
1

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE LECTURE NOTES

Course Name DIGITAL SIGNAL PROCESSING

Course Code AEC012

Programme B.Tech

Semester VI

Course

Coordinator
Dr. S. China Venkateswarlu, Professor

Course Faculty Dr. G Manisha, Associate Professor

Ms. S Sushma, Assistant Professor

Mr. K Chaitanya, Assistant Professor

Lecture Numbers 1-60

Topic Covered All

COURSE OBJECTIVES (COs):

The course should enable the students to:

I Provide background and fundamental material for the analysis and processing of digital signals and to

familiarize the relationships between continuous-time and discrete-time signals and systems.

II Study fundamentals of time, frequency and z-plane analysis and to discuss the inter-relationships of these

analytic method and to study the designs and structures of digital (IIR and FIR) filters from analysis to

synthesis for a given specifications.

III Introduce a few real-world signal processing applications.

IV Acquainting FFT algorithm, multi-rate signal processing techniques and finite word length effects.

2

COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the ability to do the

following:

AEC012.01 Understand how digital to analog (D/A) and analog to digital (A/D) converters operate on a

signal and be able to model these operations mathematically.

AEC012.02 Define simple non-periodic discrete-time sequences such as the impulse and unit step, and

perform time shifting and time-reversal operations on such sequences.

AEC012.03 Given the difference equation of a discrete-time system to demonstrate linearity, time-

invariance, causality and stability, and hence show whether or not a given system belongs to

the important class of causal, LTI systems.

AEC012.04 Given the impulse response of a causal LTI system, show whether or not the system is

bounded-input/bounded-output (BIBO) stable.

AEC012.05 Perform time, frequency and Z-transform analysis on signals.

AEC012.06 From a linear difference equation of a causal LTI system, draw the Direct Form I and Direct

Form II filter realizations.

AEC012.07 Knowing the poles and zeros of a transfer function, make a rough sketch of the gain response.

AEC012.08 Define the Discrete Fourier Transform (DFT) and the inverse DFT (IDFT) of length N.

AEC012.09 Understand the inter-relationship between DFT and various transforms.

AEC012.10 Understand the significance of various filter structures and effects of round-off errors.

AEC012.11 Understand the fast computation of DFT and appreciate the FFT Processing.

AEC012.12 Design of infinite impulse response (IIR) filters for a given specification.

AEC012.13 Design of finite impulse response (FIR) filters for a given specification.

AEC012.14 Compare the characteristics of IIR and FIR filters.

AEC012.15 Understand the tradeoffs between normal and multi rate DSP techniques and finite length word

effects.

AEC012.16 Understand the signal interpolation and decimation, and explain their operation

AEC012.17 Explain the cause of limit cycles in the implementation of IIR filters.

 SYLLABUS

UNIT-I REVIEW OF DISCRETE TIME SIGNALS AND SYSTEMS: Classes: 10

Discrete time signal definition; Signal classification; Elementary signals; Transformation of elementary

signals; Concept of digital frequency; Discrete time system definition; System classification; Linear

time invariant (LTI) system; Properties of the LTI system; Time domain analysis of discrete time

systems; Impulse response; The convolution sum; Methods of evaluating the convolution sum; Filtering

using overlap-save and overlap-add method; Realization of digital filters: Concept of IIR and FIR filters;

Realization structures for IIR and FIR filters using direct form-I and direct form-II, cascade, lattice and

parallel.

UNIT -II DISCRETE FOURIER TRANSFORM AND EFFICIENT

COMPUTATION:
Classes: 09

Introduction to discrete time Fourier transform (DTFT); Discrete Fourier transform (DFT) definition;

Properties of DFT; Linear and circular convolution using DFT; Fast-Fourier-transform (FFT): Direct

3

computation of DFT; Need for efficient computation of the DFT (FFT algorithms); Radix-2 FFT

algorithm for the computation of DFT and IDFT using decimation-in-time and decimation-in-frequency

algorithms; General Radix-N FFT.

UNIT-III STRUCUTRE OF IIR FILTERS: Classes: 09

Analog filters: Butterworth filters; Chebyshev type-1 & type-2 filters; Analog transformation of

prototype LPF to HPF/BPF/BSF.

Transformation of analog filters into equivalent digital filters using impulse invariant method and

bilinear transform method; Matlab programs of IIR filters.

UNIT-IV SYMMETRIC AND ANTISYMMETRIC FIR FILTERS: Classes: 09

Design of linear phase FIR filters windowing and frequency sampling methods; Equiripple linear phase

FIR filters; Parks-McClellan algorithm and remez algorithm; Least-mean-square error filter design;

Design of FIR differentiators; Matlab programs of FIR filters; Comparison of FIR & IIR.

UNIT-V APPLICATIONS OF DSP: Classes: 10

Multirate signal processing; Decimation; Interpolation; Polyphase structures for decimation and

interpolation filters; Structures for rational sampling rate conversion; Applications of multirate signal

processing for design of phase shifters, interfacing of digital systems with different sampling rates, sub

band coding of speech signals. Analysis of finite word length effects: Representation of numbers; ADC

quantization noise, coefficient quantization error, product quantization error, truncation & rounding

errors; Limit cycle due to product round-off error; Round-off noise power; Limit cycle oscillations due

to overflow in digital filters; Principle of scaling; Dead band effects.

Text Books:

1. John G. Proakis, Dimitris G. Manolakis, Digital signal processing, Principles, Algorithms and Applications,

Prentice Hall, 4th Edition, 2007

2. Sanjit K Mitra, Digital signal processing, A computer base approach, McGraw-Hill Higher Education, 4th

Edition, 2011.

3. Emmanuel C, Ifeacher, Barrie. W. Jervis, DSP-A Practical Approach, Pearson Education, 2nd Edition, 2002.

4. A.V. Oppenheim, R.W. Schaffer, Discrete Time Signal Processing, PHI, 2nd Edition, 2006.

Reference Books:

1. Li tan, Digital signal processing: fundamentals and applications, Elsevier Science &. Technology Books, 2nd

Edition, 2008.

2. Robert J.schilling, Sandra. L.harris, Fundamentals of Digital signal processing using Matlab, Thomson

Engineering, 2nd Edition, 2005.

3. Salivahanan, Vallavaraj, Gnanapriya, Digital signal processing‖, McGraw-Hill Higher Education, 2
nd

 Edition, 2009.

4

UNIT-I

REVIEW OF DISCRETE TIME SIGNALS AND SYSTEMS

Signals-Definition

Anything that carries information can be called as signal. It can also be defined as a physical

quantity that varies with time, temperature, pressure or with any independent variables such

as speech signal or video signal.

The process of operation in which the characteristics of a signal (Amplitude, shape, phase,

frequency, etc.) undergoes a change is known as signal processing.

Note − Any unwanted signal interfering with the main signal is termed as noise. So, noise is also

a signal but unwanted.

Discrete Time signals

The signals, which are defined at discrete times are known as discrete signals. Therefore, every

independent variable has distinct value. Thus, they are represented as sequence of numbers.

Although speech and video signals have the privilege to be represented in both continuous and

discrete time format; under certain circumstances, they are identical. Amplitudes also show

discrete characteristics. Perfect example of this is a digital signal; whose amplitude and time

both are discrete.

The figure above depicts a discrete signal’s discrete amplitude characteristic over a period of

time. Mathematically, these types of signals can be formularized as;

x=,x*n+-, −∞<n<∞

Where, n is an integer.

It is a sequence of numbers x, where nth number in the sequence is represented as x[n].

Basic DT Signals

5

Let us see how the basic signals can be represented in Discrete Time Domain.

Unit Impulse Sequence

It is denoted as δ(n) in discrete time domain and can be defined as;

Unit Step Signal

Discrete time unit step signal is defined as;

The figure above shows the graphical representation of a discrete step function.

Unit Ramp Function

A discrete unit ramp function can be defined as −

6

The figure given above shows the graphical representation of a discrete ramp signal.

Sinusoidal Signal

All continuous-time signals are periodic. The discrete-time sinusoidal sequences may or may

not be periodic. They depend on the value of ω. For a discrete time signal to be periodic, the

angular frequency ω must be a rational multiple of 2π.

A discrete sinusoidal signal is shown in the figure above.

Discrete form of a sinusoidal signal can be represented in the format −

x(n)=Asin(ωn+ϕ)

Here A,ω and φ have their usual meaning and n is the integer. Time period of the discrete

sinusoidal signal is given by −

Where, N and m are integers.

Classification of DT Signals

Discrete time signals can be classified according to the conditions or operations on the signals.

7

Even and Odd Signals

Even Signal

A signal is said to be even or symmetric if it satisfies the following condition;

x(−n) = x(n)

Here, we can see that x(-1) = x(1), x(-2) = x(2) and x(-n) = x(n). Thus, it is an even signal.

Odd Signal

A signal is said to be odd if it satisfies the following condition;

x(−n) = −x(n)

From the figure, we can see that x(1) = -x(-1), x(2) = -x(2) and x(n) = -x(-n). Hence, it is an odd as

well as anti-symmetric signal.

Periodic and Non-Periodic Signals

A discrete time signal is periodic if and only if, it satisfies the following condition −

x(n+N)=x(n)

8

Here, x(n) signal repeats itself after N period. This can be best understood by considering a

cosine signal −

x(n)=Acos(2πf0n+θ)

x(n+N)=Acos(2πf0(n+N)+θ)=Acos(2πf0n+2πf0N+θ)

For the signal to become periodic, following condition should be satisfied;

x(n+N)=x(n)

⇒Acos(2πf0n+2πf0N+θ)=Acos(2πf0n+θ)

i.e. 2πf0N is an integral multiple of 2π

2πf0N=2πK

⇒ N=K/f0

Frequencies of discrete sinusoidal signals are separated by integral multiple of 2π.

Energy and Power Signals

Energy Signal

Energy of a discrete time signal is denoted as E. Mathematically, it can be written as;

If each individual values of x(n) are squared and added, we get the energy signal. Here x(n) is

the energy signal and its energy is finite over time i.e 0<E<∞

Power Signal

Average power of a discrete signal is represented as P. Mathematically, this can be written as;

Here, power is finite i.e. 0<P<∞. However, there are some signals, which belong to neither

energy nor power type signal.

9

Operations on Signals

 The basic signal operations which manipulate the signal characteristics by acting on the

independent variable(s) which are used to represent them. This means that instead of

performing operations like addition, subtraction, and multiplication between signals, we will

perform them on the independent variable. In our case, this variable is time (t).

 1. Time Shifting

Suppose that we have a signal x(n) and we define a new signal by adding/subtracting a finite

time value to/from it. We now have a new signal, y(n). The mathematical expression for this

would be x(n± n0).

Graphically, this kind of signal operation results in a positive or negative “shift” of the signal

along its time axis. However, note that while doing so, none of its characteristics are altered.

This means that the time-shifting operation results in the change of just the positioning of the

signal without affecting its amplitude or span.

Let's consider the examples of the signals in the following figures in order to gain better insight

into the above information.

Figure 1. Original signal and its time-delayed version

 Here the original signal, x[n], spans from n = -3 to n = 3 and has the values -2, 0, 1, -3, 2, -1, and

3, as shown in Figure 1(a).

Time-Delayed Signals

10

Suppose that we want to move this signal right by three units (i.e., we want a new signal whose

amplitudes are the same but are shifted right three times).

This means that we desire our output signal y[n] to span from n = 0to n = 6. Such a signal is

shown as Figure 1(b) and can be mathematically written as y[n] = x[n-3].

This kind of signal is referred to as time-delayed because we have made the signal arrive three

units late.

Time-Advanced Signals

On the other hand, let's say that we want the same signal to arrive early. Consider a case where

we want our output signal to be advanced by, say, two units. This objective can be

accomplished by shifting the signal to the left by two time units, i.e., y[n] = x[n+2].

The corresponding input and output signals are shown in Figure 2(a) and 2(b), respectively. Our

output signal has the same values as the original signal but spans from n = -5 to n = 1 instead

of n = -3 to n = 3. The signal shown in Figure 2(b) is aptly referred to as a time-advanced signal.

Figure 2. Original signal and its time-advanced version

For both of the above examples, note that the time-shifting operation performed over the

signals affects not the amplitudes themselves but rather the amplitudes with respect to the

time axis. We have used discrete-time signals in these examples, but the same applies to

continuous-time signals.

Practical Applications

Time-shifting is an important operation that is used in many signal-processing applications. For

example, a time-delayed version of the signal is used when performing autocorrelation. (You

can learn more about autocorrelation in my previous article, Understanding Correlation.)

https://www.allaboutcircuits.com/technical-articles/understanding-correlation/

11

Another field that involves the concept of time delay is artificial intelligence, such as in systems

that use Time Delay Neural Networks.

2. Time Scaling

Now that we understand more about performing addition and subtraction on the independent

variable representing the signal, we'll move on to multiplication.

For this, let's consider our input signal to be a continuous-time signal x(t) as shown by the red

curve in Figure 3.

Now suppose that we multiply the independent variable (t) by a number greater than one. That

is, let's make t in the signal into, say, 2t. The resultant signal will be the one shown by the blue

curve in Figure 3.

From the figure, it's clear that the time-scaled signal is contracted with respect to the original

one. For example, we can see that the value of the original signal present at t = -3 is present

at t = -1.5 and those at t= -2 and at t = -1 are found at t = -1 and at t = -0.5 (shown by green

dotted-line curved arrows in the figure).

This means that, if we multiply the time variable by a factor of 2, then we will get our output

signal contracted by a factor of 2 along the time axis. Thus, it can be concluded that the

multiplication of the signal by a factor of n leads to the compression of the signal by an

equivalent factor.

Now, does this mean that dividing the variable t by a number greater than 1 will cause the

signal to become expanded? That is, if we divide the variable t by a factor of n, will we get

a signal which is stretched by an equivalent factor?

https://en.wikipedia.org/wiki/Time_delay_neural_network

12

Figure

3. Original signal with its time-scaled versions

 Let's check it out.

For this, let's consider our signal to be the same as the one in Figure 3 (the red curve in the

figure). Now let's multiply its time-variable t by ½ instead of 2. The resultant signal is shown by

the blue curve in Figure 3(b). You can see that, in this time-scaled signal indicated by the green

dotted-line arrows in Figure 3(b), we have the values of the original signal present at the time

instants t = 1, 2, and 3 to be found at t = 2, 4, and 6.

This means that our time-scaled signal is a stretched-by-a-factor-of-n version of the original

signal. So the answer to the question posed above is "yes."

Although we have analyzed the time-scaling operation with respect to a continuous-time signal,

this information applies to discrete-time signals as well. However, in the case of discrete-time

signals, time-scaling operations are manifested in the form of decimation and interpolation.

13

Practical Applications

Basically, when we perform time scaling, we change the rate at which the signal is sampled.

Changing the sampling rate of a signal is employed in the field of speech processing. A

particular example of this would be a time-scaling-algorithm-based system developed to read

text to the visually impaired.

Next, the technique of interpolation is used in Geodesic applications (PDF). This is because, in

most of these applications, one will be required to find out or predict an unknown parameter

from a limited amount of available data.

3. Time Reversal

Until now, we have assumed our independent variable representing the signal to be positive.

Why should this be the case? Can't it be negative?

It can be negative. In fact, one can make it negative just by multiplying it by -1. This causes the

original signal to flip along its y-axis. That is, it results in the reflection of the signal along its

vertical axis of reference. As a result, the operation is aptly known as the time reversal or time

reflection of the signal.

For example, let's consider our input signal to be x[n], shown in Figure 4(a). The effect of

substituting –n in the place of n results in the signal y[n] as shown in Figure 4(b).

Figure 4. A signal with its reflection

http://der.topo.auth.gr/dermanis/pdfs/erice.pdf

14

Analog frequency and Digital frequency

The fundamental relation between the analog frequency, Ω , and the digital frequency, ω , is

given by the following relation:

or alternately,

where T is the sampling period, in sec., and fs =1/T is the sampling frequency in Hz.

Note, however, the following interesting points:

 • The unit of Ω is radian/sec., whereas the unit of ω is just radians.

• The analog frequency, Ω , represents the actual physical frequency of the basic analog signal ,

for example, an audio signal (0 to 4 kHz) or a video signal (0 to 4 MHz). The digital frequency, ω

, is the transformed frequency from Equation 3.3a or Equation 3.3b and can be considered as a

mathematical frequency, corresponding to the digital signal.

(a)

(b)

FIGURE 3.1 Analog frequency response and (b) digital frequency response

Definition of Discrete time system

15

System can be considered as a physical entity which manipulates one or more input signals

applied to it. For example a microphone is a system which converts the input acoustic (voice or

sound) signal into an electric signal. A system is defined mathematically as a unique operator or

transformation that maps an input signal in to an output signal.

This is defined as y(n) = T[x(n)] where x(n) is input signal, y(n) is output signal, T[] is

transformation that characterizes the system behavior.

y(n) = T [x(n)]

Where, T is the general rule or algorithm which is implemented on x(n) or the excitation to get

the response y(n). For example, a few systems are represented as,

y(n) = -2x(n)

or, y(n) = x(n-1) + x(n) + x(n+1)

Block Diagram representation of Discrete-time systems

Digital Systems are represented with blocks of different elements or entities connected with

arrows which also fulfills the purpose of showing the direction of signal flow,

Some common elements of Discrete-time systems are:-

Adder: It performs the addition or summation of two signals or excitation to have a response.

An adder is represented as,

16

Constant Multiplier: This entity multiplies the signal with a constant integer or fraction. And is

represented as, in this example the signal x(n) is multiplied with a constant “a” to have the

response of the system as y(n).

Signal Multiplier: This element multiplies two signals to obtain one.

Unit-delay element: This element delays the signal by one sample i.e. the response of the

system is the excitation of previous sample. This can element is said to have a memory which

stores the excitation at time n-1 and recalls this excitation at the time n form the memory. This

element is represented as,

17

Unit-advance element: This element advances the signal by one sample i.e. the response of the

current excitation is the excitation of future sample. Although, as we can see this element is not

physically realizable unless the response and the excitation are already in stored or recorded

form.

Now that we have understood the basic elements of the Discrete-time systems we can now

represent any discrete-time system with the help of block diagram. For example,

 y(n) = y(n-1) + x (n-1) + 2x(n)

The above system is an example of Discrete-time system involving the unit delay of current

excitation and also one unit delay of the current response of the system.

Classification of Discrete-time Systems

Discrete-time systems are classified on different principles to have a better idea about a

particular system, their behavior and ultimately to study the response of the system.

Relaxed system: If y(no -1) is the initial condition of a system with response y(n) and y(no -1)=0,

then the system is said to be initially relaxed i.e. if the system has no excitation prior to no .

18

Static and Dynamic systems: A system is said to be a Static discrete-time system if the response

of the system depends at most on the current or present excitation and not on the past or

future excitation. If there is any other scenario then the system is said to be a Dynamic discrete-

time system. The static systems are also said to be memory-less systems and on the other hand

dynamic systems have either finite or infinite memory depending on the nature of the system.

Examples below will clear any arising doubts regarding static and dynamic systems.

The last example is the case of in-finite memory and the others are specified about their type

depending on their characteristics.

Time-variant and Time-invariant system: A discrete-time system is said to be time invariant if

the input-output characteristics do not change with time, i.e. if the excitation is delayed by k

units then the response of the system is also delayed by k units. Let there be a system,

 x(n) ----> y(n) ∀ x(n)

Then the relaxed system T is time-invariant if and only if,

 x(n-k) ----> y(n-k) ∀ x(n) and k.

Otherwise, the system is said to be time-variant system if it does not follows the above

specified set of rules. For example,

 y(n) = ax(n) { time-invariant }

 y(n) = x(n) + x(n-3) { time-invariant }

 y(n) = nx(n) { time-variant }

Note:- In order to check whether the system is time-invariant or time-variant the system must

satisfy the “T*x(n-k)]=y(n-k)” condition, i.e. first delay the excitation by k units, then replace n

19

with (n-k) in the response and then equate L.H.S. and R.H.S. if they are equal then the system is

time invariant otherwise not. For example in the last system above,

 L.H.S. = T[x(n-k)] =nx(n-k)

{not (n-k)x(n-k) which is a general misconfusion}

 R.H.S. = y(n-k)= (n-k) x(n-k)

So, the L.H.S. and R.H.S. are not equal hence the system is time-varient.

Note:- What about Folder, is it a time-variant or time-invariant system, let’s see,

 y(n) = x(-n)

 L.H.S. = y(n-k) = x[-(n-k)]=x(-n+k)

 R.H.S. = T[x(n-k)] = x(-n-k)

Thus, R.H.S. is not equal to L.H.S. so the system is time-variant.

Linear and non-Linear systems: A system is said to be a linear system if it follows the

superposition principle i.e. the sum of responses (output) of weighted individual excitations

(input) is equal to the response of sum of the weighted excitations. Pay attention to the above

specified rule, according to the rule the following condition must be fulfilled by the system in

order to be classified as a Linear system,

 If, y1(n) = T[ax1(n)]

 y2(n) = T[bx2(n)]

 and, y(n) = T[ax1(n) + bx2(n)]

 Then, the system is said to be linear if ,

 T[ax1(n) + bx2(n)] = T[ax1(n)] + T[bx2(n)]

20

So, if y’(n) = y’’(n) then the system is said to be linear. I the system does not fulfills this property

then the system is a non-Linear system. For example,

y(n) = x (n2) { linear }

y(n) = Ax(n) + B {non – linear }

y(n) = nx(n) { linear }

The explanation of the above specified examples is left as an exercise for the reader.

Causal and non-Causal systems: A discrete-time system is said to be a causal system if the

response or the output of the system at any time depends only on the present or past

excitation or input and not on the future inputs. If the system T follows the following relation

then the system is said to be causal otherwise it is a non-causal system.

y(n) = F [x(n), x(n-1), x(n-2),…….+

Where F[] is any arbitrary function. A non-causal system has its response dependent on future

inputs also which is not physically realizable in a real-time system but can be realized in a

recorded system. For example,

21

Stable and Unstable systems: A system is said to be stable if the bounded input produces a

bounded output i.e. the system is BIBO stable. If,

Then the system is said to be bounded system and if this is not the case then the system is

unbounded or unstable.

ANALYSIS OF DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEMS

Systems are characterized in the time domain simply by their response to a unit sample

sequence. Any arbitrary input signal can be decomposed and represented as a weighted sum of

unit sample sequences.

Our motivation for the emphasis on the study of LTI systems is twofold. First there is a large

collection of mathematical techniques that can be applied to the analysis of LTI systems.

Second, many practical systems are either LTI systems or can be approximated by LTI systems.

As a consequence of the linearity and time-invariance properties of the system, the

response of the system to any arbitrary input signal can be expressed in terms of the unit

sample response of the system. The general form of the expression that relates the unit sample

response of the system and the arbitrary input signal to the output signal, called the

convolution sum

Thus we are able to determine the output of any linear, time-invariant system to any arbitrary

input signal.

 There are two basic methods for analyzing the behavior or response of a linear system

to a given input signal.

22

 The first method for analyzing the behavior of a linear system to a given input signal is

first to decompose or resolve the input signal into a sum of elementary signals. The elementary

signals are selected so that the response of the system to each signal component is easily

determined. Then, using the linearity property of the system, the responses of the system to

the elementary signals are added to obtain the total response of the system to the given input

signal.

 Suppose that the input signal x(n) is resolved into a weighted sum of elementary signal

components { xk(n)) so that

where the {ck} is the set of amplitudes (weighting coefficients) in the decomposition of the

signal x(n) . Now suppose that the response of the system to the elementary signal component

xk(n) is yk(n). Thus

assuming that the system is relaxed and that the response to ckxk(n) is ckvk(n) as a consequence

of the scaling property of the linear system.

Finally, the total response to the input x (n) is

In the above equation we used the additivity property of the linear system.

Resolution of a Discrete-Time Signal into Impulses

Suppose we have an arbitrary signal x(n) that we wish to resolve into a sum of unit sample

sequences. we

select the elementary signals xk(n) to be

23

where k represents the delay of the unit sample sequence. To handle an arbitrary signal x(n)

that may have nonzero values over an infinite duration, the set of unit impulses must also be

infinite, to encompass the infinite number of delays.

Now suppose that we multiply the two sequences x(n) and (n - k) . Since (n - k) is

zero everywhere except at n = k . where its value is unity, the result of this multiplication is

another sequence that is zero everywhere except at n = k. where its value is x (k) , as

illustrated in Fig. below. Thus

Multiplication of a signal x(n) with a shifted unit sample sequence.

If we repeat this multiplication over all possible delays, - < k < , and sum all the product

sequences, the result will be a sequence equal to the sequence x(n) , that is,

24

Example .

Consider the special case of a finite-duration sequence given as

Resolve the sequence x (n) into a sum of weighted impulse sequences.

Solution: Since the sequence x (n) is nonzero for the time instants n = -1, 0. 2, we

need three impulses at delays k = - 1. 0, 2. Following (2.3.10) we find that

Response of LTI Systems to Arbitrary Inputs: The Convolution Sum

 we denote the response y(n,k) of the system to the input unit sample sequence at n= k

by the special symbol h(n. k), - < k < . That is,

n is the time index and k is a parameter showing the location of the input impulse. If the

impulse at the input is scaled by an amount ckx(k) the response of the system is the

correspondingly scaled output, that is,

Finally, if the input is the arbitrary signal x(n) that is expressed as a sum of

weighted impulses. that is.

25

Then the response of the system to x(n) is the corresponding sum of weighted outputs,

that is.

The above equation follows from the superposition property of linear systems, and is

known as the superposition summation.

 In the above equation we used the linearity property of the system bur nor its time invariance

property.

Then by the time-invariance property, the response of the system to the delayed unit

sample sequence (n - k) is

The formula above gives the response y(n) of the LTI system as a function of the input signal x(

n) and the unit sample (impulse) response h(n) is called a convolution sum.

The process of computing the convolution between x(k) and h(k) involves the following

four steps.

1. Folding. Fold h(k) about k = 0 to obtain h (- k).

2. Shifting. Shift h (- k) by no to the right (left) if no is positive (negative), to obtain h(no - k) .

3, Multiplication. Multiply x(k) by h(no - k) to obtain the product sequence

vno(k) = x(k)h(no - k).

4. Summation. Sum all the values of the product sequence vno(k) to obtain the

26

value of the output at time n = no.

Example .

The impulse response of a linear time-invariant system is

Determine the response of the system to the input signal

27

Filtering using Overlap-save and Overlap-add methods

In many applications one of the signals of a convolution is much longer than the other.
For instance when filtering a speech signal xL[k] of length L with a room impulse response hN[k]
of length N ≪ L. In order to perform the convolution various techniques have been developed
that perform the filtering on limited portions of the signals. These portions are known as
partitions, segments or blocks. The respective algorithms are termed as segmented or block-
based algorithms. The following section introduces two techniques for the block-based
convolution of signals. The basic concept of these is to divide the convolution y[k]=xL[k] * hN[k]
into multiple convolutions operating on (overlapping) segments of the signal xL[k].

Overlap-Add Algorithm

The overlap-add algorithm is based on splitting the signal xL[k] into non-overlapping
segments xp[k] of length P.

where the segments xp[k] are defined as

Note that xL[k] might have to be zero-padded so that its total length is a multiple of the

segment length P. Introducing the segmentation of xL[k] into the convolution yields
where yp[k]=xp[k] * hN[k]. This result states that the convolution of xL[k]*hN[k] can be split into
a series of convolutions yp[k] operating on the samples of one segment(block) only. The length
of yp[k] is N+P−1. The result of the overall convolution is given by summing up the results from

https://en.wikipedia.org/wiki/Overlap%E2%80%93add_method

28

the segments shifted by multiples of the segment length P. This can be interpreted as an
overlapped superposition of the results from the segments, as illustrated in the following
diagram.

Overlap-Save Algorithm

The overlap-save algorithm, also known as overlap-discard algorithm, follows a different
strategy as the overlap-add technique introduced above. It is based on an overlapping
segmentation of the input xL[k] and application of the periodic convolution for the individual
segments.

Lets take a closer look at the result of the periodic convolution xp[k]*hN[k], where xp[k]

denotes a segment of length P of the input signal and hN[k] the impulse response of length N.
The result of a linear convolution xp[k]*hN[k] would be of length P+N−1. The result of the
periodic convolution of period P for P>N would suffer from a circular shift (time aliasing) and
superposition of the last N−1 samples to the beginning. Hence, the first N−1 samples are not
equal to the result of the linear convolution. However, the remaining P−N+1 do so.

This motivates to split the input signal xL[k] into overlapping segments of

length P where the p-th segment overlaps its preceding (p−1)-th segment by N−1 samples.

https://en.wikipedia.org/wiki/Overlap%E2%80%93save_method

29

The part of the circular convolution xp[k]*hN[k] of one segment xp[k] with the impulse
response hN[k] that is equal to the linear convolution of both is given as

The output y[k] is simply the concatenation of the yp[k]

The overlap-save algorithm is illustrated in the following diagram.

For the first segment x0[k], N−1 zeros have to be appended to the beginning of the input

signal xL[k] for the overlapped segmentation. From the result of the periodic

convolution xp[k]*hN[k] the first N−1 samples are discarded, the remaining P−N+1 are copied to

the output y[k]. This is indicated by the alternative notation overlap-discard used for the

technique

30

Causal Linear Time-Invariant Systems

In the case of a linear time-invariant system, causality can be translated to a condition

on the impulse response. To determine this relationship, let us consider a linear time-invariant

system having an output at time n = no given by the convolution formula

Suppose that we subdivide the sum into two sets of terms, one set involving present and past

values of the input [i.e.. x (n) for n ≤ no] and one set involving future values of the input

[i.e., x (n) . n > no]. Thus we obtain

We observe that the terms in the first sum involve x(n0), x(no - 1) , which are the present

and past values of the input signal. On the other hand, the terms in the second sum involve the

input signal components x(no + 1), x(no +2). Now, if the output at time n = no is depend

only on the present and past inputs, then, clearly. the impulse response of the system must

satisfy the condition

Since h(n) is the response of the relaxed linear time-invariant system to a unit impulse applied

at n = 0, it follows that h(n) = 0 for n < 0 is both a necessary and a sufficient condition for

causality. Hence an LTI system is causal if and only if its impulse response is zero for negative

values of n.

Since for a causal system, h(n) = 0 for n < 0. the limits on the summation of the convolution

formula may be modified to reflect this restriction. Thus we have the two equivalent forms

31

Up to this point we have treated linear and time-invariant systems that are characterized by

their unit sample response h(n). In turn h(n) allows us to determine the output y(n) of the

system for any given input sequence x(n) by means of the convolution summation.

 In the case of FIR systems, such a realization involves additions, Multiplications, and a

finite number of memory locations. Consequently, an FIR system is readily implemented

directly, as implied by the convolution summation.

 If the system is IIR. however, its practical implementation as implied by convolution is

clearly impossible. since it requires an infinite number of memory locations, multiplications,

and additions. A question that naturally arises, then, is whether or not it is possible to realize IIR

systems other than in the form suggested by the convolution summation. Fortunately, the

answer is yes.

There is a practical and computationally efficient means for implementing a family of IIR

systems, as will be demonstrated in this section, Within the general class of IIR systems. this

family of discrete-time systems is more conveniently described by difference equations. This

family or subclass of IIR systems is very useful in a variety of practical applications, including the

implementation of digital filters, and the modeling of physical phenomena and physical

systems.

Recursive and Nonrecursive Discrete-Time Systems

As indicated above, the convolution summation formula expresses the output of the linear

time-invariant system explicitly and only in terms of the input signal.

However, this need not be the case, as is shown here. There are many systems where it is

either necessary or desirable to express the output of the system not only in terms of the

present and past values of the input, but also in terms of the already available past output

values. The following problem illustrates this point.

Suppose that we wish to compute the cumulative average of a signal x (n) in the interval

0≤ k ≤ n, defined as

32

the computation of y(n) requires the storage of all the input samples x (k) for 0 ≤ k ≤ n. Since

n is increasing, our memory requirements grow linearly with time.

Our intuition suggests, however, that y(n) can be computed more efficiently

by utilizing the previous output value y(n - I) . Indeed, by a simple algebraic rearrangement , we

obtain

This is an example of a recursive system.

Difference Equations in DiscreteTime Systems

Here a treatment of linear difference equations with constant coefficients and it is confined to

first- and second-order difference equations and their solution. Higher-order difference

equations of this type and their solution is facilitated with the Ztransform

1-Recursive Method for Solving Difference Equations

 In mathematics, a recursion is an expression, such as a polynomial, each term of which is

determined by application of a formula to preceding terms. The solution of a difference

equation is often obtained by recursive methods. An example of a recursive method is

Newton’s method for solving non-linear equations. While recursive methods yield a desired

33

result, they do not provide a closed-form solution. If a closed-form solution is desired, we can

solve difference equations using the Method of Undetermined Coefficients, and this method is

similar to the classical method of solving linear differential equations with constant coefficients.

2-Method of Undetermined Coefficients

 A second-order difference equation has the form

Where a1d a2 are constants and the right side is some function of n. This differenc equation

expresses the output y(n) at time n as the linear combination of two previous outputs y(n-1)

and y(n-2). The right side of relation (A.1) is referred to as the forcing function The general

(closed-form) solution of relation (A.1) is the same as that used for solving second-order

differential equations. The three steps are as follows:

1. Obtain the natural response (complementary solution) in terms of two arbitrary real

constants k1 and k2 , where a1 and a2 are also real constants, that is,

2. Obtain the forced response (particular solution) in terms of an arbitrary real constant k3 , that

is,

where the right side of (A.3) is chosen with reference to Table A.1.

34

3. Add the natural response (complementary solution) yc(n) and the forced response (particular

solution) yp(n)to obtain the total solution, that is,

4. Solve for k1 and k2 in (A.4) using the given initial conditions. It is important to remember that

the constants k1 and k2 must be evaluated from the total solution of (A.4), not from the

complementary solution yc(n).

Example 1

 Find the total solution for the second−order difference equation

Solution:

1. We assume that the complementary solution yc(n) has the form

The homogeneous equation of (A.5) is

Substitution of

into (A.7) yields

Division of (A.8) by

35

Yields

The roots of (A.9) are

and by substitution into (A.6) we obtain

2. Since the forcing function is

, we assume that the particular solution is

and by substitution into (A.5),

Division of both sides by

Yields

Or k=1 and thus

36

The total solution is the addition of (A.11) and (A.13), that is,

IMPLEMENTATION OF DISCRETE-TIME SYSTEMS

In practice, system design and implementation are usuaHy treated jointly rather than

separately. Often, the system design is driven by the method of implementation and by

implementation constraints, such as cost. hardware limitations, size limitations, and power

requirements. At this point, we have not as yet developed the necessary analysis and design

tools to treat such complex issues. However, we have developed sufficient background to

consider some basic implementation methods for realizations of LTI systems described by linear

constant-coefficient difference equations.

Structures for the Realization of Linear Time-Invariant Systems

In this subsection we describe structures for the realization of systems described by linear

constant-coefficient difference equations.

37

As a beginning, let us consider the first-order system

which is realized as in Fig. a. This realization uses separate delays (memory) for both the input

and output signal samples and it is called a direct form I structure.

Note that this system can be viewed as two linear time-invariant systems in cascade.

The first is a nonrecursive, system described by the equation

whereas the second is a recursive system described by the equation

Thus if we interchange the order of the recursive and nonrecursive systems, we obtain an

alternative structure for the realization of the system described above. The resulting system is

shown in Fig. b. From this figyre we obtain

the two difference equations

which provide an alternative algorithm for computing the output of the system described by

the single difference equation given first. In other words. The last two difference equations are

equivalent to the single difference equation .

A close observation of Fig. a,b reveals that the two delay elements contain the same input w(n)

and hence the same output w(n-1). Consequently. these

38

two elements can be merged into one delay, as shown in Fig. c. In contrast

to the direct form I structure, this new realization requires only one delay for the auxiliary

quantity w(n), and hence it is more efficient in terms of memory requirements. It is called the

direct form 11 structure and it is used extensively in practical applications. These structures can

readily be generalized for the general linear time-invariant recursive system described by the

difference equation

Figure below illustrates the direct form I structure for this system. This structure requires M + N

delays and N + M + 1 multiplications. It can be viewed as the cascade of a nonrecursive system

and a recursive system

39

By reversing the order of these two systems as was previously done for the first-order system,

we obtain the direct form I1 structure shown in Fig. below for N > M. This structure is the

cascade of a recursive system

followed by a nonrecursive system

We observe that if N M, this structure requires a number of delays equal to the order N of

the system. However, if M > N, the required memory is specified by M. Figure above can easily

by modified to handle this case. Thus the direct form I1 structure requires M + N + 1

multiplications and max(M, N} delays. Because it requires the minimum number of delays for

the realization of the system described by given difference equation.

40

41

UNIT-II

DISCRETE FOURIER TRANSFORM AND EFFICIENT COMPUTATIONS

CONTINUOUS TIME FOURIER SERIES (CTFS)

x(t) is the Continuous Time Periodic signal with period is T sec , x(t) can be expressed as

weighted sum of complex exponential signals.

 x(t) = for all k values (1)

 = dt for all k

 where is fundamental frequency of signal f(t) (2)

Since frequency range of continuous time signals extended from x(t) consisting of

infinite number of frequency components , where spacing between successive harmonically

related frequencies is and where T is fundamental time period .

DISCRETE TIME FOURIER SERIES (DFS)

Similar way discrete time period signal x(n) with period N can be expressed as weighted sum of

complex exponential sequences. The range of frequencies for x(n) is unique over the interval

(0 , 2π) or (– π , + π). Consequently Fourier series representation of x(n) will contain N (finite)

frequency components and spacing between two successive frequency components is

radians. Therefore Fourier series representation of periodic sequence need only contain N of

these complex exponentials.

 x(n) = k = 0,1,……..N-1 (3)

 where are Fourier coefficients

It contains N harmonically related exponential functions.

Derivation for

Multiplying the equation 1 on both sides by

 x(n) = k = 0,1,……..N-1

Summing the products on both sides from n = 0 to n = N-1

42

 (4)

Interchange the order of summation

 (5)

 N = (6)

 (7)

 Represents amplitude and phase associate with frequency component

Fourier coefficients form a periodic sequence when extended outside of the range k = 0, 1, 2,

3…..N-1.Thus spectrum of the periodic signal also periodic sequence with period N. In

frequency domain to covering the fundamental range 0 for

in contrast, the frequency range corresponds to

 which creates incontinence when N is odd. Clearly if we use sampling frequency

 corresponds to the frequency range 0 ≤ F < .

Power Density Spectrum of Periodic Signal

Average power of discrete time signals with period N is defined as

=

43

Interchange the order of two summations

 =

 =

It shows that average power in the signal is the sum of the powers of the individual frequency

components. The sequence is the distribution of power as function of frequency and is

called as power density spectrum of the period signal.

Energy of the sequence x(n) over one period given by

PROPERTIES OF DFS

Linearity

Let us consider two periodic sequences , both with period equal to N

 With period equal to N

=

=

= a

 = a

44

DFS of linear combination of two sequences is equal to linear combination of DFS of individual

sequences and all sequences are periodic with period N.

Shifting of sequence

x(n) is the periodic sequence with period N

Fourier coefficients of periodic sequence are a periodic sequence so

1

Similar results applies shift in Fourier coefficients of sequence

Any shift greater than the period cannot distinguish in time domain from shorter shift.

Shift of x(n) defined on 0 to N-1 by amount of m to right denoted by x((n-m) modulo N).This

operation , wrapping part fall outside of region of interest around front of sequence or just

straight translation of period extension outside of 0 to N-1 of given sequence.

 If m=N

45

 Which is same as original sequence x (n)

 Periodic convolution

 be the two periodic sequences of period N and its DFS are

 respectively.

n-m = r + lN, because of periodic property

In above equation are periodic in m with period N and consequently

their product. Also summation carried out only over a one period. This type convolution

commonly referred periodic convolution.

46

Product in time domain

 be the two periodic sequences of period N and its DFS are

 respectively.

DFs of is =

Discrete Time Fourier Transform (DTFT)

Fourier Transform of an aperiodic Discrete Time sequence x(n) represented by function of

complex exponential sequence X () where 𝝎 is a frequency variable.

DTFT of x(n) is

DTFT maps time domain sequence in continuous function of sequence

RHS equation shows Fourier series representation of period function X () therefore

 Finite energy signal have continuous spectrum

Frequency domain sampling

47

Let be the non-periodic discrete time sequence and its Fourier transform is periodic

function of 𝝎 with period is radians.

Sample the periodic function X (𝝎) and spacing between two successive samples is δ𝝎 =

where N is number of samples in interval

K th sample at where k = 0,1,2,3 ,………..N-1

 = where k = 0,1,2, ……..N-1

Summation can be divided into infinite number of summations and each summation contain N

terms only

Change Index of inner summation from n to

=

Change order of summation

=

X(

48

 Where

Comparing

X(

This indicates reconstruction of from samples of spectrum X (𝝎) but it does not implies

that we can recover x(n) from the samples.

x(n) is obtained from if there is no aliasing , one period of periodic signal is x(n)

 x(n) = for

 = 0 other wise

So that x(n) is recovered from without ambiguity

If period of periodic sequence is less than length of x(n) , it is not possible recover x(n)

from due to time domain aliasing .

Interpolation formula

Spectrum of X(𝝎) in terms of samples X(where k = 0,1,2,--------------N-1

49

 Interpolation shifted by in frequency

Phase shift reflects the signal x(n) is a causal , finite duration sequence of length N

Interpolation formula in above expression gives samples values

weighted sum of the original spectral

samples.

The Discrete Fourier Transform (DFT)

With frequency domain sampling of aperiodic finite energy sequence, the equally spaced

samples for k = 0,1,2,3,………N-1 , do not uniquely represent original sequence x(n)

when x(n) has infinite duration instead , the frequency samples correspond to periodic

sequence of period N, where periodic extension of x(n)

50

When x(n) is finite duration of length L ≤ N , then is periodic repetition of x(n)

X(n) = from

.

By adding N-L zeros to original sequence, it becomes N point sequence this operation known as

zero padding and it does not provide additional information.

Fourier transform of finite length sequence x(n) given by

Sample the at equally spaced frequencies samples

Since x (n) = 0 for

 N ≥L this is called DFT of sequence x(n)

To recover the x(n) from frequency samples X(k)

DFT:

IDFT:

Relationship to the Z transform

51

ROC includes in unit circle, if sampled N equally spaced samples on the unit circle

 where k = 0,1,2 ………N-1

This is identical to fourier transform evaluated at the N equally spaced frequencies

where k =0,1,2, …….N-1

Relationship between

Fourier transform of finite duration sequence

Properties of DFT

Periodicity:

Above condition satisfies the periodicity

52

According to definition of DFT

Because

Linearity

Let us consider two N point sequences say

DFTs respectively

a a

Where a and b are any real or complex valued constants.

Note: If duration of is not equal say and respectively Then duration of

linear combination of two sequences is N = max (,).

53

Circular symmetry:

Let us Consider finite duration sequence of length

Periodic extension of with period N

Shifted version of periodic sequence is

Shifted version finite duration sequence = one period of periodic sequence

 in the range of .

 Does not corresponds to linear shift of original sequence fact both sequences are

confined to the interval of .it observed that shifting of periodic sequence and

examining the interval as a sample leaves the interval at one end it enters the

other end. Thus circular shift of an N point sequence is equivalent to a linear shift of its periodic

extension and vice versa. Circular shift of can be represented by index modulo N.

Counter clock wise direction has been selected as positive and clock wise direction selected as

negative.

 Circularly even symmetric N point sequence about the point zero on the circle.

Circularly odd symmetric N point sequence about the point zero on the circle

Time reversal: an N point sequence is attained by reversing its samples about the point zero on

the circle. Time reversal is equivalent to plotting the in clock wise direction on the circle.

For periodic sequences

Even :

54

Odd:

If periodic sequence is complex valued

Conjugate even:

Conjugate odd:

Decomposition of

 =

Symmetry properties

Let us assume that N-point sequence x(n) and its DFT X(k) are both complex valued then the

sequences are expressed as follows

Comparing real and imaginary terms on both sides

55

Real valued sequences

If x(n) is real valued sequence

If x (n) is real and even

x(n) is real and even then and

56

if x(n) is real and odd

Pure imaginary sequences

 odd

 even

Multiplication of two DFTs and circular convolution

Let us consider two finite duration sequences of length N say

are respectively, if we multiply

two DFTs result is a DFT say of a sequence N.

57

Multiplication of two DFT sequences results DFT of circular convolution of two time domain

sequences.

Note: if length of two sequences are not equal in such case N = Max of two sequences and

apply zero padding to smaller sequence.

Time reversal property

Let us consider N point sequence x (n) and it time reversal

Index N-n changed to m

From definition of DFT

 for 0 ≤ k ≤ N-1

 Hence reversing N point sequence in time is equivalent to reversing the DFT values.

Circular shift operation:

X(k) is N point DFT of sequence x(n) of duration N

58

But

 if m = N+n-l

If n-l = m then

 = =

Circular shifting in time domain results, multiplication of DFT of sequence x(n) with

similarly this is dual to Circular shifting in frequency domain results, multiplication of

sequence x(n) with .

Circular correlation

X(k) and Y(k) are N point DFTs of x(n) and y(n) respectively

DFT of correlation of two sequences x(n) and y(n) is given by (l)

(l) = similar to circular convolution

Multiplication of two sequences

59

Parseval’s theorem

 If l=0

(0) =

Special case of parseaval’s x(n) = y(n)

Energy of finite duration sequences x(n) in terms of frequency components

Linear convolution using DFTs

Let us consider finite duration sequence x(n) 0f length L which excites the Discrete time system

having impulse response h(n) of duration M without loss generality, let

y(n) is response of x(n) and it convolution of sum of x(n) and h(n)

60

Duration of y(n) is

Frequency domain representation of y(n) is Y() = X(()

If y(n) is to be uniquely represented in frequency domain by samples of its spectrum Y() at set

of discrete frequencies number of distinct samples must equal or exceed N = L+M-1. Therefore

DFT size N L+M-1.is required to represent Y(n) in frequency domain.

Y() at = X(() at

X(k) and H(k) are N point DFTs of corresponding sequences x(n) and h(n) respectively of same

duration of Y(k) . if lengths of x(n) and h(n) have duration less than N , pad zeros these

sequences with zero s increase their length to N this increase in size does not alter their spectra

X() and H() . However by sampling their spectra at N equally spaced samples , increase

number of samples that represent these sequences in the frequency domain beyond the

minimum number.

Y(k) = X(k) H(k) thus

N point circular convolution of x (n) and h(n) must be equal to linear convolution of x(n) and

h(n). Thus zero padding with the DFT can be used to perform linear filtering.

Efficient computation of DFT

To compute the DFT sequence X(k) of N complex valued numbers given another sequence x(n)

of duration N according to formula

For each value of k direct computation of involves N complex multiplications (4N real

multiplications) and N-1 complex additions (4N-2 real additions)

61

To evaluate all values of k from 0 to N-1 direct computation of involves complex

multiplications(4) and N(N-1) complex additions(N(4N-2)) real

additions.

Direct computation of N point DFT is basically inefficient because it does not exploit the

symmetry and periodic properties of the phase factor

Direct computation of DFT

If x(n) is complex valued sequence , N point DFT sequence may be expressed as

]

Direct computation of DFT requires

1. 2 evaluations of trigonometric functions

2. 4 real multiplications

3. 4N(N-1) real additions

4. A number of indexing and addressing

Operations 2 and 3 results in the DFT values . The 3 and 4 operations are necessary to

fetch the data x(n) and the phase factors and to store the results,

Periodicity Property

Symmetry Property

62

 = .

 = -

Radix – 2 FFT algorithms

By adopting the divide – conquer approach for efficient computation of N point DFT is based on the

decomposition of an N point DFT into successively smaller DFTs. this basic approach leads to a family

of computationally efficient algorithm known as collectively as FFT algorithms . If N can be factorized as

product of two integers, that is assumption is that N is not a prime number is not restrictive since we

can pad any sequence with zeros to ensure a factorization of form N= L M

 N point sequence decompose into L number of M point sequences

If N factorized as N =

 = r

 this indicate size of DFT is r where number r is called radix r FFT

algorithm

If r = 2 radix 2 FFT algorithms

1. Decimation in time (DIT) FFT algorithms.

2. Decimation in frequency (DIF) FFT algorithms.

DIT - FFT algorithms

To decompose N point DFT into successively smaller and smaller number of DFT computations.

In this process we exploit both periodicity and symmetry property of complex exponential.

Algorithm in which the decomposition is based on decomposition the sequence x (n) into

successively smaller subsequences are called decimation in time algorithm.

N is integer power of 2, N =

In this approach decomposing the N point DFT sequence into two N/2 DFT point sequences,

then decomposing N/2 point sequences into two N/4 point DFT sequences and continuing until

two point DFT sequence.

63

Let x(n) is decomposed into two sequences length N/2 one composed of even index value of

x(n) and other composed of odd indexed value of x(n).

Input sequence: x (0), x(1) , …………x(N/2 – 1) …………x(N-1)

Even index sequence: x (0) , x(2),x(4) …………………… x(N-2)

Odd index sequence: x (1), x (3), x (5), …………………. x (N-1)

N point DFT given by

64

G (k) and H (k) are periodic in k with period N/2

G (k) = G (k + N/2): H (k) = H(k + N/2)

N point DFT X (k) is computed by combining of two N/2 point DFTs G (k) and H(k)

Computation involves for N= 8

Number of computations is required to compute two N/2 point DFTs which intern requires

2 complex multiplications and approximately 2 complex additions. Then two N/2

point are combined, requiring N complex multiplications corresponding to multiplying the

second term by and then N complex additions corresponding to adding that product to

the first term.

For all values of k requires N + 2 complex multiplications and additions. It easy to verify

that for N > 2, N + 2 will be less than

 N + 2 = 8 + 16 = 24;

65

Let us now consider computing each of N/2 point DFTs by breaking each sum into two N/4

point DFTs which would be combined to yield the N/2 point DFTs.

B (k)

N/2 point DFT G (k) is computed by combining of two N/4 point DFTs A (k) and B(k)

Similarly

66

N/2 point DFT H (k) is computed by combining of two N/4 point DFTs C (k) and D (k)

When N/2 point DFTs are decomposed into N/4 point DFTs then factor of

N/2 + 2 so over all computation require 2N + 4 complex

multiplications and complex additions. Further decomposing N/4 point DFT in to N/8 point DFTs

and continue until left with two point DFT. In DIT FFT algorithm, input data is shuffled and

output data normal order. If N = this can be at most times. So that after carrying

out this decomposition as many times as possible number of complex multiplications and

additions is equal to N .

67

In place computation

The signal flow describes an algorithm by separating the original sequence into the even

numbered and odd numbered points and then continuing to create smaller and smaller

subsequences in the same the way. In addition to describing an efficient procedure for

computing the DFT also suggests useful way of storing the original data and storing results of

computation in the intermediate arrays.

According to signal flow graph, each stage of computation takes a set of N complex numbers

and transforms them into another set of N complex numbers. This process repeated

times resulting computation of DFT. when we are going to implement computations we need to

use two arrays of storage registers , one for array being computed and one for the data being

used in the computation. One set of storage registers would contain the input data and second

set of storage registers would contain the computed results for the first stage. While validity of

fig in not tied to order in which input data are stored, let us order set of complex numbers in

the same order that they appear in fig

Input array and as output array for (m+1)st stage computation

The basic computation in signal flow graph referred to as butterfly computation

 +

 +

 -

68

Using above equations number complex multiplications reduced by factor of 2

Number of butterflies required per stage is N/2

Total number of complex multiplications

P, q and r vary from stage to stage in manner such that complex numbers in locations p,q of

mth array are required to compute the elements p and q of the (m+1)st array. Thus only one

complex array of N storage registers is physically necessary to implement the complete

computation if and are stored in same registers as and

respectively this kind of computation is commonly referred as in place computation, since it has

advantage that as a new array is computed the results can be stored in the same storage

locations as original array. signal flow graph represent an in place computation is tied to the

fact that associate nodes in the flow graph that are on the same horizontal line with the same

storage location and that computation between two arrays consists of butterfly computation in

which the input nodes and output nodes are horizontal adjacent. Input data stored in no

sequential order in which the input data are stored is in bit reversal order. If () is binary

representation of index of sequence x(n) then the sequence value x() is stored in the

array position ()

69

 Bit reversal order necessary for in place computation ordering of the sequence x (n) in such as

manner that the DFT computation is decomposed into successively smaller DFT computations.

It is a process to decompose input sequence x(n) divided into even numbered samples and

odd numbered samples, with even numbered samples occurring in the top half and odd

number samples occurring bottom half . Such separation of data carried out by examining the

least significant but in the index. If LSB is zero, the sequence value corresponds to an even

numbered sample and therefore will appear in the top half and if LSB is one , the sequence

value corresponds to odd numbered sequence and will appear in the bottom half the array.

Next even and odd subsequences are each sorted in their even and odd parts and this can be

done by examining the second least significant bit in the data index. in second LSB is 0 the sub

sequence value correspond s to even numbered sample and therefore will appear top half , if

second LSB is one the sub sequence value corresponds to odd numbered sample and will

appear bottom half,. This process repeated until N subsequences of length 1 are obtained. This

sorting even and odd indexed subsequences is shown in fig .

Decimation in Frequency (DIF) FFT

Output sequence X (k) into smaller and smaller number of sequences in the same manner as

DIT, these classes of FFTs based on the procedure referred to as decimation in frequency (DIF).

To derive the DIF FFT for N is always power of 2, we can first divide the input sequence into the

first half and the last half of the points.

Input sequence: x (0), x(1) , …………x(N/2 – 1), x(N/2) …………x(N-1)

First half sequence: x (0) , x(1),x(2) …………………… x()

Second half sequence: x (), x (), …………………. x (N-1)

70

K is even number say k = 2r

K is odd number say k = 2r+1

Assume and

G (k) = and

71

N/2 point DFT can be computed by computing the even numbered and odd numbered output

points for those DFTs separately .similar way, N/4 point DFT can be computed by computing the

even numbered and odd numbered output points for those DFTs separately. This process will

continue until two point DFT.

G (k) =

 =

72

K is even

K is odd that is k = 2l+1

 and

A(k) = G(2l) B(k) = G(2l+1)

Similarly

 And

(k) = G(2l) D(k) = G(2l+1)

73

DIF FFT algorithm requires complex multiplications

and input sequence is normal order and output sequence if shuffled order.

Butterfly computations

74

Computation of inverse DFT

Comparing to DFT computational procedure remains same expect that twiddle factors are

negative power of and output must be scaled by 1/N therefore, an inverse Fast Fourier

Transform (IFFT) flow diagram can be obtained from FFT flow diagram by replacing the x(n) s by

X(k) , scaling input data by 1/N a per stage factor of ½ when N is power of 2 and changing the

exponents of negative values .

UNIT-III

STRUCTURE OF IIR FILTERS

Analog Filters:

Analog and digital filters

In signal processing, the function of a filter is to remove unwanted parts of the signal, such as

random noise, or to extract useful parts of the signal, such as the components lying within a

certain frequency range. The following block diagram illustrates the basic idea.

There are two main kinds of filter, analog and digital. They are quite different in their physical

makeup and in how they work. An analog filter uses analog electronic circuits made up from

components such as resistors, capacitors and opamps to produce the required filtering effect.

Such filter circuits are widely used in such applications as noise reduction, video signal

enhancement, graphic equalizers in hi-fi systems, and many other areas. There are well-

established standard techniques for designing an analog filter circuit for a given requirement.

75

At all stages, the signal being filtered is an electrical voltage or current which is the direct

analogue of the physical quantity (e.g. a sound or video signal or transducer output) involved.

A digital filter uses a digital processor to perform numerical calculations on sampled values of

the signal. The processor may be a general-purpose computer such as a PC, or a specialized DSP

(Digital Signal Processor) chip.

The analog input signal must first be sampled and digitized using an ADC (analog to digital

converter). The resulting binary numbers, representing successive sampled values of the input

signal, are transferred to the processor, which carries out numerical calculations on them.

These calculations typically involve multiplying the input values by constants and adding the

products together. If necessary, the results of these calculations, which now represent sampled

values of the filtered signal, are output through a DAC (digital to analog converter) to convert

the signal back to analog form.

Note that in a digital filter, the signal is represented by a sequence of numbers, rather than a

voltage or current.

The following diagram shows the basic setup of such a system.

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Advantages of using digital filters

The following list gives some of the main advantages of digital over analog filters.

100

1. A digital filter is programmable, i.e. its operation is determined by a program stored in the

processor's memory. This means the digital filter can easily be changed without affecting the

circuitry (hardware). An analog filter can only be changed by redesigning the filter circuit.

2. Digital filters are easily designed, tested and implemented on a general-purpose computer or

workstation.

3. The characteristics of analog filter circuits (particularly those containing active components)

are subject to drift and are dependent on temperature. Digital filters do not suffer from these

problems, and so are extremely stable with respect both to time and temperature.

4. Unlike their analog counterparts, digital filters can handle low frequency signals accurately.

As the speed of DSP technology continues to increase, digital filters are being applied to high

frequency signals in the RF (radio frequency) domain, which in the past was the exclusive

preserve of analog technology.

5. Digital filters are very much more versatile in their ability to process signals in a variety of

ways; this includes the ability of some types of digital filter to adapt to changes in the

characteristics of the signal.

6. Fast DSP processors can handle complex combinations of filters in parallel or cascade (series),

making the hardware requirements relatively simple and compact in comparison with the

equivalent analog circuitry.

Operation of digital filters

In this section, we will develop the basic theory of the operation of digital filters. This is

essential to an understanding of how digital filters are designed and used.

Suppose the "raw" signal which is to be digitally filtered is in the form of a voltage waveform

described by the function

V = x(t)

where t is time.

This signal is sampled at time intervals h (the sampling interval). The sampled value at time t =

ih is

 xi = x(ih)

Thus the digital values transferred from the ADC to the processor can be represented by the

sequence

101

x0, x1 , x2 , x3 , ...

corresponding to the values of the signal waveform at

t = 0, h, 2h, 3h, ...

and t = 0 is the instant at which sampling begins.

At time t = nh (where n is some positive integer), the values available to the processor, stored in

memory, are

 x0, x1 , x2 , x3 , ... xn

Note that the sampled values xn+1, xn+2 etc. are not available, as they haven't happened yet!

The digital output from the processor to the DAC consists of the sequence of values

y0 , y1, y2 , y3 , ... yn

In general, the value of yn is calculated from the values x0, x1 , x2 , x3 , .. xn. The way in which the

y's are calculated from the x's determines the filtering action of the digital filter.

102

103

104

105

 Recursive and non-recursive filters

For all the examples of digital filters discussed so far, the current output (yn) is calculated solely

from the current and previous input values (xn, xn-1, xn-2, ...). This type of filter is said to be

non-recursive.

A recursive filter is one which in addition to input values also uses previous output values.

These, like the previous input values, are stored in the processor's memory.

The word recursive literally means "running back", and refers to the fact that previously-

calculated output values go back into the calculation of the latest output. The expression for a

recursive filter therefore contains

not only terms involving the input values (xn, xn-1, xn-2, ...) but also terms in yn-1, yn-2, ...

From this explanation, it might seem as though recursive filters require more calculations to be

performed, since there are previous output terms in the filter expression as well as input terms.

In fact, the reverse is usually the case: to achieve a given frequency response characteristic

using a recursive filter generally requires a much lower order filter (and therefore fewer terms

to be evaluated by the processor) than the equivalent non-recursive filter.

Note

Some people prefer an alternative terminology in which a non-recursive filter is known as an

FIR (or Finite Impulse Response) filter, and a recursive filter as an IIR (or Infinite Impulse

Response) filter.

These terms refer to the differing "impulse responses" of the two types of filter. The impulse

response of a digital filter is the output sequence from the filter when a unit impulse is applied

at its input. (A unit impulse is a very simple input sequence consisting of a single value of 1 at

time t = 0, followed by zeros at all subsequent sampling instants).

An FIR filter is one whose impulse response is of finite duration. An IIR filter is one whose

impulse response theoretically continues for ever because the recursive (previous output)

terms feed back energy into the filter input and keep it going. The term IIR is not very accurate

106

because the actual impulse responses of nearly all IIR filters reduce virtually to zero in a finite

time. Nevertheless, these two terms are widely used.

Example of a recursive filter

A simple example of a recursive digital filter is given by

In other words, this filter determines the current output (yn) by adding the current input (xn) to

the previous output (yn-1):

Note that y-1 (like x-1) is undefined, and is usually taken to be zero.

Let us consider the effect of this filter in more detail. If in each of the above expressions we

substitute for yn-1 the value given by the previous expression, we get the following:

Thus we can see that yn, the output at t = nh, is equal to the sum of the current input xn and all

the previous inputs. This filter therefore sums or integrates the input values, and so has a

similar effect to an analog integrator circuit.

This example demonstrates an important and useful feature of recursive filters: the economy

with which the

output values are calculated, as compared with the equivalent non-recursive filter. In this

example, each output

is determined simply by adding two numbers together. For instance, to calculate the output at

time t = 10h, the

recursive filter uses the expression

107

To achieve the same effect with a non-recursive filter (i.e. without using previous output values

stored in

memory) would entail using the expression

This would necessitate many more addition operations as well as the storage of many more

values in memory.

Order of a recursive (IIR) digital filter

The order of a digital filter was defined earlier as the number of previous inputs which have to

be stored in order to generate a given output. This definition is appropriate for non-recursive

(FIR) filters, which use only

the current and previous inputs to compute the current output. In the case of recursive filters,

the definition can be extended as follows:

The order of a recursive filter is the largest number of previous input or output values

required to compute the current output.

This definition can be regarded as being quite general: it applies both to FIR and IIR filters.

For example, the recursive filter discussed above, given by the expression

 yn = xn + y n-1

is classed as being of first order, because it uses one previous output value (yn-1), even though

no previous inputs are required.

In practice, recursive filters usually require the same number of previous inputs and outputs.

Thus, a first-order recursive filter generally requires one previous input (xn-1) and one previous

output (yn-1), while a second-order recursive filter makes use of two previous inputs (xn-1 and xn-

2) and two previous outputs (yn-1 and yn-2); and so on, for higher orders.

Note that a recursive (IIR) filter must, by definition, be of at least first order; a zero-order

recursive filter is an impossibility.

108

Coefficients of recursive (IIR) digital filters

From the above discussion, we can see that a recursive filter is basically like a non-recursive

filter, with the addition of extra terms involving previous inputs (yn-1, yn-2 etc.).

A first-order recursive filter can be written in the general form

Note the minus sign in front of the "recursive" term b1yn-1, and the factor (1/b0) applied to all

the coefficients. The reason for expressing the filter in this way is that it allows us to rewrite the

expression in the following symmetrical form:

In the case of a second-order filter, the general form is

The alternative "symmetrical" form of this expression is

Note the convention that the coefficients of the inputs (the x's) are denoted by a's, while the

coefficients of the outputs (the y's) are denoted by b's.

How to Design IIR Filter

The typical procedure to design IIR filter is:

1. Specify filter specification.
2. Specify low pass analog filter prototype, and the available prototypes supported in Origin

include Butterworth, Chebyshev Type I, Chebyshev Type II, and Elliptic.

Method
Squared Magnitude Response

Function
Analog Filter Transfer Function

109

Butter

worth

Cheby

shev

Type I

Cheby

shev

Type

II

Elliptic

In the table above, is the frequency, N is the filter order, is the maximum oscillation in

the passband frequency response, is the Chebyshev polynomial, is the Jacobian

elliptic function, g is the scalar gain, s is the plane of Laplace transform, or is the zero,

and or is the pole.

3. Frequency transform for analog filter

Transform the low pass filter into a high pass, band pass, or band stop filter with desired

cutoff frequency. In Origin, the state-space form will be used in the frequency transform

calculation. Assume the original transfer function of the low pass filter is , and the

transfer function after transform is .

o Low pass to low pass, which transforms an analog low pass filter with cutoff

frequency of 1 rad/s into a low pass filter with any specified cutoff frequency.

o Low pass to high pass

o Low pass to band pass

o Low pass to band stop

110

where is the center frequency, is the

bandwidth, and are the lower and upper band edges respectively.

4. Convert analog filter into a digital filter.

To convert analog filter into a digital filter, Origin uses the bilinear transformation, which is

defined by expression:

111

112

IIR discrete time filter design by bilinear transformation

Introduction: Many design techniques for IIR discrete time filters have adopted ideas and

terminology developed for analogue filters, and are implemented by transforming the transfer

function of an analogue ‘prototype’ filter into the system function of a discrete time filter with

similar characteristics. We therefore begin this section with a reminder about analogue filters.

 Analogue filters: Classical theory for analogue filters operating below about 100 MHz is

generally based on “lumped parameter” resistors, capacitors, inductors and operational

amplifiers (with feedback) which obey LTI equations and differential equations: (i(t)=Cdv(t)/dt,

v(t)=Ldi(t)/dt, v(t)=i(t)R, v 0 (t) = A v i (t). Analysis of such LTI circuits gives a relationship

between input x(t) and output y(t) in the form of a differential equation:

b y t b
dy t

dt
b

d y t

dt
a x t a

dx t

dt
a

d x t

dt
0 1 2

2

2 0 1 2

2

2
()

() ()
()

() ()

whose transfer function is of the form:

 a0 + a1s + a2s2+ ... + aNsN

 H a (s) =

 b0 + b1s + b2s2 + ,,, + bMsM

This is a rational function of s of order MAX(N,M). Replacing s by j gives the frequency

response

H a (j), where denotes frequency in radians/second. For values of s with non-negative real

parts,

113

H a (s) is the Laplace Transform of the analogue filter’s impulse response h a (t). H(s) may be

expressed in terms of its poles and zeros as:

 (s - z 1) (s - z 2) ... (s - z N)

 H a (s) = K

 (s - p 1) (s - p 2) ... (s - p M)

There is a wide variety of techniques for deriving H a (s) to have a frequency response which

approximates a specified function. For example, we have previously derived a general

expression for the system function of an n th order analogue Butterworth low-pass filter. Such

analogue filters have an important property in common with IIR type discrete time filters: their

impulse responses are also infinite.

“Impulse response invariant” technique:

The philosophy of this technique is to transform an analogue prototype filter into an IIR discrete

time filter whose impulse response ,h*n+- is a sampled version of the analogue filter’s impulse

response, multiplied by T. The impulse response invariant technique will be covered later.

Bilinear transformation technique:

This is the most common method for transforming the system function Ha (s) of an analogue

filter to the system function H(z) of an IIR discrete time filter. It is not the only possible

transformation, but a very useful and reliable one.

Definition: Given analogue transfer function H a (s), replace s by

2 1

1T

z

z

to obtain H(z). For convenience we can take T=1.

Example : If H a (s) = 1 / (1 + RC s) then

114

 z + 1 1 + z - 1

 H(z) = = K

 (1 + 2RC)z + (1 - 2RC) 1 + b 1 z - 1

where K = 1 / (1+2RC) and b 1 = (1 - 2RC) / (1 + 2RC)

Properties:

(i) This transformation produces a function H(z) such that given any complex number z,
 H(z) = Ha(s) where s = 2 (z - 1) / (z + 1)

(ii) The order of H(z) is equal to the order of Ha(s)

(iii) If Ha (s) is causal and stable, then so is H(z).

(iv) H(exp(j)) = H a (j) where = 2 tan(/2)

Proof of (iii): Let z p be a pole of H(z).

 Then s p must be a pole of H a (s) where s p = 2 (z p - 1)/(z p + 1).

 Let s p = a + jb. Then a < 0 as H a (s) is causal & stable.

 Now (z p + 1)(a + jb) = 2 (z p - 1) , therefore z p = (a + 2 + jb) / (-a + 2 - jb) and

 (a + 2)2 + b2

 z p
2 = < 1 if a < 0

 (2 - a)2 + b2

Hence if all poles of H a (s) have real parts less than zero, then all poles of H(z) must lie inside

the unit circle.

Proof of (iv): When z = exp(j), then

 exp(j)-1 2(e j / 2 - e - j / 2)

115

 s = 2 = = 2 j tan(/2)

 exp(j)+1 e j / 2 + e -j / 2

Fig 3.1: Frequency warping

-3.14

-2.355

-1.57

-0.785

0

0.785

1.57

2.355

3.14

-10 -8 -6 -4 -2 0 2 4 6 8 10

Radians/second

Ra
di

an
s/

sa
m

pl
e

Frequency warping: By property (iv) the discrete time filter's frequency response H(exp(j)) at

relative frequency will be equal to the analogue frequency response H a (j) with =

2 tan(/2). The graph of against in fig 3.1, shows how in the range - to is mapped to

 in the range - to . The mapping is reasonably linear for in the range -2 to 2 (giving in

the range -/2 to /2), but as increases beyond this range, a given increase in produces

smaller and smaller increases in . Comparing the analogue gain response shown in fig 3.2(a)

with the discrete time one in fig. 3.2(b) produced by the transformation, the latter becomes

more and more compressed as . This "frequency warping" effect must be taken into

account when determining a suitable Ha(s) prior to the bilinear transformation.

|Ha(j)| |H(exp(j)|

Fig 3.2(a): Analogue gain response Fig 3.2(b): Effect of bilinear transformation

Design of an IIR low-pass filter by the bilinear transformation method:

116

Given the required cut-off frequency c in radians/sample:-

(i) Find H a (s) for an analogue low-pass filter with cut-off c = 2 tan(c /2) radians/sec.

 (c is said to be the "pre-warped" cut-off frequency).

(ii) Replace s by 2(z - 1)/(z + 1) to obtain H(z).

(iii) Rearrange the expression for H(z) and realise by biquadratic sections.

Example 3.2 : Design a second order Butterworth-type IIR lowpass filter with c = / 4.

Solution: Pre-warped frequency c = 2 tan(/ 8) = 0.828

For an analogue Butterworth low-pass filter with cut-off frequency 1 radian/second:

 H a (s) = 1 / (1 + 2 s + s 2)

Replace s by s / 0.828, then replace s by 2(z - 1)/(z + 1) to obtain:

 z 2 + 2z + 1 1 + 2 z -1 + z - 2

 H(z) = = 0.097

 10.3 z 2 - 9.7 z + 3.4 1 - 0.94 z - 1 + 0.33 z - 2

which may be realised by the signal flow graph in fig 3.3. Note the extra multiplier scaling the

input by 0.097 .

x[n] y[n]

Fig. 3.3

0.097

20.94

-0.33

Higher order IIR digital filters: Recursive filters of order greater than two are highly sensitive to

quantisation error and overflow. It is normal, therefore, to design higher order IIR filters as

cascades of bi-quadratic sections.

117

Example 3.3: A Butterworth-type IIR low-pass digital filter is needed with 3dB cut-off at one

sixteenth of the sampling frequency f s , and a stop-band attenuation of at least 24 dB for all

frequencies above f s / 8. (a) What order is needed? (b) Design it.

Solution:

(a) The relative cut-off frequency is /8.

 The pre-warped cut-off frequency: c = 2 tan((/8)/2) 0.40 radians/second.

 For an n t h order Butterworth low-pass filter with cutoff c , the gain is:

 1

 H a (j) =

 [1 + (/0.4) 2 n]

 The gain of the IIR filter must be less than -24dB at the relative frequency = /4.

This means that the gain of the analogue prototype filter must be less than -24 dB at the pre-

warped frequency corresponding to = /4, i.e. at = 2 tan(/8) 0.83

Therefore, 20 log 1 0 (1/[1+(.83/.4) 2 n]) < -24

 i.e., [1 + (2.1) 2 n] > 10 1.2

Hence n must be such that 1 + (2.1) 2 n > 10 2 . 4 = 252 .

We find that n = 4 is the smallest possible.

(b) Formula for 4th order Butterworth 1 radian/sec low-pass system function:

 1 1

 Ha(s) =

 1 + 0.77 s + s 2 1 + 1.85 s + s2

Scale the analogue cut-off frequency to c by replacing s by s / 0.4.

Then replace s by 2 (z - 1)/(z +1) to obtain:

118

 1 + 2 z - 1 + z - 2 1 + 2 z -1 + z - 2

H(z) = 0.033 0.028

 1 - 1.6 z - 1 + .74 z - 2 1 -1.365 z - 1 + 0.48 z - 2

H(z) may be realised in the form of cascaded bi-quadratic sections as shown in fig 3.4.

x[n]
0.033

21.6

-0.74

0.028
y[n]

21.36

-0.48

Fig. 3.4: Fourth order IIR Butterworth filter with cut-off fs/16

Fig. 3.5(a) Analogue 4th order Butterworth gain response

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.5 1 1.5 2 2.5 3 3.5 4

Radians/second

G
ai

n

119

Fig. 3.5(b): Gain response of 4th order I IR filter

-0.1

0.1

0.3

0.5

0.7

0.9

1.1

0 0.785 1.57 2.355 3.14

Radians/sample

G
ai

n

Fig. 3.5(a) shows the gain response for the 4th order Butterworth low-pass filter whose transfer

function was used here as a prototype. Fig 3.5(b) shows the gain response of the derived digital

filter which, like the analogue filter, is 1 at zero frequency and 0.707 at the cut-off frequency.

Note however that the analogue gain approaches 0 as whereas the gain of the digital

filter becomes exactly zero at = . The shape of the Butterworth gain response is "warped"

by the bilinear transformation. However, the 3dB point occurs exactly at c for the digital

filter, and the cut-off rate becomes sharper and sharper as because of the compression

as .

IIR discrete time high-pass band-pass and band-stop filter design:

The bilinear transformation may be applied to analogue transfer functions obtained by means

of the high-pass, band-pass and band-stop frequency transformations considered earlier. As in

the low-pass case, cut-off frequencies must be pre-warped to find appropriate analogue cut-off

frequencies. For band-pass and band-stop filters, there are two cut-off frequencies to be pre-

warped.

Example : Design a 4th order band-pass filter with L = / 4 , u = / 2.

Solution: Prewarp both cutoff frequencies:

 L = 2 tan ((/4)/2) = 2 tan(/8) = 0.828 ,

 u = 2 tan((/2)/2)) = 2 tan(/4) = 2

Now derive H a (s) for a 4th order analogue band-pass filter, with pass-band L to u ,

starting from a 2nd order Butterworth 1 radian/sec prototype:

 H a (s) = 1 / (s 2 + 2 s + 1).

120

This requires s to be replaced by (s 2 + 1.66) / 1.17 s and produces an analogue system

function whose denominator is a 4th order polynomial in s.

 1.37 s 2

 s 4 + 1.65 s 3 + 4.69 s 2 + 2.75 s + 2.76

It is now necessary to express the denominator as the product of two second order polynomials

in s. This may be done by running a “root finding” computer program.

Such a program is “ROOTS87.EXE” (available on application). Running this program produces

the following output:-

ENTER ORDER: 4

R(0): 2.76 R(1): 2.75 R(2): 4.69 R(3): 1.65 R(4): 1

ROOTS ARE:-

RE: -0.5423 IM: 1.7104 RE: -0.2827 IM: -0.8817

RE: -0.5423 IM: -1.7104 RE: -0.2827 IM: 0.8817

Therefore,

 1.37 s 2

H a (s) =

 (s - [-0.54+1.17j])(s - [-0.54-1.17j])(s - [-0.28+0.88j])(s - [-0.28-0.88j])

Combining the first two factors and the last two factors of the denominator, which have

complex conjugate roots, we obtain Ha (s) factorised into second order sections:-

 1.37 s 2

 H a (s) =

 (s 2 + 1.085 s + 3.22)(s 2 + 0.565 s + 0.857)

121

Replacing s by 2(z - 1)/(z + 1) gives the transfer function:-

 5.48 (z - 1) 2 (z + 1) 2

H(z) =

 (9.4 z 2 - 1.57 z + 5) (6 z 2 - 6.3 z + 3.7)

Rearranging into two bi-quadratic sections (we can do this in different ways) we obtain:

 1 - 2 z -1 + z - 2 1 + 2 z - 1 + z - 2

 H(z) = 0.098

 1 - 0.167 z - 1 + 0.535 z - 2 1 - 1.05 z -1 + 0.62 z - 2

whose gain response is shown in fig. 3.6.

The design of analogue band-pass and band-stop system functions Ha(s) as required for

realisation as analogue or digital filters can be greatly simplified if the filters can be considered

"wide-band", i.e. where U >> 2L radians/second. In this case , it is reasonable to express

Ha(s) = HLP(s) HHP(s) where for a band-pass filter HLP(s) is the analogue system function of a

low-pass filter cutting off at =U and HHP(s) is for a high-pass filter cutting off at =L . HLP(s)

122

and HHP(s) can now be designed separately and also transformed separately to functions of z

via the bilinear (or other) transformation. Thus we obtain the transfer function H(z) = HLP(z)

HHP(z) which may be realised as a serial cascade of two digital filters realising HLP(z) and HHP(z) .

Of course each of HLP(z) and HHP(z) may in itself be a cascade of several second or first order

sections. This approach does not work very well for "narrow-band" filters where the analogue

frequencies (i.e. the pre-warped frequencies if we are using the bilinear transformation) do not

satisfy U >> 2L . In this case we have to use the frequency band transformation method as

outlined above (which generally involves factorising fourth order polynomials by computer).

123

Digital Filter Design - Background

In this section, some background information is provided to clarify why the particular type of filter is

chosen.

IIR Filters

One type of digital filter is the Infinite Impulse Response (IIR) filter, which is not as well supported and is

generally used in the lower sample rates (i.e., < 200kHz). The IIR uses feedback in order to compute

outputs, and it is known as a recursive filter.

Advantages of the IIR Filter:

1.Better magnitude response

2.Fewer coefficients

3.Less storage is required for storing variables

4.A lower delay

5. It is closer to analog models

A number of different classical IIR filters are available.

Butterworth

The Butterworth filter provides the best approximation to the ideal lowpass filter response at analog

frequencies. Passband and stopband response is maximally flat.

Bessel

Analog Bessel lowpass filters have maximally flat group delay at zero frequency and retain nearly constant

group delay across the entire passband. Filtered signals therefore maintain their waveshapes in the

passband frequency range. Frequency mapped and digital Bessel filters, however, do not have this

maximally flat property. Bessel filters generally require a higher filter order than other filters for

satisfactory stopband attenuation.

IIR Filter Expressions

IIR Filters are recursive: the output is fed back to make a contribution. The expression for the IIR is shown

below; note that a delayed version of the y(n) output plays a part in the output:

124

a(i) and b(i) are the coefficients of the IIR filter. Another way to express a IIR Filter is as a transfer function

with numerator coefficients “bi” and denominator coefficients “ai”:

3.3 IIR Filter Structures

Direct Form II

The Direct Form I architecture description noted that the forward and reverse FIR filter stages can be

swapped, which creates a centre consisting of two columns of delay elements. From this, one column can

be formed; hence, this type of structure is known as “canonical”, meaning it requires the minimum

amount of storage.

Figure 1: Direct Form II representation of a biquad

Biquad

The Biquad filter structure is that of a Direct Form-II, but it includes a second-order numerator and

denominator coefficient (i.e., it is simply two poles and two zeros). This structure is used in FPGA/DSP

implementations, because it is not terribly sensitive to quantization effects.

Butterworth Biquad:

The butterworth biquad expression is:

The coefficients in the nominator have the charm that simplify the calculations such that no multiplier is

a0=1

a1=2

a2=1

xn yn

-b1

-b2

Z-1

+ +

Z-1

wn

wn-1

wn-2

K

1 + b1*z-1 + b2*z-2

1 + 2*z-1 + z-2

H(z) =

125

needed and the entire nominator can be calculated using shift and accumulators. Multiplications are

expensive operations in FPGA/DSP implementations.

Fixed Point Implementations

Several issues must be examined in detail to ensure satisfactory fixed-point operation of the IIR filter:

1) Coefficient/Internal Quantization

 2) Wraparound/Saturation

 3) Scaling

Coefficient/Internal Quantization In order to examine the effect of quantization, it is useful to look at the

pole/zero plot. This shows how the zeros (depths in the frequency response plot) and poles (peaks in the

frequency response plot) are positioned. In fact, an issue with IIR stability relates to the denominator

coefficients and their positions, as poles, on the pole/zero plot:

The poles for the floating-point version of the plot are shown on the left; they are within the unit circle

(i.e., the values of the coefficients are less than 1). Once the coefficients are quantized, these poles move,

which affects the frequency response. If they move onto the unit circle (i.e., the poles equal “1”), you

potentially have an oscillator; If the poles become greater than 1, the filter becomes unstable.

Wraparound/Saturation

A fixed-point implementation has a certain bit width, and hence has a range. Calculations may cause the

filter to exceed its maximum/minimum ranges. For example, let’s consider a 2’s complement value of ‘

01111000’(+120) + ‘00001001’(+9) = ‘10000001’ =(-127). The large positive number becomes a large

negative number; this is known as “wraparound”, and it can cause large errors.

Scaling

There are two methods of dealing with overflows:

126

1. If scaling is used, values can never overflow. DSP processors tend to use different kinds of scaling in

order to fit within their fixed structure.

2. Use saturation logic. In our example, the results would be ‘01111111’(+127).

3.4 The Artifacts of IIR filters

The main artifacts of IIR filtering are the quantization noise and the limit cycle oscillations.

The truncation or rounding of the IIR accumulator at the output of filter creates quantization noise. This

noise is fed into the filter recursive path. The noise is multiplied by the IIR recursive path transfer

function. The impact of this noise source is very significant in the low cutoff frequency filters of the

second order, since the recursive path gain is proportional to the second power of Fc/Fs ratio. The filter

stages with high Q can also suffer from this effect because the gain is proportional to Q.

The best way to reduce the quantization noise is improve the arithmetic accuracy. For a multi-stage filter,

the noise contributions of the stages can add.

The other way to reduce the quantization noise is the noise shaping. Noise shaping is feeding the

accumulator truncation error back into the filter. That allows for better SNR at low frequencies for the

cost of an increased noise at the high frequencies. The noise shaping with higher order error feedback can

significantly improve the SNR, however the added complexity and limited performance makes it less

attractive, then the increased precision arithmetic.

The limit cycles are the low amplitude oscillations which may occur in IIR filters. The reason for those

oscillations is a finite precision of the arithmetic operations. The limit cycle existence depends on the

particular filter coefficients and the input data. The filters with high Q, low Fc/Fs ratio and the rounding of

the accumulator at the output rather then with truncation have a higher probability of a limit cycle

behavior.

Usually the amplitude of limit cycle oscillations does not exceed several LSBs. The methods to avoid the

limit cycles are the following:

- Improve the precision of filter arithmetic

- Implement a center clipping nonlinear function

- Dithering (adding a random noise with the amplitude of several LSBs)

- Gating: blocking the filter if the energy of the signal is below a certain limit

127

Implementation

Block Overview

The filter is implemented as part of the fsfb_calc block in order to share FPGA resources, particularly

multipliers. Review fsfb_calc.doc first.

Block Functionality

Block Data Flow

Block Location and Block Interface within System

First Stage Feedback Filter Queue

This 64 x 32b RAM block stores the filtered output calculation results. The width of this queue is the same

as the wishbone data. It is important to note that the filter results are not double buffered, since delay is

acceptable in reading filter results. When a wishbone read request comes in, the read starts at the

beginning of the next frame, in order to be aligned with the frame boundaries.

Figure 1: First Stage Feedback Filter Queue

First-Stage Feedback Filter Registers

The fsfb_filter_regs block instantiates 2 RAM blocks to store the previous 2 samples of wn, where wn is

the interim filter calculation results. For details of the filter calculations, refer to the fsfb_calculations.doc

where the implementation of the second-order Butterworth low-pass filter that is implemented.

qa

data

wren

rdaddress_a

wraddress

Filter

QUEUE

64 x 32b

wishbone

(wbs_frame_data)

 wishbone

(wbs_frame_data)

128

The calculations are:

wtemp
 = b1* wn-1

 + b2* wn-2

wn =
 xn – wtemp/2m

yn = wn + 2 * wn-1
 + wn-2

where x is the input to the filter and y is the output of the filter, b1 and b2 are the filter

coefficients, m is the number of bits for the filter coefficients.

Note that the filter is reset through initialize_window_i signal. Each RAM block has 64 words and

the word length is determined in the pack file by FLTR_DLY_WIDTH.

wren

RAM (single-port)

addr

data q

wren

RAM (single-port)

addr

data q

Initialize_window_i

wn_i

addr_i

wren_i

wn1

wn2

Figure 2: Filter Registers Storage

3.5 IIR-type digital filters

3.5.1. Introduction:

A general causal digital filter has the difference equation:

 N M

 y[n] = a i x[n-i] - b k y[n-k]

 i=0 k=1

which is of order max{ N,M }, and is recursive if any of the b j coefficients are non-zero. A

second order recursive digital filter therefore has the difference equation:

129

 y[n] = a 0 x[n] + a 1 x[n-1] + a 2 x[n-2] - b 1 y[n-1] - b 2 y[n-2]

A digital filter with a recursive linear difference equation can have an infinite impulse-response.

Remember that the frequency-response of a digital filter with impulse-response {h[n]} is:

 H(e j) = h[n]e - j n

 n=-

Design of a notch filter by MATLAB: Modified in 2009-10

Assume we wish to design a 4th order 'notch' digital filter to eliminate an unwanted

sinusoid at 800 Hz without severely affecting rest of signal. The sampling rate is FS = 10 kHz.

One simple way is to use the MATLAB function ‘butter’ as follows:

FS=10000;

FL = 800 – 25 ; FU = 800+25;

 *a b+ = butter(2, *FL FU+/(FS/2),’stop’);

 a = [0.98 -3.43 4.96 -3.43 0.98]

 b= [1 -3.47 4.96 -3.39 0.96]

 freqz(a, b);

 freqz(a, b, 512, FS); % Better graph

 axis([0 FS/2 -50 5]); % Scales axes

The frequency-responses (gain and phase) produced by the final two MATLAB statements are

as follows:

130

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-400

-300

-200

-100

0

Frequency (Hz)

P
ha

se
 (d

eg
re

es
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-40

-20

0

Frequency (Hz)

M
ag

ni
tu

de
 (d

B
)

Since the Butterworth band-stop filter will have -3dB gain at the two cut-off frequencies

FL = 800-25 and FU=800+25, the notch has ‘-3 dB frequency bandwidth’: 25 + 25 = 50 Hz.

Now consider how to implement the 4th order digital filter. The MATLAB function gave us:

 a = [0.98 -3.43 4.96 -3.43 0.98]

 b= [1 -3.47 4.96 -3.39 0.96]

The transfer (System) Function is, therefore:

A ‘Direct Form II’ implementation of the 4th order notch filter would have the signal-flow graph

below:

4321

4321

96.039.396.447.31

98.043.396.443.398.0

zzzz

zzzz
zH

131

This implementation works fine in MATLAB. But ‘direct form’ IIR implementations of order

greater than two are rarely used. Sensitivity to round-off error in coefficient values will be high.

Also the range of ‘intermediate’ signals in the z-1 boxes will be high.

High word-length floating point arithmetic hides this problem, but in fixed point arithmetic,

great difficulty occurs. Instead we use ‘cascaded bi-quad sections’

Given a 4th order transfer function H(z). Instead of the direct form realization below:

we prefer to arrange two bi-quad sections, with a single leading multiplier G, as follows:

H(z) x[n] y[n]

z-1

z-1

z-1

z-1

+

+

+

+

+

+

+

+

0.98

3.47

-4.96

3.39

-0.96

0.0.98

x[n] y[n]

-3.43

4.96

-3.43

132

To convert the 4th order transfer function H(z) to this new form is definitely a job for MATLAB.

Do it as follows after getting a & b for the 4th order transfer function, H(z), as before:

 [a b] = butter(2, *FL FU+/(FS/2),’stop’);

 [SOS G] = tf2sos(a,b)

• MATLAB responds with:
 SOS = 1 -1.753 1 1 -1.722 0.9776

 1 -1.753 1 1 -1.744 0.9785

 G = 0.978

In MATLAB, ‘SOS’ stands for ‘second order section’ (i.e. bi-quad) and the function ‘tf2SOS’

converts the coefficients in arrays ‘a’ and ‘b’ to the new set of coefficients stored in array ‘SOS’

and the constant G. The array SOS has two rows: one row for the first bi-quad section and one

row for the second bi-quad section. In each row, the first three terms specify the non-recursive

part and the second three terms specify the recursive part. Therefore H(z) may now be realized

as follows:

x[n] 0.97

8

-1.753

1.72

2

-0.978

y[n]

-

1.753
1.74

4

-

0.979
 Fourth order IIR notch filter realised as two biquad (SOS) sections

H1(z) H2(z) x[n] y[n]
G

133

This is now a practical and realizable IIR digital ‘notch’ filter, though we sometimes implement

the single multiplier G =0.918 by two multipliers, one for each bi-quad section. More about this

later.

Calculation of gain-response of notch filter:

How good is a notch filter? We can start to answer this question by specifying the filter's 3dB

bandwidth i.e. the difference between the frequencies where the gain crosses 0.707 (-3dB).

We should also ask what is the gain at the notch frequency (800 Hz in previous example); i.e.

what is the ‘depth’ of the notch. If it is not deep enough either (i) increase the -3 dB bandwidth

or (ii) increase the order. Do both if necessary. To ‘sharpen’ the notch, decrease the -3dB

bandwidth, but this will make the notch less deep; so it may be necessary to increase the order

to maintain a deep enough notch. This is an ‘ad-hoc’ approach – we can surely develop some

theory later. It modifies the more formal approach, based on poles and zeroes, adopted last

year.

Example: A digital filter with a sampling rate of 200 Hz is required to eliminate an

unwanted 50 Hz sinusoidal component of an input signal without affecting the magnitudes of

other components too severely. Design a 4th order "notch" filter for this purpose whose 3dB

bandwidth is not greater than 3.2 Hz. (MATLAB calls this 2nd order.) How deep is the notch?

Solution:

 FS=200; FL=50-1.6; FU=50+1.6;

1

5kHz

f

Gain

0.7

0
800

800 + 800-

0 dB

-3 dB

134

 *a b+=butter(2,*FL,FU+/(FS/2), ‘stop’);

 [SOS G] = tf2sos(a,b)

IIR digital filter design by bilinear transformation

Many design techniques for IIR discrete time filters have adopted ideas and terminology

developed for analogue filters, and are implemented by transforming the system function,

Ha(s), of an analogue ‘prototype’ filter into the system function H(z) of a digital filter with

similar, but not identical, characteristics.

For analogue filters, there is a wide variety of techniques for deriving H a(s) to have a specified

type of gain-response. For example, it is possible to deriving Ha(s) for an n th order analogue

Butterworth low-pass filter, with gain response:

It is then possible to transform Ha(s) into H(z) for an equivalent digital filter. There are many

ways of doing this, the most famous being the ‘bilinear transformation’. It is not the only

possible transformation, but a very useful and reliable one.

The bilinear transformation involves replacing s by (2/T) (z-1)/(z+1)], but fortunately, MATLAB

takes care of all the detail and we can design a Butterworth low pass filter simply by executing

the MATLAB statement:

 [a b] = butter(N, fc)

N is the required order and fc is the required ‘3 dB’ cut-off frequency normalised (as usual with

MATLAB) to fS/2. Analogue Butterworth filters have a gain which is zero in the pass-band and

falls to -3 dB at the cut-off frequency. These two properties are preserved by the bilinear

transformation, though the traditional Butterworth shape is changed. The shape change is

caused by a process referred to as ‘frequency warping’. Although the gain-response of the

digital filter is consequently rather different from that of the analogue Butterworth gain

response it is derived from, the term ‘Butterworth filter’ is still applied to the digital filter. The

order of H(z) is equal to the order of Ha(s)

Frequency warping:

It may be shown that the new gain-response G() = Ga() where = 2 tan(/2). The graph of

 against below, shows how in the range - to is mapped to in the range - to . The

n

C

aG
2)/(1

1
)(

135

mapping is reasonably linear for in the range -2 to 2 (giving in the range -/2 to /2), but as

 increases beyond this range, a given increase in produces smaller and smaller increases in

. The effect of frequency warping is well illustrated by considering the analogue gain-response

shown in fig 5.17(a). If this were transformed to the digital filter gain response shown in fig

5.17(b), the latter would become more and more compressed as .

|Ha(j)| |H(exp(j)|

Fig 6.2(a): Analogue gain response Fig 6.2(b): Effect of bilinear transformation

‘Prototype’ analogue transfer function: Although the shape changes, we would like G() at its

cut off C to the same as Ga() at its cut-off frequency. If Ga() is Butterworth, it is -3dB at its

cut-off frequency. So we would like G() to be -3 dB at its cut-off C.

Achieved if the analogue prototype is designed to have its cut-off frequency at C = 2

tan(C/2).

Fig : Frequency Warping

Fig.(a): Analogue Gain Response Fig. (b): Effect of Bilinear Transformation

136

C is then called the ‘pre-warped’ cut-off frequency.

Designing the analogue prototype with cut-off frequency 2 tan(C/2) guarantees that the

digital filter will have its cut-off at C.

Design of a 2nd order IIR low-pass digital filter by the bilinear transform method (‘by hand’)

Let the required cut-off frequency C = /4 radians/sample. We need a prototype transfer

function Ha(s) for a 2nd order analogue Butterworth low-pass filter with 3 dB cut-off at C =

2tan(C/2) = 2 tan(/8) radians/second. Therefore, C = 2 tan(/8) = 0.828. It is well known

by analogue filter designers that the transfer function for a 2nd order Butterworth low-pass

filter with cut-off frequency =1 radian/second is:

When the cut-off frequency is = C rather than = 1, the second order expression for H(s)

becomes:

Replacing s by j and taking the modulus of this expression gives G() = 1/[1+(/C)2n] with

n=2. This is the 2nd order Butterworth low-pass gain-response approximation. Deriving the

above expression for Ha(s), and corresponding expressions for higher orders, is not part of our

syllabus. It will not be necessary since MATLAB will take care of it.

Setting C = 0.828 in this formula, then replacing s by 2(z-1)/(z+1) gives us H(z) for the required

IIR digital filter. You can check this ‘by hand’, but fortunately MATLAB does all this for us.

Example :

Using MATLAB, design a second order Butterworth-type IIR low-pass filter with c = / 4.

Solution:

 [a b] = butter(2, 0.25)

a = [0.098 0.196 0.098]

b = [1 -0.94 0.33]

The required expression for H(z) is

2)2(1

1
)(

ss
sHa

2)/()/(21

1
)(

CC

a
ss

sH

137

 0.098 + 0.196 z-1 + 0.098 z-2

 H(z) =

 1 - 0.94 z-1 + 0.33z-2

21

21

33.094.01

21
098.0

zz

zz
zH

which may be realised by the signal flow graph in fig 5.18. Note the saving of two multipliers by

using a multipler to scale the input by 0.098.

x[n] y[n]

Fig. 6.3

0.097

20.94

-0.33

Higher order IIR digital filters:

Recursive filters of order greater than two are highly sensitive to quantisation error and

overflow. It is normal, therefore, to design higher order IIR filters as cascades of bi-quadratic

sections. MATLAB does not do this directly as demonstrated by Example 5.8.

Example : Design a 4th order Butterworth-type IIR low-pass digital filter is needed with 3dB cut-

off at one sixteenth of the sampling frequency fS.

Solution: Relative cut-off frequency is /8. The MATLAB command below produces the arrays

a and b with the numerator and denominator coefficients for the 4th order system function

H(z).

 [a b] = butter(4, 0.125)

Fig. 5.18

138

Output produced by MATLAB is:

 a = 0.00093 0.0037 0.0056 0.0037 0.00093

 b = 1 -2.9768 3.4223 -1.7861 0.3556

The system function is therefore as follows:

This corresponds to the ‘4th order ‘direct form’ signal flow graph shown below.

 Figure : A 4th order ‘direct form II’ realisation (not commonly used)

Higher order IIR digital filters are generally not implemented like this. Instead, they are

implemented as cascaded biquad or second order sections (SOS). Fortunately MATLAB can

transform the ‘direct form’ coefficients to second order section (SOS) coefficients using a ‘Signal

Processing Toolbox’ function ‘tf2sos’ as follows:

 [a b] = butter(4, 0.125)

 [sos G] = tf2sos(a,b)

4321

4321

3556.0786.1422.3977.21

00093.00037.0056.0037.000093.0

zzzz

zzzz
zH

+

+

+

+

+

0.0009

39 2.977

-3.422

1.79

-0.356

0.0009

z-1

z-1

z-1

z-1

139

Executing these statements gives the following response:

 [a b] = butter(4, 0.125)

 a = [0.0009 0.0037 0.0056 0.0037 0.0009]

 b = [1 -2.9768 3.4223 -1.7861 0.3556]

 [sos G] = tf2sos(a,b)

 sos = [1 2 1 1 -1.365 0.478

 1 2 1 1 -1.612 0.745]

 G = 0.00093

This produces a 2-dimensional array ‘sos’ containing two sets of biquad coefficients and a ‘gain’

constant G. A mathematically correct system function based on this data is as follows:

21

21

21

21

745.0612.11

21

478.0365.11

21
00093.0

zz

zz

zz

zz
zH

In practice, especially in fixed point arithmetic, the effect of G is often distributed among the

two sections. Noting that 0.033 x 0.028 0.00093, and noting also that the two sections can

be in either order, an alternative expression for H(z) is as follows:

21

21

21

21

478.0365.11

21
028.0

745.0612.11

21
033.0

zz

zz

zz

zz
zH

This alternative expression for H(z) may be realised in the form of cascaded bi-quadratic

sections as shown in fig 5.20.

140

x[n]
0.033

21.6

-0.74

0.028
y[n]

21.36

-0.48

Fig. 6.4: Fourth order IIR Butterworth filter with cut-off fs/16

Fig. (a) shows the 4th order Butterworth low-pass gain response:

Fig. : Fourth order IIR Butterworth LP filter with cut-off fs/16

Fig. (a) Analogue 4th order Butterworth LP gain response

0.4

1/2

0.707=1/2 at ‘3dB point’

141

)1(

1
)(

8

G

 (with cut-off frequency normalised to 1) as used by MATLAB as a prototype. Fig 5.21(b) shows

the gain-response of the derived digital filter which, like the analogue filter, is 1 at zero

frequency and 0.707 (-3dB) at the cut-off frequency (/8 0.39 radians/sample). Note however

that the analogue gain approaches 0 as whereas the gain of the digital filter becomes

exactly zero at = . The shape of the Butterworth gain response is ‘warped’ by the bilinear

transformation. However, the 3dB point occurs exactly at c for the digital filter, and the cut-

off rate becomes sharper and sharper as because of the compression as .

IIR digital high-pass band-pass and band-stop filter design:

The bilinear transformation may be applied to analogue system functions which are high-pass,

band-pass or band-stop to obtain digital filter equivalents. For example a ‘high-pass’ digital

filter may be designed as illustrated below:

Example : Design a 4th order high-pass IIR filter with cut-off frequency fs/16.

Solution: Execute the following MATLAB commands and proceed as for low-pass

 *a b+ = butter(4,0.125,’high’);

 freqz(a,b);

 [sos G] = tf2sos(a,b)

Wide-band band-pass and band-stop filters (fU >> 2fL) may be designed by cascading low-pass

and high-pass sections, but 'narrow band' band-pass/stop filters (fU not >> 2fL) will not be very

accurate if this cascading approach is used. The MATLAB band-pass approach always works, i.e.

for narrowband and wideband. A possible source of confusion is that specifying an order ‘2’

produces what many people (including me, Barry) would call a 4th order IIR digital filter. The

design process carried out by ‘butter’ involves the design of a low-pass prototype and then

applying a low-pass to band-pass transformation which doubles the complexity. The order

specified is the order of the prototype. So if we specify 2nd order for band-pass we get a 4th

order system function which can be re-expressed (using tf2sos) as TWO biquad sections.

Example : Design a 2nd (4th)order bandpass filter with L = /4 , u = /2.

Solution: Execute the following MATLAB statements:

 [a b] = butter(2,[0.25 0.5])

 freqz(a,b);

142

 [sos G] = tf2sos(a,b)

MATLAB output:is:

a = 0.098 0 -0.195 0 0.098

b = 1 -1.219 1.333 -0.667 0.33

sos = 1 2 1 1 -0.1665 0.5348

 1 -2 1 1 -1.0524 0.6232

G = 0.098

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-200

-100

0

100

200

Normalized Frequency (rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-40

-30

-20

-10

Normalized Frequency (rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

Example : Design a 4th (8th)order bandpass filter with L = /4 , u = /2.

Solution: Execute the following MATLAB statements

 [a b] = butter(4,[0.25 0.5])

 freqz(a,b); axis([0 1 -40 0]);

 [sos G] = tf2sos(a,b)

143

to obtain the MATLAB output:

a = 0.01 0 -0.041 0 0.061 0 -0.041 0 0.01

b = 1 -2.472 4.309 -4.886 4.477 -2.914 1.519 -0.5 0.12

sos =1 2 1 1 -0.351 0.428

 1 -2. 1 1 -0.832 0.49

 1 2. 1 1 -0.046 0.724

 1 -2 1 1 -1.244 0.793

G = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-800

-600

-400

-200

0

Normalized Frequency (rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

Normalized Frequency (rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

4th (8th) order IIR Band-pass (Fs/8 - Fs/4)

Example : Design a 4th (8th)order band-stop filter with L = /4 , u = /2.

Solution: Execute the following MATLAB statements

 *a b+ = butter(4,*0.25 0.5+, ‘stop’)

 freqz(a,b); axis([0 1 -40 0]);

144

 [sos G] = tf2sos(a,b)

to obtain the MATLAB output:

a = 0.347 -1.149 2.815 -4.237 5.1 -4.237 2.815 -1.149 0.347

b = 1 -2.472 4.309 -4.886 4.477 -2.914 1.519 -0.5 0.12

sos = 1 -0.828 1 1 -0.351 0.428

 1 -0.828 1 1 -0.832 0.49

 1 -0.828 1 1 -0.046 0.724

 1 -0.828 1 1 -1.244 0.793

G = 0.347

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-800

-600

-400

-200

0

Normalized Frequency (rad/sample)

P
h
a
s
e
 (

d
e
g
re

e
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

Normalized Frequency (rad/sample)

M
a
g
n
it
u
d
e
 (

d
B

)

4th (8th) order IIR Band-stop (Fs/8 - Fs/4)

 Comparison of IIR and FIR digital filters:

IIR type digital filters have the advantage of being economical in their use of delays, multipliers

and adders. They have the disadvantage of being sensitive to coefficient round-off

inaccuracies and the effects of overflow in fixed point arithmetic. These effects can lead to

instability or serious distortion. Also, an IIR filter cannot be exactly linear phase.

145

FIR filters may be realised by non-recursive structures which are simpler and more convenient

for programming especially on devices specifically designed for digital signal processing. These

structures are always stable, and because there is no recursion, round-off and overflow errors

are easily controlled. A FIR filter can be exactly linear phase. The main disadvantage of FIR

filters is that large orders can be required to perform fairly simple filtering tasks.

Lowpass IIR Filter
Try This Example

Design a lowpass IIR filter with order 8, passband frequency 35 kHz, and passband ripple 0.2 dB. Specify a sample rate of 200 kHz.
Visualize the magnitude response of the filter. Use it to filter a 1000-sample random signal.

lpFilt = designfilt('lowpassiir','FilterOrder',8, ...
 'PassbandFrequency',35e3,'PassbandRipple',0.2, ...
 'SampleRate',200e3);
fvtool(lpFilt)

dataIn = randn(1000,1);
dataOut = filter(lpFilt,dataIn);
Output the filter coefficients, expressed as second-order sections.

sos = lpFilt.Coefficients
sos = 4×6

 0.2666 0.5333 0.2666 1.0000 -0.8346 0.9073
 0.1943 0.3886 0.1943 1.0000 -0.9586 0.7403
 0.1012 0.2023 0.1012 1.0000 -1.1912 0.5983
 0.0318 0.0636 0.0318 1.0000 -1.3810 0.5090

146

Highpass IIR Filter
Try This Example

Design a highpass IIR filter with order 8, passband frequency 75 kHz, and passband ripple 0.2 dB. Specify a sample rate of 200
kHz. Visualize the filter's magnitude response. Apply the filter to a 1000-sample vector of random data.

hpFilt = designfilt('highpassiir','FilterOrder',8, ...
 'PassbandFrequency',75e3,'PassbandRipple',0.2, ...
 'SampleRate',200e3);
fvtool(hpFilt)

dataIn = randn(1000,1);
dataOut = filter(hpFilt,dataIn);

Bandpass IIR Filter

Try This Example:Design a 20th-order bandpass IIR filter with lower 3-dB frequency 500 Hz and

higher 3-dB frequency 560 Hz. The sample rate is 1500 Hz. Visualize the frequency response of

the filter. Use it to filter a 1000-sample random signal.

bpFilt = designfilt('bandpassiir','FilterOrder',20, ...
 'HalfPowerFrequency1',500,'HalfPowerFrequency2',560, ...
 'SampleRate',1500);
fvtool(bpFilt)

147

dataIn = randn(1000,1);
dataOut = filter(bpFilt,dataIn);

Bandstop IIR Filter

Design a 20th-order bandstop IIR filter with lower 3-dB frequency 500 Hz and higher 3-dB
frequency 560 Hz. The sample rate is 1500 Hz. Visualize the magnitude response of the filter.
Use it to filter 1000 samples of random data.

bsFilt = designfilt('bandstopiir','FilterOrder',20, ...
 'HalfPowerFrequency1',500,'HalfPowerFrequency2',560, ...
 'SampleRate',1500);
fvtool(bsFilt)

148

149

UNIT-IV

DESIGN OF FIR FILTERS

Introduction

Filters are used in a wide variety of applications. Most of the time, the final aim of using a
filter is to achieve a better frequency selectivity on the spectrum of the input signal. At this
point of time, it is required to reviewing the frequency response of a practical filter. The
below Figure (A) shows an example of a practical low pass filter.

 In this example, frequency components in the pass band, from DC to ωP will pass through
the filter almost with no attenuation. The components in the stop band, above ωS will
experience significant attenuation. Note that the frequency response of a practical filter
cannot be absolutely flat in the pass band or in the stop band. As shown in Figure (A), some
ripples will be unavoidable and the transition band, ωp<ω<ωs cannot be infinitely sharp in
practice.

Digital filter design involves four steps:

1) Determining specifications

First, we need to determine what specifications are required. This step completely depends

on the application. This information is necessary to find the filter with minimum order for this

application.

2) Finding a transfer function

With design specifications known, we need to find a transfer function which will provide the
required filtering. The rational transfer function of a digital filter is as given below.

150

3) Choosing a realization structure

Now that H(z) is known, we should choose the realization structure. In other words, there are
many systems which can give the obtained transfer function and we must choose the
appropriate one. For example, any of the direct form I, II, cascade, parallel, transposed, or
lattice forms can be used to realize a particular transfer function. The main difference
between the aforementioned realization structures is their sensitivity to using a finite length
of bits. Note that in the final digital system, we will use a finite length of bits to represent a
signal or a filter coefficient. Some realizations, such as direct forms, are very sensitive to
quantization of the coefficients. However, cascade and parallel structures show smaller
sensitivity and are preferred.

4) Implementing the filter

After deciding on what realization structure to use, we should implement the filter. You have

a couple of options for this step: a software implementation (such as a MATLAB or C code) or

a hardware implementation (such as a DSP, a microcontroller, or an ASIC).

 it is necessary to take into account all fundamental characteristics of a signal to be

filtered as these are very important when deciding which filter to use. In most cases, it is only

one characteristic that really matters and it is whether it is necessary that filter has linear

phase characteristic or not. it is necessary that a filter has linear phase characteristic to

prevent loosing important information.When a signal to be filtered is analysed in this way, it

is easy to decide which type of digital filter is best to use. Accordingly, if the phase

characteristic is of the essence, FIR filters should be used as they have linear phase

characteristic. Such filters are of higher order and more complex, therefore. The FIR Filters

can be easily designed to have perfectly linear Phase. These filters can be realized recursively

and Non-recursively. There are greater flexibility to control the Shape of their Magnitude

response. Errors due to round off noise are less severe in FIR Filters, mainly because Feed

back is not used

An FIR digital filter of order M may be implemented by programming the signal-flow-graph
shown below. Its difference equation is:

y[n] = a0x[n] + a1x[n-1] + a2x[n-2] + ... + aMx[n-M]

z-

1

z-

1

z-1 z-1
x[n

]

y[n]

a0 a1

.

.

.
aM-

1

a

M

151

 Fig. 4.1

Its impulse-response is {..., 0, ..., a0, a1, a2,..., aM, 0, ...} and its frequency-response is the
DTFT of the impulse-response, i.e.

Now consider the problem of choosing the multiplier coefficients. a0, a1,..., aM such that H(

ej) is close to some desired or target frequency-response H(ej) say. The inverse DTFT of

H’(ej) gives the required impulse-response :

deeHnh njj)(

2

1
][

The methodology is to use the inverse DTFT to get an impulse-response {h[n]} & then realise
some approximation to it Note that the DTFT formula is an integral, it has complex numbers

and the range of integration is from - to , so it involves negative frequencies.

What about the negative frequencies?

Examine the DTFT formula for H(ej).

If h[n] real then h[n]ej is complex-conjugate of h[n]e-j. Adding up terms gives H(e-j) as

complex conj of H(ej).

 G() = G(-) since G() = |H(ej)| & G(-) = H(e-j)|

Because of the range of integration (- to) of the DTFT formula, it is common to plot graphs

of G() and () over the frequency range - to rather than 0 to . As G() = G(-) for a

real filter the gain-response will always be symmetric about =0.

Features of FIR Filter

 1. FIR filter always provides linear phase response. This specifies that the signals in the pass
band will suffer no dispersion Hence when the user wants no phase distortion, then FIR filters

M

n

nj

n

n

njj eaenheH
0

][)(

n

njj enheH][)(

n

njj enheH][)(

152

are preferable over IIR. Phase distortion always degrade the system performance. In various
applications like speech processing, data transmission over long distance FIR filters are more
preferable due to this characteristic.

2. FIR filters are most stable as compared with IIR filters due to its non feedback nature.

3. Quantization Noise can be made negligible in FIR filters. Due to this sharp cutoff FIR filters
can be easily designed.

4. Disadvantage of FIR filters is that they need higher ordered for similar magnitude response
of IIR filters.

Difference equation of FIR filter of length M is given as

 (1)

And the coefficient bk are related to unit sample response as H(n) = bn for 0 ≤ n ≤ M-1,

 = 0 otherwise

We can expand this equation as Y(n)= b0 x(n) + b1 x(n-1) + …….. + bM-1 x(n-M+1)
(2)

 System is stable only if system produces bounded output for every bounded input. This is
stability definition for any system. Here h(n)={b0, b1, b2, } of the FIR filter are stable. Thus
y(n) is bounded if input x(n) is bounded. This means FIR system produces bounded output for
every bounded input. Hence FIR systems are always stable.

The main features of FIR filter are,

• They are inherently stable

• Filters with linear phase characteristics can be designed

• Simple implementation – both recursive and non-recursive structures possible

 • Free of limit cycle oscillations when implemented on a finite-word length digital system

Disadvantages:

• Sharp cutoff at the cost of higher order

 • Higher order leading to more delay, more memory and higher cost of implementation

153

154

155

Symmetric and Anti-symmetric FIR filters

Unit sample response of FIR filters is symmetric if it satisfies following condition.

h(n)= h(M-1-n), for n=0,1,2…………….M-1 2.

Unit sample response of FIR filters is Anti-symmetric if it satisfies following condition

 h(n)= -h(M-1-n) for n=0,1,2.

FIR filters giving out Linear Phase characteristics: Symmetry in filter impulse response will

ensure linear phase An FIR filter of length M with i/p x(n) & o/p y(n) is described by the

difference_equation

156

Alternatively. it can be expressed in convolution form

i.e b k = h(k), k=0,1,….M-1

Choice of Symmetric and anti-symmetric unit sample response

When we have a choice between different symmetric properties, the particular one is picked up
based on application for which the filter is used. The following points give an insight to this
issue. • If h(n)=-h(M-1-n) and M is odd, Hr(w) implies that Hr(0)=0 & Hr(π)=0, consequently not
suited for low pass and high pass filter. This condition is suited in Band Pass filter design.
 • Similarly if M is even Hr(0)=0 hence not used for low pass filter
• Symmetry condition h(n)=h(M-1-n) yields a linear-phase FIR filter with non zero response at w
= 0 if desired. Looking at these points, anti-symmetric properties are not generally preferred

Poles & Zeros of linear phase sequences:

The poles of any finite-length sequence must lie at z=0. The zeros of linear phase sequence
must occur in conjugate reciprocal pairs. Real zeros at z=1 or z=-1 need not be paired (they
form their own reciprocals), but all other real zeros must be paired with their reciprocals.
Complex zeros on the unit circle must be paired with their conjugate (that form their
reciprocals) and complex zeros anywhere else must occur in conjugate reciprocal quadruples.
To identify the type of sequence from its pole-zero plot, all we need to do is check for the
presence of zeros at z= and count their number. A type-2 seq must have an odd number of
zeros at z=-1, a type-3 seq must have an odd number of zeros at z=-1 and z=1, and type-4 seq
must have an odd number of zeros at z=1. The no. of other zeros if present (at z=1 for type=1
and type-2 or z=-1 for type-1 or type-4) must be even.

Zeros of Linear Phase FIR Filters:

Consider the filter system function

157

This shows that if z = z1 is a zero then z=z1-1 is also a zero
The different possibilities: 1. If z1 = 1 then z1 = z1-1 =1 is also a zero implying it is one zero
 2. If the zero is real and |z|<1 then we have pair of zeros
3. If zero is complex and |z|=1then and we again have pair of complex zeros.
4. If zero is complex and |z|≠1 then and we have two pairs of complex zeros

FIR Filter Design Methods

The various method used for FIR Filer design are as follows

1. Fourier Series method

2. Windowing Method

3. DFT method

4. Frequency sampling Method. (IFT Method)

Design of an FIR low-pass digital filter

Assume we require a low-pass filter whose gain-response approximates the ideal 'brick-wall' gain-

response in Figure 4.2.

G()

/3 /3 0 -

1

158

If we take the phase-response () to be zero for all , the required frequency-response is:-

<</3 : 0

3/ : 1
)()()(jj eGeH

And by the inverse DTFT,

0n :

0=n :

)3/sin()/1(

3/1
 1

2

1
][

3/

3/

 nn
denh nj

 = (1/3)sinc(n/3) for all n.

 where

0:1

0:
)sin(

)(sinc

x

x
x

x

x

A graph of sinc(x) against x is shown below:

Fig. 4.2

x

1 2 -1 -2 -3 3

1
sinc(x)

-4

Main ‘lobe’

‘Zero-crossings’ at x =1, 2, 3, etc.

‘Ripples’

159

 Fig

The ideal impulse-response {h[n]} with each sample h[n] = (1/3) sinc(n/3) is therefore as

follows:

In Fourier series method, limits of summation index is -∞ to ∞. But filter must have finite

terms.

Hence limit of summation index change to -Q to Q where Q is some finite integer. But this

type of truncation may result in poor convergence of the series. Abrupt truncation of infinite

series is equivalent

to multiplying infinite series with rectangular sequence. i.e at the point of discontinuity some

oscillation may be observed in resultant series.

2. Consider the example of LPF having desired frequency response Hd (ω) as shown

in figure. The oscillations or ringing takes place near band-edge of the filter.

3. This oscillation or ringing is generated because of side lobes in the frequency response

W(ω) of the window function. This oscillatory behavior is called "Gibbs Phenomenon".

Reading from the graph, or evaluating the formula, we get:

{h[n]} = { ..., -0.055, -0.07, 0, 0.14, 0.28, 0.33, 0.28, 0.14, 0, -0.07, -0.055, ... }

A digital filter with this impulse-response would have exactly the ideal frequency-response we

applied to the inverse-DTFT i.e. a ‘brick-wall’ low-pass gain response & phase = 0 for all . But

Fig. 4.3b

Ideal impulse response for

low-pass filter cut-off

n

3 6 -3 -6 -9 9

1/3
h[n]

-12

160

{h[n]} has non-zero samples extending from n = - to , It is not a finite impulse-response.

It is also not causal since h[n] is not zero for all n < 0. It is therefore not realizable in practice.

To produce a realizable impulse-response of even order M:

(2) Delay resulting sequence by M/2 samples to ensure that the first non-zero sample occurs

at n = 0.

The resulting causal impulse response may be realised by setting an = h[n] for n=0,1,2,...,M.

Taking M=4, for example, the finite impulse response obtained for the /3 cut-off low-pass

specification is : {..,0,..,0, 0.14, 0.28, 0.33 , 0.28 , 0.14 , 0 ,..,0,..}

The resulting FIR filter is as shown in Figure 4.1 with a0=0.14, a1=0.28, a2=0.33, a3=0.28,

a4=0.14. (Note: a 4th order FIR filter has 4 delays & 5 multiplier coefficients).

The gain & phase responses of this FIR filter are sketched below.

Clearly, the effect of the truncation of {h[n]} to M/2 and the M/2 samples delay is to produce

gain and phase responses which are different from those originally specified.

Considering the gain-response first, the cut-off rate is by no means sharp, and two ‘ripples’

appear in the stop-band, the peak of the first one being at about -21dB.

The phase-response is not zero for all values of as was originally specified, but is linear phase

(i.e. a straight line graph through the origin) in the pass-band of the low-pass filter (-/3 to

/3) with slope arctan(M/2) with M = 4 in this case. This means that () = (M/2) for |

otherwise : 0
2

2

 :][
][Set (1)

M
n

M
nh

nh

G(
dB

0
-

10 -

20 -

30
/3

-6 dB

161

| /3; i.e. we get a linear phase-response (for | | /3) with a phase-delay of M/2

samples.

It may be shown that the phase-response is linear phase because the truncation was done

symmetrically about n=0.

Now let’s try to improve the low-pass filter by increasing the order to ten. Taking 11 terms of

{ (1 / 3) sinc (n / 3) } we get, after delaying by 5 samples:

 {...0,-0.055,-.069, 0,.138,.276,.333,.276,.138,0,-.069,-.055,0,...}.

The signal-flow graph of the resulting 10th order FIR filter is shown below:

Notice that the coefficients are again symmetric about the centre one (of value 0.33) and this

again ensures that the FIR filter is linear phase.

 ([-0.055, -0.069, 0, 0.138, 0.276, 0.333, 0.276, 0.138, 0, -0.069, -0.055]);

In may be seen in the gain-response, as reproduced below, that the cut-off rate for the 10th

order FIR filter is sharper than for the 4th order case, there are more stop-band ripples and,

rather disappointingly, the gain at the peak of the first ripple after the cut-off remains at about

-21 dB. This effect is due to a well known property of Fourier series approximations, known as

Gibb's phenomenon. The phase-response is linear phase in the pass band (-/3 to /3) with a

phase delay of 5 samples. As seen in fig 4.6, going to 20th order produces even faster cut-off

rates and more stop-band ripples, but the main stop-band ripple remains at about -21dB. This

trend continues with 40th and higher orders as may be easily verified. To improve matters we

need to discuss ‘windowing’.

y[n]

z-1

-.07

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

+ + + + + + + + +

x[n]

-.055 -.07 0 0 0.14 .28 .33 0.1

4

.28

+

-

.055

y[n]

162

Fig : Gain response of tenth order low pass FIR filter with C = /3

Fig : Gain response of 20th order low pass FIR filter with C = /3.

Windowing Technique:

FIR filter design using window functions

Windowing is the quickest method for designing an FIR filter. A windowing function simply

truncates the ideal impulse response to obtain a causal FIR approximation that is non- causal

an infinitely long. Smoother window functions provide higher out-of band rejection in the

filter response. However this smoothness comes at the cost of wider stop band transitions.

Various windowing method attempts to minimize the width of the main lobe (peak) of the

frequency response. In addition, it attempts to minimize the side lobes (ripple) of the

frequency response.

 The FIR filter design process via window functions can be split into several steps:

 Defining filter specifications;

 Specifying a window function according to the filter specifications;

163

 Computing the filter order required for a given set of specifications;

 Computing the window function coefficients;

 Computing the ideal filter coefficients according to the filter order;

 Computing FIR filter coefficients according to the obtained window function and ideal

filter coefficients;

If the resulting filter has too wide or too narrow transition region, it is necessary to change the

filter order by increasing or decreasing it according to needs, and after that steps 4, 5 and 6 are

iterated as many times as needed.

The final objective of defining filter specifications is to find the desired normalized frequencies

(ωc, ωc1, ωc2), transition width and stop band attenuation. The window function and filter

order are both specified according to these parameters. Accordingly, the selected window

function must satisfy the given specifications. This point will be discussed in more detail in the

next chapter .After this step, that is, when the window function is known, we can compute the

filter order required for a given set of specifications. One of the techniques for computing is

provided in chapter 2.3.When both the window function and filter order are known, it is

possible to calculate the window function coefficients w[n] using the formula for the specified

window function. This issue is also covered in the next chapter.After estimating the window

function coefficients, it is necessary to find the ideal filter frequency samples. The expressions

used for computing these samples are discussed in section 2.2.3 under Ideal filter

approximation. The final objective of this step is to obtain the coefficients hd[n]. Two

sequencies w[n] and hd[n] have the same number of elements. The next step is to compute the

frequency response of designed filter h[n] using the following expression:

Lastly, the transfer function of designed filter will be found by

transforming impulse response via Fourier transform:

or via Z-transform If the transition region of designed filter is

wider than needed, it is necessary to increase the filter order, reestimate the window function

coefficients and ideal filter frequency samples, multiply them in order to obtain the frequency

response of designed filter and re estimate the transfer function as well. If the transition region

is narrower than needed, the filter order can be decreased for the purpose of optimizing

164

hardware and/or software resources. It is also necessary to re estimate the filter frequency

coefficients after that. For the sake of precise estimates, the filter order should be decreased or

increased by 1.

 Rectangular Window: Rectangular This is the most basic of windowing methods. It does not

require any operations because its values are either 1 or 0. It creates an abrupt discontinuity

that results in sharp roll-offs but large ripples.

Hamming Window:This windowing method generates a moderately sharp central peak. Its

ability to generate a maximally flat response makes it convenient for speech processing

filtering.

Hanning Window: This windowing method generates a maximum flat filter design.

Kaiser Window: This windowing method is designed to generate a sharp central peak. It has

reduced side lobes and transition band is also narrow. Thus commonly used in FIR filter

design

165

Type of window Approx. Transition Peak

 width of the main lobe Side lobe (dB)

Rectangular 4π/M -13

166

Bartlett 8π/M -27

Hanning 8π/M -32

Hamming 8π/M -43

Blackman 12π/M -58

Looking at the above table we observe filters which are mathematically simple do not
offer best characteristics. Among the window functions discussed Kaiser is the most complex
one in terms of functional description whereas it is the one which offers maximum flexibility
in the design.

Procedure for designing linear-phase FIR filters using windows:

1. Obtain hd(n) from the desired freq response using inverse FT relation

2. Truncate the infinite length of the impulse response to finite length with (assuming M

odd) choosing proper window

h(n) hd (n)w(n) where

w(n) is the window function defined for (M 1) / 2 n (M 1) / 2

3. Introduce h(n) = h(-n) for linear phase characteristics

4. Write the expression for H(z); this is non-causal realization

5. To obtain causal realization H‟(z) = z
-(M-1)/2

 H(z)

Summary of ‘windowing’ design technique for FIR filters

To design an FIR digital filter of even order M, with gain response G() and linear phase, by

the windowing method,

1) Set H(ej) = G() the required gain-response. This assumes () = 0.

2) Inverse DTFT to produce the ideal impulse-response {h[n]}.

167

3) Window to M/2 using chosen window.

4) Delay windowed impulse-response by M/2 samples.

5) Realize by setting multipliers of FIR filter.

Instead of obtaining H(ej) = G(), we get e-jM/2G() with G() a distorted version of

G() the distortion being due to windowing.

The phase-response is therefore () = -M/2 which is a linear phase-response with phase-delay

M/2 samples at all frequencies in the range 0 to . This is because -() / = M/2 for all .

Notice that the filter coefficients, and hence the impulse-response of each of the digital filters we

have designed so far are symmetric in that h[n] = h[M-n] for all n in the range 0 to M where M is

the order. If M is even, this means that h[M/2 - n] = h[M/2 + n] for all n in the range 0 to M/2.

The impulse response is then said to be 'symmetric' about sample M/2. The following example

illustrates this for an example where M=6 and there are seven non-zero samples within {h[n]}:

{… 0, …, 0, 2, -3, 5, 7, 5, -3, 2, 0, …,0, … }

The most usual case is where M is even, but, for completeness, we should briefly consider the

case where M is odd. In this case, we can still say that {h[n]} is 'symmetric about M/2' even

though sample M/2 does not exist. The following example illustrates the point for an example

where M=5 and {h[n]} therefore has six non-zero sample:

 (…, 0,…, 0, 1, 3, 5, 5, 3, 1, 0, …, 0, …}

When M is odd, h[(M-1)/2 - n] = h[(M+1)/2 + n] for n = 0, 1, …, (M-1)/2.

It may be shown that FIR digital filters whose impulse-responses are symmetric in this way are

linear phase. We can easily illustrate this for either of the two examples just given. Take the

second. Its frequency-response is the DTFT of {h[n]} i.e.

It is also possible to design FIR filters which are not linear phase. The technique described in

this section is known as the ‗windowing‘ technique or the ‗Fourier series approximation

technique‘.

FIR Filter Design Optimization

Remez Exchange Algorithm method:

An FIR digital filter design technique which is better than the windowing technique, but more

complicated, is known as the ‗Remez exchange algorithm‘. It was developed by McClelland and

Parks and is available in MATLAB. The following MATLAB program designs a 40
th

 order FIR

low-pass filter whose gain is specified to be unity (i.e. 0 dB) in the range 0 to 0.3

radians/sample and zero in the range 0.4 to . The gain in the ― transition band ‖ between 0.3

168

and 0.4 is not specified. The 41 coefficients will be found in array ‗a‘. Notice that, in contrast

to the gain-responses obtained from the 'windowing' technique, the Remez exchange algorithm

produces 'equi-ripple' gain-responses (fig 4.14) where the peaks of the stop-band ripples are

equal rather than decreasing with increasing frequency. The highest peak in the stop-band will

be lower than that of an FIR filter of the same order designed by the windowing technique to

have the same cut-off rate. Although they are a little difficult to see, there are 'equi-ripple' pass-

band ripples.

 a = remez (40, [0, 0.3, 0.4,1],[1, 1, 0, 0]);

 freqz (a,1,1000,Fs);

Fig 4.14: Gain response of 40
th

 order FIR lowpass filter designed by ― Remez ‖

These methods allow much greater flexibility in the filter specification. In general they seek the
filter coefficients that minimize the error (in some sense) between a desired frequency response
Hd(e

j

ω
) and the achieved frequency response H (e

j

ω
). The most common optimiza tion

method is that due to Parks and McClellan (1972) and is widely available in software filter
design packages (including MATLAB)

The Parks-McClellan method allows

• Multiple pass- and stop-bands.

169

• Is an equi-ripple design in the pass- and stop-bands, but allows independent weighting of
the ripple in each band.

• Allows specification of the band edges.

For the low-pass filter shown above the specification would be

1 − δ1 < H (e

j

ω

) < 1 + δ1 in the pass-band 0 < ω ≤ ωc

j

ω

−δ2 < H (e) < δ2 in the stop-band ωs < ω ≤ π.

where the ripple amplitudes δ1 and δ2 need not be equal. Given these specifications we need to
determine, the length of the filter M + 1 and the filter coefficients {hn} that meet the specifications
in some optimal sense.

If M + 1 is odd, and we assume even symmetry

hM −k = hk k = 0 . . . M/2

and the frequency response function can be written

Let Hd(e
j

ω
) be the desired frequency response, and define a weighted error

E(e
j

ω
) = W (e

j

ω
) Hd(e

j

ω
) − H (e

j

ω
)

where W (e
j

ω
) is a frequency dependent weighting function, but by convention let W (e

j

ω
) be

constant across each of the critical bands, and zero in all transition bands. In particular for the
low-pass design

= δ2/δ1 in the pass-band

W (e
j

ω
) = 1 in the stop-band

= 0 in the transition band.

170

UNIT-V

APPLICATIONS OF DSP

Introduction

Multirate systems have gained popularity since the early 1980s and they are commonly used for

audio and video processing, communications systems, and transform analysis to name but a few.

In most applications multirate systems are used to improve the performance, or for increased

computational efficiency. The two basic operations in a multirate system are decreasing

(decimation) and increasing (interpolation) the sampling-rate of a signal. Multirate systems are

sometimes used for sampling-rate conversion, which involves both decimation and interpolation.

Decimation

Decimation can be regarded as the discrete-time counterpart of sampling. Whereas in sampling

we start with a continuous -time signal x(t) and convert it into a sequence of samples x[n], in

decimation we start with a discrete-time signal x[n] and convert it into another discrete-time

signal y[n], which consists of sub-samples of x[n]. Thus, the formal definition of M-fold

decimation, or down -sampling, is defined. In decimation, the sampling rate is reduced from Fs

to Fs/M by discarding M – 1 samples for every M samples in the original sequence.

An anti-aliasing digital filter precedes the down-sampler to prevent aliasing from occurring, due

to the lower sampling rate. The subject of aliasing in decimated signals is covered in more detail

in Section 9.4. In Figure 5.2 below, it illustrates the concept of 3-fold decimation i.e. M = 3.

Here, the samples of x*n+ corresponding to n = …, -2, 1, 4,… and n = …, -1, 2, 5,… are lost in the

decimation process. In general, the samples of x[n] corresponding to n ≠ kM, where k is an

integer, are discarded in M-fold decimation. In Figure 5.2, it shows samples of the decimated

signal y[n] spaced three times wider than the samples of x[n]. This is not a coincidence. In real

time, the decimated signal appears at a slower rate than that of the original signal by a factor of

M. If the sampling frequency of x[n] is Fs, then that of y[n] is Fs/M.

Interpolation

171

Interpolation is the exact opposite of decimation. It is an information preserving operation, in

that all samples of x[n] are present in the expanded signal y[n]. The mathematical definition of L-

fold interpolation is defined by Equation 9.2 and the block diagram notation is depicted in Figure

9.3. Interpolation works by inserting (L–1) zero-valued samples for each input sample. The

sampling rate therefore increases from Fs to LFs. With reference to Figure 5.3, the expansion

process is followed by a unique digital low-pass filter called an anti-imaging filter. Although the

expansion process does not cause aliasing in the interpolated signal, it does however yield

undesirable replicas in the signal‘s frequency spectrum. We shall see how this special filter is

necessary to remove these replicas from the frequency spectrum.

In Figure 5.4 below, it depicts 3-fold interpolation of the signal x[n] i.e. L = 3. The insertion of

zeros effectively attenuates the signal by L, so the output of the anti-imaging filter must be

multiplied by L, to maintain the same signal magnitude.

Figure :Decimation of a discrete-time signal by a factor of 3.

Frequency Transforms of Decimated and Expanded Sequences

The analysis of decimation and expansion is better understood by assessing their respective

frequency spectrums using the Fourier transform.

Decimation

172

The implications of aliasing caused by decimation are very similar to those in the case of

sampling a continuous-time signal, in above section. In general, if the Fourier transform of a

signal, X(θ), occupies the entire bandwidth from [-π, π], then the Fourier transform of the

decimated signal, X(↓M)(θ), will be aliased. This is due to the superposition of the M shifted and

frequency-scaled transforms. This is illustrated in Figure 5.5 below, which shows the aliasing

phenomenon for M = 3.

.

Figure 5.2: Interpolation of a discrete-time signal by a factor of 3

173

Figure 5.3: Aliasing caused by decimation; (a) Fourier transform of the original signal; (b) After

decimation filtering; (c) Fourier transform of the decimated signal.

In Figure 5.5 it shows the Fourier transform of the original signal. Part (b) shows the signal after

lowpass filtering.

In Figure 5.5, it depicts the expanded spectrum after decimation.

Expansion

The effect of expansion on a signal in the frequency domain is illustrated in Figure 5.6 below.

Part (a) shows the Fourier transform of the original signal; part (b) illustrates the Fourier

transform of the signal with zeros added W(θ); and part shows the Fourier transform of the signal

after the interpolation filter.

It is clearly visible that the shape of the Fourier transform is compressed by a factor L in the

frequency axis and is also repeated L times in the range of [-π, π]. Despite the compression of the

signal in the frequency axis, the shape of the Fourier transform is still preserved, confirming that

expansion does not lead to aliasing.

These replicas are removed by a digital low-pass filter called an anti-imaging filter, as indicated

in Figure 5.3.

174

Figure 5.4: Expansion in the frequency domain of the original signal (a) and the expanded signal

Sampling-rate Conversion

A common use of multirate signal processing is for sampling-rate conversion. Suppose a digital

signal x[n] is sampled at an interval T1, and we wish to obtain a signal y[n] sampled at an interval

T2. Then the techniques of decimation and interpolation enable this operation, providing the ratio

T1/T2 is a rational number i.e. L/M.

Sampling-rate conversion can be accomplished by L -fold expansion, followed by low-pass

filtering and then M- fold decimation, as depicted in Figure 5.7. It is important to emphasis that

the interpolation should be performed first and decimation second, to preserve the desired

spectral characteristics of x[n]. Furthermore by cascading the two in this manner, both of the

filters can be combined into one single low-pass filter.

175

Figure 5.5: Sampling-rate conversion by expansion, filtering, and decimation.

An example of sampling-rate conversion would take place when data from a CD is transferred

onto a DAT. Here the sampling-rate is increased from 44.1 kHz to 48 kHz. To enable this

process the non-integer factor has to be approximated by a rational number: Hence, the

sampling-rate conversion is achieved by interpolating by L i.e. from 44.1 kHz to [44.1x160] =

7056 kHz.

Then decimating by M i.e. from 7056 kHz to [7056/147] = 48 kHz.

Multistage Approach

When the sampling-rate changes are large, it is often better to perform the operation in multiple

stages, where Mi(Li), an integer, is the factor for the stage i.

M = M1M2…MI or L = L1L2…LI

An example of the multistage approach for decimation is shown in Figure 9.8. The multistage

approach allows a significant relaxation of the anti-alias and anti-imaging filters, with a

consequent reduction in the filter complexity. The optimum number of stages is one that leads to

the least computational effort in terms of either the multiplications per second (MPS), or the

total storage requirement (TSR).

176

Figure 5.6: Multistage approach for the decimation process.

Polyphase Filters

Potential computational savings can be made within the process of decimation, interpolation,

and sampling-rate conversion. Polyphase filters is the name given to certain realisations of

multirate filtering operations, which facilitate computational savings in both hardware and

software. As an example, the combined low-pass filter in the sampling-rate converter, as

illustrated in Figure 5.7, can be re-drawn as a realisation structure. In principle, the simplest

realisation of the low-pass filter is the direct-form FIR structure, as depicted in Figure 5.9.

However, this type of structure is very inefficient owing to the interpolation process, which

introduces (L–1) zeros between consecutive points in the signal. If L is large, then the majority

of the signal components fed into the FIR filter are zero. As a result, most of the multiplications

and additions are zero i.e. many pointless calculations. Furthermore, the decimation process

itself implies that only one out of every M output samples is required at the output of the

sampling-rate converter. Consequently, only one out of every M possible values at the output of

the filter needs to be computed. This type of structure therefore, leads to much inefficiency

during the process of sampling-rate conversion. A more efficient realisation structure of the

sampling-rate converter uses polyphase filters, as illustrated in Figure 5.10. It takes into account

that after the interpolation process the signal consists of (L–1) zero coefficients, and the

decimation process implies that only one out of every M samples is required at the output of the

converter. To make the scheme more efficient, the low-pass filter in Figure 5.9 is replaced by a

bank of filters arranged in parallel, as illustrated in the efficient realisation. The sampling-rate

conversion process is undertaken by the multiplexer at the output by selecting every MT/L

samples. In this example, the efficient realisation is illustrated for a signal which is interpolated

by L = 3 and decimated by M = 2 samples.

177

Figure :Realization structure of sampling-rate conversion.

Figure: Efficient realization structure for sampling-rate conversion.

Applications of Multirate DSP

178

Multirate systems are used in a CD player when the music signal is converted from digital into

analogue (DAC). Digital data (16-bit words) are read from the disk at a sampling rate of 44.1

kHz. If this data were converted directly into an analogue signal, image frequency bands centred

on multiples of the sampling-rate would occur, causing amplifier overload, and distortion in the

music signal. To protect against this, a common technique called oversampling is often

implemented nowadays in all CD players and in most digital processing systems of music

signals. Figure 5.9 below illustrates a basic block diagram of a CD player and how oversampling

is utilised. It is customary to oversample (or expand) the digital signal by a factor of x8, followed

by an interpolation filter to remove the image frequencies. The sampling rate of the resulting

signal is now increased up to 352.8 kHz. The digital signal is then converted into an analogue

waveform by passing it through a 14-bit DAC. Then the output from this device is passed

through an analogue low-pass filter before it is sent to the speakers.

Figure: Digital to analogue conversion for a CD player using x8 oversampling.

Above Figure illustrates the procedure of converting a digital waveform into an analogue signal

in a CD player using x8 oversampling. As an example, Figure (a) illustrates a 20 kHz sinusoidal

signal sampled at 44.1 kHz, denoted by x[n]. The six samples of the signal represent the

waveform over two periods. If the signal x[n] was converted directly into an analogue waveform,

it would be very hard to exactly reconstruct the 20 kHz signal from this diagram. Now, Figure

(b) shows x[n] with an x8 interpolation, denoted by y[n]. Figure (c) shows the analogue signal

y(t), reconstructed from the digital signal y[n] by passing it through a DAC. Finally, Figure (d)

shows the waveform of z(t), which is obtained by passing the signal y(t) through an analogue

low-pass filter.

179

Figure :Illustration of oversampling in CD music signal reconstruction.

The effect of oversampling also has some other desirable features. Firstly, it causes the image

frequencies to be much higher and therefore easier to filter out. The anti-alias filter specification

can therefore be very much relaxed i.e. the cut-off frequency of the filter for the previous

example increases from [44.1 / 2] = 22.05 kHz to [44.1x8 / 2] = 176.4 kHz after the

interpolation.

One other attractive feature about oversampling is the effect of reducing the noise power spectral

density, by spreading the noise power over a larger bandwidth. This is illustrated in Figure 9.13

and mathematical defined.

Noise power spectral density= Total power /Bandwidth

For both sequences, the total noise power (shaded area in Figure 5.8) remains the same.

However, as the bandwidth is increased by a factor of x8 because of the interpolation process, it

180

causes the level of the noise power spectral density to decrease by a factor of x8, over the whole

range of the bandwidth.

Figure :Illustration of noise power spectral density reduction due to oversampling.

As a consequence of the reduction in the noise power spectral density, it means that the level of

tolerable noise can be increased by a factor of 8. In terms of the quantisation noise power, q
2
, it

means that it can now be 8 times greater (or the quantisation step size, q, can be increased by

√8). This ultimately means that a reduction in the number of bits for the DAC is possible. In

general, the reduction in the number of bits for the DAC process is given by Equation 9.4 below.

DAC bit reduction=1/2 log2 (oversample factor)

For the previous example, the DAC bit reduction owing to the x8 oversample factor is 1/2log2(8)

= 1.5 bits.

There are in fact more sophisticated oversampled ADCs and DACs that use various feedback

paths within the system to move most of the quantisation noise into a high frequency out-of-band

region. Substantially larger savings in the number of bits can then be made, even to one bit only,

but these techniques are beyond the topic of this course.

Finite Word-length Effects

Practical digital filters must be implemented with finite precision numbers and

arithmetic. As a result, both the filter coefficients and the filter input and output signals

are in discrete form. This leads to four types of finite wordlength effects. Discretization

(quantization) of the filter coefficients has the effect of perturbing the location of the

filter poles and zeroes. As a result, the actual filter response differs slightly from the ideal

response. This deterministic frequency response error is referred to as coefficient

181

quantization error. The use of finite precision arithmetic makes it necessary to quantize

filter calculations by rounding or truncation. Roundoff noise is that error in the filter

output that results from rounding or truncating calculations within the filter. As the name

implies, this error looks like low-level noise at the filter output. Quantization of the filter

calculations also renders the filter slightly nonlinear. For large signals this nonlinearity is

negligible and roundoff noise is the major concern. However, for recursive filters with a

zero or constant input, this nonlinearity can cause spurious oscillations called limit

cycles. With fixed-point arithmetic it is possible for filter calculations to overflow. The

term overflow oscillation, sometimes also called adder overflow limit cycle, refers to a

high-level oscillation that can exist in an otherwise stable filter due to the nonlinearity

associated with the overflow of internal filter calculations. In this chapter, we examine

each of these finite wordlength effects. Both fixed-point and floating-point number

representations are considered.

Number Representation

In digital signal processing, (B C 1)-bit fixed-point numbers are usually represented as

two's-complement signed fractions in the format

The number represented is then

where b0 is the sign bit and the number range is −1 X < 1. The advantage of this

representation is that the product of two numbers in the range from −1 to 1 is another

number in the same range.

Floating-point numbers are represented as

182

where s is the sign bit, m is the mantissa, and c is the characteristic or exponent. To

make the representation of a number unique, the mantissa is normalized so that 0:5 m <

1.

Although floating-point numbers are always represented in the form of (3.2), the way in

which this representation is actually stored in a machine may differ. Since m 0:5, it is not

necessary to store the 2
−1

-weight bit of m, which is always set. Therefore, in practice

numbers are usually stored as

where f is an unsigned fraction, 0 f < 0:5.

Most floating-point processors now use the IEEE Standard 754 32-bit floating-point

format for storing numbers. According to this standard the exponent is stored as an

unsigned integer p where

Therefore, a number is stored as

where s is the sign bit, f is a 23-b unsigned fraction in the range 0 f < 0:5, and p is an 8-b

unsigned integer in the range 0 p 255. The total number of bits is 1 C 23 C 8 D 32. For

example, in IEEE format 3=4 is written .−1/
0
.0:5 C 0:25/2

0
 so s D 0, p D 126, and f D

0:25.

The value X D 0 is a unique case and is represented by all bits zero (i.e., s D 0, f D 0, and

p D 0). Although the 2
−1

-weight mantissa bit is not actually stored, it does exist so the

mantissa has 24 b plus a sign bit.

Fixed-Point Quantization Errors

183

In fixed-point arithmetic, a multiply doubles the number of significant bits. For example,

the product of the two 5-b numbers 0.0011 and 0.1001 is the 10-b number 00:000 110 11.

The extra bit to the left of the decimal point can be discarded without introducing any

error. However, the least significant four of the remaining bits must ultimately be

discarded by some form of quantization so that the result can be stored to 5 b for use in

other calculations. In the example above this results in 0.0010 (quantization by rounding)

or 0.0001 (quantization by truncating). When a sum of products calculation is performed,

the quantization can be performed either after each multiply or after all products have

been summed with double-length precision.

We will examine three types of fixed-point quantization—rounding, truncation, and

magnitude truncation. If X is an exact value, then the rounded value will be denoted Qr

.X/, the truncated value Qt .X/, and the magnitude truncated value Qmt .X/. If the

quantized value has B bits to the right of the decimal point, the quantization step size is

Δ=2
−B

)

Since rounding selects the quantized value nearest the unquantized value, it gives a value

which is never more than 1=2 away from the exact value.

The error resulting from quantization can be modeled as a random variable uniformly

distributed over the appropriate error range. Therefore, calculations with round off error

can be considered error-free calculations that have been corrupted by additive white

noise. The mean of this noise for rounding is where Efg represents the operation of

taking the expected value of a random variable.

Floating-Point Quantization Errors

With floating-point arithmetic it is necessary to quantize after both multiplications and

additions. The addition quantization arises because, prior to addition, the mantissa of the

smaller number in the sum is shifted right until the exponent of both numbers is the same.

In general, this gives a sum mantissa that is too long and so must be quantized. We will

assume that quantization in floating-point arithmetic is performed by rounding. Because

of the exponent in floating-point arithmetic, it is the relative error that is important. The

relative error is defined as

184

Roundoff Noise

To determine the roundoff noise at the output of a digital filter we will assume that the

noise due to a quantization is stationary, white, and uncorrelated with the filter input,

output, and internal variables. This assumption is good if the filter input changes from

sample to sample in a sufficiently complex manner. It is not valid for zero or constant

inputs for which the effects of rounding are analyzed from a limit cycle perspective.

To satisfy the assumption of a sufficiently complex input, roundoff noise in digital filters

is often calculated for the case of a zero-mean white noise filter input signal x.n/ of

variance x
2
. This simplifies calculation of the output roundoff noise because expected

values of the form Efx.n/x.n − k/g are zero for k 6D0 and give x
2
 when k D 0. This

approach to analysis has been found to give estimates of the output roundoff noise that

are close to the noise actually observed for other input signals. Another assumption that

will be made in calculating roundoff noise is that the product of two quantization errors

is zero. To justify this assumption, consider the case of a 16-b fixed-point processor. In

this case a quantization error is of the order 2
−15

, while the product of two quantization

errors is of the order 2
−30

, which is negligible by comparison. If a linear system with

impulse response g.n/ is excited by white noise with mean mx and variance x
2
, the output

is noise of mean

185

Therefore, if g.n/ is the impulse response from the point where a roundoff takes place to

the filter output, the contribution of that roundoff to the variance (mean-square value) of

the output roundoff noise is given by (3.25) with x
2
 replaced with the variance of the

roundoff. If there is more than one source of roundoff error in the filter, it is assumed that

the errors are uncorrelated so the output noise variance is simply the sum of the

contributions from each source.

Roundoff Noise in FIR Filters

The simplest case to analyze is a finite impulse response (FIR) filter realized via the

convolution summation

When fixed-point arithmetic is used and quantization is performed after each multiply,

the result of the N multiplies is N -times the quantization noise of a single multiply. For

example, rounding after each multiply gives, from (3.6) and (3.12), an output noise

variance of

Limit Cycles

A limit cycle, sometimes referred to as a multiplier round-off limit cycle, is a low-level

oscillation that can exist in an otherwise stable filter as a result of the nonlinearity

associated with rounding (or truncating) internal filter calculations. Limit cycles require

recursion to exist and do not occur in non-recursive FIR filters.

Overflow Oscillations

With fixed-point arithmetic it is possible for filter calculations to overflow. This happens

when two numbers of the same sign add to give a value having magnitude greater than

one. Since numbers with magnitude greater than one are not representable, the result

186

overflows. For example, the two's complement numbers 0.101 (5/8) and 0.100 (4/8) add

to give 1.001 which is the two's complement representation of −7=8.

The overflow characteristic of two's complement arithmetic can be represented as R{ } where

