
OBJECT ORIENTED PROGRAMMING THROUGH PYHTON

CSE

II SEMESTER

Prepared by:
Dr. P Govardhan, Associate Professor,CSE

Ms.N Jayanthi, Assistant Professor,CSE

Course Objectives

The course should enable the students to:

1 Understand the fundamentals of Python programming concepts
and its applications.

2 Understand the object-oriented concepts using Python in problem
solving.

3 Apply string handling and function basics to solve real-time
problems.

4 Illustrate the method of solving errors using exception handling.

5 Design and implement programs using graphical user interface

2

Course Outcomes

The course should enable the students to:

CO 1 Describe Features of Python, Features of Object oriented
programming system. Classes and Objects, Encapsulation,
Abstraction, Inheritance, Polymorphism.

CO 2 Determine Creating a class, Inheritance and Polymorphism, Types of
inheritance, Polymorphism, Abstract classes and Interfaces

CO 3 Understand Creating strings and Defining a function, Calling a
function, Recursive functions.

CO 4 Explore the concept of Errors in a Python program, Exceptions,
Exception handling,

CO 5 Knowledge The Root window, Fonts and colors, Working with

containers, Canvas, Frames, Widgets ,Button widget, Label Widget,

Message widget, Text widget, Radio button Widget, Entry widget.

3

Course Learning Outcomes

The course will enable the students to:

CLO 1 Describe the Features of Python, Data types.

CLO 2 Summarize the concept of Operators, Input and output, Control

Statements.

CLO 3 Identify the features of Object Oriented Programming System

(OOPS).

CLO 4 Use the concept of Classes and Objects, Encapsulation.

CLO 5 Describe Abstraction, Inheritance, and Polymorphism.

CLO 6 Determine Creating a class, The Self variable.

4

The course will enable the students to:

CLO 7 Understand types of variable, Namespaces.

CLO 8 Determine types of Methods, Inheritance and Polymorphism.

CLO 9 Use Constructors in inheritance, the super() method.

CLO 10 Illustrate types of inheritance, Polymorphism, Abstract classes

and Interfaces.

CLO 11 Understand Creating strings and basic operations on strings.

CLO 12 Analyze the concept of String testing methods, Defining a

function.

Course Learning Outcomes cont.

5

6

The course will enable the students to:

CLO 13 Illustrate Calling a function, Returning multiple values from a

function.

CLO 14 Contrast the Usage of Functions are first class objects, Formal

and actual arguments,

CLO 15 Define Positional arguments, Recursive functions.

CLO 16 Discuss the concept of Errors in a Python program.

CLO 17 Understand Exceptions, Exception handling.

CLO 18 Summarize the concept of types of exceptions.

Course Learning Outcomes cont.

7

The course will enable the students to:

CLO 19 Discuss the Except block, the assert statement.

CLO 20 Understand the concept of user-defined exceptions.

Course Learning Outcomes cont.

UNIT -I

8

Running Course Learning Outcomes

The course will enable the students to:

CLO 1 Describe the Features of Python, Data types.

CLO 2 Summarize the concept of Operators, Input and output, Control

Statements.

CLO 3 Identify the features of Object Oriented Programming System

(OOPS),

CLO 4 Use the concept of Classes and Objects, Encapsulation.

CLO 5 Describe Abstraction, Inheritance, and Polymorphism.

9

Contents

• Features of Python

• Data types

• Operators in python

• Input and output

• Control Statements

• Features of object oriented programming system

• Classes and Objects

• Encapsulation

• Inheritance

• Abstraction

• Polymorphism

of Object

10

Guido Van Rossum

211

Brief History of Python Language

3

• Python is a general-purpose, dynamic, interpreted high-level
programming language.

• Conceptualized in the late 1980’s.
• Created by Guido van Rossum (Netherlands) and first released in 1991.
• A descendant of ABC language.
• Open sourced from the beginning, managed by Python Software

Foundation.
• Scalable, Object oriented and functional from the beginning.
• Python versions
First version 0.9.0 in February 1991
Version 1.0 in January 1994
 Version 2.0 in October 2000
Version 3.0 in 2008

12

https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Guido_van_Rossum
https://en.wikipedia.org/wiki/Guido_van_Rossum

Best Programming Language

13

Features of Python Language

• Simple

• Easy to learn

• Open source

• High level language

• Dynamically typed

• Platform independent

• Portable

• Procedure and object oriented

14

Python Interactive Shell

• Python provides an interactive shell, which is used in between the user and

operating system

• In other words, Python provides a command line interface with the Python

shell known as Python interactive shell.

• Python commands are run using the Python interactive shell.

• User can work with Python shell in two modes: interactive mode and script

mode.

• Interactive mode allows the user to interact with the operating system. When

the user types any Python statement / expression, the interpreter displays the

results instantly.

• In script mode, user types a Python program in a file and then uses the

interpreter to execute the file. In interactive mode, user can’t save the

statements / expressions and need to retype once again to re-run them.

15

Interactive Mode

• When the user starts the Python IDLE the following
window will appear and it shows the interactive shell. This
window shows the primary prompt ‘>>>’ where the user
types commands to run by the interpreter.

16

Script Mode

• In this mode, user types a set of statements called a
program in a file and then save the program with
‘filename.py’ as extension. Then the interpreter is used to
execute the file contents. This mode is convenient when
the user wants to write and save multiple lines of code, so
that it can be easily modifiable and reusable.

17

Python Shell as a Simple Calculator

18

Flavors of Python

• Flavors of Python are nothing but different types of Python compilers
available, which are useful to integrate various programming
languages into Python. The following are some of the important and
popularly used flavors of Python.

 Cpython

 Jython

 IronPython

 Pypy

 Pythonxy

 RubyPython

 StacklessPython

 ActivePython

19

Built-in Data Types in Python

• Every programming language has the ability to create and manipulate
object / variable. In a program variables are used to store values so
that it can be used later. Every object / variable has an identity, type
and a value which it refers. Identity of an object is nothing but its
address in memory when it is created. Type or data type indicates is a
range of values and operations allowed on those values.

20

Keywords in Python

• Keywords are reserved words with predefined meaning in any
programming languages and these words can’t be used as normal
variables. One can check the number of keywords using help()
command -> keywords in Python.

21

Assigning values to variables

>>> a = 100 # a is integer

>>> height = 50.5 #height is float

>>> player = "Sachin" #player is string

>>> x = y = z = 10 # This statement assign 10 to x, y, z

>>> x = 5

>>> x #assigns 5 to x

>>> 5 = x #SyntaxError: can't assign to literal

22

Multiple Assignments

• Consider an example where multiple values are assigned to the same
variable and when the program runs, it prints different results.

23

Standard Data Types in Python

• Python has five standard data types, named Numbers, None,
Sequences, Sets and Mappings. Python sets the type of variable based
on the type of value assigned to it and it will automatically change the
variable type if the variable is set to some other value.

24

Numbers

Python supports the following numeric types.

• int - integers of unlimited length in Python 3.x .

• long - long integers of unlimited length, but exists only in Python 2.x.

• float - floating point numbers.

• complex - complex numbers.

25

Boolean

• True and False are Boolean literals used in Python and these are used
to represent the truth / falsity of any condition / expression.

26

None

• In Python None keyword is an object which is equivalent to Null. A
None can be assigned to a variable during declaration or while
evaluating an expression.

27

Strings

• Strings are identified as group of characters represented in quotation
marks. Python allows both a pair of single and double quotes for
writing strings. Strings written in triple quotes can span multiple lines
of text. Strings in Python are immutable data type i.e. each time a
new string object is created when one makes any changes to a string.

28

Strings

•Python can also manipulate strings. They can be enclosed in single
quotes (‘abc’) or double quotes (“abc”) with the same result.

29

Tuple

• A tuple contains a list of items enclosed in parentheses
and none of the items cannot be updated. Hence tuples
are immutable.

30

List

• A list contains items separated by commas and enclosed
within square brackets. A list in Python can contain
heterogeneous data types.

31

Sets

• In Python sets are unordered collection of objects enclosed in parenthesis
and there are basically two types of sets:

 Sets - These are mutable and can be updated with new elements once sets
are defined.

 Frozen Sets - These are immutable and cannot be updated with new elements
once frozen sets are created.

32

Dictionary

• In Python dictionary data type consists of key-value pairs and it is
enclosed by curly braces. Values can be assigned and accessed using
square brackets.

33

Mutable and Immutable Data Types

• The following table gives examples of mutable and immutable data
types in Python.

Mutable Data Types Immutable Data Types

list int, long

set float, complex

dict str

tuple

frozenset

34

Operators in Python

All the operators in Python are classified according to their nature and
type and they are:

• Arithmetic Operators

• Relational Operators

• Logical Operators

• Assignment Operators

• Bitwise Operators

• Boolean Operators

• Membership Operators

• Identity Operators

35

Arithmetic Operators

• These operators perform basic arithmetic operations like addition,
subtraction, multiplication, division etc. and these operators are
binary operators that means these operators acts on two operands.
And there are 7 binary arithmetic operators available in Python.

Operator Meaning Example Result

+ Addition 10 + 7 12

- Subtraction 10.0 - 1.5 8.5

* Multiplication 30 * 3 900

/ Float Division 5 / 2 2.5

// Integer Division 5 // 2 2

** Exponentiation 3 ** 2 9

% Remainder 10 % 3 1

Operator Priority

Parenthesis ((), []) First

Exponentiation (**) Second

Multiplication (*), Division (/, //), Modulus (%) Third

Addition (+), Subtraction (-) Fourth

Assignment Fifth36

Relational Operators

• Relational operators are used for comparison and the output is either
True or False depending on the values we compare. The following
table shows the list of relational operators with example.

Operator Meaning Example Result

< Less than 5 < 7 True

> Greater than 9 > 5 True

<= Less than equal to 8 <= 8 True

>= Greater than equal

to

7 >= 9 False

== Equal to 10 == 20 False

!= Not equal to 9 != 6 True

37

Logical Operators

• Logical operators are used to form compound conditions which are a
combination of more than one simple condition. Each of the simple
conditions are evaluated first and based on the result compound
condition is evaluated. The result of the expression is either True or
False based on the result of simple conditions.

Operator Meaning Example Result

and Logical AND (5 > 7) and (3 < 5) False

or Logical OR (7 == 7) or (5 != 5) True

not Logical NOT not(3 <= 2) True

38

Assignment Operators

• These operators are used to store a value into a variable and also useful to
perform simple arithmetic operations. Assignment operators are of two
types: simple assignment operator and augmented assignment operator.
Simple assignment operators are combined with arithmetic operators to form
augmented assignment operators. The following table shows a list of
assignment operators and its use.

Operator Meaning Example Result

= Simple assignment a = 10 10

+= Addition assignment a = 5

a += 8

13

-= Subtraction assignment b = 5

b -= 8

-3

*= Multiplication assignment a =10

a *= 8

80

/= Float Division assignment a = 10

a /= 8

1.25

//= Integer Division assignment b = 10

b //= 10

1

**= Exponentiation assignment a = 10

a %= 5

0

%= Remainder assignment b = 10

b ** = 8

100000000

39

Bitwise Operators

• Bitwise Operators acts on individual bits of the operands. These
operators directly act on binary numbers. If we want to use these
operators on integers then first these numbers are converted into
binary numbers and then bitwise operators act on those bits. The
following table shows the list of bitwise operators available in Python.

Operator Meaning Example Result

& Bitwise AND a = 10 = 0000 1010

b = 11 = 0000 1011

a & b = 0000 1010 = 10

a & b = 10

| Bitwise OR a = 10 = 0000 1010

b = 11 = 0000 1011

a | b = 0000 1011 = 11

a | b = 11

^ Bitwise XOR a = 10 = 0000 1010

b = 11 = 0000 1011

a ^ b = 0000 0001 = 1

a ^ b = 1

~ Bitwise Complement a = 10 = 0000 1010

~a = 1111 0101 = -11

~a = -11

<< Bitwise Left Shift a = 10

a << 2 = 40

a << 2 = 40

>> Bitwise Right Shift a = 10

a >> 2 = 2

a >> 2 = 2

40

Boolean Operators

• There are three boolean operators that act on bool type
literals and provide bool type output. The result of the
boolean operators are either True or False.

Operator Meaning Example Result

and Boolean

AND

a = True, b = False

a and b = True and

False

a and b = False

or Boolean OR a = True, b = False

a or b = True or

False

a or b = True

not Boolean

NOT

a = True

not a = not True

not a = False

41

Membership Operators

There are two membership operators in Python that are useful to test for
membership in a sequence.

• in: This operator returns True if an element is found in the specified
sequence, otherwise it returns False.

• not in: This operator returns True if any element is not found in the
sequence, otherwise it returns True.

42

Identity Operators

These operators are used to compare the memory locations of two objects.
Therefore it is possible to verify whether the two objects are same or not. In
Python id() function gives the memory location of an object. Example id(a)
returns the identity number or memory location of object a. There are two
identity operators available in Python. They are

• is: This operator is used to compare the memory location of two objects. If
they are same then it returns True, otherwise returns False.

• is not: This operator returns True if the memory locations of two objects are
not same.If they are same then it returns False.

43

Operator Precedence and Associativity

• An expression may contain several operators and the order in which
these operators are executed in sequence is called operator
precedence. The following table summarizes the operators in
descending order of their precedence.

Operator Name Precedence

() Parenthesis 1st

** Exponentiation 2nd

-, ~ Unary minus, bitwise complement 3rd

*, /, //, % Multiplication, Division, Floor Division, Modulus 4th

+, - Addition, Subtraction 5th

<<, >> Bitwise left shift, bitwise right shift 6th

& Bitwise AND 7th

^ Bitwise XOR 8th

| Bitwise OR 9th

>, >=, <, <=, = =, != Relational Operators 10th

=, %=, /=, //=, -=, +=, *=, **= Assignment Operators 11th

is, is not Identity Operators 12th

in, not in Membership Operators 13th

not Logical NOT 14th

or Logical OR 15th

and Logical AND 16th

44

Single Line and Multiline Comments

• There are two types of comments used in Python:

• Single Line Comments: These are created simply by starting a line with the hash
character (#), and they are automatically terminated by the end of line. If a line
using the hash character (#) is written after the Python statement, then it is
known as inline comment.

• Multiline Comments: When multiple lines are used as comment lines, then
writing hash character (#) in the beginning of every line is a tedious task. So
instead of writing # character in the beginning of every line, we can enclose
multiple comment lines within ''' (triple single quotes) or """ (triple double
quotes). Multi line comments are also known as block comments.

45

INPUT AND OUTPUT

• The purpose of a computer is to process data and return results.The data
given to the computer is called input. The results returned by the
computer are called output. So, we can say that a computer takes input,
processes that input and produces the output.

46

UNIT -II

47

Control Structures

A control structure is a block of programming that analyzes variables and
decides which statement to execute next, based on the given parameters.
The term ‘control’ denotes the direction in which the program flows.
Usually, loops are used to execute a control statement, a certain number
of times.

Basically, control structures determine the flow of events in the program.

If statement: This is used to check a condition and executes the
operations/statements within the if block only when the given condition is
true.

Syntax:

if condition:

True Statements

48

If…else statements

If…else statements: These statements are used to check a
condition and executes the operations/statements within
the if block only when the given condition is true. If the
given condition is false, the statements in the else block
will be executed.

Syntax:

if condition:

True Statements

else:

False Statements

49

If …elif… else statements

If …elif… else statements: If we want to check more than one condition we can use
the elif statements. If a condition is true then the statements within the if block
will be executed. If the condition is false, we can provide an elif statement with a
second condition and the statements within the elif block will be executed only
when the condition is true. We can provide multiple elif statements and an else
statement at the end if all the above conditions are false.

Syntax:

if condition:

True Statements

elif condition2:

True Statements

elif condition3:

True Statements

…….

else:

False Statements

50

Loops in Python

• Loops are used to repeat a set of statements/single statement, a certain
number of times. In Python, there are two loops, for loop and while loop. The
Python for loop also works as an iterator to iterate over items in
list/dictionary or characters in strings.

for Loop: It can be used to iterate over a list/string/dictionary or iterate over a
range of numbers.

Syntax:

for variable in range(starting number , ending number + 1 , step size):

statements

(or)

for element in sequence:

statements

51

While Loop

While Loop: This is used, whenever a set of statements should be
repeated based on a condition. The control comes out of the loop
when the condition is false. In while loop we must explicitly
increment/decrement the loop variable (if any) whereas in for, the
range function would automatically increment the loop variable.

Syntax:

while condition:

statement(s)

increment/decrement

52

Break and Continue Statement

break statement: This statement is used to terminate the loop it is present in. Control
goes outside the loop it is present in. If a break statement is present in a nested
loop, it only comes out of the innermost loop.

Syntax:

while condition:

statments

if condition:

break

statements

Continue statement: This statement is used to skip the current iteration. The loop will
not be terminated, it just won’t execute the statements below the continue
statement. The incrementing will be done in for loop. If the increment statement is
written below continue, it won’t be executed in while loop.

Syntax:

while condition:

statement(s)

if condition:

continue

statements 53

Pass Statement

Pass statement: This statement is used as placeholder. For example, we
want to create a function but are not sure of its content. If we create a
function and leave it, an error will occur. To counter this error, we use
pass statement.

Syntax:

def function(parameters):

pass

(or)

for elements in sequence:

pass

(or)

while condition:

pass

(or)

if condition:

pass 54

UNIT -III

55

List
A list is a collection which is ordered and changeable. In Python lists are written
with square brackets.
Create a List:
list = ["aaa", "bbb", "ccc"]

Access Items
To access values in lists, use the square brackets for slicing along with the index or
indices to obtain value available at that index.

LIST

56

How to slice lists in Python?

LIST

57

my_list = ['p','r','o','g','r','a','m','i','z']
print(my_list[2:5]) # elements 3rd to 5th
print(my_list[:-5]) # elements beginning to 4th
print(my_list[5:]) # elements 6th to end
print(my_list[:]) # elements beginning to
end

LIST

58

LIST

59

Tuples

A tuple is a sequence of immutable Python
objects. Tuples are sequences, just like lists. The
differences between tuples and lists are, the
tuples cannot be changed unlike lists and
tuples use parentheses, whereas lists use
square brackets.
Create a Tuple:
tup1 = ('physics', 'chemistry', 1997, 2000)
tup2 = (1, 2, 3, 4, 5)

60

Tuples

Basic Tuples Operations

61

Tuples

Built-in Tuple Functions

62

Dictionary

A dictionary is a collection which is unordered,
changeable and indexed. In Python dictionaries
are written with curly brackets, and they have
keys and values.

63

Dictionary
Dictionary Methods

64

Arrays

An array is a collection of items stored at
contiguous memory locations. The idea is to
store multiple items of the same type together.

65

Arrays
Basic Operations
Following are the basic operations supported by an
array.
Traverse − print all the array elements one by one.
Insertion − Adds an element at the given index.
Deletion − Deletes an element at the given index.
Search − Searches an element using the given
index or by the value.
Update − Updates an element at the given index.

66

NumPy
NumPy is a general-purpose array-processing
package. It provides a high-performance
multidimensional array object, and tools for
working with these arrays. It is the fundamental
package for scientific computing with Python.

67

NumPy
NumPy is a general-purpose array-processing
package. It provides a high-performance
multidimensional array object, and tools for
working with these arrays. It is the fundamental
package for scientific computing with Python.

68

UNIT -IV

69

Strings and Functions

Creating strings

We can create a string in Python by assigning a
group of characters to a variable. The group of
characters should be enclosed inside single
quotes or double quotes as:

s1 = 'Welcome to Core Python learning'

s2 = "Welcome to Core Python learning"

70

Strings and Functions

Escape Character Meaning

\a Bell or alert

\b Backspace

\n New line

\t Horizontal tab space

\v Vertical tab space

\r Enter button

\x Character x

\\ Displays single\

71

Strings and Functions

72

Strings and Functions

73

Strings and Functions

74

Strings and Functions

75

Strings and Functions

76

Strings and Functions

77

Strings and Functions

78

Strings and Functions

A function is similar to a program that consists of a group
of statements that are intended to perform a specific
task. The main purpose of a function is to perform a
specific task or work. Thus when there are several tasks
to be performed, the programmer will write several
functions. There are several ‘built-in’ functions in Python
to perform various tasks. For example, to display output,
Python has print() function. Similarly, to calculate square
root value, there is sqrt() function and to calculate power
value, there is power() function. Similar to these
functions, a programmer can also create his own
functions which are called ‘user-defined’ functions.

79

Strings and Functions

A function returns a single value in the programming
languages like C or Java. But in Python, a function can
return multiple values. When a function calculates
multiple results and wants to return the results, we can
use the return statement as:
return a, b, c

80

Strings and Functions

Functions are First Class Objects

The following possibilities are noteworthy:

•It is possible to assign a function to a variable.
•It is possible to define one function inside another
function.
•It is possible to pass a function as parameter to another
function.
•It is possible that a function can return another
function.

81

Strings and Functions

Functions are First Class Objects

The following possibilities are noteworthy:

•It is possible to assign a function to a variable.
•It is possible to define one function inside another
function.
•It is possible to pass a function as parameter to another
function.
•It is possible that a function can return another
function.

82

Strings and Functions

Arguments
The actual arguments used in a function call are of 4
types:
1. Positional arguments
2. Keyword arguments

3. Default arguments
4. Variable length arguments

83

Strings and Functions

Recursive Functions
A function that calls itself is known as ‘recursive
function’.

factorial(3) = 3 * factorial(2)
= 3 * 2 * factorial(1)
= 3 * 2 * 1 * factorial(0)
= 3 * 2 * 1 * 1 = 6

84

UNIT - V

85

Object Oriented Concepts

• Object oriented programming concept is associated with the concept
of class, objects and various other concepts like abstraction,
inheritance, polymorphism, encapsulation etc.

• Class: - Class is a user defined data type. It is a set of attributes
(variables) and methods (functions). It is created using the keyword
‘class’.

• Object: - Object is a unique instance of a class. We can use the same
class as blueprint for creating number of different objects. The class
describes what the object will be.

• Attributes: - Attributes are the member variables defined inside a
class and can be accessed by the objects by using dot operator.

• Method: - Methods are functions defined inside a class. They can be
accessed by the objects by using dot operator. All the methods in class
have self as first parameter.

86

Example

87

__init__ method

• __init__: The method init is the most important method in
the class. This is called when an instance (object) of the
class is created, using the class name as a function. The
init method is called as constructor.

• self: In class, all methods have self as their first parameter
(python adds self as argument which is well known to us) ,
although it isn’t explicitly passed(passed by users). We
can’t use self while we call the method in a class. Within a
method definition, self refers to the instance calling the
method.

• In an init method, attributes can be used to set the
initial value of instance’s attributes in a class.

88

Features of Object Oriented Programming

• Encapsulation

• Abstraction

• Inheritance

• Polymorphism

• Encapsulation: Encapsulation refers to binding data and methods
together inside a class. It keeps the data and methods safe from
outside interference and misuse. Encapsulation prevents accessing
data accidentally.

89

Inheritance

• Inheritance: It refers to creating a child class such that the child class
would inherit all the properties (variables and methods) of the parent
class. The parent class is called super class while the child class is
called subclass.

• We have 3 types of inheritance mainly:

• Single inheritance: Only one sub class from super class.(superclass-
>subclass)

• Hierarchical inheritance: Inheriting from super class to as many
subclasses.

• Multilevel inheritance: Inheriting properties from super class to sub
class and then other sub classes.

90

Abstraction and Polymorphism

• Abstraction: It refers to creating structure classes that are not
implemented. Abstract classes are like a base class and many other
classes inherit the properties of abstract class but the abstract class
itself is not implemented.

• Polymorphism: It is derived from two Greek words, poly (many) and
morph (form). Polymorphism allows us to define methods with the
same name in two different classes. If the two different classes are
parent class and child class then the parent class’s method will be
overwritten by the child class’s method. This is known as Method
Overriding.

91

Creating A Class

CLASS

• we write a class with the attributes and actions of objects. Attributes are
represented by variables and actions are performed by methods. So, a class
contains variable and methods.

• A function written inside a class is called a method. Generally, a method is
called using one of the following two ways:

• class name.methodname()

• instancename.methodname()

• The general format of a class is given as follows:

Class Classname(object):

""" docstring describing the class """

attributes def __init__(self):

def method1():

def method2():

92

Creating A CLASS(Contd..)

• A class is created with the keyword class and then writing the Classname. After
the Classname, ‘object’ is written inside the Classname.

• This ‘object’ represents the base class name from where all classes in Python are
derived.

• Even our own classes are also derived from ‘object’ class. Hence, we should
mention ‘object’ in the parentheses.

class Student:

#another way is:

class Student(object):

#the below block defines attributes

def __init__(self):

self.name = ‘Vishnu’

self.age = 20

self.marks = 900

#the below block defines a method

93

Creating A CLASS(Contd..)

def talk(self):

print(‘Hi, I am ‘, self.name)

print(‘My age is’, self.age)

print(‘My marks are’, self.marks)

• To create an instance, the following syntax is used:

instancename = Classname()

So, to create an instance (or object) to the Student class, we can write as:

s1 = Student()

When we create an instance like this, the following steps will take place internally:

1. First of all, a block of memory is allocated on heap. How much memory is to be
allocated is decided from the attributes and methods available in the Student
class.

2. After allocating the memory block, the special method by the name
‘__init__(self)’ is called internally. This method stores the initial data into the
variables. Since this method is useful to construct the instance, it is called
‘constructor’. 94

Creating A CLASS(Contd..)

3. Finally, the allocated memory location address of the instance is returned
into ‘s1’ variable. To see this memory location in decimal number format,
we can use id() function as id(s1).

Program

Program 1: A Python program to define Student class and create an object to
it. Also, we will call the method and display the student’s details.

#instance variables and instance method

class Student:

#this is a special method called constructor.

def __init__(self):

self.name = 'Vishnu'

self.age = 20

self.marks = 900

#this is an instance method.

def talk(self):

print('Hi, I am', self.name)
95

Creating A CLASS(Contd..)

print('My age is', self.age)

print('My marks are', self.marks)

#create an instance to Student class.

s1 = Student()

#call the method using the instance.

s1.talk()

Output:

C:\>python cl.py

Hi, I am Vishnu

My age is 20

My marks are 900

96

The Self Variable

• ‘self’ is a default variable that contains the memory address of the instance
of the current class.

• For example, we create an instance to Student class as:

s1 = Student()

We use ‘self’ in two ways:

1. The ‘self’ variable is used as first parameter in the constructor as:

def __init__(self):

In this case, ‘self’ can be used to refer to the instance variables inside the
constructor.

2. ‘self’ can be used as first parameter in the instance methods as:

def talk(self):

Here, talk() is instance method as it acts on the instance variables.

97

Constructor

• A constructor is a special method that is used to initialize the instance
variables of a class. In the constructor, we create the instance variables
and initialize them with some starting values. The first parameter of the
constructor will be ‘self’ variable that contains the memory address of the
instance. For example,

def __init__(self):

self.name = ‘Vishnu’

self.marks = 900

Program 2: A Python program to create Student class with a constructor
having more than one parameter.

#instance vars and instance method - v.20

class Student: #this is constructor.

def __init__(self, n ='', m=0):

self.name = n

self.marks = m #this is an instance method.

def display(self):
98

Constructor(Contd..)

print('Hi', self.name)

print('Your marks', self.marks) #constructor is called without any arguments

s = Student()

s.display()

print('------------------') #constructor is called with 2 arguments

s1 = Student('Lakshmi Roy', 880)

s1.display()

print('------------------')

Output: C:\>python cl.py

Hi

Your marks 0

Hi Lakshmi Roy

Your marks 880

------------------ 99

Types of Variables

• The variables which are written inside a class are of 2 types:

1. Instance variables

2. Class variables or Static variables

Program 3: A Python program to understand instance variables.

#instance vars example

class Sample: #this is a constructor.

def __init__(self):

self.x = 10 #this is an instance method.

def modify(self):

self.x+=1 #create 2 instances

s1 = Sample()

s2 = Sample()

print(‘x in s1= ‘, s1.x)

print(‘x in s2= ‘, s2.x) #modify x in s1

s1.modify()
100

Types of Variables (Contd..)

print(‘x in s1= ‘, s1.x)

print(‘x in s2= ‘, s2.x)

Output: C:\>python cl.py

x in s1= 10

x in s2= 10

x in s1= 11

x in s2= 10

Program 4: A Python program to understand class variables or static variables.

#class vars or static vars example

class Sample: #this is a class var

x = 10 #this is a class method.

@classmethod

def modify(cls):

cls.x+=1 #create 2 instances

s1 = Sample()

s2 = Sample() 101

Types of Variables (Contd..)

print(‘x in s1= ‘, s1.x)

print(‘x in s2= ‘, s2.x)

#modify x in s1

s1.modify()

print(‘x in s1= ‘, s1.x)

print(‘x in s2= ‘, s2.x)

Output: C:\>python cl.py

x in s1= 10

x in s2= 10

x in s1= 11

x in s2= 11

102

Namespaces (Contd..)

Namespaces

A namespace represents a memory block where names are mapped (or
linked) to objects. Suppose we write:

n = 10

#understanding class namespace

class Student: #this is a class var

n=10 #access class var in the class namespace

print(Student.n) #displays 10

Student.n+=1 #modify it in class namespace

print(Student.n) #displays 11

103

Types of Methods

• The purpose of a method is to process the variables provided in the class
or in the method.

• We can classify the methods in the following 3 types:

1. Instance methods (a) Accessor methods (b) Mutator methods

2. Class methods

3. Static methods

Instance Methods

• Instance methods are the methods which act upon the instance variables
of the class. Instance methods are bound to instances (or objects) and
hence called as: instancename.method().

• Program: A Python program to store data into instances using mutator
methods and to retrieve data from the instances using accessor methods.

#accessor and mutator methods class

Student: #mutator method

def setName(self, name):

self.name = name #accessor method 104

Types of Methods (Contd...)

def getName(self):

return self.name #mutator method

def setMarks(self, marks):

self.marks = marks #accessor method

def getMarks(self):

return self.marks #create instances with some data from keyboard

n = int(input(‘How many students? ‘))

i=0

while(i<n): #create Student class instance

s = Student()

name = input(‘Enter name: ‘)

s.setName(name)

marks = int(input(‘Enter marks: ‘))

s.setMarks(marks) #retrieve data from Student class instance

print(‘Hi’, s.getName())
105

Types of Methods (Contd...)

print(‘Your marks’, s.getMarks())

i+=1 print(‘-------------------‘)

Output: C:\>python cl.py

How many students? 2

Enter name: Vinay Krishna

Enter marks: 890

Hi Vinay Krishna

Your marks 890

Enter name: Vimala Rao

Enter marks: 750

Hi Vimala Rao

Your marks 750

106

Types of Methods (Contd...)

Class Methods

• These methods act on class level. Class methods are the methods which act on
the class variables or static variables. These methods are written using
@classmethod decorator above them. By default, the first parameter for class
methods is ‘cls’ which refers to the class itself.

• Program 7: A Python program to use class method to handle the common feature
of all the instances of Bird class.

#understanding class methods class Bird: #this is a class var

wings = 2 #this is a class method

@classmethod

def fly(cls, name):

print(‘{} flies with {} wings’.format(name, cls.wings)) #display information for 2 birds

Bird.fly(‘Sparrow’)

Bird.fly(‘Pigeon’)

Output: C:\>python cl.py

Sparrow flies with 2 wings Pigeon flies with 2 wings 107

Types of Methods (Contd...)

Static Methods

• We need static methods when the processing is at the class level but we
need not involve the class or instances. Static methods are used when
some processing is related to the class but does not need the class or its
instances to perform any work.

Program : A Python program to create a static method that counts the
number of instances created for a class.

#understanding static methods class Myclass:

#this is class var or static var n=0

#constructor that increments n when an instance is created

def __init__(self): Myclass.n = Myclass.n+1

#this is a static method to display the no. of instances

@staticmethod def noObjects():

print(‘No. of instances created: ‘, Myclass.n)

#create 3 instances obj1 = Myclass() obj2 = Myclass() obj3 = Myclass()

Myclass.noObjects()

Output: C:\>python cl.py No. of instances created: 3 108

