
2
-K), 

determine the heat loss from the sphere. 

 
 

Solution:- 
 
 
 

 

h = 15 W/(m
2
-K) 

Ts = 120 
0
C 

 
 

T∞ = 20 
0
 

 

C 
D = 0.25 m 

 

 

Q = hAs(Ts - T∞) = h 4πR
2 

(Ts - T∞) = 15 x 4π x (0.25/2)
2 

x (120 – 

20) = 294.52 W 
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1 2 

1 2 

C. Radiation: 
 

Example 1.7:- A sphere 10 cm in diameter is suspended inside a large evacuated 
chamber whose walls are kept at 300 K. If the surface of the sphere is black and 

maintained at 500 K what would be the radiation heat loss from the sphere to the walls 

of the chamber?. What would be the heat loss if the surface of the sphere has an 

emissivity of 0.8? 
 

Solution:  

 
T1 = 500 K ; T2 = 300 K ; d1 = 0.10 m 

Surface area of the sphere = As = 4πR 
2
 

= 4πx (0.1/2) 

= 0.0314 m
2

 

If the surface of the sphere is black then 
 

Qblack = ζ As (T  
4 

– T  
4
 

= 5.67 x 10 
─ 8

x 0.0314 x (500
4 

– 300
4
) 

= 96.85 W 

If the surface is having an emissivity of 0.8 

then 

Q = 0.8 Qblack = 0.8 x 96.85 = 77.48 W. 
 

 

 

Example 1.8:- A vacuum system as used in sputtering conducting thin films on micro 

circuits, consists of a base plate maintained at a temperature of 300 K by an electric 

heater and a shroud within the enclosure maintained at 77 K by circulating liquid 
nitrogen. The base plate insulated on the lower side is 0.3 m in diameter and has an 

emissivity of 0.25. 

(a) How much electrical power must be provided to the base plate heater? 

 
(b) At what rate must liquid nitrogen be supplied to the shroud if its latent heat  

of vaporization is 125 kJ/kg? 
 

Solution:- T1 = 300 K ; T2 = 77 K ; d = 0.3 m ; ε1 = 0.25 

Surface area of the top surface of the base plate = As = (π / 4)d1
2 = (π / 4) x 0.32 

  T2 

 

 
 

T1 

 

 

d1 

) 
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s ∞ s s ∞ 

s s 

2 

 

(a) Qr = ε1ζ As (T 

 
4 

– T 
4 

= 0.0707 m
2

 

= 0.25 x 5.67 x 10 
─ 8 

x 0.0707 x (300
4 

– 77
4
) = 8.08 W 

. 

(b) If mN2 = mass flow rate of nitrogen that is vapourised then 

. 8.08 

mN2 = Qr / hfg = ----------------- = 6.464 x 10
-5 

kg/s or 0.233 kg/s 

125 x 1000 

 
Example 1.9:- A flat plate has one surface insulated and the other surface exposed to the 

sun. The exposed surface absorbs the solar radiation at a rate of 800 W/m
2 

and 
dissipates heat by both convection and radiation into the ambient at 300 K. If the 

emissivity of the surface is 0.9 and the surface heat transfer coefficient is 12 W/(m
2
-K), 

determine the surface temperature of the plate. 

 

Solution:- 
 
 

Qsolar 

T∞ = 300 K ; qsolar = 800 W / m
2

 
Qr 

Qconv Ts ; ε = 0.9 ; h = 12 W / (m
2 

– K) 

 
 
 

 

Insulated 

Energy balance equation for the top surface of the plate is given by 
 

Qsolar = Qr + Qconv 

qsolar As = ε ζ As (T 
4 

- T 

 
4
) + h A (T - T ) 

Therefore 800 = 0.9 x 5.67 x 10 
─ 8

x (T 
4 

– 300
4
) + 12 x (T – 300) 

 
 

On simplifying the above equation we get 

(Ts / 100)
4 

+ 2.35 Ts = 943 ...................................... (1) 

Equation (1) has to be solved by trial and error. 

1 ) 
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s 1 s s ∞ 

Trial 1:- Assume Ts = 350 K. Then LHS of Eq. (1) = 972.6 which is more than RHS 

of Eq.(1). Hence Ts < 350 K. 

Trial 2 :- Assume Ts = 340 K. Then LHS of Eq. (1) = 932.6 which is slightly less than 

RHS. Therefore Ts should lie between 340 K and 350 K but closer to 340 K. Trial 3:- 

Assume Ts = 342.5 K. Then LHS of Eq.(1) = 942.5 = RHS of Eq. (1). Therefore Ts = 

 K 
 

Example 1.10:- The solar radiation incident on the outside surface of an aluminum shading 

device is 1000 W/m
2
. Aluminum absorbs 12 % of the incident solar energy and dissipates it 

by convection from the back surface and by combined convection and radiation from the 
outer surface. The emissivity of aluminum is 0.10 and the convective heat transfer 

coefficient for both the surfaces is 15 W/(m
2 

–K). The ambient temperature of air may be 

taken as 20 
0 

C. Determine the temperature of the shading device. 

Solution:- qsolar = 1000 W / m
2 

; absorptivity of aluminum = α = 0.12 ; emissivity 

of aluminum = ε = 0.10 ; h = 15 W /(m
2 

– K) ; T∞ = 20 + 273 = 293 K ; 

Solar radiation flux absorbed by aluminum = qa = α qsolar = 0.12 x 1000 = 120 W / m
2
. 

 

 

 
 

 

 

 

 

 

 

 

qc2 

The energy absorbed by aluminum is 

dissipated by convection from the back 

surface and by combined convection 

and radiation from the outer surface. 

Hence the energy balance equation can 

be written as 
 

qa = qr + qc1 + qc2 

Therefore, qa = ε ζ T 
4 

– α ζT 
4
) + h (T - T 

 

) + h 

 

(T - T ) 

Or 120 = 5.67 x 10 
─ 8

x (0.10Ts
4 

– 0.12 x 293
4
) + (Ts – 293)x (15 + 15) 

On simplifying we get,  (Ts / 100)
4 

+ 53 Ts = 15873 .......................................(1) 

q solar qr 

qc1 

∞ ∞ 2 
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Eq.(1) has to be solved by trial and error. 
 

Trail 1:- Assume Ts = 300 K. Then LHS = 15981 which is > RHS. 

Trail 2 :- Assume Ts = 295 K. Then LHS = 15710.73 which is < RHS. Hence Ts  

should lie between 300K and 295 K. 
 

Trial 3 :- Assume Ts = 297 K . Then LHS = 15819 which is almost equal to  RHS 

(Within 0.34 %) 

Therefore Ts = 297 K. 
. 



23 
 

UNIT-II 
ONE DIMENSIONAL STEADY STATE AND TRANSIENT  

CONDUCTION HEAT TRANSFER 

 
Introduction: In this chapter, the governing basic equations for conduction in Cartesian 

coordinate system is derived. The corresponding equations in cylindrical and spherical 

coordinate systems are also mentioned. Mathematical representations of different types of 
boundary conditions and the initial condition required to solve conduction problems are also 

discussed. After studying this chapter, the student will be able to write down the governing 

equation and the required boundary conditions and initial condition if required for any 

conduction problem. 

 
One – Dimensional Conduction Equation : In order to derive the one-dimensional 
conduction equation, let us consider a volume element of the solid of thickness Δx along 

x – direction at a distance „x‟ from the origin as shown in Fig. 2.1.Qx represents the rate 
 

 

 

 
 

A(x) q’’’ 

Qx 

 

Qx + Δx 

 

 

 

 

 

 

 

x 
 

Fig. 2.1: Nomenclature for one dimensional conduction equation 
 
 

 

of heat transfer in x – direction entering into the volume element at x, A(x) area of heat 

flow at the section x ,q‟‟‟ is the thermal energy generation within the element per unit 

volume and Qx+Δx is the rate of conduction out of the element at the section x + Δx. 
The energy balance equation per unit time for the element can be written as follows: 

O 
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[ Rate of heat conduction into the element at x + Rate of thermal energy generation 
within the element − Rate of heat conduction out of the element at x + Δx ] 

 

= Rate of increase of internal energy of the element. 

 

i.e., Qx + Qg – Qx+Δx = ∂E / ∂t 

or Qx + q‟‟‟ A(x) Δx – {Qx + (∂Qx / ∂x)Δx + (∂2Qx / ∂x2)(Δx)2 / 2! + …….} 

 
= ∂/ ∂t (ρA(x)ΔxCpT) 

 
Neglecting higher order terms and noting that ρ and Cp are constants the above equation 
simplifies to 

 
Qx + q‟‟‟ A(x) Δx – {Qx + (∂Qx / ∂x)Δx = ρA(x)ΔxCp (∂T/ ∂t) 

Or − (∂Qx / ∂x) + q‟‟‟ A(x) = ρA(x) Cp (∂T/ ∂t) 

Using Fourier‟s law of conduction , Qx = − k A(x) (∂T / ∂x), the above 
equation simplifies to 

− ∂/ ∂x {− k A(x) (∂T / ∂x)} + q‟‟‟ A(x) = ρA(x) Cp (∂T/ ∂t) 

 

Or {1/A(x)} ∂/ ∂x {k A(x) (∂T / ∂x)} + q’’’ = ρ Cp (∂T/ ∂t) ....................(2.1) 

 

Eq. (2.1) is the most general form of conduction equation for one-dimensional  
unsteady state conduction. 

 
 Equation for one-dimensional conduction in plane walls :- For plane walls, the 
area of heat flow A(x) is a constant. Hence Eq. (2.1) reduces to the form 

 

∂/ ∂x {k (∂T / ∂x)} + q’’’ = ρ Cp (∂T/ ∂t) ........................... (2.2) 

(i) If the thermal conductivity of the solid is constant then the above equation reduces to 

(∂
2
T / ∂x

2
) + (q’’’ / k) = (1/α )(∂T/ ∂t) ...................................(2.3) 

(ii) For steady state conduction problems in solids of constant thermal conductivity 
temperature within the solid will be independent of time (i.e.(∂T/ ∂t) = 0) 

and hence Eq. (2.3) reduces to 

(d
2
T / dx

2 
)+ (q’’’ / k) = 0… .............................................. (2.4) 
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R 

Qr 

r 

Qr 

L 

 

(iii) For a solid of constant thermal conductivity for which there is no  thermal 
energy generation within the solid q‟‟‟ = 0 and the governing for steady state 
conduction is obtained by putting q‟‟‟ = 0 in Eq. (2.4) as 

(d
2
T / dx

2 
) = 0 .............................................. (2.4) 

 Equation for one-dimensional radial conduction in cylinders:- 
 

 

 

 

 

 

 

 

 

 

 

. 

For radial conduction in cylinders, by convention the radial coordinate is denoted by „r‟ 

instead of „x‟ and the area of heat flow through the cylinder of length L,at any radius r 
is given by A(x) = A(r) = 2πrL. Hence substituting this expression for A(x) and 

replacing x by r in Eq. (2.1) we have 
 

{1/(2πrL)∂/ ∂r {k 2πrL (∂T / ∂r)} + q‟‟‟ = ρ Cp (∂T/∂t) 

Or (1/r) ∂/ ∂r {k r (∂T / ∂r)} + q’’’ = ρ Cp (∂T/ ∂t) .................... (2.5) 

(i) For cylinders of constant thermal conductivity the above equation reduces to 

 

(1/r) ∂/ ∂r { r (∂T / ∂r)} + q’’’ / k = (1 / α) (∂T/ ∂t) ..................... (2.6) 
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(ii) For steady state radial conduction (i.e. (∂T/ ∂t) = 0 ) in cylinders of constant k, the 
above equation 

 

reduces to         (1/r) d/ dr { r (dT / ∂r)} + q’’’ / k = 0 ......................................... (2.7) 

 
(iii) For steady state radial conduction in cylinders of constant k and having no 

thermal energy generation (i.e. q‟‟‟ = 0) the above equation reduces to 

 
 

d/ dr { r (dT / ∂r)} = 0 ...............................................(2.8) 

 
 Equation for one-dimensional radial conduction in spheres:- For one-imensional 

radial conduction in spheres, the area of heat flow at any radius r is given by A(r) = 4πr
2
. 

Hence Eq.(2.1) for a sphere reduces to 
 

{1/(4π r2  )}∂/ ∂r {k 4π r2 (∂T / ∂r)} + q‟‟‟ = ρCp (∂T/ ∂t) 

 

Or 1/r2  ∂/ ∂r {k r2  (∂T / ∂r)} + q’’’ = ρ Cp (∂T/ ∂t) ........................... (2.9) 

 

(i) For spheres of constant thermal conductivity the above equation reduce to 

1/r
2 

∂/ ∂r { r
2  

(∂T / ∂r)} + q’’’ / k = (1 / α) (∂T/ ∂t) ...................... (2.10) 

(ii) For steady state conduction in spheres of constant k the above equation further reduce 
to 

1/r
2 

∂/ ∂r { r
2  

(∂T / ∂r)} + q’’’ / k  = 0 ........................................... (2.11) 

(iii) For steady state conduction in spheres of constant k and without any thermal 
energy generation the above equation further reduces to 

1/r
2 

d/ dr { r
2  

(dT / dr)} = 0 ...................................................... (2.12) 

 
Equation in compact form:- The general form of one – dimensional conduction 
equations for plane walls, cylinders and spheres {equations (2..2), (2.5) and (2.9)} can  

be written in a compact form as follows: 
 

1/rn  ∂/ ∂r {k rn  (∂T / ∂r)} + q’’’ = ρ Cp (∂T/ ∂t) ................ (2.13) 

 

Where n = 0 for plane walls, 

n = 1 for radial conduction in cylinders 

n = 2 for radial conduction in spheres, 
and for plane walls it is customary to replace the „r‟ variable by „x‟ variable. 
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Three dimensional conduction equations: While deriving the one – dimensional conduction 

equation, we assumed that conduction heat transfer is taking place only along one direction. By 

allowing conduction along the remaining two directions and following the same procedure we 

obtain the governing equation for conduction in three dimenions. 

 
Three dimensional conduction equation in Cartesian coordinate system: Let us consider a 
volume element of dimensions Δx, Δy and Δz in x y and z directions respectively. The 
conduction heat transfer across the six surfaces of the element  is shown in Fig. 2.3. 

 
z Qz + Δz Qy + Δy 

y 
 

Δz 
x 

 

 

Qx + Δx 

Qx 

Δy 
 

Δx 
 

Qy Qz 

Fig. 2.3: Conduction heat transfer across the six faces of a volume element 

 
Net Rate of conduction into the element in x-direction = Qx – Qx + Δx 

= Qx – [Qx + (∂Qx/∂x) Δx + (∂
2
Qx/∂x

2
)(Δx)

2 
/ 2! + ….] 

= − (∂Qx/∂x) Δx by neglecting higher order terms. 

= − ∂ / ∂x [− kx Δy Δz(∂T / ∂x)] Δx 

= ∂ / ∂x[kx (∂T / ∂x)] Δx Δy Δz 

Similarly the net rate of conduction into the element 

in y – direction = ∂ / ∂y[ky (∂T / ∂y)] Δx Δy Δz 

and in z – direction = ∂ / ∂z[kz (∂T / ∂z)] Δx Δy Δz. 
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Hence the net rate of conduction into the element from all the three directions 
 

Qin = {∂ / ∂x[kx (∂T / ∂x)] + ∂ / ∂y[ky (∂T / ∂y)] + ∂ / ∂z[kz (∂T / ∂z)] } Δx Δy Δz 

Rate of heat thermal energy generation in the element = Qg = q‟‟‟ Δx Δy Δz 

Rate of increase of internal energy within the element = ∂E / ∂t = ρ Δx Δy Δz Cp (∂T / 

∂t) Applying I law of thermodynamics for the volume element we have 
 

Qin + Qg = ∂E / ∂t 

Substituting the expressions for Qin, Qg and ∂E / ∂t and simplifying we get 

{∂ / ∂x[kx (∂T / ∂x)] + ∂ / ∂y[ky (∂T / ∂y)] + ∂ / ∂z[kz (∂T / ∂z)] } + q’’’ = ρ Cp (∂T / ∂t) 

 

……………………(2.14) 

 

Equation (2.14) is the most general form of conduction equation in Cartesian coordinate 
system. This equation reduces to much simpler form for many special cases as 
indicated below. 

Special cases:- (i) For isotropic solids, thermal conductivity is independent of 

direction; i.e., kx = ky = k z = k. Hence Eq. (2.14) reduces to 

{∂ / ∂x[k (∂T / ∂x)] + ∂ / ∂y[k (∂T / ∂y)] + ∂ / ∂z[k (∂T / ∂z)] } + q’’’ = ρ Cp (∂T / ∂t) 

……………………..(2.15) 
(ii) For isotropic solids with constant thermal conductivity the above equation 
further reduces to 

∂
2
T / ∂x

2  
+ ∂

2
T / ∂y

2 
+ ∂

2
T / ∂z

2  
+ q’’’ / k = (1 / α) (∂T / ∂t)… ............................ (2.16) 

Eq.(2.16) is called as the “Fourier – Biot equation” and it reduces to the following 

forms under specified conditions as mentioned below: 

 

(iii) Steady state conduction [i.e., (∂T / ∂t) = 0] 

∂
2
T / ∂x

2  
+ ∂

2
T / ∂y

2 
+ ∂

2
T / ∂z

2  
+ q’’’ / k = 0 ........................................... (2.17) 

Eq. (2.17) is called the “Poisson equation”. 

 

(iv) No thermal energy generation [i.e. q‟‟‟ = 0]: 

∂
2
T / ∂x

2   
+ ∂

2
T / ∂y

2 
+ ∂

2
T / ∂z

2 
= (1 / α) (∂T / ∂t)… ......................................... (2.18) 
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z 

P(x,y,z) 

θ 

r 

 

Eq. (2.18) is called the “diffusion equation”. 

 

(v) Steady state conduction without heat generation [i.e., (∂T / ∂t) = 0 and q‟‟‟ = 0]: 

∂
2
T / ∂x

2   
+ ∂

2
T / ∂y

2 
+ ∂

2
T / ∂z

2 
= 0 .............................................................. (2.19) 

Eq. (2.19) is called the “Laplace equation”. 

 

Three dimensional conduction equation in cylindrical coordinate system: 
 

It is convenient to express the governing conduction equation in cylindrical  coordinate 

system when we want to analyse conduction in cylinders. Any point P in space can be 
located by using the cylindrical coordinate system r, θ and z and its relation to the Cartesian 

coordinate system (See Fig. 2.4) can be written as follows: 
 

 

 

 

 

 

 

 
 

 

 

x 
 

 

 

 

 
 

y 
Fig.2.4: Cylindrical coordinate system 

 

 
 

x = r cos θ ; y = r sin θ ; z = z. Using these transformations and after 
laborious simplifications Eq. (2.15) simplifies to 

 
1  ∂ ∂T 1   ∂ ∂ T ∂ ∂ T ∂ T 
--- ---- [ k r ---- ] + --- --- [k ------- ] + --- [k ----- ] + q’’’ = ρ Cp ----- 

r ∂r ∂r r
2  

∂ θ ∂ θ ∂ z ∂ z ∂ t 

……………..(2.20) 

 

The above equation is valid for only for isotropic solids. 
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2.3.2. Three dimensional conduction equation in Spherical coordinate system: 
 

For spherical solids,it is convenient to express the governing conduction equation in spherical 

coordinate system. Any point P on the surface of a sphere of radius r can be located by using 

the spherical coordinate system r, θ and θ and its relation to the Cartesian coordinate system 

(See Fig. 2.5) can be written as follows: 

 

z  
OP‟ = r sin θ.Hence 

  
P(x,y,z) 

x = r sin θ cos θ ; 

  y = r sin θ sin θ ; 

  

r 
z = r cos θ 

θ  
 

O 
x 

θ 

 

P’ 

y 
Fig: 2.5: Spherical coordinate system 

 
 

Using the relation between x, y ,z and r, θ and θ, the conduction equation (2.15) can be 
transformed into the equation in terms of r, θ and θ as follows. 

 
1  ∂ ∂T 1 ∂ ∂ T 1 ∂ ∂ T 

--- ---- [ kr
2  

---- ] + ---------- -----[k ------- ] + ----------- --- [k sin θ ----- ] 

r
2 

∂r ∂r r
2  

sin 
2 

θ  ∂ θ ∂ θ r
2 

sin θ ∂ θ ∂ θ 

∂ T 

+ q’’’ = ρ Cp ---- ...................... (2.21). 
∂ t 

 

Boundary and Initial Conditions: 

 
The temperature distribution within any solid is obtained by integrating the above conduction 

equation with respect to the space variable and with respect to time.The solution thus obtained is 

called the “general solution” involving arbitrary constants of integration. The solution to a 

particular conduction problem is arrived by obtaining these constants which depends on the 

conditions at the bounding surfaces of the solid as well as 
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the initial condition. The thermal conditions at the boundary surfaces are called the 
“boundary conditions” . Boundary conditions normally encountered in practice are: 

(i) Specified temperature (also called as boundary condition of the first kind), 

(ii) Specified heat flux (also known as boundary condition of the second kind), 

(iii) Convective boundary condition (also known as boundary condition of the third kind) and 
(iv) radiation boundary condition. The mathematical representations of these boundary 
conditions are illustrated by means of a few examples below. 

 

Specified Temperatures at the Boundary:- Consider a plane wall of thickness Lwhose outer surfaces are 

maintained at temperatures T0 and TL as shown in Fig.2.6. For one-dimensional unsteady state conduction the  

boundary conditions can be written as 
 

 

T(x,t) 
 y  

T0 TL  
T = θ(x) 

T(x,y) 

L    T2 

   b  

  Ψ(y) 
a 

 

    x 

x 
  T1  

Fig. 2.6: Boundary condition Fig.2.7: Boundary conditions of 

of first kind for a plane wall  first kind for a rectangular plate 
 

(i) at x = 0, T(0,t) = T0 ; (ii) at x = L, T(L,t) = TL. 

 
Consider another example of a rectangular plate as shown in Fig. 2.7. The boundary 
conditions for the four surfaces to determine two-dimensional steady state temperature 
distribution T(x,y) can be written as follows. 

 

(i) at x = 0, T(0,y) = Ψ(y) ; (ii) at y = 0, T(x,0) = T1 for all values of y 

(iii) at x = a, T(a,y) = T2 for all values of y; (iv) at y = b, T(x,b) = θ(x) 

 
Specified heat flux at the boundary:- Consider a rectangular plate as shown in Fig. 2.8 
and whose boundaries are subjected to the prescribed heat flux conditions as shown in the 
figure. Then the boundary conditions can be  mathematically expressed as follows. 
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y 

q b T(x,y) 

a 

insulated 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
q0 q a 

 b 
 

 

x 
 

 
 

Fig.2.8: Prescribed heat flux boundary conditions 

 

 
(i) at x = 0, − k (∂T / ∂x)|x = 0 = q 0 for 0 ≤ y ≤ b ; 

(ii) at y = 0 , (∂T / ∂y)|y = 0 = 0 for 0 ≤ x ≤ a ; 

(iii) at x = a, k (∂T / ∂x)|x = a = q a for 0 ≤ y ≤ b ; 

(iv) at y = b, − k (∂T / ∂y)|y = b = 0 for 0 ≤ x ≤ a ; 

 

Boundary surface subjected to convective heat transfer:- Fig. 2.9 shows a plane wall 

whose outer surfaces are subjected to convective boundary conditions.The surface at  x = 

0  is  in  contact  with a  fluid which is at  a uniform temperature Ti and the 

surface heat transfer coefficient is hi. Similarly the other surface at x = L is in contact 

with another fluid at a uniform temperature T0 with a surface heat transfer coefficient h0. 

This  type  of  boundary  condition  is  encountered  in  heat  exchanger  wherein  heat   is 
transferred from hot fluid to the cold fluid with a metallic wall separating the two fluids. 
This type of boundary condition is normally referred to as the boundary condition of 
third kind. The mathematical representation of the boundary conditions for the two 
surfaces of the plane wall can be written as follows. 

 

(i) at x = 0, qconvection = q conduction; i.e., hi[Ti − T|x = 0 ] = − k(dT / dx)|x = 0 

 
(ii) at x = L, − k(dT / dx)|x = L = h0 [T|x = L − T0] 
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T(x)  
Surface in contact with 

fluid at T0 with surface 

heat transfer coefficient h0 

 

 

Surface in contact with fluid 

at Ti with surface heat 

transfer coefficient h i 
 

 

 

 

Fig. 2.9: Boundaries subjected to convective heat 

transfer for a plane wall 

 
 

Radiation Boundary Condition:Fig. 2.10 shows a plane wall whose surface at x =L is 
having an emissivity „ε‟ and is radiating heat to the surroundings at a uniform temperature 

Ts. The mathematical expression for the boundary condition at x = L can be written as 
follows: 

 

 
 

T(x,t) 

 

 

 
 

L 

 
Surface with emissivity ε is 

radiating heat to the 

surroundings at Ts 
0
K 

 

 

 

 

 

 

 

x 

Fig. 2.10: Boundary surface at x = L subjected to radiation 

heat transfer 

(i) at x = L, qconduction = qradiation ; i.e., − k (dT / dx)| x = L = ζ ε [( T| x = L)
4 

− Ts 
4
] 

 

 
In the above equation both T| x = L and Ts should be expressed in degrees Kelvin. 

L 

x 
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General form of boundary condition (combined conduction, convection and radiation 
boundary condition): 

There are situations where the boundary surface is subjected to combined conduction, 
convection and radiation conditions as illustrated in Fig. 2.11.It is a south wall of a house and 
the outer surface of the wall is exposed to solar radiation. The interior of the 

room is at a uniform temperature Ti. The outer air is at uniform temperature T0  . The sky, the 
ground and the surfaces of the surrounding structures at this location is modeled 

as a surface at an effective temperature of Tsky. 

 

 
 

   x 

L 
 

qradiation 

 

qconduction αqsolar 

 
qconvection 

 

 

Fig. 2.11: Schematic for general form of boundary condition 

 

 
Energy balance for the outer surface is given by the equation 

 

qconduction + α qsolar = qradiation + qconvection 

− k (dT / dx)|x = L + αqsolar = ε ζ [(T|x = L)
4 

− T 

 
4
] + h0[T|x = L − T0] sky 
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Illustrative Examples: 
 

A. Derivation of conduction Equations: 
 

By writing an energy balance for a differential cylindrical volume element in the 
„r‟ variable (r is any radius), derive the one-dimensional time dependent heat conduction 

equation with internal heat generation and variable thermal conductivity in the cylindrical 

coordinate system. 

 

By writing an energy balance for a differential spherical volume element in the „r‟ variable (r 

is any radius), derive the one-dimensional time dependent heat conduction equation with 

internal heat generation and variable thermal conductivity in the spherical coordinate system. 

 

By simplifying the three-dimensional heat conduction equation, obtain one- dimensional 

steady-state conduction equation with heat generation and constant thermal conductivity 

for the following coordinate systems: 

 

(a) Rectangular coordinate in the „x‟ variable. 

(b) Cylindrical coordinate in the r variable. 

(c) Spherical coordinates in the „r‟ variable 

 

B.Mathematical Formulation of Boundary conditions: 

A plane wall of thickness L is subjected to a heat supply at a rate of q0 W/m2 at one boundary 
surface and dissipates heat from the surface by convection to the ambient which is at a uniform 
temperature of T∞ with a surface heat transfer coefficient of h∞. Write the mathematical 
formulation of the boundary conditions for the plane wall. 
 

Consider a solid cylinder of radius R and height Z. The outer curved surface of the cylinder is 
subjected to a uniform heating electrically at a rate of q0 W / m2.Both the circular surfaces of 
the cylinder are exposed to an environment at a uniform temperature T∞ with a surface heat 
transfer coefficient h. Write the mathematical formulation of the boundary conditions for the 
solid cylinder. 

A hollow cylinder of inner radius ri, outer radius r0 and height H is  subjected to the following 

boundary conditions. 
(d) The inner curved surface is heated uniformly with an electric heater at a 

constant rate of q0 W/m2, 
(e) the outer curved surface dissipates heat by convection into an ambient at a 

uniform temperature, T∞ with a convective heat transfer coefficient, h 
(f) the lower flat surface of the cylinder is insulated, and 
(g) the upper flat surface of the cylinder dissipates heat by convection into the 

ambient at T∞ with surface heat transfer coefficient h. Write the mathematical 
formulation of the boundary conditions for the hollow cylinder. 
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B. Formulation of Heat Conduction Problems: 

 

A plane wall of thickness L and with constant thermal properties is initially at a uniform 
temperature Ti. Suddenly one of the surfaces of the wall is subjected to heating by the flow of a 
hot gas at temperature T∞ and the other surface is kept insulated. The heat transfer coefficient 
between the hot gas and the surface exposed to it is h. There is no heat generation in the wall. 
Write the mathematical formulation of the problem to determine the one-dimensional unsteady 
state temperature within the wall. 

A copper bar of radius R is initially at a uniform temperature Ti. Suddenly the heating of the 
rod begins at time t=0 by the passage of electric current, which generates heat at a uniform rate 
of q‟‟‟ W/m2. The outer surface of the dissipates heat into an ambient at a uniform temperature 
T∞ with a convective heat transfer coefficient h. Assuming that thermal conductivity of the bar 
to be constant, write the mathematical formulation of the heat conduction problem to determine 
the one-dimensional radial unsteady state temperature distribution in the rod. 
 
Consider a solid cylinder of radius R and height H. Heat is generated in the solid  at a uniform 
rate of q‟‟‟ W/m3. One of the circular faces of the cylinder is insulated and the other circular 
face dissipates heat by convection into a medium at a uniform temperature of T∞ with a surface 
heat transfer coefficient of h. The outer curved surface of the cylinder is maintained at a 
uniform temperature of T0. Write the mathematical formulation to determine the two-
dimensional steady state temperature distribution T(r, z) in the cylinder. 
 

 Consider a rectangular plate as shown in Fig. P2.10.The plate is generating heat at a uniform rate of 

q
‟‟‟ 

W/m
3
. Write the mathematical formulation to determine two-dimensional steady state 

temperature distribution in the plate. 

 
 Consider a medium in which the heat conduction equation is given in its simple form as 

∂
2
T / ∂x

2 
= (1/α) (∂T / ∂t) 

(a) Is heat transfer in this medium steady or transient? 

(b) Is heat transfer one-, two- or three-dimensional? 

(c) Is there heat generation in the medium? 

(d) Is thermal conductivity of the medium constant or variable? 

 

 Consider a medium in which the heat conduction equation is given in its simple form as (1/r) d 

/ dr(r k dT/dr) + q‟‟‟ = 0. 
 

(a) Is heat transfer steady or unsteady? 

(b) Is heat transfer one-, two- or three-dimensional? 

(c) Is there heat generation in the medium? 

(d) Is the thermal conductivity of the medium constant or variable? 
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h, T∞ 

T0 

a 

Y 
 

 

 
 

 

 

 

 

 
 

q0 W/m
2

 b 
 

X 
 

Insulated 

Fig. P 2.10: Schematic for problem 2.10 

 
Consider a medium in which heat the heat conduction equation in its simplest form 
is given as 

(1/r2) ∂/∂r (r2 ∂T /∂r) = (1/α) (∂T/∂t) 

(a) Is heat transfer steady state or unsteady state? 

(b) Is heat transfer one-, two- or three-dimension? 

(c) Is there heat generation in the medium? 

(d) Is the thermal conductivity constant or variable? 
 

 Consider a medium in which the heat conduction equation is given in its 

simplest form as 

(1/r) ∂/∂r (k r ∂T /∂r) + ∂/∂z (k ∂T /∂z) + q‟‟‟ = 0 
 

(a) Is heat transfer steady state or unsteady state? 

(b) Is heat transfer one-, two- or three-dimension? 

(c)Is there heat generation in the medium? 

(d)Is the thermal conductivity constant or variable? 
 

 Consider a medium in which heat the heat conduction equation in its simplest 
form is given as 

 

 

(a)Is heat transfer steady state or unsteady state? 

(b)Is heat transfer one-, two- or three-dimension? 

(c)Is there heat generation in the medium? 

(d)Is the thermal conductivity constant or variable? 

1 ∂2T 
(1/r2) ∂/∂r (r2 ∂T /∂r) + ---------- [ ------ ] = (1/α) (∂T/∂t) 

r2 sin 2 φ ∂θ2 
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L 

r 

dr 
Qr 

Qr 

Qg 

Qr+dr 

Consider the north wall of a house of thickness L. The outer surface of the wall 
exchanges heat by both convection and radiation. The interior of the house is 
maintained at a uniform temperature of Ti, while the exterior of the house is at a 
uniform temperature T0. The sky, the ground, and the surfaces of the surrounding 
structures at this location can be modeled as a surface at an effective temperature of Tsky 
for radiation heat exchange on the outer surface. The radiation heat exchange between 
the inner surface of the wall and the surfaces of the other walls, floor and ceiling are 
negligible. The convective heat transfer coefficient for the inner and outer surfaces of 
the wall under consideration are hi and h0 respectively. The thermal conductivity of the 
wall material is K and the emissivity of the outer surface of the wall is „ε0‟. Assuming 
the heat transfer through the wall is steady and one dimensional, express the 
mathematical formulation (differential equation and boundary conditions) of the heat 
conduction problem 

 

 
Solutions to Tutorial Problems 

 

A. Derivation of Conduction Equations: 

 

 Solution:- 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Qr+dr 

 
A cylindrical element of thickness dr in the radial direction at a radius r is shown in the 

figure above. For unsteady state one dimensional radial conduction with heat 

generation is given by 

Qr + Qg – Qr+dr = (∂E / ∂t) 

Or Qr + Qg – [Qr + (∂Qr ∂r)dr] = (∂E / ∂t) 

Or ─ (∂Qr ∂r)dr + Qg = (∂E / ∂t)............................................. (1) 

where Qr is the rate of conduction into the element at radius r = ─ k 2πrL (∂T /∂r) 
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Qg is the rate of heat generation within the element = 2π rL dr q‟‟‟ 
 

(∂E / ∂t) is the rate of increase of the energy of the element. = 2π rL dr ρCp (∂T / ∂t) 

where dV=2πrLdr -------- volume 

 

Substituting these expressions in Eq.(1) we get 
 

[ ─ ∂ /∂r (─ 2π rLk (∂T /∂r) )]dr + 2π rL dr q‟‟‟ = 2π rL dr ρCp (∂T / 

∂t) Simplifying we get 
 

(1 / r) ∂ /∂r [kr(∂T/∂r)] + q‟‟‟ = ρCp (∂T / ∂t) 

 

 Solution: 

 

 

 
dr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a spherical element of thickness dr at any radius r as shown in the figure above. 
The energy balance equation for one – dimensional radial unsteady state conduction with 
heat generation is given by 

 
Qr + Qg – Qr+dr = (∂E / ∂t) 

 

Or Qr + Qg – [Qr + (∂Qr / ∂ r) dr] = (∂E / ∂t) 
 

Or - (∂Qr  / ∂r) dr + Qg  = (∂E / ∂t) ............................... (1) 

Where Qr = rate of heat conducted in to the element at radius r = - k 4π r
2 

(∂T / ∂r), 

Qg = rate of heat generation within the element = (4/3)π [(r + dr)
3 

– r
3 

] q
‟‟‟

 

Qr+dr 

Qr 

Qg 
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(∂E / ∂t) = rate of increase of energy of the element = ρ (4/3)π [ (r + dr) 
3 

– r
3
 

](∂T/∂t) Now (r + dr)
3 

– r
3 

= r
3 

+ 3r
2
dr + 3r(dr)

2 
+ (dr)

3 
– r

3
 

 

= 3r
2
dr + 3r(dr)

2 
+ (dr)

3
 

Neglecting higher order terms like (dr)
3 

and (dr)
2 

we have 

 
(r + dr)

3 
– r

3 
= 3 r

2 
dr. 

Therefore Qg = 4 π r
2 

dr q
‟‟‟

 

And (∂E / ∂t) = ρ 4 π r
2 

dr Cp(∂T/∂t). 

Substituting the expressions for Qr, Qg and (∂E / ∂t) in Eq. (1) we have 

 

─ [∂ /∂r{- k 4π r2 (∂T / ∂r)}]dr + 4 π r2 dr q‟‟‟ = ρ 4 π r2 dr Cp(∂T/∂t) 

Simplifying the above equation and noting that if k is given to be constant we have 

 

∂ /∂r{ r2 (∂T / ∂r)} + r2 ( q‟‟‟/ k) = (ρ r2 Cp / k)(∂T/∂t) 

 

Or (1 / r2) ∂ /∂r{ r2 (∂T / ∂r)} + ( q‟‟‟/ k) = (1 / α) (∂T/∂t); where α = k / (ρ Cp) 
 

 Solution:- (a) The general form of conduction equation for an isotropic solid 
in rectangular coordinate system is given by 

∂ / ∂x (k∂T / ∂x) + ∂ / ∂y (k∂T / ∂y) + ∂ / ∂z (k∂T / ∂z) + q
‟‟‟ 

= (ρ Cp) (∂T / ∂t) 

…………..(1) 

For steady state conduction (∂T / ∂t) = 0 ; For one dimensional conduction in x – 

direction we have 

∂T / ∂y = ∂T / ∂z = 0 . Therefore ∂T / ∂x = dT / dx . 
Therefore Eq. (1) reduces to 

d / dx (k dT / dx) + q
‟‟‟ 

= 0. 

For constant thermal conductivity the above equation reduces to 

d
2 

T / dx
2 

+ q
‟‟‟

/ k = 0. 

(b) The general form of conduction equation in cylindrical coordinate system is given by (1 / 

r) ∂ / ∂r (kr ∂T / ∂r) + (1 / r
2
) ∂ / ∂θ(k ∂T / ∂θ) + ∂ / ∂z (k∂T / ∂z) + q

‟‟‟ 
= ρCp( ∂T / ∂t) 
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For steady state conduction, ( ∂T / ∂t) = 0 ; For one-dimensional radial conduction 
we have 

∂T / ∂θ = 0 and ∂T / ∂z = 0. Therefore ∂T / ∂r = dT / dr. With these simplifications 
the general form of conduction equation reduces to 

(1 / r) d / dr (kr dT/dr) + q
‟‟‟ 

= 0 

For constant thermal conductivity the above equation reduces to 

(1 / r) d / dr (r dT/dr) + q
‟‟‟

/ k = 0. 

© The general form of conduction equation in spherical coordinate system is given 

by (1/r
2
) ∂ / ∂r(kr

2 
∂T / ∂r) + {1/(r

2 
sin 

2 
θ)}∂ / ∂θ (k ∂T/∂θ) 

+ {1/(r
2 

sin θ)} ∂ /∂θ (k sin θ ∂T/∂θ) + q
‟‟‟ 

= ρCp (∂T/ ∂t) 

………..(1) 

For steady state conduction (∂T ∂t) = 0 ; For one dimensional radial conduction we 

have ∂T/∂θ = 0 and ∂T/∂θ = 0. Therefore ∂T / ∂r = dT / dr. Substituting these conditions 

in Eq. (1) we have (1/r
2
) d / dr (kr

2 
dT / dr) + q

‟‟‟ 
= 0. 

For constant thermal conductivity the above equation reduces to 

(1/r
2
) d / dr (r

2 
dT / dr) + q

‟‟‟ 
/ k = 0. 
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x 

h , T∞ 

B. Mathematical Formulation of the Boundary Conditions: 

 

 Solution:- 
 

 

 

 

 
 

   h,T∞ 

q0 
 

Boundary conditions are : 

L (i)at x = 0; ─ k (dT / dx)x = 0 = q0 

 (ii) at x = L; ─ k(dT / dx)x = L = h(T|x=L - T∞) 

 

 

 

 

 

 

 

 

 

 

2.5. Solut ion: -     

h, T∞ 
     

   

z 

    

   R    

 

Boundary conditions are: 
     (i) at r = 0; (∂T/∂r) = 0 (axis of symmetry) 

q0 
 

 

  q0   

  

 

 
Z (ii) at r = R; k(∂T/∂r) = q0 

   

   (iii) at z = 0; h[T|z=0 - T∞] + k(∂T/∂z)z=0 =0 
      

     (iv) at z = Z; ─ k(∂T/∂r) = h [ T|z = z ─ T∞] 
     r  
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 Solution:- 
 

hz,T∞ 

 

H 
q0 

 
hr,T∞ 

 
Boundary conditions are: 

(i) at r = r1, ─ k(∂T/∂r) = q0 for all z; 

(ii) at r = r2, ─ k(∂T/∂r) = hr[T|r=r2 - 

T∞] for all z 

(iii) at z = 0, (∂T/∂z) = 0 for all r. 
 

 

 

 

r1 

Insulated r2 

 
 

from the problem: hz=hr=h 

(iv) at z = H, 

─ k(∂T/∂z)z =H = hz[T|z=H - 

T∞] for all r 
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C. Mathematical Formulation of Conduction Problems: 

 

 Solution:- 

 

T = Ti at t = 0 

 
Governing differential equation to 

L 
 determine T(x,t) is given by 

Insulated T = h∞,T∞ 
(∂ 

2 2 T / ∂ x ) = (1 / α) (∂T / ∂t) 
 

   
 

where α is the thermal diffusivity of the T(x,t)  

 wall. Initial condition is 

  at time t = 0 T = Ti for all x. 

 

The boundary conditions are : (i) at x = 0, (∂T / ∂x)x=0 = 0. (Insulated) for all t 

>0 (ii) at x = L, ─ k (∂ T / ∂ x)x=L = h∞ [T|x=L ─ T∞] for all t>0 

 

 

 Solution:- 
 

 

 

h,T∞ 

 

 
R 

 
T = Ti at t ≤ 0 

q
‟‟‟ 

for t ≤ 0 

 

 

The governing differential equation to determine T(r,t) is given by 

(1/r) ∂ / ∂ r (r ∂T / ∂r) + q0 / k = (1/α) (∂T / ∂t). 

Boundary conditions are: (i) at r = 0, (∂T / ∂r) = 0 (Axis of symmetry) 
 

(ii) at r = R, ─ k (∂T / ∂r)|r=R = h [T |r=R ─ T∞] 

Initial condition is: At t = 0, T = Ti : for all r 
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h, T∞ q
’’’ 

T0 

b 

a 
x 

Insulated 

 Solution:- 

z 

 

H 

R 

 

 

 

 

 

Insulated 

 

 

h, T∞ 

 
T0 

 

 

 

 

 

 

 
r 

 

 
The governing differential equation 

to determine T(r,z) is given by 

(1/r)∂ /∂r(r∂T/∂r) + ∂
2
T/∂z

2
 

+ q
‟‟‟

/k = 0 

Boundary conditions are: 

(i) at r = 0, ∂T/∂r|r=0 = 0, for all 
z (axis 

of symmetry). 

(ii) at r = R, T = T0 for all z. 

(iii) at z = 0 , ∂T/∂z|z=0 = 0 for all r. 

 

(iv) at z = H, 
 

─ k (∂T/∂z)z=H = h (T |z=H ─ T∞) 

 Solution:- 
 

 

y for all x. 

 
 

 

 

 

 

 

q0 

 

 

 

 

 

 

 

 

 

 
 

The governing differential equation to determine T(x,y) is given by 

∂
2
T / ∂x

2 
+ ∂

2
T / ∂y

2 
+ q

‟‟‟
/k = 0 
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Boundary conditions are: 
 

(i) at x=0, ─ k(∂T / ∂x)|x=0 = q0 for all y ; (ii) at x = a, T = T0 for all y 

(iii) at y = 0, ∂T / ∂y = 0 for all x ; (iv) at y = b, ─ k(∂T / ∂y)|y=b = h[T |y=b ─ T∞]. 

 

 Solution: The given differential equation is 
 

∂
2
T / ∂x

2 
= (1/α) (∂T / ∂t) 

It can be seen from this equation that T depends on one space variable x and the time 
variable t. Hence the problem is one dimensional transient conduction problem. No heat 

generation term appears in the equation indicating that the medium is not generating  

any heat. The thermal conductivity of the medium does not appear within the 

differential symbol indicating that the conductivity of the medium is constant. 

 

 Solution: The given differential equation is 

 
(1/r) d / dr(r k dT/dr) + q’’’ = 0. 

 

It can be seen from this equation that the temperature T depends only on one space 

variable „r‟ and it does not depend on time t. Also the heat generation term q‟‟‟ appears 

in the differential equation. Hence the problem is a one-dimensional steady state 
conduction problem with heat generation. Since the thermal conductivity appears within 

the differential symbol, it follows that the thermal conductivity of the medium is not a 

constant but varies with temperature. 

 

 Solution: The given differential equation is 

 
(1/r) ∂/∂r (k r ∂T /∂r) + ∂/∂z (k ∂T /∂z) + q’’’ = 0 

 

It can be seen from the above equation that the temperature T depends on two space 

variables r and z and does not depend on time. There is the heat generation term 

appearing in the equation and the thermal conductivity k appears within the  

differential symbol ∂/∂r and ∂/∂z. Hence the problem is two-dimensional steady state 

conduction with heat generation in a medium of variable thermal conductivity. 

 

 Solution: The given differential equation is 
 

1 ∂
2
T 

(1/r
2
) ∂/∂r (r

2 
∂T /∂r) + ---------- [ ------ ] = (1/α) (∂T/∂t) 

r
2 

sin 
2 

φ ∂θ
2
 

It can be seen from the given equation that the temperature T depends two space variables 

r and θ and it also depends on the time variable t. There is no heat generation term 

appearing in the given equation. Also the thermal conductivity k do not appear 
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within the differential symbol. Hence the given equation represents two-dimensional, 

steady state conduction in a medium of constant thermal conductivity and the medium 
is not generating any heat. 

 

 

 

 

 

 

 

 
 

 

 
surface in contact with 

fluid at T0 and surface heat 

transfer coefficient h0 

 

 

 

 

Fig. P.2.15: Schematic for problem 2.15. 

 

 
The problem is one-dimensional steady state conduction without any heat generation and the  

wall is of constant thermal conductivity. Hence the governing differential equation is d
2
T / 

dx
2 

= 0. 

The boundary conditions are: 
 

(i) at x = 0, hi [Ti – T |x = 0 ] = − k (dT/dx)|x =0 ; 
 

(ii) at x = L, qconduction = qconvection + qradiation 

Or − k (dT/dx)|x =L = h0[T|x = L − T0] + ε0 ζ [{T|x = L}
4 

– T 

 

 
4 

sky } 

2.15. Solution:   

 

Surface in 

  

contact with   

fluid at Ti x  

and surface 
L T (x) heat transfer 

coefficient hi 
 qradiation 

qconduction 

   
qconvection 

  ε0 
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x 

L 

CHAPTER 3 

 
                              CONVECTIVE HEAT TRANSFER 

 
Introduction:- In this chapter the problems of one-dimensional steady state conduction 
without and with thermal energy generation in slabs, cylinders and spheres and subjected to 

different types of boundary conditions are analyzed to determine the temperature distribution 

and rate of heat flow. The concept of thermal resistance is introduced and the use of this 

concept, for solving conduction in composite layers is illustrated. The problem of critical 
thickness of insulation for cylinder and sphere are also analyzed. The effects of variable 

thermal conductivity on temperature distribution and rate of heat transfer are also studied. 

Finally the problems of one dimensional heat conduction in extended surfaces (fins) subjected 

to different types of boundary conditions are examined. 

 

Conduction Without Heat Generation 
 

The Plane Wall (The Slab):- The statement of the problem is to determine the 
temperature distribution and rate of heat transfer for one dimensional steady state 
conduction in a plane wall without heat generation subjected to specified boundary 
conditions. 

 

 

 

T = T(x) 
 

 

 

 
T1 T2 

Qx 
R = L /(Ak) 

 
 

Fig. 3.1: One dimensional steady state conduction in a slab 

The governing equation for one − dimensional steady state conduction without heat 
generation is given by 
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d
2
T 

----- = 0 ……………………………………(3.1) 

dx
2

 

Integrating Eq. (3.1) twice with respect to x we get 
 

T = C1x + C2 .......................................................(3.2) 

where C1 and C2 are constants which can be evaluated by knowing the 

boundary conditions. 
 

Plane wall with specified boundary surface temperatures:- If the surface at x = 0 is 

maintained at a uniform temperature T1 and the surface at x = L is maintained at another 

uniform temperature T2, then the boundary conditions can be written as follows: 

(i) at x = 0, T(x) = T1 ; (ii) at x = L, T(x) = T2. 
 

Condition (i) in Eq.(3.2) gives T1 = C2.  

Condition (ii) in Eq. (3.2) gives T2 = C1L + T1 

  
T2 – T1 

Or C1 = ------------- . 

L 

Substituting for C1 and C2 in Eq. (3.2), we get the temperature distribution in the 
plane wall as 

x 

T(x) = (T2 – T1) ------ + T1 

L 
 

Or T(x) – T1 x 

------------ = -------- ……………………………..(3.3) 

(T2 – T1) L 

 
Expression for Rate of Heat Transfer: 

 

The rate of heat transfer at any section x is given by Fourier‟s law as 
 

Qx = − k A(x) (dT / dx) 

For a plane wall A(x) = constant = A. From Eq. (3.3), dT/dx = (T2 – T1) / L. 

 

Hence Qx = − k A (T2 – T1) / L. 
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kA(T1 – T2) 

Or Qx = --------------- ................................................... (3.4) 

L 

 

Concept of thermal resistance for heat flow: 

It can be seen from the above equation that Qx is independent of x and is a 
constant. Eq. (3.4) can be written as 

(T1 – T2) (T1 – T2) 

Qx = -------------- = ----------------- .......................... (3.5) 
{L /(kA)} R 

Where R = L / (A k). 
 

Eq. (3.5) is analogous to Ohm‟s law for flow of electric current. In this equation (T1 – T2) 

can be thought of as “thermal potential”, R can be thought of as “thermal resistance”, so 
that the plane wall can be represented by an equivalent “thermal circuit” as shown in 

Fig.3.1.The units of thermal resistance R are 
K / W. 

Plane wall whose boundary surfaces subjected to convective boundary conditions: 
 

 

 

 
 

Surface in contact with a fluid 

at To with heat transfer 

coefficient ho 

 
Surface in contact with a fluid 

at Ti with heat transfer 

coefficient hi 

 

 

      Rco 

To 

Qx 

 

Fig.3.2: Thermal Circuit for a plane wall with convective boundary conditions 

Let T1 be the surface temperature at x = 0 and T2 be the surface temperature at x = L. 

If we  assume  that  Ti  > To,  then  for  steady state  conduction heat  will transfer  by 

convection from the fluid at Ti to the surface at x = 0, then it is conducted across the 
plane wall and  finally heat  is  transferred  by convection  from the surface at  x = l to 

the fluid at To. 

     

x 
    

    L     

   

Rc

i 

 T1   

R 

 T2 

Ti    
    

Qx    Qx    Qx 
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The expression for rate of heat transfer Qx can be written as follows: 

 

Qx = hi A [Ti – T1] 

 
(Ti – T1) 

 
(Ti – T1) 

or Qx = --------------- = --------------- .................................... (3.6a) 

 1 / (hi A)  Rci 

Rci = 1 / (hiA) is called thermal resistance for convection at the surface at x = 0 

 
(T1 – T2) 

  

Similarly Qx = --------------- …………………………………………(3.6b) 
 R  

 

where R = L /(Ak) is the thermal resistance offered by the wall for conduction and 

(T2 – To) 

Qx = -------------- ............................................................. (3.6c) 

Rco 

 

Where Rco = 1 / (hoA) is the thermal resistance offered by the fluid at the surface at x = 

L for convection. It follows from Equations (3.6a), (3.6b) and (3.6c) that 

 

(Ti – T1) (T1 – T2) (T2 – T0) 

Qx = --------------- = ------------------ = -------------- 

Rci R Rco 

(Ti – To) 

Or Qx = ------------------- ……………………………………(3.7) 

 [Rci + R + Rco] 

 Radial Conduction in a Hollow Cylinder: 
 

The governing differential equation for one-dimensional steady state radial conduction in 
a hollow cylinder of constant thermal conductivity and without thermal energy 
generation is given by Eq.(2.10b) with n = 1: i.e., 

d 

--- [r (dT / dr)] = 0 ........................................(3.8) 

dr 

 

Integrating the above equation once with respect to „r‟ we get 
 

r (dT / dr) = C1 

or (dT / dr) = C1/ r 
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Integrating once again with respect to „r‟ we get 
 

T(r) = C1 ln r + C2 ........................................... (3.9) 

where C1 and C2 are constants of integration which can be determined by knowing 

the boundary conditions of the problem. 

Hollow cylinder with prescribed surface temperatures: Let the inner surface at r = r1 

be maintained at a uniform temperature T1 and the outer surface at r = r2 be maintained 

at another uniform temperature T2 as shown in Fig. 3.3. 

Substituting the condition at r1 in Eq.(3.9) we get 

T1 = C1 ln r1 + C2 ............................................... (3.10a) 

and the condition at r2 in Eq. (3.9) we get 

T2 = C1 ln r2 + C2 ............................................... (3.10b) 

Solving for C1 and C2 from the above two equations we get 

 

(T1 – T2) (T1 – T2) 

C1 = ---------------- = ------------------- 

[ln r1 – ln r2] ln (r1 / r2) 

(T1 – T2) 

and C2 = T1 − ------------------ ln r1 

ln (r1 / r2) 

Substituting these expressions for C1 and C2 in Eq. (3.9) we have 

(T1 – T2) (T1 – T2) 

T(r) = -------------- ln r  + T1 − ----------------- ln r1 

ln (r1 / r2) ln (r1 / r2) 

or [T(r) – T1] ln (r / r1) 

--------------- = ------------------- …………………………………………(3.11) 

[ T2 – T1] ln (r2 / r1) 
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T2 

T1 

 

 

 

r2 

r1 
 

 

 

 

 

 

 

Fig.3.3: Hollow cylinder with prescribed surface temperatures 

 

 
Eq. (3.11) gives the temperature distribution with respect to the radial direction in a hollow 
cylinder. The plot of Eq. (3.11) is shown in Fig. 3.4. 

Expression for rate of heat transfer:- For radial steady state heat conduction in a hollow 
cylinder without heat generation energy balance equation gives 

 
Qr = Qr|r = r1 = Qr|r = r2 

 

Hence Qr = − k [A(r) (dT / dr)] |r = r1....................................................... (3.12) 

 

Now A(r) |r = r1 = 2 π r1 L .From Eq. (3.11) we have 

(dT / dr) = {[ T2 – T1] / ln (r2 / r1) }(1/r) 

Hence (dT / dr)|r = r1 = {[ T2 – T1] / ln (r2 / r1) }(1/ r1). 

Substituting the expressions for A(r)|r = r1 and (dT / dr)|r = r1 in Eq. (3.12) we get 

the expression for rate of heat transfer as 
 

2 π L k (T1 – T2) 

Qr = ------------------------- ................................................. (3.13) 

ln (r2 / r1) 

Thermal resistance for a hollow cylinder: Eq. 3.13 can be written as: 
 

Qr = (T1 – T2) / R ............................................................. (3.14a) 
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1 

(T – T1) 

(T2 – T1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
0 r / r1 

1.0 r2 / r1 

 

 

Fig. 3.4: Radial temperature distribution for a hollow cylinder 
 

 

 
 

 ln (r2 / r1)  1 

where R = ----------------- = -------- .............................................. (3.14b) 

 2 π L k  k Am 

Where Am = (A2 – A1) / ln (A2 / A1), when A2 = 2π r2 L = Area of the outer surface of the 

 

cylinder and A1 = 2π r1 L = Area of the inner surface of the cylinder, and Am is logarithmic 

mean area. 
 

Hollow cylinder with convective boundary conditions at the surfaces:- Let for the hollow 

cylinder, the surface at r = r1 is in contact with a fluid at temperature Ti with a surface heat 

transfer coefficient hi and the surface at r = r2 is in contact with another fluid at a temperature 

To as shown in Fig.3.5.By drawing the thermal circuit for this problem and using the concept 
of thermal resistance it is easy and straight forward to write down the expression for the rate 
of heat transfer as shown. 

 

(Ti – To) 

Now Qr  = hiAi(Ti  – T1) = 2π r1L hi  (Ti  – T1) = -------------- ....................... (3.15a) 

Rci 

 

where  Rci = 1 / (2π r1Lhi)… ..................................................................... (3.15b) 

 
(T1 – T2) 

Also Qr = ------------- ............................................................................ (3.15c) 
R 
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where R = ln (r2 / r1) / (2πLk) ........................................... (3.15d) 
 

 

 

 

Surface in 

contact with 

fluid at To and 

heat transfer 
coefficient ho 

 

 
Surface in contact 
With fluid at Ti and 

Surface heat transfer 

Coefficient hi 

 

 

r1 

r2 

 

 

 

Rco R Rci 

 
(T2 – To) 

And Qr = --------------- ........................................................................................................................................... (3.15e) 
Rco 

1 

Where Rco = ------------- .................................................. (3.15f).. 

(2πr2Lho) 

From Eqs.(3.15a), (3.15c) and (3.15e) we have 

 

(Ti – T1) (T1 – T2)  (T2 – To) 

Qr = ------------- = --------------   = 
- - - -- - - -- - -- - - - -  

Rci R Rco 

 

(Ti – To) 
Or Qr = ---------------------- ......................................................................................................................................................... (3.16) 

Rci + R + Rco 

where Rci, R and Rco are given by Eqs.(3.15b), (3.15d) and (3.15f) respectively. 

 

Radial Conduction in a Hollow Sphere: 
 

The governing differential equation for one-dimensional steady state radial conduction in a hollow 
sphere without thermal energy generation is given by Eq.(2.10b) with n = 1: i.e., 

Qr 
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d 

--- [r
2 

(dT / dr)] = 0 ....................................... (3.17) 

dr 
 

Integrating the above equation once with respect to „r‟ we get 

 
r
2 

(dT / dr) = C1 

or (dT / dr) = C1/ r
2
 

Integrating once again with respect to „r‟ we get 
 

T(r) = − C1 / r + C2 ............................................(3.18) 

where C1 and C2 are constants of integration which can be determined by knowing 

the boundary conditions of the problem. 

 

Hollow sphere with prescribed surface temperatures: 

(i) Expression for temperature distribution:-Let the inner surface at r = r1 be maintained at a 

uniform temperature T1 and the outer surface at r = r2 be maintained at another uniform 

temperature T2 as shown in Fig. 3.6. 

The boundary conditions for this problem can be written as follows: 
 

(i) at r = r1, T(r) = T1 and (ii) at r = r2, T(r) = T2. 

 
Condition (i) in Eq. (3.18) gives T1  = − C1  / r1 + C2 ................................................................. (3.19a) 

 

Condition (ii) in Eq. (3.18) gives T2  = − C1   / r2 + C2 ................................................................ (3.19b) 

Solving for C1 and C2 from Eqs. (3.19a) and (3.19b) we have 

(T1 – T2) (T1 – T2) 

C1 = ------------------- and C2 = T1 

[1 / r2 – 1 / r1] 
+ -------------------------- 

r1[1 / r2 – 1 / r1] 
 

Substituting these expressions for C1 and C2 in Eq. (3.18) we get 
 

 
T(r) = 

(T1  – T2) / r (T1 – T2) / r1 

− ----------------------- + T1 + ---------------------- 

[1 / r2  – 1 / r1] [1 / r2 – 1 / r1] 
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Surface at temperature T2 

Surface at temperature T1 

 

 

 

 

 

 

 

 
 

Fig. 3.6: Radial conduction in a hollow sphere with prescribed 

surface temperatures 

 

 

 
 

Or T(r) – T1 [1 / r2 – 1 / r] 

----------------- = ---------------------- ……………………………(3.20) 

[T1 – T2] [1 / r2 – 1 / r1] 

(ii) Expression for Rate of Heat Transfer:- The rate of heat transfer for the hollow sphere 

is given by 
 

Qr = −k A(r)(d T / dr) ............................................................... (3.21) 

Now at any radius for a sphere A(r) = 4π r
2 

and from Eq. (3.20) 
1 

dT / dr = [T1 – T2] ------------------ (1 / r
2
) 

[1 / r2 – 1 / r1] 

Substituting these expressions in Eq. (3.21) and simplifying we get 
 

4 π k r1 r2 [T1 – T2] 

Qr = ------------------------- .......................................................... (3.22) 

[r2 – r1] 

Eq.(3.22) can be written as Qr = [T1 – T2] / R ................................................. (3.23a) 

 

Where R is the thermal resistance for the hollow sphere and is given by 
 

R = (r2 – r1) / {4 π k r1 r2} ....................................................... (3.23b) 

r2 

r1 
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Hollow sphere with convective conditions at the surfaces: - Fig. 3.7 shows a hollow sphere 

whose boundary surfaces at radii r1 and r2 are in contact with fluids at temperatures Ti and T0 

with surface heat transfer coefficients hi and h0 respectively. 
 

 
 

 

Surface in contact with 

fluid at T0 and surface heat 

transfer coefficient h0 

r2 
Surface   in   contact   with 

fluid   at   Ti    and  surface 

heat transfer coefficient hi r1
 

 

 

 

 

 

Fig. 3.7: Radial conduction in a hollow sphere with convective 

conditions at the two boundary surfaces 

 

 
The thermal resistance network for the above problem is shown in Fig.3.8 

Qci = Qr = Qco ............................... (3.24) 

Where Qci = heat transfer by convection from the fluid at Ti to the inner 

surface of the hollow sphere and is given by 

[Ti – T1] 

Qci = hi Ai [Ti – T1] = --------------- …..(3.25) 

Rci 

 

 

 

 

 

 

Ti Qci Qr 
 Qco 

 To 

Rci R  Rco 

 

Fig. 3.8: Thermal circuit for a hollow sphere with convective boundary conditions 3.12 
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i 

When T1 = the inside surface temperature of the sphere and 

Rci = 1 / (hiAi) = the thermal resistance for convection for the inside surface 

Or Rci = 1 / (4 π r 
2 

h ).................................................................................. (3.25b) 
 

Qr = Rate of heat transfer by conduction through the hollow sphere 

= [T1 – T2] / R with R = (r2 – r1) / {4 π k r1 r2} 

And Qco = Rate of heat transfer by convection from the outer surface of the sphere to 

the outer fluid and is given by 
 

   [T2 – T0] 

 Qco = ho Ao [T2 – To] = --------------- .................... (3.26a) 

   Rco 

Where T2 = outside surface temperature of the sphere and 

Ao = outside surface area of the sphere = 4 π r 
2 

so that 
2 

Rco = 1 / {4 π r2
2 

ho} ......................................... (3.26b) 

Now Eq.(3.24) can be written as 

 
[Ti – T1] [T1 – T2] [T2 – T1] 

Qr = hi Ai [Ti – T1] = -------------- = ---------------- = ---------------- 
 Rci R Rco 

 

[Ti – To] 

  

 
Qr = ---------------------- 

 …………………………………………(3.27) 

[Rci + R + Rco] 

Steady State conduction in composite medium: 
 

There are many engineering applications in which heat transfer takes place through a medium 

composed of several different layers, each having different thermal conductivity. These layers 

may be arranged in series or in parallel or they may be arranged with combined series-parallel 

arrangements. Such problems can be conveniently solved using electrical analogy as illustrated 

in the following sections. 

 
Composite Plane wall:- (i) Layers in series: Consider a plane wall consisting of three layers in 

series with perfect thermal contact as shown in Fig. 3.10.The equivalent thermal 

1 
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resistance network is also shown. If Q is the rate of heat transfer through an area A of 
the composite wall then we can write the expression for Q as follows: 

 
  

L1 
 

L2 
 

L3 
   

Surface in          

contact       Surface in contact with a fluid 
with fluid 

      at T0 and surface heat 
at Ti and 

 k1  k2  k3 transfer coefficient ho surface 
heat          

transfer          

coefficient          

hi 
 

T1 
 

T2 
 

T3 T4 
  

Rci 
   

R1 
 

R2 R3 
 

Rco 

Q         Q 

Ti 

 

T1 

 

T2 

 

T3 T4 

 

To 

Fig. 3.10: A composite plane wall with three layers in series and the 

equivalent thermal resistance network 

 

(T2 – T3) (T1 – T2) (T1 – T2) (T2 – T3) (T3  – Tco) 
Q = -------------- = --------------- = ------------- = ------------ = ---------------- 

Rco R1 R2 R3 Rco 

 

(Ti – T0) Ti – T0) 
Or Q = --------------------------------- = -----------............................................ (3.28) 

Rci + R1 + R2 +  R3 + Rco Rtotal 

 

Overall heat transfer coefficient for a composite wall: - It is sometimes convenient to 
express the rate of heat transfer through a medium in a manner which is analogous to the 

Newton‟s law of cooling as follows: 

 
If U is the overall heat transfer coefficient for the composite wall shown in Fig. 
(3.10) then 

Q = U A (Ti – To) ..................................................... (3.29) 

Comparing Eq. (3.28) with Eq. (3.29) we have the expression for U as 

1 

U = -------------- ......................................................... (3.30) 

A Rtotal 
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L H1 

Surface in 

contact 

with fluid 

at Ti with 

heat 
transfer 
coefficient 

hi 

H2 

H3 

 

 

b 

Q1 

Suface in contact 

with fluid at To 

and surface heat 
transfer 

coefficient ho 

Ti 
T1 Q2 T2 

Rco 

To 

Q 

Q3 

R3 

R2 Rci 

R1 

k3 

k2 

k1 

1 1 

Or U = ------------------------------------= ----------------------------------------------------- 

A [ Rci + R1 + R2 + R3 ] A[1/(hiA) + L1/(Ak1) + L2/(Ak2) + L3/(Ak3)] 

1 

Or  U = -------------------------------------------- .................................................. (3.31) 

[ 1/hi + L1 / k1 + L2 / k2 + L3 / k3 ] 

(ii) Layers in Parallel:- Fig.3.11 shows a composite plane wall in which three layers are 

 

 

 

 

Fig. 3.11: Schematic and equivalent thermal circuit for a composite wall with layers in 
parallel 

 

arranged in parallel. Let „b‟ be the dimension of these layers measured normal to the plane  
of the paper. Let one surface of the composite wall be in contact with a fluid at temperature 

Ti and surface heat transfer coefficient hi and the other surface of the wall be in contact with 

another fluid at temperature To with surface heat transfer coefficient ho. The equivalent 
thermal circuit for the composite wall is also shown in Fig. 3.11. The rate of heat transfer 
through the composite wall is given by 

 

Q = Q1 + Q2 + Q3.................................................... (3.32) 
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where  Q1 = Rate of heat transfer through layer 1, 

 
Q2 = Rate of heat transfer through layer 2, and 

Q3 = Rate of heat transfer through layer 3. 

(T1 – T2) 

Now Q1 = ------------- .................................................................................. (3.33a) 

R1 

 

Where R1 = {L / (H1bk1)} 
 

 
Similarly Q2 

(T1 – T2) 

= ------------- .......................................................................... (3.33b) 

R2 

 

Where R2 = {L / (H2bk2)} 
 

 

(T1 – T2) 

and  Q3  = --------------- = 

R3 

 
……………………….. ………………………….(3.33c) 

 

Where R3 = {L / (H3bk3)} 

Substituting these expressions in Eq. (3.32) and simplifying we get 

 
 

(T1 – T2) (T1 – T2) (T1 – T2) (T1  – T2) 
Q = ------------- + ---------------- + ----------------- = ------------------- ............... (3.34) 

R1 R2 R3 Re 

 
 

Where 1 / Re = 1/R1 + 1/R2 + 1/R3 

 

 
Hence Q = 

(Ti – T1) (T1 – T2) (T2 – To) (Ti – To) 

----------- = ------------ = ------------- = -------------------- …………(3.35) 

Rci Re Rco [Rci + Re + Rco] 
 
 

Composite Coaxial Cylinders:- Fig. 3.12. shows a composite cylinder having two layers in 
series. The equivalent thermal circuit is also shown in the figure. The rate of heat 
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R2 Rco 

R1 

transfer through the composite layer is given by 

k2 

 
k1 

 

r2 r3 

r1 

 

 

 

 
 

Surface in contact with 

fluid at To and surface 

heat transfer coefficient h0 

 

Ti T1 

Q 

Surface in contact with 

fluid at Ti and surface 
heat transfer coefficient 

hi 

 
T2 T3 To 

 

 

Fig. 3.12: Schematic and thermal circuit diagrams for a composite cylinder 
 

 

 

 
 (Ti – T1) (T1 – T2) (T2 – T3) (T3 – To) (Ti – T0) 

Now Q = ------------- = ------------ = ----------- = ------------- = ----------------------------- 

 Rci R1 R2 Rco [Rci + R1 + R2 + Rco] 

     ……………..(3.36) 

  
1 

 
1 

 

Where Rci = 1 / [hiAi] = -------------- ; R1 = ---------- ln (r2 / r1) 

  2 π r1L hi  2 π L k1  

  1  1  

Rco = 1 / [hoAo] = -------------- ; R2 = ---------- ln (r3 / r2) 

  2 π r3L ho  2 π L k2  

The above expression for Q can be extended to any number of layers. 

Rci 
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Overall Heat Transfer Coefficient for a Composite Cylinder:- For a cylinder the area of heat 
flow in radial direction depends on the radius r we can define the overall heat transfer 
coefficient either based on inside surface area or based on outside surface area of the 

composite cylinder. Thus if Ui is the overall heat transfer coefficient based on inside surface 

area Ai and Uo is the overall heat transfer coefficient based on outside surface area Ao then 

Q = UiAi (Ti – To) .................................................................................................. (3.37) 

From equations (3.36) and (3.37) we have 

 

(Ti – T0) 

Now UiAi (Ti – To) = ----------------------------- 

[Rci + R1 + R2 + Rco] 

Substituting the expressions for Ai, Rci,R1,R2 and Rco in the above equation we have 

 

1 

2 π r1L Ui = -------------------------------------------------------------------------------------------- 

[1 /(2πr1Lhi) + {1/(2πLk1)}ln (r2 / r1) + {1/(2πLk2)}ln (r3 / r2) + 1/(2πr3Lho)] 

1 

Or Ui = ------------------------------------------------------------------------- ............ (3.38) 

[ 1/hi + (r1 / k1) ln (r2/r1) + (r1/k2) ln (r3/r2) + (r1/r3) (1/ho) ] 

Similarly it can be shown that 

 

1 

Uo = ------------------------------------------------------------------------------ ....... (3.39) 

[(r3/ r2) (1/hi ) + (r3 / k1) ln (r2/r1) + (r3/k2) ln (r3/r2) + (1/ho) ] 

 
 

Composite Concentric Spheres:- Fig.3.13 shows a composite sphere having two layers with 

the inner surface of the composite sphere in contact with fluid at a uniform temperature Ti 

and surface heat transfer coefficient hi and the outer surface in contact with another fluid at a 

uniform temperature To and surface heat transfer coefficient ho. The corresponding thermal 
circuit diagram is also shown in the figure. 
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T1 

R1 Rco 

1 i 1 1 2 

3 2 2 3 

 

k2 

k1 

r1 r2    r1 

 
r3 

 

 
 

 

Surface in contact with 

fluid at To and surface 

heat transfer coefficient h0 

Surface in contact with 

fluid at Ti and surface 

heat transfer coefficient 

hi 

 

Ti T2 T3 To 

Q 
 

 

 

Fig. 3.13: Schematic and thermal circuit diagrams for a composite sphere 

 

 
Eq. (3.36) is also applicable for the composite sphere of Fig. 3.13 except that the expression 
for individual resistance will be different. Thus 

 

(Ti – To) 

Q = --------------------------.................................................................... (3.40) 

[Rci + R1 + R2 + Rco] 

1 1 (r2 – r1) 

where   Rci = ---------- = ----------------- ;  R1 = --------------- ; 

hi Ai 4 π r 
2 

h 4 π k r r 

1 1 (r3 – r2) 
Rco   = ---------- = ----------------- ; R2 =---------------- ; 

hoAo 4 π r 
2 

h 4 π k r r 

R2 Rci 

o 
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Example 3.1:- Consider a plane wall 100 mm thick and of thermal conductivity 100 W/(m- 
k). Steady state conditions are known to exist with T1 = 400 K and T2 

= 600 K. Determine the heat flux (magnitude and direction) and the temperature 
gradient dT/dx for the coordinate system shown in Fig. P3.1.(2000 0C/m; - 200,00 
W/m2;- 2000 0C/m,200,000 W/m2; 2000 0C/m, - 200,000 W/m2) 

 
 

T(x) 
T(x) T(x) 

 

 

 

 

T2 
T2 T2  

T1 
T1  T1 

L L 
x 

L 

x x  

(a) (b)  (c) 
 

Fig.P3.1: Schematic for problem 3.1 

 
Solution:- 
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T2 

T1 

x 

 

 

 (a) It can be seen from the figure that the temperature is 

T(x), k=100 w/m-k increasing with increase in x: i.e., dT/dx is +ve. 

 Therefore dT/dx = (T2 – T1) / L = (600 – 400)/0.10 

 

L = 2000 
0
C / m. 

Heat flux = qx = ─ k dT/dx = ─ 100 x 2000 W/m
2

 

= ─ 2 x 10 
5 

W / m
2
. 

The negative sign indicates that heat transfer takes place 
in the direction opposite to the +ve direction of x. 

 

 

 

 

 

 

(b) T(x) It can be seen from the figure shown that 
temperature is decreasing with increase in 
x or in other words dT/dx is – ve. 

 
  Therefore dT/dx = (T1 – T2)/L 

  
= (400 – 600) / 0.1 

  
= ─ 2000 

0 
C / m. 

T1 
 T2 

L qx = ─ k dT/dx = ─ 100 x (─ 2000) 

x 
 

= + 200,000 W / m
2
. 

+ ve sign for qx indicates that heat transfer 

is taking place in the + ve direction of x. 
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(c) 
 
 

It can be seen from the figure shown that 
the temperature increasing with increase in 
x: i.e., dT/dx is + ve. 

 

Therefore dT/dx = (600 – 400) / 0.1 

= 2000 
0
C / m. 

Heat flux = qx = ─ k dT/dx 

= ─100 x 2000 = ─ 200,000 W/m
2
. 

x 
Negative sign in qx indicates that heat 

transfer takes place in a direction opposite 

to the + ve direction of x. 
 

 

 

 

Example 3.2:-Fig. P3.2 shows a frustum of a cone (k = 3.46 W/m-K). It is of circular cross 

section with the diameter at any x is given by D = ax, where a = 0.25. The smaller cross 

section is at x1 = 50 mm and the larger cross section is at x2 = 250 mm. The corresponding 

surface temperatures are T1 = 400 K and T2 = 600 K. The lateral surface of the cone is 

completely insulated so that conduction can be assumed to take place in x-direction only. 

(i) Derive an expression for steady state temperature distribution, T(x) in the solid and 
(ii) calculate the rate of heat transfer through the solid.( T(x) = 400 + 12.5{20 – 1/x} ; Qx 

= - 2.124 W) 

T(x) 

T2 

T1 
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T2 T1 

 

By Fourier‟s law, the rate of 

heat transfer in x-direction 

across any plane at a distance 

x from the origin „o‟ is given 

by 
 

 

 

 

 

 

 

 

Therefore, Qx = ─ k (πD
2
/4) (dT/dx) = ─ k [π(ax)

2
/4] (dT/dx). 

Separating the variables we get, dT = ─ (4/πa
2
k) Qx (dx/x

2
) 

 
Integrating the above equation we have 

T x 

∫dT = ─( 4Qx / π a2 k) ∫ (dx /x2) 
T X 

1 1 

 

Or T – T1 = ─( 4Qx / π a2 k) [(1 / x)– (1 / X1)] 
 

( 4 Qx) 
Or T = T1  ─ --------------- ( (1 / x )– (1 / X1)) ................ (1) 

(π a2 k) 
 

At x = X2, T = T2. Substituting this condition in Eq.(1) and solving for Qx we get 

 

(π a2  k) (T2  – T1) 

Qx = ---------------------------- ................................. (2) 

4 (1/X2  – 1/X1) 
 

Substituting this expression for Qx in Eq. (1) we get the temperature distribution in 

the cone as follows: 

D2              
 

D 
D1   

Qx = ─ k Ax (dT/dx). 

  X1 For steady state conduction 
   without heat generation Qx 

 x  will be a constant. Also at any 
 X2  x, D = ax. 
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(T2 – T1) (1/x – 1/X1) 

T(x) = T1 +  -------------------------------- .......................... (3) 

(1/X2 – 1/X1) 

Substituting the given numerical values for X1, X2, T1 and T2 in Eq.(3) we get the 

temperature distribution as follows: 

(600 – 400) [ 1/ x – 1/0.05] 

T(x) = 400 + ------------------------------------ 

[ 1/0.25 – 1/0.05} 



Or T(x) = 400 + 12.5 [20 – 1/x] Temperature distribution 

π x (0.25)
2 

x 3.46 x [600 – 400] 

And Qx = --------------------------------------------- = ─ 2.123 W 
4 x [ 1/0.25 – 1/0.05 ] 

 
 

Example 3.3: -A plane composite wall consists of three different layers in perfect 
thermal contact. The first layer is 5 cm thick with k = 20 W/(m-K), the second 
layer is 10 cm thick with k = 50 W/(m-K) and the third layer is 15 cm thick with  
k = 100 W/(m-K). The outer surface of the first layer is in contact with a fluid at 

400 
0
C with a surface heat transfer coefficient of 25 W/ (m 

2 
– K), while the outer 

surface of the third layer is exposed to an ambient at 30 
0
C with a surface heat 

transfer coefficient of 15 W/(m 
2
-K).Draw the equivalent thermal circuit  

indicating the numerical values of all the thermal resistances and calculate the 
heat flux through the composite wall. Also calculate the overall heat transfer 
coefficient for the composite wall. 

 

 

Solution: Data :- L1 = 0.05 m ; L2 = 0.10 m ; L3 = 0.15 m ; k1 = 20 W /(m-K) ; 

k2 = 50 W /(m-K) ; k3 = 100 W/(m-K) ; hi = 25 W /(m
2 

– K) ; h0 = 15 W/(m
2 

– K) 

; Ti = 400 
0 

C ; T0 = 30 
0 

C. 

1 

Rci = 1 / (hiA1) = ----------------  = 0.04 m
2 

– K / W (A1 = A2 = A3 = A4 = 1 m
2
) 

25 x 1 
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 L1 L2 L3  

 
hi 

 

 

 
k1 

 

 

 
k2 

 

 

 
k3 

 
h0 

 

Q 

 
 

0.05 

R1 = L1 /(k1A1) = --------------- 
20 x 1 

= 0.0025 m
2
 

 
– K / W. 

 

R2 = L2 / (k2A2) = 

 

---------------- 

 
50 x 1 

0.10 

 

 
0.15 

 
= 0.002 m

2 
– K / W. 

 

R3 = L3/ (k3A3) = 

 

 
Rco = 1 / (h0A4) = 

------------------ 

 
100 x 1 

1 
---------------- 

 
15 x 1 

= 0.0015 m
2 

– K / W. 

 

= 0.067 m
2 

– K / W. 

 

∑R = Rci + R1 + R2 + R3 + Rco = 0.04 + 0.0025 + 0.002 + 0.0015 + 0.067 

Or ∑R = 0.113 m
2
-K/W. 

(Ti – T0) (400 – 30) 
Heat Flux through the composite slab = q = --------------- = ------------------ 

∑R 0.113 

= 3274.34 W / m
2
. 

If „U‟ is the overall heat transfer coefficient for the given system then 

Rci R1 R2 R3 R c0 
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Q 1 1 

U = ---------------- = ------------- = -------------- 

(Ti – T0) ∑R 0.113 

= 8.85 W / (m
2  

– K). 

Example 3.4:-A composite wall consisting of four different materials is shown in Fig 
P3.10. Using the thermal resistance concept determine the heat transfer rate per 

m
2 

of the exposed surface for a temperature difference of 300 
0 

C between the 
two outer surfaces. Also draw the thermal circuit for the composite wall. 

 

 

T1 

 

 

 

 

 

 

 

 

 

 
 

4cm 10 cm 5 cm 

 
k1 = 100 W/(m-K) ; L1 =0.04 m; 

k2 = 0.04 W/(m-K) ; L2 = 0.1 m; 

k3 = 20 W/(m-K) ; L3 = 0.1 m ; 

k4 = 70 W/(m-K) ; L4 = 0.05 m; 

W = Width of the wall 

perpendicular to the plane of 

paper = 1 m (assumed). 

T1 – T4 = 300 
0 

C. 

A1 = A4 = 1 x 2 = 2 m
2
. 

A2 = A3 = 1 x 1 = 1 m
2
. 

 

 

Solution:  

0.04 
0
 

R1 = L1 / (A1k1) = ---------------- = 0.0002 
2 x 100 

C / W. 

 

0.10 
0
 

R2 = L2 / (A2k2) = --------------- = 0.00143 
1 x 70 

 
C / W. 

 

0.10 

R3 = L3 / (A3k3) = --------------- = 0.005 
0 

C / W. 

1 x 20 

k1 k4 

2 m 

k3 

k2 



73 
 

Q R2 

R3 

 

Thermal potential = T1 – T4 

 

 0.05 

R4 = L4 / (A4k4) = ------------------ = 0.00036 
0 

C / W. 
 2 x 70 

 

 

 

 

 
 

R1 R4 

 

 

 

 

 
 

R2 and R3 are resistances in parallel and they can be replaced by a 

single equivalent resistance Re, where 
R2 R3 0.00143 x 0.005 

1 / Re = 1 / R2 + 1 / R3 or  Re = --------------- = ---------------------- = 0.0011 
0
C/W 

(R2 + R3) (0.00143 + 0.005) 

Now R1, Re and R4 are resistances in series so that 
 

(T1 – T4) 
------------------------------------ 300 

Q = ---------------------- = 

(R1 + Re + R4) [0.002 + 0.0011 + 0.00036] 

= 86.705 x 10
3 

W 

Heat transfer per unit area of the exposed surface is given by 

q = Q / A1 = 86.705 / 2.0 = 43.35 kW. 

Example 3.5:-A composite cylindrical wall is composed of two materials of thermal 

conductivity kA and kB. A thin electric resistance heater for which the interfacial 
contact  resistances are negligible separates the  two  materials.  Liquid   pumped 

through the inner tube is at temperature Ti with the inside surface heat transfer 
coefficient hi. The outer surface of the Composite wall is exposed to an ambient at 

a uniform temperature of To  with the outside surface heat transfer  coefficient ho. 
Under steady state conditions a uniform heat flux of qh is dissipated by the 
heater. 

(a) Sketch the equivalent thermal circuit for the composite wall and express all 
thermal resistances in terms of the relevant variables 

 

(b) Obtain an expression that may be used to determine the temperature of the 

heater,Th. 
(b) Obtain an expression for the ratio of heat flows to the outer and inner 

fluid, qo/qi. 
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Solution: 

 
 

1 1 1 

Ri  =  -------------  ln (r1/ri) ; Rci = ------------------ = 
- - - -  - -  - - -  - - -  - -  - - -  - - -  -

 

(2π LkA) hi Ai (2π ri L hi) 

1 1 1 

Ro = ------------- ln (ro/r1) ; Rco = ------------------ 
= ---- --- ---- --- ---- ---

 

(2π LkB) ho Ao (2π ro L ho) 

 
Qi = (Th – Ti) / [Ri + Rci ] ; Qo = (Th – To) / [Ro + Rco] ; 

Qtotal   = Qi + Qo =  (Th – Ti) / (Ri + Rci)  + (Th – To)/ (Ro + Rco) 

 

(Th – Ti)  (Th – To) 

2π r1L q h = -------------------------- + ----------------------- 

ln (r1/ri) 1 ln (ro/r1) 1 
---------- + ------------- ---------- + 

- - - - -- - - - - - - -  

2π L kA 2π L ri hi 2π L kB 2π L ro ho 

ro 
r1 

heater 

ri 

Q i 

hi,Ti 

kA 

Q0 ho,To 

kB 

Qi 

Qtotal 

Qo Rco Ro 

Rci Ri 
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(Th – Ti) (Th – To) 

Therefore q h = ------------------------------- 

[ (r1/kA) ln (r1/ri) + r1/(rihi)] 
+ -------------------------------- 

[(r1/kB) ln (ro/r1) + r1/(roho) 
 

The temperature Th of the heater can be obtained from the above equation. 

 
Qo (Th  – To) / (Ro + Rco) (Th – To) x (Ri + Rci) 

Now  ------- = --------------------------- = -------------------------- 

Qi (Th  – Ti) / (Ri + Rci) (Th  – Ti) x (Ro  + Rco) 

 

(Th – To) [ 1 / (rihi) + (1 / kA) ln (r1/ri) ] 

= ----------- x ------------------------------------- 

(Th – Ti) [ 1 / (roho) + (1 / kB) ln (ro/r1) ] 

 
Example 3.8:- A hollow aluminum sphere with an electrical heater in the centre is used 
to determine the thermal conductivity of insulating materials. The inner and outer radii 
of the sphere are 15 cm and 18 cm respectively and testing is done under steady state 

conditions with the inner surface of the aluminum maintained at 250
0 

C. In a particular 
test, a spherical shell of insulation is cast on the outer surface of the aluminum sphere  

to a thikness of 12 cm. The system is in a room where the air temperature is 20 
0 

C and 

the convection coefficient is 30 W/(m
2 

– K). If 80 W are dissipated by the heater under 
steady state conditions, what is the thermal conductivity of the insulating material? 

 
Solution: 

 

 ho,To  

r3      
  

r2 
r1 

  

r1 = 0.15 m ; r2 = 0.18 m ; 

 T1 
r3 = 0.18 + 0.12 = 0.3 m ; 

k1    
 

k1 

 

= 204 W/(m-K) from 

k2 
 tables; k2 = 0.30 W/(m-K) 

  
ho = 30 W/(m

2
-K);Q = 60 W 

  
T1 = 250 

0 
C ; To = 20 

0 
C. 

 
 (r2 – r1) (0.18 – 0.15) 

R1 = ---------------- = ------------------------------ = 4.335 x 10 
─ 4 0 

C / W. 
 4π k1 r1 r2 4 π x 204 x 0.18 x 0.15 
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R2 

q0 

R1 

 

 (r3 – r2) (0.30 – 0.18) 

R2 = ---------------- = ------------------------------ = 0.177 / k2 
0 

C / W. 

 4π k2 r2 r3 4 π x k2 x 0.30 x 0.18 
 

0 
C / W. 

 

 

0.0295) = 2.874 
 
 

Or k2 = 0.177 / 2.845 = 0.062 W / (m-K) 

 
Example 3.8:- In a hollow sphere of inner radius 10 cm and outer radius 20, the  inner 

surface is subjected to a uniform heat flux of 1.6 x 10 5 W/m2 and the outer surface is 
maintained at a uniform temperature of 0 0C.The thermal conductivity of the 
material of the sphere is 40 W /(m – K).Assuming one-dimensional radial steady 
state conduction determine the temperature of the inner surface of the hollow sphere. 

Solution:- 

 

 
T0 

 

 

 

 

 

 

 

 

The governing equation for one-dimensional steady-state radial conduction in a sphere 
without heat generation is given by 

d/dr ( r
2 

dT / dr ) = 0 .................................................... (1) 

 1  1 

Rco = 1 / (hoAo) = -------------------  = --------------------- = 0.0295 
4π r  

2 
h 

3 o 
 4π x (0.3)

2 
x 30 

(T1 – To)    

Q = -------------------- or R2 = (T1 – To) / Q – (R1 + Rco) 

R1 + R2 + Rco 
Or R2 = (250 – 20) / 80 ─ (4.335 x 10 

─ 4 
+ 

Therefore 0.177 / k2 = 2.845 
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1 

0 1 

0 1 

 

The boundary conditions are : (i) at r = R1, ─ k (dT/dr)|r=R1 = q0 

(ii) at r = R2 T(r) = 0. 

Integrating Eq. (1) w.r.t. r once, we get 

r
2 

(dT/dr) = C1 

or dT / dr = C1 / r
2 ......................................... 

(2) 

Integrating once again w.r.t. r we get 
 

T(r) = ─ C1 / r + C2 ……………….. (3) 

 
From (2) (dT/dr)r = R1 = C1 / R 

2
 

Hence condition (i) gives 
 

─ kC1 / R1
2 

= q0 

Or C1 = ─ q R 
2 

/ k 

 

Condition (ii) in Eq.(2) gives 0 = ─ C1 / R2 + C2 

Or C2 = C1 / R2 = ─ (q R 
2
) / (kR2) 

Substituting the expressions for C1 and C2 in Eq. (2) we have 

q  R 
2 

q   R 
2
 

0 1 0   1 

T(r) = -------------- ─ ------------------- 

k r k R2 

 
Substituting the numerical values for q0, k, R1 and R2 we have 

1.6 x 10
5 

x 0.1
2 

1.6 x 10
5 

x 0.1
2 

T(r) = -------------------- / r ─ -------------------- 

40 40 x 0.2 

 

Or T(r) = (40 / r) ─ 200 
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Tc2 T2 

Therefore T(r) |r = R1 = (40 / 0.1) ─ 200 = 200 
0 

C. 

 Thermal Contact Resistance: In the analysis of heat transfer problems for 
composite medium it was assumed that there is “perfect thermal contact” at the 
interface of two layers. This assumption is valid only the two surfaces are smooth and 
they produce a perfect contact at each point.But in reality, even flat surfaces that 
appear smooth to the naked eye would be 

. 
rather rough when examined under a microscope as shown in Fig. 3.14 with numerous peaks 

and valleys. 
 

T2 

T1 

Rcont 

 
 

LA LB 

 

 
   Gap between solids 

T1 
  

Enlarged view of the contact surface 
  Tc1  

 

 
 

Fig.3.14: Temperature drop across 

a contact resistance 

 

The physical significance of thermal contact resistance is that the peaks will form good thermal 
contact, but the valleys will form voids filled with air.As a result the air gaps act as insulation 
because of poor thermal conductivity of air.Thus the interface offers some resistance to heat 
conduction and this resistance is called the “thermal contact 

resistance,Rcont”. The value of Rcont is determined experimentally and is taken into account while 

analyzing the heat conduction problems involving multi-layer medium.The procedure is illustrated 
by means of a few examples below. 
 

Example 3.4:- A composite wall consists of two different materials A [k = 0.1 W/(m-k)] of 
thickness 2 cm and B[ k = 0.05 W/(m-K)] of the thickness 4 cm. The outer surface of layer A is in 
contact with a fluid at 2000C with a surface heat transfer coefficient of 15 W/(m2-K) and the outer 
surface of layer B is in contact with another fluid at 50 0 C with a surface heat transfer coefficient 
of 25 W/(m2-K). The contact resistance between layer A and layer B is 
0.33 (m2-K) /W. Determine the heat transfer rate through the composite wall per unit area of the 
surface. Also calculate the interfacial temperatures and the inner and outer surface temperatures. 
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Solution: 
 

 

hi,Ti 

 
h0,T0Ti = 200 

0 
C ; T0 = 50 

0 
C ; 

Rcont 

 

 

hi = 15 W/(m
2 

– K) ; h0 = 25W/(m
2
– K) 

kA kB 

LA LB 
kA = 0.1 W/(m-K) ; kB = 0.05 W/(m-K) 

Rcont = 0.33 (m
2 

– K) /W. 
 

 

  

The equivalent thermal circuit is also 
  shown in the figure. 

T1 
Tc1 

1 2 
  

  Rci = 1/(hiAA) = -------- = 0.067 m -K/W 

  (15 x 1) 

 Tc2 T2 

  R1 = LA/(kAAA) = 0.02 / (0.1 x 1) 

  = 0.2 m
2
-K / W. 

 

 

 

 

 

R2 = LB / (kBAB) = 0.04 / (0.05 x 1) = 0.8 m
2 

– K / W. 

Rco = 1 / (hoAB) = 1 / ( 25 x 1) = 0.04 m
2 

– K / W. 

∑R = Rci + R1 + Rcont + R2 + Rco = 0.067 + 0.2 + 0.33 + 0.8 + 0.04 = 1.437 m
2 

– K / W. 
 

 
 (200 – 50) 

Heat flux = q = (Ti – To) / ∑R =------------------- = 104.4 W/m
2

 

 1.437 

Now q = (Ti – TA) / Rci or TA = Ti – q Rci = 200 – (104.4 x 0.067) = 193 
0 

C. 

Similarly Tc1 = TA – q R1 = 193 – (104.4 x 0.2) = 172.12 
0 

C. 

 
Tc2 = Tc1 – q Rcont = 172.12 – (104.4 x 0.33) = 137.67 

0 
C. 

 
TB = Tc2 – q R2 = 137.67 – (104.4 x 0.8) = 54.15 

0 
C. 

Check : To = TB – q Rco = 54.15 – (104.4 x 0.04) = 49.97 
0 

C 
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h,T∞ 

Heater 

r2 

r1 

Qamb 

Rco Qamb 

Qtotal 

Qtube Rcond Rcont 

Example 3.6:- A very thin electric heater is wrapped around the outer surface of a long 

cylindrical tube whose inner surface is maintained at 5 
0
C. The tube wall has 

inner and outer radii of 25 mm and 75 mm respectively and a thermal 
conductivity of 10 W/(m-K). The thermal contact resistance between the heater 
and the outer surface of the tube per unit length is 0.01 (m-K) / W. The outer 

surface of the heater is exposed to a fluid with a temperature of – 10 
0
C and a 

convection coefficient of 100 W/(m
2
-K). Determine the heater 

power required per length of the tube to maintain a heater temperature of 25 
0
C. 

Solution: Data: r1 = 0.025 m ; r2 = 0.075 m ; k = 10 W /(m-K) ; T∞ = ─ 10 
0 

C ; h = 

100 W/(m
2 

– K); T1 = 5 
0 

C ; Rcont = 0.01 m – K / W ; T2 = 25 
0 

C. 

 

 

 

 

 

 
 

Q 
 

 

tube T1 T2 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig. P3.6: Schematic and Thermal circuit for Example 3.6 
 

 1  

Rco = 1 / (h Ao) = ----------------------- = 0.0212 (m- K) / W. 

100 x 2π x 0.075 

 

1 

  

1 

Rcond = ------------- ln (r2 / r1) = ------------------ ln (0.075 / 0.025) = 0.0175 (m-K) / W. 
2π L k (2x π x 1 x 10) 
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 [ 25 – (─ 10)] 

Qamb = (T2 - T∞) / Rco = ------------------- = 1651 W / m. 
  0.0212 
 (T2 – T1) [25 – 5] 

Qtube = ------------------ = --------------------- = 727.3 W / m 
 Rcont + Rcond (0.01 + 0.0175) 

 

Power required = Qtotal = Qamb + Qtube = 1650 + 727.3 = 2378.3 W/m 

 

 One Dimensional Steady State Conduction With Heat Generation: 
The governing equation for one – dimensional steady state conduction in 
solids which are generating is given as follows. 

(i) Plane wall :(d
2
T / dx

2 
) + q‟‟‟ / k = 0......................................... (3.41) 

(ii) Radial conduction in cylinder: (1/r) d / dr {r dT/dr} + q‟‟‟ / k = 0… ........ (3.42) 

(iii) Radial conduction in spheres: (1/r
2 

) d / dr {r
2 

dT/dr} + q‟‟‟ / k = 0… .... (3.43) 

The following examples illustrate the method of analysis of steady state heat 
conduction In solids generating heat. 

 
Example 3.7:-A plane wall of thickness L and thermal conductivity k has one of its 

surfaces insulated and the other surface is kept at a uniform temperature T0. 

Heat is generated in the wall at a rate q
’’’
(x) where q

’’’
(x) = q0 cos{(πx) / 

(2L)} W / m
3 

where q0 is a constant. 
(a) Develop an expression for one-dimensional steady state temperature 

distribution in the solid and (b) develop an expression for the temperature of 

the insulated surface. [T(x) = (π/2L)
2
(q0 / k) cos (πx / 2L) + T2] 

Solution:- The governing equation to determine T(x) is given 

by d
2
T / dx

2 
+ q

‟‟‟ 
/ k = 0 

Substituting the given expression for q
‟‟‟ 

the above equation reduces to 

d
2
T / dx

2 
+ (q0 / k) cos (πx / 2L) = 0 ...................................... (1) 
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T = T(x) 

q
’’’

= q0 cos (πx/2L) 

x 

 

 

 

 
 

L  

Insulated T 1 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

The boundary conditions are ; (i) at x = 0 (dT/dx) = 0 (Insulated) 
 

(ii) at x = L, T = T1 

Integrating Eq.(1) once w.r.t. x we get 

dT/dx = -(π/2L) (q0/k) sin (πx/2L) + C1 ....................... (2) 
 

Integrating once again w.r.t. x we get 

T(x) = -(π/2L)
2 

(q0/k) cos (πx/2L) + C1x + C2 ........................ (3) 

Condition (i) in Eq. (2) gives 0 = 0 + C1 or C1 = 0. 

Condition (ii) in Eq. (3) gives T1 = 0 + 0 + C2 or C2 = T1. 

 

Substituting the values of C1 and C2 in Eq. (3) we get the temperature distribution as 

T(x) = -(π/2L)
2 

(q0/k) cos (πx/2L) + T1 .................................... (4). 

At the insulated surface (x = 0) the temperature therefore is given 

by T(x) |x=0 = (π/2L)
2 

(q0/k) + T1. 

 
Example 3.8:- A long cylindrical rod of radius 5 cm and k = 10 W/(m-K) contains 

radioactive material which generates heat uniformly within the cylinder at a rate 

of 3x10 
5 

W/ m
3
. The rod is cooled by convection from its cylindrical 
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surface by ambient air at 50 
0
C with a heat transfer coefficient of 60 W/(m

2
-K). 

Assuming one-dimensional radial conduction determine the temperature at the 

centre of the rod as well as at the outer surface of the rod.(175 
0 

C) 
 
 
 

q’’’ 
  T = T(r)  

   h, T∞  

R    
 
 

     

 

   

 

The governing differential equation to determine one-dimensional steady state 
radial conduction with heat generation is given by 

(1/r) d / dr (r dT/dr) + q
‟‟‟ 

/ k = 0… ................................ (1) 

The boundary conditions are : (i) at r = 0, dT/dr = 0 (axis of symmetry) 

 

(ii0 at r= R, ─ k (dT/dr)|r=R = h [T |r= ─ T∞] 
 

Eq. (1) can be written as 

Integrating once w.r.t. r we get 

d / dr (r dT/dr) + q
‟‟‟ 

r / k = 0. 

 
r dT/dr + (q

‟‟‟ 
r
2
) / 2k = C1 

or dT/dr + (q
‟‟‟ 

r) / 2k = C1 / r ........................... (2) 

Integrating once again w.r.t. r we have q‟‟‟ r2 

T(r) = ─ -------------- + C1 ln r + C2 .................. (3) 
4 k 

Condition (i) in Eq. (2) gives 0 + 0 = C1 / 0 or C1 = 0. 

From Eq. (3) we have q‟‟‟ R2 

T(r)|r=R = ─ --------------  + C2 .................................. (3) 
4 k 

 

and from Eq. (2) we have (dT/dr) |r=R = ─(q
‟‟‟ 

R) / 2k 

Therefore condition (ii) gives 
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─ k [─ (q
‟‟‟

/R) / 2k] = h [ ─ (q
‟‟‟ 

R
2 

/4k) + C2 ─ T∞] 
 

  q‟‟‟ R q‟‟‟ R2 

Or C2 = ----------- + -------------- + T∞ 

  2 h 4 k 

Substituting the expressions for C1 and C2 in Eq.(3) we get the temperature distribution 

in the cylinder as 

q‟‟‟ R2 

T(r) = T∞ + ------------- [ 1 –(r/R)
2
 

4 k 

 
] + (q 

 

‟‟‟ 
 
R) / 2h ......................... (4) 

3 x 10 
5 

x (0.05)
2
 

Now q‟‟‟R2 / (4 k) = ----------------------- = 18.75 
3x105 

 
0 

C. 

------------------------ 4 x 10 

q
‟‟‟

R / (2h) =  x 0.05 = 125 
0 

C 

2 x 60 

Therefore T(r) = 50 + 18.75 [ 1 – (r/R)
2
] + 125 

= 175 + 18.75 [ 1 – (r/R)
2
] 

At the centre T(r) |r=0 = 175 + 18.75 = 193.75 0 C. 
 

At the surface T(r) |r=R = 5 0+ 18.75 [ 1 – 1] + 125 = 175 0 C. 

 
Example 3.9:-In a cylindrical fuel element for a gas-cooled nuclear reactor, the heat 

generation rate within the fuel element due to fission can be approximated by the 
equation 

q
’’’ 

= qo [1 – (r/R)
2
] W/m

3
, 

where R is the outer radius of the fuel element and qo is a constant. The outer 

surface of the cylinder is maintained at a uniform temperature To. Assuming one- 

dimensional radial conduction obtain an expression for the temperature 

distribution in the element. If R = 2 cm, k = 10 W/(m-K) and qo = 1.16 x 10 
5 

W/m
3
, what would be the temperature difference between centre temperature 

and the outer surface temperature.(0.87 
0 

C) 

Solution: The governing equation to determine the one-dimensional steady-state radial 
temperature distribution in a cylinder with heat generation is given by 

(1/r) d/dr(r dT/dr) + q
‟‟‟

/k = 0. 

Multiplying by r and substituting for q
‟‟‟ 

the given expression we have 
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R 

q0  r [ 1 – (r/R)2 ] 

d/dr(r dT/dr) + ---------------------- = 0 ................................. (1) 

k 

 

 
T0 

 

 

 

 

 

 

 

 

 

 

 

 

q
’’’ 

= q0 [ 1 – (r/R)
2
] 

 
Boundary conditions are: (i) at r = 0, dT / dr = 0 (axis of symmetry) 

 

(ii) at r = R, T = T0 
 

Integrating Eq. (1) w.r.t. r once we get 

q0 r
2 

r
4
 

(r dT/dr) + ---- [----- ─ --------- ] = C1 

K 2 4R
2

 

 

 

Or q0 

dT/dr + ---- [----- 
r r

3 
C1 

─ -----------] = ----------- ………..(2) 
 K 2 4R

2 
r 

 

Integrating once again w.r.t. r we have 

q0 r
2 

r
4
 

T(r) = ─ ---------- [---------- ─ --------- ] + C1 ln r + C2 ..................... (3) 

k 4 16R
2
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Condition(i) in Eq.(2) gives  

0 + 0 = C1 / 0 or C1 = 0. 
 

Condition (ii) in Eq.(3) gives 
 

 
q0 R

2 
R

4   

 T0 = ─ ------ [ -------- ─ ---------- ] + C2  

 
k 4 16 R

2
   

 
Or 

 
C2 = T0 + ---------------- 

3 q0 R
2
 

   

  16 k    

Substituting the expressions for C1 and C2 in Eq. (3) we have 

 
q0 r2 r4 

 
3 q0 R

2
 

 T(r) = ─ ---------- [---------- ─ --------- ] + T0 + --------------- 
 

k 4 16R
2

 
 

16 k 

Or 
 

q0 r
2 

r
4 

3 q0 R
2
 

 T(r) ─ T0 = ─ ---------- [---------- ─ --------- ] + --------------- 
  

k 4 16R
2
 16 k 

  
3 q0 R

2
 3 x 1.16 x 10

5 
x (0.02)

2
 

Therefore T(r) |r=0 ─ T0 = ------------------ 
  

= -------------------------------  
 = 0.87 

0 
C. 

 16 k  16 x 10 

 
Example3.10:-Develop an expression for one-dimensional radial steady state 

temperature distribution in a solid sphere of radius R in which heat is generated 
at a rate given by 

q
’’’ 

= qo [ 1 – (r/R)] W/m
3
. 

Assume that the outer surface is maintained at a uniform temperature To. 

[T(r) = T0 + (q0 R
2 

/ 12k) {1 – 2 (r/R)
2 

+ (r/R)
3
}] 
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Solution:-  

T0 The governing differential equation to find 

   q
’’’ 

= q0(1 – r/R) the one-dimensional radial steady state 
 temperature distribution in a sphere with heat 
 generation is given by 

 
(1/r

2
) d/dr(r

2 
dT/dr) + q

‟‟‟
/k = 0. 

 

Multiplying throughout by r
2 

and substituting the given expression for q
‟‟‟ 

we 

have d/dr (r
2 

dT/dr) + [q0 r
2
{1 ─ (r/R)}]/k  = 0… ....................(1). 

Boundary conditions are : (i) at r = 0, dT/dr = 0 (axis of symmetry) 
 

(ii) at r = R, T = T0. 

Integrating Eq. (1) w.r.t. r once we get 
 

(r
2
 

 
dT/dr) + 

q0 r3 r4
 

----- [ ------ ─ ----------  ] = C1 
k 3 4R 

q0 r r
2
 

Or dT/dr =   ─  ----- [ ------ ─ ---------- ] + C1 / r
2 ................................ 

(2) 

k 3 4R 

Integrating once again w.r.t. r we get 
 

q0 r2 r3
 

Or T(r) =  ─ ----- [ ------ ─ ---------- ]  ─ C1 / r + C2 ........................ (3) 
k 6 12R 

 

Condition (i) in Eq. (2) gives   0 = 0 + C1 / 0 or C1 = 0. 
 

Condition (ii) in Eq. (3) gives 

q0 R
2 

R
2
 

T0 = ─ ------ [ ------ ─ ----------  ] + C2 

k 6 12 

or C2 = T0 + q0 R
2 

/ 12k 

Substituting the expressions for C1 and C2 in Eq. (3) we have 
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2L 

 

  
q0 r

2 
r
3 

q0 R
2
 

 T(r) = ─ ---- [ ------ ─ ---------- ] + T0 + ----------- 
  k 6 12R 12 k 

  

q0 R
2
 
 
[ 1 ─ 2 (r/R)

2 
+ (r/R)

3 
] or T(r) = T0 + ---------- 

  12k  

 
 

Example 3.11:- A plane wall of thickness 2L is generating heat according to the law 

q’’’ = q0 [1 – β(T – Tw)] 

where qo, β, and Tw are constants and T is the temperature at any section x from 

the mid-plane of the wall. The two outer surfaces of the wall are maintained at a 

uniform temperature Tw. Determine the one-dimensional steady state temperature 
distribution, T(x) for the wall. 

 

Solution: 
 

 
 

q’’’ = q0 [1 – β(T – Tw)] 

 

 

Tw 
Tw 

 
 
 
 
 
 
 

 

x 

 
 

Governing differential equation for one-dimensional steady state conduction in a 
plane wall which generating heat is given by 

d
2
T / dx

2 
+ q‟‟‟ / k = 0. 

Substituting for q‟‟‟ we have 
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d
2
T / dx

2 
+ qo [ 1 – β(T – Tw)] /k = 0 

Defining a new variable θ = T – Tw, the above equation can be written as 

 

d2θ / dx2 + qo [ 1 – βθ] /k = 0 

 

or d2θ / dx2 − qo βθ /k = qo / k 

or d2θ / dx2    − m 2θ = qo / k ............................................ (1a) 
 

where m2  = q0 β /k ............................................. (1b) 

 
Eq.(1a) is a second order linear non-homogeneous differential equation whose solution 
is given by 

 

θ (x) = θh(x) + θp(x) ................................................... (2) 

where θh(x) satisfies the differential equation 

d
2
θh   / dx

2   
− m 

2
θh =  0 ............................................... (3) 

Solution to Eq.(3) is given by 

θh(x) = A1 e 
mx 

+ A2  e 
− mx .................................................. 

(4) 

θp(x) satisfies the differential equation 

d
2
θp  / dx

2   
− m 

2
θ p = qo / k… ................................... (5) 

The term qo/k makes the governing differential equation non-homogeneous. Since this is 

a constant θp(x) is also assumed to be constant. Thus let θp(x) = C, where C is a  

constant. Substituting this solution in Eq. (5) we get 
 

− m 2C = qo  / k 
 

Or C = - qo /(km2) 
 

Substituting for m2 we get C = − 1 / β. 

 

Hence θp(x) = − 1 / β ........................................... (6) 
 

The complete solution θ(x) is therefore given by 

θ(x) = A1 e 
mx 

+ A2 e 
− mx 

− 1 / β .............................. (7) 
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The constants A1 and A2 in Eq.(7) can be determined by using the two 

boundary conditions, which are: 

 

(i) at x = 0, dT / dx = 0 (axis of symmetry) i.e., dθ / dx = 0 
 

(ii) at x = L, T = Tw ; i.e., θ = 0 

From Eq.(7), dθ / dx = m[A1e 
mx 

– A2 e 
− mx 

] 

Substituting condition (i) we get m[A1 – A2] = 0 

 

Or A1 = A2. 

Substituting condition (ii) in Eq.(7) we get A1[e 
mL 

+ e 
− mL

] = 1 / β 

 
 (1 / β) 

Or A1 = ---------------------------- 

 [e 
mL 

+ e 
− mL

]
 

Substituting the expressions for A1 and A2 in Eq. (7) we get the temperature 

distribution in the plane wall as 
   (1 / β ) 

[ e 
mx 

+ e 
− mx 

] − 1 / β θ(x) = T(x) – Tw = -------------------- 

   [e 
mL 

+ e 
− mL

]
  

  
1 e mx + e − mx 

 

Or T(x) – Tw = ---- [ ----------------- − 1]  

  
β e mL + e − mL 

 

   [e m(L – x) + e − m(L – x)] cosh m(L – x) 

or T(x) – Tw = (1 / β)---------------------------- = (1 / β)---------------------------- 

   
[e mL + e − mL] cosh mL 

 

Critical Radius of Insulation:- For a plane wall adding more insulation will result in a 

decrease in heat transfer as the area of heat flow remains constant .But adding insulation to a 
cylindrical pipe or a conducting wire or a spherical shell will result in an increase in thermal 

resistance for conduction at the same will result in a decrease in the convection resistance of 

the outer surface because of increase in surface area for convection. Therefore the heat 

transfer may either increase or decrease depending on  the relative magnitude of these two 
resistances. 

 
Critical Radius of Insulation for Cylinder:- Let us consider a cylindrical pipe of outer radius rs 

maintained at a constant temperature of Ts. Let the pipe now be insulated with 
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a material of thermal conductivity k and outer radius r. Let the outer surface of the insulation 

be in contact with a fluid at a uniform temperature T∞ with a surface heat transfer coefficient 

h. Then the thermal circuit for this arrangement will be as shown in Fig.3.15. 
 

 
 

r Surface in contact with a fluid at T∞ and 

surface heat transfer coefficient h 
Ts      

rs      

 
Ts 

   T∞ 

 Rins 
 

 Rco 
 

 Q 

 

 

 

 

 

 
 

Fig.3.15: Schematic of a cylindrical pipe covered with an insulation 

and exposed to an ambient and the corresponding thermal circuit 

The rate of heat transfer from the pipe to the ambient is given by 

(Ts - T∞) (Ts – To) 

Q = ------------------ = ---------------------------------- ........................................... (3.44) 
[Rins + Rco] ln (r / rs) 1 

---------- + -------------- 

2 π L k 2 π r L h 
 

It can be seen from Eq. (3.44) that if Ts and h are assumed not to vary with „r‟ then Q 

depends only on r and the nature of variation of Q with r will be as shown in Fig.3.16. 

The value of r at which Q reaches a maximum can be determined as follows. 

(Ts – To) 
Eq. (3.44) can be written as Q = ----------- 

F(r) 
 

ln (r / rs) 1 

where F(r) = ---------- + -------------- 

2 π L k 2 π r L h 

 

Hence for Q to be maximum, F(r) has to be minimum: i.e., dF(r) / dr = 0 
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Qmax 

Qbare 

 

 

 

 

 

 

 

 

rs rcr = k / h 

 

Fig.3.16: Variation of Q with outer radius of insulation 

 
Now dF / dr = (1 / 2πLk)(1/r) − (1/2πLh)(1/r2) = 0 

Or r = k / h. 

This value of r is called “critical radius of insulation, rcr”. 

Therefore rcr = k /h ............................................................. (3.45) 

 

It can be seen from Fig.(3.16) that if the outer radius of the bare tube or bare wire is greater 

than the critical radius then, any addition of insulation on the tube surface decreases the heat 

loss to the ambient. But if the outer radius of the tube is less than the critical radius , the heat 

loss will increase continuously with the addition of insulation until the outer radius of 
insulation equals the critical radius. The heat loss becomes maximum at the critical radius and 

begins to decrease with addition of insulation beyond the critical radius. 

 

The value of critical radius rcr will be the largest when k is large and h is small. The lowest 

value of h encountered in practice is about 5 W/(m
2 

– K) for free convection in a gaseous 
medium and the thermal conductivity of common insulating materials is about 0.05 W/(m – 
K). Hence the largest value of rcr that we may likely to encounter is given by 

0.05 

rcr = ---------- = 0.01 m = 1 cm 
5 

 

The critical radius would be much less in forced convection (it may be as low as 1mm) 

Q 

r 
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because of large values of h associated with forced convection. Hence we can insulate hot water or 
steam pipes freely without worrying about the possibility of increasing the heat loss to the 
surroundings by insulating the pipes. 

 

The radius of electric wires may be smaller than the critical radius. Therefore, the plastic electrical 
insulation may enhance the heat transfer from electric wires, there by keeping their steady 
operating temperatures at lower and safer levels. 

 
Critical Radius Insulation for a Sphere:- The analysis described above for cylindrical pipes can 

be repeated for a sphere and it can be shown that for a sphere the critical radius of insulation is 
given by 

2k 

rcr = ------ ..................................................... (3.46) 
h 

 
Example 3.12:-A conductor with 8 mm diameter carrying an electric current passes 

through an ambient at 30 
0 

C with a convection coefficient of 120 W/(m
2 

– K). 

The temperature of the conductor is to be maintained at 130 
0 

C. Calculate the 
rate of heat loss per metre length of the conductor when (a) the conductor is 
bare and (b) conductor is covered with bakelite insulation [k = 1.2 W/(m-K)] with 
radius corresponding to the critical radius of insulation. 

 

Solution:   

Ts= 130 0 C  

D = 0.008 mm Dc K = 1.2 W/(m-K) 0 

Ts = 130 C 

 
 
 
 

h = 120 W/(m
2
-K) 

T∞ = 30 
0 

C 

(a) Conductor without 

 

 
2 

h = 120 W/(m 

T∞ = 30 
0 

C 

 

 
– K) 

 

Insulation. (b) Conductor with critical 

thickness of insulation 

 

 

 
(a) When the conductor is bare the rate of heat loss to the ambient is given by 

Q = h πD L (Ts - T∞) = 120 x π x 0.008 x 1 x (130 – 30) = 301.6 W/m. 

(b) When the conductor is covered with critical thickness of insulation, 
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Dc = 2 rc = 2 (k/h) = 2 x ( 1.2 / 120) = 0.02 m. 

1 1 

R insulation = -------------- ln (Dc / D) = ------------------------ ln (0.02 / 0.008) 
2π L k 2 π x 1.0 x 1.2 

= 0.1215 (m – 
0 

C) / W. 
1 1 

Rco = 1 / (h Ac) = ---------------- = 

 

 
 

 

 
 

 
------ ----  ----  ----  ----  --  

= 0.133 (m – 
0 

C)/W. 

π Dc L h π x 0.02 x 1 x 120 

∑R = Rinsulation + Rco = 0.1215 + 0.133 = 0.2545 (m – 
0 

C) / W. 
 

 

 
 

(Ts - T∞)  (130 – 30) 

Qinsulation = ------------------- = --------------- = 392.93 W / m. 
∑R  0.145 

 

Example 3.13: -An electrical current of 700 A flows through a stainless steel cable 

having a diameter of 5 mm and an electrical resistance of 6x10 
─ 4

 

ohms per metre length of the  cable.  The  cable  is  in  an  environment 

at a uniform temperature of 30 
0 

C and the surface heat transfer 

coefficient of 25 W/(m
2 

– 
0
C). 

(a) What is the surface temperature of the cable when it is bare? 

(b) What thickness of insulation of k = 0.5 W/(m – K) will yield the lowest value  
of the maximum insulation temperature? What is this temperature when the 
thickness is used? 

Solution: (a) When the cable is Bare: - Electrical Resistance = Re = 6 x 10 
─ 4 

Ω / m 

Current through the cable = I = 700 A; D = 0.005 m ; h = 25 W/(m
2
-K) ; T∞ = 30 

0
 

C. Power dissipated = Q = I
2 

Re = (700)
2 

x 6 x 10
─ 4 

= 294 W / m. 

But Q = hA(Ts - T∞) or Ts = T∞ + Q / [(πD L) x h] 

Or Ts = 30 + 294 / [(π x 0.005 x 1) x 25] = 779 
0 

C. 

(b) When the cable is covered with insulation: 
 

k = 0.5 W/(m-K) ; Hence critical radius = rc = k / h = 0.5 / 25 = 0.02 (m-K) / 

W. Thickness of insulation = rc – D/2 = 0.02 – 0.005 / 2 = 0.0175 m 
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1 1 

Rinsulation  = --------------- ln (rc  / ro) = ------------------- ln (0.02 / 0.0025) = 0.662 (m-K)/W 

(2π L k) (2π x 1 x 0.5) 

 

1 1 

Rco  = 1 / (hAo) = ------------------- = ------------------------------ = 0.318 (m-K) / W. 

(2π rcL h) (2 x π x 0.02 x 1 x 25) 

 

(Ts - T∞) 

Q = --------------------- or Ts = T∞ + Q (Rinsulation + Rco) 
Rinsulation + Rco 

 

Or Ts = 30 + 294 x (0.662 + 0.318) 
 

= 318.12 0 C. 

 
Example 3.14:- A 2 mm-diameter and 10 m-long electric wire is tightly wrapped With a 
1 mm-thick plastic cover whose thermal conductivity is 0.15 W / (m-K). Electrical 
measurements indicate that a current of 10 A passes through the wire and there is a 

voltage drop of 8 V along the wire. If the insulated wire is exposed to a medium at 30 
0
C 

with a heat transfer coefficient of 24 W / (m
2 

– K), determine the temperature at the 
interface of the wire and the plastic cover in steady operation. Also determine if doubling 
the thickness of the plastic cover will increase or decrease this interface temperature. 

Given: Outer radius of the bare wire = rs = 1 mm = 0.001 m ; Length of the wire = L = 10 m 

; outer radius of plastic insulation = r = 1 + 1 = 2 mm = 0.002 m ; 
Current through the wire = I = 10 A ; Voltage drop in the wire = V = 8 V ; Ambient 

temperature = T∞ = 30 
0
C ; Thermal conductivity of the plastic cover = k = 0.15 W /(m– K) ; 

Surface heat transfer coefficient = h = 24 W /(m
2 

– K). 

To find: (i) Interface temperature = Ts ; (ii) Whether Ts increases or decreases when 

the thickness of insulation is doubled. 

 

Solution: (i) Q = VI = 8 x 10 = 80 W. 

The thermal circuit for the problem is shown in Fig. P3.14. 

ln (r / rs) ln ( 0.002 / 0.001) 

Rins = ------------ = ----------------------------- = 0.0735 K / W 
2 π L k 2 x π x 10 x 0.15 

1 1 1 

Rco  = -------------- = -------------- = ------------------------------ = 0.3316 K / W 

h Ao 2 π L r h 2 x π x 10 x 0.002 x 24 
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r Surface in contact with a fluid at T∞ and 

surface heat transfer coefficient h 

Ts      

rs      

 
Ts 

   T∞ 

 Rins 
 

 Rco 
 

 Q 

 

 

 

 

 

 
 

Fig.P3.14: Schematic of an electric wire covered with an insulation and exposed 

to an ambient and the corresponding thermal circuit 

Hence Rtotal = Rins + Rco = 0.0735 + 0.3316 = 0.405 K / W. 

Now Q = (Ts - T∞) / Rtotal. 

Hence Ts = T∞ + Q Rtotal = 30 + 80 x 0.405 = 62.4 
0
C 

(ii) Critical radius of insulation = rcr = k / h = 0.15 / 24 = 0.00625. 

Since rcr > r, increasing the thickness of plastic insulation will increase the heat transfer rate 

if Ts is held constant or for a given heat transfer rate the interface temperature Ts will 

decrease till the critical radius is reached. Now when the thickness is doubled then r = 3 mm 

= 0.003 m . Therefore 

 
 

ln ( 0.003 / 0.001) 

Rins   = ----------------------------- = 0.1166 K / W 
2 x π x 10 x 

1 

Rco = ------------------------------ = 0.221 K / W 

2 x π x 10 x 0.003 x 24 
 

Therefore Rtotal = 0.1166 + 0.221 = 0.3376 K / W. 

and Ts = 30 + 80 x 0.3376 = 57 
0
C 
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 Extended Surfaces (Fins):- 

 

Solution to tutorial problems: 
Example 3.15:- A steel rod of diameter 2 cm and thermal conductivity 50 W/(m – 

K) is exposed to ambient air at 20 
0
C with a heat transfer coefficient 64 W/(m

2 
– K). 

One end of the rod is maintained at a uniform temperature of 120 
0
C. Determine  

the rate of heat from the rod to the ambient and the temperature of the tip of the 
rod exposed to ambient if (i) the rod is very long, (ii) rod is of length 10 cm with 
negligible heat loss from its tip, (ii) rod is of length 25 cm with heat loss from its tip. 

Solution: (i) Given:- D = 0.02 m ; k = 50 W/(m-K); T∞ = 20 
0
C; To = 120 

0
C; h = 64 W/(m

2
-K); Very long fin (x → ∞) 

m = √ [(hP) / (kA) = √ [(hπD / (πD
2
/4)] = √[(4h) / 

(kD)] 4 x 64 

= √ [ --------------------------- ] = 16 
50 x 0.02 

 

For a very long fin the rate of heat transfer is given by 

Q = kmA(T0 - T∞) = 50 x 16 x (π / 4) x 0.02
2 

x [ 120 – 20] = 25.13 

W (ii) L = 0.10 m. Hence mL = 16 x 0.1 = 1.6 

Q = kmA(T0 - T∞) tanh mL = 50 x 16 x (π / 4) x 0.02
2 

x (120 – 20) x tanh 

1.6 = 23.16 W 

(iii) When the heat loss from the rod tip is not negligible, then we can use the 

same formula as in case (ii) with modified length Le given by 

Le = L + A /P = L + (πD
2
/4) /(πD) = L + D / 4 = 0.1 + 0.02/4 = 

0.105 Hence mLe = 16 x 0.105 = 1.68 and tanh mLe = tanh 1.68 = 

0.9329 Hence Q = 25.13 x 0.933 = 23.44 W 

Example 3.16:-A thin rod of uniform cross section A, length L and thermal conductivity 

k is thermally attached from its ends to two walls which are maintained at 
temperatures T1 and T2. The rod is dissipating heat from its lateral surface to an 

ambient at temperature T∞ with a surface heat transfer coefficient h. 
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(a) Obtain an expression for the temperature distribution along the length of 
the rod 

(b) Also obtain an expression for the heat dissipation from the rod to the ambient 

 
 

Solution: The general solution for the one-dimensional steady-state temperature distribution 
along the length of a rod dissipating heat by convection from its lateral surface is given by 

θ(x) = C1 cosh mx + C2 sinh mx ........................................ (1) 
 

where θ(x) = T(x) - T∞ ; m = √ (hP) / (kA) : 

P = perimeter of the rod = π D and A = Area of cross section of the rod = π D2 / 4. 

The boundary conditions are: (i) at x = 0, T = T1 or θ = T1 - T∞ = θo (say). 

(ii) at x = L, T = T2 or θ = T2 - T∞ = θL (say). 
 

Condition(i) in Eq. (1) gives θo = C1. 

 

Condition (ii) in Eq. (1) gives θL = θ0 cosh mL + C2 sinh mL 

 

(θL ─ θo cosh mL) 

C2 = --------------------- -- . 

sinh mL 

Substituting for C1 and C2 in Eq. (1) we have 

(θL ─ θo cosh mL) 

θ(x) = θo  cosh mx + ------------------------- sinh mx 
sinh mL 

 

θo cosh mx sinh mL + θL sinh mx ─ θo  cosh mL sinh mx 
0r θ(x) = ----------------------------------------------------------------------- 

- sinh mL 

 

θL sinh mx + θo sinh m(L – x) 
0r θ(x) = ------------------------------------- ..........................................................(2) 

sinh mL 

Expression for the rate of heat dissipation from the rod: 



99 
 

 

 

 

 
Q|x=0 

Qamb 

x 

 

 

 
L 

3.52  

 

 
 

Q |x=L 

 

Energy balance for the rod is given by 

Q amb = Q |x = 0 ─ Q |x = L 

= ─ kA (dθ / dx)|x = 0 + kA (dθ / dx)|x = L ................................................... (3) 

─ m [θLcosh mx + θ0 cosh m(L – x)] 

From Eq. (2) we have (dθ / dx) = -------------------------------------------------- 

sinh mL 

 
─ m [θL + θ0 cosh mL] 

Therefore (dθ / dx)|x = 0 = ------------------------------- 

 sinh mL 

 
─ m [θL cosh mL + θ0] 

and (dθ / dx)|x = L = ------------------------------ 
 sinh mL 

 
kmA [θL + θ0 cosh mL ─ θL cosh mL ─ θ0 ] 

Hence Qamb = --------------------------------------------------------- 
 sinh mL 
 kmA [(θL – θ0) ─ (θL ─ θ0) cosh mL ] 
 = ---------------------------------------------------------- 
 sinh mL 

 
kmA(θL – θ0) (1 ─ cosh mL) 

or Qamb = ------------------------------------- 
 sinh mL 

Example 3.17:-Heat is generated at a constant rate of q
’’’ 

W/m
3 

in a thin circular rod of 
length L and diameter D by the passage of electric current. The two ends of the 

rod are maintained at uniform temperatures with one end at temperature T0 and 

the other end at 0 
0 

C, while heat is being dissipated from the lateral surface of 

the rod to an ambient at 0 
0
C with a surface heat transfer coefficient h. 

(a) Derive the one-dimensional steady state energy equation to determine the 
temperature distribution along the length of the rod 

(b) Solve the above equation and obtain the temperature distribution. 
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x 

L 

Solution: Since the rod is generating heat and dissipating heat to the ambient, the governing 
differential equation to determine the one-dimensional steady state temperature distribution 
has to be obtained from first principles as illustrated below. 

 

0
0 

C h,T∞     q
’’’ 

W/m
3 

 

T = T0 

 

 

 

 
 Qamb  

Qx 
 Qx+dx 

 

   
x 

 

dx 
 

Qg 

 
 

Consider an elemental length „dx‟of the rod as shown in the figure above. The various 
energies crossing the boundaries of the rod as well as the energy generated are also shown in 

the figure. For steady state condition the energy balance equation for the rod element can be 
written as 

 

 

 
 

 Qx + Qg = Qx+dx + Qamb 

Or Qx + Qg = Qx + (dQx/dx) dx + Qamb 

Or (dQx/dx) dx + Qamb = Qg 

 
d/dx(─ kA dT/dx) dx + hPdx (T - T∞) = Adx q

‟‟‟
 

Or (d
2
T / dx

2
) – (hP / kA) (T - T∞) = ─ (q

‟‟‟ 
/ k) 

Let T - T∞ = θ and (hP / kA) = m
2
. then the above equation reduces to 

(d
2 

θ /d x
2
) ─ m

2 
θ = ─ (q

‟‟‟ 
/ k) .............................................(1) 
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Eq.(1) is a non-homogeneous linear second order ordinary differential equation whose 
solution can be written as 

 

θ(x) = θh(x) + θp(x) ------------------------------------ (2) 

where θh(x) satisfies the homogeneous part of the differential equation namely 
 

(d
2 

θh /d x
2
) ─ m

2 
θh = 0 ------------------------------------- (3) 

and θp(x) is the particular integral which satisfies Eq. (1). Solution to Eq.(3) is given by 
 

θ(x) = C1 e 
mx 

+ C2 e 
─ mx 

----------------------------- (4) 

To find θp(x) :- Since the RHS of Eq.(1) is a constant let us assume θp(x) = B, where B is 

a constant. Substituting this solution in Eq.(1) we have 

0 – m
2 

B = ─ (q
‟‟‟ 

/ k) 

Or B = (q
‟‟‟ 

/ km
2
) 

Therefore the complete solution for Eq. (1) can be written as 

 

θ(x) = C1 e 
mx 

+ C2 e ─mx 
+ (q

‟‟‟ 
/ km

2
)
 

Or   T(x)   =   T∞   +   C1   e   
mx   

+   C2   e Boundary ─mx 
+ (q

‟‟‟ 
/ km

2
) ...........................(5) 

conditions are: (i) at x = 0, T = 0 
 

(ii) at x = L, T = T0 

 
 

Condition (i) in Eq. (5) gives 

0 = T∞ + C1 + C2 + (q
‟‟‟

/ km
2
) 

Or C1 + C2 = ─ T∞ ─ (q
‟‟‟

/km
2
) ------------------------------- (a) 

Condition(ii) in Eq.(5) gives T0 = T∞ + C1 e 
mL 

+ C2 e 
─ mL 

+ (q
‟‟‟

/km
2
) 

Or C1 e 
mL 

+ C2 e 
─ mL 

= T0 ─ T∞ ─ (q
‟‟‟

/km
2
) ----------------------------- (b) 

From Eq.(a) C2 = ─ C1 ─ T∞ ─ (q
‟‟‟

/km
2
). Substituting this expression in Eq.(b) we 

have C1 e 
mL 

─ [C1 + T∞ + (q
‟‟‟

/km
2
)] e 

─ mL 
= T0 ─ T∞ ─ (q

‟‟‟
/km

2
) 
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T0 ─ {T∞ + (q
‟‟‟

/km
2
)}{1 ─ e 

─ mL 
} 

Solving for C1 we get C1 = -------------------------------------------------- 

 
{ e mL ─ e ─ mL } 

 

T0 ─ {T∞ + (q
‟‟‟

/km
2
)}{1 ─ e 

─ mL 
} 

C2 = ─{ T∞ + (q
‟‟‟

/km
2
) }─ -------------------------------------------------- 

 { e 
mL 

─ e 
─ mL 

}
 

 
─{ T∞ + (q

‟‟‟
/km

2
) }{ e 

mL 
─ e 

─ mL 
} ─ T0 + {T∞ + (q

‟‟‟
/km

2
)}{1 ─ e 

─ mL 
} 

C2 = ------------------------------------------------------------------------------------------------ 

 

{ e mL ─ e ─ mL } 
{ T∞ + (q

‟‟‟
/km

2
) }[ ─ e 

mL 
+ e 

─ mL 
+ 1 ─ e 

─ mL
] ─ T0 

C2 = ----------------------------------------------------------------------------------------------- 

{ e 
mL 

─ e 
─ mL 

}
 

{ T∞ + (q
‟‟‟

/km
2
) }[ 1 ─ e 

mL
] ─ T0 

C2 = ---------------------------------------------- 

{ e mL ─ e─ mL } 

Substituting the expressions for C1 and C2 in Eq. (5) and simplifying we get 

[T0 ─ {T∞ + (q
‟‟‟

/km
2
)}{1 ─ e 

─ mL 
}] e 

mx
 

T(x) = T∞ + (q
‟‟‟

/km
2
) + 

 

+ 

-------------------------------------------------{emL─e─mL} 

[ { T∞ + (q
‟‟‟

/km
2
) }[ 1 ─ e 

mL
] ─ T0] e 

─ mx
 

----------------------------------------------------{emL─e─mL} 

 
T0(e 

mx 
- e 

─ mx
) 

T(x) = T∞ + (q
‟‟‟

/km
2
) + --------------------- + 

{ e 
mL 

─ e 
─ mL 

}
 

 

[ ─{T∞ + (q
‟‟‟

/km
2
)}{ 1 ─ e 

─ mL 
}] e 

mx 
+ { T∞ + (q

‟‟‟
/km

2
) }[ 1 ─ e 

mL
] e 

─ mx
] 

---------------------------------------------------------------------------------------------- 

{ e mL ─ e─ mL } 

 

Example 3.18:- Two very long slender rods of the same diameter are given. One rod is 
of aluminum (k = 200 W/(m-K)). The thermal conductivity of the other 
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Tb = Ta 

rod is not known. To determine this, one end of each rod is thermally attached to 

a  metal  surface maintained at  a  uniform temperature T0.  Both  rods are  losing 

heat  to  the  ambient  air  at  T∞   by  convection  with  a  surface  heat  transfer 
coefficient h. The surface temperature of each rod is measured at various 
distances from hot base surface. The temperature of the aluminum rod at 40 cm 
from the base is same as that of the rod of unknown thermal conductivity at 20 
cm from the base. Determine the unknown thermal conductivity. 

 

Solution: 
 

 
 

ka = 200 W/(m-K) 

 
   

kb = ? 

 

 

 
For very long slender rods the steady-state one-dimensional temperature 
distribution along the length of the rod is given by 

θ (x) = θ0 e 
─ mx

 

……………………………..(1) where θ(x) = T(x) - T∞ and θ0 = T0 - T∞. 

 

For rod A Eq.(1) can be written as θa(x) = θ0 e 
─ ma xa ....................................................... 

(2) 

And for rod B it can be written as θb(x) = θ0 e 
─ mb xb ................................................... 

(3) 

It is given that when xa = 0.4 m and xb = 0.2 m, θa(xa) = θb(xb) 

 

Therefore we have θ0 e ─ 0.4 ma = θ0 e ─ 0.2 mb 

Or mb = 2 ma 

Or √ [(hPb) / (kbAb)] = 2√[ (hPa) / (kaAa)] 

Since Pa = Pb and Aa = Ab, we have √ ka = 2 √ kb or ka = 4 kb 

Therefore kb = 200/4 = 50 W/(m-K). 

xa Ta    

  

 
 

 
xb  
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Example 3.19:- Show that for a finned surface the total heat transfer rate is given 
by 

Qtotal = [η β + (1 – β)] a h θ0 = ή a h θ0 

Where η = fin efficiency ; β= af / a : af = surface area of the fin, a = total 

heat transfer area (i.e. finned surface + unfinned surface) ; θ0 = T 0 - T∞, 

with T0 = fin base temperature and T∞ = ambient temperature, and ή = area 
– weighted fin efficiency. 

 

Solution: 

Qtotal = Qfin + Qbare 

 

Where Qtotal = Total heat transfer rate, Qfin = Heat transfer rate from the finned 

surface and Qbare = Heat transfer rate from the bare surface. 

Therefore Qtotal = η h af θ0 + h(a – af) θ0 

= h a θ0 [(η af) / a + (1 – af/a)] 

here, β= af/a  

= ha θ0 [ηβ + (1 – β)] 

= ή ha θ0 , where ή = [ηβ + (1 – β)] 

Example 3.20:- The handle of a ladle used for pouring molten lead at 327 
0 

C is 30 
cm long and is made of 2.5 cm x 1.5 cm mild steel bar stock (k = 43 W/(m-K)). In 
order to reduce the grip temperature, it is proposed to make a hollow handle of mild 
steel plate 1.5 mm thick to the same rectangular shape. If the surface heat transfer 

coefficient is 14.5 W/(m
2
-K) and the ambient temperature is 27 

0
C, estimate the 

reduction in the temperature of the grip. Neglect the heat transfer from the inner 
surface of the hollow shape. 

 

Solution: (a) When the handle is made of solid steel bar: 
 

 
 

2.5 cm  

h = 14.5 W/(m
2
-K) ; 

1.5 cm k = 43 W/(m-K) 

θ0 = 327 – 27 = 300 
0 

C 

Cross section of the handle 

Area of cross section of the bar = A = 2.5 x 1.5 x 10 
─ 4 

m
2 

= 3.75 x 10 
─ 4

 

m
2 

Perimeter of the bar = P = 2 [ 2.5 + 1.5] x 10 
─ 2 

m = 8 x 10 
─ 2 

m 
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( hP)(1/2) √ [14.5 x 8 x 10 
─ 2

] 

Therefore m = ------ = ---------------------------- = 8.48 (1/m) 

(kA)(1/2) √[43 x 3.75 x 10 
─ 4

] 

 

 

Therefore mL = 8.48 x 0.3 = 2.54. 

 

When the heat loss from the tip of the handle is neglected the temperature at any 
point along the length of the handle is given by 

 

cosh m(L – x) 

θ(x) = θ0 ---------------------- 

cosh mL 

 

 

Therefore θ(x)|x=L = θ0 / cosh mL = 300 / cosh 2.54 = 47 0 C. 

Or T(x)|x=L = 47 + 27 = 74 0 C. 

 
(b) When the handle is hollow made out of a sheet: 
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Area of the cross section of the fin is 

2.5 cm 
   

 
A = [(2.5 x 1.5) – (2.5 – 0.3) x (1.5 – 0.3)] 

  

 

1.5 cm 

 

= 1.11 cm 
2 

= 1.11 x 10 
− 4 

m
2

 

P = 2 x [ 2.5 + 1.5 ] = 8 cm = 8 x 10 
− 2 

m 

 
1.5 mm thick 

 
   √(14.5 x 8 x 10 

− 2
) 

m = √(hP) / (kA) = ---------------------------- 

√( 43 x 1.11 x 10 
− 4

) 
 

 

 

 

 

 

 

Or m = 15.59 1/m. Therefore mL = 15.59 x 0.3 = 4.68 
 

θ0  (327 – 27) 

θ(x)|x=L = -------------------- = ----------------- = 5.57 
0 

C. 

cosh mL  cosh 4.68 

Therefore T(x)|x=L = 5.57 + 27 = 32.57 
0 

C. 

Reduction in grip temperature = 74 – 32.57 = 41.43 
0 

C. 

Example 3.21:- Derive an expression for the overall heat transfer coefficient across 
a plane wall of thickness ‘b’ and thermal conductivity ‘k’ having rectangular fins on 
both sides. Given that over an overall area A of the wall, the bare area on both sides, 

not covered by the fins are Au1 and Au2, the fin efficiencies are η1 and η2, and the 

heat transfer coefficients h1 and h2. 

Solution: 

Let Ti be the temperature of the fluid in contact with the surface 1, T0 be the  

temperature of the fluid in contact with surface 2, T1 be the temperature of surface 1 and 

T2 be the temperature of surface 2.Let Ti >T0. Then the rate of heat transfer from Ti to 

T0 is given by 

Q = Qbare  + Q fin 

= hiAu1 (Ti – T1) + hi η1Af1(Ti – T1) 
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(Ti – T1) (Ti – T1) 

Or Q = ----------------- − 

(1 /h1Au1) 

------------------- 

(1/h1η1Af1) 
 

(Ti  – T1) 

Q = ------------------ --------------- ........................................ (1) 

[(1 /h1Au1) + (1/h1η1Af1) ] 

 

(T2  – T0) 

Q = ------------------ --------------- ........................................ (2) 

[(1 /h2Au2) + (1/h2η2Af2) ] 
 

Rate of heat transfer is also given by 

(T1  – T2) 
Q = --------------- ............................................................... (3) 

(b/Ak) 

 
 

Therefore as A/B = C/D = E/F = (A+C+E)/(B+D+F) 



(Ti – T1) + (T1 – T2) + (T2 – T0) 

Q = -------------------------------------------------------------------------- 

[(1 /h1Au1) + (1/h1η1Af1) + (1 /h1Au1) + (1/h1η1Af1) +(b/Ak)] 

 

(Ti – T0) 

Q = -------------------------------------------------------------------------- ……(4) 

[(1 /h1Au1) + (1/h1η1Af1) + (1 /h1Au1) + (1/h1η1Af1) +(b/Ak)] 

If U = overall heat transfer coefficient for the plane wall then 

Q = UA(Ti  – T0) 

 

(Ti  – T0) 

= ----------------- ………………………………….(5) 

(1/UA) 
 

From Eqs. (4) and (5) we have 

 

1 

U = ------------------------------------------------------------------------------ 

A [(1 /h1Au1) + (1/h1η1Af1) + (1 /h1Au1) + (1/h1η1Af1) +(b/Ak)] 
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L 

 

Example 3.22:- Calculate the effectiveness of the composite pin fin shown in Fig.P3.22. Assume 

k1 = 15 W/(m-K), k2 = 50 W/(m-K) and h = 12 W/(m
2 

– K). 

 
Solution: 

 

 

 

 

3 mm = d1 

d2 = 10 mm 

 

Qc K1=15 W/m-k , K2=50W/m-k, 

K3=12 W/m-k. 
 

Qx Qx+dx 

(b) Energy transfer across the 

surfaces of the fin element 

dx 
 

Energy balance equation for the fin element is given by 

 
Qx = Qx+dx + Qc 

 

= Qx + (dQx/dx) dx + Qc 

Or dQx / dx + Qc = 0 ........................................................... (1) 

Qx consists of two components namely the heat transfer Qx1 through the material 

of thermal conductivity k1 and the rate of heat transfer Qx2 through the material of 

conductivity k2. 

Therefore Qx = Qx1 + Qx2 = − k1A1 (dT / dx) − k2A2 (dT / dx) 

= − (k1A1 + k2A2) (dT / dx) 

And Qc = (hP2 dx) (T - T∞). 

Substituting these expressions for Qx and Qc in equation (1) we get 

 

  

 
k1 

  

 

x k2 
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hP2 

(d2T / dx2) − ------------------- (T – T∞) = 0 

(k1A1  + k2A2) 

 

Or (d2θ / dx2) − m2  θ = 0 ...................................... (2) 

 

Where θ = T – T∞ and m = √ [ hP2 / (k1A1 + k2A2) ]. 

 
When the heat loss from the fin tip is negligible , the solution to equation (2) is given by 

 

cosh [m(L – x)] 
θ(x) = θ0 --------------------- .............. (3) 

cosh mL 
 

The rate of heat transfer from the fin base is given by 

 

Qx|x=0 = − (k1A1 + k2A2) (dθ / dx)|x=0 

 

− (k1A1  + k2A2) sinh [m(L – x)]x=0  (- m) θ0 

= ---------------------------------------------------- 

cosh mL 

 

= mθ0 (k1A1 + k2A2) tanh mL 

 

Now η = Qx|x=0 / Qmax 

 

mθ0  (k1A1  + k2A2) tanh mL 

= ---------------------------------------- 

hP2L θ0 

Noting that hP2 / (k1A1 + k2A2) = m
2
, the above expression for η simplifiers to 

 
tanh mL 

η = ----------------------- .................................(4) 

mL 

In the given problem A1 = (π / 4) x (0.003)
2 

= 7.1 x 10 
− 6 

m
2
. 

A2 = (π / 4) x [ (0.01)
2 

– (0.003)
2
] = 7.15 x 10 

− 5
 

P2 = π x 0.01 0.0314 m. 
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 √ [ 12 x 0.0314]  

 m = ----------------------------------------------------- = 10.12 
 √[(15 x 7.1 x 10 

− 6 
) + (50 x 7.15 x 10 

− 5
)]  

Therefore mL = 10.12 x 0.1 = 1.012 
 

 

 

tanh (1.012) 

η = ------------------ = 0.757 

1.012 
 

Example 3.23:- Why is it necessary to derive a fresh differential equation for 
determining the one-dimensional steady state temperature distribution along 
the length of a fin? 

 

Solution:- While deriving the conduction equation in differential form we will have 

considered a differential volume element within the solid so that the heat transfer across 

the boundary surfaces of the element is purely by conduction. But in the case of a fin the 

lateral surface is exposed to an ambient so that the heat transfer across the  lateral 

surfaces is by convection. Therefore we have to derive the differential equation afresh 

taking into account the heat transfer by convection across the lateral surfaces of the fin. 

 
Solutions to Problems on Conduction in solids with variable thermal conductivity 

 
 

Example 3.24:- A plane wall 4 cm thick has one of its surfaces in contact with a fluid at 130 
0
C with a surface heat transfer coefficient of 250 W/(m2 – K) and the other surface is in 

contact with another fluid at 30 0C with a surface heat transfer coefficient of 500 W/(m2-K). 

The thermal conductivity of the wall varies with temperature according to the law 

 

k = 20 [ 1 + 0.001 T] 

 

where T is the temperature. Determine the rate of heat transfer through the wall and the 

surface temperatures of the wall. 

Given:- L = 0.04 m; Ti = 130 0C; hi = 250 W/(m2-k); To = 30 0C; ho = 500 

W/(m2-K); k = 20 [ 1 + 0.001 T]. 

To find:- (i) Qx (ii) T1 and T2 

 
Solution: 

Rci = Thermal resistance for convection at the surface at Ti = 1/(hiA) = 1 / (250 x 

1) = 0.004 m
2 

– K /W 

Rco = Thermal resistance for convection at the surface at To = 1/(hoA) = 1/(500 x 1) 
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Or Rco = 0.002 m
2
-K/W 

Now Q = (Ti – T1) / Rci, where T1 = Surface temperature in contact with fluid at Ti. 

Hence T1 = Ti – QRci = 130 – 0.004 Q ................................................................. (1) 

Similarly Q = (T2 – To) / Rco 

Or T2 = To + QRco = 30 + 0.002Q ................................................................. (2) 

 

From equations (1) and (2) we have 
 

T1 – T2 = 100 – 0.006Q ...................................................................................... (3) 

And Tm = ( T1   + T2) / 2 = 80 – 0.001Q .............................................................. (4) 

Hence km = ko [ 1 + βTm] = 20 x [1 + 0.001x {80 – 0.001Q}] 

= 21.6 – 2 x 10 
− 5

Q 

Hence thermal resistance offered by the wall = R = L/(Akm) 

 
0.04 

Or R = ---------------------------  

[21.6 – 2 x 10 
− 5

Q] 

 
[T1 – T2] [100 – 0.006Q] [21.6 – 2 x 10 

− 5
Q] 

Q = --------------------- = --------------------------- x -------------------------- 
 R 0.04  

Cross multiplying we have 

0.04Q = 2160 – 0.1316Q + 1.2 x 10 
− 7 

Q
2
 

Or Q
2 

– 1.41 x 10 
6 

Q + 1.8 x 10 
10 

= 0.Hence Q = (1.41 x 10 
6 

±1.39 x 10 
6
) / 2 

For physically meaningful solution T1 should lie between Ti and To. This is possible 

only If 

Q = (1.41 x 10 
6 

− 1.39 x 10 
6
) / 2 = 10000 W. 

Now T1 = Ti – QRci = 130 – 10000 x 0.004 = 90 
0
C 

and T2 = T0 + Q Rco = 30 + 10000 x 0.002 = 50 
0
C. 
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L 

Example 3.25:- The thermal conductivity of a plane wall varies with temperature 
according to the equation 

k(T) = k0 [ 1 + β T
2 

] 
where k0 and β are constants. 

(a) Develop an expression for the heat transfer through the wall per unit area of the 

wall if the two surfaces are maintained at temperatures T1 and T2 and the 
thickness of the wall is L. 

(b) Develop a relation for the thermal resistance of the wall if the heat transfer area 
is A. 

Solution: 
 

 

 

K = k0 [ 1 + βT
2
] 

T1 For steady state conduction we have 

T2 

Qx = − kA(dT / dx) = constant. 

Or Qx = − k0[1 +βT
2
]A(dT/dx) 

Qxdx = − k0[1 +βT
2
]A dT 

x 
Integrating the above equation between x = 
0 and x = L we have 

 

 

 
L T2 

∫Qxdx = − k0A ∫[1 +βT2]dT 
0 T1 

Or QxL = − k0A [(T2 – T1) + (β/3)(T23 – T13)] 

Or Qx = (k0A / L)(T1 – T2) [1 + (β/3)(T12 +T1T2 + T2 2)] 

(T1 – T2) 

Qx = ------------------------------------------------------- 
1 

--------------------------------------------------- 
(k0A/L) [1 + (β/3)(T 

2 
+T T + T 

2
)] 

 
Therefore thermal resistance of the wall is given by 

1 1  2 2 



113 
 

k1 k2 

1 1 2 2 

L1 L2 

1 
R = --------------------------------------------------- 

(k0A/L) [1 + (β/3)(T 
2 

+T T + T 
2
)] 

Example 3.26:- Find the steady -state heat flux through the composite slab made up of 
two materials as shown in Fig. P 3.26. Also find the interfacial temperature. The thermal 
conductivities of the two materials vary linearly with the temperature in the following 
manner: 

k1 = 0.05 [1 + 0.008 T] W/m-K and k2 = 0.04 [1 + 0.0075 T] W/m-K 

 

 
 
 
 
 
 

 

600 
0 

C 30 
0 

C 

 
 
 
 
 

 
    

5 cm 
 

 

 
10 cm 

 

Fig. P 3.26: Schematic for problem 3.26 

     

Data:- T1 = 600 
0 

C ; T2 = 30 
0 

C ; 

   

T3 

 L1 = 0.05 m ; L2 = 0.10 m ; 

   

T2 

 k1 = 0.05 [ 1 + 0.008T ] ; 

T1 
k1 

 
k2 

 k2 = 0.04 [ 1 + 0.0075T ] 

     
To find T3 and q 
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T1 

T2 

x 

 
 

Mean thermal conductivity for the first layer is given by 

 
km1 = 0.05 [ 1 + 0.008(T1 + T3) /2] = 0.05[1 + 0.004(600 +T3)] 

 

= 0.17 + 2 x 10 
− 4 

T3 W/(m-K) 

Similarly km2 = 0.04 [ 1 + 0.0075(T3 + T2) /2] = 0.04[1 + 0.00375(T3 + 30)] 

 

= 0.0445 + 1.5 x 10 
− 4 

T3 W/(m-K) 
 

Example 3.27:- Consider a slab of thickness L in which heat is generated at a uniform 

rate of q
’’’ 

W/m 
3
. The two boundary surfaces are maintained at temperatures T1 and T2. 

The thermal conductivity of the slab varies with temperature according to the equation 

k(T) = k0 [ 1 + βT ] 

where k0 and β are constants. Develop an expression for the heat flux q(x) in  

the slab. 
Measurements show that steady -state conduction through a plane wall without heat 
generation produced a convex temperature distribution such that the mid-point 

temperature was ΔT0 higher than expected for a linear temperature distribution. 
Assuming that the thermal conductivity has a linear dependence on temperature [k 

= k0(1 + βT)], where k0 and β are constants, develop a relationship to evaluate β in 
terms of ΔT0, T1 and T2. 

 
Solution: 

 

 

L   

 
   k = k0 

 
[ 1 + βT ] 

ΔT0 k = k0 
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1 

1 

1 

2 1 

For constant thermal conductivity k0, the temperature distribution in the wall is linear 

and is given by 
 

T(x) = T1 – (T1 – T2) x / L 

Therefore T(x)|x=L/2 = (T1 + T2) / 2 ........................................................... (1) 

 

When the thermal conductivity varies with temperature the temperature distribution in 

the wall is determined as follows. 
 

Qx = − kA(dT/dx) = − k0(1 + βT)A (dT/dx) 

Therefore Qx dx = − k0A(1 + βT) dT ........................................................ (2) 

 
Integrating the above equation between x = 0 and any x at which the temperature is 

given by T*(x) we have 

x T* 

∫Qxdx = ∫− k0A(1 + βT) dT 
0 T1 

Or Qx x = − k0A [(T* - T1) + (β/2)(T*
2 

– T 
2
)] ................... (3) 

If equation is integrated between x = 0 and x = L we get 

Qx L = − k0A [(T2 - T1) + (β/2)(T  
2 

– T 
2
)] 

 

Or Qx = (k0A)[1 + β(T1 + T2) / 2] (T1 – T2) / L 

Or Qx = kmA (T1 – T2) / L ........................................................... (4) 

Where km = k0 [1 + β(T1 + T2) / 2]. 

 

Substituting this expression for Qx in equation (3) we get 

km (T1 – T2) (x / L) = − k0[(T* - T1) + (β/2)(T*
2 

– T 
2
)] 

The above equation simplifies to 

T*
2 

+ (2/β)T* + [ (2/β){(km/k0)(T1 – T2)(x/L) – T1} – T 
2 

] = 0. 

Therefore 
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x 

1 

1 

1 

1 

T* = − (1/β) ± √ (1/β
2
) – (2km / βk0)(x / L)(T1 – T2) + T 

2 
+ (2 / β)T1 

T*|x=L/2 = − (1/β) ± √ (1/β
2
) – (km / βk0)(T1 – T2) + T1

2 
+ (2 / β)T1 

= − (1/β) ± √ (1/β
2
) – [k0{1 + β(T1 + T2)/2}/ βk0](T1 – T2) + T 

2 
+ (2 / β)T1 

= − (1/β) ± √ (1/β
2
) – [{1 + β(T1 + T2)/2}/β ](T1 – T2) + T 

2 
+ (2 / β)T1 

But T*|x=L/2 = T(x)|x=L/2 + ΔT0 = (T1 + T2) / 2 + ΔT0. 

Hence we have 

(T1 + T2)/2 +ΔT0 =  − (1/β) ± √ (1/β
2
) – [{1 + β(T1 + T2)/2}/β ](T1 – T2) + T  

2 
+ (2 / β)T1 

Example 3.28:- A slab of thickness „L‟ has its two surfaces at x=0 and x = L maintained 

at uniform temperatures of T0 and TL respectively. The thermal conductivity of the slab has 

spatial variation according to the law k = k0 [1 + α x], where ko and α are constants. Obtain 
expressions for (i) temperature distribution in the slab, and (ii) rate of heat transfer through 
the slab assuming one dimensional steady state conduction. 

 
Solution: 

 

 

   L 

k = k0 [1 + α x] 
 
 

T1 T2 

 

 

 

 

 

 

Fig. E3.28 : Figure for Example 3.28 
 

 

 

 

 

 

 
 

The governing differential equation for one dimensional steady state conduction without 
heat generation is given by 
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d / dx [k dT/dx] = 0 substituting for k we have 
 

d / dx [k0 (1 + α x) dT/dx] = 0 ................................................ (1) 

 

Let 1 + α x = y ; Then α dx = dy or dy/dx = α. Then Eq.(1) can be written in 

terms of the variable „y‟ as follows. 
 

{d / dy [k0 y (dT/dy) α ] }α = 0. 

Or {d / dy [k0 y (dT/dy) α ] } = 0 

Integrating w.r.t „y‟ once we get 

 [k0 y (dT/dy) α ] = C1 

Or dT = [C1 /(α k0)] (dy / y) 

Integrating once we have, 
 

T = [C1 /(α k0)] ln y + C2 

Substituting for „y‟ in terms of „x‟ we have 

T = [C1 /(α k0)] ln (1 + α x)  + C2 .............................. (2) 

Eq.(2) is the general solution of Eq.(1). The values of C1 and C2 can be obtained from 

the two boundary conditions at x = 0 and at x = L as follows. 
 

(i) at x = 0, T = T1; and (ii) at x = L, T = T2 ; 

Condition (i) in Eq. (2) gives T1 = C2; 

Condition (ii) in Eq. (20 gives T2 = [C1 /(α k0)] ln (1 + α L) + T1 

 

Or C1 = (T2 – T1) (α k0) / ln (1 + α L) . 

Substituing the values of C1and C2 in Eq.(2) we get the temperature distribution as: 

T(x) = (T2 – T1) ln ((1 + α x) / ln (1 + α L) + T1 

Expression for rate of heat transfer: 

At any „x‟ Qx = - k A (dT/dx) 
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x 

Or Qx = − [k0 (1 + α x)] A (dT/dx) 

= − [k0 (1 + α x)] A d/dx{(T2 – T1) [ ln (1 + α x) / ln (1 + α L)] + T1 } 

A (T2 – T1) α 1 

= − [k0 (1 + α x)] ------------------- x ----------------- 
ln(1 + α L) (1 + α x) 

k0 α A (T1 – T2) 

Or Qx = ----------------------------- 

ln(1 + α L) 

Example 3.29:- If in the above problem the thermal conductivity varies with 
distance according to the law 

K = k0 [1 + α x
2
] 

Obtain expressions for (i) the temperature distribution T(x) and (ii) the rate of heat 
transfer. 

 
Solution: 

 

 

   L 

k = k0 [1 + α x 
2
] 

 
 

T1 T2 

 

 

 

 

 

 

Fig. E3.28: Figure for Example 3.28 
 

 

 

 

The governing differential equation for one dimensional steady state 
conduction without heat generation is given by 

 

d / dx [k dT/dx] = 0 substituting for k we have 

d / dx [k0 (1 + α x
2 

) dT/dx] = 0 ................................................ (1) 
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Eq. (2) can be solved by using the following substitution. 

 

Let √α x = tan y. Differnatiating both sides w.r.t.‟x‟ we have 

√α = sec 
2 

y (dy/dx) 
 

or (dy/dx) = √α / sec 

√α 
2 

y = ---------------- -- . 

[ 1 + α x
2 

] 

Or [ 1 + α x
2 

] (dy / dx) = √α. 

Eq. (1) can be written in terms of variable „y‟ as 

d / dy[k0 (1 + α x
2
) (dy/dx) (dT/dy)] (dy/dx) = 

0 Substituting for (1 + α x
2
) (dy/dx) we get 

d/ dy [k0 √α (dT/dy)] [√α / sec 
2 

y] = 0. 

Or d/ dy [k0 √α (dT/dy)] = 0. 

Integrating w.r.t.‟y‟ we have, k0 √α (dT / dy) = C1 

Or dT = [C1 /( k0 √α)] dy. 

Integrating we get T = [C1/ (k0 √α )] y + C2 

Or T(x) = [C1/(k0 √α)] tan 
−1

(√α x) + C2 .................................................. (3) 

Boundary conditions are: (i) at x = 0 T (x) = T1 and (ii) at x = L ,T = T2. 

Condition (i) in Eq. (3) gives C2 = T1. 

Condition (ii) in Eq. (3) gives T2 = [C1/(k0 √α)] tan 
−1

(√α L) + T1 

[T2 – T1]k0 √α 
Or C1 = ------------------ 

tan 
−1

(√α L) 

 
Substituting the values of C1 and C2 we have 

tan 
−1 

(√α x) 
T(x) = [T2 – T1] ----------------- 

tan 
−1 

(√α L) 
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Expression for Rate of Heat Transfer: 

Qx = − k0 [1 + α x
2
] A (dT/dx) 

2 
√α 

= − k0 [1 + α x  ] A [T2 – T1] --------------------------- 

[1 + α x
2
] tan 

−1 
(√α L) 

 

k0 A √α [T1 – T2] 
Or Qx = ------------------------------- 

tan 
−1 

(√α L) 

Example 3.30:- A hollow cylinder has its internal surface at radius r1 maintained at 

a uniform temperature T1 and external surface at radius r2 maintained at a uniform 

temperature T2. The thermal conductivity of the material of the cylinder varies with 

radius according to the law k = k0 [1 + α r], where k0 and α are constants. Derive 

expressions for (i) radial temperature distribution in the cylinder and (ii) rate of heat 
transfer through the cylinder. Assume one-dimensional radial steady state 
conduction in the cylinder. 

Example 3.31:- A hollow cylinder has its internal surface at radius r1 maintained at 

a uniform temperature T1 and external surface at radius r2 maintained at a uniform 

temperature T2. The thermal conductivity of the material of the cylinder varies with 

radius according to the law k = k0 [1 + α r
2
], where k0 and α are constants. Derive 

expressions for (i) radial temperature distribution in the cylinder and (ii) rate of heat 
transfer through the cylinder. Assume one-dimensional radial steady state 
conduction in the cylinder. 

Example 3.32:- A hollow sphere has its internal surface at radius r1 maintained at  

a uniform temperature T1 and external surface at radius r2 maintained at a uniform 

temperature T2. The thermal conductivity of the material of the cylinder varies with 

radius according to the law k = k0 [1 + α r], where k0 and α are constants. Derive 
expressions for (i) radial temperature distribution in the cylinder and (ii) rate of heat 
transfer through the cylinder. Assume one-dimensional radial steady state 
conduction in the cylinder. 

 

Example 3.33:- A hollow sphere has its internal surface at radius r1 maintained at  

a uniform temperature T1 and external surface at radius r2 maintained at a uniform 

temperature T2.  The thermal conductivity of the material of the cylinder varies  with 

radius according to the law k = k0  [1 + α r
2
], where k0  and α are constants. Derive 

expressions for (i) radial temperature distribution in the cylinder and (ii) rate of heat 
transfer through the cylinder. Assume one-dimensional radial steady state 
conduction in the cylinder. 
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Introduction:- In general, the temperature of a body varies with time as well as position. In 

chapter 3 we have discussed conduction in solids under steady state conditions for which the 

temperature at any location in the body do not vary with time. But there are many practical 

situations where in the surface temperature of the body is suddenly altered or the surface may 

be subjected to a prescribed heat flux all of a sudden. Under such circumstances the 

temperature at any location within the body varies with time until steady state conditions are 

reached. In this chapter, we take into account the variation of temperature with time as well as 

with position. However there are many practical applications where in the temperature 

variation with respect to the location in the body at any instant of time is negligible. The 

analysis of such heat transfer problems is called the “lumped system analysis”. Therefore in 

lumped system analysis we assume that the temperature of the body is a function of time only. 
 

Lumped system analysis:- Consider a solid of volume V, surface area A, density ρ, Specific 

heat Cp and thermal conductivity k be initially at a uniform temperature Ti.Suddenly let the 

body be immersed in a fluid which is maintained at a uniform temperature T∞, which is 

different from Ti.The problem is illustrated in Fig.4.1.Now if 

 

Surface in contact with fluid at 

T∞ with surface heat transfer 

Coefficient h 

 
V = volume 

A=surface area 

ρ = density 

Cp = specific heat 
k = conductivity 

 

 
Fig.4.1: Nomenclature for lumped system analysis of transient 

Conduction heat transfer 

 
 

T(t) is the temperature of the solid at any time t, then the energy balance equation for the 
solid at time t can be written as 

 

Rate of increase of energy of the solid = Rate of heat transfer from the fluid to the solid 

i.e., ρVCp (dT / dt ) = hA[T∞ - T(t)] 

h A 

Or dT / dt = ---------- [T∞ − T(t)] 

ρ V Cp 
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For convenience, a new temperature θ(t) = T(t) - T∞ is defined and denoting m = 

(hA)/(ρVCp) the above equation can be written as 

(dθ /dt ) = − m θ ............................................................ (4.1) 

 
Eq.(4.1) is a first order linear differential equation and can be solved by separating 
the variables. Thus 

 

dθ / θ = − m dt 

 
Integrating we get ln θ = − mt + ln C, where ln C is a constant. 

 

Or θ = C e 
− mt ................................................................................................................... 

(4.2) 

At time t = 0 , T(t) = Ti or θ = Ti − T∞ = θi (say). Substituting this condition in Eq. 

(4.2) we get 

C = θi. 

Substituting this value of C in eq. (4.2) we get the temperature θ(t) as follows. 

θ(t) = θi e 
− mt

 

or θ(t) 

----- = e 
– mt ......................................................................... 

(4.3) 

θi 

Since LHS of Eq.(4.3) is dimensionless, it follows that 1/m has the dimension of time and is 
called the time constant.Fig. 4.2 shows the plot of Eq.(4.3) for different values of m. Two 
observations can be made from this figure and Eq. (4.3). 

 

1. Eq. (4.3) can be used to determine the temperature T(t) of the solid at any time t or to 
determine the time required by the solid to reach a specified temperature. 

 
2. The plot shows that as the value of m increases the solid approaches the surroundings 

temperature in a shorter time. That is any increase in m will cause the solid to respond 

more quickly to approach the surroundings temperature. 
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t 

Fig.4.2: Dimensionless temperature as a function of time for a 

solid with negligible internal temperature gradients 
 

The definition of m reveals that increasing the surface area for a given volume and the heat 
transfer coefficient will increase m. Increasing the density, specific heat or volume decreases 
m. 

 

 Criteria for Lumped System Analysis:- To establish a criterion to neglect 

internal temperature gradient of the solid so that lumped system analysis 

becomes applicable, a Characteristic length Ls is defined as 

Ls = V /A .................................................. (4.4) 

 

and the Biot. number Bi as h Ls 

Bi = --------- ……………………………..(4.5) 

k 

For solids like slabs, infinite cylinder, and sphere, it has been found that the error 
by neglecting internal temperature gradients is less than 5 %, if 

 

Bi < 0.1 ...................................................... (4.6) 

The physical significance of Biot number can be understood better by writing the 
expression for Biot number as follows 

θ(t) 

θi 

1.0 

m 
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h Ls (Ls / Ak) Thermal resistance for conduction 

Bi = ------ = -------------- = ------------------------------------------- 

k ( 1 / hA) Thermal resistance for convection 

 
Hence a very low value of Biot number indicates that resistance for heat transfer by 

conduction within the solid is much less than that for heat transfer by convection 
and therefore a small temperature gradient within the body could be neglected. 

 

 Illustrative examples on lumped system analysis 
 

Example 4.1: - A copper cylinder 10 cm diameter and 15 cm long is removed from 

a liquid nitrogen bath at ─ 196 
0 

C and exposed to room temperature at 30 
0 

C. 
Neglecting internal temperature gradients find the time taken by the cylinder to 

attain a temperature of 0 
0
C, with the following assumptions: 

Surface heat transfer coefficient = 30 W / m
2 

– K. 

Density of the copper cylinder = 8800 kg / m
3
. 

Specific heat of the cylinder = 0.38 kJ/(kg-K) Thermal 
conductivity of the cylinder = 350 W / (m-K). 

Solution: : 
 

 Ti = − 196 
0
C  

Other data:- D = 10 cm or R = 0.05 m; L = 

   0.15 m 

 
T∞ = 30 

 
0C 

 
k = 350 W / (m-K) ; ρ = 8800 kg / m

3 
; 

D cp = 0.38 kJ / (kg-K) ; T(t) = 0 
 

 
h = 30 W/m

2 
- K 

Let θ(t) = T(t) – T∞ 

 

Biot Number = hR / k = 30 x 0.05 / 350 = 0.0043 which is << 0.1. Hence internal 

temperature gradients can be neglected. In that case we have 

θ(t) = T(t) – Ti = θ0 e 
−(hA/ρVcp) t

, where θ 0 = Ti − T∞ 
 

2{πR
2 

+ πRL)h 2{R+L}h 2 x {0.05 +0.15} x30 
(hA/ρVcp) = ------------------- = ----------- = ------------------------------------------ 

πR
2
L ρcp ρcpRL 8800 x 0.38 x 1000 x 0.05x 0.15 

= 4.785 x 10 
− 4

 

 

1 / s 

 

 

Now T(t) − T∞ 
 
= e − (hA/ρVcp) t ------------------ 

Ti – T∞ 
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 0 − 30 

Hence ------------------- = exp (− 4.785 x 10 
− 4 

x t) 
 − 196 – 30 

 

Solving for t we get t = 4226 s = 1 hr 10.43 mins. 

 
Example 4.2:- A thin copper wire having a diameter D and length L (insulated at 

the ends) is initially at a uniform temperature of T0. Suddenly it is exposed to a 
gas stream, the temperature of which changes with time according to the equation 

Tg = Tf (1 ─  e
─  ct

) + T0 

where Tf, T 0 and c are constants. The surface heat transfer coefficient is h. Obtain 

an expression for the temperature of the wire as a function of time t. 

 

Solution: 

 
Let T(t) be the temperature of the cylinder at any time t. Energy balance for the 
cylinder for a time interval dt is given by 

 

hA [T∞ - T(t)] dt = ρVCp dT 

where dT is the increase in temperature of the cylinder in time dt. 

 

 

 
h,T∞ 

 
 

Or dT / dt = (hA/ρVCp) [T∞ - T(t)] 

Putting m = (hA/ρVCp), the above equation reduces to 

dT / dt + m T(t) = m T∞ 

Substituting the given expression for T∞ we have 

dT / dt + m T(t) = m [T0 + Tf (1 – e 
- ct

)] 

or dT / dt + m [T(t) – T0] = mTf (1 – e 
– ct 

) 

T(0) = T0 

D 

L 
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Let θ (t) = T(t) – T0. Then the above equation reduces to 

dθ / dt + m θ (t) = mTf (1 – e 
– ct 

) ............................................. (1). 

This equation is of the form dy / dx + Py = Q, which is solved by multiplying throughout 

by an integrating factor and then integrating. For equation (1) the integrating factor 

is e 
∫mdt 

e 
mt

. therefore multiplying equation (1) by e 
mt 

we get 
 

 
e 

mt 
(dθ / dt) + m e 

mt 
θ (t) = mTf [ e 

mt 
– e 

(m – c)t
] 

or d / dt (e
mt

θ) = mTf [ e 
mt 

– e 
(m – c)t

] 

Integrating with respect to t we have 
 

 
e

mt
θ(t) = mTf [ (e

mt 
/ m ) − e

(m – c)t 
/ (m – c) ] + C1 

 m 

or θ(t) = Tf − ---------- Tf e 
− ct 

+ C1e 
− mt.............................. 

(2) 
 ( m – c ) 

When t = 0 , T(0) = T0 i.e., θ(0) = 0. Substituting this condition in equation (2) we get 

 
 m 

or 0 = Tf − ---------- Tf + C1 

 ( m – c ) 

Or C1 = [ c / (m – c)] Tf. 

 
Substituting this expression for C1 in equation (2) we get the temperature of the 

cylinder as 
  m c 
 θ(t) = Tf − ---------- Tf e 

− ct 
+ ---------- Tf e 

− mt
 

  ( m – c ) (m – c) 

Or T(t) – T0 = Tf [ 1 − m / (m – c) e 
− ct 

+ c / (m – c) e 
− mt

] 

Where m = hA / (ρVCp) = πDLh / {(πD
2
/4)LρCp}= (4h) /(ρDCp). 

Example 4.3:- A solid sphere of radius R is initially at a uniform temperature T0. At a 
certain instant of time (t = 0), the sphere is suddenly exposed to the surroundings at a 

temperature Tf and the surface heat transfer coefficient, ‘h’. In addition from the same 

instant of time, heat is generated within the sphere at a uniform rate of q
’’’

 

units per unit volume. Neglecting internal temperature gradients, derive an 
expression for the temperature of sphere as a function of time 
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Solution:  

 

T(0) = T0 

 

 
Energy balance equation for the sphere at any 
time t can be written as 

(4/3)πR
3 

q‟‟‟ + 4πR
2
h [Tf – T(t)] 

Q``` for t > 0 

 

 

h,Tf 

R =(4/3)πR
3 

ρCp (dT/dt) 

 

 
Or (dT/dt) + (3h/ ρRCp)[T(t) – Tf] = (q```/ρCp) 

 

Let θ(t) = T(t) – Tf. Then the above equation reduces to 

(dθ / dt) + mθ = q0 ......................................................... (1) 

Where m = (3h/ ρRCp) and q0 = (q```/ρCp) 

 

Multiplying equation (1) by the integrating factor e 
mt 

we 

have e
mt 

(dθ / dt) + e
mt 

mθ = q0 e
mt

 

or d / dt(θe
mt

) = q0e
mt

 

 
 

Integrating throughout w.r.t. t we get 
 

 
θe

mt 
= (q0 / m) e

mt 
+ C1 

or θ = (q0 / m) + C1e 
− mt ................................. 

(2) 

At t = 0 , T = T0 or θ = T0 – Tf = θ0 (say). Substituting this condition in equation (2) we 

get C1 = (T0 – Tf) – (q0 / m). Therefore the temperature in the sphere as a function of 

time is given by 
 

 
θ(t) = [(T0 – Tf) – (q0 / m)] e 

− mt 
+ (q0 / m) 

or θ(t) = (q0 / m)[ 1 – e 
− mt 

] + (T0 – Tf) e 
− mt
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q‟‟‟      (ρ R Cp) 

where (q0  / m) = ----------- x ----------------= 
(ρ Cp) 3h 

 
 

(q‟‟‟ R / 3h) 

Example 4.4:- A solid steel ball (ρ =8000 kg/m
3 

; cp = 0.42 kJ/kg-K) 5 cm in diameter 

is at a uniform temperature of 450 
0 

C. It is quenched in a controlled environment 

which is initially at 90 
0
C and whose temperature increases linearly with time at the  

rate of 10 
0
C per minute. If the surface heat transfer coefficient is 58 W/(m

2
-K), 

determine the variation of the temperature of the ball with time neglecting internal 
temperature gradients. Find the value of the minimum temperature to which the ball 
cools and the time taken to reach this minimum temperature. 

Solution: 
 

 
 

T(0) = Ti = 450
0
C 

 Other data:- h = 58 W / (m
2 

– K) ; 

  
Cp = 0.42 kJ / (kg – K) ; ρ = 8000 kg / m

3 
; 

 R Tf = a + bt, where a and b are constants ; 

  
at t = 0, Tf = 90 

0
C;(dTf / dt) = 10 

0
C / min 

h,Tf 
 = (1/6) 

0 
C / s 

Therefore a = 90 
0 

C and b = ;(dTf / dt) = (1/6) 
0 

C / s. 

Or Tf = 90 + t / 6 , t in seconds ....................... (1) 

Energy balance equation for the sphere at any time t can be written as 

ρVCp(dT / dt) = hA [Tf(t) – T(t)] 

Or (dT / dt) = (hA/ ρVCp) [Tf(t) – T(t)] 

Letting m = (hA/ ρVCp) the above equation can be written as 

 
(dT / dt) + mT(t) = m Tf(t) 

 

Substituting for Tf(t) from equation (1) we have 

(dT / dt) + mT(t) = m [90 + t / 6 ] 

Multiplying the above equation with the integrating factor e 
mt 

we get 
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e 
mt

(dT / dt) + mT(t) e
mt 

= m [90 + t / 6 ] e 
mt

 

or d / dt (T e 
mt

) = m [90 + t / 6 ] e 
mt 

Integrating throughout w.r.t t we have 

 
(T e 

mt
) = m ∫[90 + t / 6 ] e 

mt 
dt + C1 

Or T(t) = m e 
− mt 

∫[90 + t / 6 ] e 
mt 

dt + C1 e 
− mt

 

= m e 
− mt 

[(90e 
mt 

/m) + (te
mt

/6m) − (e 
mt

/6m
2
)] + C1 e 

− mt
 

Or T(t) = [ 90 + (t / 6 ) − (1/6m)] + C1 e 
− mt ...................................... 

(2) 

When t = 0 , T(t) = Ti. Substituting this condition in the above equation and solving 

for C1 we get 

C1 = [Ti – 90 + 1 / 6m] 

Therefore the temperature of sphere as a function of time is given by 
 

 

T(t) = [ 90 + (t / 6 ) − (1/6m)] + [Ti – 90 + 1 / 6m] e 
− mt ...................... 

(3) 

For T(t) to be extremum (dT / dt) = 0. 

Therefore we have (dT / dt) = 1/6 + [Ti – 90 + 1 / 6m] e 
− mt 

(− m) = 0 

Substituting Ti = 450 
0 

C and simplifying we get 

 
(360 m + 1/6) e 

− mt 
= 1/6 

 

Or e 
mt 

= (2160 m + 1) ---------- (4) 

 
4πR

2
h 3 x 58 

Now m = (hA / ρVCp) = -------------------- = (3h/ ρCpR) = ------------------------------------- 
 [(4/3)πR

3 
ρCp] ( 8000 x 0.025 x 0.42 x 10 

3
) 

= 2.07 x 10 
− 3

.-------- (5) 
 

 

 

Using (4) & (5) in (3), 

T(t)= 90+ (t/6)- (1/(6x2.07x10
-3

)) + [ 240-90+(1/(6x2.07x10
-3

))] x exp{-2.07x10
− 3 

t} 
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T(t)=9.4857+(230.5152)x(0.9979)
t 

T(t) > 0 

Hence value of t will be minimum. 

Therefore e 
mt 

= [ 2160 x 2.07 x 10 
− 3 

+ 1 ] = 5.47 

mt = 1.7 

Or t = 1.7 / m = 1.7 / (2.07 x 10 
− 3

) = 821 s = 13.7 min 

Substituting this value of t in equation (3) we get the minimum temperature 

as Tminimum = [90 + (821/7) − {1 / (6x 2.07 x 10 
− 3

) } ] 

+ [ 450 − 90 + {1 / (6x 2.07 x 10 
− 3

) } ] e 
− 1.7 

= 226.7 
0
C. 

Example 4.5:- A house hold electric iron has a steel base [ρ =7840 kg/m
3 

; cp = 450 
J/(kg-K) ;k = 70 W/(m-K)] which weighs 1 kg. The base has an ironing surface area of 

0.025 m
2 

and is heated from the other surface with a 250 W heating element. Initially 

the iron is at a uniform temperature of 20 
0 

C with a heat transfer coefficient of 50 

W/(m
2
-K). 

(b) What would be the equilibrium temperature of the iron if the control of the iron 
box did not switch of the current? 

 

Solution: 
 

 

 

Other data:- ρ = 7840 kg / m
3 

; Cp = 450 J / (kg – K) ; k = 70 W /(m – K) 

; m = 1 kg ; t = 5 min = 300 s. 

V = m / ρ = 1 / 7840 = 0.0001275 m
3 

= 1.275 x 10 
− 4 

m
3
. 

1.275 x 10 
− 4

 

L = V / A = ------------------- = 0.005 m 

0.025 

Q = 250 W 

 

L  

 

Qc    h 2= 50 W /(m
2
-K);T∞=20 

0
C 

A = 0.025 m 
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50 x 0.005 

Bi = (hL / k) = -------------------- = 0.00364 

70 

 
Since Bi < 0.1, it can be assumed that temperature gradients within the plate are negligible. 

Hence the temperature of the plate depends only on time till steady state condition is reached. 

 

Energy balance at any time t for the plate can be written as 

 

Q − Qc = ρVCp (dT/dt) 

Or Q – hA(T - T∞) = ρVCp (dT/dt) 

Or (dT/dt) + m(T - T∞) = (Q / ρVCp) .............................................. (1) 

 

Where m = (hA / ρVCp). Letting θ = T - T∞, equation (1) can be written as 

 
 (dθ / dt) + m θ = (Q / ρVCp) 

Multiplying the above equation by the integrating factor e 
mt

,( e∫
mdt

=e
mt

) we get 

(dθ / dt) e 
mt 

+ m θe 
mt 

= (Q / ρVCp) e
mt

 

Or d/dt (θe 
mt

) = (Q / ρVCp) e
mt

 

Or (θe 
mt

) = (Q / ρVCp) e
mt 

(1/m) + C1 

Or θ = (Q / ρVCpm) + C1e 
− mt ...................................................... 

(2) 

When t = 0, T = Ti or θ = Ti - T∞ = 20 – 20 = 0 
0 

C. 

Substituting this condition in equation (2) we get 
 

0 = (Q / ρVCpm) + C1 or C1 = − (Q / ρVCpm) 

 

Therefore the temperature in the plate as a function of time is given by 

θ = (Q / ρVCpm) [ 1 − e 
− mt

 

] But ρVCpm = hA. Therefore 
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θ = (Q / hA) [ 1 − e 
− mt 

] ................................................... (3) 

250 50 x 0.025 

= 2.8 x 10
-3

 Q / hA = ------------------- = 200 ; m = ------------------- 

50 x 0.025 1 x 450  

Therefore θ = 200 [ 1 – e 
−0.028t

] 
 

When t = 300 s, θ = T - T∞ = 200 x [ 1 − e 
− 0.028 x 300

] = 113.7 

 
 

Or T = 113.7 + 20 = 133.7 
0 

C. 

(b) When the control switch is not switched off and the iron is left in the ambient, steady 
state condition will be attained as t tends to ∞ so that the heat transferred to the 
baseplate will be convected to the ambient. i.e., 

 

Q = Qc 

Therefore 250 = 50 x 0.025 x [T – 20 ] 

Or T = 220 
0 

C. 

This answer can also be obtained by putting t = ∞ in equation (3) and solving for T. 

 
One-dimensional Transient Conduction ( Use of Heissler’s Charts): There are many situations 

where we cannot neglect internal temperature gradients in a solid while analyzing transient 

conduction problems. Then we have to determine the temperature distribution within the solid as a 

function of position and time and the analysis becomes more complex. However the problem of 
one-dimensional transient conduction in solids without heat generation can be solved readily using 

the method of separation of variables.The analysis is illustrated for solids subjected to convective 

boundary conditions and the solutions were presented in the form of transient – temperature charts 

by Heissler. These charts are now familiarly known as “Heissler‟s charts”. 

 

One-dimensional transient conduction in a slab:- Let us consider a slab of thickness 2L, which is 

initially at a uniform temperature Ti. Suudenly let the solid be exposed to an environment which 

is maintained at a uniform temperature of T∞ with a surface heat transfer coefficient of h for time t > 

0.Fig.4.3 shows the geometry , the coordinates and the boundary conditions for the problem. Because of 

symmetry in the problem with respect to the centre of the slab the „x‟ coordinate is measured from the 

centre line of the slab as shown in  the figure. 
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2 
 

L 

 

Surfaces   

T = Ti at t = 0 exposed to a 

fluid at T∞    

with heat         

transfer   T = T(x,t) 

coefficient h    

for time t>0   

 

 

 

 
 

x 

 

Fig.4.3: Geometry, coordinates and boundary conditions for 

transient conduction in a slab 

 
The mathematical formulation of this transient conduction problem is given as follows: 

Governing differential equation:  ∂
2
T / ∂x

2 
= (1/α) ∂T / ∂t ...................................... (4.7a) 

Initial condition : at t = 0, T = Ti   in 0 < x < L ......................................................... (4.7b) 

Boundary conditions are : 

 

(i) at x = 0, ∂T / ∂x = 0 (axis of symmetry) for all t > 0… ................................... (4.7c) 
 

(ii) at x = L, − k (∂T / ∂x)|x = L = h(T|x = L − T∞) for all t > 0 ..................................... (4.7d) 

 
It is more convenient to analyze the problem by using the variable θ(x,t), where 

θ(x,t) = T(x,t) - T∞. Then equations (4.7a) to (4.7d) reduce to the following forms: 

∂
2
θ / ∂x

2 
= (1/α) ∂θ / ∂t ..................................... (4.8a) 

Initial condition : at t = 0, θ = Ti − T∞ = θi   in 0 < x < L ........................................ (4.8b) 

Boundary conditions reduce to : 

 

(i) at x = 0, ∂θ / ∂x = 0 for all t > 0 ..................................................................... (4.8c) 
 

(ii)  at x = L, − k (∂θ / ∂x)|x = L = hθ|x = L for all t > 0 ................................................ (4.8d) 
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Eq.(4.8a) can be solved by the method of separation of variables as shown below. 

 

Let θ(x,t) = X(x) Y(t) .......................................................................................... (4.9) 

 

Substituting this in Eq. (4.8a) we get 

Y (d
2
X / dx

2
) = (X/α) (dY / dt) 

Or 1 1 

--- (d
2
X / dx

2
) = ------ (dY / dt) ................................(4.10) 

X (Yα) 

 
LHS of Eq. (4.10) is a function of x only and the RHS of Eq. (4.10) is a function of t 

only.They can be equal only to a constant say − λ
2
.(The reason to choose the negative 

sign is to get a physically meaningful solution as explained later in this 
section).Hence we have two equations namely 

(1 / X) (d
2
X / dx

2
) = − λ

2 
and [1/(Yα)] ((dY / dt) = − λ

2
 

Or (d
2
X / dx

2
)  + λ

2
X = 0 .......................................................................... (4.11) 

and (dY/dt) = −αλ
2 

Y ................................................................................. (4.12) 

Solution to Eq. (4.11) is X(x) = C1 cos (λx) + C2 sin (λx) ................................. (4.13) 

and solution to Eq. (4.12) is Y(t) = D exp (− αλ
2
t) ...................................... (4.14) 

with C1, C2 and D as constants of integration. Substituting these solutions in Eq.(4.9) 

we have 

θ(x,t) = D exp (− αλ
2
t) [C1 cos (λx) + C2 sin (λx)] 

or θ(x,t) = exp (− αλ
2
t) [A1 cos (λx) + A2 sin (λx)] ............ (4.15) 

Eq.(4.15) is the general solution involving the constants A1, A2 and λ which can be 

determined using the two boundary conditions and the initial condition as 

illustrated below. 

Now from Eq. (4.15), ∂θ / ∂x = λ exp (− αλ
2
t) [ −A1 sin (λx) + A2 cos (λx)] 

Substituting boundary condition (i) we have 0 = λ exp (− αλ
2
t) [0 + A2] for all 

t. Hence A2 = 0. Therefore Eq. (4.15) reduce to 
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θ(x,t) = A1 exp (− αλ
2
t) cos (λx) ..................................... (4.16) 

Now θ(L,t) = A1 exp (− αλ
2
t) cos (λL) 

and ∂θ / ∂x = λ exp (− αλ
2
t) [ −A1 sin (λx) ] 

Hence [∂θ / ∂x ] x = L = −λ A1 exp (− αλ
2
t) sin (λL) 

Therefore boundary condition (ii) can be written as 

k λ A1 exp (− αλ
2
t) sin (λL) = h A1 exp (− αλ

2
t) cos (λL) 

or tan (λL) = h / (kλ) 

 

or λL tan (λL) = Bi ................................................................. (4.17) 

 

where Bi = hL / k. 

Equation (4.17) is called the “characteristic equation” and has infinite number of roots 

namely λ1, λ2, λ3, .......... Corresponding to each value of λ we have one solution and 

hence there are infinite number of solutions. Sum of all these solutions will also be a solution 
as the differential equation is linear. Therefore the solution θ(x,t) can be written as follows. 

θ(x,t) = ∑ An   exp (− αλn 
2
t) cos (λnx) ................................ (4.18) 

To find An:- The constants An in Eq. (4.18) can be found using the orthogonal property 

of trigonometric functions as shown below. Substituting the initial condition we have 
 

θi = ∑ An cos (λnx) 

Multiplying both sides of Eq.(4.18) by cos λmx and integrating w.r.t „x‟ between the 

limits 0 and L we have   L L 

∫ θi cos (λmx) dx = ∫ ∑ An cos (λmx) cos (λnx) dx 
1 1 

Using the orthogonal; property 

 

The above equation reduce to 
∫ An cos (λmx) cos (λnx) dx = 0 for λn ≠ λm 

L L 

∫ θi cos (λnx) dx = ∫ An cos 
0 0 

 
L 

θi 0 ∫cos (λnx) dx 
Or An = ----L------------------- 

∫ cos 
2 

(λnx)dx 
0 

2
(λnx) dx 
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1 1 

It is very convenient to express Eq. (4.18) in dimension less form as follows: 
 

θ(x,t) 

----- = ∑ (A 

θi 

* 
exp (− λ 

* 2 
Fo) cos (λ 

 
n* x / L) .............................................. (4.19) 

where An
* 

= An / θi ; λn
* 

= λnL ; Fo = Fourier Number = α t / L
2 

; 

 Heissler’s Charts for transient conduction:- For values of Fo > 0.2 the above 

series solution converges rapidly and the solution will be accurate within 5 % if only 
the first term in the series is used to determine the temperature. In that case the 
solution reduces to 

θ(x,t) 
-----  = A  

*  
exp (− λ  

* 2 
Fo) cos (λ  * x /L) .......................................................(4.20) 

1 1 1 

θi 
 

From the above equation the dimensionless temperature at the centre of the slab (x =0) can be 
written as 

 

θ(0,t) 
----- = A 

* 
exp (− λ 

* 2 
Fo)........................................................................... (4.21) 

1 1 

θi 

The values of A 
* 

and λ 
* 

for different values of Bi are presented in the form of a table (See 

Table 4.1). These values are evaluated using one term approximation of the series solution.It 

can also be concluded from Eq.(4.20) at any time „t‟ the ratio θ(x,t) / θ(0,t) will be 

independent of temperature and is given by 

 

θ(x,t) 

------ = cos (λ1* x /L) ......................................................................................... (4.22) 
θ(0,t) 

 

Heissler has represented Eq. (4.21) and (4.22) in the form of charts and these charts are 

normally referred to as Heissler‟s charts. Eq. (4.21) is plotted as Fourier number Fo versus 

dimensionless centre temperature θ(0,t) / θi using [Fig.4.4(b)]. 
reciprocal of Biot number1 / Bi as the parameter [Fig.4.4(a)], where as Eq. (4.22) is plotted as 

θ(x,t) / θ(0,t) versus reciprocal of Biot number using the dimensionless distance x / L as the 

parameter.In Fig.[4.4(a)], the curve for 1/Bi = 0 corresponds to the case 

h → ∞, or the outer surfaces of the slab are maintained at the ambient temperature T∞. For 

large values of 1 / Bi, the Biot number is small, or the internal conductance is large in 

comparison with the surface heat transfer coefficient. This in turn, implies that the 
temperature distribution within the solid is sufficiently uniform and hence lumped system 

analysis becomes applicable. 

n n 
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x 

Fig. (4.5) shows the dimensionless heat transferred Q / Q0 as a function of 
dimensionless time for different values of the Biot number for a slab of thickness 2L. Here Q 
represents the total amount of thermal energy which is lost by the slab up to any time t during 

the transient conduction heat transfer. The quantity Q0, defined as 

Q0 = ρ V Cp[Ti  - T∞] ......................................... (4.23) 

represents the initial thermal energy of the slab relative to the ambient temperature. 
 

Transient-Temperature charts for Long cylinder and sphere: The dimensionless transient-

temperature distribution and the heat transfer results for infinite cylinder and sphere can also be 

represented in the form of charts as in the case of slab. For infinite cylinder and sphere the radius 

of the outer surface R is used as the characteristic length so that the Biot number is defined as Bi = 
hR / k and the dimensionless distance from the centre is r/R where r is any radius (0 ≤ r ≤ R).These 

charts are illustrated in Figs. (4.6) to (4.9). 

Illustrative examples on the use of Transient Temperature Charts:-Use of the transient 
temperature charts for slabs, infinite cylinders and spheres is illustrated in the following examples. 

Example 4.6:- A brick wall ( α = 0.5 x 10 
─  6  

m
2
/s, k = 0.69 W/(m-K) and ρ = 2300 kg/m

3
 

) of 10 cm thick is initially at a uniform temperature of 230 
0 

C. The wall is suddenly exposd 

to a convective environment at 30 
0 

C with a surface heat transfer coefficient of 60 W/(m
2
- 

K). Using the transient-temperature charts, determine 

(a) the centre temperature at ½ hour and 2 hours after the exposure to the cooler 
ambient, 

(c) energy removed from the wall per m
2 

during ½ hour and during 2 hours. 

(d) What would be the time taken for the surface of the wall to reach a temperature of 

40 
0
C. 

Solution:- 
 

Data:- α = 0.5 x 10 
− 6 

m
2 

/ s ; k = 0.69 W / (m – K) 

ρ = 2300 kg / m
3 

; 2L = 0.1 m ; Ti = 230 
0 

C ; 

Ti =230
0 

C 
  T∞ = 30 

0
C; h = 60 W / (m

2 
– K) ; 

   (a) (i) t = 0.5 h = 0.5 x 3600 = 1800 s. 

 
 
  

60 x 0.05 

   Bi = hL / k = ---------------- = 4.35. 
   0.69 

   Since Bi > 0.1, internal temperature gradients 
   cannot be neglected. i.e. T = T(x,t) 
 2 L  
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Hence Heissler‟s transient temperature charts are to be used. 
 

1/ Bi = 1 / 4.35 = 0.23 ; Fo = (αt / L
2
) = 

( 0.5 x 10 
− 6 

x 1800) 

-------------------------- = 0.36 
   0.05 

2
 

From the Heissler‟s chart for a slab of thickness 2L, 

 
(T0 - T∞) 

  

 θ0 = --------------- = 0.8 (T0 = Centre temperature of the slab) 

 (Ti - T∞)   

Therefore T0 = T∞ + 0.8 (Ti - T∞) = 30 + 0.8 x (230 – 30) 

 
=190 

0 
C. 

  

(0.5 x 10 
− 6 

x 7200) 

(ii) when t = 2 h = 7200 s we have Fo = ---------------------------- 
(0.05

2
) 

= 1.44. 

 (T0 – T∞)   

From chart, -------------- = 0.125.   

(Ti – T∞) 

Therefore T0 = T∞ + 0.125 (T0 – T∞) = 30 + 0.125 x (230 – 30)= 55 
0 

C. 

(b) (i) t = 1800 s. At the surface x / L = 1.0 ; k / hL = 0.23 ; 

(T|x=L – T∞) 

Hence from the chart ----------------- = 0.275 

(T0 – T∞) 

Or T|x=L = T∞ + 0.275 (T0 – T∞) = 30 + 0.275 x (190 – 30) 

= 74 
0 

C. 

(ii) t = 7200 s. Hence T|x=L = T∞ + 0.275 (T0 – T∞) = 30 + 0.275 x (55 – 30) 

= 36.9 
0 

C. 

(c) (i) Bi
2 

Fo = 4.35 
2 

x 0.36 = 6.81; From chart Q / Qmax = 0.50 . 

 
 0.69 x 1 x 0.1 

Qmax = ρCpV(Ti – T∞) = (k / α)V(Ti – T∞) = ------------------- x (230 – 30) 
 0.5 x 10 

− 6
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= 27.6 x 10 
6 

= 27.6 MJ / m 

Therefore Q = 0.5 x 27.6 = 13.8 MJ 

(ii) when t = 7200 s , Bi
2 

Fo = 4.35 
2 

x 1.44 = 27.25 

From chart, Q / Qmax = 0.9 ; Therefore Q = 0.9 x 27.6 = 24.8 MJ. 

(d) It is given that T(L,t) = 30 
0
C. 

 

Hence θ (L,t) ( 40 – 30) 
 ------- = ---------------- = 0.05 
 θi (230 – 30) 

 
Now for x / L = 1.0 and 1 / Bi = 0.23 from the chart the ratio of surface 
temperature difference to the centre tempaerature difference can be read as 

 

θ (L,t) / θ (0,t) = 0.225 
 

Hence θ (0,t) / θi = 0.05 / 0.225 = 0.2222 

From the chart corresponding to this value of θ (0,t) / θi and 1 / Bi = 0.23, the Fourier 

number can be read as 

Fo = (α t) / L
2 

= 1.0. Therefore t = L
2 

/ α = 0.05 
2 

/ 0.5 x 10 
− 6 

= 5000 s = 1.39 h 

Example 4.7:- A long solid cylinder [α = 0.05 m
2
/h, k = 50 W/(m-K)] of 5 cm 

diameter is initially at 200 
0 

C. Suddenly it is immersed in water at a temperature of 

20 
0 

C. Assuming the heat transfer coefficient to be 200 W/(m
2
-K), determine (a) 

the centre and the surface temperatures after 10 minutes have elapsed, and (b) the 
energy removed from the cylinder during this 10 minute period. 

 

Solution :- 
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T∞,h 

 
  

R 

  

     Ti = 200 
0 

C            

  

    

Data:- α = 0.05 m
2 

/ h = 0.05 / 3600 = 1.39 x 10 
− 5 

m
2  

/ s ; k = 50 W /(m – K) ; 

Ti = 200 
0 

C ; T∞ = 20 
0 

C ; R = 0.025 m ; h = 200 W/(m
2 

– K) ;t = 10 x 60 = 600 

s (a)(i) To find centre temperature T0 :-Bi = (hR / k) = (200 x 0.025) / 50 = 0.1. 

Since Bi = 0.1, internal temperature gradients cannot be neglected. 

(1.39 x 10 
− 5 

x 600) 

1/Bi = 1 / 0.1 = 10 ; Fo = (αt / R
2
) = ------------------------ 

0.025
2
 

From chart for transient conduction in an infinite cylinder we have 
 

(T0 – T∞) 

-------------------- = 0.08 ; Hence T0 = T∞ + 0.08 (Ti - T∞) 

(Ti – T∞) 

Or T0 = 20 + 0.08 x (200 – 20) 

= 34.4 
0 

C. 

(ii) To find the surface temperature, T|r=R: 

(T|r=R – T∞) 

r / R = 1.0 ; 1 / Bi = 0.1 ; From chart --------------- = 0.13 

(T0 – T∞) 

Therefore T|r=R = T∞ + 0.13 (T0 – T∞) = 20 + 0.13 x (34.4 – 20) 

= 21.9 
0 

C. 

(b) Bi
2 

Fo = (0.1
2
) x 13.34 = 1.33 x 10 

− 1
. 

From energy chart for the infinite cylinder, Q / Qmax = 0.875 

Qmax = ρVCp (Ti – T∞) = (π x 0.025
2 

x 1) x (50 / 1.35x10
− 6

) (200 – 20) 

= 1.27 x 10 
6 

kJ / m = 1.27 MJ/m 

Therefore Q = 0.875 x 1.27 = 1.11 MJ / m. 
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1 

Example 4.8:-An orange of 10 cm diameter is initially at a uniform temperature of 30 
0
C. Suddenly it is placed in a refrigerator in which the air temperature is 2 

0 
C. If the 

surface heat transfer coefficient is 50 W/(m
2
-K), determine the time required for the 

centre of the orange to reach 10 
0 

C. Assume for the orange α = 1.4 x 10 
─ 7 

m
2
/s and k 

= 0.59 W/(m-K). 

Solution: Orange is assumed to be in the shape of a sphere. 

R = 0.05 m ; Ti = 30 
0 

C ; T∞ = 2 
0 

C ; T0 = 10 
0 

C ; 

h = 50 W/(m
2 

–K);k = 0.59 W/(m – K); 

α =1.4 x10
−7 

m
2
/s 

 

R 
(T0 - T∞) (10 – 2) 

Now ----------- = θ0 = ---------- = 0.286 

 (Ti – T∞) (30 – 2 ) 

1 / Bi = k / hR = 0.59 / (50 x 0.05 ) = 0.24 ; From chart for transient conduction in 

Sphere we have Fo = (αt / R
2
) = 0.3. 

 

 

 
 

Solution using Tables: - For the given problem we have 

Bi = 4.24. Therefore from Table 4 – 1 , by interpolation λ1 = 2.4831 and A1 = 1.7362. 

(T0 – T∞) 

Therefore -------------- = 0.286 = 1.7362 exp[− λ 
2
Fo] 

(Ti – T∞) 

Solving for λ1
2
Fo we get λ1

2
Fo = 1.804 or Fo = 1.804 / (2.4831

2
) = 0.2925. 

Therefore αt / (R
2
) = 0.2925 

(0.2925 x 0.05
2
) 

Or t = 0.2925 R
2 

/ α = -------------------- = 5223 s = 1 hr 27 mins. 

1.4 x 10 
− 7

 

 (0.3 x 0.05 
2
) 

Therefore t = ------------------ = 5357 s = 1.5 h 
 (1.4 x 10 

− 7
) 
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Transient conduction in semi-infinite solids:- A semi-infinite solid is an idealized body that has 
a single plane surface and extends to infinity in all directions.The transient conduction problems in 
semi-infinite solids have numerous practical applications in engineering. Consider, for example, 
temperature transients in a slab of finite but large thickness, initiated by a sudden change in the 
thermal condition at the boundary surface. In the initial stages, the temperature transients near the 
boundary surface behave similar to those of semi-infinite medium, because some time is required 
for the heat to penetrate the slab before the other boundary condition begins to influence the 
transients.The earth for example, can be considered as a semi-infinite solid in determining the 
variation of its temperature near its surface 

We come across basically three possibilities while analyzing the problem of one-dimensional 
transient conduction in semi-infinite solids.These three  problems are as follows: 
 

Problem 1:- The solid is initially at a uniform temperature Ti and suddenly at time t>0 The 
boundary-surface temperature of the solid is changed to and maintained at a uniform 

temperature T0 which may be greater or less than the initial temperature Ti. 

Problem 2:- The solid is initially at a uniform temperature Ti and suddenly at time t>0 the 

boundary surface of the solid is subjected to a uniform heat flux of q0 W/m
2
. 

Problem 3:- The solid is initially at a uniform temperature Ti. Suddenly at time t>0 the 

boundary surface is exposed to an ambience at a uniform temperature T∞ with the surface 

heat transfer coefficient h. T∞ may be higher or lower than Ti. 

Solution to Problem 1:- The schematic for problem 1 is shown in Fig. 4.10. The 
mathematical formulation of the problem to determine the unsteady temperature distribution 
in an infinite solid T(x,t) is as follows: 

The governing differential equation is 

∂
2
T / ∂x

2 
= (1/α) (∂T /∂t) ................................ 4.24(a) 

The initial condition is at time t = 0, T(x,0) = Ti ......................................................................4.24(b) 
 

and the boundary condition is at x = 0, T(0,t) = T0................................................ 4.24(c) 

It is convenient to solve the above problem in terms of the variable θ(x,t), where θ(x,t) is 
defined as 

 

T(x,t) − T∞ 

θ(x,t) = ---------------- ………...…………………4.25 

Ti − T∞  

The governing differential equation in terms of θ(x,t) will be 

∂
2
θ / ∂x

2 
= (1/α) (∂θ /∂t) ............................... 4.26(a) 
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For t > 0, the surface at T0 

Initially (t=0), solid at Ti 

 

 

 

 

 

0 x 

 

 

 

 

 

 

Fig. 4.10: Semi-infinite solid with specified surface temperature T0 for t > 0 

 
The initial condition will be at time t = 0, θ(x,0) = Ti − T∞ ..................................... 4.26(b) 

And the boundary condition will be at x = 0, θ(0,t) = T0 − T∞ ................................ 4.26(c) 

 

This problem has been solved analytically and the solution θ(x,t) is represented 

graphically as θ(x,t) as a function of the dimensionless variable x / [2√(αt)] as shown 

in Fig. 4.11. 

In engineering applications, the heat flux at the boundary surface x = 0 
is also of interest. The analytical expression for heat flux at the surface is given by 

 

k(T0 – Ti) 

qs(t) = -------------- ................................. 4.27 
√(παt) 

Solution to problem 2:- The schematic for this problem is shown in Fig. 4.12. 
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T(x,t) = Ti at t = 0 

 

q0 W/m
2
 

for t > 0 x 

 

 

 

 
Fig. 4.12: An infinite solid subjected to a constant heat flux at x = 0 for t > 0 

 

 
Governing differential equation in terms of T(x,t) and the initial condition are same that for 

problem 1[i.e. equations 4.26(a) and 4.26(b)]. 
 

The boundary condition is : at x = 0, − k (∂θ / ∂x)|x = 0 = q0. 

The temperature distribution within the solid T(x,t) is given by 

2q0 

T(x, t) = Ti + ------ (αt) 
½ 

[ (1 / √π) exp (− ξ
2
) + ξ erf (ξ) − ξ ] ............................. (4.28 a) 

k   

   2 ξ 
2

 

where ξ = x / (2√ αt ) and erf (ξ) = ------- ∫ exp (− y ) dy ................................... (4.28b) 
 √π 0 

Here erf (ξ) is called the “error function” of argument ξ and its values for different values of 
ξ are tabulated. 

 

Solution to Problem 3 :- The solid is initially at a uniform temperature Ti  and suddenly for  t 

>0 the surface at x = 0 is brought in contact with a fluid at a uniform temperature T∞ with a 

surface heat transfer coefficient h. For this problem the solution is represented in the form of 
a plot where the dimensionless temperature [1 − θ(x,t)] is plottedagainst dimensionless 
distance x / √(αt), using h√(αt) / k as the parameter. It can be noted that the case h → ∞ is 

equivalent to the boundary surface ay x = 0 maintained at a constant temperature T∞. 
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Illustrative examples on Transient Conduction in Semi – Infinite solids 

Example 4.9:-A thick stainless steel slab [α = 1.6 x 10 
─ 5  

m
2
/s and k = 61 W/(m-K)] 

is initially at a uniform temperature of 150 
0 

C. Its surface temperature is suddenly 

lowered to 20 
0 

C. By treating this as a one-dimensional transient conduction problem in 
a semi-infinite medium, determine the temperature at a depth 2 cm from the surface 
and the heat flux 1 minute after the surface temperature is lowered 

 

Solution: 

Ti = 150 
0 

C ; T0 = T|x=0 = 20 
0 

C ; α = 1.6 x 10 
− 5 

m
2 

/ s ; k = 61 W/(m – K) ; x = 0.02 m ; 

 
T = 1 min = 60 s 

 x 0.02 
ξ = -------------- = --------------------------------- = 0.323 

 
2 √ (αt) 2 x √ ( 1.6 x 10 

− 5 
x 60) 

T(x,t) – T0 

From chart, --------------------- = 0.35 

Ti – T0 

Therefore T(x,t) = T0 + 0.35 (Ti – T0) = 20 + 0.35 x (150 – 20) = 65.5 
0 

C. 

k(T0 – Ti) ----------------------
61x(20-150 

qs(t) = -------------------------- = = − 435.5 W / m
2

 

√ (παt) √ (π x 1.6 x 10 
− 5 

x 60) 

 
Example 4.10:- A semi-infinite slab of copper (α = 1.1 x 10 

─ 4 
m 

2
/s and k = 380 

W/(m-K) is initially at a uniform temperature of 10 
0 

C. Suddenly the surface at x = 0 is 

raised to 100 
0
C. Calculate the heat flux at the surface 5 minutes after rising of the 

surface temperature . How long will it take for the temperature at a depth of 5 cm from 

the surface to reach 90 
0 

C? 

 
Solution: 

Ti = 10 
0 

C ; T0 = 100 
0 

C ; k = 380 W / (m – K) ; α = 1.1 x 10 
− 4 

m
2 

/ s; t = 300 s ; 

 

k(T0 – Ti) 
 380 x (100 – 10) 

2 2
 

 

-------------------------------- = 11012 W / m = 11.012 kW/m qs(t) = ------------------- = 

√ (παt) 
 √ (π x 1.1 x 10 

− 4 
x 300) 

T(x,t) – T0 
 

90 – 100 
 

θ(x,t) = ------------------ = --------------------- = 0.11 . From chart ξ = 0.1 

Ti – T0  10 – 100 
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x x
2 

0.05 
2
 

ξ = -------------- or t = ------------------- = ------------------------------ 

2√ (αt) 4 α ξ 
2
 4 x 1.1 x 10 

− 4 
x (0.1) 

2
 

 

 

= 586 s = 9.46 min 

Example 4.11:-A thick bronze [α = 0.86 x 10 
─ 5 

m
2
/s and k = 26 W/(m-K)] is initially 

at 250 
0 

C. Suddenly the surface is exposed to a coolant at 25 
0 

C. If the surface heat 

transfer coefficient is 150 W/(m
2
-K), determine the temperature 5 cm from the surface 

10 minutes after the exposure. 

 
Solution: 

Ti = 250 
0 

C; T∞ = 25 
0 

C; h = 150 W/(m
2 

– K) ; k = 26 W /(m – K) ; α = 0.86 x 10 
−5 

m
2
/s 

t = 600 s ; x = 0.05 m ; 

 
x   0.05 

ξ = ---------------- = ------------------------------------ = 0.35 

2 √(α t) 2 x √ ( 0.86 x 10 
− 5 

x 600) 
        __ __ _ __ _ 

h √(α t) 150 x √ [ 0.86 x 10 
− 5 

x 600] 

-------------- = -------------------------------------- = 0.414 

K  26  

   

[T(x,t) – T∞] 

Therefore from chart 1 − ------------------------ = 0.15 

   (Ti – T∞) 

Solving for T(x,t) we have T(x,t) = T∞ + (1 – 0.15)(Ti – T∞) 

= 25 + 0.85 x (250 – 25 ) = 216.25 
0 

C. 

Example 4.12:- A thick wood [α = 0.82 x 10 
─ 7 

m
2
/s and k = 0.15 W/(m-K)] is initially 

at 20 
0 

C. The wood may ignite at 400 
0 

C. Suddenly the surface of the wood is exposed 

to gases at 500 
0 

C. If the surface heat transfer coefficient is 45 W/(m
2
-K), how long will 

it take for the surface of the wood to reach 400 
0 

C ? 

Solution: 

Ti = 20 
0 

C ; T∞ = 500 
0
C ; h = 45 W /(m 

2 
– K) ; k = 0.15 W /(m – K) 

; α = 0.82 x 10 
− 7 

m
2 

/ s. 
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h √ (α t) 45 x √ (0.82 x 10 
− 7 

x t)   

---------- = ------------------------------- = 0.086 √t  

k 0.15   

   T(x,t) – T∞ (400 – 500) 

x / 2√( α t) = 0. Also 1 − -------------------- = 1 − ------------------- = 0.9799 
 Ti – T∞  (20 – 5000) 
    

Hence from chart h √(α t) / k = 2.75. 
  _  

Therefore 0.086 √ t = 2.75 or t = 1023 s = 17 min. 
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UNIT-III 

 

CONVECTIVE HEAT TRANSFER 

 
Definition of Convective Heat Transfer:- When a fluid flows over a body or inside a channel and 
if the temperatures of the fluid and the solid surface are different, heat transfer will take place 

between the solid surface and the fluid due to the macroscopic motion of the fluid relative to the 

surface. This mechanism of heat transfer is called as “convective heat transfer”. If the fluid motion 

is due to an external force (by using a pump or a compressor) the heat transfer is referred to as 

“forced convection”. If the fluid motion is due to a force generated in the fluid due to buoyancy 
effects resulting from density difference (density difference may be caused due to temperature 

difference in the fluid) then the mechanism of heat transfer is called as “natural or free 

convection”. For example, a hot plate suspended vertically in quiescent air causes a motion of air 

layer adjacent to the plate surface because the temperature gradient in the air gives rise to a density 
gradient which in turn sets up the air motion. 

 

Heat Transfer Coefficient:- In engineering application, to simplify the heat transfer calculations 

between a hot surface say at temperature Tw and a cold fluid flowing over it at a 

bulk temperature T∞ as shown in Fig. 5.1 a term called “heat transfer coefficient,h” is defined by 
the equation 
 

q = h(Tw – T∞) ...................................................................... 5.1(a) 

where q is the heat flux (expressed in W / m
2
) from the surface to the flowing fluid. Alternatively 

if the surface temperature is lower than the flowing fluid then the heat transfer takes place from the 
hot fluid to the cold surface and the heat flux is given by 

 

q = h(T∞ – Tw) ....................................................................... 5.1(b) 

 
The heat flux in this case takes place from the fluid to the cold surface.If in equations 5.1(a) and 

5.1(b) the heat flux is expressed in W / m
2
, then the units of heat transfer coefficient will be W /(m 

2 
– K) or W / (m 

2 
– 

0 
C). 

The heat transfer coefficient is found to vary with (i) the geometry of the body, (ii) the type of 

flow (laminar or turbulent), (iii) the transport properties of the fluid (density, viscosity and 

thermal conductivity),(iv) the average temperature, (v) the position along the surface of the body, 

and (vi) whether the heat transfer is by forced convection or free convection. For convection 

problems involving simple geometries like flow over a flat plate or flow  inside a circular tube, 

the heat transfer coefficient can be determined analytically 
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u∞, T∞ T∞ 

 

Fluid Temperature Profile 
 

 
 

 

x Tw 

 
Fig. 5.1: Temperature distribution of the fluid at any x for Tw > T∞ 

But for flow over complex configurations, experimental / numerical approach is used to 

determine h. There is a wide difference in the range of values of h for various applications. 

Typical values of heat transfer coefficients encountered in some applications are given in 

Table 5.1. 

 
Table 5.1: Typical Values of heat transfer coefficients 

 
 

Type of flow 
 h [W /(m

2 
– K) ] 

 

Free convection 
 

air 
 

5 – 15 

-----do --------- oil 25 – 60 

-----do--------- water 400 –800 

Forced Convection air 15 –300 

-------do------------ oil 50 –1700 

-------do----------- water 300 – 12000 

Boiling water 3000 – 55000 

Condensing steam 5500 – 120000 
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y u∞ 

u(x, y) 

u(x, y) 

Basic concepts for flow over a body:- When a fluid flows over a body, the velocity and 

temperature distribution at the vicinity of the surface of the body strongly influence the heat 

transfer by convection. By introducing the concept of boundary layers (velocity boundary layer 

and thermal boundary layer) the analysis of convective heat transfer can be simplified. 

 
Velocity Boundary Layer:- Consider the flow of a fluid over a flat plate as shown in Fig. 

5.2. The fluid just before it approaches the leading edge of the plate has a velocity u∞ which is 
parallel to the plate surface. As the fluid moves in x-direction along the plate, 

 

 
 

 

 

 

 

 

 

 

 

 
 

x 
xcr Turbulent Region 

Laminar Region Transition 
 

 

Fig. 5.2: Velocity boundary layer for flow over a flat plate 

 
those fluid particles that makes contact with the plate surface will have the same velocity as that of the 
plate. Therefore if the plate is stationary, then the fluid layer sticking to the plate surface will have 
zero velocity.But far away from the plate (y = ∞) the fluid will have the velocity 

u∞.Therefore starting from the plate surface (y = 0) there will be retardation of the fluid in x- direction 

component of velocity u(x,y).This retardation effect is reduced as we move away from the plate 
surface.At distances sufficiently long from the plate(y = ∞) the retardation effect is 

completely reduced: i.e.  u → u∞  as  y → ∞. This  means  that there  is  a region  surrounding  the 

plate surface where the fluid velocity changes from zero at the surface to the velocity u∞ at the outer 

edge of the region. This region is called the velocity boundary layer. The variation of the x- component 
of velocity u(x,y) with respect to y at a particular location along the plate is shown in Fig. 5.2.The 
distance measured  normal to the surface from the plate surface to the point at which 

the fluid attains 99% of u∞ is called “velocity boundary layer thickness” and denoted by δ(x) Thus for 

flow over a flat plate, the flow field can be divided into two distinct regions, namely, (i) the boundary 
layer region in which the axial component of velocity u(x,y) varies rapidly with y with the result the 

velocity gradient (∂u /∂y) and hence the shear stress are very large and  (ii) the potential flow region 
which is outside the boundary layer region, where the velocity gradients and shear stresses are 
negligible. 
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The flow in the boundary layer, starting from the leading edge of the plate will be initially 
laminar in which the fluid particles move along a stream line in an orderly manner. In the 
laminar region the retardation effect is due to the viscosity of the fluid and therefore the shear 
stress can be evaluated using Newton‟s law of viscosity. The laminar 

flow continues along the plate until a critical distance „xcr‟ is reached. After this the small 

disturbances in the flow begin to grow and fluid fluctuations begin to develop. This 
characterizes the end of the laminar flow region and the beginning of transition from laminar 
to turbulent boundary layer. A dimensionless parameter called Reynolds number is used to 
characterize the flow as laminar or turbulent. For flow over a flat plate the Reynolds number 
is defined as 

u∞ x 

Rex = ---------- ........................................... 5.2 
ν 

where u∞ = free-stream velocity of the fluid, x = distance from the leading edge of the plate 
and ν = kinematic viscosity of the fluid. 

 
For flow over a flat plate it has been found that the transition from laminar 

flow to turbulent flow takes place when the Reynolds number is ≈ 5 x 10 
5
.This number is called 

as the critical Reynolds number Recr for flow over a flat plate. Therefore 
u∞ xcr 

Recr  = -------------- = 5 x 10 
5............................. 

5.3 
ν 

The critical Reynolds number is strongly dependent on the surface roughness and the 
turbulence level of the free stream fluid. For example, with very large disturbances in the free 

stream, the transition from laminar flow to turbulent flow may begin at Rex as low as 1 x 10 
5 

and for flows which are free from disturbances and if the plate surface is smooth transition 

may not take place until a Reynolds number of 1 x 10 
6 

is reached. But it has been found that 

for flow over a flat plate the boundary layer is always turbulent for Rex ≥ 4 x 10 
6
.In the 

turbulent boundary layer next to the wall there is a very thin layer called “the viscous sub- 
layer”, where the flow retains its viscous flow character. Next to the viscous sub-layer is a 
region called “buffer layer” in which the effect of fluid viscosity is of the same order of 
magnitude as that of turbulence and the mean velocity rapidly increases with the distance 
from the plate surface. Next to the buffer layer is “the turbulent layer” in which there is large 
scale turbulence and the velocity changes relatively little with distance. 

 

Drag coefficient and Drag force:- If the velocity distribution u(x,y) in the boundary layer at 
any „x‟ is known then the viscous shear stress at the wall can be determined using 

Newton‟s law of viscosity. Thus if ηw(x) is the wall-shear stress at any location x then 
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ηw(x) = μ(∂u / ∂y)y = 0 ................................. 5.4 

where μ is the absolute viscosity of the fluid. The drag coefficient is dimensionless wall 

shear stress. Therefore the local drag coefficient, Cx at any „x‟ is defined as 

ηw(x) 
Cx = ------------- ..................................... 5.5 

(1/2) ρu∞
2
 

Substituting for ηw(x) in the above equation from Eq. 5.4 and simplifying we get 

2ν (∂u / ∂y)y = 0 

Cx = ---------------------- ......................... 5.6 

u∞
2 

Therefore if the velocity profile u(x,y) at any x is known then the local drag 

coefficient Cx at that location can be determined from Eq. 5.6.The average value of Cx 
for a total length L of the plate can be determined from the equation 

 

 L  

Cav = (1/L) ∫Cx dx .................................. 5.7 

 0  

Substituting for Cx from Eq. 5.5 we have 

 L  

 ∫ ηw(x)dx  

 Cav = ------------------------  

 L (1/2) ρu∞ 2 

 _  

 ηw  

Or Cav = -------------------- ……………….5.8 
 (1/2) ρu∞ 

2 

_ 

Where ηw is the average wall-shear stress for total length L of the plate. 

The total drag force experienced by the fluid due to the presence of the plate can  
be written as 

_ 

FD = As ηw ....................................................5.9 

Where As is the total area of contact between the fluid and the plate. If „W‟ is the 

width of the plate then As = LW if the flow is taking place on one side of the plate and 

As = 2LW if the flow is on both sides of the plate. 

Thermal boundary layer:- Similar to the velocity boundary layer one can visualize the 

development of a thermal boundary layer when a fluid flows over a flat 
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plate with the temperature of the plate being different from that of the free stream 

fluid.Consider that a fluid at a uniform temperature T∞ flows over a flat plate which is 

maintained at a uniform temperature Tw.Let T(x,y) is the temperature of the fluid at any 
location in the flow field.Let the dimensionless temperature of the fluid θ(x,y) be defined as 

 T(x,y) – Tw 

θ(x,y) = ------------------- …………………………….5.10 

 T∞ − Tw 

The fluid layer sticking to the plate surface will have the same temperature as the plate 

surface [T(x,y)y = 0 = Tw] and therefore θ(x,y) = 0 at y = 0.Far away from the plate the fluid 

temperature is T∞ and hence θ(x,y) → 1 as y → ∞. Therefore at each location x along the 

plate one can visualize a location y = δt(x) in the flow field at which θ(x,y) = 0.99. δt(x) is 
called “the thermal boundary layer thickness” as shown in Fig. 5.3. The locus of such 
points at which θ(x,y) = 0.99 is called the edge of the thermal boundary layer. The relative 

thickness of the thermal boundary layer δt(x) and the velocity 
 

 

boundary layer δ(x) depends on a dimensionless number called “Prandtl number” of the 

fluid.It is denoted by Pr and is defined as 

μCp (μ/ρ) ν 
Pr = --------- = ---------- = -------- .............. 5.11 

k (k/ρCp) α 

 

Where μ is the absolute viscosity of the fluid, Cp is the specific heat at constant pressure 

and k is the thermal conductivity of the fluid. The Prandtl number for fluids range from 

0.01 for liquid metals to more than 100,000 for heavy oils. For fluids with Pr = 1 such as 
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gases δt(x) = δ(x), for fluids with Pr << 1such as liquid metals δt(x) >> δ(x) and for 

fluids with Pr >> 1, like oils δt(x) << δ(x). 

 General expression for heat transfer coefficient:- Let us assume that Tw > 

T∞. Then heat is transferred from the plate to the fluid flowing over the plate.Therefore 
at any „x‟ the heat flux is given by 

 

q = − k (∂T /∂y)y=0 ................................................ 5.12(a) 

In terms of the local heat transfer coefficient hx, the heat flux can also be written as 

q = hx  (Tw − T∞) ........................................ 5.12(b) 

 
From equations 5.12(a) and 5.12(b) it follows that  

− k (∂T /∂y)y=0  

hx = ------------------ ………………………5.13 

(Tw − T∞)  

From equation 5.10 we have (∂T /∂y)y=0 = [T∞ − Tw] (∂θ /∂y)y=0. Substituting this 

expression in Eq.5.13 and simplifying we get the general expression for hx as 

hx  = k (∂θ /∂y)y=0 ............................................... 5.14 

The same expression for hx could be obtained even when Tw < T∞. Equation 5.14 can 

be used to determine the local heat transfer coefficient for flow over a flat plate if the 

dimensionless temperature profile θ(x,y) is known. 

Average heat transfer coefficient:- For a total length L of the plate the average heat transfer 
coefficient is given by 

L 

hav = (1 /L) ∫hxdx ....................................... 5.15 
0 

Substituting for hx from Eq. 5.14 we get 

L 

hav = (1 /L) ∫ k (∂θ /∂y)y=0 dx ...............................5.15 
0 

 

Since (∂θ /∂y)y=0 at any x depends on whether the flow at that section is laminar 

or turbulent the expression for hav can be written as 

 

 

 
xcr L 

hav = (1 /L) { ∫ k [(∂θ /∂y)y=0]laminar dx + ∫ k [(∂θ /∂y)y=0]turbulent dx }… ... 5.16 
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Illustrative examples on flow over a flat plate: 

 
Example 5.1:- Assuming the transition from laminar to turbulent flow takes place at a 

Reynolds number of 5 x 10 
5
, determine the distance from the leading edge of a flat plate at 

which transition occurs for the flow of each of the following fluids with a velocity of 2 crm/s at 

40 
0 

C.(i) Air at atmospheric pressure;(ii)Hydrogen at atmospheric pressure;(iii) water;(iv) 
Engine oil;(v) mercury. Comment on the type of flow for the 5 fluids if the total length of the 
plate is 1 m. 

Solution: Data:- Recr = 5 x 10 
5
; u∞ = 2 m/s ; T∞ = 40 

0  
C 

(i)Air at atmospheric pressure :- At 40 
0 

C, ν = 17 x 10 
− 6 

m
2
/s. 

u∞ xcr 
 

Recr ν 5 x 10 
5 

x 17 x 10 
− 6

 

Recr = ----------- or xcr = -------------------- = ---------------------------- = 4.25 m. 

ν  u∞ 2 

(ii) Hydrogen :- For hydrogen at 40 
0 

C, ν = 117.9 x 10 
− 6 

m
2
/s. 

5 x 10 
5 

x 117.9 x 10 
− 6

 

Therefore xcr = ------------------------------- = 29.5 m 

  2  

(iii) Water :- For water at 40 
0 

C, ν = 0.658 x 10 
− 6 

m
2
/s. 

5 x 10 
5 

x 0.658 x 10 
− 6

 

Therefore xcr = ------------------------------- = 0.1645 m 

  2  

(iv) Engine oil :- For engine oil at 40 
0 

C, ν = 0.24 x 10 
− 3 

m
2
/s. 

5 x 10 
5 

x 0.24 x 10 
− 3

 

Therefore xcr = 
-------------------------------2 

= 60 m 

(v) Mercury :- For mercury at 40 
0 

C, ν = 0.107 x 10 
− 6 

m
2
/s. 

5 x 10 
5 

x 0.107 x 10 
− 6

 

Therefore xcr = ------------------------------- = 0.027 m 
  2  
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Comments on the type of flow 

Sl.No Type of fluid xcr xcr vs L Type of Flow 

 

1 

 

Air 

 

4.25 xcr > L 
 

Flow is Laminar for entire length 

 

2 

 

Hydrogen 

 

29.5 xcr>> L 
 

Flow is laminar for entire length 

 

3 

 

Water 

 

0.1645 xcr < L 
 

Flow is partly Laminar & Partly Turbulent 

 

4 

 

Engine oil 

 

60 xcr >> L 
 

Flow is laminar for entire length 

 
5 

 
Mercury 

 
0.027 xcr << L 

 
Flow is turbulent for almost entire length 

 
 

Example 5.2:- An approximate expression for the velocity profile u(x,y) for laminar 
boundary layer flow along a flat plate is given by 

u(x, y)/ u∞ =2[y / δ(x)] − 2[y / δ(x)] 
3
+ [y / δ(x)] 

4
 

where δ(x) is the velocity boundary layer thickness given by the expression 

δ(x) / x = 5.83 / (Rex)
1/2

 

(a) Develop an expression for the local drag coefficient. 

(b) Develop an expression for the average drag coefficient for a length L of the plate. 

(c) Determine the drag force acting on the plate 2 m x 2 m for flow of air with a 

free stream velocity of 4 m /s and a temperature of 80 
0
C. 

Solution:- (a) The velocity profile u(x,y) is given as 

u(x, y) = u∞ {2[y / δ(x)] − 2[y / δ(x)] 
3
+ [y / δ(x)] 

4 
} 

Therefore (∂u / ∂y)y=0 = 2u∞ / δ(x) 

ηw(x) = μ (∂u / ∂y)y=0 = (2 μu∞) / δ(x) 

(2 μu∞) Rex (2 μu∞) [(u∞x) / ν]
1/2

 

= ----------------- = ------------------------- = 0.343 (μu∞) [u∞ /(x ν)]
1/2 

….(1 ) 

5.83 x 5.83 x 
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L L 

 

The local drag coefficient at any x is given by 

ηw(x) 0.343 (μu∞) [u∞ /(x ν)]
1/2

 

Cx = ----------------- = ------------------------------------------- 

(1/2) ρu∞
2 

(1/2) ρu∞
2
 

0.686 0.686 
= ---------------------- = ----------------- 

{(u∞x) / ν}
1/2 

(Rex) 
½

 

(b) The average drag coefficient is given by 

Cav = (1/L) ∫ Cx dx = (1/L) ∫ 0.686 (Rex) 
− ½ 

dx 
0 0 

 

{ 0.686 (u∞/ν) 
− ½

} L 

= ----------------------- ∫ x 
− ½ 

dx 

L 
0

 

Or 2 x 0.686 1.372 
Cav = --------------- = ------------------ 

(u∞L / ν) 
½ 

(ReL) 
½

 

 

(c) At 80 
0 

C for air ν = 20.76 x 10 
− 6 

m
2 

/ s ; ρ = 1.00 kg / m 
3

 

 

ν 21.09 x 10 
− 6

 

 
 1.372 1.372 

Average drag coefficient = Cav = ------------------- = ------------------------ = 2.228 x 10 
− 3

 

 Re 
0.5 

L (3.793 x 10 
5
)
0.5

 

Drag force assuming that the flow takes place on one side of the plate is given by 

 

 

 

FD = ηw LW = (1/2)ρ u∞
2 

Cav LW for flow over one side of the plate 

= (1/2) x 1.00 x 4
2 

x 2.2228 x 10 
− 3 

x 2 x 2 =0.071 N 

 u∞L 4 x 2 5 

------------------- = 3.793 x 10 ReL = ----------------- = 
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x 

Example 5.3:- An approximate expression for temperature profile θ(x,y) in the thermal 
boundary layer region is given by 

θ(x,y) = 2y / δt −[y / δt]
2
 

where the thermal boundary layer thickness δt is given by 

5.5 

δt / x = ----------------- ; Rex is the Reynolds number based on „x‟ and 

Rex0.5Pr 1/3 

Pr is the Prandtl number of the fluid. Develop an expression for (i) the local heat transfer 

coefficient hx and (ii) the average heat transfer coefficient for total length L of the plate. 
 

Solution: (i) The local heat transfer coefficient hx is given by 

hx = k (∂θ / ∂y)|y = 0. 

 

Now 
 

θ(x,y) = 2y / δt −[y / δt]
2
 

   
2 Rex

0.5
Pr 

1/3 

Hence  (∂θ / ∂y)|y = 0. = 2 / δt = --------------------- 
  

2 k Re 
0.5

Pr 
1/3 

x 

5.5.x 

Or hx = ------------------------ = 0.364 (k / x) Re 
0.5 

Pr 
1/3

 
x 

  5.5.x  

Or hx x 
  

 ----- = 0.364 Re 
0.5 

Pr 
x 1/3 

 

K 

hx x 
---- is a dimensionless number involving local heat transfer coefficient and is called 

k 

“local Nusselt number”. 
 

(ii) The average heat transfer coefficient for a total length L of the plate is given by 

 

L 

hav = (1 / L) ∫hx dx = (1 / L) ∫ 0.364 (k / x) 
0 

Re 
0.5 

Pr
1/3 

dx
 

 

 

L 0.5 

= (1 / L) -------- -- 0.364 Pr 

ν)
0.5 

0.5 

 

 

 
1/3 

dx 

 
 

k (U∞ / 

 

= (1 / L) 0.364 Pr
1/3

 k (U∞ / ν)
0.5

 

L 

Or ∫ x − 0.5 
   0 
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x1 

x2 

Fig. P5.5: Schematic for problem 5.5 

L 

= 0.728 (k / L) (U∞L / ν) 
0.5 

Pr 
1/3

 

Or hav L / k = 0.728 Re 
0.5 

Pr
1/3

 

hav L / k is a dimensionless number involving the average heat transfer coefficient and is 

called the “average Nusselt number”. 

Example 5.4:- The heat transfer rate per unit width from a longitudinal section x2 ─ x1 

of a flat plate can be expressed as q12 = h12 (x2 – x1)(Ts - T∞), where h12 is the average 

heat transfer coefficient for the section length of (x2 – x1). Consider laminar flow over a 
flat plate with a uniform temperature Ts. The spatial variation of the local  heat 

transfer coefficient is of the form hx = C x 
─ 0.5

, where C is a constant. 
(a) Derive an expression for h12 in terms of C,x1 and x2. 
(b) Derive an expression for h12 in terms of x1, x2, and the average coefficients h1 and h2 

corresponding to lengths x1 and x2 respectively. 

 

 
Solution: 

 
u∞, T∞ q12    

Ts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

(a) hx = C x 
− 0.5  

 
_ 1 x2 

Therefore h12 = -------------- ∫hx dx 

  (x2 – x1) x1 

  1 
x2 

− 0.5 

 = ------------------- ∫ C x dx 
  (x2 – x1) 

0 
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2C 
0.5

 

= -------------------[ x2 

(x2 – x1) 

– x1 0.5] 

_ x1 

(b) h1 = (1/x1) ∫C x 
0 

= 2C / √ x1 

_    

Similarly h2 = 2C / √ x2 

− 0.5 
dx

 

 

 x1 _ 1 x2 x1 

Therefore Since ∫ hxdx = x1h1, h12 = -------------- [ ∫ hxdx - ∫ hxdx ] 
0 

( x2 – x1) 
0 0

 

_ _ 

_ h2x2 - h1x1 

h12 = ----------------- 

x2 – x1 

Basic Concepts For Flow Through Ducts :- The basic concepts developed on the development of 

velocity and thermal boundary layers for flow over surfaces are also applicable to flows at the 
entrance region of the ducts. 

 
Velocity Boundary Layer:- Consider the flow inside a circular tube as shown in Fig.5.4. 

Lat uo be the uniform velocity with which the fluid approaches the tube. As the fluid enters the tube, a 

“velocity boundary layer” starts to develop along the wall-surface. The velocity of the fluid layer 

sticking to the tube-surface will have zero velocity and the fluid layer slightly away from the wall is 
retarded. As a result the velocity in the central portion of the tube increases to satisfy the continuity 

equation (law of conservation of mass).The thickness of the velocity boundary layer δ(z) continuously 
grows along the tube-surface until it fills the entire tube. The region from the tube inlet up to little 
beyond the hypothetical location where the boundary layer reaches the tube centre is called 

“hydrodynamic entrance region or hydrodynamically developing region” and the corresponding 

length is called “hydrodynamic entrance length Lh”. In the hydrodynamically developing region 

the shape of the velocity profile changes both in axial and radial direction, i.e., u = u(r,z). The 
region beyond the hydrodynamic entry length is called “Hydrodynamically developed region”, 

because in this region the velocity profile is invariant with distance along the tube,i.e., u = u(r). 
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uo 

  Hydrodynamic Entrance Hydrodynamically developed 

  Region Region   

 

 

 

 

 

 
 

  δ(z)  

R 

 

 

 
 

r 

 

Lh 
 

 

z Fully developed profile 
 u = u(r) 

 

Fig. 5.4: development of velocity boundary layer at entrance region of a tube 

 

If the boundary layer remains laminar until it fills the tube, then laminar flow will prevail 

in the developed region. However if the boundary layer changes to turbulent before its 
thickness reaches the tube centre, fully developed turbulent flow will prevail in the 

hydrodynamically developed region. The velocity profile in the turbulent region is flatter 

than the parabolic profile of laminar flow. The Reynolds number, defined as 
 

Red = (um Dh) / ν .................................................. (5.17) 

is used as a criterion for change from laminar flow to turbulent flow. In this definition, 

um is the average velocity of the fluid in the tube, Dh is the hydraulic diameter of the tube 

and ν is the kinematic viscosity of the fluid. The hydraulic diameter is defined as 

 

4 x Area of flow 

Dh = ----------------------------- ................................ (5.18) 
Wetted Perimeter 

 

For flows through ducts it has been observed that turbulent flow prevails for 
 

Red ≥ 2300 ............................................................ (5.19) 

 
But this critical value is strongly dependent on the surface roughness, the inlet conditions and the 

fluctuations in the flow. In general, transition may occur in the range 2000 < Red < 4000. It is a 
common practice to assume a value of 2300 fro transition from laminar flow to turbulent 
flow. 
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Friction Factor and Pressure Drop Relations For Hydrodynamically Developed Laminar 
Flow 

 

In engineering applications, the pressure gradient (dp / dz) associated with the flow is a 
quantity of interest, because this decides the pumping power required to overcome thr 

frictional losses in the pipe of a given length. 

Consider a differential length dz of the tube at a distance z from the entrance and 
let this length be in the fully developed region. The various forces acting on the fluid element 

in the direction of flow are shown in Fig.5.5. 

Resultant force in the direction of motion = F = (pA)z –(pA)z+dz – ηw Sdz 

where S is the perimeter of the duct. 

Using Taylor‟s series expansion and neglecting higher order terms we can write 
 

(pA)z+dz = (pA)z + d/dz(pA) dz 

Therefore F = d/dz(pA) dz − ηw Sdz 

Rate of change of momentum in the direction of flow = 0 because the velocity u does not 
vary with respect to z in the fully developed region. 

 

Hence d/dz(pA) dz − ηw Sdz = 0 

 

For duct of uniform cross section A is constant. Therefore the above equation reduces to 
 

dp/dz = − ηw S /A ............................................... (5.20) 

For laminar flow ηw = − μ (du / dr)|wall. Hence Eq. (5.20) reduces to 

 

dp μS 

------ = -------- (du/dr)|wall .......................................................... (5.21) 

dz A 

 
Eq.(5.21) is not practical for the determination of (dp/dz), because it requires the evaluation f 
the velocity gradient at the wall. Hence for engineering applications a parameter called 

“friction factor, f ” is defined as follows: 

 
 (dp/dz) Dh 

f = − ------------------ ....................................... (5.22a) 
 

½ (ρum
2
) 

Substituting for (dp/dz) from Eq. (5.21) we have 

 
(μS/A) (du/dr)|wall Dh 

 

f = −  ---------------------------- 
…………………..(5.22b) 

 ½ (ρum
2
) 
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m 

For a circular tube S = πDi, and A = πDi
2 

/ 4. Hence Dh = Di 

Hence for a circular tube Eq. (5.22b) reduces to 

8μ 
f = − -------  (du/dr)|wall .................................................(5.22c) 

 (ρum
2
)  

Also from Eq. (5.22a) we have 
(½ ) (ρum

2
) f 

dp = − ----------------- dz 
 Dh  

Integrating the above equation over a total length L of the tube we have 

p2 (½ ) (ρum
2
) f L 

∫dp = − ------------------- ∫dz 

p1 Dh 0 

or   pressure drop = Δp = (p1 – p2) = ( ½ ) (L/Dh) f ρu  
2 ................................................ 

(5.23) 

. 

Pumping power is given by P = V Δp............................................................. (5.24) 

. 

where V = volume flow rate of the fluid. 

 

Thermal Boundary Layer: In the case of temperature distribution in flow inside a tube, it is 

more difficult to visualize the development of thermal boundary layer and the existence of 

thermally developed region. However under certain heating or cooling conditions such as 

constant wall-heat flux or constant wall-temperature it is possible to have thermally 
developed region. 

Consider a laminar flow inside a circular tube subjected to uniform heat 

flux at the wall. Let „r‟ and „z‟ be the radial and axial coordinates respectively and 
T(r,z) be the local fluid temperature. A dimensionless temperature θ(r,z) is defined as 

 

 

T(r,z) – Tw(z) 

θ(r,z) = ------------------- .................................................. (5.25a) 

Tm(z) – Tw(z) 

 
where Tw(r,z) = Tube wall-temperature and Tm(z) = Bulk mean temperature of the fluid. 

The bulk mean temperature at any cross section „z‟ is defined as follows: 

 

∫ ρ(2πrdr) u(r,z) Cp T(r,z) ∫ rdr u(r,z)T(r,z) 

Tm(z) = --------------------------------- = ---------------------........................... (5.25b) 

∫ ρ(2πrdr) u(r,z) Cp ∫ rdr) u(r,z) 
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Tfi 

Thermal Entrance Length Lth 

θ = θ(r) 

At the tube wall it is clear that θ(r,z) = 0 and attains some finite value at the centre of the tube. 
Thus we can visualize the development of thermal boundary layer along the tube 

surface as shown in Fig. 5.5.The thickness of the thermal boundary layer δt continuously grows 

along the tube surface until it fills the entire tube. The region from the tube inlet to the hypothetical 
location where the thermal boundary layer thickness reaches the tube centre is called the “thermal 
entry section”. In this region the shape of the dimensionless temperature profile θ(r,z) changes 
both in axial and in radial directions. The region beyond the thermal entry section is called as the 
“thermally developed region”, because in this region the dimensionless temperature profile θ 
remains invariant with respect to z. That is in this region θ = θ(r).It is difficult to explain 
qualitatively why θ should be independent of z even though the temperature of the fluid T depends 
both on r and z. However it can be shown mathematically that, for both constant wall-heat flux and 
constant wall-temperature conditions, θ depends only on r for large values of z.For constant wall-
heat flux condition the 

wall-temperature Tw(z) increases with z. 
 

 

 

 

 

 

 

Tw(z) Tw(z) Tw(z) 

 

 

 

 
 

 

 

 

 
Thermally Developing Region Thermaly 

 Developed Region 
 

 

 

Fig. 5.5: Development of Thermal Boundary Layer In a Flow 
Through A Tube Subjected to Constant Wall-Heat Flux Condition 

 
The variation of wall-temperature and the bulk fluid temperature as we proceed along the 
length of the tube for constant wall-heat flux conditions is shown in Fig. 5.6. 
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Tw(z)|z=L 

 

 

ΔT = Tw(z) – Tm(z) 

Tm(z)|z=L = Tfo 

 

 

 

 

 

 

 

0   L 

Lth Thermally developed region 

z θ = θ(r) 

 

Fig. 5.6: Variation of tube wall-temperature and bulk fluid temperature 

along the length of the tube 

It can be shown that for constant wall-heat flux condition the temperature difference ΔT between 

the tube wall and the bulk fluid remains constant along the length of the tube. 

The growth of the thermal boundary layer for constant wall-temperature conditions 

is similar to that for constant wall-heat flux condition except that the wall temperature does 

not vary with respect to z. Therefore the temperature profile T(r,z) becomes flatter and flatter 
as shown in Fig. 5.7 as we proceed along the length of the tube and eventually the fluid 

temperature becomes equal to the wall temperature. Since the 
 

 
 

Tw 

Tw Tw Tw 

Tfi    

 
 

 

 

 

 

 
z  

Thermally developing region Thermally developed 

Thermal entrance length Lth region 

Fig.5.7: Growth of thermal boundary layer for flow through a tube 

with constant wall-temperature 

wall-temperature remains constant and the bulk fluid temperature varies along the length 
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Fig. 5.8: Variation of bulk fluid temperature along the length of the tube for tube with constant wall-

temperature 

 
the temperature difference between the tube wall and the bulk fluid varies along the length of the 
tube as shown in Fig. 5.8. 
 

5.4.4. Mean Temperature Difference, ΔTm: If Q is the total heat transfer rate between the fluid 
and the tube surface , As is the area of contact between the fluid and the surface, hm is the average 
heat transfer coefficient for the total length of the tube then we can write 
 

Q = hm As ΔTm .................................................... (5.26) 

Where ΔTm = mean temperature difference between the tube wall and the bulk fluid. For a tube 

with constant wall-heat flux condition, since the temperature difference between the fluid and the 
tube surface remains constant along the length of the tube it follows that 
 

ΔTm = [Tw(z)|z=0 − Tfi] = [Tw(z)|z=L − Tfo] ........................... (5.27a) 

 

For a tube with constant wall-temperature condition the mean temperature difference is given by 
 ΔTi – ΔTo 

ΔTm = ---------------------- .................................................. (5.27b) 

 ln (ΔTi / ΔTo) 

General expression for heat transfer coefficient : Let the fluid be heated as it flows through the 

tube. Then at any z the heat flux from the tube surface to the fluid is given by Fourier‟s law as 

 

 
qw(z) = k (∂T / ∂r)|wall ..................................... (5.28) 

[Note that when the fluid is heated Tw> Tm so that (∂T / ∂r)|wall will be 

positive). If hz is the heat transfer coefficient then 

qw(z) = hz [Tw(z) – Tm(z) ....................... (5.29) 

Therefore from Eq. (5.28) and (5.29) we have 

 

k (∂T / ∂r)|wall 

hz = ------------------ ............................... (5.30) 

[Tw(z) – Tm(z)] 

[T(r,z) – Tw(z)] 
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Now θ(r,z) = -------------------- 

 [Tm(z) – Tw(z)] 

Therefore (∂T / ∂r)|wall = [Tm(z) – Tw(z)] (∂θ / ∂r)|wall 
 

Substituting this expression in Eq. (5.30) and simplifying we get 
 

hz  = − k (∂θ / ∂r)|wall ............................................... (5.31) 

In the thermally developed region θ depends only on r. Hence 
 

hz  = − k (dθ / dr)|wall .............................................. (5.32) 

Since (dθ / dr)|wall is independent of z it follows that the heat transfer coefficient hz is 

independent of z. This is true both for constant wall-temperature and constant wall-heat 

flux conditions. 

 

Illustrative Examples on Flow Through Ducts: 

 
Example 5.5:- The velocity profile for hydrodynamically developed laminar 
flow inside a circular tube of radius R is given by 

u(r) = 2um[ 1 – (r/R)
2
] 

where um is the average velocity of the fluid in the tube.Develop an expression for 

the friction factor f and express it in terms of the Reynolds number Red where Red 

is defined as Red = (umD) / ν. 

Solution: 

u(r) = 2um[ 1 – (r/R)
2
] 

Therefore (du / dr) = 2um [ 0 – 2r /R
2
] 
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o x 
2L 

H 

 

Or (du / dr)|wall = (du / dr)|r = R = − 4um / R = − 8um / D 

Therefore (dp/dz) = − (S/A)ηw = −[(πD) /(πD
2
/4)] {−μ(du / dr)|wall} 

= (4μ/D)( −8um / D ) = − 32 μum /D
2
 

 
− (dp/dz) D 

 
32 μum /D 64 

Friction factor = f = ----------------- = --------------- = -------------- 
 

½ (ρum
2
) 

 
½ (ρum

2
) (ρumD / μ) 

Or f = 64 / Red 
   

 
 

Example 5.6:- The velocity profile u(y) for hydro dynamically developed laminar 

flow between two parallel plates a distance 2L apart is given by u(y) / um = (3 / 2) 

[1– (y /L) 
2
]where um is the mean flow velocity and the coordinate axis y is as 

shown in Fig. P5.6. 

 

y 
 

 

Fig. P 5.6 : Schematic for problem 5.6 

 

 

 
(a) Develop an expression for the friction factor f. 
(b) Write the expression for calculating the pressure drop Δp over a length H of the 
channel. 
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ηw2 

H 

Fig. P5.6 : Schematic for problem 5.6 

Solution: 
 

y     

 

z 

 dz  

ηw1 

 

 
z 

 

p   
  

    
p+ (d 

 
p/dz)dz 

2L     

 

 

 

 

 

 

 

 

 

 

 

Consider a fluid element of length dz at a distance z from the origin as shown in the 
figure. Resultant force acting on the fluid element is given by 

 

F = p ( 2L x 1) – [p + (dp/dz) dz] (2L x 1) – ηw1 (dz x 1) – ηw2 (dz x 1) 

= − 2L (dp/dz)dz − (ηw1 + ηw2) dz 

 
For fully developed flow there is no change in the momentum of the fluid in z-direction. 
Hence by Newton‟s second law F = 0. 

 

Therefore we have − 2L (dp/dz)dz − (ηw1 + ηw2) dz = 0 

Or (dp/dz) = − (ηw1 + ηw2) / 2L ...................................... (1). 

It is given that, 
  

u = (3/2) um [ 1 – (y/L)
2 

] 

Therefore (du / dy) = − (3/2)(2y / L
2
) 

By Newton‟s law of viscosity ηw1 = − μ(du/dy)|y=L = − μ [ − 3um / L] 

= (3μum)/L 

Similarly ηw2 = + μ(du/dy)|y=−L = + μ [ + 3um / L] 



171 
 

= (3μum)/L 

Substituting these expressions for ηw1 and ηw2 we have 

(dp/dz) = − [(3μum)/L + (3μum)/L ] / 2L 
 

= − [(3μum)/ L
2
] 

(a) The friction factor f is given by  

[(3μum)/ L
2
] dh − (dp/dz) dh 

f = --------------------- = ------------------------ 

(1/2) ρum
2
 

 
(1/2) ρum

2
 

as ( dp/dz) = (1/2) ρ um
2 

f (1/dh), dh = hyd. Diameter = 
4 x 2L 

= 4L 

  2 

12 x 2 
 

24 

= ------------------- = ---------------- 

(ρumL)/μ  ReL 

b) The total pressure drop for length H of the plate is given by 

 
p2 

Δp = p1 − p2 = − ∫dp 
p1 

 

H 
2

 

=− ∫ −[(3μum) / L ]dz = 3 (H/L)(μum / L) 
0 

 

3 (H/L) (ρum
2
) 

= --------------------- = 3 (H/L) (ρum
2
) / ReL 

(ρumL/μ) 

Example 5.7:-The friction factor for hydro dynamically developed laminar 
flow through a circular tube is given by 

f = 64 / Red ; Red = (umd) / ν. 

Water at a mean temperature of 60 
0 

C and a mean velocity of 10 cm/s flows inside  
a tube of 1 cm ID. Calculate the pressure drop for a length of 10 m of the tube and 
also the corresponding pumping power required. 

 
Solution: 

Properties of water at 60 
0 

C are : ρ = 985 kg/m
3 

; μ = 0.78 x 10 
− 3 

kg / (m – s); 
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Mean velocity of water = um = 0.1 m/s ; Di = 0.01 m ; L = 10 m. 

985 x 0.1 x 0.01 
Red = (ρumDi ) / μ = ---------------------------- = 2060.7 or 2061 

0.78 x 10 
− 3

 

Friction factor = f = 64/Red = 64 / 2061 = 0.031 

0.031 x 10 x 985x (0.1)
2 

Pressure drop = Δp = f (L/Di) (1/2)ρum
2 

= ---------------------------------- 
2 x 0.01 

 

=  152.68 N / m
2
. 

. π x (0.01)
2 

x 0.1 

Volume flow rate = V = (πDi
2
/4) um = ----------------------- = 7.85 x 10 

− 6 
m

3
/s 

4 . 

Pumping power = Δp V = 152.68 x 7.85 x 10 
− 6 

= 1198.5 x 10 
− 6 

J / s. 

Example 5.8:- Engine oil [ν = 0.8 x 10 
─ 4 

m
2
/s and k = 0.14 W /(m-K)] is in laminar 

flow between two parallel plates a distance 3 cm apart and subjected to a constant heat 

flux of 2500 W/m
2
. The average heat transfer coefficient for the hydro dynamically and 

thermally developed flow is given by 

(hm 4L)/k = 8.235, 

 
where 2L is the distance between the plates. Calculate the temperature difference 
between the plate surface and the mean fluid temperature. 

 

Solution: 

2L = 0.03 m ; ν = 0.8 x 10 
− 4 

m
2 

/ s ; k = 0.14 W /(m-K) ; q = 2500 W / 

m
2
; (hm4L) / k = 8.235 

Therefore hm = (8.235 k) / (2 x 2L) 

= (8.235 x 0.14)/(2 x 0.03) = 19.215 W / (m
2 

– 

K) Temperature difference = ΔT = q / hm = 2500 / 19.215 = 130.11 
0 

C. 

Example 5.9:-Consider a special case of parallel flow of an incompressible fluid 
between two parallel plates where one plate is stationary and the other plate is moving 
with an uniform velocity U.A distance L separates the two plates (refer Fig. 

P5.9). The stationary plate is maintained at temperature To and the moving plate at 

temperature TL. This type of flow is referred to as COUETTE flow and occurs, for 
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example, in journal bearing. The continuity, momentum and energy equations for 
such a flow are given as follows: 

 
Continuity equation: ∂u / ∂x = 0 

Momentum equation: ∂ 
2
u / ∂y 

2 
= 0 

Energy equation: k (∂ 
2
T / ∂y 

2
) + μ (∂u / ∂y) 

2 
= 0 

 
 
 
 

 

u(y) = U 

 

 

 

 

 

To, u(y) = 0 

 
Fig. P5.9: Schematic for problem 5.9 

 

Show that the temperature distribution is given by 

T(y) = To + (μ/2k)U 
2 

[ (y/L) – (y/L) 
2
] + (TL – To)y/L 

 
Also show that the heat flux at any y is given by 

q(y) = ─ k [(μ/2k)U 
2 

(1/L – 2y/L 
2
) + (TL – To)/L 

y 

TL 

L 
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It is given that the momentum equation is 
 

(∂2u / ∂y2) = 0 ...................................... (1) 

 
With the boundary conditions: (i) at y = 0, u(y) = 0 

and (ii) at y = L, u(y) = U. 

Integrating equation (1) twice, we have 

 
u(y) = C1y + C2 ......................................................... (2). 

 

Condition (i) in equation (2) gives C2 = 0. 
 

Condition (ii) in equation (2) gives U = C1L or C1= U / L. 
 

Substituting these values of C1 and C2 in equation (2) we get the velocity 

distribution as 

u(y) = (Uy) / L ................................... (3) 
 

 

 

The energy equation is given by  
k(∂

2
T / ∂y

2
) = − μ (∂u / ∂y)

2..................... 
(4) 

y 

TL 

U 

L 

T0, u(y) = 0 
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From equation (3) (∂u / ∂y) = U / L substituting this in equation (4) 

We have k(∂
2
T / ∂y

2
) = − μ(U/L)

2
 

Or (∂
2
T / ∂y

2
) = − (μ/k)(U/L)

2
 

 

Integrating twice with respect to y we get 

T(y) =  − (μ/k)(U/L)
2 

(y
2
/2) + C1y + C2 ......................... (5) 

The boundary conditions are: (i) at y = 0 T = T0 and (ii) at y = L, T = TL. 

Condition (i) in equation (5) gives C2 = T0. 

Condition (ii) in equation (5) gives TL = − (1/2)(μU
2
/k) + C1L + T0 

Or C1 = (1/L)[(TL – T0) + (1/2)(μU
2
/k)] 

Substituting the expressions for C1 and C2 in Equation (5) we get the temperature as 
 

 

T(y) = − (μ/k)(U/L)
2 

(y
2
/2) + (y /L) [(TL – T0) + (1/2)(μU

2
/k)] + T0 

Or T(y) – T0 y 1 μ U
2
 

 ------------ = ------ + -------------------------- [ (y/L) – (y/L)
2
] 

 TL – T0 L (TL – T0) 2k 

Heat flux at any y is given by 

 

q(y) = − k (∂T /∂y) 

= − k [ (μU
2
/2k) { (1/L) – (2y/L

2
) + (TL – T0)/L] 

= k (μU
2
/2) { (2y/L

2
) − (1/L) } – k(TL – T0)/L 

5.10. Consider Couette flow with heat transfer for which the lower plate moves with a 
velocity of U = 15 m/s and is perfectly insulated (see Fig. P5.10). The upper plate 
is stationary and is made of material with kup  = 1.5 W/(m-K) and thickness Lup = 

3 mm. Its outer surface is maintained at Tup = 40 
0 

C. The plates are separated 

by a distance of L0 = 5 mm which is filled with an engine 

 

oil of viscosity μ = 0.8 N-s / m
2 

and thermal conductivity k0 = 0.145 W /(m-K). 

(a) On T(y) ─ y coordinates, sketch the temperature distribution in the oil film and in 

the moving plate. 
(b) Obtain an expression for the temperature at the lower surface of the film T0 in terms 

of the plate speed U, the stationary plate parameters Tup,k up,Lup and the 
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y Tup 

Stationary Plate 

Lup 

oil L0 

U 

oil parameters μ, k0, L0. Calculate this temperature for the prescribed 

conditions. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

Fig. P5.10: Schematic for problem 5.10 
Moving plate 

Solution: 
  

For Couette flow the momentum equation is : 

 
d

2
u /dy

2 
= 0. 

 

Integrating twice with respect to y we have 

u(y) = C1y + C2 .............................................................. (1) 

The boundary conditions are (i) at y = 0, u(y) = U ; 

And (ii) at y = L0, u(y) = 0. 
 

 

Condition (i) in equation (1) gives C2 = U and condition (ii) in equation (1) 

gives C1 = − U / L0. 

 

Substituting the expressions for C1 and C2 in equation (1) we get the velocity 

distribution as 
 

u(y) = U [1 – (y/L0)]............................................. (2) 

 

The energy equation for Couette flow is 
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k(d
2
T / dy

2
) = −μ (du/dy)

2......................................................
(3) 

 
From equation (2) we have (du/dy) = − (U / L0). 

 

Therefore equation (3) reduces to 

k0(d2T / dy2) = −μ (U / L0)2 

 

or (d2T / dy2) = −μ (U / L0)2 / k0 

Integrating once with respect to y we have 

dT / dy =  −(μ/k0) (U / L0)
2 

y + C1 .............................. (4) 

Integrating once again with respect to y we have 

T = −(μ/k0) (U / L0)
2 

(y
2
/2)  + C1y + C2................................................ (5) 

At y = 0 the surface is insulated i.e. (dT/dy) = 0. Substituting this condition in 
equation (4) we have 

 
At y = L0, the condition is 

C1= 0. 

 

− k0 (dT/dy)|y=L0  = kup[ T|y = L0  − Tup] /Lup..................................... (6) 
 

From equation (4) we have (dT / dy )|y = L0 = −(μ/k0) (U / L0)2 L0 = − μU2/(L0k0). 

From equation (5) we have T|y = L0 = −(μ/k0)(U2/2) + C2. 

Therefore equation (6) reduces to μU2/L0 = kup [−(μ/k0)(U2/2) + C2 – Tup] / Lup 

Or C2  =  μ U2 / k0 [ ( ½) + ( k0   Lup/ kup  L0) ]  + Tup 

Therefore  T|y = L0   = Tup + { μ U2 / k0 [ ( ½) + ( k0 Lup/ kup L0) ] } − (μ/k0)(U2/2) 

 
= Tup + ( k0 Lup/ kup L0) 

 
 

Or Temperature distribution is given by : 
 

T   =   -(μ/k0) ( U/ L0)2 (y2/2) + { μ U2 / k0 [ ( ½) + ( k0 Lup/ kup L0) ] } + 

At lower surface y = 0 

Therefore T|y =0 = Tup + { μ U2 / k0 [ ( ½) + ( k0 Lup/ kup L0) ] } 

 

 
Tup 



178 
 

 

Forced Convection Heat Transfer 

 
A. Hydro dynamically and thermally developed flow through tubes: 

 
Determine the friction factor, the pressure drop and pumping power for fully developed 

laminar flow of water at 21 
0 

C [μ = 9.8 kg/(m-s) ; ρ = 997.4 kg/m
3
]through a 2.5 cm 

diameter, 100 m long tube for a mass flow rate of 
0.015 kg/s. What are the mean and maximum velocities of flow? 

 
Determine the friction factor, the pressure drop and pumping power required for the flow 

of water at 0.5 kg/s and 40 
0 

C through a tube of square cross section of 2 cm x 2 cm and 
12 m long. What would be the corresponding values if the pipe is of equilateral-triangular 
cross section of side 2 cm and length 5 m ? 
 

Water at 30 
0 

C with a mass flow rate of 2 kg/s enters a 2.5 cm-ID tube whose wall is 

maintained at a uniform temperature of 90 
0 

C. Calculate the length of the tube required 

to heat the water to 70 
0 

C. 

Water at 20 
0 

C with a mass flow rate of 5 kg/s enters a circular tube of 5 cm- ID and 10 

m long. If the tube surface is maintained at 80 
0 

C, determine the exit temperature of 
water. 

Air at 27 
0 

C with a flow rate of 0.01 kg/s enters a rectangular tube 0.6 cm x 

1.0 cm in cross section and 2 m long. The duct wall is subjected to a uniform heat flux of 

5 kW/m
2
. Determine the outlet temperature of air and the duct surface temperature at 

the exit assuming that the flow is hydro dynamically and thermally developed. 
 

Three kg/min of liquid sodium is heated from a bulk mean temperature of 400
 0 

C to 500 
0 

C, as it flows through a stainless steel tube of 5 cm-ID and 2 mm thick. The sodium is 

heated by a constant wall-heat flux, which maintains the tube-wall temperature at 30 
0 

C 
above the bulk mean temperature of sodium all along the length of the tube. Calculate the 
length of the tube required. Assume the following properties for liquid sodium. 

ρ = 846.7 kg/m
3 

; k = 68.34 W/(m-K) ; Cp = 1.274 kJ/(kg-K) ; Pr = 0.00468 
; 

ν =0.2937 x 10 
─ 6 

m
2 

/s. 
 

Consider hydro dynamically and thermally developed turbulent flow of water with a mass 
flow rate of M kg/s inside a circular tube of inside diameter ‘D’. The Dittus-Boelter 
equation can be used to determine the heat transfer coefficient. If the tube’s inside 
diameter is changed from D to D/2 while the mass flow remains same, determine the 
resulting change in the heat transfer coefficient. 

Mercury at a temperature of 100 
0 

C and with a velocity of 1 m/s enters a1.25 cm ID tube,  

which is maintained at a uniform temperature of 250 
0 

C. Determine the length of the tube required. 
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B. Hydrodynamic and thermal entry lengths: 

Determine the hydro dynamic entry lengths for flow at 60 
0 

C and at a rate of 

0.015 kg/s of water, ethylene glycol and engine oil through a circular tube of 

2.5 cm ID. 
 
Determine the hydro dynamic entry length, thermal entry length and the heat transfer 

coefficient for fully developed flow for engine oil at 60 
0 

C flowing at a rate of 0.01 kg/s 
through a square duct 1 cm x 1cm cross section and subjected to a uniform wall-
temperature. Assume the following physical properties for the engine oil: 

ρ = 864 kg/m
3 

; Cp = 2047 J/(kg-K) ; k = 0.14 W/(m-K) ; μ = 0.0725 
kg/(m-s) ; Pr = 1050 

 

C. Flow over a flat plate: 

Atmospheric air at 25 
0 

C flows over both the surfaces of a flat plate 1 m long with a 

velocity of 5 m/s. The plate is maintained at a uniform temperature of 75
0
C. 

(a) Determine the velocity boundary layer thickness, the surface shear stress and 
the heat flux at the trailing edge of the plate. 

(b) Determine the drag force on the plate and the total heat transfer from the 
plate to air. 

Air at 30 
0 

C flows with a velocity of 10 m/s along a flat plate 4 m long. The plate is 

maintained at a uniform temperature of 130 
0 

C. Assuming a critical Reynolds number of 2 

x 10 
5 

and width of plate to be 1 m determine (a) the heat flux at the trailing edge of the 
plate, (b) the heat transfer from the laminar portion of the plate, (c) the total heat 
transfer from the plate and (d) the heat transfer from the turbulent portion of the plate. 
 

A highly conducting thin wall 2 m long separates the hot and cold air streams flowing on 

both sides parallel to the plate surface. The hot stream at 250 
0 

C is flowing with a velocity 

of 50 m/s while the cold stream at 50 
0 

C is flowing with a velocity of 15 m/s. Calculate 
(a) the average heat transfer coefficients for both the air streams and the heat transfer 
between the two streams per metre width of the plate and (b) the local heat flux at the 
mid point of the plate. Assume that the wall is at the arithmetic mean of the temperature 
of the two streams for the purposes of calculating the physical properties of the two 

streams and the critical Reynolds number to be 2 x 10 
5
. 

A flat plate of width 1 metre is maintained at a uniform temperature of 150 
0
 C by using 

independently controlled heat generating rectangular modules of thickness 10 mm and 
length 50 mm. Each module is insulated from its neighbours, as well as its back side.(see 

Fig. P 6.14). Atmospheric air at 25 
0
 C flows over the plate at a velocity of 30 m/s. The 

thermo-physical properties of the module are : k = 5.2 W/(m-K) ; Cp = 320 kJ/(kg-K) ; ρ 

= 2300 kg / m
3
. 
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T∞ = 25 

0 
C 

u∞ = 30 m/s 

150 
0 

C 

 

10 mm 
 

700 mm 
 

50 mm 

 

 

Fig. P 6.14 : Schematic for problem 6.14 

 

 
 

(a) Find the required power generation in W/m
2 

in a module positioned at a 
distance of 700 mm from the leading edge of the plate. 

(b) Find the maximum temperature in the heat generating module. 

 

D. Flow across a cylinder: 

A circular pipe of 25 mm OD is placed in an air stream at 25 
0 

C and 1 atm pressure. The 
air moves in cross flow over the pipe at 15 /s, while the outer surface of the pipe is 

maintained at 115 
0  

C. What is the drag force exerted on the pipe per unit length of the 
pipe? What is the rate of heat transfer per unit length of the pipe? 

A long cylindrical heating element [k = 240 W/(m-K), ρ = 2700 kg/m
3 

and Cp 

= 900 kJ/(kg-K)] of diameter 10 mm is installed in a duct in which air moves 

in cross flow over the heating element at a temperature of 27 
0 

C with a 
velocity of 10 m/s. 

(c) Estimate the steady state surface temperature of the heater when electrical 
energy is being generated at a rate of 1000 W per metre length of the 

cylinder. 
(d) If the heater is activated from an initial temperature of 27 

0 
C, estimate the 

time required for the surface temperature to come to within 10 
0 

C of its 
steady state value. 

 Air at 40 
0 

C flows over a long 25 mm diameter cylinder with an embedded 
electrical heater. Measurements of the effect of the free stream velocity V on 
the power per unit length P, required to maintain the cylinder surface 

temperature at 300 
0 

C yielded the following results: 
 

V (m/s) : 1 2 4 8 12 

P (W/m) : 450 658 983 1507 1963 
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(a) Determine the convection coefficient for each of the above test conditions. 
Display your results graphically. 

(b) For the corresponding Reynolds number range, determine the suitable 

constants C and m for use with an empirical correlation of the form Num = C 

Red
m 

Pr
1/3

. 

A thermocouple is inserted into a hot air duct to measure the air temperature. 

The thermocouple (T1) is soldered to the tip of a steel thermocouple well of length 15 cm 
and inner and outer diameters of 5 mm and 10 mm respectively. A second thermocouple 
(T2) is used to measure the duct wall temperature (see Fig. P 6.18). 

 

 
 
 
 

 T2 

Air 
Steel well L 

at T∞, u∞ Di 

   Do  

 

 
 

 

Fig. P 6.18 : Schematic for problem 6.18 

 
Consider the conditions for which the air velocity in the duct u∞ = 3 m/s and the two 

thermocouples register temperatures of T1  = 450 K and T 2  = 375 K. 

Neglecting radiation determine the air temperature T∞. Assume that for steel 

k = 35 W/(m-K), and for air ρ = 0.774 kg / m
3
, μ = 251 x 10 

─  7  
N-s / m

2
, k 

= 0.0373 W/(m-K), and Pr = 0.686 
 

E. Flow across tube bundles: 

 Air at atmospheric pressure and 30 
0 

C flows over a bank of tubes consisting  
1 cm OD tubes, 10 rows deep. The velocity of air before it enters the bundle is 
1 m/s. 

(a) Determine the friction factor and the pressure drop and (b) the average heat 
transfer coefficient for the following cases: 

(i) Tubes are in equilateral-triangular arrangement with ST / D = SD / D = 

1.25 (ii) Tubes are in square arrangement with ST / D = SL / D = 1.25 

6.21. Hot flue gases at 375 
0 

C flow across a tube bank consisting of 1.25 cm OD 

tubes, which are maintained at a uniform surface temperature of 30 
0 

C by 
flowing water through the tubes. The tube bundle is 10 rows deep in the 
direction of flow and contains 40 tubes in each row. The tubes are 1 m long 
and have an in-line arrangement with SL / D = ST / D = 2. he velocity of the 
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flow gases entering the tube matrix is 7 m/s. Determine the average heat transfer 
coefficient and the total heat transfer rate. Assume that thermo- physical properties of the 
flow gases to be same as that of air at any temperature. 

 

 

A.Hydro-dynamically and Thermally developed flow through ducts 

6.1. Solution:- 
 

 

 
 

 

Water di 

At 20
0
C 

 

 
 

 

L 
 

Mass flow rate = m = 0.015 kg / s ; di = 0.025 m ; L = 100 m ; 

Properties of water at 20 
0
C are: ρ = 1000 kg / m

3
 ; ν = 1.006 x 10 

− 6 
m

2 
/ s; 

 

 

 

Reynolds Number = Red = uav dh / ν, where uav = average velocity of the fluid in 

the pipe and dh = hydraulic diameter for the pipe. 

Now m = ρ(πdi
2
/4)uav. 

 
 

uav = (4m) / ρ(πdi
2
) = 

4 x 0.015 
Or --------------------------- = 0.0305 m / s 

  1000 x π x 0.025
2

 

dh = di for a circular pipe. 
  0.0305 x 0.025 

Therefore Red = ----------------------- = 757.95 
 1.006 x 10 

− 6
 

Since Red < 2300, flow is laminar. For hydro-dynamically developed laminar flow 
we have friction factor as 

 

f = 64 / Red = 64 / 745.5 = 0.084. 
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Pressure drop for a total length L is given by  Δp = (1/2)f (L/dh) ρu   
2
 

av 
 

= ½ x 0.086 x (100 / 0.025) x 1000.52 x 0.0305
2 

= 156.28 N/m
2
. 

Pumping power = Δp (m/ρ) = 156.28 x 0.015 / 1000 = 2.34 x 10
− 3 

W 

The velocity of the fluid at any radius for fully developed laminar flow through 
a circular tube is given by 

 

 
u(r) = 2uav [1 – (r/R)

2
] 

Therefore umax = u(r)r=0 = 2 uav = 2 x 0.0305 = 0.061 m/s 

6.2. Solution 
 

 
Water 

 

At 40
0
C  

    

a 

 
L 

Mass flow rate = m = 0.5 kg / s ; a = b = 0.02 m ; L = 12 m ; 

Properties of water at 40 
0
C are: ρ = 994.59 kg / m

3 
; ν = 0.658 x 10 

− 6 
m

2 
/ s; 

0.5 
uav = m / (ρab) = --------------------- = 1.26 m / s. 

994.59 x 0.02
2
 

Hydraulic diameter = dh = 4ab / 2(a + b) = 2ab / (a + b) = 2a
2
/2a = a = 0.02 m. 

1.26 x 0.02 
Reynolds number Red = uav dh / ν = -------------------- = 38299 

0.658 x 10 
− 6

 
 

Since Red > 2300 flow is turbulent. 

 
For fully developed turbulent flow through a pipe of square cross section the 
friction factor f is given by (Moody chart, smooth pipe) 

 

f = 0.02175. 

Pressure drop = Δp = (1/2)f (L/dh) ρu 
2 

= 0.5 x 0.02175 x (12 / 0.02) x 994.59 x 
 

1.26
2 

= 10303 N / m
2

 

av 
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Pumping power = Δp x m / ρ = 10303 x 0.5 / 994.59 = 5.18 W 

For a tube of equilateral triangular cross section, dh = 4 {√3 x a
2
/4} / 3a, where a is 

the side of the triangle. 
 

 
Hence dh = a /√3 = 0.02 / √3 = 0.0115 m 

 
0.5 

Average velocity = uav = ----------------------------- = 2.9 m/s 

994.59 x (√3/4) x 0.02 
2
 

 
2.9 x 0.0115 

Reynolds number = Red = --------------------- = 50684 0.658 x 10 
− 6

 
  

 

Since Red > 2300, flow is turbulent. Hence from Moody chart we 

 
have f = 0.02 

Pressure drop = Δp = 0.5 x 994.59 x 2.9 
2 

x 0.02 x (5 / 0.0115) = 36367.4 N / 

m
2 

Pumping power = 36367.4 x 0.5 / 994.59 = 18.28 W. 
 

6.3. 

Solution: 
 

Tw 
 

 

 
Tfi 

 
 

di 

 

 
Tfo 

 

   L 

Data :- Tfi = 30 
0
C ; Tfo = 70 

0
C ; Tw = 90 

0
C ; m = 2 kg / s ; di = 2.5 cm = 0.025 m. 

To find L , assuming flow is hydrodynamically and thermally developed. 

For pipe of circular cross section hydraulic diameter = dh = di = 0.025. 

 
Bulk mean temperature of water = Tm = ½(Tfi + Tfo) = 0.5 x (30 + 70) = 50 

0 
C. 
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d w f. 

Properties of water at 50 
0 

C are : ρ = 990 kg/m
3 

; cp = 4181 J/kg-K 

; k =0.644 W / (m-K) ; μ = 0.547 x 10 
− 3 

kg / (m-s) ; Pr = 3.55 

Since nothing has been specified in the problem regarding the type of flow, it is assumed that 
the flow is hydro dynamically and thermally developed. 

 
4 x 2   

Average velocity = uav = m / (ρx πdi
2
/4) = ----------------------------  = 4.11 m/s. 

990 x π x 0.025 
2
 

990 x 4.11 x 0.025 

= 1.86 x 10 
5
 Reynolds number = Red = ρ uav dh / μ = -----------------------------  

0.547 x 10 − 3  

 

Since Red >2300, flow is turbulent. For fully developed turbulent flow the 

Nusselt number is given by 

Nud = 0.023 Re  
0.8 

Pr 
n 

with n = 0.4 for T > T 

Therefore Nud = 0.023 x (1.86 x 10 
5
)
0.8 

x (3.55) 

0.4 
= 628 

Hence the heat transfer coefficient, h = Nud k / dh 

= 628 x 0.644 / 0.025 = 16177 W/(m
2
-K) 

To find the length of the tube L, we write the energy balance equation for the 
entire length of the tube as 

 

Heat supplied to fluid from the tube wall = Increase of energy of the fluid 

Therefore h (πdiL) ΔTm = mcp(Tfo – Tfi) 

L = mcp(Tfo – Tfi) / hπdi ΔTm .................................... (1) 
 

Where ΔTm = logarithmic mean temperature difference = [ΔTi – ΔTo] / ln (ΔTi / ΔTo) 

ΔTi = Tw – Tfi = 90 – 30 = 60 
0 

C and ΔTo = Tw – Tfo = 90 – 70 = 20 
0 

C. 

Therefore ΔTm = [60 – 20] / ln(60 / 20) = 36.41 
0 

C. 
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L 

[2 x 4181x (70 – 30)] 

Hence  L = -------------------------------- = 7.23 m. 

16171 x π x 0.025 x 36.41 

6.4. Solution: 

   
Tw 

 

 
water 

 
Tfi 

 
di 

  
Tfo 

 

 
 

Data :- Tfi = 20 
0
C ; m = 5 kg / s ; di = 0.05 m ; L = 10 m ; Tw = 80 

0 
C. 

To find Tfo. 

Since Tfois not known we cannot determine the bulk fluid mean temperature to 

know the properties of the fluid. Hence this problem has to be solved by trial 

and error method as shown below. 

 
Trial No. 1:- Assume suitable value for Tfo noting that Tfo < Tw. 

Let Tfo = Tw = 60 
0 

C. Hence bulk mean temperature = Tm = ½(Tfi + Tfo) 

= 0.5 x (20 + 60) = 40 
0 

C. 

Properties of water at 40 
0 

C are : ρ = 994.59 kg/m
3 

; cp = 4178.4 J/kg-K ; Pr = 4.34 ; 

ν = 0.658 x 10 
− 6 

m
2 

/ s ; k = 0.628 W /(m-K). 
 

2 
4 x 5 

Average velocity of water = uav = 4m /( πdi 

 

= 2.56 m/s. 

ρ) = -------------------------- 

π x (0.05)
2 

x 994.59 

 
For a circular tube dh = di = 0.05 m.  

 2.56 x 0.05 
5
 

Reynolds number = Red = uavdh / ν = ------------------------ = 1.945 x 10 
 0.658 x 10 

− 6
 

 

Since Red > 2300, flow is turbulent. 
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d 

Assuming the flow to be thermally and hydrodynamically developed, 

Nud = 0.023 Re 
0.8 

Pr 
n 

with n = 0.4 (as the fluid is heated) 

= 0.023 x (1.945 x 10 
5
) 

0.8 
(4.34) 

0.4
 

= 704.5 
704.5 x 0.628 

Heat transfer coefficient = h = Nud k / dh = ---------------------- = 8848.5 W /(m
2 

– K). 

0.05 
 

Heat balance equation for the total length of the tube can be written as 

 

h πdiL ΔTm = mcp[Tfo – Tfi] 

or h πdiL [ΔTi – ΔTo] 

----------------------------ln[ΔTi/ΔTo] 
= mcp [ΔTi – ΔTo]

 

or ΔTo = ΔTi / exp {( h πdiL)/(mcp)} 

[80 – 20] 

= ---------------------------------------------------- 

exp{(8848.5 x π x 0.05 x 10) / (5 x 4178.4)} 

= 30.85 
0 

C. 

Therefore Tfo = 80 – 30.85 = 49.15 
0 

C. 

Trial 2:- Assume Tfo = 49 
0 

C. Therefore Tm  = (49+20)/2 = 34.5 
0 

C. 

Properties of water at 34.5 
0 

C are : ρ = 996.22 kg/m
3
; cp = 4179.3 J/kg-K; Pr = 

5.077; k = 0.6195 W/(m-K); ν = 0.7537 x 10 
− 6 

m
2
/s. 

 

4 x 5 2.556 x 0.05 
= 1.696 x 10 

5
 uav = ------------------ ------ = 2.556 m/s; Red = -------------------- 

π x 0.05 
2 

x 996.22 0.7537 x 10 
− 6

  

Therefore Nud = 0.023 x (1.696 x 10 
5
) 

0.8 
x (5.077) 

0.4
 

 
= 672.2 

 

Hence h = 672.2 x 0.6195 / 0.05 = 8328.6 W/(m
2 

– K) 
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[80 – 20] 

Therefore Tfo = 80 − --------------------------------------------------------- 
exp {(8328.6 x π x 0.05 x 10) / (5 x 4179.3)} 

= 48 
0 

C which is very close to the assumed value of Tfo. 

Hence the iteration can be stopped. 

Therefore Tfo = (49 + 48) / 2 = 48.5 
0 

C. 

 Solution: 

 

qw 

a 
 

 

Tfi 

 

Tfo 

 
 

b 
 

 
 

   L 

Data :- Fluid is air ; Tfi = 27 
0 

C ; m = 0.01 kg/s; a = 0.01 m; b = 0.006 m; L = 2  

m; qw = 5000 W / m
2
. 

find (i) Tfo ; (ii) Tw|z = L 

 

 
Energy balance equation for total length of the tube can be written as 

 

mcp(Tfo – Tfi) = qw 2(a+b)L 

Or Tfo = Tfi + [qw 2(a+b)L] / (mcp) 

Since Tfo is not known the property cp is read at Tfi. 

Therefore cp = 1005.7 J/kg-K. 
 2 x (0.01 + 0.006) x 2 x 5000 

Therefore Tfo = 27 + ------------------------------------- 
 0.01 x 1005.7 

= 58.8 
0 

C. 

Therefore Tm = ½(Tfi + Tfo) = 0.5 x (27 + 58.8) = 42.9 
0 

C. 
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Properties of air at 42.9 
0 

C are : ρ = 1.12 kg / m
3
; 1006.8 J/kg-K; ν = 17.30 x 10 

− 6 
m

2
/s; 

Pr = 0.7045 ; k = 0.02745 W/(m-K).(It should be noted that the variation of cp 

with temperature between Tfi and Tm is very negligible and hence this problem 

does not require trial and error solution) 

 
4ab 2ab 2 x 0.01 x 0.006 

Hydraulic diameter = dh = ------------ = ------------- = ------------------------- 

2[a + b] [a + b] [0.01 + 0.006] 

= 0.0075 m. 
  

 
0.01 

 

Average velocity = uav = m / [ρab] = ------------------------- = 149 m /s. 
1.12 x 0.01 x 0.006 

149 x 0.0075 
Reynolds number = Red = uavdh / ν = --------------------- = 64595 

 17.3 x 10 
− 6

 

Since Red >2300 flow is turbulent. Assuming that the flow is hydrodynamically 

and thermally developed we have 

 

 

 

 

 

 

Heat transfer coefficient = h = Nud k / dh = ---------------------- = 515.7 W/(m
2 

– K). 

0.0075 
 

At the exit of the tube we have qw = h [Tw|z=l – Tfo] 

Therefore Tw|z=l = qw / h + Tfo = 5000 / 515.7 + 58.8 

= 68.5 
0 

C 
 

 Solution: 

Data: Fluid is liquid sodium; m = 3/60 =0.05 kg/s; Tfi = 400 
0 

C; Tfo = 500 
0
C;di = 0.05 

m ΔTi = ΔTm = ΔTo= 30 
0 

C; ρ = 846.7 kg/m
3
; k = 68.34 W/(m-K); Pr = 0.00468 cp = 

1274 J/kg-K; ν = 0.2937 x 10 
− 6 

m
2
/s. 

 Nud = 0.023 Red 
0.8

Pr 
n
, with n = 0.4 as air is being 

heated.  

Therefore Nud = 0.023 x [64595] 
0.8 

x [0.7045] 
0.4

 

 
= 140.9 

 
140.9 x 0.02745 
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d 

4 x 0.05 

Average velocity = uav = 4m / ( ρπdi
2
) = ------------------------ = 0.03 m/s. 

846.7 x π x 0.05 
2
 

0.03 x 0.05 
 

Reynolds number = Red = uavdh / ν = ----------------------- = 5107 

0.2937 x 10 − 6 
 

Since Red > 2300, flow is turbulent.Assuming the flow to be hydrodynamically and 

thermally developed and since Pr << 1 (Liquid metal), the Nusselt number for constant 

wall heat flux condition is given by 

Nud = 4.82 + 0.0185 (Red Pr) 
0.827

 

= 4.82 + 0.0185 x [5107 x 0.00468] 
0.827

 

= 5.075 
 

 5.075 x 68.34 

= 6936.5 W/(m
2 

– K). Heat transfer coefficient = h = Nud k / dh = ------------------------  

 0.05   

 

Energy balance equation for the total length of the tube can be written as 
 

h (πdiL)ΔTm = mcp(Tfo – Tfi) 

mcp(Tfo – Tfi) 0.05 x 1274 x (500 – 400) 

or L = -------------------- = ----------------------------------- 

h (πdi)ΔTm 6936.5 x π x 0.05 x 30 

= 0.195 m. 

 

 Solution: 

 
The Dittus-Boetler correlation for hydrodynamically and thermally developed flow 
is given by 

Nud = hdh/k = 0.023 Re  
0.8 

Pr 
n.............................. 

(1) 
 

4M 

For a circular tube of diameter D, Red = uavD / ν = -------------- 
ρπDν 

 

Hence Eq.(1) can be written as h1D 

----- = 0.023 [4M/( ρπDν)] 
0.8 

Pr 
n
 

k 
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L 

 

Or h1  = 0.023k [4M/( ρπν)] 
0.8 

Pr 
n
D 

− 1.8 ................... 
(2) 

Similarly when the diameter of the tube is reduced to D/2, for the same mass flow rate 
the heat transfer coefficient is given by 

h2  = 0.023k [4M/( ρπν)] 
0.8 

Pr 
n
(D/2) 

− 1.8 .......... 
(3) 

Dividing Eq.(3) by Eq.(2) we get 
 

h2/ h1 = 2 
1.8 

= 3.5 or h2 = 3.5 h1. 

6.8.   

Solution:   

 
Tw 

 

 

 
Tfi 

 
di 

 

 
Tfo 

 

 

 

Data:- Fluid is mercury(Liquid metal) ; Tfi = 100
0
C; Tfo = 

200
0
C; di = dh = 0.0125m;uav = 1 m/s;Tw = 250

0
C; 

To find L 

 

 
 

Bulk mean temperature of mercury = Tm = ½(Tfi + Tfo) = 0.5 x (100 + 200) = 150 

0
C. Properties of mercury at 150 

0
C are:- ρ = 13230 kg/m

3
; cp = 137.3 J/kg-K; 

ν = 0.0865 x 10 
− 6 

m
2 

/ s; k = 9.65 W/(m-K) ; Pr = 0.0162 

1.0 x 0.0125 

Reynolds number = Red = uavdh / ν = ----------------------- = 1.445 x 10 
5
 

0.0865 x 10 
− 6

 

Therefore Peclet number = Pe = Red Pr = 1.445 x 10 
5 

x 0.0162 = 2341 
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Since Red > 2300, flow is turbulent. Therefore for liquid metal flow subjected to 

uniform wall-temperature Nusselt number is given by 
 

 
Nud = 5.0 + 0.025 Pe 

0.8
 

 
= 5.0 + 0.025 x 2341 

0.8 
= 17.4 

 15.97 x 11.425 

Heat transfer coefficient, h = Nudk/dh = ---------------------= 13433 W/(m
2
-K) 

 0.0125 

ΔTi = Tw – Tfi = 250 – 100 = 150 
0 

C ; ΔTo = Tw – Tfo = 250 – 200 = 50 
0 

C. 

Mean temperature difference = ΔTm = [ΔTi − ΔTo] / ln(ΔTi / ΔTo) 

= [150 – 50] / ln(150 / 50) = 91 
0 

C 

Mass flow rate of mercury = m = ρ(πdi
2
/4)uav = 13230 x (π x 0.0125 

2
/4) x 

1.0 = 1.624 kg/s 

Energy balance equation for the total length of the pipe is given by 
 

h πdiL ΔTm = mcp(Tfo – Tfi) 

mcp(Tfo – Tfi) 1.624 x 137.3 x (200 – 100) 

Therefore L = ------------------ = ------------------------------------ 

h πdi ΔTm 13433 x π x 0.0125 x 91 

= 0.465 

 

B Hydrodynamic and Thermal Entry Lengths 
 

 Solution: 

Data:- Tfi = 60 
0
C ; m = 0.015 kg / s; di = dh = 0.025 m. 

(i) Fluid is water. Hence at 60 
0 

C, ρ = 985.46 kg / m
3 

; ν = 0.478 x 10 
− 6 

m
2 

/ s. 

 

Average velocity = uav = 4m / ρπdi
2 

= 
4 x 0.015 

-------------------------- = 0.032 m/s. 
 985.46 x π x 0.025 

2
 

 
0.031 x 0.025 

Reynolds number = Red = uavdh / ν = --------------------- = 1674 
 0.478 x 10 

− 6
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Since Red < 2300, flow is laminar. Hence the hydrodynamic entrance length Lh for a 

circular pipe is given by 

 
 Lh / dh 

 -------- = 0.056 

 Red 

Therefore Lh = 0.056 Red dh = 0.056 x 1674 x 0.025 
 

= 2.34 m 

(ii) Fluid is ethylene glycol: ρ = 1087.66 kg/m
3 

; ν = 4.75 x 10 
−6 

m
2
/s. 

 
 

.0281 m/s. 

 

 

 

4.75 x 10 
− 6

 

Since Red < 2300, flow is laminar. 

Therefore Lh = 0.056 Red dh = 0.056 x 147.9 x 0.025 

 
= 0.21 m. 

(iii) Fluid is engine oil; ρ = 864.04 kg/m
3 

; ν = 0.839 x 10 
− 4 

m
2
/s. 

 
 4 x 0.015  

Average velocity = uav = 4m / ρπdi
2 

= -------------------------- = 0.0354 m/s. 

 864.04 x π x 0.025 
2
  

 
0.0354 x 0.025 

 

Reynolds number = Red = ---------------------------- = 10.55  

 0.839 x 10 
− 4

  

Therefore Lh = 0.056 Red dh = 0.056 x 10.55 x 0.025 = 0.013 m. 

 Solution: Data: Fluid is engine oil ; Tfi = 60 
0
C; m = 0.01 kg/s; 

square duct with a = 0.01m ; ρ = 864 kg/m 
3
; cp = 2047 J/kg-K; k = 0.14 W/(m- 

K); μ = 0.0725 kg/(m-s); Pr = 1050. 
 

To find (i) Lh ;(ii)Lt ; (iii) h for fully developed flow. 

(i) Hydraulic diameter = dh = 4a 
2 

/(4a) = a = 0.01 m. 

Average velocity = uav = 4m / ρπdi
2 

= 
4 x 0.015 

-------------------------- = 0 

 1087.66 x π x 0.025 
2
 

0.0281 x 0.025 

Reynolds number = Red = ---------------------------- = 147.9 
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(iii)For fully developed laminar flow through a square tube Nusselt number is given by 

Nu T = hdh / k = 2.976 

Hence h = 2.976 k / dh = 2.976 x 0.14 / 0.01 

= 41.66 W/(m
2
-K) 

Consider the flow of water at a rate of 0.01 kg/s through an equilateral triangular duct of 

sides 2 cm and whose walls are kept at a uniform temperature of 100 
0
C. Assuming the flow 

to be hydrodynamically and thermally developed, determine the length of the tube required to 

heat the water from 20
0
C to 70 

0
C. 

Solution: 

Tw = 100 
0
C 

 

Water   

Tfo  

Tfi = 20 
0
C 

m = 0.01 kg/s  

  

L = ? 

 

 
 

 

 
a = 0.02 m 

 0.01  

Average velocity = uav = m / (ρa
2
) = 

 

--------------------- 
864x(0.01)2 

= 0.1157 m/s. 

864 x 0.1157 x 0.01 

Reynolds number = Red = (ρuavdh) / μ = ------------------------- = 13.8 

 0.0725  

Since Red < 2300, flow is laminar. Hence (Lh / dh) 

---------- = 0.09 for a tube of square section. 

 Red  

Therefore Lh = 0.09 Red dh = 0.09 x 13.8 x 0.01 = 0.0124 m. 

(ii) For constant wall temperature condition we have 

(Lt / dh) 
 = 0.041  

 Pe  

Hence Lt = 0.041 Pe dh = 0.041 x (13.8 x 1050) x 0.01 

 
= 5.94 m 
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Bulk mean temperature of water = ½(Tw + T∞) = 0.5x (20 + 70) = 45 
0
C. 

Properties of water at bulk mean temperature are: ρ = 992.3075 kg/m
3
; Pr = 4.01 

ν = 0.598 x 10 
− 6 

m
2
/s; k = 0.63375 W/(m-K); cp = 4179.9J/kg-K 

For an equilateral triangular tube, area of flow = A = (√3 / 4)a 
2 

= (√3 / 4) x 0.02 
2
 

 

= 1.732 x 10 
− 4 

m 
2

 

 
4 [(√3 / 4)a 

2
] a 0.02 

Hydraulic diameter = dh = --------------------- = ------------- = ------------ = 0.01155 m 
 3a √3 √3 
 m 0.01 

Average velocity of water = uav = ----------------- = ------------------------------- 
 

ρA 992.3075 x 1.732 x 10 
− 4

 

 
=0.0582 m/s 

  

0.0582 x 0.01155 
Reynolds number = Red = uavdh / ν = --------------------------  = 1124 

0.598 x 10 
− 6

 

Since Red <2300 flow is laminar.For thermally developed laminar flow with constant 

wall-temperature the Nusselt number is given by 
 

Nud = hav dh / k = 2.47 

2.47 x 0.63375 

Therefore hav = ------------------ = 135.53 W/(m
2
-K) 

0.01155 
 

Mean temperature difference between the surface and the bulk fluid is given by 

 

 
ΔTm = [ΔTi – ΔTo] / ln[ΔTi / ΔTo] 

Now ΔTi = Tw – Tfi = 100 – 20 = 80 
0
C; ΔTo = Tw – Tfo = 100 – 70 = 30 

Hence ΔTm = [80 – 30] / ln{80/30} = 50.1 
0
C. Rate of heat transfer to water 

= Q = mcp(Tfo – Tfi) = 0.01 x 4179.9 x (70 – 20) 

= 2090 W 
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Tw 

x 

L 

But Q = havPL ΔTm, where P is the perimeter of the duct = 3a 

Hence Q = hav 3aL ΔTm 

Q 2090 

Or L = -------------------- = ------------------------------ 

hav 3a ΔTm 135.53 x 3 x 0.02 x 50.1 

= 5.13 m 
 

C Flow over a flat plate: 
 

 Solution: 

 

 

u∞, T∞ 

Data:- Fluid is air; u∞ = 5 m/s; T∞ = 25 
0 

C; L = 1 m; Tw = 75 
0 

C. 

Mean temperature = ½(Tw + T∞) = 0.5 x (75 + 25) = 50 
0 

C. 

Properties of air at 50 
0 

C are : ρ = 1.093 kg/m
3
; ν = 18.02 x 10 

− 6 
m 

2 
/s; Pr =0.703 

k = 0.028 W/(m-K). 

a) 1) Reynolds number at the trailing edge = ReL = (u∞L) / ν = 5 x 1 / (18.02 x 10 
− 6

) 

= 2.775 x 10 
5
 

Assuming the critical Reynolds number to be 5 x 10 
5
, the flow is laminar at the 

trailing edge. Therefore from heat transfer data hand book we have 

δ(x)|x=L = 5 L ReL
− 0.5

 

= 5x 1 x (2.775 x 10 
5
)
− 0.5

 

= 0.0088 m. 
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2) Local drag coefficient at the trailing edge is given by 
 

 − 0.5 5 − 0.5 
Cx|x=L = 0.664 ReL = 0.664 x (2.775 x 10 ) 

 
= 1.26 x 10 

− 3
 

Therefore ηw(x)|x= L = ½(ρu∞
2
) Cx|x=L = ½ x 1.095 x 5 

2 
x 1.26 x 10 

− 3
 

 
Or ηw(x)|x= L = 0.0173 N/m 

2
. 

3) Local Nusselt number at the trailing edge is given by 

Nux|x=L = 0.332 ReL 
0.5 

Pr 
0.333

 

= 0.332 x (2.775 x 10 
5
) 

0.5 
x (0.703) 

0.333
 

= 155.5 

 

Hence local heat transfer coefficient at the trailing edge is given by 
 

hx|x=L = (Nux|x=L k) / L = 155.5 x 0.028 / 1 

= 4.354 W/(m
2
-K) 

Heat flux at the trailing edge = qw|x=L = [hx|x=L] (Tw – T∞) 

= 4.354 x (75 – 25) = 217.7 W/(m
2 

– K) 

(4) Drag force: Fd = η wavg .A= 2 x ηw(x)|x= L x 1= 2x 0.0173= 0.0346 N 

Therefore average heat transfer coefficient is havg = 2 hx|x=L = 4.354 x 2 

=8.708 W/(m
2 

– K) and 

Average heat flus = qw = [havg] (Tw – T∞) = 8.708 x 50 = 435.4 W/(m
2 

– K) 
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T∞ = 30 
0 

C Tw = 130 
0 

C 

x 
W=1 m 

L = 4 m 

 Solution:- 

 

 

u∞ = 10 m/s (air) 
 

To find :- (a) qw(x)|x=L; (b) Qlaminar; (c) Qturbulent assuming Recr = 2 x 10 

5 
Mean film temperature = ½(Tw + T∞) = 0.5 x (130 + 30) = 80 

0
C. 

Properties of air at mean film temperature are: ν =21.48 x 10 
− 6 

m
2
/s; Pr = 

0.692 k = 0.03047 W /(m-K). 
 

 
 10 x 4 

ReL = u∞L / ν = -------------------------- = 1.86 x 10 
− 6

 

 21.48 x 10 
− 6

 

 

Since ReL > Recr flow is turbulent at the trailing edge. 

 

For turbulent flow of air over a flat plate the local Nusselt number is given by 

Nux = 0.0296 Rex 
0.8 

Pr 
1/3

. 
 

Hence Nux|x=L = 0.0296 x [1.86 x 10 
6
] 

0.8 
(0.692) 

 
1/3 

 
= 2721 

 

 
2721 x 0.03047 

 

Therefore [hx|x=L] L / k = 2803 or hx|x=L = ---------------------- = 21 W /(m
2
-K)  

4 
 

Heat flux at the trailing edge = qw(x)|x=L = [hx|x=L] (Tw – T∞) 



199 
 

 

= 21 x (130 – 30) = 2100 W / m
2
. 

(b) Recr = u∞ xcr / ν. 
 

 
Recr ν 2 x 10 

5 
x 20.76 x 10 

− 6
 

Or xcr = --------- 
 

= ------------------------------- = 0.415 m 

 u∞  10 

Hence flow is laminar up to xcr. 
  

Average Nusselt number for the laminar region is given by 

 
[Nuav] laminar = 0.664 Recr 0.5 Pr 1/3 

 

= 0.664 x [2 x 10 
5
] 

0.5
(0.697) 

1/3 
= 263.3 

Hence average heat transfer coefficient for the laminar region is 

263.3 x 0.03003 

[hav]laminar = [Nuav] laminar k / xcr = ----------------------- 
0.415 

= 19.00 W /(m
2 

–K) 

Heat transfer rate from laminar portion = Qlaminar =  [hav]laminar [x cr W] (Tw – T∞) 

= 19.0 x [ 0.415 x 1] x (130 – 30) 

 

= 789.0 W 

(c)Average Nusselt number for the entire length of the plate is given 

by Nuav = Pr 
1/3 

[ 0.037ReL
0.8 

– A] 

 

Where A = 0.037Recr 
0.8 

– 0.664Recr
0.5

. 

For this problem A = 0.037 x [2 x 10 
5
] 

0.8 
– 0.664 x [2 x 10 

5
] 

0.5 
= 356 

Therefore Nuav = (0.697) 
1/3 

[0.037 x {1.93 x 10 
6
} 

0.8 
– 356] 

 = 3180 

 
3180 x 0.03047 

Hence hav = Nuav k / L = ----------------------- 

 4 

 
= 24.2 W/(m

2 
– K) 
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Qtotal = hav (LW)(Tw – T∞) = 24.2 x (4 x 1) x (130 – 30) 

= 9680 W 

 
Qturbulent = Qtotal – Qlaminar = 9680 – 789 

 

= 8891 W 
 

 Solution: 
 

 

 

 

 

Hot air at T∞1 =250 
0 

C, u∞1 = 50 m/s    
Tw = ½( T∞1+ T∞2) 

  = 150 
0 

C 

 

 

L = 2 m 

Cold air at T∞2 = 50 
0
C, u∞2 = 15 m / s 

Additional data:- Recr = 2 x 10 
5
 

To find (i) hav for the hot surface ; (ii) hav for the cold surface ; (iii) qw(x)|x=L/2 

 

(i) Mean film temperature for the hot fluid = ½(Tw + T∞1) = 0.5 x (150 + 250) = 200 
0
C. 

Properties of air at 200 
0
C are: ν = 34.85 x 10 

− 6 
m

2 
/ s;k = 0.03931 W/(m-K);Pr = 

0.68 Reynolds number at the trailing edge of the plate = ReL = u∞1L / ν 

 
 50 x 2 

Or ReL = ------------------- 

 34.85 x 10 
− 6

 

 
= 2.865 x 10 

6
 

Since ReL > Recr, flow is partly laminar and partly turbulent. Therefore the average 
Nusselt number is given by 

 Nuav = Pr 
1/3

[0.037 Re 
0.8 

– A] 
L 

Where A = 0.037 Recr
0.8 

– 0.664 Recr 
0.5

. 

Or A = 0.037 x [2 x 10 
5
]
0.8 

– 0.664 x [2 x 10 
5
] 

0.5 
= 347.25 
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Hence Nuav = (0.68) 
1/3 

[0.037 x (3.028 x 10 
6
) 

0.8 
– 347.25] 

= 4465 

 

4465 x 0.0391 

Hence for the hot surface [hav] hot = Nuav k / L = ---------------------- 

2 
 

= 987.76 W/(m
2
-K) 

(ii) Mean film temperature for the cold surface = ½(150 + 50) = 100 
0
C. 

Properties of air at the mean film temperature are: ν = 23.33 x 10 
− 6 

m
2
/s; Pr = 0.693 

k = 0.03184 W/(m-K)    

15 x 2 
6

 

 ReL = u∞2L / ν = -------------------------- = 1.286 x 10 

23.33 x 10 
− 6

 

Therefore Nuav = (0.693) 
1/3

[0.037 x (1.286 x 10 
6
) 

0.8 
– 347] 

 = 2219   

 
2219 x 0.03184  

= 35.33 W/(m
2
-K). Hence for the cold surface [hav]cold = --------------------  

  2  

(iii) The rate of heat transfer from the hot air stream to cold air stream is given by 
 

Q = (T∞1 - T∞2) / [Rc1 + R + Rc2] 

Where Rc1 = Thermal resistance offered by hot surface for convection, 

Rc2 = Thermal resistance offered by cold surface for convection, 

and R = Thermal resistance offered by the plate for conduction. 
 

1 

Now Rc1 = 1 / [hav]hot A = ------------------- = 0.00554 m
2 

– K / W. 

90.3 x (2 x 1) 
1 

Similarly Rc2 = 1 / [hav]cold A = -------------------- = 0.01415 m
2 

– K / W. 

35.33 x (2 x 1) 
 

R = L / Ak . Since k is not given it is assumed that k is very large i.e R = 0. 
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Therefore Q = [250 – 50] / [ 0.00554 + 0.01415] 

 

= 10,157 W. 

 

(iv) At mid point of the plate x = L / 2. 

Therefore for the hot fluid Re|x=L/2 = ½ ReL = 0.5 x 2.865 x 10 
6
 

= 1.4325 x 10 
6   

which is > Recr. 

Therefore flow is turbulent at mid point of the plate. 

Hence [Nu|x=L/2]hot = 0.037 [Re|x=L/2] 
0.8 

Pr 
1/3

 

= 0.037 x [1.5014 x 10 
6
] 

0.8 
x (0.6815) 

1/3
 

= 2739 

Hence [hx|x=L/2]hot = 2739 x 0.03931 / 1 = 107.7 W/(m
2
-K). 

Similarly [Nu|x=L/2]cold = 0.037 x [0.5 x 1.286 x 10 
6
] 

0.8 
x (0.693) 

1/3
 

= 1451 

 

Hence [hx|x=L/2]cold = 1451 x 0.03184 / 1 = 46.2 

Heat flux at the mid point of the plate is given by 

qw(x)|x=L/2 = [hx|x=L/2]hot [T∞1 – Tw] = [hx|x=L/2]cold [Tw - T∞2] 

CT∞1 + T∞2 [hx|x=L/2]hot 107.7 

Therefore  Tw = ----------------------- ; C = ----------------  = ---------- = 2.33 
1 + C [hx|x=L/2]cold 46.2 

 

(2.33 x 250) + 50 

Hence Tw = -------------------------- = 187.41 
0
C 

1 + 2.375 

Therefore qw(x)|x=L/2 = 107.7 x [250 –187.41] = 6743 W/m
2

 

Also check for qw(x)|x=L/2 ; qw(x)|x=L/2 = 46.2 x (187.41 – 50) = 6348.34 W/m
2
 

 
 Solution: 
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Air with u∞ = 30 m/s,T∞ = 25 0C    
 

 
            

 

Tw = 150 0 C 

   10 mm 

 

X1 = 700 mm Insulated 

 

X2 = 750 mm 

Properties of the module: km = 5.2 W/(m-K); cpm = 320 kJ/kg-K; ρm = 2300 kg/m
3
. 

Mean film temperature = ½(Tw + T∞) = 0.5 x(25 + 150) = 87.5 
0
C. 

Properties of air at 87.5 
0
C are : ν = 21.79 x 10 

− 6 
m

2
/s; k = 0.03075 W/(m-K); Pr = 

0.695. Assume Recr = 5 x 10 
5
 

 
Reynolds number at x1 = Rex1 = u∞x1/ ν = 30 x 0.7 / (21.79 x 10 

− 6
) = 9.637 x 10 

5
. 

Similarly Rex2 = u∞x2 / ν = 30 x 0.75 / (21.79 x 10 
− 6

) = 10.325 x 10 
5
 

Since Rex1 > Recr, the flow is turbulent at x1 and the flow will be turbulent over the module 

under consideration. Therefore the average heat transfer coefficient for the 

module can be written as x2 

[hav]m = {1 / (x2 – x1)} ∫ hxdx 

x1 

= {1 / (x2 – x1)} ∫(Nux k/x)dx 

x2 

= {1 / (x2 – x1)} ∫{k[ 0.037 (Rex)
0.8 

– 871]Pr 
1/3

 

/x}dx x1 
 

k Pr 
1/3  

x2 

= ---------------- { ∫ [0.037 (u∞/ν)
0.8 

x 
− 0.2 

– 871/x]dx } 

(x2 – x1) x1 

k Pr 
1/3 

= ----------------- {0.037 (u∞/ν)
0.8 

∫ x 
− 0.2 

dx - 871∫ (dx /x) } 

 
k Pr 1/3 

2 – x1) 

= ----
(
-
x  -------- 

{ 0.04625[Rex2
0.8 

– Rex1
0.8

] – 871 ln (x2 / x1)} (x2 – x1) 
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0.03075 x (0.695)
1/3

{0.04625[(10.327 x10
5
)
0.8 

–(9.325 X 10
5
)
0.8

] – 871 ln (0.75/0.7)} = 

------------------------------------------------------------------------------------------------------- 

(0.75 – 0.7) 
 

= 95.16 W / (m
2
-K) 

For the module, power generation = qw = [hav]m {Tw - T∞} = 95.16 x (150 – 25) 

= 11895 W/m
2  

= 11.895 kW/ m
2

 

(b) Since the bottom surface of the module is insulated, all the heat generated in the 

module is transferred to air from the top surface of the module. Hence if q‟‟‟ is the heat 
generated per unit volume then 

 
thickness of the module. 

q‟‟‟ (x2 – x1)δW = qw(x2 – x1)W, where δ is the 

 

Therefore q‟‟‟ = qw / δ = 11895 / 0.001 

= 11.895 x 10 
6 

W/m
3
. 

For the module the governing conduction equation is 

d
2
T/dy

2 
+ q‟‟‟ / k = 0 ....................................... (a) 

where y is the coordinate measured in the direction of the thickness of the module. 

 

The boundary conditions are (i) at y = 0, the surface is insulated i.e. dT/dy = 0 

 
and at y = δ, T = Tw. The solution of Eq.(a) subject to the boundary conditions is 
given by 

T(y) + q‟‟‟y
2 

/ 2k = Tw + q‟‟‟δ
2 

/ 2k 

Since the bottom surface is insulated, the maximum temperature of the module will be 
at the bottom surface (y = 0) and is therefore given by 

Tmax = Tw + q‟‟‟δ
2 

/ 2k 

11.895 x 10
6 

x (0.001)
2
 

= 150 + ----------------------------- 

2 x 5.2 
 

 

 
D) Flow across a cylinder 

= 151.1 
0
C 
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 Solution:  
u∞ = 15 m/s; T∞ = 25 

0 
C 

 

 
Tw = 115

0
C 

 

 

 

 

 

 
 

L d = 0.025 m 

Mean film temperature = ½ (Tw + T∞) = 0.5 x (115 + 25) = 70 
0
C. 

Properties of air at 70 
0
C are: ρ = 1.0231 kg/m

3
; ν = 20.05 x 10 

−6
m

2
/s; Pr = 

0.699; k = 0.0295 W/(m-K); To find (i) Drag force FD ; (ii) Q 

 

(i) Reynolds number = Red = u∞d / ν = 15 x 0.025 / 20.05 x 10 
−6

 

= 18703 
 

From the chart the drag coefficient ,CD = 1.2 

Therefore drag force = FD = ½(ρu 
2) 

LD C = 0.5 x 1.0231 x 15
2 

x 1 x 0.025 x 1.2 
 

= 3.453 N 

 
(ii) From Heat transfer data hand book for gases the average Nusselt number is given by 

 

 

= (0.4 x 18703 
0.5 

+ 0.06 x 18703 
2/3

) x (0.699) 
0.4

 

= 84.04 
  84.04 x 0.0295 

Therefore hav = Nuav k/d = -------------------- = 99.17 W/(m
2
-K) 

  0.025 
 

Heat transfer = Q = havπdL(Tw – T∞) = 99.17 x π x 0.025 x 1 x (115 – 25) = 701 W 

∞ D 

( μw = μ∞ can be considered for air ) 

Nuav = havD/k = (0.4Red
0.5 

+ 0.06 Red 2/3) Pr0.4 

 



206 
 

Qw 

6.16 Solution: 

 

u∞ = 10 m/s; T∞ = 27 
0
C 

 

 

 

 

 

 

 

 
 

L D = 0.01 m 

Given:- Qw = 1000 W/m; ks = 240 W/(m-K); ρs = 2700 kg/m
3
; Cps = 900 kJ/kg- 

K To find (i) Tw under steady state condition 

(ii) time „t‟ required for the surface to reach a temperature of (Tw – 10) 
0
C 

 
Since Tw is not known it is not possible to read the properties at the mean film temperature. 

Hence the problem has to be solved by trail and error procedure. 

 
Trial 1:- Calculations are started using the properties of air at T∞. 

Properties of air at 27
0
C are: 

ρ = 1.1774 kg/m
3
; cp = 1.0057 kJ/kg-K; ν = 15.68 x 10 

− 6 
m

2
/s; k = 0.02624 W/(m-K); 

 
Pr = 0.708  

10 x 0.01  

Red = u∞D / ν = ---------------------- = 6377.5 

15.68 x 10 
− 6

  

( μw = μ∞ can be considered for air ) 

Therefore Nuav = havD/k = (0.4Red
0.5 

+ 0.06 Red 
2/3

) Pr
0.4

 

= (0.4 x 6377.5
0.5 

+ 0.06 x 6377.5 
2/3

) x (0.708) 
0.4 

= 45.79 
 

 45.79 x 0.02624 
= 120.15 W/(m

2
- K) Therefore hav = Nuav k/D = ------------------------- 

 0.01  

Now Qw = hav πDL (Tw – T∞) 
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Or Tw = T∞ + Qw /hav πDL = 27 + 1000 / (120.15 x π x 0.01 x 1) = 291.93
0 

C 

Trial 2:- Assume Tw = 291.93 
0
C .Mean film temperature = ½(291.93 +27) = 159.5 

0
C. 

Properties of air at 159.5
0
C are: ν = 30.09 x 10 

− 6 
m

2
/s; k = 0.03640 W/(m- 

K); Pr = 0.682. 

10 x 0.01 
Red = u∞D / ν = ----------------------- = 3323.4 

30.09 x 10 
− 6

 

Nuav = (0.4 x 3323.4 
0.5 

+ 0.06 x 3323.4 
2/3

) x (0.682) 
0.4 

= 31.25 

Hence hav = 31.25 x 0.03640 / 0.01 = 113.75 W/(m
2
-K) 

Therefore Tw = 27 + 1000 / (113.75 x π x 0.01 x 1) = 306.8 
0
C. Since this value of Tw is 

considerably different from the value got in the first trial, one more iteration is required. 

Trial 3:- Assume Tw = 303 
0 

C. Mean film temperature = 0.5 (303 + 27) = 165 
0 

C. 

Properties of air at 165 
0 

C are: ν = 30.88 x 10 
− 6 

m
2
/s; k = 0.0369 W/(m-K); 

 

Pr = 0.682  

10 x 0.01 
Red = u∞D / ν = ---------------------- = 3238.34 

30.88x 10 
− 6 

Nuav = (0.4 x 3238.34 
0.5 

+ 0.06 x 3238.34 
2/3

) x (0.682) 
0.4 

= 

30.8 Hence hav = 30.8 x 0.0369 / 0.01 = 113.65W/(m
2
-K) 

Therefore Tw = 27 + 1000 / (113.65 x π x 0.01 x 1) = 307 
0
C which is very close to the 

assumed value of 303 
0 

C and hence the iteration can be stopped. 

Therefore Tw = 307 
0
C. 
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E. Flow across tube bundles 
 

 

 Solution: Case (i) Square Arrangement 
 

 

Row 1 Row 2 Row 3 

u∞,T∞ 

∞ 
 

 
 

ST 
D
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SL 

Data:- T∞ = 30 
0 

C; D = 0.01 m; N = 10; u∞ = 1 m/s; ST / D = SL / D = 1.25 

To find (i) friction factor,f; (ii) pressure drop Δp ; (iii) hav 

 

 
Since the surface temperature of the tubes is not known properties of air are evaluated at 

T∞. Hence properties of air at 30 
0
C are: 

ρ = 1.1774 kg/m
3
; μ = 1.983 x 10 

− 5 
kg/(m-s); cp = 1005.7 J/kg-K; k = 0.02624 W/(m- 

K); Pr = 0.708 

 

(i) For square arrangement the maximum velocity is given by 

 
  ST / D 1.25 

 Umax = u∞ ------------------ = 1 x ---------------- 

  [ST / D – 1] [ 1.25 – 1] 

= 5 m/s. 

Gmax = ρUmax = 1.1774 x 5 = 5.887 kg/(m
2
-s) 

0.01 x 5.887 
Reynolds number = Re = DGmax / μ = ------------------------ = 2969 

1.983 x 10 
− 5

 

From the graph friction factor f = 5.5 and Z = 1 for square arrangement as ST = SL. 

 

N (Gmax) 
2
 10 x (5.887) 

2
 

Now Δp = f ----------------  

Z = 5.5 x ------------------------- x 1.0 
 ρ  1.1774 

 

= 1619 N / m
2

 

(ii) For N ≥ 20 the average Nusselt number is given by 

 

 
Nuav  = c2Rem  Pr0.36 (Pr/Prw)n 

 
Here c2 = 0.27 ; m = 0.63 ; n = 0. 

 

Therefore Nuav  = 0.27 x (2969) 0.63 (0.708)0.36 = 36.74 
 

Since N <20, the above value of Nuav has to be multiplied by a correction factor. 
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u∞,T∞ 

ST 

SD 

 

Hence [ Nuav] N=10 = c3[Nuav]N≥ 20 

For Re = 2969 and N = 10 from the graph c3 = 0.98 

Therefore [ Nuav] N=10 = 0.98 x 36.74 = 36 

Therefore hav = 36 x 0.02624 / 0.01 = 94.5 W/(m
2
-K) 

 

Case (ii); Equilateral Triangular Arrangement: 
 
 

 

Given: ST / D = SD / D = 1.25 

 

 

 

 

ST / D 

Maximum velocity   Umax = u∞ ------------------------ = 5 m/s as calculated above 

[ST / D – 1] 
 

 

 
 

 ST / D  1.25 

Or Umax = (½ )u∞ ------------------ = 0.5 x 1 x ------------- = 2.5 m/s 

 [SD / D – 1]  (1.25 – 1) 

We have to choose the higher of the two maximum velocities to calculate the 

Reynolds number.Hence Umax and Reynolds number will be same as the above case. 

From chart for staggered tube arrangement, f = 7.0 and Z = 1 
 

10 x 5.887 2 

Therefore Δp = 7 x ------------------- 1 = 2061 N/m2 

1.1774 
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From data hand book the average Nusselt number is given by 
 

[Nuav]N≥20 = c2 Re m Pr 0.36(Pr /Prw) n 

 
For staggered arrangement c2 = 0.35 x (ST / SL) 0.2 

 

Now SL2 = SD2 − (ST/2)2 or SL / D = [(SD/D)2 – (ST/2D)2] ½ 

 
= (√3/2)(ST/D) 

 

Or ST/SL = 2 / √3 = 1.155 

 

Hence c2 = 0.35 x [1.155]0.2 = 0.36 ; 
 

For staggered arrangement m = 0.6 ; for air n = 0. 
 

Hence [Nuav]N≥20 = 0.36 x( 2969)0.6 (0.708)0.36 

 
= 38.54 

 
[ Nuav] N=10 = c3[Nuav]N≥ 20 

 

From the graph c3 = 0.98. Hence [ Nuav] N=10 = 0.98 x 38.54 = 37.8 

 
Therefore hav = 37.8 x 0.02624 / 0.01 = 99.2 W/(m2-K). 

 

 

 

 Solution: 
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Hot gases at 

u∞,T∞ 

ST    

D 

SL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data:- T∞ = 375 
0
C; u∞ = 7 m/s; Tw = 30 

0
C; Number of rows = N = 10 ; 

D = 0.0125 m; number of tubes in each row = m = 40; L = 1 m ; 

In-line arrangement; SL/D = ST/D = 2. 

To find:- (i) hav ; (ii) Q 

 

 

Mean film temperature = 0.5 x (375 + 30) = 202.5 
0
C. 

Properties of air at 202.5 
0
C are: ρ = 0.9403 kg/m

3
; cp = 1.0115 kJ/(kg-K); 

μ = 2.1805 x 10 
− 5 

m
2
/s; k = 0.03184 W/(m-K); Pr = 0.693 

For inline arrangement Umax = u∞ (ST/D) / [(ST/D) − 1] = 7 x 2 /(2 – 1) = 14 

m/s. Mass velocity = Gmax = ρ Umax = 0.9403 x 14 = 13.164 kg/(m
2
-s) 

 0.0125 x 13.164 
Reynolds number = Re = DGmax / μ = ---------------------- = 7546 

 2.1805 x 10 
− 5

 

The average Nusselt number for N ≥ 20 is given by [Nuav]N≥20 = c2 Re
m

Pr
0.36 

For in-line arrangement from data hand book, c2 = 0.27 and m = 0.63 

Therefore [Nuav]N≥20 = 0.27 x (7546) 
0.63 

x (0.693)
0.36 

= 170 

[ Nuav] N=10 = c3[Nuav]N≥ 20 with c3 = 0.96 

Hence [ Nuav] N=10 = 0.96 x 170 = 163.2 

163.2 x 0.03184 

Average heat transfer coefficient = hav = [ Nuav] N=10 k / D = ---------------------- 

0.0125 
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= 416 W/(m2-K). 

 
Energy balance between the tubes surfaces and hot gases can be written as 

Heat transfer from hot gases to the tube surfaces = Q = (πDLNm)hav(T∞ - Tw) 

Or Q = π x 0.0125 x 1 x 10 x 40 x 416 x (375 – 30) = 2254 x103 W = 2254 kW 
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Free Convective Heat Transfer 

A. Free convection from/to plane surfaces: 
 

 A vertical plate 30 cm high and 1 m wide and maintained at a uniform 

temperature of 120 
0 

C is exposed to quiescent air at 30 
0 

C.Calculate the 
average heat transfer coefficient and the total heat transfer rate from the 
plate to air. 

 
 An electrically heated vertical plate of size 25 cm x 25 cm is insulated on one 

side and dissipates heat from the other surface at a constant rate of 600 

W/m
2 

by free convection into quiescent atmospheric air at 30 
0 

C. Determine 
the surface temperature of the plate. 

 
 Determine the heat transfer by free convection from a plate 30 cm x 30 cm 

whose surfaces are maintained at 100 
0 

C and exposed to quiescent air at 20
 

0 
C for the following conditions: (a) the plate is vertical. (b) Plate is horizontal 

 A circular plate of 25 cm diameter with both surfaces maintained at a uniform 

temperature of 100 
0 

C is suspended in horizontal position in atmospheric air 

at 20 
0 

C. Determine the heat transfer from the plate. 

 Consider an electrically heated plate 25 cm x 25 cm in which one surface is 
thermallt insulated and the other surface is dissipating heat by free 

convection into atmospheric air at 30 
0 

C. The heat flux over the surface is 

uniform and results in a mean surface temperature of 50 
0 

C. The plate is 

inclined making an angle of 50 
0 

from the vertical. Determine the heat loss 
from the plate for (i) heated surface facing up and (ii) heated surface facing 
down. 

 
 A thin electric strip heater of width 20 cm is placed with its width oriented 

vertically. It dissipates heat by free convection from both the surfaces into 

atmospheric air at 20 
0 

C. If the surface temperature of the heater is not to 

exceed 225 
0 

C, determine the length of the heater required in order to 
dissipate 1 kW of energy into the atmospheric air. 

 
 A plate 75 cm x 75 cm is thermally insulated on the one side and subjected to 

a solar radiation flux of 720 W/m
2 

on the other surface. The plate makes an 

angle of 60 
0 

with the vertical such that the hot surface is facing upwards. If 

the surface is exposed to quiescent air at 25 
0 

C and if the heat transfer is by 
pure free convection determine the equilibrium temperature of the plate. 

B. Free convection from/to Cylinders: 

 A 5 cm diameter, 1.5 m long vertical tube at a uniform temperature of 100 
0
C 

is exposed to quiescent air at 20 
0 

C. calculate the rate of heat transfer from 
the surface to air. What would be the heat transfer rate if the tube were kept 
horizontally? 

 
A horizontal electrical cable of 25 mm diameter has a heat dissipation rate of 

30 W/m. If the ambient air temperature is 27 
0 

C, estimate the surface 
temperature of the cable. 



215 
 

 An electric immersion heater, 10 mm in diameter and 300 mm long is rated at 

550 W. If the heater is horizontally positioned in a large tank of water at 20 
0
 

C, estimate its surface temperature. What would be its surface temperature if 
the heater is accidentally operated in air. 

 

A.Free Convection to or from plane surfaces 
 

 Solution: 
 

 

 

Tw = 120 
0 

C 

 
 

 T∞ = 30 
0
C 

 

L = 0.3m 
Mean film temperature of air = 0.5 x (120 +30) = 75

0
C 

x 
Properties of air at 75

0
C are: 

β = 1/ (273 + 75) = 2.874 x 10 
− 3 

1/K; Pr = 0.693 

k = 0.03 W/(m-K) ; ν = 20.555 x 10 
− 6 

m 
2
/s ; 

\ 

 

First we have to establish whether the flow become turbulent within the given length of 
the plate by evaluating the Rayleigh number at x = L. 

 
9.81 x 2.874 x 10 

− 3 
x (120 – 30) x 0.3 

3
 

GrL = (gβΔTL 
3
) / ν 

2 
= ---------------------------------------------------- 

20.555 x 10 
− 6

 

= 1.62 x 10 
8
 

Rayleigh number = RaL = GrLPr = 1.62 x 10 
8 

x 0.693 = 1.12 x 10 
8
. 

Since RaL < 10 
9 

flow is laminar for the entire height of the plate. Hence the 

average Nusselt number is given by (from data hand book) 

Nuav = 0.59 x (RaL) 
0.25 

= 0.59 x (1.12 x 10 
8
) 

0.25 
= 60.695 
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60.6 x 0.03 

Therefore hav = Nuav k / L = ---------------- = 6.069 W /(m
2 

– K). 

0.3 
 

Total heat transfer fro both sides of the plate per unit width of the plate is given by 

Qtotal = hav(2LW) T = 6.06 x (2 x 0.3 x 1) X (120 – 30) = 327.726 W/m. 

 Solution: 
 

 

 

 

 

 
 

qw = 600 W/m2  

 T∞ = 30 0C 
 

 

 

 

 

 

 

 

 

 

 

Since Tw is not known, it is not possible to determine the mean film temperature at which 

fluid properties have to be evaluated. Hence this problem requires a trial and error solution 
either by assuming Tw and then calculate Tw by using the heat balance equation and check 

for the assumed value or assume a value for hav ,calculate Tw and then calculate hav and 

check for the assumed value of hav.Since it is difficult to guess a reasonable value for Tw to 

reduce the number of iterations, it is preferable to guess a reasonable value for hav for air as 

we know that for air hav varies anywhere between 5 and 15 W/(m
2
-K). 

Trial 1:- Assume hav = 10 W/(m
2
-K). 

Now qw = hav[Tw – T∞] or Tw = T∞ + qw / hav = 30 + 600 / 10 = 90
0
C. 

Hence mean film temperature = 0.5 x [90 + 30] = 60 
0
C. 

Properties of air at 60 
0
C are: β = 1 / (60 + 273 ) = 3.003 x 10 

− 3 
1/K; Pr = 0.696; 

k = 0.02896 W/(m-K); ν = 18.97 x 10 
− 6 

m
2
/s. 

Insulated 

L = 0.25 m 
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9.81 x 3.003 x 10 
− 3 

x 600 x (0.25)
4
 

Ra 
* 

= Gr *Pr =[(gβq x
4
) /(kν

2
)]Pr = ---------------------------------------------- 

L L w x 0.696 

0.02896 x (18.97 x 10 
− 6

) 
2
 

Or 
* 9 

RaL = 4.61 x 10 . 
 

Since RaL 
* 

>10 
9 

flow is turbulent for the entire length of the plate 

 
Hence Nuav = 1.25 Nux|x=L = 1.25 x 0.17 x (4.61 x 10 

9
) 

0.2 
= 55.37 

Therefore hav = 55.37 x 0.02896 / 0.25 = 6.41 W/(m
2 

– K) 
 

Since the calculated value of hav deviates from the assumed value by about 34 %, 

one more iteration is required. 

Trial 2:- Assume hav = 6.41 W/(m
2
-K) 

Hence Tw = 30 + 600 / 6.41 = 123.6 
0
C 120 

0 
C 

Mean film temperature = 0.5 x (120 + 30) = 75 
0 

C 

Properties of air at 75 
0
C are:- β = 1/(75 + 273) = 2.873 x 10 

− 3 
1/K. Pr = 

0.686 k = 0.03338 W /(m-K); ν = 25.45 x 10 
− 6 

m 
2 

/s. 

9.81 x 2.873 x 10 
− 3 

x 600 x 0.25 
4
 

 

 

 

 

 

 
Since the calculated value of hav is very close to the assumed value, the iteration 

is stopped. The surface temperature of the plate is therefore given by 

Tw = 30 + 600 / 6.04 = 129.3 
0 

C. 

 Solution:- Case(i) When the plate is vertical 

Data:- Characteristic length = L = height of the plate = 0.3 m; Tw = 100 
0
C;T∞= 20 

0
C; Mean film temperature = 0.5 x (100 + 20) = 60 

0
C. 
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R aL *  =  ------------------------------------------- 

x 0.686 = 2.06 x 10 
9
 

0.03338 x (25.45 x 10 
− 6

) 
2
 

Flow is turbulent for the entire length of the plate. 

Hence Nuav = 1.25 Nux|x=L = 1.25 x 0.17 x (2.06 x 10 
9
) 

0.25 
= 45.27 

Therefore hav = 45.27 x 0.03338 / 0.25 = 6.04 W/(m
2 

– K). 
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Properties of air at 60 
0
C are: β = 1 / (60 + 273 ) = 3.003 x 10 

− 3 
1/K; Pr = 0.696; 

k = 0.02896 W/(m-K); ν = 18.97 x 10 
− 6 

m
2
/s. 

RaL = GrLPr =( gβΔTL 
3
/ ν 

2
) Pr 

9.81 x 3.003 x 10 
− 3 

x (100 – 20) x (0.3) 
3
 

= ------------------------------------------------------0.696 

(18.97 x 10 
− 6 

) 
2
 

= 1.23 x 10 
8
 

From data hand book corresponding to this value of RaL have 

Nuav = 0.59 x (1.23 x 10 
8
) 

0.25 
= 62.13 

Therefore hav = 62.13 x 0.02896 / 0.3 = 5.99 W/(m
2
-K). 

Rate of heat transfer = Q = hav(2LW)(ΔT) = 5.99 x (2 x 0.3 x 0.3) x (100 – 20) 

= 86.256 W 

 

 

Case (ii) When the plate is horizontal 
 

 

 

 

 

 
 

 T∞ 
Heated surface facing upwards with heat 

transfer coefficient htop 

 

 

 

 

 T 
Heated surface facing downwards 

with Heat transfer coefficient hbottom 

Data:- T∞ = 20 
0
C; Temperature of both the surfaces = Tw = 100 

0
C; 

Mean film temperature = 0.5 x (100 + 20) = 60 
0
C;L = W = 0.3 m 

Properties of air at 60 
0
C are: β = 1 /(60 + 273) = 3.003 x 10 

− 3 
1/K; Pr = 0.696 

ν = 18.97 x 10 
− 6 

m
2
/s; k = 0.02896 W/(m-K) 

 
(a) To find htop:- Characteristic length = L = A/P = LW {2(L+W)} 
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=L2 / 4L = L/4 = 0.3 / 4 = 0.075 m 

 
gβΔTL 3 9.81 x (3.003 x 10 − 3) x (100 – 20) x (0.075) 3 

RaL  = ----------- Pr = ------------------------------------------------------------ 0.696 
ν 2 (18.97 x 10 − 6) 2 

 

Or RaL = 1.923 x 10 6. 

 
From data hand book for heated surface facing upwards with constant 

surface temperature the average Nusselt number is given by 
 

Nutop = htopL/k = 0.54 x (RaL) 0.25 = 0.54 x ( 1.923 x 10 6) 0.25 

 
= 20.11 

 
Hence htop = 20.11 x 0.02896 / 0.075 = 7.76 W/(m2-K) 

 

(b) To find hbottom:- From data hand book for heated surface facing downwards with constant 

surface temperature, the average Nusselt number is given by 

Nubottom = hbottomL/k = 0.27 x(1.923 x10 
6
) 

0.25 
= 10.05 

Hbottom = 10.05 x 0.02896 / 0.075 = 3.88 W/(m
2
-K) 

Total heat loss to air = Qtotal = Qtop + Qbottom = (LW)htop ΔT + (LW)hbottomΔT 

= (0.3 x 0.3) x (100 – 20) x (7.76 + 3.88) = 83.808 W 

 Solution: Data:- Horizontal circular plate with D = 0.25 m;Tw = 100 
0
C ; T∞ = 20 

0
C 

This problem is similar to the previous problem except for the characteristic length. For a 
horizontal circular plate of diameter D the characteristic length is given by 

L = A/P = (πD
2
/4) / (πD) = D/4 

= 0.25 / 4 = 0.0625 m 

Mean film temperature = 0.5 x (100 + 20) = 60 
0
C;L = W = 0.25 m 

Properties of air at 60 
0
C are: β = 1 /(60 + 273) = 3.003 x 10 

− 3 
1/K; Pr = 0.696 

ν = 18.97 x 10 
− 6 

m
2
/s; k = 0.02896 W/(m-K). 
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gβΔTL 
3

 9.81 x (3.003 x 10 
− 3

) x (100 – 20) x (0.0625) 
3
  

RaL = ----------- Pr = ----------------------------------------------------------- x 0.696 

ν 
2 

(18.97 x 10 
− 6

) 
2
  

Or RaL = 1.112 x 10 
6
. 

 

 

From data hand book for heated surface facing upwards with constant 
surface temperature the average Nusselt number is given by 

Nutop = htopL/k = 0.54 x (RaL) 
0.25 

= 0.54 x ( 1.112 x 10 
6
) 

0.2 
= 17.53 

Hence htop  = 17.53 x 0.02896 / 0.0625 = 8.12 W/(m
2
-K) 

(b)To find hbottom:- From data hand book for heated surface facing downwards 

with constant surface temperature, the average Nusselt number is given by 

Nubottom = hbottomL/k = 0.27 x (1.112 x10 
6
) 

0.25 
= 8.76 hbottom = 8.76 x 

0.02896 / 0.0625 = 4.059 W/(m
2
-K) Total heat loss to air = Qtotal  = Qtop + 

Qbottom = (πDL)htop ΔT + (πDL)hbottomΔT 

= (π x 0.25 x 1)x (100 – 20) x (8.76 + 4.059) = 805.44 W 

 Soloution: Data:- L = W = 0.25 m; T∞ = 30 
0
C; Tw = 50 

0
C; 

Mean film temperature = 50 − 0.25 x (50 - 30) = 45 
0
C; Properties of air at 45 

0
C are: 

Pr = 0.6835; k = 0.02791 W/(m-K); ν = 17.455 x 10 
− 6 

m
2
/s. 

β = 1/[{30 +0.25x(50-30)} +273] =3.25 x 10 
− 3

 

(i) Inclined plate with heated surface facing upwards: 
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L c 

 

 
 

θ = − 50 
0
 

 

 
Insulated 

Characteristic length = L = 0.25 m 

gβΔTL
3
 

GrL = ----------- 

ν 2 

9.81 x (50 – 30) x 3.25 x 10
−3 

x(0.25)
3
 

= ------------------------------------------------- 

(17.455 x 10 
− 6

)
2
 

= 3.27 x 10 
7
 

Hence RaL = 3.27 x 10 
7 

x 0.6835 = 2.23x10
7

 

From data hand book, for inclined plate with 

heated surface facing upwards the Nusselt number 

is given by 

Nuav = 0.145 [Ra 
1/3 

− (Gr Pr)
1/3

] + 

0.56(GrcPrcosθ)
1/4 

The above correlation is valid only if GrL > Grc. 

From data hand book for θ = − 50 
0
, Grc = 4 x 10 

8 
which is more than GrL.Hence the 

above correlation cannot be used. Instead the following correlation has to be used. 

Nuav = 0.59 (GrLcos θ Pr) 
¼ 

= 0.59 x (2.23 x 10
7 

x cos 50
0
) 

¼ 
= 36.3 

Hence hav = 36.3 x 0.02791 / 0.25 = 4.05 W/(m
2 

– K). 

Therefore Q = 4.05 x (0.25 x 0.25) x (50 – 30) = 5.062 W 

 

(ii) Inclined plate with heated surface facing downwards: 

 
The correlation for Nusselt number when the heated surface is facing downwards is 
given by 

Nuav = 0.56 (GrLcos θ Pr) 
¼ 

= 0.56 x (2.23 x 10
7 

x cos 50
0
) 

¼
 

= 34.45 

hav = 34.45 x 0.02791 / 0.25 = 3.84 W/(m
2
-K). 

Hence Q = 3.84 x (0.25 x 0.25) x (50 – 30) = 4.8 W 

 

 
 

 Solution: 
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Tw  = 225 
0 

C 

W 

 T∞=20
0
C 

 

 

L=0.2 m 

 

 
Mean film temperature = 0.5 x (225 + 20) = 122.5 

0
C. Properties of air at 

122.5
0
C are: β = 1/(122.5 + 273) = 2.5 x 10 

− 3 
1/K; ν = 25.90 x 10 

− 6 
m

2
/s; Pr = 

0.6865; k = 0.03365 W/(m-K). 

9.81 x 2.5 x 10 
− 3 

x(225 – 20) x 0.2 
3
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Solution: 

GrL = ---------------------------------------------- = 5.99 x 10 
7
 

(25.9 x 10 
− 6

) 
2
  

RaL = 5.99 x 10 
7 

x 0.6865 = 4.11 x 10 
7
 

Hence Nuav = 0.59 x (4.11 x 10 
7
) 

0.25 
= 47.24 

Therefore hav = 47.24 x 0.03365/0.2 = 7.94 W/(m
2
-K) 

 1000 

Now Q = havLWΔT or W = Q / (havLΔT) = ----------------------------- 

 7.94 x 0.2 x (225 – 20) 

 
= 3.0718 m 
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qw = qsolar =720 W/m
2

 

 
θ = − 60 

0 
T∞ = 25 

0 
C 

 

Insulated 

 

 

 

 

 

 

 
Since Tw is not known, mean film temperature to evaluate the fluid properties cannot be 
determined. Hence the problem requires a trial- and – error method by suitably 

assuming a value for hav and then check for this assumpotion. 

Trial 1:- Assume hav = 5 W/(m
2
-K): 

Tw = T∞ + qw / hav = 25 + 720 / 5 = 169 
0
C. 

Tm = Tw − 0.25[Tw – T∞] = 169 – 0.25 x [169 – 25] = 133 
0
C. 

Properties of air at 133 
0
C are: ν = 26.62 x 10 

− 6 
m

2
/s; k = 0.03413 W/(m-K); Pr = 

0.685 Mean temperature to evaluate β is given by Tβ = T∞ + 0.25[Tw – T∞] 

= 25 + 0.25 x(169 – 25) = 61 
0
C 

Therefore β = 1/[61 + 273] = 2.994 x 10 
− 3 

1/K. 

9.81 x 2.994 x 10 
− 3 

x [169 – 25] x 0.75 
3
 

 

GrL = ------------------------------------------------------ 
 

(26.62 x 10 
− 6

) 
2
 

= 2.51 x 10 
9
 

For θ = − 60 
0
, Grc = 10 

8
. Since GrL > Grc the average Nusselt number is given by 

Nuav = 0.145 [(GrLPr) 
1/3 

– (GrcPr) 
1/3

] + 0.56[GrcPr]
1/4

 

= 0.145 x [(2.51 x 10 
9
x 0.685)

1/3 
– (10 

8 
x 0.685) 

1/3
] + 0.56 x ( 10 

8 
x 0.685)

1/4
 

= 164.45 
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Therefore hav = 164.45 x 0.03413 / 0.75 = 7.48 W/(m
2
-K). 

Since the calculated value of hav is quite different from the assumed value one 

more iteration is required. 

Trial 2: Assume hav = 7.48 W/(m
2
-K). 

With this assumption, following the steps shown in trial 1 we get 

Tw = 121.25 
0
C ;Tm = 97.18 

0
C   

 
C;Tβ = 49.06 

0
C; GrL = 2.311 x 10 

9
;Nuav = 159.96 

Hence hav = 6.88 W/(m
2
-K). This value agrees with the assumed value within 8 %. 

Hence the iteration is stopped and the equilibrium temperature of the plate surface is 
calculated as 

Tw = 25 + 720 /{0.5(7.48 + 6.88)} = 125.27 
0
C. 

 

B Free convection from/to cylinders 
 

 Solution: (i) When the tube is vertical: 

 

Tw = 100 
0
C 

 

 

 

 

 

 

 
L = 1.5 m 

 

 
 

 

 

 

 

 
 

 

  

 

 
 T∞ = 20 

0
C 

d 

Mean film temperature = 0.5x(100+20) 

= 60 
0
C. 

Properties of air at 60 
0
C are:Pr = 0.696 

k = 0.0290 W/(m-K); ν = 18.97x10
−6 

m
2
/s;β = 1/(60 + 273) =3.003x10

−3
1/K. 

 

 
 

gβΔTL 
3 

9.81 x 3.003 x 10 
− 3 

x (100 – 20) x 1.5 
3
 

GrL = ------------ = 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

- - - - - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - -- - - - - - 

= 2.21 x 10 
10

 

ν 2 (18.97x10
−6

) 
2
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(L/d) [ 1.5 / 0.05 ] 
Now ------------ = --------------------------- = 0.0078 

Gr 
1/4 

L [2.21 x 10 
10

] 
¼

 

(L/d)  

Since ------- < 0.025, the vertical tube/cylinder can be treated as a vertical flat surface 

Gr 
1/4 

L 
 

 

 

 

 

Hence Nuav = 0.1 x (1.538 x 10 10) 1/3 = 248.7 Therefore hav = 248.7 x 0.029 / 1.5 = 

 

4.81 W/(m2 – K). Rate of heat transfer = Q = πdLhavΔT = π x 0.05 x 1.5 x (100 – 20) 

x 4.81 = 90.67 W 

(ii) When the pipe is horizontal:- When the pipe is horizontal, the characteristic length 
is the diameter. Hence 

 

 gβΔTd 
3
 9.81 x 3.003 x 10 

− 3 
x (100 – 20) x 0.05 

3
 

Grd = ----------- = -------------------------------------------------- = 8.185 x 10 
5

 

 ν 
2 

(18.97x10
−6

) 
2
 

 

 

 
 

 
Rad 

[Nuav] ½  = 0.60 + 0.387 ----------------------------------- 
[1 + (0.559/Pr)9/16] 8/27 

 
 

(5.697x 105) 

[Nuav] ½  = 0.60 + 0.387 ----------------------------------- 

[1 + (0.559/0.696)9/16] 8/27 

 
Therefore hav = 16.08 x 0.029 / 0.05 = 9.32W/(m2 – K). 

Q = π x 0.05 x 1.5 x (100 – 20) x 9.32 = 175.67 W 

1/6 

 
 

 
 
 
 

1/6 

 

 

= 4.01 or Nuav = 16.08 

 Solution: 
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 T∞ = 27 
0
C 

 

       

Tw = ? 

qw = 30 W/m d =.025 m 

 

 

Since Tw is not known, it is not possible to evaluate the fluid properties at the 

mean film temperature. Hence the problem has to be solved by trial and error 

solution by assuming a suitable value for hav and check for the assumed value. 

Trial 1:- Assume hav = 10 W/(m
2
-K) 

qw = πdhav[Tw – T∞] or Tw = T∞ + qw /(πdhav) = 27+ 30 /(π x 0.025 x 10) = 65 
0
C. 

 

Mean film temperature = 0.5 x (27 + 65) = 46 
0
C. 

Properties of air at 46 
0
C are: β = 1 /(46 + 273) = 3.135 x 10 

− 3 
1/K; k = 0.0280 W/(m-K) 

Pr = 0.684; ν = 17.45 x 10 
− 6 

m
2
/s. 

9.81 x 3.135 x 10 
− 3 

x (65 – 27) x 0.025 
3
 

Grd = ---------------------------------------------------- = 6.0 x 10 
4
. 

[17.45 x 10 
− 6 

] 
2
 

 
Hence [Nuav] 

½ 
= 0.60 + 0.387-  -  -  --  -  --  --  - -  -  --  --  - -  -  - -  

--  -  - -  --  --  -  - -  --  

(6.0 x 10 
4 

x 0.684) 1/6 

9/16  8/27 
= 2.8 

[ 1 + (0.559/0.6985) ] 

Hence Nuav = 7.84 or hav = 7.84 x 0.028 / 0.025 = 8.78 W/(m
2 

– K). 

Since the calculated value of hav deviates very much from the assumed value one 

more iteration is required. 

(ii) Trial 2: Assume hav = 8.78 W/(m
2
-K). 

Proceeding in the same way as in trial 1 we have Tw = 70.5 
0
C. Hence Tm = 48.75 

0
 

0
C Properties of air at 50 

0
C are: β = 1/(50+273) = 3.05 x 10 

− 3 
1/K; Pr = 0.698; 

k = 0.02826 W/(m-K); ν =17.95 x 10 
− 6 

m
2
/s. 

 

 9.81 x 3.05 x 10 
− 3 

x (70.5 – 27) x 0.025 
3
 

Grd = ---------------------------------------------------- = 6.4 x 10 
4
. 

 [17.95 x 10
−6 

] 
2
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 1/6 

[Nuav] 
½ 

= 0.60 + 0.387 
(6.4 x 10

4
x 0.698) 

-----------------------------------= 2.89 or Nuav = 8.35 

 [1 + (0.559/0.698)
9/16

] 
8/27

 

Hence hav = 8.35 x 0.02865 / 0.025 = 9.5691 W/(m
2
-K). 

 

The calculated value of hav agrees with the assumed value within 5 % iteration is stopped. 

 

The equilibrium temperature of the surface = Tw = 27 + 30 /(π x 0.025 x 9.5691) 

= 67 
0
C. 

 
 

 Solution: 
 

Qw 

 

Data:- L = 0.3 m; d = 0.01 m; Qw = 550 W; T∞ = 20 
0
C; 

550 

Wall heat flux = qw = Qw /(πdL) =----------------------- = 58357 W/m
2
 

(π x 0.01 x 0.3) 
 

Since Tw is not known, fluid properties cannot be evaluated at the mean 

temperature and hence the problem has to be solved by trial and error procedure 

by assuming a suitable value for hav and then check for the assumed value. 

 
Case(i):- When the heater is immersed in water 

 

For free convection in liquids the order of heat transfer coefficient is around 10 to 1000 

W/(m
2
-K).Let us assume hav = 1000 W/(m

2
-K). 

Hence Tw = T∞ + qw / hav = 20 + 58357 / 1000 = 78.4 
0
C. 

Mean film temperature = 0.5 x (20 + 78.4) = 49.2 
0
C. 

Properties of water at 49.2 
0
C are: β = 3.103 x 10 

− 3 
1 / K; 

Pr = 3.68; k = 0.639 W/(m-K) ; ν = 0.5675 x 10 
− 6 

m
2
/s; 

d 

L 
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 9.81 x 3.103 x 10 
− 3 

x (78.4 – 20) x (0.01) 
3
 

Grd = ------------------------------------------------------- = 5.519 x 10 
6
 

 (0.5675 x 10 
− 6

) 
2
 

Rad = 5.519 x 10 
6 

x 3.68 = 2.03 x 10 
7
. 

For horizontal cylinders Nusselt number is given by 
 

Nud = C Rad n with C = 0.125 and n = 1/3 for this value of Rad. 

Hence Nud = 0.125 x (2.03 x 10 7) 1/3 = 33.908 
 

Hence hav = 33.908 x 0.639 / 0.01 = 2166.21 W/(m2 –K) 

Trial 2:- Assume hav = 2166.21 W/(m
2
-K) 

Tw = 20 + 58357 / 2166.21 = 46.94
0
C. 

Hence mean film temperature =0.5x(20 + 46.94) = 33.47 
0
C. 

Properties of water at 33 
0
C  

0
C are: k = 0.6129 W/(m-K); Pr = 5.68; β = 3.3 x 10 

− 

3
; ν = 0.831 x 10 

− 6 
m

2 
/s. 

9.81 x 3.3 x 10 
− 3 

x (46.94 – 20) x (0.01) 
3
 

Grd = ----------------------------------------------------- = 2.2 x 10
6
. 

(0.831 x 10 
− 6

) 
2
 

Rad = 2.2 x 10
6 

x 5.68 = 1.24 x 10 
7
 

Hence, Nuav = 0.125 x (1.24 x 10 
7
) 

0.333 
= 28.77 

Therefore, hav = 28.77 x 0.6129 / 0.01 = 1763.3 W/(m
2 

– K) 

Trial 3:- Assume hav =1763 W/(m
2
-K) 

Tw = 20 + 58357 / 1763 = 53.1 
0
C. Mean film temperature = 0.5 x (20 + 53.1) = 36.55 

0
C. 

Properties of water at 40
0
C are: k = 0.6280 W/(m-K); Pr = 4.34; β = 3.19 x 10 

−3 
1/K; 

ν = 0.657 x 10 
− 6 

m
2
/s. 

 

 9.81 x 3.19 x 10 
− 3 

x (53 – 20) x (0.01) 
3
 

Rad = ------------------------------------------------- x 4.34 = 1.03 x 10 
7
 

 (0.657 x 10 
− 6

) 
2
 

Hence, Nuav = 0.125 x (1.03 x 10 
7
) 

0.333 
= 27.05 

Therefore, hav = 27.05x 0.6280 x / 0.01 = 1698.74 W/(m
2
-K) 

Since the calculated value of hav agrees with the assumed value within 4%, iteration 

is stopped and the equilibrium temperature of the heater is calculated as 
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Tw = 20 + 58357 / 1698.74 = 54.35 
0
C 

Case (ii):- When the heater is exposed to air 
 

When a heated surface is exposed to air the order of heat transfer coefficient 

varies between 5 and 20 W/(m
2
-K). 

Trial 1:- Assume hav = 20 W/(m
2
-K) 

Tw = 20 + 58357 / 20 = 2938 
0
C. Mean film temperature = 0.5 x (20 + 2938) = 1479 

0
C Properties of air at 1479 

0
C are : β = 1/(1479 +273) = 5.71 x 10 

− 4 
1/K; Pr = 

0.7045; k = 0.108 W/(m-K); ν = 294.3 x 10 
− 6 

m
2
/s. 

 9.81 x 5.71 x 10 
− 4 

x (2938 – 20) x (0.01) 
3
 

Rad = ------------------------------------------------- --- x 0.7045 = 133 
 (294.3 x 10 

− 6
) 

2
 

 

Hence hav = 2.13 x 0.108 / 0.01 = 23 W/(m
2
-K) This is 13% away from the 

assumed value and hence one more iteration is required. 

 

 

Tw = 20 + 58357 / 23 = 2557 
0
C ; Mean film temperature = 0.5 x ( 20 + 2557) = 1289 

0
C Properties of air at 1289 

0
C are: β = 6.4 x 10 

− 4 
1/K; ν = 244.34 x 10 

− 6 
m

2
/s;Pr = 

0.705; k = 0.0978 W/(m-K) 

 

 

 

Nuav = 0.850 x (188) 
0.188 

= 2.275.Hence hav = 2.275 x 0.0978 / 0.01 = 22.25 W/(m
2 

– K). 

This value of hav agrees with the assumed value within 4% and hence the iteration 

is stopped. The equilibrium temperature of the heater is therefore given by 

Tw = 20 + 58357 / 22.25 = 2643 
0
C. 

 9.81 x 6.4 x 10 
− 4 

x (2557 – 20) x (0.01) 
3
 

Rad = ------------------------------------------------- --- x 0.705 = 188 
 (244.34 x 10 

− 6
) 

2
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                      UNIT-IV  
HEAT TRANSFER WITH PHASE CHANGE 

 
Introduction: Knowledge of heat transfer occurring during change of phase i.e. during 

condensation and boiling is very useful in a number of ways. For example in all power and 

refrigeration cycles, it is necessary to convert a liquid into a vapour and vice-versa. This is 

accomplished in boilers or evaporators and condensers. 
Heat transfer coefficients in both condensation and boiling are generally much higher than those 

encountered in single phase processes. Values greater than 1000 W/(m
2
-K) are almost always 

obtained. This fact has been used in several recent applications 
where it is desired to transfer high heat fluxes with modest temperature differences. An example 
is the “heat pipe” which is a device capable of transferring a large quantity of heat with very small 
temperature differences. 

Film-wise and Drop-wise condensation:- Condensation occurs whenever a vapour comes into 

contact with a surface at a temperature lower than the saturation temperature of the vapour 
corresponding to its vapour pressure. The nature of condensation depends on whether the liquid 

thus formed wets the solid surface or does not wet the surface. If the liquid wets the surface, the 

condensate flows on the surface in the form of a film and the process is called “film-wise 

condensation”. If on the other hand, the liquid does not wet the surface, the condensate collects in 
the form of droplets, which either grow in size or coalesce with neighboring droplets and 

eventually roll of the surface under the influence of gravity. This type of condensation is called 

“drop-wise condensation”. 

The rate of heat transfer during the two types of condensation processes is quite different. For the 

same temperature difference between the vapour and the surface, the heat transfer rates in drop-

wise condensation are significantly higher than those in film- wise condensation. Therefore it is 

preferable to have drop-wise condensation from the designer‟s point of view if the thermal 

resistance on the condensing side is a significant part of the total thermal resistance. However it is 

generally observed that, although drop-wise condensation may be obtained on new surfaces, it is 

difficult to maintain drop-wise condensation continuously and prolonged condensation results in a 

change to film-wise condensation. Therefore it is still the practice to design condensers under the 

conservative assumption that the condensation is of film type. 

 
Nusselt’s theory for laminar film-wise condensation on a plane vertical surface:-The problem 
of laminar film-wise condensation on a plane vertical surface was first analytically solved by 

Nusselt in 1916.He made the following simplifying assumptions in his analysis. 

(i) The fluid properties are constant. 

(ii) The plane surface is maintained at a uniform temperature, Tw which is less than the 

saturation temperature Tv of the vapour. 

(iii) The vapour is stationary or has a very low velocity and so it does not exert any drag on 

the motion of the condensate: i.e., the shear stress at the liquid-vapour interface is zero. 

(iv) The flow velocity of the condensate layer is so low that the acceleration of the 
condensate is negligible. 

(v) The downward flow of the condensate under the action of gravity is laminar. 

(vi) Heat transfer across the condensate layer is purely by conduction; hence the  
liquid temperature distribution is linear. 
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    y   

[η + (∂η/∂y)dy]dx 

x 
  

pdy ηdx 
  

pdy 

   δ    

d 

x 

      

    
(p+dp)dy 

  
(p 

 
+dp)dy 

  ρ Ldxdyg 
  

ρvdxdyg 

(a) Force balance on a condensate 

element 

(b) Force balance on a vapour element 

at the same distance x from top 

Fig. 8.1: Laminar film condensation on a vertical plate 

 
Consider the film-wise condensation on a vertical plate as illustrated in Fig.8.1. Here „x‟ is 

the coordinate measured downwards along the plate, and „y‟ is the coordinate measured 

normal to the plate from the plate surface. The condensate thickness at any x is represented 

by δ [ δ = δ(x)]. The velocity distribution u(y) at any location x can be determined by 

making a force balance on a condensate element of dimensions dx and dy in x and y 

directions as shown in Fig. 8.1(a). Since it is assumed that there is no acceleration of the 

liquid in x direction, Newton‟s second law in x direction gives 
 

ρLdxdyg + pdy + [η + (∂η/∂y)dy]dx −ηdx − (p + dp)dy = 0 

or (∂η/∂y) = (dp/dx) −ρLg ...................................................... (8.1) 

 

Expression for (dp/dx) in terms of vapour density ρv can be obtained by making a force 

 
balance for a vapour element as shown in Fig. 8.1(b). The force balance gives 

ρvdxdyg + pdy = (p + dp) dy 

or (dp/dx) = ρvg Substituting this expression for dp/dx in 

Eq. (8.1) we have 

(∂η/∂y) = (ρv−ρL)g 
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Since the flow is assumed to be laminar, η = μL(∂u/∂y) 

Therefore ∂/∂y{μL (∂u/∂y)} = (ρv−ρL)g 

Integrating with respect to y we have  μL (∂u/∂y) = (ρv−ρL)g y + C1 

 (ρv−ρL)g y C1 

Or (∂u/∂y) = --------------- 

μL 

+ ------- ……(8.2) 

μL 
 

Integrating once again with respect to y we get 

(ρv−ρL)g y
2 

C1 y 

u(y) = ---------------- + ------------- + C2 ........ (8.3) 

2 μL μL 

The boundary conditions for the condensate layer are: (i) at y = 0, u = 0; 

 

(ii) at y = δ, (∂u/∂y) = 0. 

 

Condition (i) in Eq. (8.3) gives C2 = 0 and condition (ii) in Eq. (8.2) gives 

(ρv−ρL)g δ C1 

0 = ------------- + --------- 

2 μL μL 

(ρv−ρL)g δ 

Therefore C1 = − -------------- 
2 

 

Substituting for C1 and C2 in Eq.(8.3) we get the velocity distribution in the 

condensate layer as 

 

g(ρL − ρv) 

u(y) = --------------- [ δy – (y
2
/2)] ........................... (8.4) 

μL 

 

If „m‟ is the mass flow rate of the condensate at any x then 

δ 

m = 0∫ρLudy 
 
 

δ 
2

 

m = 0∫ ρL{ g(ρL − ρv) / μL}[ δy – (y /2)]dy 
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  g ρL (ρL − ρv) δ 
3
 

 = ------------------ ………………………………..(8.5) 

  3 μL 

  
g ρL (ρL − ρv) δ 

2 
dδ 

Hence dm = ---------------------- 

μL 

Amount of heat transfer across the condensate element = dq = dm hfg 

 

g ρL (ρL − ρv) δ 
2 

dδ hfg 

Or dq = ------------------------ ......................................... (8.6) 

μL 

Energy balance for the condensate element shown in the figure can be written as 
 

 
 dq = kL(Tv – Tw)dx / δ 

 
g ρL (ρL − ρv) δ 

2 
dδ hfg 

Or ------------------------- = kL(Tv – Tw)dx / δ .............. (8.6) 

 μL 

 kL μL (Tv – Tw)dx 

or δ 
3
dδ = ---------------------- 

 g ρL (ρL − ρv) hfg 

Integrating we get 
 
 

δ 
4 

kL μL (Tv – Tw)x 

----- = --------------------- + C 3 

4 g ρL (ρL − ρv) hfg 

 

At x = 0, δ = 0. Hence C3 = 0. 

Therefore δ 
4 

kL μL (Tv – Tw)x 
 

 ----- = ---------------------  

 4 g ρL (ρL − ρv) hfg  

  4 kL μL (Tv – Tw)x 

] 
1/ 4

……………………(8.7) or  

δ = [-------------------------- 
 

  g ρL (ρL − ρv) hfg  
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Now kL (Tv – Tw)dx 

----------------- = hx dx [Tv – Tw] 
δ 

3
 

kL g ρL (ρL − ρv) hfg kL 

Therefore hx = --------- = [ --------------------------  ] 1 / 4 

δ 4 μL (Tv – Tw)x 
 

 
 

 g ρL (ρL − ρv) hfg k 
3
 

L 
 

Or hx = 0.707[ --------------------------] 
1 / 4 

............................... (8.8) 

 μL (Tv – Tw)x  

The local Nusselt number Nux can therefore be written as 

 
hxx g ρL (ρL − ρv) hfg x

3
 

 

Nux = ----- = 0.707[ --------------------------] 
1 / 4 

............................... (8.8) 

kL μL (Tv – Tw)kL  

The average heat transfer coefficient for a length L of the plate is given by 
 L  

hav = (1/L) ∫ hxdx .............................................................. (8.9) 
0 

It can be seen from Eq. (8.8) that hx = C x 
− ¼ 

, where C is a constant given by 

 

g ρL (ρL − ρv) h k  
3
 

 

 

 

 

 

Hence hav = (1/L) C ∫ x 
− ¼ 

dx = (C / L) (4/3) L
− ¼ 

= (4/3)C L
− ¼

 

 0 

Substituting for C from Eq. (8.10) we have 

 

g ρL (ρL − ρv) hfg k 
3
 L  

1 / 4 

hav = 0.943[ --------------------------] = (4/3)hx|x = L........................... (8.11) 

μL (Tv – Tw)L 

Or C = 0.707[ 
fg L 

1 / 4
 

--------------------------] …………………(8.10) 
  μL (Tv – Tw) 
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fg L 

 Condensation on Inclined Surfaces : Nusselt,s analysis given above can 

readily be extended to inclined plane surfaces making an angle θ with the 
horizontal plane as shown in Fig. 8.2. 

 

 

 
 

Fig. 8.2 : Condensation on an 

inclined plane surface 

g 
 

The component of the gravitational force along the length of the pate is g sin θ.The 
expressions for local and average heat transfer coefficients can therefore be written 
as 

 
g sin θρL (ρL − ρv) h k 

3
 

fg L 1 / 4 

hx  = 0.707[ ----------------------------------- ] 
μL (Tv – Tw)x 

…………….......(8.12) 
 

 
 

g sin θρL (ρL − ρv) h k 
3

 

and hav = 0.943[ ----------------------------------] 
1 / 4 

= (4/3)hx|x = L 

μL (Tv – Tw)L 

 
…………………………(8.13) 

 
 

Condensation on a horizontal tube: The analysis of heat transfer for condensation on the 
outside surface of a horizontal tube is more complicated than that for a vertical surface. Nusselt,s 
analysis for laminar film-wise condensation on the surface of a horizontal tube gives the average 

heat transfer coefficient as 
 

 gρL (ρL − ρv) hfg kL
3

 

hav = 0.725 [ --------------------------------- ] 
1 / 4 

……………(8.14) 

 μL (Tv – Tw) D 

where D is the outside diameter of the tube. A comparison of equations (8.11) and (8.14) 
for condensation on a vertical tube of length L and a horizontal tube of diameter D gives 

 
[hav]vertical 0.943  

--------------- = ----------- (D/L) 
¼ 

= 1.3 (D/L) 
1
 
/4 

..................................... (8.15) 

[hav]horizontal 0.725  

y 

θ 
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This result implies that for a given value of (Tv – Tw), the average heat transfer coefficient for a 

vertical tube of length L and a horizontal tube of diameter D becomes 

equal when L = 2.856 D.For example when L = 100 D, theoretically [hav]horizontal would be 

2.44 times [hav]vertical. Therefore horizontal tube arrangements are generally preferred to 
vertical tube arrangements in condenser design. 

 
 Condensation on horizontal tube banks: Condenser design generally 
involves horizontal tubes arranged in vertical tiers as shown in Fig. 8.3 in 
such a way that the 

 

 

 

 

 

 

 

 
Fig. 8.3 : Film-wise condensation on 

horizontal tubes arranged in a vertical 

tier. 

 

 

 

 

 

 
condensate from one tube drains on to tube just below. If it is assumed that the drainage from one 

tube flows smoothly on to the tube below, then for a vertical tier of N tubes each of diameter D, 

the average heat transfer coefficient for N tubes is given by 
 

gρL(ρL – ρv)hfg kL
3
 

] 
¼ 

= 
1 

[hav]N tubes = 0.725 [ ----------------------- ------------ [hav] 1 tube ....................... (8.16) 

μL(Tv – Tw) N D 
 

N 1/ 4 

This relation generally gives a conservative value for the heat transfer coefficient. Since some 

turbulence and some disturbance of condensate are unavoidable during drainage, the heat transfer 

coefficient would be more than that given by the above equation. 
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Reynolds number for condensate flow: Although the flow hardly changes to turbulent flow 

during condensation on a single horizontal tube, turbulence may start at the lower portions of a 

vertical tube. When the turbulence occurs in the condensate film, the average heat transfer 

coefficient begins to increase with the length of the tube in contrast to its decrease with the length 

for laminar film condensation. To establish a criterion for transition from laminar to turbulent 
flow, a “Reynolds number for condensate flow” is defined as follows. 

ρL  uav Dh 

Re = ---------------- .............................. (8.17) 

μL 

where uav is the average velocity of the condensate film and Dh is the hydraulic 

diameter for the condensate flow given by 

4 x (Cross sectional area for condensate flow) 4A 

Dh = --------------------------------------------- --------- = ------- 
Wetted Perimeter  P 

  4A ρL uav 4M 

Therefore Re = -------------------- = --------------- ……………..(8.18) 

  P μL P μL 

where M is mass flow rate of condensate at the lowest part of the condensing surface 
in kg/s. The wetted perimeter depends on the geometry of the condensing surface and 
is given as follows. 

πD …..For vertical tube of outside diameter D ................. (8.19 a) 

P = 2L …...For horizontal tube of length L ........................... (8.19 b) 

W ….. For vertical or inclined plate of width W.............. (8.19 c) 

 
Experiments have shown that the transition from laminar to turbulent condensation 
takes place at a Reynolds number of 1800. The expression for average heat transfer 

coefficient for a vertical surface [Eq.(8.11)] can be expressed as follows. 
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L L L 

L L L 

 
 g ρL(ρL – ρv) kL

3 
hfg 

hav = 0.943 [ ----------------------------- ] 
1 / 4

 

 μL(Tv – Tw) 

Generally ρL >> ρv. Therefore  

 
g ρL

2 
kL

3 
hfg 

hav = 0.943 [ ----------------------------- ] 
1 / 4 

………………..(8.20) 

μL(Tv – Tw) 

The above equation can be arranged in the form 

 

hav [ν  
2 

/ (gk  
3
) ] 

1 / 3 
= 1.47 Re   

− 1/ 3 ......................................... 
(8.21) 

 

 
The above equation is valid for ReL < 1800. 

It has been observed experimentally that when the value of the film Reynolds number is 
greater than 30, there are ripples on the film surface which increase the value of the heat 
transfer coefficient. Kutateladze has proposed that the value of the local heat transfer 

coefficient be multiplied by 0.8(RE / 4)
0.11 

to account for the ripples effect. 

Using this correction it can be shown that 
 
 

(hav / kL)( νL
2 

/ g) 
1 / 3 

= 
ReL 

------------------------ ………………(8.22) 
 [1.08 Re 

1.22 
– 5.2] 

L 
 

Turbulent film condensation: For turbulent condensation on a vertical surface, Kirkbride 

has proposed the following empirical correlation based on experimental data. 

hav [ν  
2 

/ (gk  
3
) ] 

1 / 3 
= 0.0077 (Re  ) 

0.4 ..................................... 
(8.23) 

In the above correlation the physical properties of the condensate should be evaluated at the 

arithmetic mean temperature of Tv and Tw. 

Film condensation inside horizontal tubes: In all the correlations mentioned above, it is 

assumed that the vapour is either stationary or has a negligible velocity. In practical applications 

such as condensers in refrigeration and air conditioning systems, vapour condenses on the inside 

surface of the tubes and so has a significant velocity. In such situations the condensation 
phenomenon is very complicated and a simple analytical treatment is not possible. Consider, for 

example, the film condensation on the inside surface of a long vertical tube. 



239  

The upward flow of vapour retards the condensate flow and causes thickening of the condensate 

layer, which in turn decreases the condensation heat transfer coefficient. Conversely the down 

ward flow of vapour decreases the thickness of the condensate film and hence increases the heat 

transfer coefficient. 

 
Chato recommends the following correlation for condensation at low vapour 
velocities inside horizontal tubes: 

g ρL(ρL – ρv) k 
3 

h*fg 

 

 

 

 

 
 

This result has been developed for the condensation of refrigerants at low Reynolds number [Rev 

= (ρvuvD) / μv < 35,000 ; Rev should be evaluated at the inlet conditions.] 

 

For higher flow rates, Akers, Deans and Crosser propose the following 

correlation for the average condensation heat transfer coefficient on the inside surface of a 
horizontal tube of diameter D: 

 
hav D 

------ = 0.026 Pr 
1 / 3 

[ReL + Rev(ρL / ρv) 
½ 

] 
0.8 ................ 

(8.25) 

k 

where   ReL = (4ML) / (πDμL) : Rev =  (4Mv) / (πDμv) ................................. (8.26) 

The above equation correlates the experimental data within 50 % for ReL > 5000 

and Rev > 20,000. 

Illustrative examples on film wise condensation: 

 
Example 8.1: Saturated steam at 1.43 bar condenses on a 1.9 cm OD vertical tube which is 20 cm 

long. The tube wall is at a uniform temperature of 109 
0
C . Calculate the average heat transfer 

coefficient and the thickness of the condensate film at the bottom of the tube. 

Solution: Data:- Tv = Saturation temperature at 1.43 bar = 110 
0 

C (from steam tables) Tw 

= 109 
0
C ; Characteristic length = L = 0.2 m ; D = 0.019 m ; 

To find : (i) hav ; (ii) δ(x)|x=L; 

Mean film temperature of the condensate (water) = 0.5 x (110 + 109) = 109.5 
0
C. 

Properties of water at 109.5 
0
C are: ρL = 951.0 kg/m

3
; μL = 258.9 x 10 

− 6 
N-s / m

2
; k 

= 0.685 W/(m-K); ν = 0.2714 x 10 
− 6 

m
2
/s; hfg = 2230 kJ/kg. Also ρL >>> ρv. 

 
hav = 0.555 [ 

L 
1 / 4 

--------------------------- ] ........................... (8.24 –a) 

  μL(Tv – Tw) D 

where h*fg = hfg + (3/8)cp,L(Tv – Tw) ...................................... (8.24 –b) 
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L 

Let us assume that the condensate flow is laminar and later check for this assumption. 
 
 

g ρ 
2 

k 
3 

h 
L L fg 

] 
1 

 

hav = 0.943 [ ----------------------------- / 4 

μL(Tv – Tw) L   

9.81 x (951)
2
x (0.685)

3 
x 2230 x 10

3
 

Hence hav = 0.943 x [-------------------------------------------- ] 1/ 4 

258.9 x 10 
− 6 

x (110 – 109) x 0.2   

= 17,653 W / (m
2
-K) 

(ii) hav = (4 / 3)hx|x=L or hx|x=L = ¾ x hav = 0.75 x 17,653 = 13,240 W/(m
2
-K). 

Therefore δ(x)|x=L = kL / hx|x=L = 0.685 / 13240 = 5.174 x 10 
− 5 

m = 0.0517 mm. 

Check for Laminar flow assumption:- The relation between hav and Reynolds number 

at the bottom of the tube is given by 

hav [ν 
2 

/ (gk 
3
) ] 

1 / 3 
= 1.47 Re 

− 1/ 3 
or Re

 
 

= (1.47 / h )
3
(gk 

3 
/ ν 

2
) 

 

Hence ReL = (1.47 / 17,653) 
3 

[9.81 x 0.685 
3 

/ {0.2714 x 10 
− 6

}
2
] 

= 24.72 
 

Since ReL < 1800, our assumption that condensate flow is laminar is correct. 

Example 8.2:- Saturated steam at 80 
0
C condenses as a film on a vertical plate 1 m high. The 

plate is maintained at a uniform temperature of 70 
0
C. Calculate the average heat transfer 

coefficient and the rate of condensation. What would be the corresponding values if the effect of 
ripples is taken into consideration. 

Solution:Data:- Tv = 80 
0
C; Tw = 70 

0
C; Mean film temperature =0.5 x (80 + 70) = 75 

0
C. 

Properties of condensate (liquid water) at 75 
0
C are: ρL = 974.8 kg/m

3
; 

kL = 0.672 W /(m-K) ; μL = 381 x 10 
− 6 

N-s/m
2
; hfg at 80 

0
C = 2309 kJ/kg-K; 

νL = 0.391 x 10 
− 6 

m
2
/s.Charecteristic length = L = 1.0 m. 

Assuming laminar film condensation the average heat transfer coefficient is given by 

L L L L av L 
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g ρ  
2 

k  
3 

h 
L L fg 

hav = 0.943 [ ----------------------------- ] 1 / 4 

μL(Tv – Tw) 

9.81 x (974.8)
2 

x (0.672)
3 

x 2309 x 10
3
 

= 0.943 x [ ------------------------------------------------ ] 
1/ 4 

= 6066.6 W /(m
2 

– K). 

381.6 x 10 
− 6 

x (80 – 70 ) x 1.0 

 
hav L (Tv – Tw) 6066.6 x 1.0 x (80 – 70) 

Condensate rate = M = ---------------------  = ------------------------------- 0.0263 kg/s. 

hfg 2309 x 10 
3
 

4M 

Check for laminar flow assumption :- ReL = -------------- , where P = width of the plate for 

μL P 

4 x 0.0263 
vertical flat plate. Hence ReL = -------------------------  = 276 

381 x 10 
− 6

 

Since ReL < 1800, the condensate flow is laminar. 

Since ReL > 30, it is clear that the effects of ripples have to be considered. 

4M 4 hav L (Tv – Tw) 

Now ReL = ------------ =    ----------------------- 

μL P μL P hfg 

ReL μL P hfg 

Hence hav = ------------------ ............................................................................. (1) 

4L(Tv – Tw) 

When the effects of ripples are considered the relation between ReL and hav is given by 

Eq.(8.22) as follows: 

1.08 ReL
1.22

 

 ReL  

– 5.2 = ----------------------- Substituting for hav from Eq.(1) we have 
  (hav/kL)(ν 

2 
/g)

1 /3
 

L 
 

1.08 ReL
1.22

 

 4L (Tv – Tw) kL (g / ν 
2
) 

1/3
 

L 
 

– 5.2 = --------------------------------  

  μL P hfg 
− 6)2}1/3   4 x 1 x (80 – 70) x 0.672 x {9.81 /( 0.391 x 10 

1.08 ReL
1.22

 – 5.2 = ----------------------------------------------------------------------381.6x10−6x1.0x2309x103 
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L L 

L L L 

1.08 Re 
1.22 

– 5.2 = 1221.3. Or Re = 319.4 

319.4 x 381.6 x 10 
− 6 

x 1.0 x 2309 x 10 
3
 

Hence from Eq.(1) we have hav = -------------------------------------- 
4x1.0x(80–70)

 

= 7036 W /(m
2 

– K). 

hav L (Tv – Tw) 7036 x 1.0 x (80 – 70) 
Hence M = --------------------- 

= --- -- - -- -- - -- - -- -- - --  -- - -- - -  
= 0.03047 kg / s. 

hfg 2309 x 10 
3

 

[It can be seen that the ripples on the surface increase the heat transfer coefficient by about 
15 %]. 

Example 8.3:- Air free saturated steam at 65 
0
C condenses on the surface of a vertical tube of OD 2.5 

cm. The tube surface is maintained at a uniform temperature of 35 
0
C. Calculate the length of the tube 

required to have a condensate flow rate of 6 x 10 
−3

kg/s. 

Solution: Data:- Tv = 65 
0
C; Tw = 35 

0
C; D0 = 0.025 m; M = 6 x 10 

− 3 
kg/s. To 

find length of the tube, L. 

Mean film temperature = 0.5 x (65 + 35) = 50 
0
C.Properties of condensate 

(liquid water) at 50 
0
C are: kL = 0.640 W/(m-K); μL = 0.562 x 10 

− 3 
N-s/m

2
; ρL = 990 

 

kg/m
3
; At 65 

0
C, hfg = 2346 x 10 

3 
J/(kg-K). 

4M 
 

4 x 6 x 10 
− 3

 

Reynolds number = Re = --------------- = ------------------------------- = 544 

μL πDo 0.562 x 10 
− 3 

x π x 0.025 

Since Re < 1800 flow is laminar. It is more convenient to use Eq.(8.21) 

hav [ν 
2 

/ (gk 
3
) ] 

1 / 3 
= 1.47 Re 

− 1/ 3
 

or (gk 
3
) 

− 1/ 3 
L

 1.47 x (544)
− 1/3 

x [9.81 x 0.64
3
] 

1/3
 

hav = 1.47 Re L [ ---------- ] 
1/3 

= ---------------------------------------------- 

 ν 
2 

L (0.562 x 10 
− 3

/ 990)
2
 

= 3599 W/(m
2 

– K) 
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g ρ h k 

Heat balance equation gives M hfg = hav πDoL [Tv – Tw] 
 

  
M hfg 6 x 10 

− 3 
x 2346 x 10 

3
 

Therefore L = ---------------------- = ------------------------------------ 

  hav πDo [Tv – Tw] 3599 x π x 0.025 x (65 – 35) 

 = 1.66 m  

Example 8.4:- Air free saturated steam at 85 
0
C condenses on the outer surfaces of 225 

horizontal tubes of 1.27 cm OD, arranged in a 15 x 15 array. Tube surfaces are maintained at a 

uniform temperature of 75 
0
C. Calculate the total condensate rate per one metre length 

of the tube. 

Solution: Data:- Tv = 85 
0
C; Tw = 75 

0
C; Do = 0.0127 m; L = 1 m;  Number of 

tubes in vertical tier = N = 15 ; Total number of tubes = n = 225; 

Mean film temperature = 0.5 x (85 + 75) = 80 
0
C. Properties of the condensate (liquid 

water) are: kL = 0.668 W/(m-K); μL = 0.355 x 10 
− 3 

N-s/m
2
; ρL= 974 kg/m

3
; 

At 85 
0
C, hfg = 2296 x 10 

3 
J/(kg-K). 

For N horizontal tubes arranged in a vertical tier, hav is given by 

2 3 
L fg   L 

hav = 0.725 [ --------------------- ] 1 / 4 

μL(Tv – Tw)NDo 

0.725 x [9.81 x (974)
2 

x (0.668)
3
] 

1/4
 

= 7142 W/(m
2 

– K) hav = ------------------------------------------------------ 

[0.355 x 10 
− 3 

x (85 – 75) x 15 x 0.0127] 
¼

  

Q = hav Atotal (Tv – Tw) = hav n π DoL (Tv – Tw) 

= 7142 x 225 x π x 0.0127 x 1 x (85 – 75) = 641.14 x 10 
3 

W 

Mass flow rate of condensate = M = Q / hfg = 641.14 x 10 
3 

/ 2296 x 10 
3 

= 0.28 kg/ (s-m) 

Example 8.5:- Superheated steam at 1.43 bar and 200 
0
C condenses on a 1.9 cm OD vertical tube 

which is 20 cm long. The tube wall is maintained at a uniform temperature of 109 
0
C. Calculate the 

average heat transfer coefficient and the thickness of the condensate at the bottom 

of the tube. Assume cp for super heated steam as 2.01 kJ/(kg-K). 
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Solution: With a superheated vapour, condensation occurs only when the surface temperature is 

less than the saturation temperature corresponding to the vapour pressure. Therefore for a 

superheated vapour, the amount of heat to be removed per unit mass to condense it is given by 
 

Q / M = hfg + cpv(Tv – Tsat) 

Where cp is the specific heat of superheated steam and Tsat is the saturation temperature 
corresponding to the vapour pressure. If it is assumed that the liquid – vapour interphase is at the 

saturation temperature, then Eq.(8.20 ) still holds good with hfg replaced by 

hfg + cpv(Tv – Tsat). 
 

Hence g ρL
2 

kL
3 

{ hfg + cpv(Tv – Tsat)} 

hav = 0.943 [ --------------------------------------- ] 
1/ 4

 

 μL(Tsat – Tw)L 

At 1.43 bar, Tsat = 110 
0
C.Mean film temperature = 0.5 x (110 + 109) = 109.5 

0
C. 

Properties of the condensate at 109.5 
0
C are: kL = 0.685W/(m-K); μL = 0.259 x 10 

− 3 
N- 

 

s/m
2
; ρL= 951 kg/m

3
;At 1.43 bar, hfg = 2230 x 10 

3 
J/(kg-K). 

9.81 x (951)
2 

x (0.685)
3
x {2230 x 10

3
 + 2010 x (200 – 110)} 

hav = 0.943 x [ --------------------------------------------------------------------------   ] 1/ 4 

0.259 x 10 

= 18,000 W /(m
2 

– K). 

x (110 – 109) x 0.2 

Hence hx|x=L = (¾) x 18000 = 13,500 W / (m
2 

– K). 

δ(x)|x=L = kL / hx|x=L = 0.685 / 13,500 = 5.07 x 10 
− 5

m 

Example 8.6:- Air free saturated steam at 70 
0
C condenses on the outer surface of a 2.5 cm OD 

vertical tube whose outer surface is maintained at a uniform temperature of 

50 
0
C. What length of the tube would produce turbulent film condensation? 

Solution: Data:- Tv = 70 
0
C; Tw = 50 

0
C; Do = 0.025 m; Vertical tube. 

To find L such that Re = 1800. 

Mean film temperature = 0.5 x (70 + 50) = 60 
0
C. Properties of the condensate (liquid 

water) are : kL = 0.659W/(m-K); μL = 0.4698 x 10 
− 3 

N-s/m
2
; ρL= 983.2 kg/m

3
; 
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At 70 
0
C hfg = 2358 x 10 

3 
J/(kg-K). 

 
Re (μLπDo) 1800 x 0.4698 x 10 

− 3 
x π x 0.025 

Re = 4M / (μLπDo) or M = ------------------- = --------------------------------------------- 
 4 4 

= 0.0166 kg / s. 

For turbulent flow hav [νL
2 

/ (gkL
3
) ] 

1 / 3 
= 0.0077 (ReL) 

0.4
 

Or hav = 0.0077 (ReL) 
0.4

[νL
2 

/ (gkL
3
) ] 

− 1 / 3
 

Hence hav = 0.0077 x (1800)
0.4 

x [ (0.4698 x 10 
− 3

/983.2)
2 

/ (9.81 x 0.659
3
) ] 

− 

1 / 3 
= 3563.4 W / (m

2 
– K). 

Heat balance equation is M hfg = hav π DoL (Tv – Tw) 

M hfg 0.0166 x 2358 x 10 
3
 

Hence L = ----------------------- = ------------------------------------- 

hav π Do (Tv – Tw) 3563.4 x π x 0.025 x (70 – 50) 

= 7 m 

Example 8.7:- Saturated steam at 100 
0
C condenses on the outer surface of a 2 m long vertical 

plate. What is the temperature of the plate below which the condensing film at the bottom of the 
plate will become turbulent? 

Solution: Data:- Tv = 100 
0
C; L = 2 m. Since Tw is not known, properties of the condensate at the 

mean film temperature cannot be determined and therefore the problem has to be solved by trial 

and error procedure as follows: 

Trial 1:- The properties of the condensate are read at Tv = 100 
0
C. The properties are kL 

= 0.683 W/(m-K); μL = 0.2824 x 10 
− 3 

N-s/m
2
; ρL= 958.4 kg/m

3
; At 100 

0
C, 

hfg = 2257 x 10 
3 

J/kg-K. 

Since the flow has to become turbulent at the bottom of the plate we have 

hav = 0.0077 (ReL) 
0.4

[νL
2 

/ (gkL
3
) ] 

− 1 / 3 
with ReL = 1800 
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 9.81 x 0.683 

3
  

Hence hav = 0.0077 x (1800)
0.4 

x [ ------------------------------ ] 1 / 3 

 (0.2824 x 10 
− 3 

/ 958.4) 
2
  

= 5098 W / (m
2 

– K) 

Now M hfg = hav L W (Tv – Tw) 

 

Or Tw = Tv – (M/W)hfg / (hav L). But ReL = 4M / (μLW) or M/W = ReL μL / 4. 

 
ReL μL hfg 1800 x 0.2824 x 10 

− 3 
x 2257 x 10 

3
 

Therefore Tw = Tv − -------------------- = 100 − ---------------------------------------------- 

 4 hav L 4 x 5098 x 2 

 
= 72 

0
C 

 

Trial 2:- Assume Tw = 72 
0
C. Mean film temperature = 0.5 x (100 + 72) = 86 

0
C. Properties 

of the condensate at 86 
0
C ; kL = 0.677 W/(m-K); μL = 0.3349 x 10 

− 3 
N-s/m

2
; 

 

ρL= 968.5kg/m
3
; At 100 

0
C, hfg = 2257 x 10 

3 
J/(kg-K). 

 9.81 x 0.677 
3
  

Hence hav = 0.0077 x (1800)
0.4 

x [ ------------------------------ ] 1 / 3 

(0.3349 x 10 
− 3 

/ 968.5) 
2
 

 
= 4541 W /(m

2 
– K). 

 

 
1800 x 0.3349 x 10 

− 3 
x 2257 x 10 

3
  

= 60 
0
C Therefore Tw = 100 − ----------------------------------------------- 

 4 x 4541 x 2  

Since the calculated value of Tw is quite different from the assumed value, one more iteration 

is required. 

Trial 3:- Assuming Tw = 60 
0
C and proceeding on the same lines as shown in trial 2 we 

get hav = 4365 W /(m
2 

– K) and hence Tw = 59
0
C. This value is very close to the value 

assumed (difference is within 2 % ). The iteration is stopped. Hence Tw = 59 
0
C. 

Example 8.8:- Air free saturated steam at 90 
0
C condenses on the outer surface of a 2.5 cm OD, 6 

m long vertical tube, whose outer surface is maintained at a uniform temperature of  60 
0
C. 

Calculate the total rate of condensation of steam at the tube surface. 
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Solution: Data:- Tv = 90 
0
C; Tw = 30 

0
C; Do = 0.025 m; L = 6 m. Vertical tube. 

Mean film temperature = 0.5 x (90 + 60) = 75 
0
C. Properties of the condensate at 75 

0
C are: kL 

= 0.671 W/(m-K); μL = 0.3805 x 10 
− 3 

N-s/m
2
; ρL= 974.8 kg/m

3
; At 90 

0
C, hfg 

= 2283 x 10 
3 

J/(kg-K). 

We do not know whether the condensate flow is laminar or turbulent. We start the calculations 
assuming laminar flow and then check for laminar flow condition. For laminar flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= (1.47 / 2935.3)
3 

x [9.81 x 0.671
3 

x 974.8
2 

/ (0.3805 x 10 
− 3

)
2
] 

= 2443 
 

Since ReL > 1800, flow is turbulent. 
 

For turbulent flow 
2 3 1 / 3 0.4 

hav [νL   / (gkL  ) ] = 0.0077 (ReL) 

Or 
2 3 1 / 3 

hav = 0.0077 (ReL) 
0.4 

/ [νL   / (gkL  ) ] .................. (1) 

ReL = 4M / (μLπDo). But Mhfg = havπDoL (Tv – Tw) or M / (πDo) = havL (Tv – Tw) / hfg 

 
4 havL (Tv – Tw) 

Therefore ReL = ---------------------- 
 hfg μL 

Substituting this expression for ReL in equation (1) we have 

  g ρ 
2 

k 
3 

h 
L L fg 

 

] 1 / 4   hav = 0.943 [ ----------------------------- 

  μL(Tv – Tw) L  

9.81 x (974.8)
2 

x (0.671)
3 

x 2283 x 10 
3
 

Hence hav = 0.943 x [-------------------------------------------------- ] 1 / 4 

  0.3805 x 10 
− 3 

x (90 – 60) x 6  

= 2935.3 W /(m
2 

– K). 

 
For laminar flow 

 
2 3 1 / 3 − 1/ 3 

hav [νL   / (gkL  ) ] = 1.47 Re L 

 
Or 

 
3 2 

ReL = (1.47 / hav)
3
(gkL / νL ) 
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4 havL (Tv – Tw) 

hav = 0.0077 [------------------------- 
hfg μL 

4 L (Tv – Tw) 

] 0.4 [νL
2

 / (gkL
3
) ] 

 
− 1 / 3 

(hav )
0.6 

= 0.0077 [------------------------- ] 
0.4 

[ν 

hfg μL 

2 
/ (gk 

3
) ] 

− 1 / 3 

4 x 6 x (90 – 60) (0.3805 x 10 
− 3

)
2
 

= 0.0077 x [--------------------------------------- ] 
0.4 

x [ --------------------------------- ] − 1 / 3 

2283 x 10 
3 

x 0.3805 x 10 
− 3 

974.8
2 

x 9.81 x (0.671)
3
 

= 192. Hence hav = [192] 
1 / 0.6 

= 6390 W /(m
2 

– K). 

havπDoL (Tv – Tw) 6390 x π x 0.025 x 6 x(90 – 60) 

Therefore M = ----------------------- 

hfg 

 

 

 

 

 
 

 

 

 

 

= - - - - - -- - - - - - -- - - - - - -- - - - - -- - - - - - -- - - - - -- - - 

2283 x 10 
3
 

= 0.0396 kg/s 

 

Dropwise Condensation: Experimental investigations on condensation have indicated that, if 

traces of oil are present in steam and the condensing surface is highly polished, the condensate 

film breaks into droplets. This type of condensation is called “drop wise condensation”. The 

droplets grow, coalesce and run off the surface, leaving agreater portion of the condensing surface 

exposed to the incoming steam. Since the entire condensing surface is not covered with a 

continuous layer of liquid film, the heat transfer rate for ideal drop wise condensation is much 

higher than that for film wise condensation. 

 

The heat transfer coefficient may be 2 to 3 times greater for drop wise condensation than for film 

wise condensation. Hence considerable research has been done with the objective of producing long 

lasting drop wise condensation. Various types of chemicals have been tried to promote drop wise 

condensation. Continuous drop wise condensation, obtainable with different promoters varies 

between 100 to 300 hours with pure steam and are shorter with industrial steam. Failure occurs 

because of fouling or oxidation of the surface, or by the flow of the condensate or by a 

combination of these effects. 

 

It is unlikely that long lasting drop wise condensation can be produced under practical conditions by a 

single treatment of any of the promoters currently available. Therefore in the analysis of a heat 

exchanger involving condensation of steam, it is recommended that film wise condensation be 

assumed for the condensing surface. 

 

Boiling Types: When evaporation occurs at a solid-liquid interface, it is called as 

“boiling”. The boiling process occurs when the temperature of the surface Tw exceeds the 

saturation temperature Tsat corresponding to the liquid pressure. Heat is transferred from the solid 

surface to the liquid, and the appropriate form of Newton‟s law of cooling is 
 

qw = h [Tw – Tsat] = h ∆Te ..............................................(8.27) 

L L 
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e e 

Where ∆Te = [Tw - Tsat] and is termed as the “excess temperature”. The boiling process is 

characterized by the formation of vapour bubbles which grow and subsequently detach from the 
surface. Vapour bubble growth and dynamics depend, in a complicated manner, on the 

excess temperature ∆Te, the nature of the surface, and the thermo-physical properties of the fluid, 

such as its surface tension. In turn the dynamics of vapour bubble growth affect fluid motion near 
the surface and therefore strongly influence the heat transfer coefficient. 

Boiling may occur under varying conditions. For example if the liquid is quiescent and if its 

motion near the surface is due to free convection and due to mixing induced by bubble growth and 

detachment, then such a boiling process is called “pool boiling”. In contrast in “forced convection 

boiling”, the fluid motion is induced by an external means as well as by free convection and 

bubble induced mixing. Boiling may also  be classified as “sub-cooled boiling” and “saturated 

boiling”. In sub-cooled boiling, the temperature of the liquid is below the saturation temperature 

and the bubbles formed at the surface may condense in the liquid. In contrast, in saturated boiling, 

the temperature of the liquid slightly exceeds the saturation temeperature, Bubbles formed at the 

surface are then propelled through the liquid by buoyancy forces, eventually escaping from a free 

surface. 

 
Pool Boiling Regimes: The first investigator who established experimentally the different regimes of 
pool boiling was Nukiyama. He immersed an electric resistance wire into a body of saturated water 
and initiated boiling on the surface of the wire by passing electric current through it. He determined 
the heat flux as well as the temperature from the measurements of current and voltage. Since the work 
of Nukiyama, a number of investigations on pool boiling have been reported. Fig. 8.4 illustrates the 
characteristics of pool boiling for water at atmospheric pressure. This  boiling  curve  illustrates  the  
variation  of  heat  flux  or  the  heat  transfer  coefficient  as a function of excess temperature ∆Te. 

This curve pertains to water at 1 atm pressure.From Eq. (8.27) it  can seen that qw  depends  on the  

heat transfer coefficient  h and  the excess temperature 

∆Te. 

Free Convection Regime(up to point A):- Free convection is said to exist if ∆Te ≤ 5 
0 

C. In this 

regime there is insufficient vapour in contact with the liquid phase to cause boiling at the 
saturation temperature. As the excess temperature is increased, the bubble inception will 

eventually occur, but below point A (referred to as onset of nucleate boiling,ONB), fluid motion 

is primarily due to free convection effects.Therefore,according to whether 
the flow is laminar or turbulent, the heat transfer coefficient h varies as ∆T 1/4 

or as ∆T 
1/3

respectively so that qw varies as ∆T 
5/4

 

e e 

or as ∆T 
4/3

. 

Nucleate Boiling Regime(Between points A and C):- Nucleate boiling exists in the range 5 
0 

C ≤ 

∆Te ≤ 30 
0 

C. In this range, two different flow regimes may be distinguished. In the region A  – B,  
isolated  bubbles   form  at   nucleation  sites   and  separate   from   the  surface, substantially 

increasing h and qw. In this regime most of the heat exchange is through direct transfer from the 
surface to liquid in motion at the surface, and not through vapour bubbles rising from the surface. 

As ∆Te is increased beyond 10 
0
C (Region B-C), the nucleation sites will be numerous and the 

bubble generation rate is so high that continuous columns of vapour appear. As a result very high 
heat fluxes are obtainable in this region. In practical applications, the nucleate boiling regime is 
most desirable, because large heat fluxes are 
obtainable  with  small  temperature  differences.  In  the  nucleate  boiling  regime,  the  heat 
increases rapidly with increasing excess temperature 



250  

10
7

 
120 

 

 

10
6

 

 

 

10
5

 

 
10

4
 

 

10
3

 

1.0 5.0 10 30 100 1000 10000 

      ∆Te = Tw − Tsat   

Fig. 8.4: Typical boiling curve for water at 1 atm; surface heat flux qw as function of 

excess temperature ∆Te 

∆Te until the peak heat flux is reached. The location of this peak heat flux is called the burnout 

point, or departure from nucleate boiling (DNB), or the critical heat flux (CHF). The reason for 

calling the critical heat flux the burnout point is apparent from the Fig. 

8.4. Such high values of ∆Te may cause the burning up or melting away of the heating 
element. 

Film Boiling Regime:- It can be seen from Fig. 8.4 that after the peak heat flux is reached, any 

further increase in ∆Te results in a reduction in heat flux. The reason for this  curious phenomenon is 

the blanketing of the heating surface with a vapour film which restricts liquid flow to the surface and 
has a low thermal conductivity. This regime is called the film boiling regime. The film boiling regime 
can be separated into three distinct regions namely (i) the unstable film boiling region, (ii) the stable 
film boiling region and 

(iii) radiation dominating region. In the unstable film boiling region, the vapour film is 
unstable, collapsing and reforming under the influence of convective currents and the 
iv) surface tension. Here the heat flux decreases as the surface temperature increases, because 

the average wetted area of the heater surface decreases. In the stable film boiling region, the heat 

flux drops to a minimum, because a continuous vapour film covers the heater surface.In the 

radiation dominating region, the heat flux begins to increase as the excess temperature increases, 

because the temperature at the heater surface is sufficiently high for thermal radiation effects to 

augment heat transfer through the vapour film. 

qw, W/m
2
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Pool Boiling Correlations: 

 

Correlation for The Nucleate Boiling Regime:- The heat transfer in the nucleate boiling 

regime is affected by the nucleation process, the distribution of active nucleation sites on the 

surface, and the growth and departure of bubbles.Numerous experimental investigations 

have been reported and a number of attempts have been made to correlate the experimental 

data corresponding to nucleate boiling regime.The most successful and widely used 

correlation was developed by Rohsenow. By analyzing the significance of various 

parameters in relation to forced - convection effects. He proposed the following empirical 

relation to correlate the heat flux in the entire nucleate boiling regime: 
 

Cpl ∆Te 

------------- = Csf 

hfg Prl
n

 

qw    

[ ----------√ ζ* / {g (ρl – ρv)} ] 
0.33

 

(μl hfg) 

 
………………. (8.28) 

where Cpl = specific heat of saturated liquid, J /(kg -
0
C) 

Csf = constant to be determined from experimental data depending 

upon Heating surface – fluid combination 
 

hfg = latent heat of vapourization, J / kg 

g = acceleration due to gravity, m / s
2 

Prl = Prandtl number of saturated liquid 

qw = boiling heat flux, W / m
2

 

∆Te = excess temperature as defined in Eq. (8.27) 

μl = viscosity of saturated liquid, kg / (m – s) 

ρl, ρv = density of liquid and saturated vapour respectively, kg / 

m
3 

ζ
* 

= surface tension of liquid – vapour interface, N / m. 

In Eq. (8.28) the exponent n and the coefficient Csf are the two provisions to adjust the 
correlation for the liquid – surface combination. Table 8-1 gives the experimentally determined 

values Csf for a variety of liquid – surface combinations. The value of n should be taken as 1 for 
water and 1.7 for all other liquids shown in Table 8 – 1. 
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v 

v 

Table 8 – 1: Values of Csf of Eq. (8.28) for various liquid – surface combinations 

 

 

Liquid – surface combination Csf 

 

Water – Copper 
 

0.0130 

Water – scored copper 0.0068 

Water – chemically etched stainless steel 0.0130 

Water – mechanically polished stainless steel 0.0130 

Water – ground and polished stainless steel 0.0060 

Water – brass 0.0060 

Water – nickel 0.0060 

Water – platinum 0.0130 

n-Pentane – polished copper 0.0154 

n-Pentane – lapped copper 0.0049 

Benzene – chromium 0.1010 

Ethyl alcohol – chromium 0.0027 

 

Correlations for Peak Heat Flux:- The correlation given by Eq. (8.28) provides information 
for the heat flux in nucleate boiling, but it cannot predict the peak heat flux.Based on stability 
considerations, Kutateladze and Zuber veloped the following correlation to calculate the peak 
heat flux in pool boiling from an infinite horizontal plate facing up. 

Π ζ
* 

g (ρl – ρv) 

qmax = ----- ρv hfg [---------------------- ] 
¼ 

[ 1 + ρv / ρl ] 
½ ................... 

(8.29) 

24 ρ 
2
 

where ζ 
* 

= surface tension of liquid – vapour interface, N / m 

g = acceleration due to gravity, m / s
2
 

ρl, ρv = density of liquid and vapour respectively, kg / 

m
3 

hfg = latent heat of vapourization, J / kg 

qmax = peak heat flux, W / m
2

 

It is apparent from this equation that large values of hfg, ρv, g and ζ 
* 

are desirable for a large 

value of the peak heat flux. For example, water has a large value of hfg; hence the peak heat flux 
obtainable with boiling water is high. This equation also shows that a reduced gravitational field 

decreases the peak heat flux. For most situations, the quantity [ 1 + ρv / ρl ] 
½ 

is approximately 

equal to unity. Hence Eq. (8.29) can be written as 
 

π 
qmax = ----- ρ 

1/2 
h [ζ

* 
g (ρ – ρ  ) ] 

¼ ............................................. 
(8.30) 

v fg l v 

24 
 

Lienhard and Dhir improved the analysis and considered the effect of the size of 
the horizontal plate. They showed that 

 

qmax = 0.149 hfg ρ 
1/2 

[ζ
* 

g (ρl – ρv) ] 
¼ ........................................... 

(8.31) 
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The above expression was shown to be valid as long as the plate is large and the 

dimensionless quantity L [g (ρl – ρv) / ζ
* 

] 
½ 

≥ 2.7, where L is the characteristic dimension of 
the plate. For circular plate L is taken as the diameter, while for a square plate it is taken as 
the side of the plate. 

 
For the case of horizontal cylinders of radius R, Lienhard & Sun recommended the 

following modified form of Eq. (8.30). 
 

π 
qmax = ----- ρ 

1/2 
h [ζ

* 
g (ρ – ρ  ) ] 

¼  
f(L’) ................................. (8.32) 

v fg l v 

24 

where f(L‟) = 0.89 + 2.27 exp { − 3.44 √L‟ }, and L‟ = R [g (ρl – ρv) / ζ
* 

] 
½

. 

Eq. (8.32) is valid for situations in which L‟ ≥ 0.15. This equation cal also be used for large 
spheres in which case f(L‟) = 0.84 and L‟ = 4.26. For small spheres 

f(L‟) = 1.734 / √L‟, where 0.15 ≤ L‟ ≤ 4.26. 

 

Correlations for Film boiling Regime:- No satisfactory correlation exists for the unstable 
film boiling region. For the stable film boiling region, Bromley has derived the following 
correlation for horizontal cylinders: 

 

 k 
3 

ρ (ρ – ρ ) g h 
*
 v v l v fg 

¼
 

ho = 0.62 [ ----------------------------------- ] ……………………………………(8.33) 

D μv ∆Te 

Where ho = average boiling heat transfer coefficient in the absence of radiation W/(m
2 

– K), 
D = outside diameter of the tube, 

hfg
* 

= Difference between the enthalpy of the vapour at the mean film temperature,Tm (Tm = [Tw 

+ Tsat] / 2) and the enthalpy of the liquid at the saturation temperature 

≈ hfg + 0.8 Cpv ∆Te. 

In the above correlation, all the vapour properties are evaluated at the mean film temperature 

while the liquid density is evaluated at the saturation temperature. 

Since radiation is significant in film boiling, the radiation component has to be added 
in order to obtain the total heat transfer. Brmoley has shown that the total heat transfer 
coefficient h is given by the relation 

h = ho [ho / h ] 
1/3 

+ hr ................................................... (8.34) 

where hr is the radiation heat transfer coefficient which is calculated from the formula 

for the radiation heat exchange between parallel planes; 

 

 

 

where α = absorptivity of liquid and ε = emissivity of the hot tube . 

1 ζ [ Tw
4 

– Tsa 
4 

] 
t 

hr = ----------------------- ------------------------- ……(8.35) 

[ 1 / ε + 1 / α – 1] [Tw – Tsat 
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Eq.(8.34) is difficult to use because a trial and error approach is needed to determine 

h. When hr is smaller than ho, Eq. (8.34) can be replaced by 

h = ho + ¾ hr ..................................................................... (8.36) 

 Illustrative examples on pool boiling 

Example 8.9:- Saturated water at 100 
0
C is boiled with a copper heating element having 

a heating surface area of 0.04 m
2
which is maintained at a uniform temperature of 115 

0
C. Calculate the surface heat flux and the rate of evaporation of water. Also calculate 

the critical flux. 

Solution: Given:- Tsat = 100 
0
C; Tw = 115 

0
C; Surface area = A = 0.04 m

2
;  

Properties of liquid water at 100 
0
C are: Cpl = 4216 J/(kg – K); hfg = 2257 x 10 

3 
J/kg; 

ρl = 960.6 kg/m
3
; ρv = 0.5977 kg/m

3
; Prl = 1.75; μl = 282.4 x 10 

− 6 
kg/(m – s); 

ζ
* 

= 58.8 x 10 
− 3 

N/m ; ∆Te = 115 – 100 = 15 
0
C. 

Since ∆Te lies between 5 
0
C and 30 

0
C, the boiling is in the nucleate regime. 

Csf = 0.0130 for water – copper combination and for water n = 1.For nucleate boiling 

region we can use Eq. (8.28) which is as follows: 

 
 

Cpl ∆Te qw    0.33 
………………. (8.28) ------------- = Csf [ --------- √ ζ* / {g (ρl – ρv)} ] 

hfg Pr 
n

 
l (μl hfg)    

Substituting the given values we have 

4216 x 15 
 

qw 
 − 3 58.8 x 10 
  

----------------------- = 0.013 x [ --------------------------------- x √ { -------------------- } ] 
0.33

 

(2257 x 10 
3
) x 1.75 282.4 x 10 

− 6 
x 2257 x 10 

 
3 

 
9.81 x (960.6 – 0.5977) 

Solving for qw we get qw = 4.84 x 10 
5 

W / m
2
. 

Hence total heat transfer = Q = Aqw = 0.04 x 4.84 x 10 
5 

= 19.36 x 10 
3 

W = 19.36 kW. 
 

19.36 x 10 
3
 

Rate of evaporation = M = Q / hfg = ----------------- = 8.58 x 10 
− 3 

kg / s. 

2257 x 10 
3
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Critical heat flux can be calculated from Eq. (8.31) namely 

 
qmax = 0.149 hfg ρv

1/2 
[ζ

* 
g (ρl – ρv) ] 

¼ ........................................... 
(8.31) 

Hence qmax = 0.149 x 2257 x 10 
3 

x (0.5977) 
½

 

 
x [ 58.8 x 10 

− 3 
x 9.81 x (960.6 – 0.5977) ] 

¼
 

 
= 1.261 x 10 

6 
W/m

2 
= 1.261 MW/m

2
. 

 

Example 8.10:- A metal clad heating element of 6 mm diameter and emissivity equal to unity 

is horizontally immersed in a water bath. The surface temperature of the metal is 255 
0
C 

under steady state boiling conditions. If the water is at atmospheric pressure estimate the 
power dissipation per unit length of the heater. 

Solution: Given:- Tw = 255 
0
C ; Tsat = saturation temperature of water at 1 atm = 100 

0
C; 

∆Te = 255 – 100 = 155 
0
C. Since ∆Te > 120 

0
C, film boiling conditions will prevail. 

The heat transfer in this regime is given by Eq.(8.33) namely 
 

 k 
3 

ρ (ρ – ρ ) g h 
*
 

v v l v fg 

ho = 0.62 [ ----------------------------------- ] 
¼

 

D μv ∆Te 

Properties of water at 100 
0
C are: ρl = 957.9 kg/m

3
; hfg = 2257 x 10 

3 
J/kg; 

 

 

ρv = 4.808 kg/m
3
; Cpv = 2.56 x 10 

3 
J/(kg-K); kv = 0.0331 W / (m-

0
C); 

μv = 14.85 x 10 
− 6 

kg / (m-s). 

Substituting these values in the expression for ho we have 

3 3 3 
(0.0331) x 4.808 x (957.9 – 4.808) x 9.81 x {2257 x 10 + 0.8 x 2.56 x 10 x 155 } 

 

ho  = 0.62 x [---------------------------------------------------------------------- 

14.85 x 10 
− 6 

x 0.006 x 155 

] 
¼ 

= 460 W/(m
2 

– K) 
  

1 ζ {T 
4 

– Tsat
4
} 

w 
 

hr = ---------------------- x ------------------------------  

[1/ε + 1/α − 1 ] {Tw – Tsat}  

1 5.67 x 10 
− 8 

x { 528 
4 

– 373 
4
} 

 

= ------------------------ x -------------------------------------------  

[ 1 / 1 + 1 / 1 − 1 ] { 528 – 373}  
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= 21.3 W / (m
2
-K). 

Now h ≈ ho + ¾ hr = 460 + ¾ x 21.3 = 476 W /(m
2 

– K). 

Hence Q = h A ∆Te = 476 x (π x 0.006 x 1)x 155 = 1.36 x 10 
3 

W / m. 

Example 8.11:- A vessel with a flat bottom and 0.1 m
2 

in area is used for boiling water at 
atmospheric pressure. Find the temperature at which the vessel must be maintained if a 
boiling rate of 80 kg/h is desired. Assume that the vessel is made of copper and the boiling is 

nucleate boiling. Take ρv = 0.60 kg/m
3
. 

Solution: Given:- A = 0.1 m
2
; Tsat = 100 

0
C; M = 80 kg/h = 0.022 kg/s; Prl = 1.75 

hfg = 2257 x10 
3 

J /kg; Cpl = 4216 J/(kg-K); ρl = 960.6 kg/m
3
; ζ* = 58.8 x 10 

− 3 
N/m; 

μl = 282.4 x 10 
− 6 

kg / (m-s); n = 1; For water-copper combination Csf = 0.0130; 

 
M hfg 0.022 x 2257 x 10 

3
 

---------------------------- = 4.965 x 10 
3 

W/m
2

 qw = Q / A = -------- = 
 A 0.1 

For nucleate boiling Eq.(8.28) is used to calculate the excess temperature .∆Te 

 

 
 

Cpl ∆Te qw    

------------- = Csf [ --------- √ ζ* / {g (ρl – ρv)} ] 
0.33

 

hfg Pr 
n

 
l (μl hfg)  

 

4216 x ∆Te 

 

x √ 58.8 x 10 
− 3 

/ [9.81 x (960.6 – 0.6)] } 
0.33

 

Or ∆Te = 15.2 
0
C 

Hence Tw = 100 + 15.2 = 115.2 
0
C. 

 
----------------------- 

2257 x103x1.75 

= 0.013 x {4.965 x 10 
5
/(282.4 x 10

− 6
x 2257 x 10

3
) 
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Example 8.12:- Calculate the heat transfer coefficient during stable film boiling of water 

from a 0.9 cm diameter horizontal carbon tube. The water is saturated and at 100 
0
C and the 

tube surface is at 1000 
0
C. Take the emissivity of the carbon surface to be 0.8 and assume 

that at the average film temperature, the steam has the following properties. 
kv = 0.0616 W/(m-K); ρv = 0.266 kg/m

3
; μv = 28.7 x 10 

−6 
kg/(m-s); Cpv = 2168 J/(kg-K); ρl 

= 958.4 kg/m
3
 

Solution: Given:- D = 0.009 m; ∆Te = Tw – Tsat = 1000 – 100 = 900 
0
C; ε = 0.8; α = 

1.0 hfg
* 

= hfg + 0.8 Cpv ∆Te = 2257 x 10 
3 

+ 0.8 x 2168 x 900 = 3818 x 10 
3 

J/kg. 

For stable film boiling the convection coefficient is given by Eq.(8.33) 
 
 

 k 
3 

ρ (ρ – ρ ) g h 
*
 

v v l v fg 

ho = 0.62 [ ----------------------------------- ] 
¼

 

D μv ∆Te 

(0.0616)
3 

x 0.266 x (958.4 – 0.266) x 9.81 x 3818 x 10 
3

 
 

ho  = 0.62 x [ ----------------------------------------------------------------------  ] ¼ 

 0.009x (28.7 x 10 
− 6

) x 900  

= 194 W/(m
2 

– K) 
  

Radiation heat transfer coefficient is given by 

1 ζ (T   
4 

– T 
4
) 

w sat 
 

hr = ---------------------- ------------------------- 

[ 1/ε + 1/α – 1] (Tw – Tsat)  

 

 

 

 

1 5.67 x 10 
− 8 

(1273 
4 

− 373 
4
) 

hr = ---------------------- x -------------------------------------- 
[ 1/0.8 + 1/1 – 1] (1273 – 373) 

= 131.4 W/(m
2 

– K). 

Hence h = ho + ¾ hr = 194 + ¾ x 131.4 = 292.5 
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                            RADIATION HEAT TRANSFER 

 

INTRODUCTORY CONCEPTS AND DEFINITIONS THERMAL RADIATION 
 

When a body is placed in an enclosure whose walls are at temperatures below that of the body, 
the temperature of the body will decrease even if the enclosure is evacuated. This process by 
which heat is transferred from a body by virtue of its temperature, without the aid of any 
intervening medium is called “THERMAL RADIATION”. The actual mechanism of radiation 
is not yet completely understood. There are at present two theories by means of which 
radiation propagation is explained. According to Maxwell‟s electromagnetic theory, Radiation 
is treated as electromagnetic waves, while Max Planck‟s theory treats radiation as “Photons” 
or “Quanta of energy”. Neither theory completely describes all observed phenomena. It is 

however known that  radiation travels with the speed of light, c (c = 3x10
8  

m/s) in a vacuum. 
This speed is equal to the  product 

of the frequency of the radiation and the wavelength of this radiation, 

 

OR c = λν ................................................... (10.1) 

 

Where  λ = wavelength of radiation (m) and ν = frequency (1/s). 

 
Usually, it is more convenient to specify wavelength in micrometer, which is equal 

to 10
-6 

m. 

From the viewpoint of electromagnetic wave theory, the waves travel at the speed of light, 
while from the quantum theory point of view, energy is transported by photons which travel 
at the speed of light. Although all the photons have the same velocity, there 

is always a distribution of energy among them. The energy associated with a photon, ep = hν 

where h is the Planck‟s constant equal to 6.6256 x 10
-34 

Js. The entire energy spectrum can 
also be described in terms of the wavelength of radiation. 

 

Radiation phenomena are usually classified by their characteristic wavelength, λ. At 

temperatures encountered in most engineering applications, the bulk of the thermal energy 

emitted by a body lies in the wavelengths between λ= 0.1 and 100 μm. For this reason, the 
portion of the wavelength spectrum between λ= 0.1 and 100 μm is generally referred to as 

“THERMAL RADIATION”. The wavelength spectrum in the range λ= 0.4 and 0.7 μm is 

visible to the naked eye, and this is called „light rays‟. The wavelength spectrum of radiation 

is illustrated in Fig 10.1 
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Thermal Radiation 

( 0.1 μm to 100 μm ) 

Light Rays (0.1 μm to 0.3 μm) 

−2 

Ultra violet radiation (10 to 0.4 μm) 3 
Infrared Radiation (0.7 to 10 μm) 

5 

λ , μm 
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Fig. 10.1 Typical Spectrum of electromagnetic radiation 

 

In the study of radiation transfer, a distinction should be made between bodies which are 

“semi-transparent” to radiation and those which are “opaque”. If the material is 

semitransparent to radiation, such as glass, salt crystals, and gases at elevated temperatures, 

then the radiation leaving the body from its outer surfaces results from emissions at all depths 

within the material. The emission of radiation for such cases is a “BULK” or a 

“VOLUMETRIC PHENOMENON”. If the material is opaque to thermal radiation, such as 

metals, wood, rock etc. then the radiation emitted by the interior regions of the body cannot 

reach the surface. In such cases, the radiation emitted by the body originates from the material 

at the immediate vicinity of the surface (i.e. within about 1μm) and the emission is regarded as 

a “SURFACE PHENOMENON”. It should also be noted that a material may behave as a semi 

transparent medium for certain temperature ranges, and as opaque for other temperatures. 

Glass is a typical example for such behaviour. It is semi transparent to thermal radiation at 

elevated temperatures and opaque at intermediate and low temperatures. 

 
 DEFINITIONS OF TERMS USED IN THERMAL RADIATION 

 

 Monochromatic Emissive Power (E λ): The monochromatic emissive power of a 

surface at any temperature T and wavelength λ is defined as the quantity which 
when multiplied by dλ gives the radiant flux in the wavelength range - λ to λ+dλ. 

 
 Emissive Power (E): The emissive power of a surface is the energy emitted by a 

surface at a given temperature per unit time per unit area for the entire wavelength 
range, from λ = 0 to λ = ∞. 
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Energy transmitted 

∞ 

E = ∫Eλdλ 
……………………………………………(10.2) 0 

 

 Absorptivity, Reflectivity and Transmissibility of a body: 
 

 

 

Incident Radiation 
 

Energy reflected 

 
 

 

 

 

 

Fig.10.2: Effects of radiation incident on a surface 

 
 

When a radiant energy strikes a material surface, part of the radiation is reflected, part is 
absorbed, and part is transmitted, as shown in Fig. 10.2. Reflectivity (ρ) is defined as the 
fraction of energy which is reflected, Absorptivity (α) as the fraction absorbed, and 

Transmissivity (η) as the fraction transmitted. Thus, ρ + α + η = 1. 

 
Most solid bodies do not transmit thermal radiation, so that for many applied problems, the 
transmissivity may be taken as zero. Then 

 
ρ + α = 1 ...................................................... (10.3) 

 

 

 
 

Energy Absorbed 
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Source 

Source 

Φ1 
Φ2 

Ф2 = Φ1 

 Specular Radiation and Diffuse Radiation: 
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(a) Specular Radiation (b) Diffuse Radiation 

 

 
Fig.10.3: Specular and Diffuse Radiation 

 

When radiation strikes a surface, two types of reflection phenomena may be 

observed. If the angle of incidence is equal to the angle of reflection, the radiation is 
called Specular. On the other hand, when an incident beam is distributed uniformly in 

all directions after reflection, the radiation is called Diffuse Radiation. The two types 

of radiation are depicted in Fig. 10.3. Ordinarily, no real surface is either specular or 

diffuse. An ordinary mirror is specular for visible light, but would not necessarily be 
specular over the entire wavelength range. A rough surface exhibits diffuse behaviour 

better than a highly polished surface. Similarly, a highly polished surface is more 

specular than a rough surface. 

 

 Black Body: 
 

A body which absorbs all incident radiation falling on it is called a blackbody. For 
a blackbody, α = 1, ρ = η = 0. For a given temperature and wavelength, no other body 

at the same temperature and wavelength, can emit more radiation than a blackbody. 

Blackbody radiation at any temperature T is the maximum possible emission at that 

temperature. A blackbody or ideal radiator is a theoretical concept which sets an 
upper limit to the emission f radiation. It is a standard with which the radiation 

characteristics of other media are compared. 

 

  Emissivity of a Surface (ε): 
 

The emissivity of a surface is the ratio of the emissive power of the surface to the 
emissive power of a black surface at the same temperature. It is denoted by the 

symbol ε. 

 

 

i.e. ε = [E/Eb]T. 

  Monochromatic Emissivity of a Surface (ε λ): 
 

The monochromatic emissivity of a surface is the ratio of the monochromatic 
emissive power of the surface to the monochromatic emissive power of a black 
surface at the same temperature and same wavelength. 

ελ = [Eλ / Ebλ ] λ,T. 

 Gray Body: 
 

A gray body is a body having the same value of monochromatic emissivity 
at all wavelengths. i.e. 

ε = ελ, for a gray body. 
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 Radiosity of a Surface (J): 
 

This is defined as the total energy leaving a surface per unit time per unit area of 

the surface. This definition includes the energy reflected by the surface due to some 

radiation falling on it. 

 

 Irradiation of a surface(G): 
 

This is defined as the radiant energy falling on a surface per unit time, per unit 
area of the surface. 

Therefore if E is the emissive power, J is the radiosity, ε is the irradiation and ρ 
the reflectivity of a surface, then, 

J = E + ρG 

For an opaque surface, ρ + α = 1 or ρ = (1 – α) 

J = E + (1-α)G................................................................ (10.4) 

 

 LAWS OF RADIATION 
 

 STEFAN – BOLTZMANN LAW: 
 

This law states that the emissive power of a blackbody is directly proportional to 
the fourth power of the absolute temperature of the body. 

i.e., Eb α T
4

  

Or Eb = ζT
4 

---------------------------------- (10.5) 

where ζ is called the Stefan – Boltzmann constant. 

In SI units ζ = 5.669x10
-8 

W/(m
2
-K

4
). 

 PLANCK’S LAW: 
 

This law states that the monochromatic power of a blackbody is given by 
 

C1 

Ebλ  = ----------------------------- ...................................... (10.6) 

λ
5  

[ e 
(C

2  
/ λT) 

– 1]
 

where C1 and C2 are constants whose values are found from experimental 

data; C1 = 3.7415 x 10
-16 

Wm
2 

and C2 = 1.4388 x 10
-2 

m-K. 
λ is the wavelength and T is the absolute temperature in K. 

 

 WEIN’S DISPLACEMENT LAW: 

It can be seen from Eq. 10.6 that at a given temperature, Ebλ depends only on λ. 

Therefore the value of λ which gives maximum value of Ebλ can be obtained by 

differentiating Eq(10.6) w.r.t λ and equating it to zero. 
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------ =  ------------------------------------------  

 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

By trial and error, y = 4.965 
 

Therefore, if λm denotes the value of λ which gives maximum Ebλ, then 

C2/λmT = 4.965 

Or λmT = C2/4.965 = 1.4388x10
-2 

/4.965 

λmT = 0.002898 m-K ................................................ (10.7) 

 
Equation (10.7) is called the Wein‟s displacement law. From this equation it can be seen 
that the wavelength at which the monochromatic emissive power is a maximum decreases 

with increasing temperature. This is also illustrated in Fig 10.4(a). Fig 10.4(b) gives a 

comparison of monochromatic emissive powers for different surfaces at a particular 

temperature for different wavelengths. 

Let C2/λT = y . Then Eq. (10.6) reduces to 

  
C1 

 Ebλ = ----------------------------- 
[C2/(yT)]5[ey–1] 

Then dEbλ C1 d / dy {[C2 / (yT)] 
5 

[ e 
y 

– 1]} 
   

 
dy {[C2 / (yT)] 

5 
[ e 

y 
– 1]} 

2
 

or d / dy {[C2 / (yT)] 
5 

(e 
y 

– 1)} = 0 

Or e
y
(5 – y) = 5 
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Fig. 10.4 (a) Black body emissive power as a function of wave length 
and Temperature 

 

 

 

 

Monochromatic Black body (ελ = ε = 1) 

emissive power  

 Gray body (ελ = ε < 1) 

 
Real Surface 

 

 

 

 

 

 

 

 
 

Fig. 10.4 (b) Comparison of emissive powers of different types o 

surfaces as a function of wavelength at a given temperature 
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Black Enclosure 
EA 

Sample 

qi.A.α 

 KIRCHOFF’S LAW: 
 

This law states that the emissivity of a surface is equal to its absorptivity when the 
surface is in thermal equilibrium with the surroundings. 

 
Proof: Consider a perfect black enclosure i.e. the one which absorbs all the incident 
radiation falling on it (see Fig 10.5). Now let the radiant flux from this enclosure per unit 

area arriving at some area be qi W/m
2
. 

 
 

 

Fig. 10.5 : Model used for deriving Kirchoff law 

 

Now suppose that a body is placed inside the enclosure and allowed to come to thermal 

equilibrium with it. At equilibrium, the energy absorbed by the body must be equal to the 
energy emitted; otherwise there would be an energy flow into or out of the body, which 

would raise or lower its temperature. At thermal equilibrium we may write 
 

EA = qi A α....................................................(10.8) 

If we now replace the body in the enclosure with a black body of the same size and shape 

and allow it to come to thermal equilibrium with the enclosure, 
 

EbA = qi A ..................................................... (10.9) 

Since α = 1 for a blackbody. 

 

If Eq. 10.8 is divided by Eq. 10.9 we get 
 

E/Eb = α 

But by definition E/Eb = ε, the emissivity of the body, so that ε = α ............. (10.10) 
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Equation 10.10 is called Kirchoff‟s law and is valid only when the body is in thermal 

equilibrium with the surroundings. However, while analyzing radiation problems in practice 

we assume that Kirchoff‟s law holds good even if the body is not in thermal equilibrium with 

the surroundings, as the error involved is not very significant. 

 

 ILLUSTRATIVE EXAMPLES ON BASIC CONCEPTS 
 

Example 10.1: The emission of radiation from a surface can be approximated as 
blackbody radiation at 1000K. 

 

(a) What fraction of the total energy emitted is below λ = 5μm 

(b) What is the wavelength below which the emission is 10.5% of the total emission at 
1000K. 

(c) What is the wavelength at which the maximum spectral emission occurs at 1000K. 

 
Solution: The radiation flux emitted by the blackbody over the wavelength interval 0 – λ 
is given by 

λ 

[Eb]0 – λ = ∫Ebλdλ 
0 

The integration required in the above equation has been done numerically and the results 

are presented in the form of a table. The table gives the value of D 0-λ where 
 λ   

 ∫Ebλdλ 1 λ 

D0-λ = 0 = ------- ∫ Ebλ dλ --- -∞-----------  

ζ T
4
  ∫Ebλdλ 0 

 0   

(a) From Table of Radiation properties, for λT = 5 x 1000 = 5000, D0-λ = 0.6337. 

This means that 63.37 % of the total emission occurs below λ = 5 μm. 
 

(b) From the same table, for D0-λ = 0.105, λT = 

2222. Hence λ = 2222/1000 = 2.222 μm. 
 

(c) From Wein‟s displacement law, λmT = 0.002898. 

Hence for T = 1000 K, λm =0.002898 / 1000 = 2.898 x 10 
−6 

m = 2.898 μm. 

Example 10.2: The monochromatic emissivity of a surface varies with the wavelength in 
the following manner: 

 

ελ = 0 for λ < 0.3μm 

= 0.9 for 0.3μm < λ < 1μm 

= 0 for λ > 1μm 

Calculate the heat flux emitted by the surface if it is at a temperature of 1500 K 
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Solution:  
Eλ = ε λ Ebλ 

∞ 0.3 μm 1 μm ∞ 

Therefore E = ∫ ε λ Ebλ = ∫ 0.0 Ebλ dλ + ∫ 0.9 Ebλ dλ + ∫ 0.0 Ebλ dλ 
0 0 0.3 μm 1 μm 

 
1 μm 1 μm 0.3 μm 

= 0.9 ∫Ebλ dλ = 0.9 [ ∫ Ebλ dλ − ∫ Ebλ dλ ] 
0.3 μm 0 0 

 

= 0.9 ζ T 
4 

[ D0-1 – D0 – 0.3] 

For λ = 1μm, λT = 1500 μm-K, therefore D0-1 = ½ (0.01972 + 0.00779) = 

0.93755 For λ = 0.3μm, λT = 450 μm-K, therefore D0-3 = 0 

Thus E = 0.9x5.67x10
-8

x1500
4 

[0.013755 – 0] = 3553 W/m
2

 

Example 10.3: Calculate the heat flux emitted due to thermal radiation from a black 

surface at 6000
0 

C. At what wavelength is the monochromatic emissive power maximum 
and what is the maximum value? 

 

Solution:Temp of the black surface = 6273K 

Heat Flux emitted = Eb = ζT
4 

= 5.67x10
-8

x6273
4 

= 87798 KW/m
2 

Wavelength corresponding to max monochromatic emissive power is given 

by λmT = 0.002898 m-K 

λm = 0.002898/6273 = 4.62x10
-7 

m 

The maximum monochromatic emissive power is given by 
 

2 π C1 

(Ebλ)max = ------------------------------------ 

λmax [ exp {C2 / (λmaxT)} – 1] 

2 x π x 0.596 x 10 
− 16

 

= --------------------------------------------------------------- 

(4.62 x 10 
− 7

) 
5 

x [ exp{ 0.014387 / 0.002898} – 1] 

 
= 1.251 x 10 

14 
W / m

2
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Example 10.4: The spectral hemispherical emissivity (monochromatic emissivity) of fire 
brick at 750K as a function of wavelength is as follows: 

 
 

λ 

 

 

 

 

 

- 

 
 

Where λ1 = 2μm, λ2 = 14μm, λ3 = ∞ 

 

Thus = ε1D0-λ1 + ε2[D0-λ2 – D0-λ1] + ε3[D0-∞ – D0-λ2] 
 

Now, λ1T = 2x750 = 1500; D0-λ1 = 0.013 

λ2T = 14x750 = 10500;   D0-λ2 = 0.924 λ3T = ∞; D0-λ3 = 1 

Hence ε = 0.1 x 0.013 + 0.6 x [ 0.924 – 0.013] + 0.8 x [1 – 0.924] = 0.609 

 
Example 10.5: the filament of a light bulb is assumed to emit radiation as a black body at 

2400K. if the bulb glass has a transmissivity of 0.90 for radiation in the visible range, 

calculate the percentage of the total energy emitted by the filament that reaches the ambient 

as visible light. 

 

Solution: The wavelength range corresponding to the visible range is taken as 

λ1 = 0.38μm to λ2 = 0.76μm. Therefore the fraction F of the total energy emitted in this range 
is given by 

 

λ2   

∫ Ebλ dλ λ2 λ1 

F = η [
λ1 --------- 

] = η [ ∫Ebλ dλ − ∫Ebλ dλ ] / Eb 

Eb (T) 
0 0 

= η [D0-λ2 – D0-λ1]. 

Now λ1T = 0.38 x 2400 = 912. Hence D0-λ1 = 0.0002 

and λ2T = 0.76 x 2400 = 1824. Hence D0-λ2 = 0.0436 

Therefore F = 0.9 x [0.0436 – 0.0002] =0.039 . 

Only 3.9 % of the total energy enters the ambient as light. The remaining energy 
produces heating. 

ε1 = 0.1 for 0 < λ < 2μm     

ε2 = 0.6 for 2μm <   < 14μm   

ε3 = 0.8 for14 < λ  <  ∞     

Calculate the hemispherical emissivity, ε for all wavelengths. 

Solution: 
  ∞          

 E 
0 

∫ελ Ebλ dλ    1  λ1 λ2 λ3 

ε = ------ = --------------- =  ----- [ ε1 ∫ Ebλ dλ + ε2 ∫ Ebλ dλ + ε3 ∫ Ebλ dλ ] 

 Eb ζ T 
4
    ζ T 

4
 

 
0 

 
λ1 

 
λ2 
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1 2 

 RADIATION HEAT EXCHANGE BETWEEN INFINITE PARALLEL 

SURFACES IN THE PRESENCE OF NON PARTICIPATING MEDIUM 
 

Assumptions: 

(i) The medium does not participate in radiation heat exchange between the two 
surfaces. 

(ii) The surfaces are flat and are at specified uniform temperatures. 

 
 : RADIATION EXCHANGE BETWEEN TWO PARALLEL BLACK 
SURFACES 
 

 

 

 

 

 
 

J1 = Eb1 T1, A1, α1 = ε1 = 1.0 
G1 = J2 

G2 = J1 
T2, A2, α2 = ε2 = 1.0 

J2 = Eb2 

 

 

 

 

Fig: 10.6 Radiation heat exchange between two parallel black surfaces. 
 

Since both surfaces are parallel, flat and infinite, radiosity of surface 1 = irradiation 

of surface 2 and vice versa. i.e. J1 = G2 and J2 = G1. Since both the surfaces are 

black, J1 = Eb1 = ζT 
4 

and J2 = Eb2 = ζT 
4
 

Net radiation leaving A1 = Qr1 = A1(J1 – G1) All this energy will reach A2. 

Net radiation leaving A1 and reaching A2 is given by 

Q1-2 = Qr1 = A1(J1 – G1) = A1[J1 – J2] 

Or Q1-2 = A1[Eb1 – Eb2] 

Or Q1-2 = ζA1[T1
4 

– T2
4
] (10.11) 
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 RADIATION HEAT EXCHANGE BETWEEN TWO PARALLEL INFINITE 

GRAYSURFACES: 
 

 

 

 

 
 

J1 
T1, α1= ε1, A1 G1 = J2 

G2 = J1 J2 

 T2, α2 = ε2, A2 

 

 

 

Fig: 10.7 Radiation Heat Exchange Between 2 Parallel Infinite Gray Surfaces. 
 

Since the net radiation leaving A1 will reach 
 

A2, Q1-2 = Qr1 = A1[J1 – G1] J1 = E1 + (1- 

α1)G1 

J2 = E2 + (1-α2)G2 

J1 = G2 

J2 = G1 

(10.12a) 

 

(10.12b) 

 

(10.12c) 

 

(10.12d) 

 

(10.12e) 
 

Equation (10.12b) can be written as 
 

J1 – (1 – α1)G1 = E1 ....................................................... (4.12f) 

 
Equation (4.12c) with the help of Eqns. (10.12d) and Eqns. (10.12e) can be rewritten as 

 

 
– (1 – α2)J1 + G1 = E2 (10.12g) 
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Solving for J1 and G1 from Eq. (10.12f) and (10.12g) we get 

 
  E1 + (1 – α1) E2 

J1 = ---------------------------- 

1 – (1 – α1) (1 – α2) 

ε1E b1 + (1 – α1) ε2E b2 

Or J1 = ----------------------------- ……………………………..(10.13a) 

1 – (1 – α1) (1 – α2) 

ε2E b2 + (1 – α2) ε1E b1 

and G1 = ----------------------------- ……………………………..(10.13b) 

1 – (1 – α1) (1 – α2) 

Substituting these expressions for J1 and G1 in Eq.( 10.12a) we get 

 
A1 

 

Q1-2 = -------------------------- [ε1E b1 + (1 – α1) ε2E b2 − ε2E b2 − (1 – α2) ε1E b1] 

[1 – (1 – α1) (1 – α2)] 

A1 [α2 ε1Eb1 − α1 ε2Eb2 ] 

 

Or Q1-2  = ------------------------------------ 
[1 – (1 – α1) (1 – α2)] 

Substituting for Eb1 and Eb2 in terms of temperatures we get 

 
ζA1 [α2 ε1T 

4 
− α1ε2T2 

4
] 1 

Or Q1-2 = ------------------------------------ …………………………………….(10.14) 

[1 – (1 – α1) (1 – α2)] 

If Kirchoff‟s law holds good then α1 = ε1 and α2 = ε2. 

 
ζA1 [ε1 ε2T 

4 
− ε1ε2T2 

4
] 1 

Hence Q1-2 = ------------------------------------ 

[1 – (1 – ε1) (1 – ε2)] 

  ζ A1 (T 
4 

– T 
4
) 

1 2 

Or Q1-2 = --------------------------- …………………………(10.15) 

  [ 1/ε1 + 1/ε2 − 1 ] 
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PLANE RADIATION SHIELDS: It is possible to reduce the net radiation heat exchange 

between two infinite parallel gray surfaces by introducing a third surface in between them. If 

the third surface, known as the radiation shield is assumed to be very thin, then both sides of 

this surface can be assumed to be at the same temperature. 
 

Fig.10.8 shows a scheme for radiation heat exchange between two parallel infinite gray 

surfaces at two different temperatures T1 and T2  in presence of a radiation shield at a uniform 

temperature, T3. 
 
 

Now Q1-3 
ζ (T 

4 
– T 

4
) 

1 3 

 ------ = --------------------------- ………………………..(10.16a) 

 A1 [ 1/ε1 + 1/ε13 – 1] 

  
Q3-2 

ζ (T3
4 

– T 
4
) 

2 

And ------ = --------------------------- ………………………..(10.16b) 

 A1 [ 1/ε32 + 1/ε2 – 1] 
 

Fig: 10.8 Radiation Heat Exchange Between Two Parallel Infinite Gray 

surfaces in presence of a radiation shield 

 

For steady state conditions, these two must be equal..Therefore we have 
 

 (T1
4 

– T3
4
) (T 

4 
– T2

4
) 

3 

--------------------------- = ---------------------------- 

[ 1/ε1 + 1/ε13 – 1] [ 1/ε32 + 1/ε2 – 1] 

Let X = [ 1/ε1 + 

1/ε13 
– 1] 

and Y = [ 1/ε32 + 

1/ε2 
– 1] 

T1, α1= ε1, A1 
T3, ε13, A3 = A1 

T2, α2 = ε2, A2 
T3, ε23, A3 = A1 
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2 

 

Then,  
(T1

4 
– T3

4
) (T 

 
4 

– T 
4 

 

 
Solving for T3 we get 

--------------- = ------------------ 

X  Y 

 

-----------------------------
T14+(X/Y)T24

 

T3 = [  
(1 + X /Y) 

] 
1 / 4 ................................ 

(10.16c) 

 

Substituting this value of T3 in Eq. (10.16a) we get 

Q1-3 / A1 = Q3-2 / A1 = (Q1-2 / A)1 Rad.Shield = ζ { T2    
4 

– [{T1
4 

+(X/Y)T2
4
}/(1 + X/Y)] } / X 

…………………….(10.17a) 

 

Special case: 

When ε1 = ε2 = ε13 = ε32 = ε, then X = Y = (2/ε) − 1 
 

Hence, T3 = [(T1 
4
+ T2

4
) / 2 ] 

¼ ......................................... 
(10.18a) 

ζ{ T1
4 

− [(T1
4 

+ T2
4
) / 2 ] 

and [Q1-2 / A ]1 rad shield = ------------------------------------- 
 [2/ε − 1] 

 

ζ [T 
4 

− 
1 T2

4
] 

 = ------------------------ ………………………………(10.18b) 

2 [2/ε − 1] 

 
It can be seen from the above equation that when the emissivities of all surfaces 

are equal, the net radiation heat exchange between the surfaces in the presence of single 

radiation shield is 50% of the radiation heat exchange between the same two surfaces 

without the presence of a radiation shield. This statement can be generalised for N 

radiation shields as follows: 

1 

[Q1-2 / A]N shields = --------- [Q1-2 / A] without shield ....................... (10.18c) 

(N + 1) 

3 ) 
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4.5: ILLUSTRATIVE EXAMPLES ON PLANE RADIATION SHIELDS 
 

Example 10.6: Two parallel infinite grey surfaces of emissivities 0.5 are at temperatures 
of 400K and 300K. Determine the net radiation heat flux between the two surfaces. Also 

determine the reduction in radiation flux when a plane radiation shield having emissivity 

of 0.5 on both its surfaces is placed between the two grey surfaces. Also determine the 

steady state temperature of the shield. 

 

Solution: The radiation flux between two gray surfaces is given by 

ζ  (T1 
4 

– T2 
4
) 

q = Q1-2 / A = -------------------------- . 

[ 1 / ε1 + 1 / ε2 – 1] 

 
5.67 x 10 

− 8 
x (400 

4 
– 300 

4
) 

Since ε1 = ε2 = ε = 0.5, we have q = ------------------------------------- 

 (2 / 0.5 – 1) 

Or q = 330.75 W / m
2
. 

When a radiation shield of same emissivity is placed between two grey surfaces, the 

temperature of the shield T3 is given by 
 

T3 = [(T 
4 

+ T 
4
) / 2 ] 

¼ 
1 2 

Hence T3 = [(400 
4 

+ 300 
4
) / 2] 

¼
 

Or, T3 = 360.3 K 

Also, since the emissivities of the plates and shield are equal we have 

(q)1 shield = q / 2 = 330.75 / 2 = 163.375 W /m
2

 

Example 10.7: Two parallel plates are at temperatures T1 and T2 and have emissivities  

ε1 = 0.8 and ε2 = 0.5. A radiation shield having the same emissivity ε3 on both sides is 

placed between the plates. Calculate the emissivity ε3 of the shield in order to reduce the 
radiation heat loss from the system to one tenth of that without shield. 

 
Solution: Radiation flux between the two plates without the presence of a radiation 
shield is given by 
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1 

1 2 1 2 ζ [ T 
4 

−  T 
4 

] ζ [ T 
4 

− T 
4 

] 

q1-2 = ------------------------- = --------------------------- 

[ 1 / ε1 + 1 / ε2 − 1 ] [ 1 / 0.8 + 1 / 0.5 − 1] 

ζ [ T1
4 

− T2
4 

] 

or q1-2 = -------------------........................................ (1) 
2.25 

When a shield is placed between the plates, the radiation flux is given by 
 


  

T 4 


T 4  ( x  /  y ) T  4      
          1 2                 




 

 q  1 r a d s h i e l d 

1  x  / y 

x 

x    1           1  1       1         1    1   0 . 2 5    1  

   
1 3 0 . 8 3 3 

y    1              1  1       1            1  1   1    1  

   
3 2 3 0 . 5 3 

  q 
1 r a d s h i e l d 

    (1  x  /  y ) T 4  T  4    ( x  /  y ) T 4 

    1 1 2   

x (1  x / y ) 

 
  T 1 4  T 24 

 q 


1 r a d s h i e l d 

 

 

x  y 

 

But (q)1radshield = 0.1 x q1-2 

    T 1       
4     

 T 2
4   1      T 1  

4    
 T 2

4   1 1 

 
 2 

 2 1 . 2 5    
2  

 0 . 0 9 4 
3 


3 2 1 . 2 5 

Example 10.8: Two large parallel plates are at 800K and 600K have emissivities of 0.5 
and 0.8 respectively. A radiation shield having emissivity of 0.1 on the surface facing 
800K plate and 0.05 on the surface facing 600K plate is placed between the plates. 

Calculate the heat transfer rate per m
2 

with and without the shield. Also calculate the 

temperature of the shield. 

Solution: 

The radiation flux without the radiation shield is given by 
 

ζ (T1 
4 

– T2
4
) 5.67 x 10 

− 8 
x (800 

4 
– 600 

4
) 

 

= 7056 W / m 
2

 q = ------------------------ = -------------------------------------- 

[ 1 / ε1 + 1 / ε2 – 1] [ 1 / 0.5 + 1 / 0.8 – 1] 

         x  y  2 2 . 5  0 . 2 5      1  2 2 . 5 

x  y 1 0 2 . 2 5   3  3 
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When a radiation field is placed between thick plates the radiation flux is given by 
 

ζ (T 
4 

– T 
4
) 

1 3 
(q)1 Rad. shield = ------------------------- 

x 

where x = [ 1 / ε1 + 1 / ε13 – 1] 

T1 
4 

+ (x/y) T2
4

 

and T3 = [ ------------------ ] 
¼ 

where y = [ 1 / ε32 + 1 / ε2 – 1] 

1 + (x/y) 
 

Now x = [ 1 / 0.5 + 1 / 0.1 – 1] = 11 and y = [1 / 0.05 + 1 / 0.8 – 1] = 20.25 

800 
4 

+ (11/20.25) x 600 
4
 

Therefore T3 = [------------------------------- ] 1/4 

1 + (11 / 20.25) 
 

 
 = 746.8 K 

 
5.67 x 10 

− 8 
x (800 

4 
– 746.8 

4
) 

Hence (q)1 Rad. shield = ---------------------------------------- = 508 W / m 
2
 

 11 
 

Example 10.9: Find an expression for the net radiant flux between two infinite parallel 

diffuse grey surfaces at temperatures T1 and T 2 degrees Kelvin when an infinite opaque 
plate of thickness b and thermal conductivity K is placed between them. Assume that all 
surfaces have the same emissivity. 

 
Solution: The schematic for the problem is shown in Fig. E10.9. For steady state heat 
transfer we have 

 

q = Q1-2 / A = Q1-3 / A = Q3-4 / A = Q4-2 / A 
 

ζ (T1 
4 

– T3
4
) 

Now Q1-3 / A = ------------------------ …………………………………………….(1) 

(2/ε – 1) 

Q3-4 / A =  k (T3 – T4) / b ............................................................................. (2) 
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2 

1 2 

1 2 

 

 

 

 

     T1, ε 

     
T3, ε 

      

      

Plate of thickness b &    T4, ε 
     

 Conductivity k    T2, ε 

      

 

Fig. E10.9: Schematic for example 10.9 

ζ (T4 

4 
4 

– T2 ) 
    

Q4-2 / A = ------------------------ …………………………………………….(3) 

(2/ε – 1) 

 

From Eq. (1), 
4 ¼ 

T3 = [ T1   – (q /ζ)(2/ε – 1)] . 

Similarly from Eq. (3) we get T4 = [ T 
4 

– (q /ζ)(2/ε – 1)] 
¼

. 

Substituting these expressions for T3 and T4 in Eq. (2) we get 

q = (k/b)[{T 
4 

– (q/ζ)(2/ε – 1)}
1/4 

– {T 
4 

+ (q/ζ)(2/ε – 1)}
1/4

] 

Or (qb) / k = [{T 
4 

– (q/ζ)(2/ε – 1)}
1/4 

– {T 
4 

+ (q/ζ)(2/ε – 1)}
1/4

] 

Example 10.10: Calculate the steady heat flow through the composite slab of Fig P10.10 

consisting of two large plane walls with an evacuated space in between. The thicknesses 

of the walls are 20 and 30cm, they have thermal conductivities of 1.0 and 0.5 W/m-k and 

the emissivities of the surfaces facing each other are 0.5 and 0.4 respectively. 

 
Solution : 

 

If q is the heat flux through the composite slab then, 
 

 
 Q (Ti – T1) (473 – T1)  (473 – T1) 

q = ------- = ---------- = ----------------------- = ------------------ ............................... (a) 

 A Rci + R1 (1 / 20 + 0.2 /1)  0.25 
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1 2 1 2 

 

  

 
L1 

  

 
L2 

 

Surface in    
    

surface in 
contact 

  

 contact 
with fluid 

 

T1 
k1 k2 with fluid 

at Ti, hi 
 

 T2  

 

 

 

 
vacuum 

at T0, h0 

 

Fig. E10.10: Schematic for example 10.10 
 

ζ (T 
4 

– T 
4
) 5.67 x 10 

− 8 
x [ T 

4 
– T 

4
] 

Also q = ---------------------------- = ----------------------------------- 

(1 / ε1 + 1 / ε2 – 1) [ 1 / 0.5 + 1 / 0.4 – 1] 
5.67 x 10 

− 8 
x [ T 

4 
– T 

4
] 

1 2 

Or  q = ------------------------------------ ....................................................................................... (b) 

3.5 

(T2 – T0) (T2 – 313) (T2 – 313) 
and q = --------------------- = --------------------------- = -------------- ...................... (c) 

R2 + Rco (0.3 / 0.5) + (1 /10) 0.7 

From Eq. (a) T1 = 473 – 0.25 q, and from Eq. (c) T2 = 313 + 0.7q. 

Substituing these expressions for T1 and T2 in Eq. (b) we get 

5.67 x 10 
− 8 

[ (473 – 0.25q) 
4 

– (313 + 0.7q) 
4
] 

q = ------------------------------------------------------------ 

3.5 

Solving the above equatin by trial and error method we get q = 139 W / m 
2
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VIEW FACTOR OR CONFIGURATION FACTOR: 
 

In engineering applications, we come across problems involving radiation heat exchange 

between two or more finite surfaces. When the surfaces are  separated from each other by a 

non participating medium that does not absorb, emit or reflect radiation, then the radiation heat 

exchange is not affected by the medium. A vacuum is a perfect non participating medium. 

However, air and many gases closely approximate this condition. For any two surfaces, the 

orientation of them with respect to each other affects the fraction of the radiation energy 

leaving one surface and striking the other directly. The concept of “VIEW FACTOR” (also 

called as CONFIGURATION FACTOR/SHAPE FACTOR) has been utilised to formalise the 

effects of orientation in the radiation heat exchange between surfaces. Before the concept of 

view factor is introduced, two more terms have to be defined. 

 

 SOLID ANGLE AND INTENSITY OF RADIATION: 
 

Solid Angle: The solid angle dw subtended by an elemental area dA surrounding point P 
with respect to any other point O in space is defined as the component of the area dA in 

the direction OP divided by the square of the distance between O and P. This is illustrated 
in Fig. 10.9. Solid angle is measured in Steradian (Sr). 

 

 
 

dA 

 

 

 

 

 
dω 

n 

 

 

 

 

 

 
 

r 

 

 
 

P 
n 

θ 

 

 

r 

  
O 

dω = dA / r
2
 dω = dA cos θ / r

2
 

Fig 4.9: Definition of Solid Angle 

 
Based on this definition, it can be readily inferred that the solid angle subtended 

by a hemispherical surface from its centre is 2π (dw = 2πxr
2
/r

2
) and by a full glass sphere 

from its centre is 4π. 
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dAn 

2 

n 

 

Intensity of Radiation: The total intensity of radiation emitted by the surface in a given 
direction is equal to the radiant flux passing in that direction per unit solid angle. If I is  
the intensity of radiation and E is the total emissive power, then by definition 

 
I = dE/dw (10.19a) 

E = ∫Idw (10.19b) 

where the integration is carried out over all directions encompassed by a hemisphere. 

Consider an elemental area dA1 whose total emissive power is E1. This total 

radiant energy emitted by dA1 can be intercepted by a hemisphere as shown in Fig 10.10. 

 

 

 

 

 

 

 

 

 

 

θ 
P 

OP = r θ 
O 

 
dA1 

dθ 

 

 

Fig 10.10: Radiation from a differential area dA1 into surrounding hemisphere 

centered at dA1. 

If I is the intensity of radiation at any point P on the surface of the hemisphere due to 

emission by an elemental area dA1 at O, then 

1   I 1 c o s  d w   I 1 c o s 
 d A 
 2       

    r 

E 1  



 

       I c o s   r s i n  d   r d  
        1  2 

  0      0   2 
 r 

Assuming that I1 is same in all directions (Lambert‟s Law) 

       2 

E 1    I 1 
2 

c o s  s i n  d  d 

  0       0 

E 1   I 1 

(10.20) 

 

If the surface is a black surface then Eb = πIb (10.21) 

10.24 

E 
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dA1 

dA2 

 

4.6.2: VIEW FACTOR BETWEEN TWO ELEMENTAL SURFACES. 

Consider 2 elemental surfaces of area dA1 and dA2 as shown in Fig. 10.11. Let 

their normals n1 and n2 make angles θ1 and θ2 with the line joining the centroid of the  

two elemental areas. Let dw2 be the solid angle subtended by dA2 at dA1 and dw1 be the 

solid angle subtended by dA1 at dA2. 
 

 

Fig. 10.11: View factor between two elemental areas 

Let I1 be the intensity of radiation from dA1 striking dA2 and I2 be the intensity of 

radiation from dA2 striking dA1. If dq1->2 is the radiant energy leaving dA1 and striking 

dA2 then 
d q 

1  2  I 1 d A 1 c o s  1 d w 2 

 d A 2   c o s  2  

O r d q 1  2  I 1 d A1 c o s     1 
r 

2 

Radiation energy leaving dA1 = dqr1 = E1dA1 

Fraction of energy leaving dA1 and striking dA2 is defined as the view factor of dA2 with 

respect to dA1 and is denoted by dF1-2 

dq1-2 I1 dA1 dA2 cos θ1 cos θ2 

Therefore dF1-2 = ------------- = ----------------------------------- 

dqr1 r
2 

E1 dA1 

Using the relation E1 = π I1 we have 

θ1 

r 

θ2 

n1 

n2 
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n1 

A1 θ1 

dA1 

 

dA2 cos θ1 cos θ2 

dF1-2 = -------------------------(10.22) 
 π r

2
 

 

Similarly, the view factor of dA1 with respect to dA2 is denoted by dF2-1 and given by 

 

dA1 cos θ1 cos θ2  

dF2-1 = ------------------------- (10.23) 

π r
2
  

It follows from Eq. 10.22 and 10.23 that 
 

dA1dF1-2 = dA2dF2-1 (10.24) 

10.6.3: VIEW FACTOR FOR FINITE SURFACES:  
 

 

 

 

 

 

n2 
θ2 dA2 

 
r 

  

A2 

 

 

 

 
 

 
 

Fig.10.12: View Factor between two finite areas 

Consider two finite surfaces of areas A1 and A2 as shown in Fig 10.12. If n1 and n2 are 

the Normals for elemental areas dA1 and dA2 then energy leaving dA1 and reaching dA2 

is given by 

dq1→2 = I1 dA1 cos θ1 dA2  cos θ2  / r
2 

Hence Q1→2 = ∫ ∫[{ I1 dA1 dA2 cos θ2} / r
2
]. 

A1 A2 

Total radiation emitted by A1 = Qr1 = E1A1 = π I1 A1 
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Fraction of enrgy which leaves A1 and reaches A2 is given by 
 
 

Q1→2∫ ∫[{ I1 dA1 dA2 cos θ2} / r
2
]. 

 F1-2 = -------- = --------------------------------------- 

 Qr1 π I1 A1 

 1 

[∫ ∫{ I1 dA1 dA2 cos θ2}/ ( πr
2
)]...........................(10.25a) Or F1-2 = ------ 

 A1  

 1 

[∫ ∫{ I1 dA1 dA2 cos θ2}/ ( πr
2
)] .......................... (10.25b) Similarly F2-1 = ------ 

A2 

 

It follows from Equations (10.25a) and (10.25b) that 

 

A1F1-2 = A2F2-1 .................................................................................... (10.26) 

Properties of view factor: Consider an enclosure consisting of N zones, each of surface 

area Ai (i = 1,2,3 … N). The surface of each zone may be plane, convex or concave. For 
the enclosure, the following relations hold good. 

 

1. Ai Fi-j = Aj Fj-i ,i= 1,2,3 … N, 
 j = 1,2,3 … N 

2. Fi-i = 0 if Ai is plane or convex (i.e. Ai cannot see itself) 

≠ 0 if Ai is concave. 
3. F1-1 + F1-2 + … + F1-N = 1 

F2-1 + F2-2 + … + F2-N = 1 

| 
| 

FN-1 + FN-2 + … + FN-N = 1 

N 

In short, ∑ Fi,j = 1, i = 1,2,3 … N 
j = 1 

4. When there are two surfaces, one surface say A1 is completely enclosed by A2 

and if A1 cannot see itself then, F1-2 = 1 and F2-1 = A1/A2 

5. The view factor F1-2 between surfaces A1 and A2 (Fig. 10.13) is equal to the 
sum of the view factors F1-3 and F1-4 if the two areas A3 and A4 together 

make up the area A2. 
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Fig. 10.13 : Additive relation between view factors 
 

i.e., F1-2 = F1-3 + F1-4 . It should however be noted that F2-1 ≠ F3-1 + F3-4 

 

View factors for standard configurations: The determination of view factors has been 
the object of considerable research. In cases where the integrals in Eq. 10.25 and Eq. 

 cannot be solved analytically, numerical methods have been used. Some of 

these results are represented graphically for certain standard configurations like 

(i) Shape factors between parallel rectangles of equal size. 

(ii) Shape factors between rectangles perpendicular to each other and having a 
common edge 

(iii) Shape factor from an elemental area dA1 to a rectangular area A2 

(iv) Shape factor between two coaxial parallel discs 
(v) Shape factors for concentric cylinders of finite length etc. 

 
With the help of those charts and View Factor algebra, shape factors between surfaces  
not covered above can be determined. 

 

 ILLUSTRATIVE EXAMPLES ON VIEW FACTORS: 

Example 10.11: Determine the view factor between an elemental area A1 and a circular 

disc A2 of radius R. The two areas are parallel to each other and positioned at a distance 

L form each other such that the perpendicular to A1 passes through the centre of A2. 

A3 A4 

A1 A2 = A3 + A4 
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R 

ρ 

Φ2 

α 
r 

 

 

 

 

 

 

 

 

 

 

 
 

 

L Φ1 

 

 

 

 

 

 

 

Fig.E10.11: Figure for example 10.11 
 

A F 
1 1  2  

A1   A 2 

    d A 1 d A 2 c o s  1 c o s  2  

 r   2 

S in c e A 1   A 2 a n d  1   2   , th e    a b o v e e x p    c a n    b e    w r itte n a s 

A F  A 
1 1  2 

 

N o w   c o s   

 

 F
1  2 


0 

 

R 2 

 F 

1 2 

 s in 2 

L 2  R 2 

 

 

Example 10.12: Obtain an expression for the shape factor for a conical cavity with 
respect to itself. The height of the cavity is H and the semi vertex angle of the cavity is α 

(See Fig. E10.12a) 

 
Solution: 



d A c o s 2   R 
  2  F 

2   d  c o s 2 
    

1   r 2 
1    2     r 

 
2 

 
A 2 

0
      

L 
1     c o s   a n d r 

L 2   2 
L 2   2 

R 
2   d  L 2 

 

R 
 

2  d 
 

 

      L 
2

 L 2   2  L 2   2
  L 2   2 

 
2 

 0  
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A2 

 

 

 

 

 

 

 
 

 dz     

H 
α 

z 

  r 

  ds 

Fig. E10.12(a) : Figure Fig. E10.12 (b): 

for Example 10.12  

 
 

Refering to Fig. 10.12(b) we have A1 and A2 form an enclosure. 

Hence F1-1 + F1-2 = 1, and F2-1 + F2-2 = 1. 

Since A2 cannot see itself, F2-2 = 0. Hence F2-1 = 1.0 

But A1F1-2 = A2F2-1. Therefore F1-2 = A2 / A1. 

 

 

 

 

 
 

 

 

 

 

 

 

Example 10.13: Consider 3 small surfaces each of area dA1 = dA2 = dA3 = 2 cm
2 

as 

shown in fig E10.13. (a) Calculate the solid angle subtended by dA2 with respect to a 

point on dA1 (b) The solid angle subtended by dA3 with respect to a point on dA1 and (c) 

The elemental Diffuse factors dFdA1-dA2 and dFdA1-dA3. 

  

From Fig. E10.12(b), dA1 = 2π r ds = 2 π √ (dr
2 

+ dz
2
) 

  

Or dA1 = 2 π z tan α dz √ [(dr / dz)
2 

+ 1] 
  

 = 2 π z tan α dz √ [ tan 
2 

α + 1 ] 

 
= 2 π z dz tan α sec α 

 H 
2

 

Therefore A1 = ∫2 π z dz tan α sec α = πH tan α sec α 
 0 

 πH 
2 

tan 
2 

α 

Hence F1-1 = 1 – F1-2 = 1 − -------------------------- = 1 – sin α 

 πH
2 

tan α sec α 
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dA1 Fig. E10.13: Figure for example 10.13 

Φ1 

r13 n1 

n2 

n3 

r12 

Φ1 = 30 
0
; Φ2 = 45 

0 
; 

r12 = 300 cm ; r13 = 200 cm ; 

dA1 = dA2 = dA3 = 2 cm
2 

; 

dA3 

Φ2 

dA2 

1       d A 1   22  

 

 
 

 

If  d w 2  1 is  th e  s o lid a n g le s u b te n d e d b y d A 2 w . r . t  a     p o in t o n d A1 th e n 

 
d w 2  1 

 d A 2 c o s  2 



r  2 

1 2 

2 c o s 4 5 0 

3 0 0 2
 

 
 1 . 5 7  1 0  5 s r 

S im ila r ly  d w    
      d A 3   c o s  3     

( b u t   0 0 ) 
3  1 r 2 3 

1 3 

 d w  
  d A 3     

2  
 5  1 0 

 5 
s r 

3  1 r   2 

1 3 
2 0 0 

2
 

d F       d A 2   c o s  1 2   c o s  2      2  c o s 3 0 0   c o s 4 5 0  4 . 3 3  1 0 
 6 

d A       r 2      3 0 0 2 

S im ila r ly d F d A  d A 

1 3 

  
 d A 3  c o s  1 3 c o s  3 




 r 2 
1 3 

2  c o s 2 0 0 
 

  2 0 0 2 

 
 1 . 5 9  1 0  5 

 

Example 10.14: Determine the view factor F1-2 between an elemental surface dA1 and 

the finite rectangular surface A2 for the geometric arrangements shown in Fig E10.14 
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0 

 

 
Soluiton : (a) The configuration in Fig. E10.14(a) is a standard configuration for 

which the analytical expression for F1-2 is given by 
 

 1 x y y  x 

F1-2 = ---- [ ------------ tan 
− 1 

{------------- } + ------------- tan − 1 { ----------------} ] 
 

2π √(1 + x
2
) √(1 + x

2
) √(1 + y

2
)  √(1 + y

2
) 

 

Where x = L1 / D = 3 / 3 = 1 ; and y = L2 / D = 4 / 3 = 1.33 

Substituting these values in the expression for F1-2 we get 

1 
1 

{ ----------------} ] 

√(1 + 1.33
2
) 

 

 

Or F1-2 = 0.154 
 

(a) The area A2 is divided into two equal areas A3 and A4 both having the common 

edge of width L1 = 3 m.Then 
 

F1-2 = F1-3 + F1-4 = 2 F1-3 (Because F1-3 = F1-4) 

= 2 x 0.15 v4 = 0.308 

 

4 m 

8 m 8 m  

 
3 m A2 

 
3 m A2 A2 

 

   6 m   

 
 
 

 
 

 
3 m 

 
 

 
 

(a) 

 

Fig. E1 

 

 

 

 

 

 

 

 

 
 

.14: Figures for 

 
 
 

 

 
3 m 

 
 

 
 
 
 
 

 

exam 

 

4 m    

 
 
 

 

 
3 m 

 
 
 

(b) 

 

ple 10.14 

 

4 m 

 
 
 

 
 
 
 
 
 
 

(c) 

 

 

 1 1 1.33 1.33 

F1-2 = ---- [ ------------ tan 
− 1 

{------------- } + ------------- tan 
−

 

 
2π √(1 + 1

2
) √(1 + 1

2
) √(1 + 1.33

2
) 
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Fig. E10.15: Figure for example 10.15 

(c) In this case A2 is divided into three equal areas A3,A4, and A5 as shown below 

 

 
 

A4 

 
 

A5 

A3 Now F1-2 = F1-3 + F1-4 + F1-5 

 
= 3 F1-3 

 
= 3 x 0.154 

 
= 0.462 

Example 10.15: Determine the Shape factor F1-2 for the configuration shown in Fig 

E10.15 
 

 

 

 
 

3 m  

A1 

 

 
1 m 

 

 

1 m 
 

A2 

 

1 m 

 

1 m 

 

 

 

 

 

Solution: 
 

 

 
A6 F6-1 A4 F4-1 

F1-2 = F1-6 − F1-4 = ---------- − -------------- 
A1 A1 
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3 m 

A5 

A6 
2 m 

 

 A6 A4 

= ------ [ F6-5 − F6-3 ] − ---------- [ F4-5 − F4-3 ] 

 A1 A1 

Values of F6-5, F6-3, F4-5 and F4-3 can be obtained from chart as follows. 

 

To find F6-5: 
 

 

 

 
 

2 m A5 = A6 = 3 x 2 = 6 m 
2 

; 

 
L1 / W = L2/W = 2/3 = 0.667; 

 

From chart F6-5 = 0.22. Similarly we Get 

F6-3 = 0.16; F4-5 = 0.32 ; F4-3 = 0.27 

 

 

 

 
 

 6  3 x 1 

Hence F1-2 = --------[ 0.22 − 0.16 ] − ------- [ 0.32 − 0.27 ] 

 1 x 3  3 x 1 

Thus F1-2 = 0.07 
  

 
Example 10.16: 

 
Find F1-2 for the configuration shown in Fig. E10.16 
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Refering to Fig. E10.16(a),let 

A6 = A2 + A4 = 4 x 2 = 6 m
2 

and 

A5 = A1 + A3 4 x 2 = 6 m
2
. 

A1 = A2 = A3 = A4 = 2 x 2 = 4 m
2
. 

F1-2 = F1-6 − F1-4 

= (A6F6-1) / A1 − F1-4 

= (A6/A1)[F6-5 − F6-3] − F1-4 

= (A6/A1)F6-5 −{(A3F3-6)/A1}− F1-4 

 

 

 

Or F1-2 = (A6/A1)F6-5 − (A3/A1) [ F3-2 + F3-4] − F1-4 

But F3-2 = F1-4 and F3-4 = F1-2. 

Hence F1-2 = (A6/A1)F6-5 − (A3/A1)F1-4 − (A3/A1) F1-2 − F1-4 
 

 
A6F6-5 − A3F1-4 − A1F1-4 2A1F6-5 − 2A1F1-4 

 

Or F1-2 = ---------------------------------- = -------------------------- = F6-5 − F1-4 

 (A1 + A3) 2A1  

2 m 

2 m 

A2 

2 m 

A1 

2 m 

Fig. E10.16: Figure for example 10.16 

 

 

 
A4 

 
A2 

A1 

 

A3 

 

Fig. E10.16(a) 
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2 m 

A1 

Fig. E10.17: Figure for example 10.17 

0.5 
2 m 

To find F6-5:- L2 = L1 = 2 m; W = 4 m. 

L1 / W = L2 / W = 2 / 4 = 0.5. 

From chart F5-6 = 0.25 = F6-5 since A5 = A6. Similarly F1-4 = 0.2. 

Hence F1-2 = 0.25 – 0.20 = 0.05 

Example 10.17: Find the Shape Factor F2-1 for the configuration shown in fig E10.17 
 

 

 

 
 

A2 
2 m 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Solution: Refer to Fig. 10.17 (a) 

 

F2-1 = F2-3 + F2-5 = F2-3 + (A5 F5-2) / A2 

 

= F2-3 + (A5 / A2) [ F5-6 – F5-4] 

= F2-3 + (A6F6-5) / A2 − (A5F5-4) / A2 

= F2-3 + (A6 / A2) [F6-1 − F6-3] − (A5F5-4) / A2 

=  F2-3 + (A6 / A2)F6-1 − (A3F3-6) / A2   − (A5F5-4) / A2 

=  F2-3 + (A6 / A2)F6-1 − (A3F2-1) / A2   − (A5F5-4) / A2 

Or [( 1 + (A3 / A2) ] F2-1 = F2-3 + (A6 / A2)F6-1 − (A5F5-4) / A2 
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A1 = A3 + A5; A6 = A2 + A4 

 
2 

A2 = A3 = 0.5 x 2 = 1 m 

A4 = A5 = 1.5 x 2 = 3 m 
2

 

A1 = A6 = 2 x 2 = 4 m
2

 

 

 

 

 

 

 

Fig. E10.17(a) 

 

 

 
 

F2-3 + (A6 / A2)F6-1 − (A5F5-4) / A2 

Or F2-1 = ----------------------------------------------------- 

[( 1 + (A3 / A2) ] 

From chart : F2-3 = 0.06 ; F5-4 = 0.17 ; F6-1 = 0.2 

 
 0.06 + 4 x 0.2 − 3 x 0.17 

Hence F2-1 = --------------------------------- = 0.175 
 ( 1 + 1) 

Example 10.18: Find the Shape factor F1-2 for the configuration shown in Fig E10.18 

 

Solution: Refer Fig. E10.18(a). 

 
F1-2 = F1-8 + F1-4 + F1-6. But F1-4 = F1-6. 

Hence F1-2 = F1-8 + 2F1-4 

= F1-8 + 2 (A4F4-1) / A1 

From example 10.16 we have F4-1 = F7-10 − F4-3 

Hence F1-2 = F1-8 + 2 (A4 /A1) [F7-10 − F4-3] 

From chart F1-8 =0.15 ; F7-10 = 0.23 ; F4-3 = 0.2 

A2 

A4 

A3 A5 
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a/2 

a 

A1 

a 
A2 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

a Fig. E10.18: Figure for example 10.18 

 

 

 

 

 

 

 
 

A7 = A1 + A3 ; 

A10 = A4 + A8 

 

 

 

 
 

 

 

 

Fig. E10.18 (a) 
 

 

 

 
 a

2 

Hence F1-2 = 0.15 + 2 x -------------- x [0.23 – 0.20] = 0.27 
 [(a/2) x a] 

A3 

A1 A4 

A5 A8 

A6 
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Example 10.19 A1 and A2 are two rectangular flat surfaces having a common edge and 

inclined at an arbitrary angle α to each other. They are very long along the common edge 
and have lengths of ab and ac respectively in the other direction. Show that 

 

F1-2 = (ab +ac) – bc 

2ab 
 

Solution: Refer Fig. E10.19 

 
c A1,A2 and A3 form an enclosure. 

Hence F1-1 + F1-2 + F1-3 = 1. 

But F1-1 = 0. Hence 

F1-2 + F1-3 = 1 .......................... (a) 
similarly 

F2-1 + F2-3 = 1 ............................. (b) 
 

A1 

Fig. E10.19 

F3-1 + F3-2 = 1 .......................... (c) 

 
From Eq. (a) we get F1-2 = 1 – F1-3 ........ (d) 

From (c) we get F3-1 = 1 – F3-2 

Or (A1F1-3) / A3 = 1 – (A2F2-3)/A3 

 
Or F1-3 = (A3 / A1) – (A2F2-3) / A1 

= (A3 / A1) – (A2 / A1) [1 – F2-1] 

= (A3 / A1) – (A2 / A1) + F1-2 

Substituting this expression in Eq. (d) we get 

 

F1-2 = 1 – [(A3 / A1) – (A2 / A1) + F1-2] 

Solving for F1-2 we get 
  

 (A1 + A2) – A3 (ab x 1) + (ac x 1) – (bc x 1) 

F1-2 = ---------------------- = ----------------------------------- 

 2A1 2 x (ab x 1) 

(ab + ac – bc) 

= ------------------- 

2 ab 

A2 

A3 

a b 
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A1 = L1 x 1 A3 = L3 x 1 

A4 = L4 x 1 

A2 = L2 x 1 

A5 = L5 x 1 

A6 = L6 x 1 

Example 10.20: (Hottel’s cross string formula) Obtain an expression for the view 
factor between two flat surfaces, which extend to infinity in one direction. 

 

Solution: Refer Fig. E10.20 

 

 

Fig. E10.20 : Figure for example 10.20 
 

Consider unit width perpendicular to the plane of the paper. A1, A2, A3 and A4 form an 

enclosure. Hence we have 
 

 F1-1 + F1-2 + F1-3 + F1-4 = 1 and F1-1 = 0. 

Therefore F1-2 + F1-3 + F1-4 = 1 ..................................... (a) 

Similarly A1, A3 and A5 form an enclosure. Therefore we have 

F1-3 + F1-5 = 1 ................................................ (b) 

F3-1 + F3-5 = 1 ................................................ (c) 
 

Also 

and 

 
From Eq. (b) we have 

F5-1 + F5-3 = 1 ................................................ (d) 

 

F1-3 = 1 – F1-5 

 

= 1 – (A5F5-1) / A1 

= 1 – (A5 / A1) [ 1 – F5-3] 

= 1 – (A5 / A1) + (A3F3-5) / A1 
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Or  F1-3 = 1 – (A5 / A1) + (A3 / A1) [1 – F3-1] 

= 1 – (A5 / A1) + (A3 / A1) – F1-3 

 
1 – (A5 / A1) + (A3 / A1) 

 
A1 – A5 + A3 

Hence F1-3 = --------------------------------- = --------------------------- 

  2  2A1 

A1 – A6 + A4 

Similarly F1-4 = ------------------------ 
2A1 

  

Now from Eq. (a) we have F1-2 = 1 – [F1-3 + F1-4] 
  

Substituting the expressions obtained for F1-3 and F1-4 we get 

  
A1 – A5 + A3 

 
A1 – A6 + A4 

  F1-2 = 1 – ------------------- − ------------------- 

  2A1  2A1 

  (A5 + A6) – (A3 + A4) (L5 + L6) – (L3 + L4) 

  = ---------------------------- = ---------------------------- 

  2A1  2L1 
 

Example 10.21: A truncated cone has top and bottom diameters of 10cm and 20cm and a 
height of 10cm. Calculate the shape factor between the top surface and the side and the 
side and itself. 

 

Solution: To find (i) F2-3 and (ii) F3-3 . Refer to Fig. E4.21. 

(i) F2-1 = (A1F1-2) / A2. F1-2 can be directly obtained fom chart as 

follows: L1 / r = 10 / 10 = 1 ; and L2 / r = 5 / 10 = 0.5. 

Hence fromchart F1-2 = 0.12. 
 

  π x (10)
2
 

Therefore F2-1 = --------------- x 0.12 = 0.48 

  π x (5)
2
 

 
F2-3 = 1 – F2-1 = 1 – 0.48 = 0.52 

(ii) F2-1 + F2-2 + F2-3 = 1 and F2-2 = 0. 
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r2 

 
A 

A3 

  
r1 = 10 cm 

 
L r2 = 5 cm 

  
L = 10 cm 

 

r1 

 

  A1 

Fig. E10.21: Figure for example 10.21 

Hence F2-3 = 1 – F2-1 = 1 – 0.48 = 0.52 

Therefore F3-2 = (A2F2-3) / A3. 
 

Now A3 = π (r1 + r2) [(r1 – r2) 
2 

+ L
2
] = π x (5 + 10) x [ 5 

2 
+ 10 

2
] = 526.9 cm

2
 

 

  π x (5 
2
) 

Therefore F3-2 = ------------ x 0.52 = 0.0775 
  526.9 

F1-2 + F1-3 = 1 

Or F1-3 = 1 – F1-2 = 1 – 0.12 = 0.88 

  
π x (10 

2
) 

Hence F3-1 = (A1F1-3) / A3 = ------------- x 0.88 = 0.525 
  526.9 

Therefore F3-3 = 1 – [F3-1 + F3-2] = 1 – [0.525 + 0.0775] = 0.397 
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A1 1.0 

2.0 

Example 10.22: Determine the shape factors for the geometries shown in Fig. E10.23(a) 
to E10.23(i) 

 

 

 

A1 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
Fig. E 10.23 (d) 

Long groove, A1 Surroundings, A2 

Long duct  

 

 

 
Surroundings, A3 

Find F1-1 and F1-3 

Fig. E 10.23 (c) 

 

 

 

 
 

A1 is covered by a 

hemispherical surface A2 of 

radius 1.5. Find F1-2, F1-3, 

F2-1 and F2-2 

A1 

1.0 

A2  

Find F1-2, F2-1 and F1-1 Find F1-2, F2-1 and F1-1 

Fig. E 10.23 (a) Fig. E 10.23 (b) 
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3.0 

1 

1.5 

2 

1.0 
3.0 

 

 

 

 

 

 

 

 

2.0 
 

 

 

 

 
1.0 

 

(e) F1-3 F2-3 F2-2 F2-1 F1-2 for disc (f) F1-2 F2-1 fro sphere on infinite 
surrounded by a short cylinder plane 

 

 

 

1.5 1.5 
 

Surroundings 3 
 

(g)F1-2 F2-1 F2-3 (h) F1-2 F2-1 F1-3 F2-3 

 

(i) F1-2 F2-1 F1-1 F1-3 hemisphere 1 enclosing a small sphere 2 surrounded by a large 

enclosure 3 

1 

2 

1.0 1 3 

2 
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 F  F 

F 

 

Solution:  
1  a n d  2  f o r m a n e n c lo s u r e 

 F 1  1  F1  2  1 

F 
2  1 

 

 F  1 
2  2 

s in c e   2  is a f la t s u r f a c e ,  F 2  2     0 

 F 2  1  1 b u t A 1 F 1  2   A 2 F 2 1 
 

 

 
1  2 

A 
2 

 
 

2 1 

A 
2   

    
2 R  1 

 
1 

A 1 A 1 2  R  1 

 F 
1  1  1  F1  2  1 

 1 


   1 

 




All the radiation from (1) which goes to the 
surroundings can be intercepted by an imaginary 

surface 2
1 

as shown in Fig. Now 1 and 2
1 

form an 
enclosure. Therefore from the above example 

F  F  1;  F  F    1   ;  F    1  
2   1 2  1 1  2  1  2  11 






All the radiation from (1) which goes to the 

surroundings can be intercepted by an imaginary 

surface 2 and 4 as shown in Fig. Now, 1, 2 and 4 form 

an enclosure. 
 

F 
1  1 

 F1    2   F1    4   1 

 

b u t F1   4  F1   2 

 
a ls o 

F 
2  4 

 
 
 

2  1 

 

 

 
 F

2  2 

 

 

 

 

 

 

 

 

 

F 

 F 1  1  1  2 F 1  2          ( a ) 

  1 a n d F 2  2  0 

 F 2  1   F 2  4    1  F 2  1  1  F 2  4 

f r o m c h a r t f o r tw o p a r a lle l c o a x ia l d is c s 
 

 0 . 3 8 3 

 

 

 

 2  a n d  4 

2  4 

F 
2 1 

 1  0 . 3 8 3  0 . 6 1 7 

 
A F  R 2

 
1 .0 

 F 
1  2 

        2 2 1      0 .6 1 7   0 .6 1 7  0 . 3 0 9 

A 1 2  R L 2  1 .0 

  F1 1  1  2  0 .3 0 9  0 .3 8 3 

F 1  3  1  F1 1  1  0 . 3 8 3  0 . 6 1 7 


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1  1 

 

F  F 1  2  F 1  3  1 a n d F 1  1  0 ; F1  3  0 

 F 
1  2 

 1 _____________________________ ( a ) 

F 
2  1 

 F 2  2  F 2  3  1 _ _ _ _ _ _ _ _ _ _ _ ( b ) 

F 
3  1 

 F 
3  2 

A F 

F 3  2  F 3  3  1 a n d F 3  3  F3 1  0 

 1 ______________________________ ( c ) 

 A F 
3 3  2 

 

 
 F 

2 2  3 

  1 . 5 2  0 . 5 2 A3   
F  

        
 1  0 . 4 4 4 

2  3 

A 2 
3  2 

2  1 . 5 
2 

A F 
2 2  1 

 A F 
1 1  2 

 
 F 


A 1 

F 


  0 . 5 2 
 1  0 . 0 5 5 

2  1 

A 2 
1  2 

2  1 . 5 
2 

F r o m e q ( b ) , F 2  2    1   F 2  1  F 2   3  

 1   0 . 0 5 5  0 . 4 4 4 

 F2 - 2 = 0 . 5 
 

Surroundings (3) can be replaced by imaginary surfaces 

(5) and (4) as shown in Fig. Now, 1, 2, 4 and 5 form an 
enclosure 

F 
1  1 

 F 
1  2 

 F
1  4 

 F
1  5 

 1 a n d F 
 

 
1  1 

 F  0 
1  4 

 F 1  2    F 1   5    1 _______________________ ( a ) 

F 
 F  F  F  1 a n d F  F  F 

2  1 2    2 2    4 2    5 2    5 2    1 2    4 

 

 F 2  2   2 F 2  5   1 _______________________ ( b ) 

 

T o f in d F5   1  4  : 

R  
 d      


3 

 0 . 7 5 

2 L 2  2 

2 R 2  1 
X   

2  0 . 7 5 2  1 
 

 

 
 3 . 7 8 

R 2 0 . 7 52 

X     X 2   4  3 . 7 8   3 . 7 8 2  4 

 F 
1  4   5 

 F 
5   1  4 

   

2 

     

2 

o r F5   1    4   0 . 2 8 6 

 F r o m E q n ( d ) F5  2  1  0 . 2 8 6  0 . 7 1 4 
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 

A2,T2 

A1,T1 

 

A  F  1 . 52 
 F        5      5  2      0 . 7 1 4  0 . 2 6 8 

2  5 

A 2 2   1 . 5  2 

 F r o m ( b ) F 2  2  1  2  0 . 2 6 8  0 . 4 6 5 

A F 

N o w F  F 
5  4 

 
5   1  4 

 F  F 
5 1 

 
1 1  5 

 

5   1  4  A5
 

  0 . 5 2 
  0 . 2 8 6   0 . 3 5  0 . 2 4 7 

 1 . 5 2
 

A  F  1 . 5 2 
 F 5 5  4   0 . 2 4 7  0 . 2 7 8 

4  5 

4  1 . 5 2  0 . 5 2 
F r o m ( c ) F 4  2  1  0 . 2 7 8  0 . 7 2 2 

A  F  1 . 5 2  0 . 5 2 
 F 2  4 

        4      4  2     
  0 . 7 2 2  0 . 2 4 

A 2 2   1 . 5  2 

F 2  1  F 2  5  F 2  4  0 . 2 6 8  0 . 2 4 0 

 F 2 1  0 . 0 2 8 

F 
2  3 

 
 F 

2  5 

 
 F

2   1  4 


 2 F 

 

 

 
2  5 

 
 2  0 . 2 6 8 

 F 2  3  0 . 5 3 6 

 
 RADIATION HEAT EXCHANGE BETWEEN FINITE SURFACES 

 

 RADIATION HEAT EXCHANGE BETWEEN FINITE BLACK SURFACES 

Consider two black surfaces of area A1 and A2 and at temperatures T1 and T2 as shown 

in Fig 10.14. Then radiation leaving A1 and reaching A2 can be written as 
 

Fig 10.14: Radiation between two Finite Block Surfaces. 

A 
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  b  



Q1->2 = A1 J1 F1-2 Since A1 is a black surface, J1 = Eb1 thus, 

 

Q1->2  = A1  Eb1 F1-2 

 

Similarly radiation leaving A2 and reaching A1 is given by 

Q2->1 = A2 Eb2 F2-1 

Net heat exchange between A1 and A2 can be written as 

Q12 = Q1->2 – Q2->1 

= A1 F1-2 Eb1 – A2 F2-1 Eb2 

 
But, A1 F1-2 = A2 F2-1  

Thus, Q1-2 = A1F1-2 (Eb1 – Eb2) 
 

 
Q1-2 = ζA1F1-2(T1

4 
– T2

4
) ----------------- (10.27) 

 RADIATION HEAT EXCHANGE BETWEEN FINITE GREY SURFACES 

(NET WORK METHOD) 
 

The calculation of radiation heat transfer between black surfaces is relatively easy 

because all the radiant energy which strikes a surface is absorbed by it. When non black 

bodies are involved, the situation is much more complex because all the energy striking a 

surface will not be absorbed: part will be reflected back to another heat transfer surface, 

and part may be reflected out of the system entirely. The problem can become 
complicated because the radiant energy can be reflected back and forth between heat 

transfer surfaces several times. 

While deriving the expression for radiation exchange between any two finite grey 

surfaces the following assumptions are made 

i. All the surfaces are diffuse and uniform in temperature. 

ii. The reflection and emissive properties are constant over all the surface 

iii. Radiosity and irradiation are uniform over each surface. This assumption is not 
strictly correct even for ideal grey diffuse surfaces, but the problems become 
exceedingly complex when this restriction is not imposed. 

iv. The surfaces are opaque (i.e. Transmissivity is zero) 

Now the net radiation from a surface is given by 

Q r  A  J  G 

b u t J  E  1    G 

a s s u m in g    , J   E b  1    G 

o r G 
 J   E b 

1  

 J   E   J 1     J    E 

 Q r    A  J     
A  b  



 1     1   
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1 

R1->2 = ---------- 
A1 F1->2 

1-ε 

R = ---------- 

Aε 

Eb 

Qr 

 A  E b   J  E b  J E b  J Q          

r 

1  
 
1    




 A 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  4 . 2 8 

R 

Eq. 4.28 can be interpreted as follows… (Eb-J) can be thought of as thermal potential, R 
= (1-ε)/εA can be thought of as thermal resistance offered by the surface for radiation, as 

Qr is the radiation heat flow rate. Therefore a radiating surface can be replaced by an 
element as shown in Fig 10.15 

 

Fig 10.15: Element representing surface resistance in the Radiation network method 

Now let us consider the radiation heat exchange between two surfaces A1 and A2. 

Radiation which leaves A1 and strikes A2 is given by 

Q 
1  2 

 A J 
1 

F 
1 1  2 

Similarly Radiation which leaves A2 and strikes A1 is given by 

Q 
2  1 

 A J 
2 

F 
2 2 1 

Therefore net radiation heat transfer from A1 to A2 is given by 
 

Q  Q 
1 2 

 

 

 
1  2 

 
 Q 

2  1 

 A J F 
1 1 1  2 

 A J F 
2 2 2 1 

 

 

 

 

 

 
 

 

Eq. (4.29) can be represented by an element as shown in Fig 10.16 
 

Q1->2 
 

J1 J2 

 

 

 

 

 
Fig 10.16: Element representing surface resistance in the Radiation network method 

J 

 
B u t A 1 F 1  2 

 A F 
2 2 1 

    

 Q 1 2  A 1 F 1  2  J 1  J 2 

 
O r Q 1 2 

 


   J 1  J 2   

  
   

T h e r m a l P o te n tia l  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  4 . 2 9 
   1  T h e r m a l R e s is ta n c e , R1 2 
   A F 

1 1   2 

 

    
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 

 Q  

The two network elements shown in Fig 4.15 and 4.16 represent the essentials of 
radiation network method. To construct a network for a particular radiation heat transfer 
problem we need only to connect a “surface resistance” (1-ε)/εA to each surface and a 

“space resistance” 1/(AiFi -j) between the radiosity potential potentials. This is illustrated 
below. 

 
 NETWORK METHOD FOR RADIATION HEAT EXCHANGE BETWEEN 

TWO PARALLEL INFINITE GREY SURFACES 
 

The radiation network for the above problem will be as shown in Fig 10.17 
 

 

 

 
   Q21 Qr 2 

Eb1 
 Q12   

   
J2 

Eb2 
  

J1 
 

Qr1 1-ε1 1 1-ε1 

 R1 = ---------- R1->2 = ---------- R2 = ---------- 
 A1ε1  A1 F1->2 A2ε2 

 

Fig 10.17 Radiation network for 2 parallel infinite grey surfaces 

 
F ro m th e a b o v e F ig . w e c a n w rite 

 
Q r  Q 1 2 E b    E b  T 1 4  T 24 

  1 2     

1 R1  
 R 

1 2  
 R 

2 1   1   1  1   2   


A F 
A 1  1 1        1  2 A 2   2 

F o r tw o p a ra lle l in fin ite g re y s u rfa c e s , A 2  A 1 , F1  2  1 

 A     T   4   T 4   A     T 4    T  4  
  1     1 2     1      1 2 

1 2 1   1          1  
1   

2 
1 
 

1 
 1 

 

 1  2  1  2 

A n e x p re s s io n w h ic h w e h a v e d e riv e d a lre a d y  E q n 4 .1 5 
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Radiation Shield 

 : NETWORK FOR RADIATION HEAT EXCHANGE BETWEEN TWO 

PARALLEL INFINITE GRAY SURFACES IN PRESENCE OF A RADIATION 

SHIELD 

 

 
A1, ε1, T1, J1 

 
A3 = A1 , ε32, T3, J32 

A3 = A1 , ε13, T3, J13 A2 = A1 , ε2, T2, J2 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 10.18: Radiation network for the parallel infinite gray surfaces in presence of a 

radiation shield 
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From Fig 10.18  the net radiation heat transfer from A1 to A2 is given by 
E 

b  E b 
1 2 

 

1 2  R  R 
1 1 3 

 R  R 
3 

 R  R 
3  3 2 2 

  T 4    T 4 

 1 2       

1   1       1       1   1 3  1   3 2 1       1   2  

A  A F A  A  A F A 
1      1 1     1 3 3     1 3 3     3 2 3       3 2 2     2 

B u t F 1 3  F 3 2  1; A 1  A 2  A3 

 A  T 4  T 4 

 Q 1 2 
1        1 2   

  1   1  1  1   1 3  1   3 2  1  1   2  


 1 1 3 


3 2  2 

Q 
1 2 

 A  T 4  T 4 
  1  1 2   

   1 1   1 1  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  4 . 3 0 
   1       1 



  1  2 
 

   1 3 3 2 



 : RADIATION NETWORK FOR HEAT EXCHANGE BETWEEN TWO 

SURFACES, ONE SURFACE COMPLETELY ENCLOSING THE OTHER (The 

enclosed surface cannot see itself) 
 

F 1  1  F 1  2  1 a n d F1 1  0 

 F1  2  1 

A 

A F 
1 1  2 

 A F 
2 

 

 
2  1 

 F 
1

 

2 1  A 
2 

Q  Q 
E  E 

b1 b 2 
    4 4
 

T 
1  T  2 

r1 1 2 
R  R  R 

 
1   1  1  1   2 

 

  1 1 2 2 

A 


1     2 

A F A 
1      1  2 2      2 

 A     T 4   T  
4 


 Q 1 2  
1   1 2             4 . 3 1 

1 A     1 

 
     1  

  1 

 1 A 2    2 

A1, ε1, T1 

A2, ε2, T2 

Q 
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A1, ε1, T1 

1 

3 A3, ε3, T3 

2 

A2, ε2, T2 

A1, ε1, T1 

1 
2 A2, ε2, T2 

3 

 : NETWORK METHOD FOR THREE ZONE ENCLOSURE 

The network method described above can be readily generalised to enclosures 

involving three or more zones. However when there are more than three zones, the 

analysis becomes more involved and it is preferable to use the more direct “Radiosity 

Matrix” method. The radiation network for a three zone enclosure shown in Fig 4.20(a) is 
shown in Fig 4.20(b) 

 

 

Fig 10.20: Radiation network for a three zone enclosure. 

Reradiating Surface: In many practical situations one of the zones may be thermally 
insulated. In such a case, the net radiation heat flux in that particular zone is zero,  

because that surface emits as much energy as it receives by radiation from the 

surrounding zones. Such a zone is called a “RERADIATION ZONE” or an 

“ADIABATIC ZONE”. Fig 10.21(a) represents a three zone enclosure with surface (3) 

being the reradiating surface and Fig 10.21(b) the corresponding radiation network. 
 

 

Fig 10.21: Radiation Heat Exchange in a 3 zone enclosure with one reradiating surface 
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For a three zone enclosure under steady state conditions, by I law of thermodynamics. 

Q r1   Q r 2   Q r3  0 _________________________  4 . 3 

2  A 3 is re ra d ia tin g , Q r3  0 

 
 Q r 

 
  Q r 

E  E 
b1 

 
b 2 ______________________________________ 

 4 . 3 3 a 
1 2 R 

e q 

 
w h e re R 

 1 

  R 1    R 

1   1 




 R 2

 1 2 R 1 3  R 2 3 

   1 

 
o r R 



  
1   1  

 
 F   1  

1 1  2 



     
 1   2 __________  4 . 3 3 b 

A 
1 
 

1   1 
 

1  
 A 

2 
 

2 

  
 A F A  F 

  1    1 3 2     2  3       



 ILLUSTRATIVE EXAMPLES ON NETWORK METHOD: 
 

Example 4.24: Two square plates 1m x 1m are parallel to and directly opposite to each 

other at a distance of 1m. The hot plate is at 800K and has an emissivity of 0.8. The clod 

plate is at 600K and also has an emissivity of 0.8. The radiation heat exchange takes  

place between the plates as well as the ambient at 300K through the opening between the 

plates. Calculate the net radiation at each plate and the ambient. 

 
Solution: 

Data:- 

T1 = 800K, Є1 = 0.8 

T2 = 600K, Є2 = 0.8 

T3 = 300K 

i) Qr1, Qr2, 

ii) Qr3 

A 

To find:- 

e q 

e q 

 

 

 

 

 

 

 

 

 

 

 
1 m 

 

1 m 1  

 A1, ε1, T1  

  3 

1 m  

T3  2 

 A2, ε2, T2  
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R  1   1  1  0 . 8  0 . 2 5 
1 

A1  1 1  1  0 . 8 

R  1   2  1  0 . 8  0 . 2 5 
2 

A 2  2 1  1  0 . 8 

R  
  1   3 : A is th e a r e a o f th e s u r o u n d in g s   A 1 

3 3 3 

A3  3 

  R 3   0 

 T h e r a d ia tio n n e tw o r k f o r th is p r o b le m w ill b e a s s h o w n b e lo w 

 

 

F r o m c h a r t F 1  2   F 2 1   0 . 2 0 

B u t F 1  1  F 1  2  F 1  3  1 a n d F1 1  0 

 F 1  3  1  F 1  2  1  0 . 2  0 . 8  F 2  3 

1 1 
R  1 2  

A F 
  5 

1     1  2 1  1  0 . 2 

R 
1 1 

1 3     A F   1 . 2 5 
1     1  3 1  1  0 . 8 

R 1 
2 3     

A F 


1 
 1 . 2 5 

1 E 4  8 
2  3 1  1  0 . 8 

4 2 2 

b   T 1 
1 

 5 . 6 7  1 0  8 0 0  2 3 2 2 4 W / m  2 3 . 2 2 4 K W / m 

E   T 4  5 . 6 7  1 0  8  6 0 0 4  7 3 4 8W / m 2  7 . 3 4 8 K W / m 2 
b 2  2 

E   T 4  5 . 6 7  1 0  8  3 0 0 4  4 5 9W / m 2  0 . 4 5 9 K W / m 2 
b  3 3 

F o r s te a d y s ta te r a d ia tio n , r a d ia tio n e n e r g y c a n n o t a c c u m u la te a t n o d e s J 1 , J 2 a n d J 3 


Q  Q  Q 

r1 1 2 1 3 

o r Q r1      Q 1 2   Q 1 3   0 
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R 

2 

2 

E b  J 1  J  J   J  J 

1 

R 1 

1  

R 
2    1 3  0 

1 2 1 3 

o r 
 2 3 . 2 2 4  J 1 

  
 J 1  J 2  

  
 J 1  0 . 4 5 9   0 __________  a 

0 . 2 5 5 1 . 2 5 

s im ila r ly Q r  Q 2 1  Q 2 3  Q r  Q 2 1  Q 2 3  0 
2 2 

E b    J 2  J     J    J 2  E b 
  2 2 1       3  0 

R R 
R 2 1 2 2 3 

 7 . 3 4 8  J 2 
  
 J 2   J 1  

 
 J 2  0 . 4 5 9   0 __________  b 

0 . 2 5 5 1 . 2 5 

S o lv in g E q n ( a ) a n d ( b ) s im u lta n e o u s ly w e g e t 

J 1  1 8 . 9 2 1 K W / m 2 ; J  6 . 7 0 9 K W / m 2 

 Q r 
1 

E b  J 1 

R
1  

2 3 . 2 2 4  1 8 . 9 2 1 
  1 7 . 2 1 2 K W 

1 0 . 2 5 
E b    J 2 7 . 3 4 8  6 . 7 0 9 

Q  2   2 . 5 5 7 K W 
r 

B u t Q  Q   Q 
R 2

 
0 . 2 5 

 0  Q r    Q r  Q r    1 7 . 2 1 2  2 . 5 5 7 
r1 r 2 r3 

3  1 2 

   1 9 . 7 6 9 K W 

 

Example 4.25 The configuration of a furnace can be approximated as an equilateral 

triangular duct which is sufficiently long that the end efforts are negligible. The hot wall 

is at 900K with an emissivity of 0.8 and the cold wall is at 400K with emissivity of 0.8. 

The third wall is a reradiating wall. Determine the net radiation flux leaving the hot wall. 
 

Solution: 

A1 = A2 = A3 = 1m
2 

(assumed) 

T1 =900K, Є1 = 0.8 

T2 = 400K, Є2 = 0.8 
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The radiation network for the above problem will be as shown below 
 
 

 

R  1   1  1  0 . 8  0 . 2 5 
1 A 

1    1 1  0 . 8 

R  
1   2  

1  0 . 8 
 0 . 2 5

 
2 A 

2    2 1  0 . 8 
U s in g H o tte l's c r o s s s tr in g f o r m u la , w e h a v e 

 A 1  A 2   A3 1  1   1 

F 1  2     0 . 5  F 1  3  F 2  3 

2 A1 2  1 

1 1 
 R 1 2     2 R 2 3  R1 3 

A 1 F1  21  0 . 5 

   1 1   1 

R e q    
R 

1 

 
    R 2 

  

R 
 1 2 R 1 3 

R 
2 3 

 1 1   1 

 0 . 2 5      0 . 2 5  1 . 8 3 3 

 2 2  2 

E b    E b  T 1   
4 
 T 2

4  5 . 6 7  1 0  8   9 0 0 4  4 0 0 4 
Q 

1 2          

 
 


r  
1 R

 

e q 

R 
e q 1 . 8 3 3 

Q 
r  Q r 
1 2 

 1 9 5 0 3 W / m 2 

 Q r   0  a n d  Q r    0  Q r   Q r   1 9 5 0 3 W / m 2 
3 3 2 1 
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Example 4.26 A short cylindrical enclosure is maintained at the temperatures as shown 

in Fig P4.26. Assuming Є2= Є3=1; Є1=0.8 determineQr1 and Qr2 

 

Solution:     

From chart, F1-2 = 0.175 = F2-1 (A2=A1) 

Also, F1 -1 + F1-2 + F1-3 = 1 and F1-1 = 0 

So, F1 -3 = 1 – F1-2 = 1 – 0.175 or 
 F1 -3 = 0.825 = F2-3 

 
 

The radiation network for the above problem will be as shown below 
 

 

A2, ε2, T2 A1, ε1, T1 

Reradiating Surface 

1 m 



316  

 

 

R    1   1 1  0 . 8  0 . 3 1 8 
1 A 

1     1   0 . 5 
2  0 . 8 

R  1   2  1  1  0 
2 

A 
2 

R 
1

 

2 A 2  1 

1 
 

 

1 2 A F 
 1 1  2 

R 
1

 

   0 . 5 
2  0 . 1 7 5 

1 

 7 . 3 

1 3 A F 
 1 1  2 

R 
1
 

   0 . 5 
2  0 . 8 2 5 

1 

 1 . 5 4 

2 3 A 


F 
2 2  3    0 . 5 2  0 . 8 2 5  1 . 5 4 

R  
R 

1 

e q 


   1 1   1 

 
R 

   R 2 

 1 2 R 1 3  R 2 3 
  1 1   1 

 0 . 3 1 8      0  2 . 4 8 4 

 7 . 3 1 . 5 4  1 . 5 4 

E  E  T 1 
4 
 T 2

4  5 . 6 7  1 0 
 8 

  2 0 0 0 
4 
 1 0 0 0 4 

 Q r 
1 


b 1 b 2  

R 
e q 

 
R 



e q 

   

2 . 4 8 4 

 
Q  Q 

r 1 r 2 

 3 2 9 . 1 4  1 0 3 W  3 2 9 . 1 4 K W 

 Q  0 a n d Q r 3  0
r 3 

 Q r 2   Q r 1   3 2 9 . 1 4 K W 

 

Example 4.27 A spherical tank with diameter 40cm fixed with a cryogenic fluid at 100K 

is placed inside a spherical container of diameter 60cm and is maintained at 300K. The 

emissivities of the inner and outer tanks are 0.15 and 0.2 respectively. A spherical 

radiation shield of diameter 50cm and having an emissivity of 0.05 on both sides is 

placed between the spheres. Calculate the rate of heat loss from the system by radiation 
and find also the rate of evaporation of the cryogenic liquid if the latent heat of 

vaporization of the fluid is 2.1x10
5 

W-s/Kg 

Solution: The schematic and the corresponding network for the problem will be as 
shown in Fig P.10.27 
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2 

 

 

T1 = 100 K   

D1 = 40 cm   

ε1 = 0.15 
Shield, 

A2, ε2, T2 

T2 = 300 K 
A3, ε3, T3 

A1, ε1, T1 

D2 = 60cm   

ε2 = 0.2   

D3 = 50cm 
  

ε3 = 0.05   

 

Fig P 10.27 

E 
b 1    E b 2 

 

r 1  Q 1 2  R 1  R 1 3  2 R 3  R 3 2  R 2 

 T 1 
 

4  T 24




1   1 1  2 1   3  1   1   2  

A 1  1 
A F 

1       1  3 A 3  3 
A F 

3 3  2 A 2  2 

 A 1  T 1 4   T 4 


1 A     2  A      1 
 

    1   
   

1 
  

   1    
  1 

  

A 
 1 3   3 

A 
 2   2   

 

5 . 6 7  1 0  8  4   0 . 2 2   1 0 0 4  3 0 0 4 



  6 . 8 3 W 

1  4 0  2   2   4 0  2    1 




E v a p o r a tio n R a tio 

      1       1 
0 . 1 5  5 0    0 . 0 5  6 0    0 . 2 
Q 

r 1    6 . 8 3  3 . 2 5  1 0  5 K g / s 

h f g 2 . 1  1 0 5 



Q 
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Gi 

Qri 

 

 RADIOSITY- MATRIX METHOD FOR RADIATION IN ENCLOSURES 
 

The network method is  quite easy to apply for determining the radiation exchange in 
enclosures having not more than 3 zones. As the number of zones forming the enclosure 

increases, the manipulations involved in the network method becomes enormous and the 
method is not so practical. Whereas the radiosity-matrix method is very straight forward and 
the method transforms the problem to the solution of an algebraic matrix equation for the 

unknown radiosities Ji [i=1,2,3,…….N] once these equations are solved for Ji then the 

net radiation flux or the zone temperature at any zone (i) can be immediately determined. 

This is illustrated below. 
 

 

 

Consider an enclosure made up of N zones. 

Let Gi be the irradiation at zone i 

Let Ji be the Radiosity at zone i 

Net radiation heat flux from zone i is given 
 

 

 

Q 
j  i 

 A F 
j 

 

J 
j  i j 

 A F 
i 

 
J 

i  j j 

by 
 

q i 

 


Q 
r i 

 

 J i   G i _____________  4 . 3 4 
  Ai  

  R a d ia tio n le a v in g A j a n d s tr ik in g Ai is g iv e n b y 

 

Ji Zone i 

 Ai, εi, Ti 
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Q 

N 





i i 



R a d ia tio n le a v in g a ll z o n e s a n d s tr ik in g A i th e r e f o r e w ill b e 
 

N 

 j  i 

 

 A   
N 

i 

J 
i  j     j 

j = 1 j 1 

 
N 

Q
 

 j  i 

 G i   
  j = 1 

  F i  j J j _______________  4 . 3 5 
Ai j = 1 


q i  J i 

E 
b i 

 
F 

j = 1 

J 
i 

J 
i  j 

 

j  i = 1 ,2 ,3 ... N  4 . 3 6 

A ls o q i 
 1   i 
 

 J i   G i _______________  4 . 3 6 a 

  i 

 1  

  1   

E b i  
i      J 
   i J i  i 

 
G 

  i     i 

N 

 

O r E b i 

J i  1   i   F i  j J j 
j = 1 

 

 i 

 
 i = 1 ,2 ,3 ... N  4 . 3 7 



Equations (4.36) and (4.37) provide the fundamental relations for obtaining a system of N 

algebraic equations to determine the N unknown radiosities. Once the radiosities are 

known the net radiation heat flux qi at any zone (i) can be computed using either Eq. 4.36 
or 4.36a 

 
The solution depends on the prescribed conditions for each of the zones. Two 

situations are of practical interest 

1. Temperatures are prescribed for each of the N zones 

2. Temperatures are prescribed for some of the zones and the net radiation flux are 

prescribed for the remaining zones 

 

i. Temperatures prescribed for all the zones 

 

Consider Eq. 4.37 
  N  

J i  1   i   F i  j J j 
 


i 

j = 1 

 i = 1 ,2 ,3 ... N E b i   

And Ebi = ζT 
4 

is known because T ‟s are prescribed. Therefore the above set of 

equations can be solved for unknown radiosities J i i  1, 2, 3 ... N  and knowing Ji the net 

radiation flux qi can be determined from Eq. 4.36a 

F 

N 

i 
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 3 

 

 

Eq 4.37 can be rewritten as 
J  1    N 

      i       i 
  F 

 
i  i  j = 1 

i  j J j   T i 4 ___________________  4 . 3 8 


E q u a tio n ( 4 . 3 8 ) is o f th e f o r m 

 M  J   T  4 . 3 9 

 m 1 1 m 1 N 
 

W h e r e   M      4 . 3 9 a 
 

m
 

 N 1 

m 


N N 
  J 1 

  J  
J 

 2    

    4 . 3 9 c 
 

  J  
    N   

  T  4 
1 

 4 
  T 2  

T    
  

 4 



T     4 . 3 9 d 

 

 
  T  4 
 N  

T h e e le m e n ts o f m i j o f m a tr ix M  c a n b e d e t e r m in e d f r o m 


m    
i j  1   i  Fi j 

i j  i 

 
_ _ _ _ _ _  4 . 3 9 c 

w h e r e  i j  1 f o r i = j 

 0 f o r i  j 

 is k n o w n a s K R O N E C K E R d e l ta 
i j 

 

ii. Temperature prescribed for some zones and net heat flux prescribed for others 

In many practical situations, temperatures are prescribed for some of the zones 

and net heat fluxes for the remaining zones of an enclosure. In such problems we have to 

determine the net heat fluxes for the zones for which temperatures are specified and 
temperatures for the zones for which the net heat fluxes are prescribed. This can be done 

using the same equations (4.36) and (4.37) and illustrated below. 
 

Let us assume that temperatures Ti are prescribed for zones i=1, 2, 3 ….k and the net heat 

fluxes qi are prescribed for the remaining zones i=k+1, k+2….n 

For zones 1 to k since temperatures are prescribed we can use eq. 4.38 that is 
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

4 

 
 

J  1    N 

      i 

i   

  F
 i  j J j   Ti 4 _ _ _ _ _ _ _ _  4 . 3 9 

 i     i  j = 1 

For zones i = k+1, k+2, … N with prescribed heat fluxes we can use Eq (4.36) namely 
N 

q  J 
i i 


 

F 
i  j J j  i = K + 1 , K + 2 , ... N  4 . 4 0 

j = 1 

It is more convenient to express Eq. 4.39 and 4.40 in matrix form as 

 
 M  J    S  4 . 4 1a 

m 
 1 1 m 1 N 

W h e r e  M  
 
  4 . 4 1b 

 m 
 N 1 

m 


F   
N N  


m i j 

i j  1   i 

 i 

 
i  j 

f o r i  1, 2 , 3 ... K ___________  4 . 4 1 c 

m 

i j   i j  F i  j  f o r i  k + 1 , k + 2 , ... N ________________ 4 . 4 1 d 

w h e r e  i j  1 f o r i  j 

 0 f o r i  j _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  4 . 4 1e 

  J 1 
 
  J 2 

 J     4 . 4 1 f 
 

 J 
    N   

  T  4 
1 

 4 
  T  2 
 
 T 

 3 
 
 

 S     T K4  4 . 3 9 d 

 q 
 k  1  q 

k  2      
 

 
 

   q N  


Ones these equations are solved for unknown radiosities Ji, then the unknown radiation 

fluxes can be determined from the equation 
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q i 
    i  

 E b i  J i  , i  1, 2 , 3K _________  4 . 4 1 h 
1   i 

T h e u n k n o w n te m p e r a tu r e s c a n b e d e te r m in e d u s in g 

 T i 
4  J i 

 1   i 
q i i  1, 2 , 3K 

 i 

 

_ _ _ _ _ _ _ _ _  4 . 4 1i 

N o tin g th a t f o r a r e r a d ia tin g s u r f a c e q i  0 

 T i 4   J i  f o r a r e r a d ia tin g s u r f a c e ____________  4 . 4 1 j 


4.10: ILLUSTRATIVE EXAMPLES ON RADIOSITY MATRIX METHOD 

 

Example 4.28:- Solve Example 4.24 using radiosity matrix method. 

 

Solution: 

Data:- T1 = 800K, Є1 = 0.8 
T2 = 600K, Є2 = 0.8 

4
 

T3 = 300K, J3 = Eb3 = ζT3 

F1-2 = F2-1 = 0.2 

F1-1 = F2-2 =0 

F1-3 = F2-3 = 0.8 
Since J3 is already known, we have to solve only for J1 and J2. Thus the matrix form of 

equation for radiosities J1 and J2 can be written as 
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 



1 2 2 1 

1 

2 

 

 m 1 1 m 1 2   J 1      T1 4 
        

 T  
4 

 
m 

2 1 
m 

2 2    
J 

2    

 2    

 i j  1   i  Fi j 

m 
i j   i 

w h e r e  i j  1 f o r i = j 

 0 f o r i  j 

 m 
 1  1  0 . 8   0 

 1 . 2 5 ;  T 4  5 . 6 7  1 0  8  8 0 0 4  2 3 2 2 4W / m 2 
1 1 1 

0 . 8 

m  0  1  0 . 8  0 . 2   0 . 0 5 ;  T 4  5 . 6 7  1 0  8  6 0 0 4  7 3 4 8W / m 2 
1 2 

0 . 8 
2 

 

m 
2 1 

0  1  0 . 8  0 . 2 

0 . 8 

1  1  0 . 8   0 

 
 
  0 . 0 5 

m    
2 2  0 . 8  1 . 2 5 


 1 . 2 5  0 . 0 5   J 1  2 3 2 2 4 

         

  0 . 0 5 1 . 2 5 

i . e , 

1 . 2 5 J 1  0 . 0 5 J 2  2 3 2 2 4 

 0 . 0 5 J 1  1 . 2 5 J 2  7 3 4 8 

  J  2    7 3 4 8 

S o lv in g f o r J a n d J     w e g e t J  6 6 3 2 W / m 2 a n d J  1 8 8 4 5W / m 2 

 q  E b 1  J 1  2 3 2 2 4  1 8 8 4 5  1 7 5 1 6W / m 2 
r 1 

 1       1  0 . 8 




     
 1     

 

 0 . 8 

q  E b 2  J 2  7 3 4 8  6 6 3 2  2 8 6 4W / m 2 
r 2 

 1     1  0 . 8 




  
 2 

 

     0 . 8 

q r 1  q r 2  q r 3  0  q r 3   1 7 5 1 6  2 8 6 4    2 0 3 8 0W/ m 2 

 
Example 4.29:- Solve example 4.25 by radiosity-matrix method. 

Solution: Given A1 = A2 = A3 = 1 m
2 

; T1 = 900 K ; T2 = 400 K ; Qr3 = 0 ; ε1 = 0.8 

; ε2 = 0.8; 

This is a case wherein temperature is specified for 2 zones and radiation flux is specified 
for the remaining zone. 
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1 

2 

1 

 

 

δij − (1 – εi) Fij 

mij = ------------------------ for i = 1,2 and mij = δij − Fij for i = 3 
εi   

0 – (1 – 0.8) x 0.5 

Therefore m11 = (1 – 0) / 0.8 = 1.25 ; m12 = ------------------------- = - 0.125 = m21 

  0.8 

(1 – 0) 0 – (1 – 0.8) x 0.5 

m22 = ------------ = 1.25 ; m13 = ------------------------ = − 0.125 = m23 

0.8 0.8  

 
 

m31= 0 – F31 = − 0.5 ; m32 = 0 – F32 = − 0.5 ; m33 = 1 – F33 = 1.0 

 

The radiosity matrix equation can now be written as follows: 

ζ  T 
4
 

[mij]{Ji} = {S} where {S} =  ζ T 
4
 

2 

0 
In expanded form the above equation can be written as: 

m11 J1 + m12 J2 + m13 J3 = ζ T 
4
 

m21 J1 + m22  J2 + m23 J3 = ζ T 
4
 

 

m31 J1 + m32 J2 + m33 J3 = 0 

Substituting the numerical values fo mij , T1, T2 and ζ the above three equations can be 

solved for J1, J2 and J3. 
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              UNIT-V 

HEAT EXCHANGERS 

A. Overall heat transfer coefficient: 

Water at 25 
0 

C and a velocity of 1.5 m/s enters a brass condenser tube 6 m long, 1.34 cm ID, 
1.58 cm OD and k = 110 W/(m-K). Steam is condensing on the outer surface of the tube with a 

heat transfer coefficient of 12,000 W/(m
2

 
– K). The fouling factors for the inner and outer surfaces are both equal to 

0.00018 (m
2 

– K) / W. Calculate the overall heat transfer coefficient based on 
(i) the inside surface area and (ii) the outside surface area. 

 

A stainless steel tube [k = 45 W/(m-K)] of inner and outer diameters of 22 mm and 27 mm 

respectively, is used in a cross flow heat exchanger (see Fig. P 9.2). The fouling factors for the 

inner and outer surfaces are estimated to be 0.0004 and 0.0002 (m
2
–K) /W respectively 

 
 
 

Water at  
Di = 22 mm 

 
D0 = 27 mm 75 0 C & 

0.5 m/s  
 

 

 
 

Air at 15 
0 

C & 20 m/s 

 
Fig. P 9.2: Schematic for problem 9.2 

 
Determine the overall heat transfer coefficient based on the outside surface area of the tube. 

Compare the thermal resistances due to convection, tube-wall conduction and fouling and make 

comments. 

 

B. Mean Temperature Difference Method: 

In a heat exchanger hot fluid enters at 60 
0 

C and leaves at 48 
0 

C, where as the cold fluid 

enters at 35 
0 

C and leaves at 44 
0 

C. Calculate the mean temperature difference for (a) 
parallel flow, (b) counter flow, (c) single pass cross flow (both fluids unmixed), 

 

(d) single pass cross flow (hot side fluid mixed, cold side fluid unmixed), and (e) 
single pass cross flow (hot side fluid unmixed, cold side fluid mixed). 

 

 A simple heat exchanger consisting of two concentric flow passages is used for 

heating 1110 kg/h of oil (Cp = 2.1 kJ/kg-K) from a temperature of 27 
0 

C 
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to 49 
0 

C.The oil flows through the inner pipe made of copper (k = 350 W/m- 
K) with2.54 cm ID and 2.86 cm OD. The surface heat transfer coefficient on the oil side is 

635 W/m
2 

–K. The oil is heated by water supplied at a rate of 390 kg/h and at an inlet 

temperature of 93 
0 

C. The water side heat transfer coefficient is 1270 W/m
2
-K. the fouling 

factors o the oil side and water side are 0.0001 and 0.0004 m
2
-K/W respectively. What is the 

length of the heat exchanger required for (i) parallel flow, and (ii) counter flow arrangements? 

A one-shell pass, two-tube pass exchanger is to be designed to heat 0.5 kg/s of water entering 

the shell side at 10 
0 

C. The hot fluid oil enters the tube at 80 
0 

C with a mass flow rate of 0.3 

kg/s and leaves the exchanger at 30 
0 

C. The overall heat transfer coefficient is 250 W/m
2
-K. 

Assuming the specific heat of oil to be 2 kJ/kg-K, calculate the surface area of the heat 
exchanger required. 

 
A single pass cross flow heat exchanger uses hot gases (mixed) to heat water (unmixed) from 

30 
0 

C to 80 
0 

C at a rate of 3 kg/s.The exhaust gases, having 

thermo-physical properties similar to air enter and leave the exchanger at  225 and 100 
0 

C 

respectively. If the overall heat transfer coefficient is 200 W/m 
2
-K, determine the required 

surface area of the exchanger. 

A two-shell pass, four-tube pass heat exchanger is used to heat water with oil. Water enters the 

tubes at a flow rate of 2 kg/s and at 20 
0 

C and leaves at 80 
0 

C. Oil enters the shell side at 140 
0 

C and leaves at 90 
0 

C. If the overall heat transfer coefficient is 300 W/m
2
-K, calculate the 

heat transfer area required. 

A shell and tube heat exchanger is to be designed for heating  water from 25
 0 

C to 50 
0 

C 
with the help of steam condensing at atmospheric pressure. The water flows through the tubes 
(2.5 cm ID, 2.9 cm OD and 2 m long) and the steam condenses on the outside of the tubes. 
Calculate the number of tubes required if the water flow rate is 500 kg/min and the individual 

heat transfer coefficients on the steam and water side are 8000 and 3000 W/ m
2
-K 

respectively. Neglect all other resistances. 

 

C. Effectiveness – NTU method: 

 

Show that for counter flow heat exchanger with capacity ratio C = 1, the effectiveness is 
given by 

 

ε = NTU / (1 + NTU) 

The following data refer to a heat exchanger. Mass flow 

rate of the hot fluid = 4 kg/min. Mass flow rate of the cold 

fluid = 8 kg/min. 

Specific heat of hot fluid  = 4.20 kJ/kg-K. 

Specific heat of the cold fluid = 2.52 kJ/kg-K. 
Inlet temperature of hot fluid = 100 

0 
C. 

Inlet temperature of cold fluid = 20 
0 

C. 

What is the maximum possible effectiveness if the arrangement is (i) parallel flow and (ii) 

counter flow? 
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Calculate the exit temperature of the hot fluid and inlet temperature of the cold fluid for a 

counter flow heat exchanger having the following specifications. 

Mass flow rate of hot fluid = 3 kg/s. Mass flow rate of 

cold fluid = 0.75 kg/s. 
Cp  for hot fluid = 1.05 kJ/kg-K. 

Cp  for cold fluid = 4.2 kJ/kg-K. 

In a gas turbine power plant, heat is transferred in an exchanger from the hot gases leaving the 
turbine to the air leaving the compressor. The air flow rate is 5000 kg/h and the fuel-air ratio is 

0.015 kg/kg. The inlet temperatures on the air side and the gas side are 170 
0 

C and 450 
0 

C 

respectively. The overall heat transfer coefficient for the exchanger is 52 W/m
2
-K and the 

surface area of the exchanger is 50 m 
2
. If the arrangement is cross flow with both fluids 

unmixed determine the exit temperatures of both the fluids and the rate of heat transfer. Take 
the specific heats of both the fluids as 1.05 kJ/kg-K. 

 
A concentric-tube heat exchanger operates on the counter flow mode. The fluid flowing in the 

annular space enters the exchanger at 20 
0 

and leaves at 70 
0 

C. The fluid flowing through the 

inner tube enters at 110 
0 

C and leaves at 65 
0 

C. The length of the exchanger is 30 m. It is 

desired to increase the outlet temperature of the cold fluid to 80 
0 

C by increasing only the 
length while maintaining the same mass flow rates, inlet temperatures and tube diameters. 
Make any justifiable assumption and calculate the new length. 

It is proposed to cool 1000 kg/h of oil from150 
0 

C to 50 
0 

C in a heat exchanger using 1667 

kg/h of water at an inlet temperature of 30 
0 

C. Calculate the surface required assuming a 
single pass cross flow arrangement 
in which the oil is mixed and the water unmixed. Assume Cp for oil to be 
2.087  kJ/kg-K and the overall  heat  transfer coefficient to  be  550  W/m

2
-K. 

Solve the problem by the mean temperature difference method as well as by the ε – NTU 
method. 

 
Two identical counter flow heat exchangers are available. Water at the rate of 5000 kg/h and at 

30 
0 

C is to be heated by cooling an oil (Cp = 2.1 kJ/kg-K) at 90 
0 

C. The oil flow rate is 2000 

kg/h. The heat transfer area is 3 m 
2
.  From the point of view of maximizing the heat transfer 

rate, which of the following is the best arrangement? 
(a) Both the fluids flow in series. 
(b) The oil flow is split up equally between the two exchangers, while the 

water flows in series. 
(c) Both oil and water flows are split up equally in both the exchangers. 

 

A counter flow double pipe heat exchanger is used to heat 1.25 kg/s of water from 35 
0 

C to 80 
0 

C by cooling an oil (Cp = 2.0 kJ/kg-K) from 150 
0 

C to 85 
0 

C. The overall heat transfer 

coefficient is 850 W/m
2
-K. A similar arrangement is to be built at another location, but it is 

desired to compare the performance of the single counter flow heat exchanger with two 
smaller counter flow heat  exchangers connected in series on the water side and in parallel on 
the oil side as shown in Fig. P 9.16. The oil flow is split equally between the two exchangers 
and it may be assumed that the overall heat transfer coefficient for the smaller exchangers is 
the same as for the large exchanger. If the smaller exchanger costs 20 % more per unit surface 
area, which would be the most economical arrangement – the one large exchanger or the two 
equal- sized small exchangers? 
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water 

Tfi = 25
o
C 

Uav = 1.5 m 

di 
do 

k=110 W/m-k 

di = 0.0134m 
do= 0.0158m 

 

hi , Fi = 0.00018 m
2
-k/W 

A.Overall heat transfer coefficient: 
 

 Solution: 
 

 

 
 

9.1 ho= 12000 W/m
2
k 

 

Fo= 0.00018 m
2
-k/W 

 

 

 

 

 

 

 

 

 

 

To find : i. Ui   ;  ii. Uo 

i. Overall heat transfer coefficient based on inside surface area is given by 

 

1 

Ui = ----------------------------------------------------------------------------------- 

(1/hi )+Fi +[di/2k]loge(do/di)+(di/do)Fo + (di/do)(1/ho) 

To find hi: Properties of water at 25
0
C are: 

k = 0.6805 W/(m-K) ; ν = 0.945x 10 
− 6 

m 
2
/s ; Pr = 

6.22 Red = Uavdi/ ν = 1.5x0.0134/0.945x10 
− 6 

= 21270 

Since Red > 2300, flow is turbulent. 

Nud = hidi/k = 0.023(Red)
0.8 

x (Pr)
0.4 

= 138.5 

hi = 138.5 x 0.6085 / 0.0134 = 6289.5 W/(m
2
-K) 
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ho 

Fo= 0.0002 m
2
-k/W 

Di = 0.022m 
Do= 0.027m 

Tfi = 75
o
C 

Uav = 0.5 m 

Q 

k=45 W/m-k 

Air at T∞ = 15
o
C 

Uav = 20m/s 

1 

Ui =------------------------------------------------------------------------------------------------------ 

(1/6289.5)+0.00018+[0.0134/2x110]loge(0.0158/0.0134)+(0.0134/0.0158)x0.00018 Ui 

= 1747 W/(m
2
-K) 

ii. Ui x Ai = Uo x Ao 

Hence Ui x π di L = Uo x π do L 

 

Or Uo = Ui (di/do) 

= 1747 x (0.0134/0.0158) 

= 1481.6 W/(m
2
-K) 

 
 
 Solution: 
 

 

 

 

 

 

 

 

 

 

water hi , Fi = 0.0004 m
2
-k/W Di Do 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To find hi: Properties of water at 75
0
C are: 
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Since Red > 2300, flow is turbulent. 

Nud = hidi/k = 0.023(Red)
0.8 

x (Pr)
0.4 

= 118.2 

hi = 118.2 x 0.6715/ 0.022 = 3608 W/(m
2
-K) 

Rci = 1/(hiAi) = 1/ hi π di L = 1/ ( π x 0.022 x 1 x 3608) 

   
= 4.01 x 10

− 3 
k/W 

To find ho: 

Air is flowing across the cylinder. 

Properties of air at 15
0
C are : 

k = 0.0255 W/(m-K) ; ν = 14.61x 10 
− 6 

m 
2
/s ; Pr = 0.704 

Red = U∞do/ ν = 20 x 0.027/14.61 x 10 
− 6

 = 36961 

From data hand book, 

Nud = hodo/k = [ 0.4 Red 
0.5 

+ 0.06 Red 
0.6667

] x Pr
0.4 

x ( µ ∞/µ w )
0.25 

For gases, ( µ ∞/µ w ) = 1 

Hence hodo/k = [ 0.4 x (36961)
0.5 

+ 0.06 (39961) 
0.6667

] x 0.704
0.4 

= 130.4 

ho = 130.4 x 0.0255/0.027 = 123 W/(m
2
-K) 

Rco = 1/(h0A0) = 1/ h0 π d0 L = 1/ ( π x 0.027 x 1 x 123) 

  
= 0.096 k/W 

 
 

Rfi  = FiAi = π di LFi = π x 0.022 x 1 x 0.004 = 2.765 x 10
-5 

k/W 
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R = ( 1/ 2 π L k ) x log e (do/di ) = ( 1 / 2 x π x 1 x 45 ) log e (0.027/0.022) 

 
= 7.24 x 10

-3 
k/W 

Rfo = FoAo = π do LFo = π x 0.027 x 1 x 0.0002 = 1.697 x 10
-5 

k/W 

Total thermal resistance = ∑R = 4.01 x 10
-3 

+ 2.765 x 10
-5 

+ 7.24 x 10
-3 

+ 1.697 x 10
-5

 

+ 0.096 
 

= 0.1073 k/W 
 

If Uo is the overall heat transfer coefficient based on outside area 

then, Uo Ao = 1/ ∑R 

Uo = 1 / Ao ∑R 

 

= 1 / ( π x 0.027 x 0.1073) 

= 110 W/(m
2
-K) 

 
Comparison between various resistances: 

 

Rci Thermal resistance for 4 x 10
-3

 

convection at the inside 

surface. 

Rfi Resistance due to fouling at 0.028 x 10
-3

 

the inside surface 

R Resistance of the tube wall 7.24 x 10
-3

 

for conduction 

Rfo Resistance due to fouling at 0.017 x 10
-3

 

the outside surface 

Rco Thermal resistance for 96 x 10
-3

 

convection at the outside 

surface 

 
 

The comparison shows that the thermal resistance for convection heat transfer ifrom the 

outer surface of the tube due to air is very large compared to the other resistances i.e, 
 

∑R ≈ Rco 
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Tci 

9.3 

b) MTD for counter flow: 

Thi 

∆Ti = Thi-Tco 
Tho 

Tco 

∆To = Tho-Tci 

Tci 

 

 
Direction 

Of 

flow 

B.Mean temperature difference method: 
 

 Solution: 
 

 

 

 
 

a) MTD for parallel flow: 

Thi   

   
Tho 

  ∆To= Tho-Tco 

∆Ti = Thi-Tci  Tco 

 

 

 

 

 
 

 

 

 

 

 

 

Thi = 60
o 

C ; Tho = 48
o 

C ; Tci = 35
o 

C ; Tco = 44
o 

C 

(a). MTD for parallel flow: 

∆Ti  =  Thi – Tci  =  60-35 = 25 

∆To   = Tho – Tco =  48-44 = 04 

hence  MTD = ∆Ti - ∆To  / loge (25/4) = 11.5 
o 

C 
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(b). MTD for counter flow: 

∆Ti   =  60 – 44 = 16
o 

C 

∆To   = 48 – 35 = 13
o 

C 
 

hence MTD = ∆Ti - ∆To / loge (16/13) = 14.45 
o 

C 

(c). Single pass cross flow (both fluids unmixed): 

T1 = Thi = 60
o 

C ; T2 = Tho = 48
o 

C ; t1 = Tci = 35
o 

C ; t2 = Tco = 44
o 

C 

R = T1 - T2 / t2 – t1 = 60 – 48 / 44 – 35 = 1.33 

P = t2 - t1 / T1 – t1 = 44 – 35 / 60 – 35 = 0.36 

From chart , F = 0.94 

Hence MTD = F x (MTD)c.f = 0.94 x 14.45 = 13.583
o
C 

(d). Single pass cross flow (hot fluid mixed ; cold fluid unmixed): 

 

R = T1 – T2 / t2 – t1 = 60 – 48 / 44 – 35 = 1.33 

P = t2 – t1 / T1 – T2 = 44 – 35 / 60 – 35 = 0.36 
 

From chart , F = 0.98 

Hence MTD = F x (MTD)c.f = 0.98 x 14.45 = 14.16
o
C 

 
 Solution: 
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ho, Fo 

di 

water 

k 

di = 0.0254m 
do= 0.0286m 

 

 

 

 

 

 

 

 
 

oil hi  , Fi do 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cold fluid : Oil : 

mc = 0.3033 kg/s ; Cpc = 2100 J/kg-K ;Tci = 27
o
C ; Tco = 49

o
C ; hi = 635 W/ (m

2
-K) 

Fi = 0.0001 (m
2
-K) / W 

Hot fluid : Water : 

mh = 0.1083 kg/s ; Cph = 4200 J/kg-K ;Thi = 93
o
C ; ho = 1270 W/ (m

2
-K) 

Fo = 0.0004 (m
2
-K) / W 

To find L for (i) parallel flow (ii) counter flow: 

 

Overall heat transfer coefficient based on outside area of the inner tube is given 

by 1 

Uo = ---------------------------------------------------------------------------------------------------- 

(do/di) (1/hi) + (do/di) Fi + (do/2k) loge(do/di) + Fo + (1/ho) 

1 

= ----------------------------------------------------------------------------------------------------- 

(0.0286/0.0254)(1/635)+(0.0286/0.0254)0.0001+(0.0286/700)loge(0.0286/0.0254)+ 
0.0004+(1/1270) 

 

= 325 W/(m
2
-K) 
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Heat balance equation can be written as 
 

Q = mc x Cpc (Tco – Tci) = 0.3083 x 2100 ( 49 – 27 ) 
 

 
 

Also Q = mh Cph (Thi – Tho) 

= 14243.5 W 

 

Or Tho = Thi – Q/mh Cph   = 93 – [14243.5/(0.1083x4200)] 

= 61.7
o
C 

(i) Parallel flow arrangement : 

 

∆Ti = Thi – Tci = 93 – 27 = 66
o
C 

∆To = Tho – Tco = 61.7 – 49 = 12.7
o
C 

hence   MTD = ∆Tm = ∆Ti - ∆To  / loge (66/12.7) = 32.34 
o 

C 

Q = Uo π do L π ∆Tm 

Or L = Q / (Uo π do∆Tm) = 14243.5/(325 x π x 0.0286 x 32.34) 

= 15.1 m. 

 

(ii) Counter flow arrangement : 
 

∆Tm = (93 – 49) – (61.7 – 27) / loge [(93 – 49) / (61.7 – 27)] 

= 39.2
o
C 

Hence L = 14243.5 / (325 x π x 0.0286 x 39.2) 

 

= 12.5 m 
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 Solution: 

Shell side fluid : water : 

mc = 0.5 kg/s ; Cpc = 4200 J/kg-K ;Tci = 10
o
C ; 

Tube side fluid : Oil : 

mh = 0.3 kg/s ; Cph = 2000 J/kg-K ;Thi = 80
o
C ; Tho = 30

o
C 

U = 250 W/(m
2
-K) 

Heat balance equation is 

 

Q  = mh  Cph  (Thi – Tho) = 0.3 x 2000 x (80 – 30) 
 

=   30000 W 

Also Q = mc x Cpc (Tco – Tci) 
 

Or Tco  = Tci   + Q/ mc Cpc   = 10 + 30000/(0.5 x 4200) 
 

= 24.3oC 

 
(∆Tm)c.f = (80 – 24.3) – (30 – 10) / loge [(80 – 24.3) / (30 – 10)] 

 

= 34.35oC 

 
Single shell pass - two tube pass HE : 

 

T1  = 10 oC  ; T2  = 24.3 oC  ; t1 = 80 oC  ;   t2  = 30 oC 

R  = T1  – T2  / t2 – t1   =   10 – 24.3 / 30 – 80    = 0.29 

P = t2 – t1 / T1 – t1 = 30 – 80 / 10 – 80 = 0.714 

From chart , F = 0.875 

 
Hence (∆Tm) = F x (MTD)c.f = 0.875 x 34.85 = 30.5oC 

Q = U A (∆Tm) 

Or A =  Q / U (∆Tm) = 30000/(250 x 30.5)  = 3.93 m2 

 
 Solution: 

 

Cross flow HE : 

Cold water (Unmixed) : mc = 3 kg/s ; Cpc = 4200 J/kg-K ;Tci = 30
o
C ; Tco = 80

o
C ; 
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Hot gases (Mixed) : Cph = 1005 J/kg-K ;Thi = 225
o
C ; Tho = 100

o
C 

U = 200 W/(m
2
/K) 

Q = mc x Cpc (Tco – Tci) = 3 x 4200 (80 – 30 ) 

= 630000 W 
 

Also  

P = t2 – t1 / T1 – t1 = 80 – 30 / 225 – 30 = 0.256 

R = T1 – T2 / t2 – t1 = 225 – 100 / 80 – 30 = 2.5 

From chart, F = 0.93  

(∆Tm)c.f = (225 – 80) – (100 – 30) / loge [(225 – 80) / (100 – 30)] 

= 54.62
o
C 

 

(∆Tm) = 0.93 x 54.62 = 50.8
o
C 

Q = U A (∆Tm) or A = Q / A (∆Tm) = 630000 / (200 x 54.62) 

 
= 57.7 m

2
. 

 

 

 Solution: 

 

Water : mc = 2 kg/s; Cpc = 4200 J/kg-K ; Tci = 20
o
C ;Tco = 80

o
C ; 

Oil : Thi = 140
o
C ; Tho = 90

o
C 

U = 300 W / (m
2 

– K ) 

Q = mc x Cpc (Tco – Tci) = 2 x 4200 (80 – 20 ) 

= 504000 W 

Tube side fluid is water. Hence t1 = 20
o
C ; t2 = 80 

o
C 

Shell side fluid is oil. Hence T1 = 140 
o
C ; T2 = 90 

o
C 

P = t2 – t1 / T1 – t1 = 80 – 20 / 140 – 20 = 0.5 
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R = T1 – T2 / t2 – t1 = 140 – 90 / 80 – 20 = 0.83 

From chart F = 0.97 
 

(∆Tm)c.f = (140 – 80) – (90 – 20) / loge [(140 – 80) / (90 – 20)] = 

64.87
o
C 

 

(∆Tm) = 0.97 x 64.87 = 60.9
o
C 

Q = U A (∆Tm) or A = Q / A (∆Tm) = 504000 / (300 x 62.9) 

     
= 26.7 m

2
. 

 

9.8 Solution: 

     

Shell and Tube HE : 

Cold fluid : Water : mc = 8.33 kg/s ;Tci = 25
o
C ; Tco = 50

o
C ; 

Hot fluid : Steam condensing at atmospheric pressure. 

Hence Thi = Tho = Tsat at atmospheric pressure 

   
= 99.6

o 
C (from steam tables) 

  
hfg = 2257 x 10

3 
J / kg – K 

Tube side fluid is water. Hence hi = 3000 W / m
2 

– K 

Shell side fluid is oil. Hence 
 

ho = 8000 W / m
2 

– K 

Inside dia of tube = di = 0.025 m  

Outside dia of tube = do = 0.029 m 
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Length of the tube = L = 2 m 

 

Overall heat transfer coefficient based on outside surface area is given 

by 1 

Uo = ---------------------------------------------------------------------------------------------------- 

(do/di) (1/hi) + (do/2k) loge(do/di) + (1/ho) 

 

 
As (do/2k) loge(do/di) = 0 

1 

= ----------------------------------------------------------------------------------------------------- 
(0.029 / 0.025) (1/3000) + ( 1 / 8000 ) 

 

= 1954 W/(m
2
-K) 

Since Thi = Tho , both parallel flow and counter flow arrangement will give the same 

 

value of (∆Tm). 

Hence (∆Tm) = (99.6 – 25) – (99.6 – 50 ) / loge [(99.6 – 25) / (99.6 – 50 ) ] 

= 61.2 
o
C 

Q = mc x Cpc (Tco – Tci) = 8.33 x 4200 (50 – 25 ) 

=  874650 W 
 

Q  = Uo Ao (∆Tm) or Ao = Q / Uo (∆Tm) = 874650 / (1954 x 61.2) 

=   7.314 m
2
. 

Surface area of each tube = ao = π do L = π x 0.029 x 2 

=   0.1822 m
2
 

Hence number of tubes = n = Ao / ao = 7.314 / 0.1822 = 40.14 ≈ 41 
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B. Effectiveness - NTU method: 

 

 Solution: 

 

For a counter flow HE effectiveness is given by 

1- ℮[ - (1 – c ) NTU ] 

ε = ------------------------------ 

1 - c℮[ - (1 – c ) NTU] 

when c = 1 , the above expression gives 

1 - ℮
0
 

ε = ------------------ = 0 / 0 = indeterminate. 

1 – 1 x ℮
0
 

Hence we have to find ε using L‟hospital‟s rule. 
 

d/dt [1 - e[ - (1 – c ) NTU ] ] 
ε = Ltc--> 1 ------------------------------------- 

d/dt [1 - ce[ - (1 – c ) NTU] ] 

  0 – NTU ℮ - (1 – c ) NTU 

= Ltc--> 1 ------------------------------------------------------------------ 

0 – {℮ - (1 – c ) NTU x 1 + c (NTU)℮ - (1 – c ) NTU } 
 0 – NTU NTU 

ε = --------------------------- =-------------------- 
 0 – { 1 + NTU } 1 + NTU 

 Solution: 

mh = 0.067 kg/s ; Cph = 4200 J/kg-K ;Thi = 100
o
C ; 

mc = 0.133 kg/s; Cpc = 2520 J/kg-K ; Tci = 20
o
C ; 

mh Cph = 0.067 x 4200 = 281.4 J / s – K mc Cpc = 

0.133 x 2520 = 335.16 J / s – K 

mh Cph 

Since  mh  Cph   <  mc Cpc ,  hence c  = -------------- = 

mc Cpc 

 
281.4 

------------ = 0.84 

335.16 
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For a parallel flow HE , 
 

 
 1 - e[ - (1 + c ) NTU ] 

ε = ------------------------------------------------->(1) 
 1 + c 

 

For a given value of c , ε will be max if [d ε/d(NTU)] = 0 

 
From (1),    

1 x [ 0 + (1+c)e 
–(1+c)NTU

] 

[d ε/d(NTU)] =-------------------------------------  = 0 
 1+c   

Therefore, e 
–(1+c)NTU 

= 0 OR NTU = ∞ 

Substituting this condition in eqn (1) we have 

1 - ℮[ - (1 + c ) ∞ 1 – 0 
 

1 

εmax = ---------------------- = --------------- = ----------- 

1 + c 1 + c  1 + c 

   
1 

  = ----------- = 0.5435 
   1.84 

For a counter flow HE, 
   

1 - ℮[ - (1 – c ) NTU ] 

ε = ------------------------------  ------------------------> (2) 

1 - c℮[ - (1 – c ) NTU] 
  

 

 

 

 

 

Evaluating, we get 1 – c = 0 or c = 1 ; substituting this value of c, we have 

ε = 1 
 

[ from (2) ] 

d ε [1 - c℮[ - (1 – c ) NTU]] [(1-c)℮ - (1 – c ) NTU] – [1- ℮[ - (1 – c ) NTU]][c℮- (1 – c ) NTU(1-c)] 
------------ = ------------------------------------------------------------------------------------------- 

d(NTU) [1 - c℮[ - (1 – c ) NTU]]2 

 



342  

 Solution: 
 

Counter flow HE : 

 

mh = 3 kg/s ; Cph = 1050 J/kg-K ;Thi  = 500oC ; 

mc = 0.75 kg/s; Cpc = 4200 J/kg-K ; Tco = 85oC ; 

U = 450 W / (m2- K ) 

mh Cph = 3 x 1050 = 3150 J / s – K 
 

mc Cpc = 0.75 x 4200 = 3150 J / s – K 

 

mh  Cph   =  mc  Cpc     Hence Thi  – Tho   = Tco  – Tci and c = 1 

 

UA UA 

Also NTU   = ------------------ or --------------------- 

mc Cpc mh Cph 

 

450 x 1 

= -------------- = 0.1428 

3150 
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1- ℮[ - (1 – c ) NTU ] 

ε = ------------------------------  

 
1 - c℮[ - (1 – c ) NTU] 

NTU 

  
0.1428 

Since c = 1, ε = ---------------- = ------------------- = 0.1250 
 1 + NTU  1.1428 

 
Thi – Tho Tco – Tci 

But  ε =  --------------- or ------------------ when c = 1 

Thi – Tci              Thi – Tci 

Hence 0.1250 = -------------------- 
Tci

 

500 - Tci 

 

 

 
Or 62.5 – 0.125 Tci = 85 - Tci  

    

85 – 62.5 
 
= 25.7

o
C Or Tci = ---------------------- 

(1 – 0.125) 

 

Also Thi – Tho 

 

= Tco – Tci 

 

when c = 1 

Hence 500 - Tho = 85 – 25.7 
 

Tho = 440.7
o
C 

9.12 Solution: 

Hot gases : mh = mc (1 + 0.015) = 1.015 mc 
 

= 1.015 x (5000/3600) = 1.41 kg/s 

Thi = 450
o
C ; 

Cold fluid : Air : mc = 1.39 kg/s; Cpc = Cph = 1050 J/kg-K ; Tci = 170
o
C ; 

U = 52 W / (m
2
- K ) ; A = 50 m

2
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mh Cph = 1.39 x 1050 = 1459.5 J / s – K 

mc Cpc = 1.41 x 1050 = 1480.5 J / s – K 
   

  
mc Cpc 

 
1459.5 

Since mh Cph > mc Cpc , hence c = --------------  = ------------ = 0.986 

  mh Cph  1480.5 

 
UA 52 x 50 

   

NTU = ------------------ = -------------- = 1.78  

 mc Cpc 1459.5   

 

From chart for cross flow with both fluids unmixed, 

ε  = 0.6 

 

 

 

 
= 170 + 0.6 x [450 – 170 ] 

= 338 
o
C 

Also mc x Cpc (Tco – Tci) = mh x Cph (Thi – Tho) 

 

mc Cpc 

Hence Tho   = Thi – ------------- x [ Tco – Tci ] 

mh Cph 

 
 

= 450 - 0.986 [ 338 – 170 ] 

= 284.35 
o
C 

 Solution: 
 

Counter flow HE : 

case (i) Thi = 110
o 

C ; Tho = 65
o 

C ; Tci = 20
o 

C ; Tco = 77
o
C ; L  = 30 m ; U1 

case (ii) Tci = 20
o 

C  ; Tco = 80
o
C ; Thi   =  110

o 
C ; U2  = U1 (assumed) 

when mh Cph > mc Cpc , Tco – Tci 

 ε =------------------ 

 Thi – Tci 

Or Tco = Tci + ε (Thi – Tci ) 
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For case (i) Q1 = mc x Cpc (Tco – Tci) = mc x Cpc ( 70 – 20 ) 

For case (ii) Q2 = mc x Cpc ( 80 – 20 ) 
  

Q1 
 

mc x Cpc ( 70 – 20 ) 
 

5 

Hence, ------ = --------------------------------  = ------ 

Q2  mc x Cpc ( 80 – 20 )  6 

Also for case (i) 
 

mc x Cpc ( 70 – 20 ) = mh x Cph ( 110 – 65 ) 

Also for case (ii) 
 

mc x Cpc ( 80 – 20 ) = mh x Cph [ ( 110 – (Tho)2 ] 
 

 

110 – 65 70 – 20   

Hence ---------------------  = --------------  

 110 - (Tho)2 80 – 20   

 
hence 

 
(Tho)2 = 

 
110 – (6/5) [ 110 – 65 ] = 56 

o 
C 

 

    
(110 – 70 ) – (65 – 20 ) 

42.45
o
C Hence for case (i) (∆Tm)1 = 

 

----------------------------------------- = 

loge [(110 – 70 ) / (65 – 20 )] 

    

(110 – 80 ) – (56 – 20 ) 
 

32.9 
o
C Hence for case (ii) (∆Tm)2 = 

 

----------------------------------------- = 

    loge [(110 – 80 ) / (56 – 20 )]  

  
Q1 

  
U1 π d L1 (∆Tm)1 

 
5 

 

hence , --------- = ---------------------- = -------  

 Q2  U2 π d L2 (∆Tm)2 6  

 

L1 (∆Tm)1 

Hence --------------------------- 

L2 (∆Tm)2 

5 

= ---------- 

6 
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Or L2 = (6/5) x [ (∆Tm)1 / (∆Tm)2 ] x L1 

= (6/5) x (42.45/32.90) x 30 = 46.45 m 
 

 
 

 

 

 

 

 Solution: 

 

Solution by MTD method: 

 

Cross flow HE with oil mixed and water unmixed; 

Hot fluid : oil : mh = 0.278 kg/s ; Cph = 2087 J/kg-K ;Thi = 150
o
C ; Tho = 50

o
C 

Cold fluid : water : mc = 0.463 kg/s ; Cpc = 4200 J/kg-K ;Tci = 30
o
C; 

U = 550 W / (m
2 

– K ) 

Q = mc x Cpc (Tco – Tci) = 0.278 x 2087 [150 – 50 ] = 58019 W 

 

Also Q = mh x Cph (Thi – Tho) 

Or Tco = Tci + (Q / mc Cpc) 

= 30 + [58019 / (0.463 x 4200 ) ] 

= 59.8 
o
C 

(∆Tm)c.f = (150 – 59.8) – (50 – 30) / loge [(150 – 59.8) / (50 – 30) ] 

= 46.6 
o
C 

 
R = (150 – 50 ) / (59.8 – 30 ) = 3.35 

 
P = (59.8 – 30 ) / ( 150 – 30 ) = 0.25 

From chart F = 0.80 

 

(∆Tm) = 0.8 x 46.6 = 37.3 
o
C  

 Q  58019 

2.83 m
2

 A = ------------- = --------------- = 

 U (∆Tm)  550 x 37.3  



347  

Solution by ε – NTU method : 

 
mh Cph 

 
= 0.278 x 2087 = 580.2 J / s – K 

   

mc Cpc = 0.463 x 4200 = 1944.6 J / s – K 
   

    
mh Cph 

 
580.2 

Since mh Cph < mc Cpc , hence c = --------------  = ------------ = 0.29 

when mh Cph < mc Cpc , 
mc Cpc  1944.6 

 Thi – Tho  150 – 50    

ε = ------------------ = ---------------- = 0.83  

 Thi – Tci  150 – 30   

 

From chart,   NTU = 2.8 = UA / (mCp)min = UA / mh Cph 

 

Hence  A = 2.8 x 530.2 / 550 = 2.95 m
2
 

 

Cold: water: mc= 5000/3600 = 1.39 kg/s ; Tci= 30 
o
C ;Cpc= 4200 J/(kg-K) assumed 

Hot : oil : mh = 2000/3600 = 0.555 kg/s ;Cph = 2100 J/(kg-K) ;Thi= 

90
o
C A= 3m

2 
; U = 465 W/(m

2
-K) 
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pipelines 

Case 1) Both the fluids flow in series. 

The arrangement for this case will be as shown with figure below: 
 

 
 

 

 

EXCHANGER 2 

Thi  , mhcph 

 

 
Tco 

 

 

 

 

 

Tc* 

Th* 

 

 
Tci , mhcph 

 

 

 

 

 

 
Tho 

 

 

 

 

As mcCpc = (5000/3600) x 4200 = 5833.3 J/(s-K) 

And mhCph= (2000/3600) x 2100 = 1166.7 J/(s- 

K) therefore mcCpc< mhCph 

 

EXCHANGER 1 
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Therefore C= 1166.7/5833.3 = 0.20 

 
N T U 

 U A 


 4 6 5 * 3 
 1 . 1 9 6 

m C 
h       p h 1 1 6 6 . 7 

      1  e x p [  (1  C ) N T U ] 

1  C e x p [  (1  C ) N T U ] 

 
1  e x p [  (1  0 . 2 )1 . 1 9 6 ] 

 
1  0 . 3 8 4 1 

1  0 . 2 e x p [  (1  0 . 2 )1 . 1 9 6 ] 1  0 . 2 * 0 . 3 8 4 1 

  0 . 6 6 7 

2) When oil is split up equally between the two heat exchangers: 
 

In this case mh= 1000/3600 = 0.278 kg/s 

Therefore mh Cph = 0.278x2100= 583.8 J/(s-K) 

Therefore C= 583.8/5833.3 = 0.10 

N T U  U A 


 4 6 5 * 3  2 . 4 

m C 
h       p h 5 8 3 . 8 

      1  e x p [  (1  C ) N T U ] 

1  C e x p [  (1  C ) N T U ] 

 
1  e x p [  (1  0 . 1) 2 . 4 ] 

 
1  0 . 1 1 5 3 

1  0 . 1 e x p [  (1  0 . 1) 2 . 4 ] 1  0 . 1 * 0 . 1 1 5 3 

 0 . 8 9 5 

3) Both the oil and water flows are split up equally: 

In this case mcCpc = (2500/3600) x 4200 = 2917 J/(s-K) 

mhCph= 0.278 x 2100 = 583.8 J/(s-K) 

Therefore C= 583.8/2917 = 0.20 
 

N T U  U A 


 4 6 5 * 3  2 . 4 

m C 
h       p h 5 8 3 . 8 

      1  e x p [  (1  C ) N T U ]  

1  C e x p [  (1  C ) N T U ] 

    1  e x p [  (1  0 . 2 ) 2 . 4 ]    1  0 . 1 4 6 7 

1  0 . 2 e x p [  (1  0 . 2 ) 2 . 4 ] 1  0 . 0 2 9 3 

 0 . 8 7 9 

Since ε is the highest in case (2), this arrangement is the best for ” maximizing 

heat transfer” point of view. 



350  

9.16 Solution: 
 

 
  Oil (mh), Cph= 2000 J/kg-k 

EXCHANGER 1 
 Thi= 150

o
C 

   

 
Tci = 35

o
C 

mh/2 mh/2 

mc =1.25 kg/s  Tco=80
o
C 

  
Tc* 

 

Thi Th1* Th2* 

 

 

Tho=85
o
C EXCHANGER 2 

 

 

 

U1   = U2  = U = 850 W / (m
2 

– K ) 

Case (i) single counter flow HE : 
 

Q = mc x Cpc (Tco – Tci) = 1.25 x 4200 [80 – 35 ] = 236250 W Q = 

mh x Cph (Thi – Tho) 
 

 
 

 Q 236250  

Hence mh = ------------------------ = ---------------------------- = 1.817 kg/s 

 Cp [Thi – Tho] 2000 x [150 – 85 ] 

mh Cph = 1.817 x 2000 = 3634.6 J / s – K 
 

mc Cpc = 1.25 x 4200 = 5250 J / s – K 
 

  
mh Cph 3634.6 

Since mh Cph < mc Cpc , hence c = -------------- = ------------ = 0.7 

 mc Cpc 5250 
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Thi – Tho 150 – 85  

ε = ------------------ = ------------------- = 0.565 

Thi – Tci 150 – 35  

From chart, NTU = 1.0 = UA / (mCp)min = UA / mh Cph 

Hence A = 1 x 3634.6 / 850 = 4.276 m
2

 
 

 

 

Case (ii) When two smaller heat exchangers are used: 
 

For this case mh = 1.317 / 2 = 0.9085 kg/s 

mh Cph = 0.9085 x 2000 = 1817 J / s – K 

mc Cpc = 1.25 x 4200 = 5250 J / s – K 

Hence c = 1817 / 5250 = 0.35 

To find „ε‟ , we should know the exit temperatures of hot and cold fluids for at least 

one HE. Since UA and (mCp)min is the same for both the exchangers NTU should be 

same for both the exchangers. 

Thi – Th1*   Thi – Th2*  

Thus ε1 = ------------------  = ε2 
 

= ----------------    

 Thi – Tci    Thi – Tc*  

    
* 
    

Therefore 1 5 0  T h i  


   1 5 0  T h 

2 
   

.............................. 
(1) 

1 5 0  3 5 1 5 0  T * 
 

  1 2   

   c     
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Since the oil flow is the same in each exchanger and the average exit oil 

temperature must be 85
o
C …..it follows that 

* 

 

 

 

 

 
 

Equations 1,2 ,3 may be solved for the three unknowns T 
* 

, T 
* 

, T 
* 

. The 

solutions are as follows: 

Eqn 1can be rearranged after cross multiplying as: 

h1 h2 c 

 

1 5 0 T 
* 
 1 1 5 T 

h 1 h 2 

*  
 1 5 0 T   *  T   * T   *  5 2 5 0.......................................... ( 4 ) 

c h 1 c 

 T 

Eqn 2……………… T h 1 *
 

h 2  
*  
 1 7 0 .................................................................... ( 5 ) 

Eqn 3……………….. T h 2  
*  
 2 . 9 T c 

*  
  8 2 ................................................... ( 6 ) 

 
From eqn 6……………… 

T *  8 2 

T 
*   
     h 2  0 . 3 4 5 T *  2 8 . 3 

c 
2 . 9 

h 2 

From eqn 5………………. T h 1 
* 
 1 7 0  T h 2 * 

Substituting these expressions in Eqn 4 we have: 
1 5 0 (1 7 0  T 

* 
)  1 1 5 T 

h 2 h 2 

*  
 1 5 0 ( 0 . 3 4 5 T  

*  
 2 8 . 3 )  (1 7 0  T 

* 
) ( 0 . 3 4 5 T 

* 
 2 8 . 3 )  5 2 5 0 

h 2 h 2 h 2 

 

 

Or T h 2 
* 2 

 7 0 6 T h 2 
* 
 5 7 0 5 5  0 

 

Therefore T h 2 
* 


2 

Th2
* 

cannot be 613 
o
C. 

 9 3 o r 6 1 3 

 

Therefore………. T h 2 *  9 3 
o 

C 

 
Therefore……….. T h 1 *  1 7 0  9 3  7 7 

o 
C 

 
And…………….. T c 

* 
 0 . 3 4 5 * 9 3  2 8 . 3  6 0 . 4 

o 
C 

 
Therefore…………….     1 5 0  7 7  0 . 6 3 5 

1 2 

1 5 0   3 3 

 
Therefore from chart, N T U  1 .1 6 

7 0 6  7 0 6 2  4 * 5 7 0 5 5 

T   T  
* 

  

            h   1 h 2    8 5 o C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) 
  2    

Energy balance on the second heat exchanger gives 

5 2 5 0 ( 8 0  T 
* 

)  1 8 1 7 (1 5 0  T 
* 

) . . 
 
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . 

 
( 3 ) 

c  h 2   
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Therefore…………….. A  1 8 1 7 * 1 . 1 6  2 . 4 8 m 2  A 
1 

8 5 0 
2
 

 

Therefore total area required to meet the heat load = 2.482*2= 4.92m
2

 

This is more than the 4.276 m
2 

required in the one larger heat exchanger. In addition the cost 
per unit area is greater so that the most economical choice from the heat transfer point of  
view would be the single large heat exchanger. 
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