

## **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous) Dundigal, Hyderabad -500 043

## **MECHANICALENGINEERING**

## **COURSE DESCRIPTOR**

| Course Title      | DESIGN F                                  | DESIGN FOR MANUFACTURING AND ASSEMBLY     |         |            |         |  |  |
|-------------------|-------------------------------------------|-------------------------------------------|---------|------------|---------|--|--|
| Course Code       | AME520                                    | AME520                                    |         |            |         |  |  |
| Programme         | B.Tech                                    | B.Tech                                    |         |            |         |  |  |
| Semester          | VIII ME                                   | VIII ME                                   |         |            |         |  |  |
| Course Type       | Professiona                               | Professional Elective                     |         |            |         |  |  |
| Regulation        | IARE - R16                                | 5                                         |         |            |         |  |  |
|                   |                                           | Theory                                    |         | Practic    | cal     |  |  |
| Course Structure  | Lectures                                  | Tutorials                                 | Credits | Laboratory | Credits |  |  |
|                   | 3                                         | -                                         | 3       | -          | -       |  |  |
| Chief Coordinator | Mr. A Venu                                | Mr. A Venuprasad, Assistant Professor, ME |         |            |         |  |  |
| Course Faculty    | Mr. A Venuprasad, Assistant Professor, ME |                                           |         |            |         |  |  |

#### I. COURSEOVERVIEW:

To provide an overview of Design for Manufacturingand Assembly (DFMA) techniques, which are used tominimize product cost through design and processimprovements. Design for Manufacturing (DFM) and Designfor Assembly (DFA) are now commonlyreferred to as a single methodology, DesignforManufacturing and Assembly (DFMA). This course bridges gap between design and manufacturing, it introduces the principles of design for developing the product, which includes design considerations in casting, forging, metal forming and inwelding.

#### **II. COURSEPRE-REQUISITES:**

| L | evel | Course<br>Code | Semester | Prerequisites          | Credits |
|---|------|----------------|----------|------------------------|---------|
| τ | JG   | AME006         | IV       | PRODUCTION ENGINEERING | 3       |

#### **III. MARKS DISTRIBUTION:**

| Subject                                  | SEE Examination | CIA<br>Examination | Total Marks |
|------------------------------------------|-----------------|--------------------|-------------|
| DESIGN FOR MANUFACTURING AND<br>ASSEMBLY | 70 Marks        | 30 Marks           | 100         |

| ~ | Chalk & Talk           | $\checkmark$ | Quiz     | $\checkmark$ | Assignments  | X            | MOOCs  |  |
|---|------------------------|--------------|----------|--------------|--------------|--------------|--------|--|
| √ | LCD / PPT              | $\checkmark$ | Seminars | X            | Mini Project | $\checkmark$ | Videos |  |
| X | Open Ended Experiments |              |          |              |              |              |        |  |

### IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

#### V. EVALUATIONMETHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

**SemesterEndExamination(SEE):**TheSEEisconductedfor70marksof3hoursduration.The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in aquestion.

The emphasis on the questions is broadly based on the following criteria:

| 50 % | To test the objectiveness of the concept.                                                    |
|------|----------------------------------------------------------------------------------------------|
| 50 % | To test the analytical skill of the concept OR to test the application skill of the concept. |

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

| Component          |          | Total Marks |             |
|--------------------|----------|-------------|-------------|
| Type of Assessment | CIE Exam | Quiz/AAT    | Total Warks |
| CIA Marks          | 25       | 05          | 30          |

#### **Continuous Internal Examination (CIE):**

Two CIE exams shall be conducted at the end of the 8<sup>th</sup> and 16<sup>th</sup> week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

#### **Quiz - Online Examination**

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for everycourse.

#### Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning center. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCsetc.

#### VI. HOW PROGRAM OUTCOMES AREASSESSED:

|      | Program Outcomes (POs)                                          | Strength | Proficiencya<br>ssessed by |
|------|-----------------------------------------------------------------|----------|----------------------------|
| PO 1 | EngineeringKnowledge:Capabilitytoapplytheknowledgeof            | 3        | Assignments                |
|      | mathematics, science and engineering in the field of mechanical |          |                            |
|      | engineering.                                                    |          |                            |
| PO 2 | Problem Analysis: An ability to analyze complex engineering     | 2        | Mini project               |
|      | problems to arrive at a relevant conclusion using knowledge of  |          |                            |
|      | mathematics, science and engineering.                           |          |                            |
| PO 3 | Design/ development of solutions: Competence to design a        | 2        | Industrial/                |
|      | system, component or process to meet societal needs within      |          | Seminars                   |
|      | realistic constraints.                                          |          |                            |
| PO 4 | Conduct investigations of complex problems: To design and       | 2        | Assignments                |
|      | conductresearchoriented experiments as well as to analyze and   |          |                            |
|      | implement data using researchmethodologies.                     |          |                            |

**3** = High; **2** = Medium; **1** = Low

#### VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

|       | Program Specific Outcomes (PSOs)                               | Strength | Proficiencya<br>ssessed by |
|-------|----------------------------------------------------------------|----------|----------------------------|
| PSO 1 | Professional Skills: To produce engineering                    | 3        | Assignments                |
|       | professionalCapable of synthesizing and analyzing mechanical   |          |                            |
|       | systems including allied engineering streams.                  |          |                            |
| PSO 2 | Problemsolvingskills: Anabilitytoadoptandintegratecurrenttechn | -        | Projects                   |
|       | ologies in the design and manufacturing domain to enhance      |          |                            |
|       | the employability.                                             |          |                            |
| PSO 3 | Successful career and Entrepreneurship: To build the nation,   | -        | Projects                   |
|       | by imparting technological inputs and managerial skills        |          |                            |
|       | tobecome technocrats.                                          |          |                            |

**3** = High; **2** = Medium; **1** = Low

#### VIII. COURSE OBJECTIVES(COs):

| The co | The course should enable the students to:                                                                                                                                 |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Ι      | Understand various general design rules for manufacture ability and criteria for material selection.                                                                      |  |  |  |  |  |
| II     | Apply various machining process and tolerance aspects in machining.                                                                                                       |  |  |  |  |  |
| III    | Analyze the design considerations for casting and welding process.                                                                                                        |  |  |  |  |  |
| IV     | Apply the conceptual design factors to be considered in forging, extrusion and sheet metal work, design guidelines for manual assembly and development of DFA methodology |  |  |  |  |  |

## IX. COURSE OUTCOMES(COs):

| COs  | Course Outcome                                                                   | CLOs           | Course Learning Outcome                                                                                              |
|------|----------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------|
| CO 1 | Identifying primary and secondary components                                     | CLO 1          | Identify and understand of basic concepts of DFM and DFA                                                             |
|      | through functional analysis                                                      |                | Understand and Apply concepts of Generative DFMA                                                                     |
|      |                                                                                  | CLO 3          | Understand the Various types of materials, its classification, suitable materials for product design                 |
| CO 2 | Calculate the design efficiency for their product                                | CLO 4          | Understand the selection of manufacturing sequences and optimal selection                                            |
|      | design                                                                           | CLO 5          | Identify the reasons for optimal selection of machining parameters.                                                  |
|      |                                                                                  | CLO 6          | Identify the various casting design, machining design, designing of formed components                                |
| CO 3 | Identy various design recommendation of design                                   | CLO 7<br>CLO 8 | Identity various design recommendation for permanent joining such as welding, soldering and brazing                  |
|      | process                                                                          |                | understand the different design factors for forging, closed dies forging design                                      |
|      |                                                                                  |                | Apply the different Design guidelines for extruded sections                                                          |
|      |                                                                                  | CLO 10         | Understand various design principles for punching, blanking, bending, deep drawing.                                  |
| CO 4 | Analyze and derive the gripping, insertion and fixing                            | CLO 11         | Understand the different conventional approach and Assembly optimization processes                                   |
|      | values through fitting analysis<br>of the product                                |                | Create the knowledge on cost consciousness & an awareness of Designers' accountability in product design lifecycle.  |
|      |                                                                                  | CLO 13         | Understand the cost factors that play a part in DFA                                                                  |
| CO 5 | Apply the Design guidelines<br>and assembly techniques to<br>mechanical designs. | CLO 14         | Understand the general design guidelines for manual<br>assembly and development of the systematic DFA<br>methodology |
|      |                                                                                  | CLO 15         | Using CAD, apply design for manufacturing and assembly techniques to mechanical designs.                             |
|      |                                                                                  | CLO 16         | Understand the effect of symmetry effect of chamfer                                                                  |
|      |                                                                                  |                | design on insertion operations, estimation of insertion time.                                                        |

## X. COURSE LEARNING OUTCOMES(CLOs):

| CLOCode   | CLO's | At the end of the course, the student will have                                                      | PO's       | Strength of |
|-----------|-------|------------------------------------------------------------------------------------------------------|------------|-------------|
|           |       | the ability to:                                                                                      | Mapped     | Mapping     |
| AME010.01 | CLO 1 | Identify and understand of basic<br>concepts of DFM and DFA                                          | PO 1, PO 4 | 3           |
| AME010.02 | CLO 2 | Understand and Apply concepts of Generative DFMA                                                     | PO 3       | 2           |
| AME010.03 | CLO 3 | Understand the Various types of materials, its classification, suitable materials for product design | PO 1, PO 4 | 3           |
| AME010.04 | CLO 4 | Understand the selection of manufacturing sequences and optimal selection                            | PO 1       | 3           |
| AME010.05 | CLO 5 | Identify the reasons for optimal selection of machining parameters.                                  | PO 1, PO 4 | 3           |
| AME010.06 | CLO 6 | Identify the various casting design, machining design, designing of formed components                | PO 4       | 2           |

| CLOCode   | CLO's  | At the end of the course, the student will have                                                                         | PO's     | Strength of |
|-----------|--------|-------------------------------------------------------------------------------------------------------------------------|----------|-------------|
|           |        | the ability to:                                                                                                         | Mapped   | Mapping     |
| AME010.07 | CLO 7  | Identity various design recommendation for<br>permanent joining such as welding, soldering<br>and brazing               | PO 3     | 2           |
| AME010.08 | CLO 8  | understand the different design factors for forging, closed dies forging design                                         | PO 4     | 2           |
| AME010.09 | CLO 9  | Apply the different Design guidelines for extruded sections                                                             | PO 3     | 2           |
| AME010.10 | CLO 10 | Understand various design principles for punching, blanking, bending, deep drawing.                                     | PO 4     | 2           |
| AME010.11 | CLO 11 | Understand the different conventional approach and Assembly optimization processes                                      | PO 3     | 2           |
| AME010.12 | CLO 12 | Create the knowledge on cost consciousness & an awareness of Designers' accountability in the product design lifecycle. | PO 2     | 2           |
| AME010.13 | CLO 13 | Understand the cost factors that play a part in DFA                                                                     | PO 3     | 2           |
| AME010.14 | CLO 14 | Understand the general design guidelines for<br>manual assembly and development of the<br>systematic DFA methodology    | PO 1,PO3 | 3           |
| AME010.15 | CLO 15 | Using CAD, apply design for manufacturing and assembly techniques to mechanical designs.                                | PO 2     | 2           |
| AME010.16 | CLO 16 | Understand the effect of symmetry effect of chamfer design on insertion operations, estimation of insertion time.       | PO 2     | 2           |

**3** = High; **2** = Medium; **1** = Low

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

| Course<br>Outcomes<br>(COs) |      | Program Out | Program Specific Outcomes<br>(PSOs) |      |       |       |       |
|-----------------------------|------|-------------|-------------------------------------|------|-------|-------|-------|
|                             | PO 1 | PO 2        | PO 3                                | PO 4 | PSO 1 | PSO 2 | PSO 3 |
| CO 1                        | 3    |             | 2                                   | 2    | 3     |       |       |
| CO 2                        | 3    |             |                                     | 2    | 3     |       |       |
| CO 3                        |      |             | 2                                   | 2    | 3     |       |       |
| CO 4                        |      | 2           | 2                                   |      | 3     |       |       |
| CO 5                        | 3    | 2           | 2                                   |      | 3     |       |       |

**3** = High; **2** = Medium; **1** = Low

## XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

| CLOs  |     |     |     |     | Progr | am Ot | itcome | es (PO | s)  |      |      |      | -    | gram Sj<br>comes (1 |      |
|-------|-----|-----|-----|-----|-------|-------|--------|--------|-----|------|------|------|------|---------------------|------|
| CLOs  | PO1 | PO2 | PO3 | PO4 | PO5   | PO6   | PO7    | PO8    | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2                | PSO3 |
| CLO 1 | 3   |     |     | 2   |       |       |        |        |     |      |      |      |      |                     |      |
| CLO 2 |     |     | 2   |     |       |       |        |        |     |      |      |      | 3    |                     |      |

| CLOs   |       |   |       |       | Progr      | am Oı | utcom | es (PO | s) |  | Program Specific<br>Outcomes (PSOs) |  |  |
|--------|-------|---|-------|-------|------------|-------|-------|--------|----|--|-------------------------------------|--|--|
| CLO 3  | 3     |   |       | 2     |            |       |       |        |    |  |                                     |  |  |
| CLO 4  | 3     |   |       |       |            |       |       |        |    |  |                                     |  |  |
| CLO 5  | 3     |   |       | 2     |            |       |       |        |    |  | 3                                   |  |  |
| CLO 6  |       |   |       | 2     |            |       |       |        |    |  |                                     |  |  |
| CLO 7  |       |   | 2     |       |            |       |       |        |    |  |                                     |  |  |
| CLO 8  |       |   |       | 2     |            |       |       |        |    |  |                                     |  |  |
| CLO 9  |       |   | 2     |       |            |       |       |        |    |  | 3                                   |  |  |
| CLO 10 |       |   |       | 2     |            |       |       |        |    |  |                                     |  |  |
| CLO 11 |       |   | 2     |       |            |       |       |        |    |  |                                     |  |  |
| CLO 12 |       | 2 |       |       |            |       |       |        |    |  | 3                                   |  |  |
| CLO 13 |       |   | 2     |       |            |       |       |        |    |  |                                     |  |  |
| CLO 14 | 3     |   | 2     |       |            |       |       |        |    |  |                                     |  |  |
| CLO 15 |       | 2 |       |       |            |       |       |        |    |  | 3                                   |  |  |
| CLO 16 |       | 2 |       |       |            |       |       |        |    |  |                                     |  |  |
| CLU 16 | 3 = H |   | 2 - N | [edim | <br>m· 1 - | Low   |       |        |    |  |                                     |  |  |

#### **3** = **High**; **2** = **Medium**; **1** = Low

#### XIII. ASSESSMENTMETHODOLOGIES-DIRECT

| CIE Exams  | PO 1, PO 3, | SEE     | PO 1, PO 2 | Assignments  | PO 1, PO4 | Seminars      | PO 1,     |
|------------|-------------|---------|------------|--------------|-----------|---------------|-----------|
|            | PO4, PSO 1  | Exams   | PO 3, PO4, |              |           |               | PO4       |
|            |             |         | PSO 1      |              |           |               |           |
| Laboratory |             | Student |            | Mini Project | PO 1, PO4 | Certification | PO 1, PO4 |
| Practices  |             | Viva    | PO 1, PO4  |              |           |               |           |

#### XIV. ASSESSMENTMETHODOLOGIES-INDIRECT

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| ~ | Assessment of Mini Projects by Experts |   |                           |

## XV. SYLLABUS

| UNIT-I                                                                                                     | INTRODUCTION                                                                                                    | Classes:09           |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
| Introduction: Design philosophy steps in design process, general design rules for manufacturability, basic |                                                                                                                 |                      |  |  |  |  |  |
| principles of design                                                                                       | principles of design Ling for economical production, creativity in design; Materials selection of materials for |                      |  |  |  |  |  |
| design developmen                                                                                          | ts in material technology, criteria for material selection, material selection                                  | on interrelationship |  |  |  |  |  |
| with process selection                                                                                     | on process selection charts.                                                                                    |                      |  |  |  |  |  |
| UNIT-II                                                                                                    | MACHINING PROCESS, CASTING                                                                                      | Classes:09           |  |  |  |  |  |

| Machining process:                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Overview of various machining processes, general design rules for mach                                                                                                                             | ining dimensional |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ce roughness, design for machining, ease of redesigning of components f                                                                                                                            |                   |  |  |  |  |  |
| with suitable examp                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | bles. General design recommendations for machined parts.                                                                                                                                           | -                 |  |  |  |  |  |
| UNIT-III                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | METAL JOINING, FORMING                                                                                                                                                                             | Classes:09        |  |  |  |  |  |
| Metal casting: Appraisal of various casting processes, selection of casting processes, general design<br>considerations for casting, casting tolerances, use of solidification simulation in casting design, product design<br>rules for sand casting<br>Metal joining: Appraisal of various welding processes, factors in design of weldments, general design<br>guidelines, pre and post treatment of welds, effects of thermal stresses in weld joints, design of brazed joints. |                                                                                                                                                                                                    |                   |  |  |  |  |  |
| UNIT-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DESIGN FOR FORGING                                                                                                                                                                                 | Classes:09        |  |  |  |  |  |
| Forging, design factors for forging, closed dies forging design, parting lines of die drop forging die design<br>general design recommendations. extrusion and sheet metal work: Design guidelines for extruded sections,<br>design principles for punching, blanking, bending, deep drawing, Keeler Goodman forming line diagram,<br>component design for blanking.                                                                                                                |                                                                                                                                                                                                    |                   |  |  |  |  |  |
| UNIT-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DESIGN FOR ASSEMBLY AND AUTOMATION                                                                                                                                                                 | Classes:09        |  |  |  |  |  |
| methodology, asser                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | bly: General design guidelines for manual assembly, development of<br>nbly efficiency, classification system for manual handling, classification<br>ing, effect of part symmetry on handling time. | •                 |  |  |  |  |  |
| Text Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                    |                   |  |  |  |  |  |
| 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oyd, —Assembly Automation and Product Design <sup>II</sup> , Marcel Dekker Inc., I                                                                                                                 |                   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , —Engineering Design - Material & Processing Approachl, McGraw-Hi                                                                                                                                 |                   |  |  |  |  |  |
| <ol> <li>Geoffrey Boothroyd, —Hand Book of Product Designl, Marcel and Dekken, 1<sup>st</sup>Edition, 2013.</li> <li>Geoffrey Boothroyd, Peter Dewhurst, Winston —Product Design for Manufacturing and Assemblyl,<br/>CRC Press, 1<sup>st</sup> Edition, 2010.</li> </ol>                                                                                                                                                                                                           |                                                                                                                                                                                                    |                   |  |  |  |  |  |
| <b>Reference Books:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |                   |  |  |  |  |  |
| 1. Geoffrey Boothroy                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rd, —Hand Book of Product Designl, Marcel and Dekken,1stEdition, 2013                                                                                                                              | 3.                |  |  |  |  |  |
| Cooffroy Boothroy                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d Pater Developert Winston Product Design for Manufacturing and As                                                                                                                                 | combly CPC        |  |  |  |  |  |

2. Geoffrey Boothroyd, Peter Dewhurst, Winston —Product Design for Manufacturing and Assembly,CRC Press, 1<sup>st</sup>Edition, 2010.

## **XVI. COURSEPLAN:**

The course plan is meant as a guideline. Probably there may be changes.

|         |                                                                             | Course   |           |
|---------|-----------------------------------------------------------------------------|----------|-----------|
| Lecture | Topics to be covered                                                        | Learning | Reference |
| No      |                                                                             | Outcomes |           |
| 1-4     | Introduction: Design philosophy steps in design process, general design     | CLO 1    | T1:1.7    |
| 1-4     | rules for manufacturability                                                 | CLO I    | R1:3.7    |
| 5-7     | Basic principles of design Ling for economical production, creativity in    | CLO 2    | T1:1.8    |
| 5-7     | design                                                                      | CLO 2    | R1:3.12   |
| 8-10    | Materials selection of materials for design developments in material        | CLO 3    | T1:3.1    |
| 0-10    | technology,                                                                 | CLO J    | R1:3.13   |
| 11-14   | Criteria for material selection, material selection interrelationship with  | CLO 3    | T1:2.1    |
| 11-14   | process selection process selection charts.                                 | CLO J    | R1:4.2    |
| 15-16   | Machining process: Overview of various machining processes, general         | CLO 4    | T1:3.3    |
| 15-10   | Machining process. Overview of various machining processes, general         | CLO 4    | R1:3.14   |
| 17-20   | Design rules for machining, dimensional tolerance and surface roughness     | CLO 4    | T1:4.1    |
| 17-20   | Design rules for machining, unnensional tolerance and surface roughness     | CL04     | R1:4.4    |
| 21-23   | Metal casting: Appraisal of various casting processes, selection of casting | CLO 5    | T1:5.1    |
| 21 25   | process,                                                                    | 0105     | R1:5.2    |

| 24-26 | General design considerations for casting, casting tolerances, use of solidification simulation in casting design, product design rules for sand casting. | CLO 6  | T1:6.1<br>R1:7.2   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------|
| 27-28 | Metal joining: Appraisal of various welding processes, factors in design of weldments, general design guideline.                                          | CLO 7  | T1:6.6<br>R:7.4    |
| 29-30 | Pre and post treatment of welds, effects of thermal stresses in weld joints, design of brazed joints.                                                     | CLO 7  | T1:6.11<br>R1:8.5  |
| 31-32 | Forging, design factors for forging, closed dies forging design,                                                                                          | CLO 8  | T1:7.1<br>R1:6.5   |
| 33-34 | Parting lines of die drop forging die design general design recommendations                                                                               | CLO 8  | T1:8.1<br>R3:3.2   |
| 35    | Extrusion and sheet metal work: Design guidelines for extruded sections, ,                                                                                | CLO 9  | T1:9.1<br>R3:3.4   |
| 36-37 | Design principles for punching, blanking                                                                                                                  | CLO 9  | T1:9.5<br>R3:4.4   |
| 38    | Bending, deep drawing, Keeler Goodman forming line diagram,                                                                                               | CLO 10 | T1:10.1<br>R3:5.3  |
| 39    | Component design for blanking.                                                                                                                            | CLO 10 | T1:10.4<br>R3:7.2  |
| 40-41 | Assembly advantages: Development of the assemble process                                                                                                  | CLO 11 | T1:10.8<br>R3:7.6  |
| 42    | Choice of assemble method assemble , advantages social effects of automation                                                                              | CLO 12 | T1:10.9<br>R3:7.7  |
| 43-44 | Indexing mechanisms, and operator, paced free, transfer machine.                                                                                          | CLO 13 | T1:10.10<br>R3:7.8 |
| 45-47 | Design of manual assembly: Design for assembly fits in the design process                                                                                 | CLO 13 | T1:15.1<br>R3:7.9  |
| 48-49 | General design guidelines for manual assembly, development of the systematic DFA methodology                                                              | CLO 14 | T1:13.5<br>R3:9.2  |
| 50-52 | Assembly efficiency, classification system for manual handling,                                                                                           | CLO 14 | T1:13.7<br>R3:9.4  |
| 53-55 | Classification system for manual insertion and fastening, effect of part symmetry on handling time,                                                       | CLO 15 | T1:13.8            |
| 56-57 | Effect of part thickness and size on handling time, effect of weight on handling time                                                                     | CLO 14 | T1:13.6<br>R3:10.3 |
| 58-59 | Parts requiring two hands for manipulation, effects of combinations of factors,                                                                           | CLO 15 | T1:13.9<br>R3:12.3 |
| 59-60 | Effect of symmetry effect of chamfer design on insertion operations, estimation of insertion time.                                                        | CLO 16 | T1:14.8<br>R3:12.6 |

## XVII. GAPS INTHE SYLLABUS - TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

| S No | Description                                                    | Proposed actions          | Relevance<br>with POs | Relevance<br>with PSOs |
|------|----------------------------------------------------------------|---------------------------|-----------------------|------------------------|
| 1    | Assembly efficiency, classification system for manual handling | Industrial visits         | PO1, PO2, PO4         | PSO1                   |
| 2    | Design of manual assembly                                      | Seminar/ industrial visit | PO4                   | PSO1                   |
| 3    | CADapplication in design for manufacturing and assembly        | Seminar                   | PO3                   | PSO1                   |

## Prepared by:

Mr. A. venuprasad, Assistant Professor, ME