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COURSE OUTCOMES (COs): 

CO 1 
Apply the knowledge of linear algebra to represent any arbitrary signals in terms of complete 
sets of orthogonal functions and classify the signals and systems based on their properties. 

CO 2 
Analyze the spectral characteristics of continuous-time periodic and a periodic signals using 
Fourier analysis. 

CO 3 Understand the properties of linear time invariant system, ideal filter characteristics through 
distortion less 
transmission and its bandwidth, causality with convolution and correlation. 

CO 4 Apply the Laplace transform and Z- transform and their Region of convergence (ROC) 
properties for analysis of continuous-time and discrete-time signals and systems respectively. 

CO 5 Understand the process of sampling to convert an analog signal into discrete signal and the 
effects of under sampling and study correlation, spectral densities. 

 
COURSE LEARNING OUTCOMES (CLOs): 

CLO Code At the end of the course, the student will have the ability to: 

AECB14.01 Apply the knowledge of vectors to find an analogy with signals. 

AECB14.02 Understand Orthogonal signal space and orthogonal functions. 

AECB14.03 Introduce the basic classification of signals in both continuous and discrete domain, exponential 
and 
sinusoidal signals, standard test signals 

AECB14.04 Introduce the basic classification of systems in both continuous and discrete domain 

AECB14.05 Representation of Fourier series for a periodic signal. 



CLO Code At the end of the course, the student will have the ability to: 

AECB14.06 Deduce Fourier Transform from Fourier series 

AECB14.07 Compute Fourier Transform of Periodic Signal 

AECB14.08 Introduce the special transform-Hilbert transform 

AECB14.09 Analyze time variance for linear systems. 

AECB14.10 Understand the concept of distortion less transmission through a system 

AECB14.11 Analyze Causality and Paley-Wiener criterion for physical realization. 

AECB14.12 Understand the concept of convolution through graphical representation 

AECB14.13 Introduce the concepts of Laplace transform for conversion to S-domain. 

AECB14.14 Represent Region of Convergence for Laplace transforms and properties of Laplace Transforms. 

AECB14.15 Understand the Z-Transform for discrete signals with issues of Region of Convergence 

AECB14.16 Analyze the properties of Z-Transforms. 

AECB14.17 Categorical analysis of sampling into different types. 

AECB14.18 Understand how to reconstruct signals after sampling 

AECB14.19 Understand cross correlation and auto correlation concepts. 

AECB14.20 Analyze Power Spectral and Energy Spectral Characteristics 

 

SYLLABUS 

MODULE – I SIGNAL ANALYSIS Classes: 08 

Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal 

functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex 

functions, Classification of Signals and systems, Exponential and Sinusoidal signals, Concepts of Impulse 

function, Unit Step function, Signum function. 

MODULE - II FOURIER SERIES Classes: 10 

Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet‟s 

conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum. 

Fourier Transforms: 

Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal, Fourier Transform of 

standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms 

involving Impulse function and Signum function, Introduction to Hilbert Transforms. 

MODULE - III SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS Classes: 10 

Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, Linear 

Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, 

Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and 

BPF characteristics. 

 

Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, 

Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, 

Graphical representation of Convolution. 

MODULE - IV LAPLACE TRANSFORM AND Z-TRANSFORM Classes: 08 

Laplace Transforms 

Laplace Transforms (L.T), Inverse Laplace Transform, Concept of Region of Convergence (ROC) for 

Laplace Transforms, Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of 

certain signals using waveform synthesis. Z–Transforms Concept of Z- Transform of a  Discrete Sequence,  

Distinction  between  Laplace, Fourier and Z Transforms, Region of Convergence  in  Z-Transform, 

Constraints on ROC for various  classes of signals, Inverse Z-transform, Properties of Z- transforms. 

MODULE - V SAMPLING THEOREM Classes: 09 

Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat top Sampling, 

Reconstruction of signal from its samples, Effect of under sampling – Aliasing, Introduction to Band Pass 

Sampling. Correlation: Cross Correlation and Auto Correlation of Functions, Properties of Correlation 



Functions, Energy Density Spectrum, Parseval‟s Theorem, Power Density Spectrum, Relation between 

Autocorrelation Function and Energy/Power Spectral Density Function, Relation between Convolution and 

Correlation, Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal from 

Noise by filtering. 

Text Books: 

1. B.P. Lathi, “Signals, Systems & Communications”, BSP, 2013. 

2. Signals and Systems - A.V. Oppenheim, A.S. Willsky and S.H. Nawabi, 2
nd

 Edition 2010. 

Reference Books: 

1. Simon Haykin and Van Veen, “Signals and Systems”, Wiley Publications, 2
nd

 Edition, 2010. 

2. Fundamentals of Signals and Systems - Michel J. Robert, 2008, MGH International Edition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

MODULE – I 

 

SIGNAL ANALYSIS 

 
Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal 

functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex 

functions, Classification of Signals and systems, Exponential and Sinusoidal signals, Concepts of Impulse 

function, Unit Step function, Signum function. 

 
Analogy Between Vectors and Signals: 

 

There is a perfect analogy between vectors and signals. 

 

Vector 

A vector contains magnitude and direction. The name of the vector is denoted by bold face type and their magnitude 

is denoted by light face type. 

 

Example: V is a vector with magnitude V. Consider two vectors V1 and V2 as shown in the following diagram. Let 

the component of V1 along with V2 is given by C12V2. The component of a vector V1 along with the vector V2 can 

obtained  by taking a perpendicular from the end of V1  to the vector V2 as shown in diagram: 

 

 

The vector V1 can be expressed in terms of vector V2 

 

V1= C12V2  + Ve 

 

Where Ve is the error vector. 

 

But this is not the only way of expressing vector V1 in terms of V2. The alternate possibilities are: 

 

V1=C1V2+Ve1 

 

V2=C2V2+Ve2 



 

 

The error signal is minimum for large component value. If C12=0, then two signals are said to be orthogonal. 

 

Dot Product of Two Vectors V1 . V2 = V1.V2 cosθ 

θ = Angle between V1 and V2 V1. V2 =V2.V1 

From the diagram, components of V1 a long V2 = C 12 V2 

 

The concept of orthogonality can be applied to signals. Let us consider two signals f1(t) and f2(t). 

Similar to vectors, you can approximate f1(t) in terms of f2(t) as f1(t) = C12 f2(t) + fe(t) for (t1 < t < t2) 

⇒ fe(t) = f1(t) – C12 f2(t) 

 

One possible way of minimizing the error is integrating over the interval t1 to t2. 

 

 

However, this step also does not reduce the error to appreciable extent. This can be corrected by taking the square of 

error function. 

 

 

Where ε is the mean square value of error signal. The value of C12 which minimizes the error, you need to calculate 

dε/dC12=0 

 



 

Derivative of the terms which do not have C12 term are zero. 

 

 

Put C12 = 0 to get condition for orthogonality. 

 

 

 

 

 

 

Orthogonal Vector Space 

 

A complete set of orthogonal vectors is referred to as orthogonal vector space. Consider a three dimensional vector 

space as shown below: 

 

 

Consider a vector A at a point (X1, Y1, Z1). Consider three unit vectors (VX, VY, VZ) in the direction of X, Y, Z 

axis respectively. Since these unit vectors are mutually orthogonal, it satisfies that 

 

 



 

 

We can write above conditions as 

 

The vector A can be represented in terms of its components and unit vectors as 

 

 

 

Any vectors in this three dimensional space can be represented in terms of these three unit vectors only. 

 

If you consider n dimensional space, then any vector A in that space can be represented as 

 

 

As the magnitude of unit vectors is unity for any vector A The component of A along x axis = A.VX 

The component of A along Y axis = A.VY The component of A along Z axis = A.VZ 

 

Similarly, for n dimensional space, the component of A along some G axis 

 

=A.VG (3) 

Substitute equation 2 in equation 3. 

 

 

 

Orthogonal Signal Space 

 

Let us consider a set of n mutually orthogonal functions x1(t), x2(t)... xn(t) over the interval t1 to t2. As these 

functions are orthogonal to each other, any two signals xj(t), xk(t) have to satisfy the orthogonality condition. i.e. 

 

 



Let a function f(t), it can be approximated with this orthogonal signal space by adding the components along 

mutually orthogonal signals i.e. 

 

 

 

 

 

The component which minimizes the mean square error can be found by 

 

 

 

 

 

 

All terms that do not contain Ck is zero. i.e. in summation, r=k term remains and all other terms are zero. 

 

 

Mean Square Error: 

 

The average of square of error function fe(t) is called as mean square error. It is denoted by ε (epsilon). 

 



 

The above equation is used to evaluate the mean square error. 

 

 

Closed and Complete Set of Orthogonal Functions: 

Let us consider a set of n mutually orthogonal functions x1(t), x2(t)...xn(t) over the interval t1 to t2. This is called as 

closed and complete set when there exist no function f(t) satisfying the condition 

 

 

If this function is satisfying the equation 

 

For k=1,2,.. then f(t) is said to be orthogonal to each and every function of orthogonal set. 

 

This set is incomplete without f(t). It becomes closed and complete set when f(t) is included. 

 

f(t) can be approximated with this orthogonal set by adding the components along mutually orthogonal signals i.e. 

 

 

 

 

Orthogonality in Complex Functions: 

 

If f1(t) and f2(t) are two complex functions, then f1(t) can be expressed in terms of f2(t) as 

 

f1(t)=C12f2(t).. with negligible error 

 



 

Where f2*(t) is the complex conjugate of f2(t) If f1(t) and f2(t) are orthogonal then C12 = 0 

 

 

The above equation represents orthogonality condition in complex functions. 

 

Ramp Signal 

 

 

Ramp signal is denoted by r(t), and it is defined as r(t) = 

 

 

Area under unit ramp is unity. 

 

Parabolic Signal 

 

Parabolic signal can be defined as x(t) =  

 

 

 

 

 

 

 

 

 

 

 



 

 

Signum Function 

 

 

 

 

Signum function is denoted as sgn(t). It is defined as sgn(t) = 

 

 

sgn(t) = 2u(t) – 1 

 

Exponential Signal 

 

Exponential signal is in the form of x(t) = eαt 

.The shape of exponential can be defined by α 

Case i: if α = 0 → x(t) = e0= 1 

 

 



Case ii: if α< 0 i.e. -ve then x(t) = e−αt 

. The shape is called decaying exponential. 

 

 

Case iii: if α> 0 i.e. +ve then x(t) = eαt 

. The shape is called raising exponential. 

 

 

 

 

Rectangular Signal 

 

Let it be denoted as x(t) and it is defined as 

 

 



 

Triangular Signal 

 

Let it be denoted as x(t) 

 

 

Sinusoidal Signal 

Sinusoidal signal is in the form of x(t) = A cos(w0±ϕ) or A sin(w0±ϕ) 

 

Where T0 = 2π/w0 

 

Classification of Signals: 

 

Signals are classified into the following categories: 

 

 Continuous Time and Discrete Time Signals 

 Deterministic and Non-deterministic Signals 

 Even and Odd Signals 

 Periodic and Aperiodic Signals 

 Energy and Power Signals 

 Real and Imaginary Signals 

 

 

 

 

 

 

 



  

  

 

 

Continuous Time and Discrete Time Signals 

 

A signal is said to be continuous when it is defined for all instants of time. 

 

 

A signal is said to be discrete when it is defined at only discrete instants of time/ 

 

 

 

 

Deterministic and Non-deterministic Signals 

 

A signal is said to be deterministic if there is no uncertainty with respect to its value at any instant of time. Or, 

signals which can be defined exactly by a mathematical formula are known as deterministic signals. 

 

 

 

A signal is said to be non-deterministic if there is uncertainty with respect to its value at some instant of time. 

Non-deterministic signals are random in nature hence they are called random signals. Random signals cannot be 

described by a mathematical equation. They are modelled in probabilistic terms. 



  

  

 

 

 

 

 

 

Even and Odd Signals 

 

A signal is said to be even when it satisfies the condition x(t) = x(-t) 

 

Example 1: t2, t4… cost etc. 

 

Let x(t) = t2 

 

x(-t) = (-t)2 = t2 = x(t) 

 

∴ t2 is even function 

Example 2: As shown in the following diagram, rectangle function x(t) = x(-t) so it is also even function. 

 

 

 

A signal is said to be odd when it satisfies the condition x(t) = -x(-t) 

 

Example: t, t3 ... And sin t Let x(t) = sin t 

x(-t) = sin(-t) = -sin t = -x(t) 

 

∴ sin t is odd function. 

 

Any function ƒ(t) can be expressed as the sum of its even function ƒe(t) and odd function ƒo(t). ƒ(t ) = ƒe(t ) + 

ƒ0(t ) 

where 



  

  

 

 

 

ƒe(t ) = ½[ƒ(t ) +ƒ(-t )] 

 

Periodic and Aperiodic Signals 

 

A signal is said to be periodic if it satisfies the condition x(t) = x(t + T) or x(n) = x(n + N). Where 

T = fundamental time period, 1/T = f = fundamental frequency. 

 

 

 

The above signal will repeat for every time interval T0 hence it is periodic with period T0. 

 

Energy and Power Signals 

 

A signal is said to be energy signal when it has finite energy. 

 

 

A signal is said to be power signal when it has finite power. 

 

 

NOTE:A signal cannot be both, energy and power simultaneously. Also, a signal may be neither energy nor 

power signal. 

 

Power of energy signal = 0 Energy of power signal = ∞ 

 

Real and Imaginary Signals 

 

A signal is said to be real when it satisfies the condition x(t) = x*(t) A signal is said to be odd when it satisfies 

the condition x(t) = -x*(t) Example: 

If x(t)= 3 then x*(t)=3*=3 here x(t) is a real signal. 

If x(t)= 3j then x*(t)=3j* = -3j = -x(t) hence x(t) is a odd signal. 

Note: For a real signal, imaginary part should be zero. Similarly for an imaginary signal, real part should be 

zero. 

 

 

 



  

  

 

 

 

 

 

Basic operations on Signals: 

 

There are two variable parameters in general: 

 

1. Amplitude 

2. Time 

 

(1) The following operation can be performed with amplitude: 

 

Amplitude Scaling 

 

C x(t) is a amplitude scaled version of x(t) whose amplitude is scaled by a factor C. 

 

 

Addition 

 

Addition of two signals is nothing but addition of their corresponding amplitudes. This can be best explained by 

using the following example: 

 

As seen from the previous diagram, 

 

-10 < t < -3 amplitude of z(t) = x1(t) + x2(t) = 0 + 2 = 2 

 

-3 < t < 3 amplitude of z(t) = x1(t) + x2(t) = 1 + 2 = 3 3 < t < 10 amplitude of z(t) = x1(t) + x2(t) = 0 + 2 = 2 

 

Subtraction 

 

subtraction of two signals is nothing but subtraction of their corresponding amplitudes. 

This can be best explained by the following example: 

 



  

  

 

 

 

 

As seen from the diagram above, 

 

-10 < t < -3 amplitude of z (t) = x1(t) - x2(t) = 0 - 2 = -2 

 

-3 < t < 3 amplitude of z (t) = x1(t) - x2(t) = 1 - 2 = -1 3 < t < 10 amplitude of z (t) = x1(t) - x2(t) = 0 - 2 = -2 

 

 

 

 

Multiplication 

 

Multiplication of two signals is nothing but multiplication of their corresponding amplitudes. This can be best 

explained by the following example: 

 

 

 

As seen from the diagram above, 

 

-10 < t < -3 amplitude of z (t) = x1(t) ×x2(t) = 0 ×2 = 0 

-3 < t < 3 amplitude of z (t) = x1(t) - x2(t) = 1 ×2 = 2 3 < t < 10 amplitude of z (t) = x1(t) - x2(t) = 0 × 2 = 0 

 

(2) The following operations can be performed with time: 

 



  

  

 

 

 

 

 

Time Shifting 

 

x(t ±t0) is time shifted version of the signal x(t). x (t + t0) →negative shift 

x (t - t0) →positive shift 

 

 

 

Time Scaling 

 

x(At) is time scaled version of the signal x(t). where A is always positive. 

 

|A| > 1 → Compression of the signal 

 

|A| < 1 → Expansion of the signal 

 

 

 

Note: u(at) = u(t) time scaling is not applicable for unit step function. 

 

Time Reversal 

 

x(-t) is the time reversal of the signal x(t). 

 



  

  

 

 

 

 

Classification of Systems: 

 

Systems are classified into the following categories: 

 

 Liner and Non-liner Systems 

 Time Variant and Time Invariant Systems 

 Liner Time variant and Liner Time invariant systems 

 Static and Dynamic Systems 

 Causal and Non-causal Systems 

 Invertible and Non-Invertible Systems 

 Stable and Unstable Systems 

 

 

Linear and Non-linear Systems 

 

A system is said to be linear when it satisfies superposition and homogenate principles. Consider two systems 

with inputs as x1(t), x2(t), and outputs as y1(t), y2(t) respectively. Then, according to the superposition and 

homogenate principles, 

 

T [a1 x1(t) + a2 x2(t)] = a1 T[x1(t)] + a2 T[x2(t)] 

 

∴ T [a1 x1(t) + a2 x2(t)] = a1 y1(t) + a2 y2(t) 

From the above expression, is clear that response of overall system is equal to response of individual system. 

 

Example: 

 

y(t) = x2(t) Solution: 

y1  (t) = T[x1(t)] = x12(t) 

 

y2  (t) = T[x2(t)] = x22(t) 

 

T [a1 x1(t) + a2 x2(t)] = [ a1 x1(t) + a2 x2(t)]
2
 

 

Which is not equal to a1 y1(t) + a2 y2(t). Hence the system is said to be non linear. 

 

Time Variant and Time Invariant Systems 

 

A system is said to be time variant if its input and output characteristics vary with time. 

Otherwise, the system is considered as time invariant. The condition for time invariant system is: 

y (n , t) = y(n-t) 

 

The condition for time variant system is: 

y (n , t) ≠ y(n-t) 

 

 

Where y (n , t) = T[x(n-t)] = input change 

 

y (n-t) = output change 

 

 

 



  

  

 

 

 

Example: 

 

y(n) = x(-n) 

 

y(n, t) = T[x(n-t)] = x(-n-t) 

 

y(n-t) = x(-(n-t)) = x(-n + t) 

 

∴ y(n, t) ≠ y(n-t). Hence, the system is time variant. 

 

Liner Time variant (LTV) and Liner Time Invariant (LTI) Systems 

 

If a system is both liner and time variant, then it is called liner time variant (LTV) system. 

 

If a system is both liner and time Invariant then that system is called liner time invariant (LTI) system. 

 

Static and Dynamic Systems 

 

Static system is memory-less whereas dynamic system is a memory system. 

 

Example 1: y(t) = 2 x(t) 

 

For present value t=0, the system output is y(0) = 2x(0). Here, the output is only dependent upon present input. 

Hence the system is memory less or static. 

 

Example 2: y(t) = 2 x(t) + 3 x(t-3) 

 

For present value t=0, the system output is y(0) = 2x(0) + 3x(-3). 

 

Here x(-3) is past value for the present input for which the system requires memory to get this output. Hence, the 

system is a dynamic system. 

 

Causal and Non-Causal Systems 

 

A system is said to be causal if its output depends upon present and past inputs, and does not depend upon future 

input. 

 

For non causal system, the output depends upon future inputs also. 

 

Example 1: y(n) = 2 x(t) + 3 x(t-3) 

 

For present value t=1, the system output is y(1) = 2x(1) + 3x(-2). 

 

Here, the system output only depends upon present and past inputs. Hence, the system is causal. 

 

Example 2: y(n) = 2 x(t) + 3 x(t-3) + 6x(t + 3) 

 

For present value t=1, the system output is y(1) = 2x(1) + 3x(-2) + 6x(4) Here, the system output depends upon 

future input. Hence the system is non-causal system. 

 

Invertible and Non-Invertible systems 

 



  

  

 

 

A system is said to invertible if the input of the system appears at the output. 

 

 

 

 

 

 

Y(S) = X(S) H1(S) H2(S) 

 

= X(S) H1(S) · 1(H1(S)) 

 

Since H2(S) = 1/( H1(S) ) 

 

∴ Y(S) = X(S) 

 

→ y(t) = x(t) 

Hence, the system is invertible. 

 

If y(t) ≠ x(t), then the system is said to be non-invertible. 

Stable and Unstable Systems 

 

The system is said to be stable only when the output is bounded for bounded input. For a bounded input, if the 

output is unbounded in the system then it is said to be unstable. 

 

Note: For a bounded signal, amplitude is finite. 

 

Example 1: y (t) = x2(t) 

 

Let the input is u(t) (unit step bounded input) then the output y(t) = u2(t) = u(t) = bounded output. 

 

Hence, the system is stable. 

 

 

Example 2: y (t) = ∫x(t)dt 

Let the input is u (t) (unit step bounded input) then the output y(t) = ∫u(t)dt = ramp signal (unbounded because 

amplitude of ramp is not finite it goes to infinite when t → infinite). 

Hence, the system is unstable. 

 

1.1 Continuous-time and discrete-time Signals 

1.1.1 Examples and Mathematical representation 

 
Signals are represented mathematically as functions of one or more independent variables. Here we 
focus attention on signals involving a single independent variable. For convenience, this will 
generally refer to the independent variable as time. 

 
There are two types of signals: continuous-time signals and discrete-time signals. 

 



  

  

 

 

x[0] 

 
 

x[-1] x[1] 

x[-2] x[2] 

-5      -4     -3 3     4 5 
 

-2      -1    0 1 2 

Continuous-time signal: the variable of time is continuous. A speech signal as a function of time is a 

continuous-time signal. 

 

Discrete -time signal: the variable of time is discrete. The weekly Dow Jones stock market index is 

an example of discrete-time signal. 
 

x(t) x[n] 

 
 
 
 
 

 

t n 

 

 

Fig. 1.1 Graphical representation of continuous- 

time signal. 
Fig. 1.2 Graphical representation of discrete-time 

signal. 
 

 

To distinguish between continuous-time and discrete-time signals we use symbol t to denote the 

continuous variable and n to denote the discrete-time variable. And for continuous-time signals we 

will enclose the independent variable in parentheses (), for discrete-time signals we will enclose the 

independent variable in bracket []. „ 

 

 

A discrete-time signal x[n]  may represent a phenomenon for which the independent variable is 

inherently discrete. A discrete-time signal  x[n]  may represent successive samples of an underlying 

phenomenon for which the independent variable is continuous. For example, the processing of speech 

on a digital computer requires the use of a discrete time sequence representing the values of the 

continuous-time speech signal at discrete points of time. 

 

 



  

  

 

 



    T 
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1.1.2 Signal Energy and Power 

 

If v(t) and i(t) are respectively the voltage and current across a resistor with resistance R , then 

the instantaneous power is 

 

p(t)  v(t)i(t)  
1 

v 
2 
(t) . (1.1) 

R 
 

The total energy expended over the time interval t1  t  t2 is 
 


t2   

p(t)dt 
t2    1 

v 
2 
(t)dt , (1.2) 

t1 t1 R 
 
 

and the average power over this time interval is 
 

1 


t2   

p(t)dt  
1 


t2   1 

v 
2 
(t)dt . (1.3) 

   

t2  t1 
t1 t2  t1 t1 R 

 

For any continuous-time signal x(t) or any discrete-time signal x[n], the total energy over the 

time interval t1  t  t2 in a continuous-time signal x(t) is defined as 
 

t2   

x(t) 
2 

dt , (1.4) 
t1 

 

where x denotes the magnitude of the (possibly complex) number x . The time-averaged power 

is 
1
 

t2  t1 

t2 

x(t) 
2 
dt . Similarly the total energy in a discrete-time signal 

t1 

 

x[n] 
 

over the time 

interval n1  n  n2 is defined as 
 

n2 

x[n] 
2
 

n1 

 

(1.5) 

 

1 n2 
2

 

The average power is 
n2  n1 

 x[n] 
n1 

In many systems, we will be interested in examining the power and energy in signals over an 

infinite time interval, that is, for 

time is then defined 
   t   or    n   . The total energy in continuous 

 

 
T 

E lim 
T 


x(t) 

 
 
2 

dt    
x(t) 

 
 

2 

dt , (1.6) 





 1 



  

  

 

 

 



1 

and in discrete time 
 

 N 

E  lim x[n] 
2

 

N  
 N

 



 x[n] 
2

 





. (1.7) 

 

For some signals, the integral in  Eq. (1.6) or sum in  Eq. (1.7) might not converge, that is, if x(t) 

or x[n]  equals a nonzero constant value for all time. Such signals have infinite energy, while 

signals with E   have finite energy. 
 

The time-averaged power over an infinite interval 
 

P       lim 
2 

x(t) dt (1.8) 
T  2T T 

 
P  lim 

 
 
 
 N

x[n] 
2

 

 

 
(1.9) 

 

N  2N  1 N 

 

Three classes of signals: 

 

 Class 1: signals with finite total energy, E  




and zero average power, 

 

 
(Energy Signal) 

 

P  lim 
E  0 

 
T  2T 

 

(1.10) 

 

 Class 2: with finite average power P . If P  0 , then E   . An example is the signal 

x[n]  4 , it has infinite energy, but has an average power of P =16. (Power Signal) 
 

Class 3: signals for which neither P and E are finite. An example of this signal is x(t)  t . 
 
 

1.2 Transformations of the independent variable 

 
In many situations, it is important to consider signals related by a modification of the independent 

variable. These modifications will usually lead to reflection, scaling, and shift. 

 

1.2.1 Examples of Transformations of the Independent Variable 

T 

1 



  

  

 

 

n
0
 

 

x[n] x[n-n 
0
] 

 
 
 
 
 

 

n n 

 

(a) (b) 

 

Fig.1.3 Discrete-time signals related by a time shift. 

x(t-t0) 
x(t) 
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t 
t
0
 

 

Fig. 1.4 Continuous-time signals related by a time shift. 
 

x[n] x[-n] 

 
 
 
 
 

 

n n 

 

(a) (b) 
 

Fig. 1.5 (a) A discrete-time signal x[n]; (b) its reflection, x[n] about n  0 . 

 

x(t) x(-t) 
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t t 
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(b) 
 

Fig. 1.6 (a) A continuous-time signal x(t) ; (b) its reflection, x(t) about t  0 . 
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Fig. 1.7 Continuous-time signals related by time scaling. 

 

1.2.2 Periodic Signals 

 

A periodic continuous-time signal 

which 

x(t) has the property that there is a positive value of T for 

 

x(t)  x(t  T ) for all t (1.11) 
 

From Eq. (1.11), we can deduce that if x(t) is periodic with period T, then x(t)  x(t  mT ) for 

all t and for all integers m . Thus, x(t) is also periodic with period 2T, 3T, …. The fundamental 

period T0 of x(t) is the smallest positive value of T for which Eq. (1.11) holds. 

x(t) 

 
 
 
 
 
 

 

t 

 

Fig. 1.8 Continuous-time periodic signal. 

...... ...... 



  

  

 

 

A discrete-time signal 

by a time shift of N, 

 

x[n]  x[n  N] 

x[n] is periodic with period N , where N is an integer, if it is unchanged 

 

 
(1.12) 

 

for all values of n. If Eq. (1.12) holds, then x[n] is also periodic with period 2N , 3N , …. The 

fundamental period N0 is the smallest positive value of N for which Eq. (1.12) holds. 

 

x[n] 
 
 
 
 

n 
 
 
 
 
 

Fig. 1.9 Discrete-time periodic signal. 
 
 

1.2.3 Even and Odd Signals 

 
In addition to their use in representing physical phenomena such as the time shift in a radar signal and 

the reversal of an audio tape, transformations of the independent variable are extremely useful in 

examining some of the important properties that signal may possess. 

 

Signal with these properties can be even or odd signal, periodic signal: 

 

An important fact is that any signal can be decomposed into a sum of two signals, one of which is 

even and one of which is odd. 
 

x(t) 
x(t) 

 
 
 
 

t 

 
 

t 

0 

(a) 

 
 

(b) 
 

Fig. 1.10 An even continuous-time signal; (b) an odd continuous-time signal. 
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ODx[n] 

 0, n  0 

n  0 
 1 

,
 


 2 

1 

2 

n 

 
1 

2 


0, 

 1, 

EVx(t) 
1 
x(t)  x(t)

2 

 
(1.13) 

 

which is referred to as the even part of 

 

ODx(t)  
1 
x(t)  x(t)

2 

x(t) . Similarly, the odd part of x(t) is given by 

 

(1.14) 

 

Exactly analogous definitions hold in the discrete-time case. 
 
 

x[n] 

 
 

1 

x[n]  
1,

 



n  0 

n  0 

 

 

 
 

n 

 
x[n] 

 
 
 

1 

1 

2 

 
 1 

 2 
, 

EV x[ n] 



 1 
    , 
 2 

 

n   0 
 

n   0 

n   0 

 

 
n 

 
 
 

(a) (b) 

 
 x[n] 


 

1 
,  n  0 

   2 

 

 

 

 

 

 

 

(c) 

 

Fig.1.11 The even-odd decomposition of a discrete-time signal. 

 
 

1.3 Exponential and sinusoidal signals 

 

1.3.1 Continuous-time complex exponential and sinusoidal signals 

 
The continuous-time complex exponential signal 

 

x(t)  Ce
at

 (1. 15) 
 

where C and a are in general complex numbers. 



  

  

 

 

C 

Real exponential signals 

 

x(t) x(t) 
 
 
 
 
 
 

 

t t 

 

(a) (b) 

Fig. 1.12 The continuous-time complex exponential signal x(t)  Ce
at 

, (a) a  0 ; (b) a  0 . 

 
Periodic complex exponential and sinusoidal signals 

 

If a is purely imaginary, we have 

 

x(t)  e 
j0 t

 

 

 
(1.16) 

 

An important property of this signal is that it is periodic. We know 

T if 

x(t) is periodic with period 

 

e j0t  e j0 ( tT )  e j0 t e j0T (1.17) 
 

For periodicity, we must have 
 

e j0T  1 (1.18) 
 

For  0  0 , the fundamental period T0 is 
 

2
T0  






(1.19) 
0 

 

Thus, the signals e j0 t and e
 j0 t have the same fundamental period. 

 

A signal closely related to the periodic complex exponential is the sinusoidal signal 

x(t)  A cos(0t  ) 

 

 
(1.20) 

With seconds as the unit of t, the units of  and 0 are radians and radians per second. It is also 

known  0  2f 0 , where f0 has the unit of circles per second or Hz. 

C 



  

  

 

 

0 

0 

 0 

The sinusoidal signal is also a periodic signal with a fundamental period of T0 . 

 

x( t)  A cos( 
0
t   ) 

 

 

 

 

 

 

t 

 
 
 
 

Fig. 1.13 Continuous-time sinusoidal signal. 

 

Using Euler‟s relation, a complex exponential can be expressed in terms of sinusoidal signals with the 

same fundamental period: 
 

e j0 t  cos 0 t  j sin 0 t (1.21) 
 

Similarly, a sinusoidal signal can also be expressed in terms of periodic complex exponentials with 

the same fundamental period: 
 

Acos( t  )  A
e j e j0 t  

A 
e j e  j0 t 

  

 
(1.22) 

0 
2 2 

 

A sinusoid can also be expresses as 

Acos( t  )  ARee 
j (0t  ) 




(1.23) 

 

and 

Asin( t   )  A Ime 
j(0 t ) 




(1.24) 

 

Periodic signals, such as the sinusoidal signals provide important examples of signal with infinite total 

energy, but finite average power. For example: 
 

Eperiod 

T0 

e 
j0 t dt 

0 

T0 

1dt  T 
0 

(1.25) 

 

 

Pperiod 
0 

T0 

e 
j0t dt 

0 

T0 

1dt  1 
0 

(1.26) 

T  
2

0 


0 

A 

A cos



 
1 

T 



  

  

 

 

k 

Since there are an infinite number of periods as t ranges from   to   , the total energy

integrated over all time is infinite. The average power is finite since 
 

P    lim  
1 T 

e 
j t 

2 

dt  1 
0 

(1.27) 

 
T   2T T 

 

Harmonically related complex exponentials: 
 

 (t)  e 
jk0 t , k  0,  1,  2, ...... (1.28) 

 

0 is the fundamental frequency. 
 

Example: 
 

Signal x(t)  e 
j 2t 
 e 

j 3t
 can be expressed as x(t)  e 

j 2.5t 
(e 

 j 0.5t 
 e 

j0.5t 
)  2e 

j 2.5t 
cos(0.5t) , the 

magnitude of x(t) is x(t)  2 cos(0.5t) , which is commonly referred to as a full-wave rectified 

sinusoid, shown in Fig. 1.14. 
 

 

 

 

 

 

 

 

 

t 

 

Fig. 1.14 Full-wave rectified sinusoid. 
 

General complex Exponential signals 

 

Consider a complex exponential Ce 
at 

, where C  C e j

expressed in rectangular form. Then 

 

 
is expressed in polar and 

 
 

a  r  j0 is 

 

Ce at  C e j e(r j0 )t  C e
rt
 e 

j
 
(0t )  

 C e
rt
 cos( 0t   )  j C e 

rt
 sin( 0t   ) . (1.29) 

 

Thus, for r  0 , the real and imaginary parts of a complex exponential are sinusoidal. 

For r  0 , sinusoidal signals multiplied by a growing exponential. For r  0 , sinusoidal signals 

multiplied by a decaying exponential. 
 

Damped signal – Sinusoidal signals multiplied by decaying exponentials are commonly refereed to 

as damped signal. 

x (t) 

2 

 4  2 0 2 4



  

  

 

 

 
x(t) 

 
x(t) 

 
 

 
t t 

 
 

 

(a) (b) 

 

Fig. 1.15 (a) Growing sinusoidal signal; (b) decaying sinusoidal signal. 

 
1.3.2 Discrete-time complex exponential and sinusoidal signals 

 
A discrete complex exponential or sequence is defined by 

 

x[n]  C 
n 
, (1.30) 

 
where C and  are in general complex numbers. This can be alternatively expressed 

 

x[n]  Ce 
n 

, (1.31) 

where   e 
 
. 

Real Exponential Signals 

 
If C and  are real, we have the real exponential signals. 

 

x[n] 
 

x[n] 

 
 
 
 

 
n n 

 

 

 
x[n] 

(a) (b) 

x[n] 

 
 
 
 

 

n n 

 
 
 

(c) (d) 



  

  

 

 

0 0 
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0 

Fig. 1.16 Real Exponential Signal x[n]  C 
n 
: (a)  >1; (b) 0< <1; (c) –1< <0; (d)  <-1. 

 

Sinusoidal Signals 

 

x[n]  e 
j0 n

 

 
e 

j0 n 
 cos n  j sin n 

 

 
(1.32) 

 
(1.33) 

 

Similarly, a sinusoidal signal can also be expresses in terms of periodic complex exponentials with the 

same fundamental period: 
 

Acos( n  )  A
e j e j0n  

A
e  j e j0 n 

  

 
(1.34) 

0 
2 2 

 

A sinusoid can also be expresses as 

Acos( n  )  ARee 
j( 0 n) 




(1.35) 

 

and 

Asin( n  )  AIme 
j (0 n ) 




(1.36) 

 

The above signals are examples of discrete signals with infinite total energy, but finite average 

power. For example: every sample of x[n]  e 
j0 n

 contributes 1 to the signal‟s energy. Thus the 

total energy    n   is infinite, while the average power is equal to 1. 
 

 

 



  

  

 

 

0 0 

 

 
 

 

Fig.1.17 Discrete-time sinusoidal signal. 

 
 

General Complex Exponential Signals 
 

Consider a complex exponential C 
n 
, where C  C e j and    e j0  , then 

 

C 
n   
 C  

n  
cos(  n   )  j C  

n  
sin j(  n   ) . (1.37) 

 

Thus, for   1, the real and imaginary parts of a complex exponential are sinusoidal. 

For 

For 

 1, sinusoidal signals multiplied by a decaying exponential. 

 1, sinusoidal signals multiplied by a growing exponential. 



  

  

 

 

 

 

(a) (b) 

 

Fig. 1.18 (a) Growing sinusoidal signal; (b) decaying sinusoidal signal. 

 

1.3.3 Periodicity Properties of Discrete-Time Complex Exponentials 

 
There are a number of important differences between continuous-time and discrete-time 

sinusoidal signals. The continuous-time signals e j0 t are distinct for distinct values of 0 . For 

discrete-time signals, however, these values are not distinct because the signal with 0  is identical to 

the signals with frequencies  0  2 ,  0  4 , and so on, 
 

e j (0 2 ) n    e j(0 4 ) n    e j0 n . (1.38) 

 
 

In considering discrete-time exponentials, we need only consider a frequency interval of 2 . In 

most occasions, we will use the interval 0  0  2 or    0   . 
 

The discrete-time signal x[n]  e 
j0 n

 does not have a continuously increasing rate of oscillation 

as 0 is increased in magnitude, but as 0 is increased from 0, the signal oscillates more and 

more rapidly until 0 reaches  , and when 0 is continuously increased, the rate of oscillation 



  

  

 

 

  

decreases until 0 reaches 2 . We conclude that the low-frequency discrete-time exponentials 

have values of 0 near 0, 2 , and any other even multiple of  , while the high-frequencies are 

located near  0   and other odd multiples of  . 
 

In order for the signal x[n]  e 
j0 n

 to be periodic with period N  0 , we must have 
 

e j0 (n  N )   e j0 n , (1.39) 

or equivalently 
 

e j0 N  1. (1.40) 
 

For Eq. (1.40) to hold,  0 N 

that 

must be a multiple of 2 . That is, there must be an integer m such 

 

 0 N  2m , (1.41) 

or equivalently 
 

 0    
m 

. (1.42) 

2 N 
 

From Eq. (1.40), 

otherwise. 

x[n]  e 
j0 n

 is a periodic if  0 / 2 is a rational number and is not periodic 

 

The fundamental frequency of the discrete-time signal x[n]  e 
j0 n 

is 
 

2   
 
0  , (1.43) 

N m 
 

and the fundamental period of the signal can be 
 

N  

    
2 

  . (1.44) 
 m 

0 


The comparison of the continuous-time and discrete-time signals are summarized in the table below: 



  

  

 

 



k 

k  N k 

Table 1 Comparison of the signals e 
j0 t

 and e j0n . 

 
 

e j0 t 

Distinct signals for distinct values of 0 

e j 0n 

Identical signals for values of 0 

 
separated 

by multiples of 2

Periodic for any choice of 0 Periodic only if  0  2m / N for some 

integers N  0 and m . 

Fundamental frequency 0 

Fundamental period 

 0  0 : undefined 

Fundamental frequency  0 / m 

Fundamental period 

 0  0 : undefined 

2
 0  0 : 

 

  0 : 
m

 

2 






 0 
0 

 0 







Example : Suppose that we wish to determine the fundamental period of the discrete-time signal 
 

 

x[n]  e j ( 2 / 3) n  e j( 3 / 4 )n (1.45) 
 

Solution: 

 

The first exponential on the right hand side has a fundamental period of 3. The second exponential has 

a fundamental period of 8. 

 

For the entire signal to repeat, each of the terms in Eq. (1.45) must go through an integer number of 

its own fundamental period. The smallest increment of n the accomplished this is 24. That is, over an 

interval of 24 points, the first term will have gone through 8 of its fundamental periods, and the 

second term through three of its fundamental periods, and the overall signal through exactly one of its 

fundamental periods. 
 

Harmonically related periodic exponentials 

 

 [n]  e 
jk ( 2 / N ) n 

, k  0,  1, ...... 

 

 
(1.46) 

 

In the continuous-time case, all of the harmonically related complex exponentials e 
jk ( 2 / N )t 

, 

k   0,  1, ........ , are distinct. But this is not the case for discrete-time signals: 
 

 [n]  e j( k N )( 2 / N )n  e j( k 2 / N ) ne j 2n   [n] (1.47) 
 

There are only N distinct period exponentials in the set given in Eq. (1.46). 



  

  

 

 





1.4 The Unit Impulse and Unit Step Functions 

 
The unit impulse and unit step functions in continuous and discrete time are considerably important in 

signal and system analysis. 

 

1.4.1 The discrete-Time Unit Impulse and Unit Step Sequences 

 
Discrete-time unit impulse is defined as 

 

 [n]  
0,

 

1, 

n  0 
, (1.48) 

n  0 

 

 [n] 
 

 

 

n 
 

Fig. 1.19 Discrete-time unit impulse. 

 

Discrete-time unit step is defined as 
 

 

u[n]  
0,

 

1, 

n  0 
, (1.49) 

n  0 
 

 

u [ n] 
 

 
 

n 
0 

 
Fig. 1.20 Discrete-time unit step sequence. 

 

The discrete-time impulse unit is the first difference of the discrete-time step 

 

 [n]  u[n]  u[n  1] , (1.50) 

 
The discrete-time unit step is the running sum of the unit sample: 

1 



  

  

 

 



t 

 

u[n] 





 [m] , (1.51) 
m



It can be seen that for n  0 , the running sum is zero, and for n  0 , the running sum is 1. 

 

If we change the variable of summation from m to k  n  m 

 

we have, u[n]   [n  k] . 
k0 

 

The unit impulse sequence can be used to sample the value of a signal at n  0 . Since  [n] is 

nonzero only for n  0 , it follows that 
 

x[n] [n]  x[0] [n] . (1.52) 

 
More generally, a unit impulse  [n  n0 ] , then 

 

x[n] [n  n0 ]  x[n0 ] [n  n0 ] (1.53) 
 

This sampling property is very important in signal analysis. 

 

1.4.2 The Continuous-Time Unit Step and Unit Impulse Functions 

 
Continuous-time unit step is defined as 

 

u(t)  
0,

 

1, 

t  0 
, (1.54) 

t  0 
 

 

 

 

 

 

 

t 
0 

 

Fig. 1.21 Continuous-time unit step function. The continuous-time unit step 

is the running integral of the unit impulse 

u(t)   
 ( )d . (1.55) 

The continuous-time unit impulse can also be considered as the first derivative of the continuous- 

time unit step, 



n 

u (t) 

1 



  

  

 

 

1 







 

 (t)  
du(t) 

. (1.56) 
dt 

 

Since u(t) is discontinuous at t  0 and consequently is formally not differentiable. This can be 

interpreted, however, by considering an approximation to the unit step u  (t) , as illustrated in the 

figure below, which rises from the value of 0 to the value 1 in a short time interval of length  . 
 

 

u 
  

(t ) 
 

  
(t ) 

 

 

 

 

 

 

 

t t 
0    0 

(a) (b) 

 
Fig. 1.22 (a) Continuous approximation to the unit step u  (t) ; (b) Derivative of u  (t) . 

 

The derivative is 
 

   (t)  
du (t) , (1.57) 

 
dt 

 


 

1 
, 

  (t)  

0, 

0  t  

otherwise 

 
, (1.58) 

 

as shown in Fig. 1.22. 
 

Note that   (t) is a short pulse, of duration  and with unit area for any value of  . As   0 , 

  (t) becomes narrower and higher, maintaining its unit area. At the limit, 
 

 (t)  lim  (t) , (1.59) 
0 

 

u(t)  limu  (t) , (1.60) 
0 

 

and 

1 



  

  

 

 

k 

 

 (t)  
du(t) 

. (1.61) 
dt 

 

Graphically,  (t) is represented by an arrow pointing to infinity at t  0 , “1” next to the arrow 

represents the area of the impulse. 
 

 

 (t) k (t ) 
 

 

 

 

 

t t 
0 0 

 

Fig. 1.23 Continuous-time unit impulse. 
 

Sampling property of the continuous-time unit impulse: 

 

x(t) (t)  x(0) (t) , (1.62) 
 

Or more generally, 

 

x(t) (t  t0 )  x(t0 ) (t  t0 ) 

 

 
(1.63) 

 

Example: 
 

Consider the discontinuous signal x(t)  
x(t ) 

 

 
x (t ) 
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Fig. 1.24 The discontinuous signal and its derivative. 
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Note that the derivative of a unit step with a discontinuity of size of k gives rise to an impulse of area 

k at the point of discontinuity. 

 
 

1.5 Continuous-Time and Discrete-Time Systems 

 
A system can be viewed as a process in which input signals are transformed by the system or cause 

the system to respond in some way, resulting in other signals as outputs. 

 

Examples 
 

R 
 

 
vs (t ) 

+ 

v0 (t ) 

- 
 

(a) 
 

 

 

(t ) 
 

 

(a)  
 

Fig. 1. 25 Examples of systems. (a) A system with input voltage vs (t) and output voltage v0 (t) . 

(b) A system with input equal to the force f (t) and output equal to the velocity v(t) . 
 

A continuous-time system is a system in which continuous-time input signals are applied and results 

in continuous-time output signals. 
 
 

x(t ) y (t ) 
 
 

A discrete-time system is a system in which discrete-time input signals are applied and results in 

discrete-time output signals. 
 
 

x[n ] y[n] 

+ 

- C 
i(t ) 

f 

Discrete-time 

system 

Continuous-time 

system 



  

  

 

 

1.5.2 Simple Examples of Systems 

 
Example 1: Consider the RC circuit in Fig. 25 (a). 

 

The current i(t) is proportional to the voltage drop across the resistor: 

i(t)  
vs (t)  vC (t) . (1.64) 

R 
 

The current through the capacitor is 

 

i(t)  C 
dvC (t) . (1.65) 

dt 
 

Equating the right-hand sides of Eqs. 1.64 and 1.65, we obtain a differential equation describing the 

relationship between the input and output: 
 

dvC (t) 
 1 

 

v (t) 
 1

 
 
v (t) , (1.66) 

dt RC  
C 

RC 
s
 

 

 

Example 2: Consider the system in Fig. 25 (b), where the force f (t) as the input and the velocity 

v(t) as the output. If we let m denote the mass of the car and v the resistance due to friction. 

Equating the acceleration with the net force divided by mass, we obtain 
 

dv(t) 

 1 
 f (t)  v(t)  

dv(t) 
 
 

v(t)  
1 

 
f (t) . (1.67) 

dt m dt m m 
 

Eqs.1.66 and 1.77 are two examples of first-order linear differential equations of the form: 

 
dy(t) 

 ay(t)  bx(t). (1.66) 
dt 

 

Example 3: Consider a simple model for the balance in a bank account from month to month. 

Let y[n] denote the balance at the end of nth month, and suppose that y[n] evolves from month 

to month according the equation: 

 

y[n]  1.01y[n  1]  x[n], (1.67) 

 
or 

 

y[n]  1.01y[n  1]  x[n] , (1.68) 
 

where x[n] is the net deposit (deposits minus withdraws) during the nth month 1.01y[n  1] 

models the fact that we accrue 1% interest each month. 



  

  

 

 

 

System1 
 

System1 

 

Example 4:  Consider a simple digital simulation of the differential equation in Eq. (1.67), in 

which we resolve time into discrete intervals of length  and approximate 

by the first backward difference, i.e., 

 

v(n)  v((n  1)) 
 

 



dv(t) / d (t) at t  n



Let v[n]  v(n) and f [n]  f (n) , we obtain the following discrete-time model relating the 

sampled signals v[n] and f [n], 
 

v[n] 
m 

 
 

(m  ) 
v[n  1] 

∆ 
 

 

(m  ) 

 

f [n] . (1.69) 

 

Comparing Eqs. 1.68 and 1.69, we see that they are two examples of the first-order linear difference 

equation, that is, 
 

 

y[n]  ay[n  1]  bx[n] . (1.70) 

 
Some conclusions: 

 

 Mathematical descriptions of systems have great deal in common; 

 A particular class of systems is referred to as linear, time-invariant systems. 

 Any model used in describing and analyzing a physical system represents an idealization of the 

system. 

 

1.5.3 Interconnects of Systems 
 

 

Input Output 
 
 

(a) 
 

 

 

 

 
Input 

 
Output 

 
 
 

 

(b) 

 

System 2 

 

System1 

+ 



  

  

 

 

 

 

 

 

 

Input Output 

 
 

 

(c) 

 

Fig. 1.26 Interconnection of systems. (a) A series or cascade interconnection of two systems; (b) A 

parallel interconnection of two systems; (c) Combination of both series and parallel systems. 
 

 

 

Input Output 
 
 
 
 
 
 

 

Fig. 1.27 Feedback interconnection. 
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(b) 

Fig. 1.28 A feedback electrical amplifier. 
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1.6 Basic System Properties 

 

1.6.1 Systems with and without Memory 

 
A system is memoryless if its output for each value of the independent variable as a given time is 

dependent only on the input at the same time. For example: 
 

y[n]  (2x[n]  x
2 
[n])

2 
, (1.71) 

 
is memoryless. 

 

A resistor is a memoryless system, since the input current and output voltage has the relationship: 

i(t ) 

v(t)  Ri(t) , 

 
where R is the resistance. 

+ 

v(t ) 

- 

 

(1.72) 

 

One particularly simple memoryless system is the identity system, whose output is identical to its 

input, that is 
 

y(t)  x(t) , or y[n]  x[n] 
 

An example of a discrete-time system with memory is an accumulator or summer. 
 

y[n] 





 x[k ] 
k 

n 1 

x[k ]  x[n]  y[n  1]  x[n] , or (1.73) 
k 



y[n]  y[n  1]  x[n] . (1.74) 

 
Another example is a delay 

 

y[n]  x[n  1] . (1.75) 

 
A capacitor is an example of a continuous-time system with memory, 

i(t ) 

v(t)   
1 


t

 
 

 
i( )d , 

+ 
(1.76) 

C  v(t ) 

- 

n 



  

  

 

 

Inverse 

system 

 

System 

where C is the capacitance. 

 

1.6.2 Invertibility and Inverse System 

 
A system is said to be invertible if distinct inputs leads to distinct outputs. 

 
y[n] 

x[n] w[n]=x[n] 
 
 
 

 
x(t) 

 

y(t) 
 

 
w(t)=x(t) 

 
 
 

 
   

x[n] 

 

y(t) 
 

 
w[ n]  x[n ] 

 
 

Fig. 1.29 Concept of an inverse system. 
 

Examples of non-invertible systems: 

 

y[n]  0 , 

 
the system produces zero output sequence for any input sequence. 

 

y(t)  x 
2 
(t) , 

 
in which case, one cannot determine the sign of the input from the knowledge of the output. 

 

Encoder in communication systems is an example of invertible system, that is, the input to the 

encoder must be exactly recoverable from the output. 

 

1.6.3 Causality 

 
A system is causal if the output at any time depends only on the values of the input at present time 

and in the past. Such a system is often referred to as being nonanticipative, as the system output does 

not anticipate future values of the input. 

 

The RC circuit in Fig. 25 (a) is causal, since the capacitor voltage responds only to the present and 

past values of the source voltage. The motion of a car is causal, since it does not anticipate future 

actions of the driver. 

w[n]  y[n ]  y[ n  1] 
n 

y[n]   x[k ] 
k    

 

w(t)=0.5y(t) 
 

y(t)=2x(t) 



  

  

 

 

 

The following expressions describing systems that are not causal: 

 

y[n]  x[n]  x[n  1] , (1.77) 

 
and 

 

y(t)  x(t  1) . (1.78) 

 
All memoryless systems are causal, since the output responds only to the current value of input. 

 
Example : Determine the Causality of the two systems: 

 

(1) y[n]  x[n] 

(2) y(t)  x(t) cos(t  1) 
 

Solution: System (1) is not causal, since when n  0 , e.g. n  4 , we see that y[4]  x[4], so 

that the output at this time depends on a future value of input. 
 

System (2) is causal. The output at any time equals the input at the same time multiplied by a number 

that varies with time. 

 

1.6.4 Stability 

 
A stable system is one in which small inp uts leads to responses that do not diverge. More formally, if 

the input to a stable system is bounded, then the output must be also bounded and therefore cannot 

diverge. 

 
 

Examples of stable systems and unstable systems: 
 

R 
 

 
vs (t ) 

+ 

v0 ( t) 

- 

 

(a) 

 

(b) 

(t ) 

 

The above two systems are stable system. 

 

The accumulator 

bounded. 

y[n] 





 x[k ] is not stable, since the sum grows continuously even if 
k 

x[n] is 
n 

+ 

- C 
i(t) f 



  

  

 

 

 

Check the stability of the two systems: 
 

 S1; 

 S2: 

y(t)  tx(t) ; 

y(t)  e
x(t )

 

 

 S1 is not stable, since a constant input x(t)  1 , yields y(t)  t , which is not bounded – no 

matter what finite constant we pick, y(t) will exceed the constant for some t. 

 

 S2 is stable. Assume the input is bounded x(t)  B , or  B  x(t)  B for all t. We then see 

that y(t) is bounded e
 B 
 y(t)  e 

B 
. 

 
 

1.6.5 Time Invariance 

 
A system is time invariant if a time shift in the input signal results in an identical time shift in 

the output signal. Mathematically, if the system output is y(t) when the input is x(t) , a time- 

invariant system will have an output of y(t  t0 ) when input is x(t  t0 ) . 
 

Examples: 

 

 The system 

 
 
y(t)  sin[x(t)] is time invariant. 

 

 The system y[n]  nx[n] is not time invariant. This can be demonstrated by using 

counterexample. Consider the input signal x1 [n]   [n] , which yields y1[n]  0 . However, 

the input x2 [n]   [n 1] yields the output y2 [n]  n [n 1]   [n  1] . Thus, while x2 [n] is 

the shifted version of x1 [n] , y2 [n] is not the shifted version of y1[n] . 
 

 The system y(t)  x(2t ) is not time invariant. To check using counterexample. Consider 

x1 (t) shown in Fig. 1.30 (a), the resulting output y1 (t) is depicted in Fig. 1.30 (b). If the 

input is shifted by 2, that is, consider x2 (t)  x1 (t  2) , as shown in Fig. 1.30 (c), we obtain 

the resulting output y2 (t)  x2 (2t ) shown in Fig. 1.30 (d). It is clearly seen that 

y2 (t)  y1 (t  2) , so the system is not time invariant. 
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1.6.6 Linearity 

Fig. 1.30 Inputs and outputs of the system y(t)  x(2t) . 

 

The system is linear if 
 

 The response to x1 (t)  x2 (t) is y1 (t)  y2 (t) - additivity property 

 The response to ax1 (t) is ay1 (t) - scaling or homogeneity property. 
 

The two properties defining a linear system can be combined into a single statement: 
 

 Continuous time: ax1 (t)  bx2 (t)  ay1 (t)  by2 (t) , 

 Discrete time: ax1 [n]  bx2 [n]  ay1 [n]  by2 [n]. 
 

Here a and b are any complex constants. 
 

Superposition property: If xk [n], k  1, 2, 3, ... are a set of inputs with corresponding outputs 

yk [n], k  1, 2, 3, ... , then the response to a linear combination of these inputs given by 

 

x[n]   ak xk [n]  a1 x1[n]  a2 x2 [n]  a3 x3 [n]  ... , (1.79) 
k 

 

is 

1 1 



  

  

 

 

+ 

 
Linear system 

 
 

y[n]   ak yk [n]  a1 y1[n]  a2 y2 [n]  a3 y3 [n]  ... , (1.80) 
k 

 

which holds for linear systems in both continuous and discrete time. For a linear system, zero input 

leads to zero output. 

Examples: 

 

 The system 

 

y(t)  tx(t) is a linear system. 

 The system y(t)  x 
2 
(t) is not a liner system. 

 The system y[n]  Rex[n], is additive, but does not satisfy the homogeneity, so it is not a 

linear system. 

 The system y[n]  2x[n]  3 is not linear. y[n]  3 if x[n]  0 , the system violates the “zero- 

in/zero-out” property. However, the system can be represented as the sum of the output of a linear 

system and another signal equal to the zero-input response of the system. For system y[n]  2x[n] 

 3 , the linear system is 
 

x[n]  2x[n] , 

 
and the zero-input response is 

 

y0 [n]  3 
 

as shown in Fig. 1.31. 
 

y 0 (t ) 

 

 

 

x(t ) y (t) 
 

 
 

Fig. 1.31 Structure of an incrementally linear system. 

system. 

y0 (t) is the zero-input response of the 

 

The system represented in Fig. 1.31 is called incrementally linear system. The system responds 

linearly to the changes in the input. 

 

The overall system output consists of the superposition of the response of a linear system with a zero-

input response. 

 

 

 



  

  

 

  

MODULE – II 

FOURIER SERIES 

Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, 

Dirichlet‟s conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier 

spectrum. 

Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary 

signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of 

Fourier Transform, Fourier Transforms involving Impulse function and Signum function, Introduction 

to Hilbert Transforms. 

 

3.0 Introduction 

 
 Signals can be represented using complex exponentials – continuous-time and discrete-time 

Fourier series and transform. 

 If the input to an LTI system is expressed as a linear comb ination of periodic complex 
exponentials or sinusoids, the output can also be expressed in this form. 

 
 

3.1 A Historical Perspective 

 
By 1807, Fourier had completed a work that series of harmonically related sinusoids were useful in 

representing temperature distribution of a body. He claimed that any periodic signal could be 

represented by such series – Fourier Series. He also obtained a representation for aperidic signals 

as weighted integrals of sinusoids – Fourier Transform. 
 

 

 

Jean Baptiste Joseph Fourier 
 

3.2 The Response of LTI Systems to Complex Exponentials 

 
It is advantageous in the study of LTI systems to represent signals as linear combinations of basic 

signals that possess the following two properties: 

 

 The set of basic signals can be used to construct a broad and useful class of signals. 



  

  

 

  

 





 

 The response of an LTI system to each signal should be simple enough in structure to provide us 
with a convenient representation for the response of the system to any signal constructed as a linear 
combination of the basic signal. 

 

Both of these properties are provided by Fourier analysis. 

 

The importance of complex exponentials in the study of LTI system is that the response of an LTI 

system to a complex exponential input is the same complex exponential with only a change in 

amplitude; that is 
 

Continuous time: e
st  
 H (s)e 

st 
, (3.1) 

 

Discrete-time: z 
n  
 H (z)z

n 
, (3.2) 

 

where the complex amplitude factor 

complex variable s or z. 

H (s) or H (z) will be in general be a function of the 

 

A signal for which the system output is a (possible complex) constant times the input is referred to as an 
eigenfunction of the system, and the amplitude factor is referred to as the system‟s eigenvalue. 
Complex exponentials are eigenfunctions. 

 

For an input x(t) applied to an LTI system with impulse response of h(t) , the output is 

 

y(t)   
h( )x(t   )d   

h( )e 
s( t ) d 



, (3.3) 

 


h( )e s (t  ) d  e st 




h( )e s d



where we assume that the integral 


h( )e
 s 

d


converges and is expressed as 

 
H (s)    )e 

s 
d , (3.4) 

h( 




the response to e
st 

is of the form 
 

y(t)  H (s)e
st 

, (3.5) 
 

It is shown the complex exponentials are eigenfunctions of LTI systems and 

specific value of s is then the eigenvalues associated with the eigenfunctions. 

H (s) for a 

 

Complex exponential sequences are eigenfunctions of discrete-time LTI systems. That is, suppose that 

an LTI system with impulse response h[n] has as its input sequence 



  

  

 

  



2 2 2 2 

3 3 3 3 

k 

x[n]  z 
n 
, (3.6) 

 
where z is a complex number. Then the output of the system can be determined from the convolution 

sum as 

 

y[n] 



h[k ]x[n  k ] 
k 



h[k ]z 
n k 

k 



z
n  h[k ]z 

k  
. (3.7) 

k 



Assuming that the summation on the right-hand side of Eq. (3.7) converges, the output is the same 

complex exponential multiplied by a consta nt that depends on the value of z . That is, 
 

y[n]  H (z)z
n 

, (3.8) 

 

where H (z) 



h[k ]z 
k  

. (3.9) 
k 



It is shown the complex exponentials are eigenfunctions of LTI systems and H (z) for a 

specific value of z is then the eigenvalues associated with the eigenfunctions z 
n 
. 

 

 

The example here shows the usefulness of decomposing general signals in terms of eigenfunctions for 

LTI system analysis: 

 
Let  x(t)  a e

s1t    a  e
s2 t    a e

s3 t , (3.10) 
1 2 3 

 

from the eigenfunction property, the response to each separately is 
 

a e
s1t    a H  (s )e

s1t
 

1 1 1 1 

 

a e
s2t   
 a H  (s )e

s2t
 

 
a e

s3t   a H  (s  )e
s3t

 

 

and from the superposition property the response to the sum is the sum of the responses, 

 

y(t)  a1H1(s1)e
s1t 
 a2 H2 (s2 )e

s2t 
 a3H3(s3 )e

s3t 
, (3.11) Generally, if the input is a 

linear combination of complex exponentials, 

x(t)  a  e
skt  , (3.12) 

k 

 

the output will be 







  

  

 

  

k 

k 

k 

 

y(t)   a  H (s  )e
skt  , (3.13) 

k k 

k 

 

Similarly for discrete-time LTI systems, if the input is 

 

x[n]  ak 

k 

z 
n 

, (3.14) 

 

the output is 

 

y[n]   ak H (zk 

 

 

) z
n 

, (3.15) 
k 

 
 

3.3 Fourier Series representation of Continuous-Time Periodic Signals 

 

3.31 Linear Combinations of harmonically Related Complex Exponentials 

 
A periodic signal with period of T , 

 

x(t)  x(t  T ) for all t , (3.16) 

 
We introduced two basic periodic signals in Chapter 1, the sinusoidal signal 

 

x(t)  cos 0 t , (3.17) 

and the periodic complex exponential 

 

x(t)  e 
j0t 

, (3.18) 
 

Both these signals are periodic with fundamental frequency 0 and fundamental period 

T  2 / 0 . Associated with the signal in Eq. (3.18) is the set of harmonically related complex 

exponentials 
 

 (t)  e 
jk0 t

  e jk ( 2 / T )t , k  0,  1,  2, ...... (3.19) 
 

Each of these signals is periodic with period of T (although for k  2 , the fundamental period of 

 k (t) is a fraction of T ). Thus, a linear combination of harmonically related complex 

exponentials of the form 



  

  

 

  

a e  a e , (3.20) 





k 

 

x(t) 


jk0 t 

k 

k 



jk ( 2 /T ) t 

k 

k 



is also periodic with period of T . 
 

 k  0 , x(t) is a constant. 

 k  1 and k  1 , both have fundamental frequency equal to 0 and are collectively 

referred to as the fundamental components or the first harmonic components. 

 k   2 and 

 k    N and 

k  2 , the components are referred to as the second harmonic components. 

k   N , the components are referred to as the Nth harmonic components. 
 

Eq. (3.20) can also be expressed as 
 

x(t)  x *(t) 


a *k 

k 

e 
 jk0t  

, (3.21) 

 

where we assume that x(t) is real, that is, x(t)  x *(t) . 
 

Replacing k by  k in the summation, we have 
 

x(t) 


a *k e 
jk0t  

, (3.22) 
k 



which , by comparison with Eq. (3.20), requires that 

 
ak  a *k , or equivalently 

 

a *k    ak . (3.23) 
 

To derive the alternative forms of the Fourier series, we rewrite the summation in Eq. (2.20) as 
 

0  ak e 
k 1 

 ak e . (3.24) 

 

Substituting a *k for ak , we have 
 

0  ak e 
k 1 

 a *k e . (3.25) 

 

Since the two terms inside the summation are complex conjugate of each other, this can be expressed as 

 
x(t) 

 
 a0 

 



k 1 

2 Rea e 
jk0t . (3.26) 



  

  

 

  

k 

k 





k 

If ak is expressed in polar from as 
 

a  A e 
jk , 

 

then Eq. (3.26) becomes 
 

 

x(t)  a0 




k 1 

2 ReA e 
j( k0t k ) .

 

 

That is 
 



x(t)  a0  2 Ak  cos(k0 t   k ) . (3.27) 
k1 

 

It is one commonly encountered form for the Fourier series of real periodic signals in continuous time. 
 

 

Another form is obtained by writing ak in rectangular form as 
 

ak  Bk  jCk 

 

then Eq. (3.26) becomes 

 

x(t)  a0   2 Bk  cos k 0 t  Ck  sin k0 t. (3.28) 
k 1 

 

 

For real periodic functions, the Fourier series in terms of complex exponential has the following 

three equivalent forms: 
 

 
 

x(t)  a e 
jk 0t   a e jk( 2 / T ) t 

k k 
k  k 



x(t)  a0  2 Ak cos(k 0t   k ) 
k 1 



x(t)  a0   2 Bk  cos k 0 t  Ck  sin k 0 t
k 1 





  

  

 

  

a e 

a e e , (3.29) 



3.3.2 Determination of the Fourier Series Representation of a Continuous-Time Periodic Signal 

 

 

Multiply both side of x(t) 


jk 0t 
k by e

 jn0 t , we obtain 
k 



x(t)e
 jn0 t 



jk0 t  jn0 t 
k 

k 



Integrating both sides from 0 to T  2 / 0 , we have 
 

T 
 jn t  

 T  
jk t  jn t   

 T j ( kn ) t 

  x(t)e 0   dt    ak  e 0  e 0   dt
 
   ak  e 0   dt

 
, (3.30) 

0 
k  

0 
k  

0
 

 

Note that 

 


T 

e j( k n )0 t dt  
T , 

 

 
k  n 

0 0, k  n 
 

So Eq. (3.30) becomes 
 

a    
1   T  

x(t)e
 jn0 t dt , (3.31) 

 

n 
T 
0 

The Fourier series of a periodic continuous-time signal 
 

 
 

Eq. (3.32) is referred to as the Synthesis equation, and Eq. (3.33) is referred to as analysis equation.  

The  set  of  coefficient  ak  are  often  called  the  Fourier  series  coefficients  of  the 

spectral coefficients of x(t) . 
 

The coefficient a0 is the dc or constant component and is given with k  0 , that is 

(3.33) 
x(t)e jk (2 / T )tdt 

T T T T 
k 

a  
1 

x(t)e
 jk 0t

dt  
1
 

(3.32) 
k 

k 

 / T )t jk (2 
a e 




k 

k 
0 jk t 

a e 


x(t) 



  

  

 

  





 

1 

0 

 

a  
1
 

0 
T T 

 

x(t)dt , (3.34) 

 

Example : consider the signal x(t)  sin 0 t . 
 

sin 0 t 
1 

e 
j0t 


2  

1 
e
 j0t 

. 
2 j 

 

Comparing the right-hand sides of this equation and Eq. (3.32), we have 
 

a1  
2 j 

, a1 
  

1
 

2 j 
 

ak  0 , k  1 or  1 
 

Example : The periodic square wave, sketched in the figure below and define over one period is 
 

1, 
x(t)  

0,
 

t  T1 

T1  t 

 
 T / 2 

 
, (3.35) 

 

The signal has a fundamental period T and fundamental frequency  0  2 / T . 

 

x (t ) 

 
 2T  T   T T T T 2T 

 1 1    

2 2 
 

To determine the Fourier series coefficients for x(t) , we use Eq. (3.33). Because of the 

symmetry of x(t) about t  0 , we choose  T / 2  t  T / 2 as the interval over which the 

integration is performed, although any other interval of length T is valid the thus lead to the same result. 

 

For k  0 , 
 

a 
 1

 
T1 

x(t)dt  
1
 

T 

T1   

dt  
2T1   , (3.36) 

T 
T 1 T 1 T 

 

For k  0 , we obtain 



  

  

 

  



 a e . (3.38) 

a 
 1

 
 

 
T 

T1   

e jk0t dt 
	1 

e  jk0 t 

T 
T 1 jk 0T 

T1 

 


    2  e 

jk0T1  e
 jk0T1 

 k T 
 

2 j 

 (3.37) 

0  



 
2 sin(k0 T1 )  

sin( k 0T1 ) 
  

k0 T k




The above figure is a bar graph of the Fourier series coefficients for a fixed T 1 and several values of T . 

For this example, the coefficients are real, so they can be depicted with a single graph. For complex 
coefficients, two graphs corresponding to the real and imaginary parts or amplitude and phase of each 
coefficient, would be required. 

 
 

3.4 Convergence of the Fourier Series 
 

If a periodic signal x(t) is approximated by a linear combination of finite number of 

harmonically related complex exponentials 
 

xN (t) 
N 

jk0t 

k 

k  N 

k 

1 



  

  

 

  

a e . (3.39) 

2 



 

Let eN (t) denote the approximation error, 

 

eN (t)  x(t)  xN (t)  x(t) 
N 

jk0t 
k 

k  N 

 

The criterion used to measure quantitatively the approximation error is the energy in the error over one 

period: 
 

 

EN    T  
eN (t)  dt . (3.40) 

 

It is shown (problem 3.66) that the particular choice for the coefficients that minimize the energy in the 

error is 
 

a  
1

 
k 

T T x(t )e
 jk 0t dt . (3.41) 

 

It can be seen that Eq. (3.41) is identical to the expression used to determine the Fourier series 

coefficients. Thus, if x(t) has a Fourier series representation, the best approximation using only 

a finite number of harmonically related complex exponentials is obtained by truncating the Fourier 

series to the desired number of terms. 
 

The limit of EN as N   is zero. 
 

One class of periodic signals that are representable through Fourier series is those signals which have 

finite energy over a period, 

 

x(t ) 
2 
dt   , (3.42) 

T 

 

When this condition is satisfied, we can guarantee that the coefficients obtained from Eq. (3.33) are 

finite. We define 

 
 

e(t)  x(t)  ak 

k

e 
jk0 t  , (3.43) 

 

then 
 

 

T  
e(t) 

2 

dt  0 , (3.44) 







  

  

 

  

 

t 

The convergence guaranteed when x(t) has finite energy over a period is very useful. In this 

case, we may say that x(t) and its Fourier series representation are indistinguishable. 
 

Alternative set of conditions developed by Dirichlet that guarantees the equivalence of the signal and its 

Fourier series representation: 
 

Condition 1: Over any period, x(t) must be absolutely integrable, that is 
 

T   
x(t) dt   , (3.45) 

 

This guarantees each coefficient ak will be finite, since 
 

a  
1
 

k 
T T 

x(t)e 
 jk0 t dt  

1
 

T T 

x(t) dt   . (3.46) 

 

A periodic function that violates the first Dirichlet condition is 
 

x(t)  
1 

, 
t 

0  t  1. 

 

Condition 2: In any finite interval of time, x(t) is of bounded variation; that is, there are no 

more than a finite number of maxima and minima during a single period of the signal. An example of a 

function that meets Condition1 but not Condition 2: 

x(t)  sin
 2  

, 
 

 

0  t  1, (3.47) 
 
 



Condition 3: In any finite interval of time, there are only a finite number of discontinuities. 

Furthermore, each of these discontinuities is finite. 

 

An example that violates this condition is a function defined as 
 

x(t)  1 , 0  t  4 , x(t)  1/ 2 , 4  t  6 , x(t)  1/ 4 , 6  t  7 , x(t)  1/ 8 , 7  t  7.5 , etc. 
 

The above three examples are shown in the figure below. 



  

  

 

  

 

   
 

 

The above are generally pathological in nature and consequently do not typically arise in practical 

contexts. 

 

Summary: 

 

 For a periodic signal that has no discontinuities, the Fourier series representation converges and 

equals to the original signal at all the values of t . 

 For a periodic signal with a finite number of discontinuities in each period, the Fourier series 

representation equals to the original signal at all the values of t except the isolated points of 

discontinuity. 

 

Gibbs Phenomenon: 
 

Near a point, where x(t) has a jump discontinuity, the partial sums xN (t) of a Fourier series 

exhibit a substantial overshoot near these endpoints, and an increase in N will not diminish the 

amplitude of the overshoot, although with increasing N the overshoot occurs over smaller and smaller 

intervals. This phenomenon is called Gibbs phenomenon. 



  

  

 

  

k 

 

 
 

A large enough value of N should be chosen so as to guarantee that the total energy in these ripples is 

insignificant. 

 
 

3.5 Properties of the Continuous-Time Fourier Series 
 

Notation: suppose x(t) is a periodic signal with period T and fundamental frequency 0 . Then if 

the Fourier series coefficients of 

 
x(t) 

FS 
 a  , 

x(t) are denoted by ak , we use the notation 

 

to signify the pairing of a periodic signal with its Fourier series coefficients. 



  

  

 

  

k 

k 

0 k 

k 

k 

a e 

3.5.1 Linearity 

 

Let x(t) and y(t) denote two periodic signals with period T and which have Fourier series 

coefficients denoted by ak and bk , that is 
 

x(t) 
FS 
 a and y(t) 

FS
 b  , 

 

then we have 

 

z(t)  Ax(t)  By(t) 
FS
 c 

 
 

 Aak    Bbk . (3.48) 
 
 

3.5.2 Time Shifting 

 

When a time shift to a periodic signal x(t) , the period T of the signal is preserved. 
 

If  x(t) 
FS 
 a  , then we have 

 

x(t  t  ) 
FS 
 e

 jk0 t a  . (3.49) 

 
The magnitudes of its Fourier series coefficients remain unchanged. 

 

3.4.3 Time Reversal 

 

If  x(t) 
FS 
 a  , then 

 

x(t) 
FS 
 a    . (3.50) 

Time reversal applied to a continuous-time signal results in a time reversal of the corresponding 

sequence of Fourier series coefficients. 
 

If x(t) is even, that is x(t)  x(t) , the Fourier series coefficients are also even, ak  ak . 

Similarly, if x(t) is odd, that is x(t)  x(t) , the Fourier series coefficients are also odd, 

ak  ak . 

 
 

3.5.4 Time Scaling 

 

 

If x(t) 

 

has the Fourier series representation x(t) 


jk0t 
k 

 

, then the Fourier series 

representation of the time -scaled signal x(t) is 

k 

k 

k 



  

  

 

  

a e . (3.51) 

k 

k 



k 

k 



x(t) 


jk (0 ) t 
k 

k 



The Fourier series coefficients have not changes, the Fourier series representation has changed because 

of the change in the fundamental frequency. 

 

3.5.5 Multiplication 

 

Suppose x(t) and y(t) are two periodic signals with period T and that 
 

x(t) 
FS 
 a  , 

 
y(t) 

FS
 b  . 

 

Since the product x(t) y(t) is also periodic with period T, its Fourier series coefficients hk is 

 

x(t) y(t) 
FS 
 h     a b . (3.52) 

k l 

l 

k l 

 

The sum on the right-hand side of Eq. (3.52) may be interpreted as the discrete-time convolution 

of the sequence representing the Fourier coefficients of x(t) and the sequence representing the 

Fourier coefficients of y(t) . 
 
 

3.5.6 Conjugate and Conjugate Symmetry 

 

Taking the complex conjugate of a periodic signal x(t) has the effect of complex conjugation 

and time reversal on the corresponding Fourier series coefficients. That is, if 

 

x(t) 
FS 
 a  , then 

x *(t) 
FS 
 a *   . (3.53) 

 

If x(t) is real, that is, x(t)  x *(t) , the Fourier series coefficients will be conjugate symmetric, 

that is 
 

ak  a *k . (3.54) 



  

  

 

  



k  k k 

From this expression, we may get various symmetry properties for the magnitude, phase, real parts and 

imaginary parts of the Fourier series coefficients of real signals. For example: 
 

 From Eq. (3.54), we see that if x(t) is real, a0 is real and ak  ak . 

 If x(t) is real and even, we have ak  a k , from Eq. (3.54) ak  a *k , so ak  a *k  the 

Fourier series coefficients are real and even. 

 If x(t) is real and odd, the Fourier series coefficients are real and odd. 
 
 

3.5.7 Parseval’s Relation for Continuous-Time periodic Signals 

 
Parseval‟s Relation for Continuous-Time periodic Signals is 

 

1 
x(t) 

T T 

dt 





 ak 

k 



, (3.55) 

 

Since 
 

1 
 a e 

jk0t 
2 

dt  
1

 a 
2 

dt  a 
2 
, 

T  T T T 

 

so that 
2 
is the average power in the kth harmonic component. 

 

Thus, Parseval‟s Relation states that the total average power in a periodic signal equals the sum of the 

average powers in all of its harmonic components. 



a 

2 2 

k 



  

  

 

  

 

3.5.8 Summary of Properties of the Continuous-Time Fourier Series 
 

 
 

Property Periodic Signal Fourier Series 

Coefficients 

 x(t) Periodic with period T and 
y(t)

 
fundamenta l frequency   2 /T 

 0 

ak 

bk 

Linearity Ax(t)  By(t) Aa k  Bbk 

Time Shifting x(t  t0 ) e jk0t a 
k 

Frequency shifting e 
jM0 t x(t) ak M 

Conjugation x *(t) a *k 

Time Reversal x(t) ak 

Time Scaling x(t) ,   0 (Periodic with period T /  ) ak 

Periodic Convolution 
T  

x( ) y(t   )d
Tak bk 

Multiplication x(t) y(t) 

 albkl 

l

Differentiation dx(t) 
 

dt 
jk a  jk 

2 
a 

0   k 
T 

k 

Integration t 

 
x(t)dt (finite valued and periodic only 

if  a0   0 ) 


 

1 
a    

 1 
a
 

 
  jk    

k 
jk(2 / T ) 

k
 

0  

Conjugate Symmetry for 
Real Signals 

x(t) real  ak  a *k 

 
Rea   Rea 

 k k 

Imak    Imak 
 ak  ak 



 ak  ak 

Real and Even Signals 
Real and Odd Signals 

x(t) real and even 

x(t) real and odd 

 

 xe (t)  Evx(t) x(t) real


x (t)  Odx(t) x(t) real
 e 

ak real and even 

ak purely imaginary and 

Even-Odd Decomposition odd 

of Real Signals 
Reak 

 j Imak 
 Parseval‟s Relation for Periodic Signals 

1 2  
2 

T  T   
x(t)  dt    ak 

k 

 



  

  

 

  

k 









k 

Example : Consider the signal g(t) with a fundamental period of 4. 

 

g (t ) 
 

 

 

 

 

 

t 

 

 

 
The Fourier series representation can be obtained directly using the analysis equation (3.33). We 

may also use the relation of g(t) to the symmetric periodic square wave x(t) discussed on page 

8. Referring to that example, T  4 and T1  1 , 

g (t)  x(t  1)  1/ 2 . (3.56) 
 

The time-shift property indicates that if the Fourier series coefficients of x(t) are denoted by ak 

the Fourier series coefficients of x(t  1) can be expressed as 
 

b    a e 
 jk  / 2 

. (3.57) 
 

The Fourier coefficients of the dc offset in g(t), that is the term –1/2 on the right-hand side of Eq. (3.56) 

are given by 
 

0, 
ck 
 

1 
,
 

 
 

for  k  0 

for k  0 

 
. (3.58) 


   

2 
 

Applying the linearity property, we conclude that the coefficients for g(t) can be expressed as 
 

ak 

d  



k 
a
 

  
0 

e jk / 2 , 

 
1 

, 
2 

for k  0 

, (3.59) 
for k  0 

 

 
replacing a  

sin(k / 2) 
e 

jk / 2 
, then we have 

 

k 
k



sin(k / 2) 
e
 jk / 2 

,
 for k  0 


dk  k 


0, 

 
for k  0 

. (3.60) 

1 / 2 

1 

 1 / 2 

2  1  2 



  

  

 

  

Example : The triangular wave signal x(t) with period T  4 , and fundamental frequency 

 0   / 2 is shown in the figure below. 

 

x (t ) 
 

 

 

 

 

 

t 
 

 

 

 

The derivative of this function is the signal 
 

g(t) 
 

in the previous preceding example. Denoting 

the Fourier series coefficients of 

differentiation property, we have 

g(t) by dk , and those of x(t) by ek , based on the 

 

dk     jk( / 2)ek . (3.61) 
 

This equation can be expressed in terms of ek except when k  0 . From Eq. (3.60), 
 

e    
2dk 

k 
jk

 
2 sin(k / 2) 

e jk / 2 . (3.62)
 

jk 2
 

 

For k  0 , e0 can be simply calculated by calculating the area of the signal under one period and 

divide by the length of the period, that is 

 

e0   1 / 2 . (3.63) 

 

Example: The properties of the Fourier series representation of periodic train of impulse, 

 

x(t) 



 (t  kT ) . (3.64) 
k 



We use Eq. (3.33) and select the integration interval to be 
placement of impulses at the integration limits. 

 T / 2  t  T / 2 , avoiding the

 

a    
1   T / 2  

 (t)e
 jk ( 2 / T )t 

dt  
1 

. (3.65) 
 

k 
T T / 2 T 

 

All the Fourier series coefficients of this periodic train of impulse are identical, real and even. 



1 

 2 2 



  

  

 

  

0 1 0  1   0 1 0 1 

T1 

 
T 
2 

 T1 T 

2 

The periodic train of impulse has a straightforward relation to square-wave signals such as g(t) 

on page 8. The derivative of g(t) is the signal q(t) shown in the figure below, 

 

x(t ) 

 
 2T  T T 2T 

g (t ) 
 

 
 2T  T 

 
T 

2 

 T1 T
1 

T T 2T 2 

 

q(t ) 

 

 

 

which can also interpreted as the difference of two shifted versions of the impulse train 

That is, 

 

x(t) . 

 

q(t)  x(t  T1 )  x(t  T1  ) . (3.66) 

 
Based on the time -shifting and linearity properties, we may express the Fourier coefficients bk of 

q(t) in terms of the Fourier series coefficient of ak ; that is 
 

b  e jk T a  e jk T a  
1 e jk T  e 

 jk T  , (3.67) 
k k k 

T
 

 

Finally we use the differentiation property to get 
 

bk     jk0 ck , (3.68) 
 

where ck is the Fourier series coefficients of g(t). Thus 



  

  

 

  



0 1 1 

1) dt 

c  
bk

 
 

2 j sin( k0T1 )  
2 sin( k0T1 ) ,  k  0 , (3.69)

 
  

k 
jk jk 0T k0T 

 

c0 can be solve by inspection from the figure: 

 

c    
2T1   . (3.70) 

0 
T

 

 

Example: Suppose we are given the following facts about a signal x(t) 
 

1. x(t) is a real signal. 

2. x(t) is periodic with period T  4 , and it has Fourier series coefficients 

 
ak . 

3. ak  0 for k  1 . 

4. The signal with Fourier coefficients bk  e  jk / 2 a

 is odd. 

5. 
1 

x(t) 

4 4 

2 

dt  
1
 

2 
 

Show that the information is sufficient to determine the signal x(t) to within a sign factor. 
 

 According to Fact 3, x(t) has at most three nonzero Fourier series coefficients ak : a1 , a0 

and a1 . Since the fundamental frequency  0  2 / T  2 / 4   / 2 , it follows that 
 

x(t)  a    a e 
jt / 2  

 a  e
 jt / 2 

. (3.71) 
 

 Since x(t) is real (Fact 1), based on the symmetry property a0 is real and a1  a *1 . 

Consequently, 

 
x(t)  a  a e 

jt / 2 
 a e 

jt / 2 *  a   2 Rea e 
jt / 2 . (3.72) 

0 1 1 0 1 

 

 Based on the Fact 4 and considering the time -reversal property, we note that ak corresponds 

to x(t) . Also the multiplication property indicates that multiplication of kth Fourier series by e
 jk / 

2 
corresponds to the signal being shifted by 1 to the right. We conclude that the 

coefficients bk correspond to the signal x((t  1))  x(t  1) , which according to Fact 4 

must be odd. Since x(t) is real, x(t  1) must also be real. So based the property, the 

Fourier series coefficients must be purely imaginary and odd. Thus, b0  0 , b1  b1 . 

 Since time reversal and time shift cannot change the average power per period, Fact 5 holds 

even if x(t) is replaced by x(t  1) . That is 
 

1 
 x(t  

2 

 
1 

. (3.73) 

4  4 2 

k 

0 



  

  

 

  

 b 

k 

2 

1 

Using Parseval‟s relation, 
 

b1 1 

2  
 1 / 2 . (3.74) 

 

Since b1  b1 , we obtain b1  1/ 2 . Since b1 is known to be purely imaginary, it must be 

either b1  j / 2 or b1   j / 2 . 
 

 Finally we translate the conditions on b0 and b1 into the equivalent statement on a0 and 

a1 . First, since b0  0 , Fact 4 implies that a0  0 . With k  1 , this condition implies that 

a  e  j / 2 b


  jb1  jb1 . Thus, if we take b1  j / 2 , a1  1/ 2 , from Eq. (3.72), 

x(t)  cos(t / 2) . Alternatively, if we take 

x(t)  cos(t / 2) . 

b1   j / 2 , the a1  1 / 2 , and therefore, 

 

 

3.6 Fourier Series Representation of Discrete-Time Periodic Signals 

 
The Fourier series representation of a discrete-time periodic signal is finite, as opposed to the 

infinite series representation required for continuous-time periodic signals 

 

3.6.1 Linear Combination of Harmonically Related Complex Exponentials 

 

A discrete-time signal x[n] is periodic with period N if 
 

x[n]  x[n  N ] . (3.75) 

 
The fundamental period is the smallest positive N for which Eq. (3.75) holds, and the fundamental 

frequency is  0  2 / N . 

The set of all discrete-time complex exponential signals that are periodic with period N is given by 
 

 [n]  e jk0 n  e jk ( 2 / N ) n , k  0,  1,  2, ...., (3.76) 
 

All of these signals have fundamental frequencies that are multiples of 

harmonically related. 

2 / N and thus are 

 

There are only N distinct signals in the set given by Eq. (3.76); this is because the discrete-time 

complex exponentials which differ in frequency by a multiple of 2 are identical, that is, 
 

k [n]  k rN [n] . (3.77) 

1 



  

  

 

  

(3.81) 

 x[n]e jk (2 / N )n . 

n N N 
 x[n]e


 
jk0n 

 1
 

n N 


 1 

N 
k a 

(3.80) ,  k 

k  N 

 k 

k  N k  N 

k k 

The representation of periodic sequences in terms of linear combinations of the sequences  k [n] is 
 

x[n]   a  [n]   a e 
jk0n  

 a e 
jk ( 2 / N ) n  

. (3.78) 
k    k  k  k k k  k 

 

Since the sequences k [n] are distinct over a range of N successive values of k, the summation in Eq. 

(3.78) need include terms over this range. We indicate this by expressing the limits of the 

summation as k  N . That is, 
 

 

. (3.79) 
 

 

Eq. (3.79) is referred to as the discrete-time Fourier series and the coefficients ak 

series coefficients. 

as the Fourier 

 
 

6.2 Determination of the Fourier Series Representation of a Periodic Signal 

 
The discrete-time Fourier series pair: 

 

 

Eq. (3.80) is called synthesis equation and Eq. (3.81) is called analysis equation. 
 

Example : Consider the signal x[n]  sin 0 n , (3.82) 
 

x[n] is periodic only if 2 / 0 is an integer, or a ratio of integer. For the case the when 2 / 0 

is an integer N, that is, when 
 

    
2 

, (3.83) 
0 

N
 

 

x[n] is periodic with the fundamental period N. Expanding the signal as a sum of two complex 

exponentials, we get 

x[n]   akk [n]   ake 
jk n 0 

  a e 
jk ( 2 / N ) n 

k 

k  N k N k  N 



  

  

 

  

 

x[n] 
1 

e j ( 2 / N )n 

2 j 

1 
e j( 2 / N ) n , (3.84) 

2 j 
 

From Eq. (3.84), we have 
 

a1 
1 

2 j 
, a1 

  
1
 

2 j 

 

, (3.85) 

 

and the remaining coefficients over the interval of summation are zero. As discussed previously, these 

coefficients repeat with period N. 
 

The Fourier series coefficients for this example with N  5 are illustrated in the figure below. 
 

 

When 2 / 0 is a ratio of integer, that is, when 
 

    
2M 

, (3.86) 
0 

N
 

 

Assuming the M and N do not have any commo n factors, x[n] has a fundamental period of N. 

Again expanding x[n] as a sum of two complex exponentials, we have 
 

x[n] 
1 

e jM ( 2 / N )n 

2 j 

1 
e  jM ( 2 / N ) n , (3.87) 

2 j 
 

From which we determine by inspection that aM  (1/ 2 j) , aM  (1/ 2 j) , and the remaining 

coefficients over one period of length N are zero. The Fourier coefficients for this example with 

M  3 and N  5 are depicted in the figure below. 
 



  

  

 

  

N N 2 

2 2 

Example : Consider the signal 
 

x[n]  1  sin
 2 

n 




 2 
n 






 4 
n  

  
.
 

 

  3 cos
  

 cos 
  



Expanding this signal in terms of complex exponential, we have 
 

x[n]  1  ( 
3 





1 
)e j( 2 / N ) n  ( 

3 


	 

1 
)e  j( 2 / N ) n  

 1 
e j / 2 


	 

j 2( 2 / N ) n  
 1 

e  j / 2 e  j2 ( 2 / N )n .  

2 2 j 2 2 j 
 e  
   



Thus the Fourier series coefficients for this signal are 

 

a0  1 , 

a  
3 
 

1 
 

3 
 

1 
j , 

    

1 
2 2 j 2 2 

a  
3 
 

1 
 

3 
 

1 
j , 

    

1 
2 2 j 2 2 

a  
1 

j , 
2 

2
 

 

a2 
  

1 
j . 

2 
 

with ak  0 for other values of k in the interval of summation in the synthesis equation. The real 

and imaginary parts of these coefficients for 
coefficients are depicted in the figure below. 

N  10 , and the magnitude and phase of the 

 

 

N 



  

  

 

  

 

 
 

 
 

Example : Consider the square wave shown in the figure below. 
 

 

Because 

the range 

x[n]  1 for  N1  n  N1 , we choose the length-N interval of summation to include 

 N1  n  N1 . The coefficients are given

 

1 N1  
 jk ( 2 / N ) n 

ak 
N 
e 

n N1 

, (3.88) 

 

Let m  n  N1 , we observe that Eq. (3.88) becomes 



  

  

 

  

N 
 

 

 

ak 
1 2 N1 

e 
n0 

 
jk ( 2 / N )(m N1 ) 

2 N1 

e jk ( 2 / N ) N1 e jk (2 / N ) m , (3.89) 
N n 0 

 
 

a  
1
 

jk ( 2 / N ) N1 

  
1  e jk 2 ( 2 N1 1) / N 

 





1  sin2k(N1   1/ 2) / N  
,  k  0,  N,  2N , ....

 
 

 

 (3.90) 

k 
N 

e 

and 

  1  e  jk ( 2 / N )  N sin(k / N ) 

 

a  
2N1  1 

, k  0,  N,  2N , .... 
k 

N
 

 

(3.91) 

 

The coefficients ak for 2N1  1  5 are sketched for N  10, 20, and 40 in the figure below. 

 

 
 

The partial sums for the discrete-time square wave for 

figure below, where N  9 , 2N1  1  5 . 

M  1, 2, 3, and 4 are depicted in the 

 

We see for M  4 , the partial sum exactly equals to x[n]. In contrast to the continuous-time 

case, there are no convergence issues and there is no Gibbs phenomenon. 

 1 



  

  

 

  

 

 
 

 

 

3.7 Properties of Discrete-Time Fourier Series 
 
 

Property Periodic Signal Fourier Series Coefficients 

 x[n] Periodic with period N and 
y[n 

 
fundamenta l frequency   2

] 0 

ak 
Periodic with period N 

bk 

Linearity Ax[n]  By[n] Aa k   Bbk 

Time Shifting x[n  n0 ] e jk ( 2 / N ) t a 
k 

Frequency shifting e jM ( 2 / N )n x[n] ak M 

Conjugation x *[n] a *k 



  

  

 

  

 

Time Reversal x[n] ak 

Time Scaling 
x [n]  

x[n/m], if n is a multipleof n 
(m) 

0, if n is a multipleof n 

(Periodic with period mN ) 

 1 
a 
 viewed as periodic m   

k    
with  period  mN 


 

Periodic Convolution  x[r]y[n  r] 
r [ N ] 

Nak bk 

Multiplication x[n]y[n]  

 al bk l lN 

Differentiation x[n]  x[n 1] 1  e jk ( 2 / N ) a 
k 

Integration n 

 x[k ] (finite valued and periodic 
k  

only if a0  0 ) 


 

1 
a 

 1  e jk ( 2 / N ) 
 

k 

Conjugate Symmetry for 
Real Signals 

x[n] real  ak  a *k 

 
Rea   Rea 

 k k 

Imak    Imak 
 ak  ak  

a  a 
 k k 

Real and Even Signals 
Real and Odd Signals 

Even-Odd Decomposition 

of Real Signals 

x[n] real and even 

x[n] real and odd 

 xe[n]  Evx[n] x[n] real


x [n]  Od x[n] x[n] real
 e 

ak real and even 

ak purely imaginary and odd 

Reak 

j Imak 

 Parseval‟s Relation for Periodic 
Signals 

 1 
 x[n] 

2 
  a 

2
 

T 
k 

n N  n N 

 

 

3.7.1 Multiplication 
 

 

 

. (3.92) 

 

Eq. (3.92) is analogous to the convolution, except that the summation variable is now restricted to in 
interval of N consecutive samples. This type of operation is referred to as a Periodic Convolution 

between the two periodic sequences of Fourier coefficients. 
 

The usual form of the convolution sum, where the summation variable ranges from 
is sometimes referred to as Aperiodic Convolution. 

  to   , 

x[n]y[n]FS  l k l a b 
l N 



  

  

 

  

1 

1 

3.7.2 First Difference 

 

 
. (3.93) 

 

 

3.7.3 Parseval’s Relation 

 

 

. 
 
 

(3.94) 

 

 
3.7.4 Examples 

 
Example : Consider the signal shown in the figure below. 

 

x[n] 
2 

 

n 
-5 0 5 

 

x1 [n] 

n 
-5 0 5 

 

 

x2 [n] 
1 

 
n 

-5 0 5 

x[n]  x[n 1]FS 1  e jk ( 2 / N ) a 
k 

 ak 
2
 

k  N 
 x[n] 

2
 T 

n N 

1 



  

  

 

  


3
 

 
5 
 


8
 







k 

k 

5 

7 

The signal x[n] may be viewed as the sum of the square wave x1 [n] with Fourier series 

coefficients bk and x2 [n] with Fourier series coefficients ck . 
 

ak    bk   ck , (3.95) 
 

The Fourier series coefficients for x1 [n] is 
 

1 sin(3k / 5) 
,
 

 
 

 
for k  0,  5,  10, .... 

b    
5

 


5 

sin(k / 5) 

, 

 

for k  0,  5,  10, .... 

. (3.96) 

 

The sequence 

coefficient: 

x2 [n] has only a dc value, which is captured by its zeroth Fourier series 

 

1 4 

c0 x2 [n] 1 , (3.97) 
n0 

 

Since the discrete-time Fourier series coefficients are periodic, it follows that ck 

is an integer multiple of 5. 

 1 whenever k 

 

1 sin(3k / 5) 
,
 

 
 

 
for k  0,  5,  10, .... 

a    
5

 


5 

sin(k / 5) 

, 

 

for k  0,  5,  10, .... 

(3.98) 

 

 

Example : Suppose we are given the following facts about a sequence x[n]: 
 

1. x[n] is periodic with period N  6 . 

2. 
n0 

3. 
n2 

x[n]  2 . 

(1)n x[n]  1. 

4.  x[n] has minimum power per period among the set of signals satisfying the preceding three 

conditions. 
 

 From Fact 2, we have 
1 5 

a0 

6 n 0 

x[n]  
1 

. 
3 

 Note that (1) 
n 
 e 

 jn 
 e

 j( 2 / 6)3 n 
, we see from Fact 3 that a  

1 7 
x[n]e  j 3( 2 / N ) n  

1 
.  

 

 From Parseval‟s relation, the average power in 

 
x[n] is 

3 
6 
2 6

 





  

  

 

  



a e  a e 

2 

 
 

 

P   ak . 
k 0 

 

Since each nonzero coefficient contributes a positive amount to P, and since the values of a0 and 

a3 are specified, the value of P is minimized by choosing a1  a2  a4  a5  0 . It follows that 
 

x[n]  a  a e 
jn 
 

1 
 

1 
(1)

n 
, 

  

0 3 
3 6

 

 

which is shown in the figure below. 

 

1/2  
x[n] 

 
n 

-5 0 5 
 
 

 

3.8 Fourier Series and LTI Systems 
 

We have seen that the response of a continuous-time LTI system with impulse response h(t) to a 

complex exponential signal e
st 

is the same complex exponential multiplied by a complex gain: 
 

y(t)  H (s)e
st 

, where 

 

H (s)   
 

h( )e 
s 

d , (3.99) 




In particular, for s  j , the output is y(t)  H ( j)e 
jt 

. The complex functions H (s) and 

H ( j ) a?re  called  the  system  function  (or  transfer  function)  and  the  frequency  response, 

respectively. 

 

By superposition, the output of an LTI system to a periodic signal represented by a Fourier series 
 

x(t) 


jk 0 t 

k 

k 



jk ( 2 /T ) t 

k 

k 



is given by 

   1/6    

5 



  

  

 

  



0 



y(t)  b e , (3.104) 

1 

0 

 

y(t) 


ak        

k 



H ( jk )e 
jk0t  

. (3.99) 

 

That is, the Fourier series coefficients bk of the periodic output y(t) are given by 
 

bk    ak H ( jk 0 ) , (3.100) 
 

Similarly, for discrete-time signals and systems, response h[n] to a complex exponential signal 

e jn is the same complex exponential multiplied by a complex gain: 
 

y[n]  H ( jk  )e 
jk0 n 

, (3.101) 

 
where 

 

H (e 
j 

) 



h[n]e 
 jn  

. (3.102) 
n 





Example : Suppose that the periodic signal 
3 

x(t)  ak e 
k 3 

 
jk 2t 

 

with a    1 ,  a  a  
1 

, 
0 1 1 

4
 

a2  a2  
1 

, and 
2 

a3  a3  
3
 is the input signal to an LTI system with impulse response 

 

h(t)  e
t 

u(t) 
 

To calculate the Fourier series coefficients of the output 

response: 

y(t) , we first compute the frequency 

 

H ( j )  
 

e
 

e 
 j 

d  
    1  

e 
 

e





 
    1 

, (3.103) 
0 1  j 1  j



The output is 
 

3 

jk 2t 

k 

k 3 

 

where bk  ak H ( jk 0 )  ak H ( jk 2 ) , so that 
 

b0  0 , 
1  1 

b1     , 
  

1  1 
b1     , 

  

4  1  j2  4 1  j2 



0 



  

  

 

  

 

1  1 
b2     , 

  

1  1 
b2     , 

  

4 1  j4  4  1  j4 




1  1 
b3     , 

  

1  1 
b3     . 

  

4 1  j6  4 1  j6 




Example : Consider an LTI system with impulse response 

the input 

h[n]   
n
u[n] ,  1    1, and with 

 

x[n] 
 2n  

. (3.105) 
 cos 

  N  


Write the signal x[n] in Fourier series form as 
 

x[n]  
1 

e j( 2 / N ) n  
1 

e  j (2 / N ) n . 

2 2 
 

Also the transfer function is 
 

H (e j)   ne jn  
   e

 j n   

 
  1  

. (3.106) 

n 0 n 0 1   e
 j





The Fourier series for the output 

 

y[n]  
1 

H e j 2 / N  e j( 2 / N ) n   
1 

H e  j 2 / N e j( 2 / N )n 

2 2 

 
1  1   j( 2 / N )n 1  1   j( 2 / N ) n 

 
. (3.107) 

 
2 
 
1   e

 j  
e  

2 

1   e 

 j 
e

 

   



  

  

 

  



3.9 Filtering 

 
Filtering – to change the relative amplitude of the frequency components in a signal or eliminate some 

frequency components entirely. 

 

Filtering can be conveniently accomplished through the use of LTI systems with an appropriately 

chosen frequency response. 

LTI systems that change the shape of the spectrum of the input signal are referred to as 

frequency-shaping filters. 

 

LTI systems that are designed to pass some frequencies essentially undistorted and significantly 

attenuate or eliminate others are referred to as frequency-selective filters. 
 

Example : A first-order low-pass filter with impulse response h(t)  e
t 

u(t) cuts off the high 

frequencies in a periodic input signal, while low frequency harmonics are mostly left intact. The 

frequency response of this filter 
 

H ( j )  
 

e
 

e 
 j 

d  
1 

. (3.107) 
 

0 1  j


We can see that as the frequency  increase, the magnitude of the frequency response of the 

filter H ( j ) decreases. If the periodic input signal is a rectangular wave, then the output signal 

will have its Fourier series coefficients bk given by 
 

bk  ak H ( jk 0 ) 
sin(k0T1 )   ,

 

k (1   jk0 ) 

 

k  0 

 

(3.108) 

 

b0  a0 H (0)  
2T1   . (3.109) 
T 

 

The reduced power at high frequencies produced an output signal that is smother than the input signal. 
 

 

 

 

 

 

 

 

 
 

t 

1 

 T  T1 T1 T 



  

  

 

  

s 

c 

 

3.10 Examples of continuous-Time Filters Described By Differential Equations 

 
In many applications, frequency-selective filtering is accomplished through the use of LTI systems 

described by linear constant-coefficient differential or difference equations. In fact, many physical 

systems that can be interpreted as performing filtering operations are characterized by differential or 

difference equation. 

 

3.10.1 A simple RC Lowpass Filter 

 
The first-order RC circuit is one of the electrical circuits used to perform continuous-time filtering. The 

circuit can perform either Lowpass or highpass filtering depending on what we take as the output 

signal. 
 

 

 

 

 

 

 

vs (t ) (t ) 

 

 

 

 

 

 

If we take the voltage cross the capacitor as the output, then the output voltage is related to the input 

through the linear constant-coefficient differential equation: 
 

RC 
dvc (t)  v

 

dt 
c
 

(t)  vs 

 

(t) . (3.111) 

 

Assuming initial rest, the system described by Eq. (3.111) is LTI. If the input is v (t)  e 
jt 

, we 

must have voltage output 

have 

v (t)  H ( j )e 
jt 

. Substituting these expressions into Eq. (3.111), we 

 

RC 
d H ( j )e 

jt  H ( j )e 
jt

 

dt 
 e 

jt 
, (3.112) 

 

or 
 

RCjH ( j )e 
jt  
 H ( j )e 

jt  
 e 

jt 
, (3.113) 

v r (t ) 

+ 

- 
v 

c 



  

  

 

  

 

Then we have 

 

H ( j ) 
1 

 
 

1  RCj


. (3.114) 

 

Te amplitude and frequency response H ( j ) is shown in the figure below. 

 

 
 

We can also get the impulse response 
 

h(t) 
1  

e
t / RC

u(t) , (3.115) 
RC 

 

and the step response is 
 

h(t)  (1  e 
t / RC 

)u(t) , (3.116) 
 

The fundamental trade-off can be found by comparing the figures: 

 

 To pass only very low frequencies, 

1/ RC should be small, or RC should 

be large. 

 

 To have fast step response, we need a smaller RC . 

 

 The type of trade-off between behaviors in the frequency domain and time domain is typical of the 

issues arising in the design analysis of LTI systems. 



  

  

 

  

3.10.2 A Simple RC Highpass Filter 

 
If we choose the output from the resistor, then we get an RC highpass filter. 

 
 

3.11 Examples of Discrete-Time Filter Described by Difference Equations 

 
A discrete-time LTI system described by the first-order difference equation 

 

y[n]  ay[n  1]  x[n] . (3.116) 
 

Form the eigenfunction property of complex exponential signals, if x[n]  e 
jn

 , then 

y[n]  H (e 
j 

)e 
jn 

, where H (e 
j 

) is the frequency response of the system. 
 

H (e 
j 

) 
1 

1  ae 
 j





. (3.117) 

 

The impulse response of the system is 
 

x[n]  a
n
u[n]. (3.118) 

 
The step response is 

 

 

s[n] 
1  an1 

1  a 

 

u[n]. (3.119) 

 

  
 

 

From the above plots we can see that for 

 

a  0.6 

 

the system acts as a Lowpass filter and 

a  0.6 , the system is a highpass filter. In fact, for any positive value of a  1 , the system 

approximates a highpass filter, and for any negative value of  a  1 , the system approximates a 



  

  

 

  

highpass filter, where a 

decreased. 

controls the size of bandpass, with broader pass bands as a in 

 

The trade-off between time domain and frequency domain characteristics, as discussed in continuous 

time, also exists in the discrete-time systems. 

 

3.11.2.2 Nonrecursive Discrete-Time Filters 

 
The general form of an FIR norecursive difference equation is 

 

y[n] 





bk x[n  k ]. (3.120) 
k  N 

 

It is a weighted average of the 

coefficients bk . 

(N  M  1) values of x[n] , with the weights given by the 

 

One frequently used example is a moving-average filter, where the output of y[n] is an average 

of values of 

filtering. 

x[n] in the vicinity of n0 - the result corresponding a smooth operation or lowpass 

 

 

An example: y[n]  
1 
x[n 1]  x[n]  x[n  1]. (3.121) 

3 
 

The impulse response is 

 

h[n]  
1 
 [n  1]   [n]   [n  1] , (3.122) 

3 
 

and the frequency response 

 

H (e 
j 

)  
1 e 

j  
 1  e

 j . (3.123) 
3 

 

M 



  

  

 

  

k  N 

k  N 

 

A generalized moving average filter can be expressed as 
 

1 M 

y[n]   
N  M  1 

bk x[n  k] . (3.124) 

The frequency response is 
 

j	1 
M 
 jk 

1 j( N M ) / 2 sin M  N  1/ 2
H (e )  

M  N  1 
e

 

 e 
M  N  1 sin / 2

. (3.125) 

 

The frequency responses with different average window lengths are plotted in the figure below. 
 

 

FIR norecursive highpass filter 

 

An example of FIR norecursive highpass filter is 



  

  

 

  

y[n]  
x[n]  x[n  1] 

. (3.126) 
2 

 

The frequency response is 
 

H (e 
j 

)  
1 1  e 

 j 
2 

je 
j / 2  

sin( / 2) . (3.127) 
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

0 

Continuous-Time Fourier Transform 

 
4.0 Introduction 

 
 A periodic signal can be represented as linear combination of complex exponentials which are 

harmonically related. 

 An aperiodic signal can be represented as linear combination of complex expone ntials, which are 
infinitesimally close in frequency. So the representation take the form of an integral rather than a 
sum 

 In the Fourier series representation, as the period increases the fundamental frequency decreases 

and the harmonically related components become closer in frequency. As the period becomes 

infinite, the frequency components form a continuum and the Fourier series becomes an integral. 

 
 

4.1 Representation of Aperiodic Signals: The Continuous-Time Fourier Transform 

 

4.1.1 Development of the Fourier Transform Representation of an Aperiodic Signal 

 
Starting from the Fourier series representation for the continuous-time periodic square wave: 

 

1, 
x(t)  

0,
 

t  T1 

T1  t 

 
 T / 2 

 
, (4.1) 

 

x (t ) 

 
 2T  T T   T T T T 2T 

 1 1    

2 2 

The Fourier coefficients ak for this square wave are 
 

a    
2 sin(k0 T1 ) . (4.2)

 
 

k 
k T 

 

or alternatively 
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Tak 


 k0 

, (4.3) 

 

where 2 sin(T1 ) /  represent the envelope of Tak 

 

 When T increases or the fundamental frequency  0  2 / T decreases, the envelope is 

sampled with a closer and closer spacing. As T becomes arbitrarily large, the original periodic 

square wave approaches a rectangular pulse. 
 

 Tak becomes more and more closely spaced samples of the envelope, as T   , the Fourier 

series coefficients approaches the envelope function. 
 

 

This example illustrates the basic idea behind Fourier‟s development of a representation for aperiodic 

signals. 

 

Based on this idea, we can derive the Fourier transform for aperiodic signals. 
 

Suppose a signal 

figure below. 

x(t) with a finite duration, that is, x(t)  0 for t  T1 , as illustrated in the 

 From this aperiodic signal, we construct a periodic signal ~x (t) , shown in the figure below. 

2 sin(T1 ) 


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



 

 

 
 

 As T   , ~x (t)  x(t) , for any infinite value of  t . 
 

 The Fourier series representation of ~x (t)  is 
 

~x (t) 


ak        

k 

e 
jk0t  

, (4.4) 

 

a     
1   T / 2  ~x (t)e

 jk0 t dt . (4.5) 
 

k 
T T / 2 

 

 Since ~x (t)  x(t)  for t  T / 2 , and also, since x(t)  0 outside this interval, so we have 

 
a  

1 T / 2 

x(t)e 
 jk0 t dt  

1  

x(t)e 
 jk0t 

dt . 
 

k 
T T / 2 T 



 Define the envelope X ( j ) of Tak as 
 

X ( j)    
  

x(t)e
 jt 

dt . (4.6) 




we have for the coefficients ak , 
 

a  
1 

X ( jk ) 
k 

T 
0 

 

Then ~x (t)  can be expressed in terms of X ( j ) , that is 
 

~x (t) 
 1 

X ( jk 0 )e jk0t 
 

1 


X ( jk 0 )e 
jk0 t  . (4.7) 

k  T 2 k 
0 
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





(4.9) Fourier Transform 




X ( j)   x(t)e
 jt 

dt 

and 

(4.8) X ( j )e jt d Inverse Fourier Transform 



1 

2
x(t) 

 As T   , ~x (t)  x(t)  and consequently, Eq. (4.7) becomes a representation of x(t) . 
 

 In addition,  0  0 as T   , and the right-hand side of Eq. (4.7) becomes an integral. 
 

We have the following Fourier transform: 
 

 

 

 

4.1.2 Convergence of Fourier Transform 

 

If the signal x(t) has finite energy, that is, it is square integrable, 
 

  
x(t) 

2 

dt   , (4.10) 
 

Then we guaranteed that X ( j ) is finite or Eq. (4.9) converges. If e(t)  ~x (t)  x(t) , we have 
 

  
e(t) 

2 

dt  0 . (4.11) 

 

An alterative set of conditions that are sufficient to ensure the convergence: 
 

Contition1: Over any period, x(t) must be absolutely integrable, that is 

 

  
x(t) dt   , (4.12) 

 

Condition 2: In any finite interval of time, x(t) have a finite number of maxima and mi nima. 
 

Condition 3: In any finite interval of time, there are only a finite number of discontinuities. 

Furthermore, each of these discontinuities is finite. 
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0 

 

4.1.3 Examples of Continuous-Time Fourier Transform 

 

Example : consider signal x(t)  e 
at 

u(t) , a  0 . 
 

From Eq. (4.9), 
 



X ( j)  
 

eat e jt dt   
  1  

e( a j )t 

	1 

,
 

 
a  0 

 
(4.12) 

0 a  j a  j


If a is complex rather then real, we get the same result if Rea 0 
 

The Fourier transform can be plotted in terms of the magnitude and phase, as shown in the figure 

below. 
 

X ( j)  
1 

, X ( j )   tan 
1    

. (4.13) 
  a 





Example : Let x(t)  ea t , a  0 
 

X ( j)  
 

e
a t  

e
 jt 

dt  
0 

e 
at 

e
 jt 

dt  
 

e
at 

e 
 jt 

dt  1 
 

1 
 

2a 
 

  0 a  j a  j a 
2 
  

2
 

 

The signal and the Fourier transform are sketched in the figure below. 
 

a 
2 
  

2
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





Example : x(t)   (t) . (4.14) x(t)   (t) X ( j)  1 
 

X ( j )    
  

 (t)e
 jt 

dt  1. (4.15) 








That is, the impulse has a Fourier transform consisting of equal contributions at all frequencies. 

 

Example : Calculate the Fourier transform of the rectangular pulse signal 
 

1, 
x(t)  

0,
 

t   T
1   

. (4.16) 

t  T1 

x(t ) 
 

 
 T1 T

1
 

X ( j)  
   

x(t)e
 jt 

dt  
T1 

1e 
 jt 

dt  2 
sin T1  . 

 

 T1 
(4.17) 

 

The Inverse Fourier transform is 

 

x̂(t)  
  1  

  

2 
sinT1  e 

jt 
d , (4.18) 

 

2   


Since the signal x(t) is square integrable, 
 

e(t)    
x(t)  x̂(t) 

2 

dt  0 . (4.19) 

 

x̂(t) converges to x(t) everywhere except at the discontinuity, t  T1 , where x̂(t) converges to 

½, which is the average value of x(t) on both sides of the discontinuity. 
 

In addition, the convergence of x̂(t)  to x(t) also exhibits Gibbs phenomenon. Specifically, the 

integral over a finite-length interval of frequencies 
 

  1  


W   

2 
sinT1  e jt d




2  W 

1 
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FT 1 


FT 


Square wave 
 

Sinc  function 

As W   , this signal converges to x(t) everywhere, except at the discontinuities. More over, 

the signal exhibits ripples near the discontinuities. The peak values of these ripples do not decrease as 

W increases, although the ripples do become compressed toward the discontinuity, and the energy in 

the ripples converges to zero. 

 

Example : Consider the signal whose Fourier transform is 
 

1, 
X ( j)  

0, 

  W 

  W 
.
 

 
 

 
 

The Inverse Fourier transform is 
 

x(t)  1  


W 

e 
jt 

d  
sinWt 

.
 

  

2   W t 
 

Comparing the results in the preceding example and this example, we have 
 

 

This means a square wave in the time domain, its Fourier transform is a sinc function. However, if the 
signal in the time domain is a sinc function, then its Fourier transform is a square wave. This property 
is referred to as Duality Property. 

 

We also note that when the width of X ( j ) increases, its inverse Fourier transform x(t) will be 

compressed. When W   , X ( j ) converges to an impulse. The transform pair with several 

different values of W is shown in the figure below. 
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a e . (4.20) 

 

 
 

4.2 The Fourier Transform for Periodic Signals 
 

The Fourier series representation of the signal x(t) is 
 

x(t) 


jk0t 
k 

k 



It‟s Fourier transform is 

 

X ( j ) 



 2ak  ( k 0 ) . 
k 

(4.21) 
 

Example : If the Fourier series coefficients for the square wave below are given 
 

x (t ) 

 
 2T  T T   T T T T 2T 

 1 1    

2 2 
 

a    
sin k0 T1    , (4.22) 

k 
k 

 

The Fourier transform of this signal is 
 

 

X ( j) 





 
k 

2 sin k 0T1  ( k


k 
0
 

 

) . (4.23) 



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Example : The Fourier transforms for 

below. 

x(t)  sin 0 t and x(t)  cos 0 t are shown in the figure 
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Example : Calculate the Fourier transform for signal x(t) 



 (t  kT ) . 
k 



The Fourier series of this signal is 
 

a  
1 T / 2

 (t)e 
 j0t 

 
1 

. 
 

k 
T T / 2 T 

 

The Fourier transform is 
 

X ( j)  
2


T 

 

 

 ( 
k

2k 
) .

 

T 0 

 

The Fourier transform of a periodic impulse train in the time domain with period T is a periodic 

impulse train in the frequency domain with period 2 / T , as sketched din the figure below. 
 

 

4.3 Properties of The Continuous-Time Fourier Transform 

4.3.1 Linearity 

 

If  x(t) 
F 
 X ( j ) and  y(t) 

F 
Y ( j ) 

 

Then 




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. (4. 20) 
 
 

4.3.2 Time Shifting 

 

If  x(t) 
F 
 X ( j ) 

 

Then 

 

(4. 20) 
 

Or 

 

(4. 20) 
 

Thus, the effect of a time shift on a signal is to introduce into its transform a phase shift, namely, 

  0 t . 
 

Example : To evaluate the Fourier transform of the signal x(t) shown in the figure below. 

 

x(t ) 

 

 

 

 

 
t 

 

 

x2 (t ) x1 (t ) 

 

1 1 

 

 
3 3 

2 2 

t t 

 
1 1 

2 2 
 

The signal x(t) can be expressed as the linear combination 
 

x(t)  
1 

x (t  2.5)  x  (t  2.5) . (4. 20) 
 

2  
1 2 

 

x1 (t) and x2 (t) are rectangular pulse signals and their Fourier transforms are 

x(t  t 0 )  e 
F  j t 0 X ( j  ) . 

Fx(t  t0 ) e 0 X ( j)  X ( j) e 
 j t j X ( j ) t 0 

. 

1.5 
1 

1 2 3 4 

ax(t)  by(t) 
F 
 aX ( j)  bY ( j) 
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



 

X ( j )  
2 sin( / 2) 

1 





and X ( j )  
2sin(3 / 2) 

2 





Using the linearity and time -shifting properties of the Fourier transform yields 

 

X ( j)  e  j5 / 2 sin( / 2)  2 sin(3 / 2) 
  

 




4.3.3 Conjugation and Conjugate Symmetry 

 

If  x(t) 
F 
 X ( j ) 

 

Then 

 

 

 

 

Since 

 

 

X *( j)  
 

x(t)e 
 j t 

dt 
  

 


x *(t)e 
jt 

dt , 

 

 

 
(4. 20) 

       



Replacing  by   , we see that 
 

X *( j )  
 

x * (t)e 
 jt 

dt , (4. 20) 




The right-hand side is the Fourier transform of x * (t) . 
 

If x(t) is real, from Eq. (4.20) we can get 
 

X ( j )  X * ( j ) . (4. 20) 
 

We can also prove that if x(t) is both real and even, then X ( j ) will also be real and even. 

Similarly, if x(t) is both real and odd, then X ( j ) will also be purely imaginary and odd. 
 

A  real   function x(t) can be expressed in terms of the sum of an even function 

xe (t)  Evx(t)and an odd function 

x(t)  xe (t)  xo (t) 

xo (t)  Od x(t). That is 

 

Form the Linearity property, 

x *(t) F  X * ( j) . 
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

Fx(t)  F xe (t) F xo (t), 

From the preceding discussion, 

 

Fxe (t) is real function and 

 

Fxo (t) is purely imaginary. Thus 

we conclude with x(t) real, 
 

x(t) 
F 
 X ( j ) 

 

Evx(t)F 
 ReX ( j)

Od x(t)F 
 j ImX ( j )



Example : Using the symmetry properties of the Fourier transform and the result 

e
at 

u(t) 
F 


1 
 

 

a  j
to evaluate the Fourier transform of the signal x(t)  ea t , where a  0 . 

 

 Since 
 

a t 



 

 at 
 
 at 

  
 e

 at
u(t)  e

at 
u(t)  







 at 
x(t) e e u(t) e  u(  t) 2



2Ev e 
2 

u(t) , 

 

So  X ( j)  2 Re
 1  2a

 
   a  j a 

2 
  

2
 

 




4.3.4 Differentiation and Integration 

 

If  x(t) 
F 
 X ( j ) 

 

Then 
 

 

 

. (4. 20) 
 

 

 

 

 

. (4. 20) 
 

 
Example : Consider the Fourier transform of the unit step 

 

x(t)  u(t) . 
 

It is know that 

dx(t) 
F  jX ( j) 

dt 

j
x( )d F  

  1   
X ( j)  X (0) () 



t 


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1 

 1 1 

1 

 1 1 

t 

t 



g(t)   (t) 
F 
1 

 

Also note that 
 

x(t)    
g( )d



The Fourier transform of this function is 
 

X ( j) 
1 
 G(0) ( ) 

j

1 
  ( ) . 

j


where G(0)  1. 
 

Example : Consider the Fourier transform of the function x(t) shown in the figure below. 
 

 

 

 

 

t 

= +  1  1 

 

 

g (t)  
dx(t) 

dt 
 

From the above figure we can see that 

 
G( j )  

 2 sin  
 e 

j 
 e 

 j





g(t) is the sum of a rectangular pulse and two impulses. 

 
 



Note that G(0)  0 , using the integration property, we obtain 
 

X ( j)  
G( j ) 

 G(0) ( )  
2 sin  

 
2 cos 

. 
   

j j 
2 

j


It can be found 

real and odd. 

X ( j ) is purely imaginary and odd, which is consistent with the fact that x(t) is 

 

 

4.3.5 Time and Frequency Scaling 

x(t) 

 1 
1 

1 
t 
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

1 

x(t) 
F 
 X ( j ) , 

 

Then 

x(at) 
F 
 

1
 

a 
X ( 

j 
) . (4. 20) 

a 
 

From the equation we see that the signal is compressed in the time domain, the spectrum will be 

extended in the frequency domain. Conversely, if the signal is extended, the corresponding spectrum 

will be compressed. 
 

If a  1, we get from the above equation, 
 

x(t) 
F 
 X ( j) . (4. 20) 

 
That is, reversing a signal in time also reverses its Fourier transform. 

4.3.6 Duality 

 
The duality of the Fourier transform can be demonstrated using the following example. 

 

1, x (t) 
t  T1  


F 
X 

( j)  
2 sinT1 

 
 1 

0, t  T1 


x  (t)  
sinWT1  


F 
 X 

2 
t 

2
 

1, 
( j )  

0,
 

  W 

  W 
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 

1   

2 



 
 

1  
2 

t 

 2 

d
 jtx(t ) 

F 
 

dX ( j )
 

0    )) F 0 j t 
e x(t)  X ( j( 

x()d





F  (t ) x(t)  x(0) 

 1 

jt 


 

The symmetry exhibited by these two examples extends to Fourier transform in general. For any 

transform pair, there is a dual pair with the time and frequency variables interchanged. 
 

Example : Consider using duality and the result 

transform G ( j ) of the signal 

e
 t 


F 
 X ( j ) 

2 

1   
2
 

 

to find the Fourier 

g (t) 
2 

.
 

1  t 
2

 

 

Since e
 t

 
F 
 X ( j ) 

2 

1   
2
 

 

, that is, 

 

e
 t  

  1   

       2   

e jt d ,
 

2   
 
1   

2 



 


Multiplying this equation by 2 and replacing t by  t , we have 
 

2e
 t

  
       2   

e jt d

 

Interchanging the names of the variables t and  , we find that 
 

2e
 

  
      2     

e
 jt 

d   F 
1    2  

 2e
  

. 1  t 
   



Based on the duality property we can get some other properties of Fourier transform: 
 

 

 

 
 



  

97  

 

 

X ( j) 
2 
d






  1  

2

2 
x(t) dt 







y(t)  h(t)  x(t )
F 
Y ( j)  H ( j) X ( j) 

4.3.7 Parseval’s Relation 

 

If  x(t) 
F 
 X ( j ) , 

 

We have 
 

 

Parseval‟s relation states that the total energy may be determined either by computing the energy 

per unit time x(t) 
2

 and integrating over all time or by computing the energy per unit frequency 

X ( j ) 
2 
/ 2 and integrating over all frequencies. For this reason, X ( j) 

2
 is often referred to 

as the energy-density spectrum. 

 
 

4.4 The convolution properties 

 

 

The equation shows that the Fourier transform maps the convolution of two signals into product of 

their Fourier transforms. 

 

H ( j ) , the transform of the impulse response, is the frequency response of the LTI system, which 

also completely characterizes an LTI system. 

 

Example : The frequency response of a differentiator. 

 

y(t)  
dx(t) 

. 
dt 

 

From the differentiation property, 
 

Y ( j )  jX ( j ) , 
 

The frequency response of the differentiator is 
 

 

H ( j ) 
Y ( j

X ( j)
) 





j . 

 

Example : Consider an integrator specified by the equation: 
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t 

 

1 

 

y(t)    
x( )d . 

The impulse response of an integrator is the unit step, and therefore the frequency response of the 

system: 
 

H ( j ) 
1 
  () . 

j


So we have 

 
Y ( j )  H ( j ) X ( j) 


1 

X ( j )  X (0) () , 
j



which is consistent with the integration property. 

 

Example : Consider the response of an LTI system with impulse response 
 

h(t)  e 
at 

u(t) , a  0 
 

to the input signal 
 

x(t)  e
bt 

u(t) , b  0 
 

To calculate the Fourier transforms of the two functions: 
 

X ( j)  
1 

b  j



, and 

H ( j)  
1 

. 
a  j



Therefore, 

 
Y ( j )  

 
, 

a  j b  j 

using partial fraction expansion (assuming 

 

a  b ), we have 
 

Y ( j )  
1  1 

 
1 



b  a 
 
a  j b   j 






The inverse transform for each of the two terms can be written directly. Using the linearity property, 

we have 
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 

a  j 

1 

S ( j )P( j(   ))d





1 

2
r(t)  s(t ) p(t)  R( j) 

 

y(t) 
1 

 
 

b  a 
eat 

u(t)  e
bt 

u(t). 
 

We should note that when a  b , the above partial fraction expansion is not valid. However, 

with a  b , we have 

 

Y ( j )  
 2

 

Considering   1 

a   j 2

 j
  d  	1  

, and
 

d a  j

e
at 

u(t) 
F 


1 

a  j

 

, and 

te 
at

u(t) 
F 
 j  

d    1  
, d 

 
a  j 




 


so we have 
 

 

Y (t)  te 
at 

u(t) . 

 

4.5 The Multiplication Property 

 

 

Multiplication of one signal by another can be thought of as one signal to scale or modulate the 
amplitude of the other, and consequently, the multiplication of two signals is often referred to as 
amplitude modulation. 

 

Example : Let s(t) be a signal whose spectrum S ( j ) is depicted in the figure below. 

, 
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Also consider the signal 

 

p(t)  cos0 t , then 

P( j )   (  0 )   (   0 ) . 
 

The spectrum of r(t)  s(t) p(t) is obtained by using the multiplication property, 
 

R( j )  
  1   



S ( j)P( j(   ))d

2 

, 

 
1 

S ( j  
2 

0
 

)  
1 

S ( j   ) 2 
0

 

 

which is sketched in the figure below. 
 

From the figure we can see that the signal is preserved although the information has been shifted 
to higher frequencies. This forms the basic for sinusoidal amplitude modulation systems for 

communications. 
 

Example : If we perform the following multiplication using the signal r(t) obtained in the 

preceding example and 

 
g (t)  r(t) p(t) 

p(t)  cos0 t , that is, 

 

The spectrum of P( j) , R( j) and G ( j ) are plotted in the figure below. 
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If we use a lowpass filter with frequency response H ( j ) that is constant at low frequencies and 

zero at high frequencies, then the output will be a scaled replica of S ( j ) . Then the output will 

be scaled version of s(t) - the modulated signal is recovered. 
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4.6 Summary of Fourier Transform Properties and Basic Fourier Transform Pairs 
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a 

4.7 System Characterized by Linear Constant-Coefficient Differential Equations 

 
An LTI system described by the following differential equation: 

 
 

 

 ak 

k 0 

d 
k 
y(t) 

dt 
k
 

 

 

 bk 

k 0 

d 
k 
x(t) 

 
 

dt 
k
 

 

, (4. 67) 

 

which is commonly referred to as an Nth-order differential equation. The frequency response of this 

LTI system 

H ( j )  
Y ( j ) 

, (4. 68) 
X ( j ) 

 

where X ( j ) , Y ( j) and H ( j ) are the Fourier transforms of the input x(t) , output y(t) and 

the impulse response h(t) , respectively. 

 
Applying Fourier transform to both sides, we have 

 
 N d 

k 
y(t)   M d 

k 
x(t) 

F  ak dt 
k
   F bk dt 

k
  , (4. 69) 

k 0  k 0 


From the linearity property, the expression can be written as 
 

N  d 
k 
y(t)  M  d 

k 
x(t) 

 ak F  dt 
k
    bk F  dt 

k
 . (4. 70) 

k 0   k0  


From the differentiation property, 
 

N M 
Y ( j ) 

 
 


M    

b
 ( j)

k
 

a ( j )
k 
Y ( j )  b ( j)

k 
X ( j )  H ( j )  	k 0   k  (4. 71) 

k 
k 0 

k 
k0 X ( j) N 

k 0 k 
( j )

k
 

 

H ( j ) is a rational function, that is, it is a ratio of polynomials in ( j ) . 
 

Example : Consider a stable LTI system characterized by the differential equation 
 

dy(t) 
 ay(t)  x(t) , with 

dt 
 

The frequency response is 

a  0 . 

M N 


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H ( j) 

1 

j  a 
.
 

 

Te impulse response of this system is then recognized as 
 

h(t)  e 
at 

u(t) . 

 
Example : Consider a stable LTI system that is characterized by the differential equation 

 

d 
2 
y(t) 

4 
dt 

2
 

dy(t) 
 

 

dt 
 3y(t) 

dx(t) 
 

 

dt 
 2x(t) . 

 

The frequency response of this system is 
 

H ( j ) 
	( j )  2 




( j )
2 
 4( j )  3 

j  2 

j  1 j  3 
.
 

 

Then, using the method of partial-fraction expansion, we find that 
 

H ( j ) 
1/ 2 




j  1 

1 / 2 

j  3 
.
 

 

The inverse Fourier transform of each term can be recognized as 

 

h(t)  
1 

e
t 

u(t)  
1 

e
3t 

u(t) . 

2 2 
 

 

Example : Consider a system with frequency response of 

that the input to the system is 

H ( j )  



j  2 

j  1 j  3



and suppose 

x(t)  e
t 

u(t) , 

 
find the output response. 

 

The output in the frequency domain is give as 

 
Y ( j )  H ( j ) X ( j)  

	j  2    1  

	j  2 

,  j  1 j  3 j  1

  j  12  j  3)

  


Using partial-fraction expansion, we have 




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Y ( j ) 

1 / 4 



j  1 

1/ 2 

 j  12
 

1/ 4 

 j  3) 
,
 

 

By inspection, we get directly the inverse Fourier transform: 

 
h(t)  

 1 
e
t 
 

1 
te

t 
 

1 
e
3t 

u(t). 

  4 2 4 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


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MODULE – III 

SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS 

Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, 

Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear 

System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal 

LPF, HPF, and BPF characteristics. 

Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and 

rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and 

Frequency domain, Graphical representation of Convolution. 

 

Linear systems 

A system is said to be a linear if it obeys homogeneity and additivity properties. This implies that the 

response of a linear system to weighted sum of input signals is equal to the same weighted sum of 

responses of the system to each of those signals.  

Homogeneity property: This property says if input signal weighted by any arbitrary constant then 

output signal also weighted by same arbitrary constant 

 

 

 
Additive property: Response of system to sum of two input signals is equal to sum of individual 

response of the system. 

 

 

 
Combining above two properties  

Arbitrary constant 

 Response   

 
Where  is the output of the system in response to  

Classification of linear systems 

 Lumped and Distributed system  

 Time – Invariant and Time Variant system 

Lumped and Distributed system: A Lumped System consists of lumped elements which are 

interconnected in particular way. The energy in the system is considered to be stored or dissipated in 

distinct isolated elements. The disturbance initiated at any point is propagated instantaneously at every 

point in the system. The dimension of elements is very small compared to wave length of the signals to 

be transmitted. Lumped system obeys Ohms law and Kirchhoff laws. They can be expressed with 

ordinary differential equations. Examples are TVS, motors, computers, any packed sytems 

Distributed systems are those in which elements are distributed over a long distances and dimensions 

of the circuits are small compared to the wave length of signals to be transmitted. More over such 

system takes finite amount of time for disturbance at one point to be propagated to the other point. 

They can be expressed with partial differential equations. Example are wave guides, optical fiber, 

transmission lines, antennas. 
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Linear Time Invariant (LTI) System: A system said to be LTI if it satisfies linear and invariance 

properties. Stated in another way, A LTI system whose parameters do not change with time. LTI 

system is characterized by linear equations such as algebraic, differential, or difference equations with 

constant coefficients. 

Example: Circuits using passive elements are LTI systems 

For LTI system, if input is delayed by t0 seconds the system satisfies superposition and homogeneity 

principles. Also, the output delayed by the same time t0 seconds. 

 

 

 
Linear Time Variant (LTV) System: A system said to be LTV if it satisfies the linear property but 

not the time invariant. For LTV system, if input delayed by t0 seconds, the system satisfies 

superposition and homogeneity properties but output varies with time t0. A LTV system whose 

parameters change with time. The coefficients in the differential equations are time variant.  

  

 

 

 
 

 

 

Impulse response and response of LTI system 

Let us consider  

 

 

 

 

 

 
Signal approximation 
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Impulse response of LTI system due to an impulse input applied at t=0 is h (t) 

Hence  

This is known as convolution integral and it gives relationship among input signal, output signal and 

impulse response of system.LTI system completely characterized by impulse response 

 

 

 
Frequency response of LTI system: 

Let us consider LTI system with impulse response h(t) and y(t) is response of input signal x(t) . Input 

and output relationship of system given by convolution integral. 

.  

 
Fourier transform of input x(t) , output y(t) and impulse response h(t) are X(ω) , Y(ω) and H(ω) 

respectively. 
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Magnetude response is symmetric and phase response is anti symmetric. 

Response to Eigen functions 

If input to the system is an exponential function  then output y(t)  

 

 

 
Output is a complex exponential of the same frequency as input multiplied by the complex constant 

. An inputs signal is called Eigen functions of the system if the corresponding output is a constant 

multiple of the input signal. Thus the functions  all Eigen functions as we get 

the same function the output as in input. 

Properties of LTI system 

Commutative Property 

 

 
Associate property 

This implies that a cascading of two or more LTI system will results to single system with impulse 

response equal to the convolution of the impulse response of the cascading systems. 

 

 
 

Distributive Property  

This property gives that addition of two or more LTI system subjected to same input will results single 

system with impulse response equal to the sum of impulse response of two or more individual systems. 
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Static and dynamic system  
A system is static or memory less if its output at any time depends only on the value of its input at that 

instant of time. For LTI systems, this property can hold if its impulse response is itself an impulse. But 

convolution property, we know that the output depends on the previous samples of the input, therefore 

an LTI system has memory and hence it is dynamic system. 

Causality  

A continuous time LTI system is said to causal if and only if it impulse response is h(t) = 0 for 

t<0, then integral becomes 

 

 
Stability: a continuous time system is bounded input , bounded output stable if and only if the impulse 

response is absolutely Integrable.  

Consider LTI system with impulse response h(t) . the output y(t) is  

 

 

 
If x(t) is bounded  and   then  

 
For bounded output y(t) < ꝏ , the impulse response should be absolutely integrable. Hence  

 
Above equation gives necessary and sufficient condition for BIBO stability. 

Inevitability: 
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A system T said to be invertible if and only if there exits an inverse system T
-1

 for such that T T
-1

  is an 

identical system  . For an LTI system with impulse response h1(t), this is equivalent to the existence of 

another system with impulse response h2(t) such that h1(t)* h2(t) = δ(t). 

 

Transfer Function of LTI System: 

Transfer function of LTI system defined as the ratio of Fourier transform of the output signal  to 

Fourier transform of the input signal .It is expressed as  

 
Inverse Fourier transforms of  gives the impulse response of the system. That is h(t) = IFT of 

 

 

In general Input and output relationship of continuous time causal LTI system described by linear 

constant coefficient differential equations with zero initial conditions is given by  

     

Where   are constant coefficients the order N refer to the highest derivative of y(t) in above 

equation. 

Apply Fourier Transform on both sides of above equation 

 

 

 
Distortion less Transmission System: 

Distortion less transmission through the LTI system requires that the response be exact replica of input 

signal. The replica may have different magnetude and delayed in time. 

Therefore,  

Apply the Fourier transform 
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 Where n is integer number 

Therefore, to achieve distortion less transmission through LTI system, magnetude response of system 

 must be constant over entire frequency range and phase response of the system   must 

be linear with frequency. 

Band width of signals and System 

Band width of signals: it is the range of significant frequency components present in the signal. A 

signal may have frequency components in the entire frequency range from -ꝏ to ꝏ. For any practical 

signals, the energy content decreases with frequency, only some of frequency components of signals 

have significant amplitude within a certain frequency band; outside this band have negligible 

amplitude. The amplitude of significant frequency component is within the   times (3dB) of 

maximum signal amplitude. 

System Band width:  
The band width of system is defined as the interval of frequencies over which the magnitude spectrum 

of  remains within   times (3dB) its value at the mid band. The band width of system is  

  times 

(3dB) its value at the midband 

  Times 

(3dB) of  its value at the midband. 

Band width =  

For distortion less transmission, a system should have infinite bandwidth. But due to physical 

limitations it is impossible to design an ideal filters having infinite bandwidth. 

For satisfactory distortion less transmission, therefore, an LTI system should have high bandwidth 

compared to the signal bandwidth. 

 

The filter characteristics of linear system: 

The system processes the input signal in a way that is characteristics of the system. The system 

modifies the spectral density function of input signal according to transfer function. It is observed that 

the system act as some kind of filter to various frequency components. Some frequency components 

are boosted in strength, some are attenuated, and some may remain unaffected. Similarly, each 

frequency component suffers a different amount of phase shift in the process of transmission. LTI 

system acts as filter depending on the transfer function of system. The transfer function acts as 

weighting function to different frequency components of input signal. 
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LTI system may be classified into five types of filters 

Low pass filter 

High pass filter 

Band pass filter 

Band reject filter 

All pass filter. 

The pass band of a filter the range of frequencies that  allowed by the system without distortion. The 

stop band of filter is the range of frequencies that attenuated by the system. 

Ideal filters:  
An Ideal filter passes all frequency components in its pass band without distortion and completely 

blocks frequency components outside of pass band. There is discontinuity between pass band and stop 

band in frequency spectrum. But practical filters, there is gradual transition gap between pass band and 

stop band, The range of frequencies over which there is a gradual attenuation between pass band and 

stop band is called transition band. Filters with small gap are very difficult to design. 

Ideal Low Pass Filter: 

An ideal low pass filter transmits all frequency components below the certain frequency  rad/sec 

called cutoff frequency, without distortion. The signal above these frequencies is filtered completely. 

The transfer function of Idel Low pass filter given by  

 

     

 

 
Ideal High Pass Filter: 

An ideal high pass filter transmits all frequency components above the certain frequency  rad/sec 

called cutoff frequency, without distortion. The signal below these frequencies is filtered completely. 

The transfer function of Idel high pass filter given by  
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Ideal Band Pass Filter: 

An ideal band pass filter transmits all frequency components within certain frequency band to 

rad/sec, without distortion. The signal with frequency outside this band is stopped completely. 

The transfer function of Idel band  pass filter given by  

 

     

 

 
 

Ideal Band Reject Filter: 

An ideal band reject filter rejects all frequency components within certain frequency band to 

rad/sec. The signal outside this band is transmitted without distortion.  

The transfer function of Idle band reject filter given by  
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Causality and Physical Realizability: Paley – Wiener Criterion 

For physically realizable systems, that cannot have response before the input signal applied. In time 

domain approach the impulse response of physically realizable systems must be causal that is h(t) =0 

for t< 0, this is condition known as causal condition. In frequency domain, this criterion implies that a 

necessary and sufficient condition for magnetude response  to be physically realizable is  

 
This condition known as the Paley – Wiener criterion. To satisfy this condition the function   

must be square integrable that is  

 
All causal systems that satisfy the Paley – Wiener criterion are physically realizable. 

Magnetude function   may be zero at some discrete frequencies but it cannot be zero over 

finite band of frequencies since this will cause the integral to become infinite. Therefore Idle filters are 

not physically realizable. It can be concluding that magnetude function cannot fall off to zero faster 

than exponential order. 

 is permissible  

this Gaussian error curve is not permissible. 

But it possible to construct physically realizable filters close to the ideal filter characteristics. Low pass 

filter having transfer function  

 
Where   an arbitrary small value, produces nearly ideal characteristics shown in fig below 

Band Width and Rise Time: 

The system band width can be obtained from rise time , which can be derived from output response of 

the system. 

Rise time : the rise time tr  of the output response is defined as the time the response takes to reach from 

10% to 90% of the maximum value of the signal or in general it is the time of response to reach from 

zero to the final value of the signal. 

 
Relationship between Band width and rise time 
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Consider ideal LPF , its transfer function is given by  

Where  cut off frequency or 3 dB band width of filter 

Apply Inverse Fourier transform 

 

 
if input is impulse then output is  = h(t) 

    

 

 

 

 
Product of rise time and bandwidth is constant 

Rise time inversely proportional to the system band width. 

Concept of convolution in time domain: 

The process of expressing the output signal in terms of the superposition of weighted and time shifted 

impulse response is called convolution. Convolution is a particularly powerful way of characterizing 

the input – output relationship of LTI systems. The mathematical tool for evaluating the convolution of 

continuous time signals is called convolution integral; for discrete time signals, it is called convolution 

sum . the convolution integral plays an important role in system analysis in time and frequency 

domains. It is important process for signal processing and detection in communication systems. 

The convolution integral  

Let  continuous time signals. Then convolution   can 

be expressed as   

  

Thus the output of any continuous LTI system is the convolution of the input x(t) with impulse 
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response h(t) of the system. 

Case I : if input signal is causal  that is x(t) = 0 for t<0  

 
Case II  

System is causal that is h(t) =0 for t<0 then  

 
Case III 

Both input signal and system are causal then  

 
Properties of convolution integral  

Commutative property  

Let  continuous time signals 

 

 

 
 =  

Distributive Property  

 
Associate property  

 
Shift property 

If the signal shifted by  sec then convolution of  

and  

If  shifted by  and  respectively  

 
Convolution of function with impulse  

 

 
 =  

Convolution of function with unit step 

Any arbitrary function x(t)  with unit step function u(t)  

 
Proof  
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Width property  

Let us consider finite duration of two signals   are T1 and T2 respectively then 

duration of y(t) =  is equal to the sum of duration of . 

T   =   T1 + T2  

Also its   area under finite signals     are A1 and A2 respectively then the area under y 

(t) is product of both areas  

A = area under y (t) = area under  and area under  = A1   A2  

 

Convolution property of Fourier Transform 

Fourier transforms pair of two signals given by  

 

 
  

 

 

 

 
Convolution in frequency domain: 

Fourier Transform of  = 2Π Fourier transform of [ x(t) h(t) ] 

Fourier transform of [ x(t) h(t) ] =  

 
==  

 

 
 

 
Thus convolution in one domain is transformed a product operation in the other domain 

 

Graphical representation of Convolution 

When two signals are provided in graphical form, the convolution can be performed by graphical 

method. It involves the following steps. 

1. For given signals  , draw the 

signals  as function of independent variable. 
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2. Draw the function of  which is time 

reversal of  .then shift function by time t to form . 

3. Draw the both signals  on the 

 axis with large time shift t along the negative axis. 

4. Increase the time t along positive  axis . Multiply 

the signals  and integrate over the period of two signals to obtain 

convolution at t. 

5. Increase the time shift step by step and obtain 

convolution using step 4. 

6. Draw the convolution x (t) with the values 

obtained in steps 4 and 5 as function of t. 
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MODULE – IV 

LAPLACE TRANSFORM AND Z-TRANSFORM 

Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform, Concept of Region of 

Convergence (ROC) for Laplace Transforms, Properties of L.T, Relation between L.T and F.T of a 

signal, Laplace Transform of certain signals using waveform synthesis. Z–Transforms Concept of Z- 

Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z Transforms, Region of 

Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse Z-transform, 

Properties of Z- transforms. 

 
Complex Fourier Transform 

Fourier transform is a tool which allows representing an arbitrary function  by continuous sum of 

exponential function of form of .These frequencies are restricted to the  axis in the complex plane. 

 

 

 

The variable  always appears with j and hence the integral can also be written as function of  

  

 

Let a function  

 

 

 

 

 

 

 

 

Limit of integration for  
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Represent  as continuous sum of exponential of complex frequency   . This is special kind 

of Fourier Transform called as complex Fourier transform or Bilateral Laplace Transform. 

 

 

Unilateral Laplace transforms 

Functions of interest are causal that is f(t) = 0 for t<0 , the Laplace transform of such functions are termed 

as unilateral or one sided Laplace Transforms. 

 

Lower limit indicates inclusions of initial conditions, impulse functions and its derivatives at t =  

Convergence of Laplace Transform 

The Fourier Transform of f(t) converge if f(t) is absolutely integrable , similarly the necessary condition 

for convergence of Laplace Transform is absolute integrability of  

 

Existence of the Laplace Transform 

Laplace Transform exists if it converge in the given interval . These fore , the condition for its existence is 

that the function  should be absolutely integrable. 

 

Proof: Let  then it always satisfies the following 

inequality  

> 0 

Where M and  are real constants  

 

 =  if   is finite value.thus Laplace Trnasform exists 

 

Region of convergence (ROC) 

Region of convergence (ROC) defines the region where Laplace Transform exists. The range of values of s 

for which Laplace Transform converge is called as ROC .The variable s= is a complex number and 
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display the complex plane referred to as s – plane where real part of s along the X – axis and imaginary 

part of s along the Y – axis. The ROC is a shaded region on the pole – zero plot, Laplace transform exists 

for values of s in the shaded region.Type equation here. 

Poles and zeros X(s)  

 

N(s)  :Numarator polynomial in complex variable s 

D(s) : denominator Polynomial in complex variable  s 

 

 

 

Function if . 

 

 

 

Roots of of numerator polynomial are called zero of X(s) because X(s) = 0 for those values s in the 

same way roots of denominator polynomialt are called poles of X(s) because X(s) = ꝏ for those values 

of s. Therefore poles of X(s) lie outside of ROC since X(s) does not converge at poles. The zeros, on 

the other hand may lie inside or outside of ROC. The poles and zeros of X(s) in finite s plane 

characterised the algebraic expression for  X(s) to within scale factor. The representation of poles and 

zeros in the s plane is referred to as the pole-zero plots. 

 

 

Properties of ROC 

A complete specification of Laplace Transform requires not only the algebraic expression for X(s) but 

also the associated ROC. Different signals have identical algebraic expression for X(s) , so that their 

Laplace transform are distinguishable only by ROC. It has been explained some specific constraint on 

ROC  for various class of signals. 

Property 1: the ROC of X(s) consists of strips parallel to  axis in the s plane. 

The ROC of Laplace Transform of  consists of those values of s for which  is absolutely 

integrable. 
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This condition depends only on  values  

Property 2: For rational Laplace Transforms, the ROC does not contain any poles. 

X(s) =  at poles ,  Laplace Transform does not converge at poles and thus the ROC cannot contain 

values of s that are pole. 

Property3: If  is a finite duration signal and is absolutely integrable then the ROC is the entire 

plane. 

 

is absolutely integrable  

For s to be in the ROC, the requirement is  

For  , the Maximum value of  over interval on which x(t) is non zero is  

 

 bounded 

For  , the Minimum  value of  over interval on which x(t) is non zero is  

  bounded 

 is absolutely integrable thus ROC includes entire s plane . 

 

Property4:  If  is right sided and if line Re { s } =  is in the ROC then all values of s for which 

Re { s } >  will also be in the ROC. 

 

 

For s to be in the ROC, the requirement is 

 

 ,   as t  
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 ,   as t  

X(t) cannot grow with out bound in –ve direction since x(t) = 0 for t < T1 

If a point s is in the ROC then all the points to the right of s that is all points larger real parts are in 

ROC, For this reason in this case is commonly referred to as right half s-plane. 

Property 5 : if  is left sided and if line Re{ s } =  is in the ROC then the all values of s for 

which Re{ s } <  will also in the ROC. 

Property 6: if  is two sided and if line Re{ s } =  is in the ROC then the ROC consists of a strip 

in the s- plane that includes  line Re{ s } =  . 

If  is infinite duration signal then ROC is of the form  where  are real 

parts of two poles of X(s) , thus ROC is a vertical strip in the s plane between the vertical line Re {s} = 

 and Re { s } =  . all poles lies outside the ROC. 

Property 7: if the Laplace X(s) of x(t) is rational then its ROC is bounded by poles or extended to 

infinity . in addition , no poles of X(s) contained in the ROC. 

 

Property 7 : if Laplace transform of x(t) is X(s) is rational. 

If Laplace Transform X(s) contain more than one poles in the right side of S-plane , the ROC is the 

region in the plane to the right of right most pole. 

If Laplace Transform X(s) contain more than one pole in the left side of s-plane , the ROC is the region 

in the plane to the left of left most pole. 

Properties of Laplace Transform  

Linearity Property  

 ,  

Linear combination of signals 

 

Where are any arbitrary constants 

Proof  
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 =   +   + .......+  

=  

 

Time Shifting Property 

If signal  

 

  

 

 

 

 

Proof 

 

 

 

 

 

 

Frequency shifting Property 

If signal  

 

Proof 
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t 

= F(s+a) 

 

Scaling Property  

 

 

Proof  

 

 

 

 

 

Time differentiation Property 

If signal  
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For causal function , all initial conditions are zero 

 

Differentiation in s – Domain 

 

 

Proof  

 

Differentiation with respect of s 

 

 

2
nd

 derivative with respect s 

 

 

Similarly, nth derivative with respect s 

 

Time integration Property 

 

 

Proof  

 



  

129  

 

 

 +  =  for causal signal 

For non-causal signal  

 

 

 

Integration in S domain 

 

 

Proof  

 

 

 

 

 

Time Convolution 

 

 

 

Proof 
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Multiplication in time domain or convolution in frequency domain 

 

 

Proof 

 

 

=  

 

 

Initial value theorem 

The initial value theorem is used to calculate f(0) from Laplace Transform of F(s) without the need of 

inverse Laplace Transform.It state that f(t) and it first derivative are Laplace transformable , then the initial 

value of f(t) is given by  
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=  

The discontinuity in f(t) at t=0 , the derivative of f(t) is an impulse function af amplitude equal in the value 

of discontinuity. 

 = { f(0+) – f(0-)}  

 

  

 

 

Final Value theorem  

 

Proof  

 

 

 

Inverse Laplace Transforms 
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Method of finding Inverse Laplace Transform 

1. Residue Method 

2. Partial fraction method 

 
1. Residue Method: 

 

The inverse formula can be expressed as a contour integral by the residue theorem  

 

 

 

 

It given by a line integral along a vertical line Re {s} in the region of existence of F(s) . in this integral the 

real  is to be selected such that if ROC of F(s) is Re {s} > then  

 

Finding residues  

If  is a rational function of s it may be expressed as  

 

 

Where F(s)   has n poles at s =  and  has no poles at s =  the residue of F(s)  at  

s =  is given by  

Res { F(s)  }  =  

If n=1 function has only one first order pole  
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Res { F(s)  }  =  

 

 

Partial fraction Expansion Method 

(a) X(s) is proper rational function 

The Partial fraction expansion of the following two conditions  

 

(i) must be proper rational function that is degree of denominator polynomial in s is greater 

than the degree of numerator polynomial in s. 

 

 

(ii) A denominator in factored form.The structure of expansion depends on the nature of the factors 

in Q(s). the constants in the numerator of partial fraction expansion are called residues. 

 

 

 

 

Case 1: If D(s) contain real and distinct roots. 

 

 

The coefficient  can be obtained as  

 

If D(s) contain some complex conjugate roots 

 

 

 are complex conjugate roots 

Case 2: if Denominator contain multiple roots in the form of  
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(b) If X(s) is improper rational function 

Degree of N(s)   greater than or equal to degree of denominator D(s)  . 

Degree of N(s) = m, degree of D(s) = n 

 

 

 

 

 

Inverse Laplace transform of   (becomes proper rational function) and this can be evaluated by 

partial fraction expansion method.  

Inverse of Laplace transform of Q(s) can be computed using differentiation property. 

Application of Laplace Transform on Linear Systems 

The transfer function of LTI continuous system completely described the behaviour of system with any 

type of input. Consider LTI system with impulse response Let 

 The transfer function 

of a system is defined as the ratio of the Laplace transform of the output signal to the Laplace transform 

of input signal with all initial conditions are zero. 

 

 

 

 

 

 

Causal LTI continuous time System described by an Nth order linear constant coefficient differential 

equation  

     N > M 

Apply Laplace transform on both sides 
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Steady state frequency response of LTI system  

 

Magnitude response =  

Phase Response =  =  

Causality:  

For causal system,  and thus right sided. Therefore, the ROC associate with the transfer 

function of causal system is right half plane. However, if we know that the transfer function is rational, then it 

suffices to check that the ROC is the right half plane to the right of right most pole in s plane to conclude that the 

system is causal.  

Stability  

So far, we have seen that BIBO stability 0f continuous time LTI system is equivalent to its impulse response, 

being absolutely integrable, in which case its Fourier transform converge. Also the stability of an LTI 

differential system is equivalent to having all the poles of its characteristics equation having negative real part. 

for the Laplace Transform, the first stability condition translates to the following.    

 An LTI system is stable if and only if the ROC of transfer function contains j  axis. 

 A causal system with proper rational function H(s) is stable if and only if all of its poles are in left half 

of s-plane. 

Advantages of Laplace Transforms 

 The higher order differential equations can be easily solved by using simple algebraic equations. 

 It transforms higher order differential equations with initial conditions in the time domain into simple 

algebraic equations in the s-domain. Since the initial conditions are automatically included in the 

solution. 

 Total solution of Differential equation can be obtained by using inverse Laplace transform. 

 It is a power full tool for analysing system properties in the form of transfer function. 

 It can be used to analyse many classes of signals and systems which are not absolutely integrable. 

 It provides solutions for many unstable systems such as impulse functions. 

 Fourier transforms can be obtained from Laplace Transforms by substituting s = j  

  Limitations  

 

 Laplace transforms does not converge for some type of signals whose amplitude grows faster than time. 

 The ROC is needed to obtain to obtain inverse Laplace transforms. 

 It very difficult to solve complex integrals directly in the process of inverse Laplace transform. 
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Z-TRANSFORMS 

 
Analysis of continuous time LTI systems can be done using z-transforms. It is a powerful mathematical tool to 

convert differential equations into algebraic equations. 

 

         The bilateral (two sided) z-transform of a discrete time signal x(n) is given as. 

 

 
        The unilateral (one sided) z-transform of a discrete time signal x(n) is given as 

 

 
 

Concept of Z-Transform and Inverse Z-Transform: 

 

Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined as 

 
Z-transform of a discrete time signal x(n) can be represented with X(Z), and it is defined as 
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Inverse Z-transform: 
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Difference Between Laplace and Fourier Transforms: 

Laplace vs Fourier Transforms: 

Both Laplace transform and Fourier transform are integral transforms, which are most commonly employed as 

mathematical methods to solve mathematically modeled physical systems. The process is simple. A complex 

mathematical model is converted in to a simpler, solvable model using an integral transform. Once the simpler 

model is solved, the inverse integral transform is applied, which would provide the solution to the original 

model. 

For example, since most of the physical systems result in differential equations, they can be converted into 

algebraic equations or to lower degree easily solvable differential equations using an integral transform. Then 

solving the problem will become easier. 

Region of convergence in Laplace transform: 

            With the z-transform, the s-plane represents a set of signals (complex exponentials). For any given LTI 

system, some of these signals may cause the output of the system to converge, while others cause the output to 

diverge ("blow up"). The set of signals that cause the system's output to converge lie in the region of 

convergence (ROC). This module will discuss how to find this region of convergence for any discrete-time, LTI 

system. 

 

            The region of convergence, known as the ROC, is important to understand because it defines the region 

where the z-transform exists. The z-transform of a sequence is defined as 

 

 

                   The ROC for a given x[n] , is defined as the range of z for which the z-transform converges. Since 

the z-transform is a power series, it converges when x[n]z−n is absolutely summable.  

 

 
must be satisfied for convergence. 

Properties of the Region of Convergence: 

The Region of Convergence has a number of properties that are dependent on the  

characteristics of the signal, x[n]. 

 The ROC cannot contain any poles. By definition a pole is a where X(z) is infinite. Since X(z) must be 

finite for all z for convergence, there cannot be a pole in the ROC. 

 If x[n] is a finite-duration sequence, then the ROC is the entire z-plane, except 

possibly z=0 or |z|=∞. A finite-duration sequence is a sequence that is nonzero in a finite 

interval n1≤n≤n2. As long as each value of x[n] is finite then the sequence will be absolutely summable. 

When n2>0 there will be a z-1 term and thus the ROC will not include z=0. When n1<0 then the sum 
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will be infinite and thus the ROC will not include |z|=∞. On the other hand, when n2≤0 then the ROC 

will include z=0, and when n1≥0 the ROC will include |z|=∞. With these constraints, the only signal, 

then, whose ROC is the entire z-plane is x[n]=cδ[n]. 

 

 

 

If x[n] is a two-sided sequence, the ROC will be a ring in the z-plane that is bounded on the interior and exterior by a 

pole. A two-sided sequence is an sequence with infinite duration in the positive and negative directions. From the derivation 

of the above two properties, it follows that if -r2<|z|<r2 converges, then both the positive-time and negative-time portions 

converge and thus X(z) converges as well. Therefore the ROC of a two-sided sequence is of the form -r2<|z|<r2. 
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Properties of Z- transforms: 
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  The z-transform has a set of properties in parallel with that of the Fourier 

transform (and Laplace transform). The difference is that we need to pay special attention 

to the ROCs. In the following, we always assume 

 
 
 

and 
 

 
Linearity 

 

 

 

  

 Time Shifting 

 

 

 

Proof: 

 

 

 

Define , we have  and 
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The new ROC is the same as the old one except the possible addition/deletion of the 

origin or infinity as the shift may change the duration of the signal. 

 Time Expansion (Scaling) 

 

 

 

 

The discrete signal  cannot be continuously scaled in time as  has to be an 

integer (for a non-integer   is zero). Therefore  is defined as 

 

 

 

Example: If  is ramp 

 

1 2 3 4 5 6 

 

1 2 3 4 5 6 

then the expanded version  is 

 

1 2 3 4 5 6 

 

0.5 1 1.5 2 2.5 3 

 

  1   2   3 

 

0 1 0 2 0 3 
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where  is the integer part of . 

Proof: The z-transform of such an expanded signal is 

 

 

 

Note that the change of the summation index from  to  has no effect as the terms 

skipped are all zeros. 

 Convolution 

 

 

 

The ROC of the convolution could be larger than the intersection of  and , 

due to the possible pole-zero cancellation caused by the convolution. 

 Time Difference 

 

 

 

Proof: 

 

 

 

Note that due to the additional zero  and pole , the resulting ROC is the 

same as  except the possible deletion of  caused by the added pole and/or 
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addition of  caused by the added zero which may cancel an existing pole. 

 Time Accumulation 

 

 

 

Proof: The accumulation of  can be written as its convolution with : 

 

 

 

Applying the convolution property, we get 

 

 

 

as . 

 Time Reversal 

 

 

 

Proof: 
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where . 

 Scaling in Z-domain 

 

 

 

 

Proof: 

 

 

 

In particular, if , the above becomes 

 

 

 

The multiplication by  to  corresponds to a rotation by angle  in the z-

plane, i.e., a frequency shift by . The rotation is either clockwise ( ) or 

counter clockwise ( ) corresponding to, respectively, either a left-shift or a 

right shift in frequency domain. The property is essentially the same as the frequency 

shifting property of discrete Fourier transform. 

 Conjugation 
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Proof: Complex conjugate of the z-transform of  is 

 

 

 

Replacing  by , we get the desired result. 

 Differentiation in z-Domain 

 

 

 

Proof: 

 

 

 

i.e., 

 

 

 

Example: Taking derivative with respect to  of the right side of 
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we get 

 

 

 

Due to the property of differentiation in z-domain, we have 

 

 

 

Note that for a different ROC , we have 
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MODULE – V 

 

SAMPLING THEOREM 

 

Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat 

top Sampling, Reconstruction of signal from its samples, Effect of under sampling – Aliasing, 

Introduction to Band Pass Sampling. Correlation: Cross Correlation and Auto Correlation of 

Functions, Properties of Correlation Functions, Energy Density Spectrum, Parseval’s Theorem, 

Power Density Spectrum, Relation between Autocorrelation Function and Energy/Power 

Spectral Density Function, Relation between Convolution and Correlation, Detection of Periodic 

Signals in the presence of Noise by Correlation, Extraction of Signal from Noise by filtering. 

Graphical and analytical proof for Band Limited Signals: 

Sampling thoerem: A continuous time signal can be represented in its samples and can be recovered 

back when sampling frequency fs is greater than or equal to the twice the highest frequency component 

of message signal. i. e. 

fs≥2fm 

Proof: Consider a continuous time signal x(t). The spectrum of x(t) is a band limited to fm Hz i.e. the 

spectrum of x(t) is zero for |ω|>ωm.Sampling of input signal x(t) can be obtained by multiplying x(t) 

with an impulse train δ(t) of period Ts. The output of multiplier is a discrete signal called sampled 

signal which is represented with y(t) in the following diagrams: 
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Here, you can observe that the sampled signal takes the period of impulse. The process of sampling can 

be explained by the following mathematical expression: 

 
Take Fourier transform on both sides. 
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To reconstruct x(t), you must recover input signal spectrum X(ω) from sampled signal spectrum Y(ω), 

which is possible when there is no overlapping between the cycles of Y(ω). 

There are three types of sampling techniques: 

 Impulse sampling. 

 Natural sampling. 

 Flat Top sampling. 

Impulse Sampling 

Impulse sampling can be performed by multiplying input signal x(t) with impulse train 

 of period 'T'. Here, the amplitude of impulse changes with respect to amplitude 

of input signal x(t). The output of sampler is given by 

 To 

get the spectrum of sampled signal, consider Fourier transform of equation 1 on both sides 

 
This is called ideal sampling or impulse sampling. You cannot use this practically because pulse width 

cannot be zero and the generation of impulse train is not possible practically. 

Natural Sampling 

Natural sampling is similar to impulse sampling, except the impulse train is replaced by pulse train of 

period T. i.e. you multiply input signal x(t) to pulse train 
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Flat Top Sampling 

During transmission, noise is introduced at top of the transmission pulse which can be easily removed 

if the pulse is in the form of flat top. Here, the top of the samples are flat i.e. they have constant 

amplitude. Hence, it is called as flat top sampling or practical sampling. Flat top sampling makes use of 

sample and hold circuit. 

 

Theoretically, the sampled signal can be obtained by convolution of rectangular pulse p(t) with ideally 

sampled signal say yδ(t) as shown in the diagram: 
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Nyquist Rate 

It is the minimum sampling rate at which signal can be converted into samples and can be recovered 

back without distortion. 

Nyquist rate fN = 2fm hz 

Nyquist interval = 1/fN  = 1/2fm seconds. 

Reconstruction of signal from its samples: 

Reconstruction 

Assume that the Nyquist requirement ω0 > 2ωm is satisfied. We consider two reconstruction schemes: 

 • ideal reconstruction (with ideal bandlimited interpolation),  

• reconstruction with zero-order hold. 

Ideal Reconstruction: Shannon interpolation formula 
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Our ideal reconstruction filter has the frequency response: 

 
and, consequently, the impulse response 

 
Now, the reconstructed signal is 

 
which is the Shannon interpolation (reconstruction) formula. The actual reconstruction system mixes 

continuous and discrete time. 

 
The reconstructed signal xr(t) is a train of sinc pulses scaled by the samples x[n]. • This system is 

difficult to implement because each sinc pulse extends over a long (theoretically infinite) time interval. 

 
A general reconstruction filter 

For the development of the theory, it is handy to consider the impulse-sampled signal xP(t) and its 
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CTFT. 

 
Figure : Reconstruction in the frequency domain is lowpass filtering 

 
Effect of under sampling – Aliasing 

Possibility of sampled frequency spectrum with different conditions is given by the following 

diagrams: 
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Aliasing Effect 

The overlapped region in case of under sampling represents aliasing effect, which can be removed by 

 considering fs >2fm 

 By using anti aliasing filters. 

 

Samplings of Band Pass Signals 

In case of band pass signals, the spectrum of band pass signal X[ω] = 0 for the frequencies outside the 

range f1 ≤ f ≤ f2. The frequency f1 is always greater than zero. Plus, there is no aliasing effect when fs > 

2f2. But it has two disadvantages: 

 The sampling rate is large in proportion with f2. This has practical limitations. 

 The sampled signal spectrum has spectral gaps. 

To overcome this, the band pass theorem states that the input signal x(t) can be converted into its 

samples and can be recovered back without distortion when sampling frequency fs < 2f2. 

Also, 
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Correlation 

Cross Correlation and Auto Correlation of Functions: 

Correlation 

Correlation is a measure of similarity between two signals. The general formula for correlation is 
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 There are two types of correlation: 

 Auto correlation 

 Cross correlation 

Auto Correlation Function 

It is defined as correlation of a signal with itself. Auto correlation function is a measure of similarity 

between a signal & its time delayed version. It is represented with R(τ). 

Consider a signals x(t). The auto correlation function of x(t) with its time delayed version is given by 

 
Where τ = searching or scanning or delay parameter. 

If the signal is complex then auto correlation function is given by 

 
Cross Correlation Function 

Cross correlation is the measure of similarity between two different signals. 

Consider two signals x1(t) and x2(t). The cross correlation of these two signals R12(τ)R12(τ) is given 

by 



  

160  

 

 

 
 

 

 

 

 

Properties of Correlation Functions: 

 Auto correlation exhibits conjugate symmetry i.e. R (τ ) = R*(-τ ) 
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 Auto correlation function of energy signal at origin i.e. at τ =0 is equal to total energy of 

that signal, which is given as: 

 

 
 Auto correlation function is maximum at τ =0 i.e |R (τ ) | ≤ R (0) ∀ τ  

 

 Auto correlation function and energy spectral densities are Fourier transform pairs. i.e. 

F.T[R(τ)]=SXX(ω)  
SXX(ω)= ∫R(τ)e−jωτdτ where -∞ < τ<∞ 

  

 R(τ)=x(τ)∗x(−τ) 
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Properties of Cross Correlation Function  

 Auto correlation exhibits conjugate symmetry i.e. R12(τ)=R∗
21(−τ). 

 Cross correlation is not commutative like convolution i.e. 

                     R12(τ)≠R21(−τ) 

 If R12(0) = 0 means, if ∫x1(t)x∗2(t)dt=0 over interval(-∞,∞), then the two signals are said to be 

orthogonal. 

 Cross correlation function corresponds to the multiplication of spectrums of one signal to the 

complex conjugate of spectrum of another signal. i.e. 

                  R12(τ)←→X1(ω)X∗
2(ω) 

           This also called as correlation theorem. 

Energy Density Spectrum: 

Energy spectral density describes how the energy of a signal or a time series is distributed with 

frequency. Here, the term energy is used in the generalized sense of signal processing; 

Energy density spectrum can be calculated using the formula: 

 

 
 Parseval’s Theorem: 

https://en.wikipedia.org/wiki/Energy_(signal_processing)
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Energy_(signal_processing)
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Power Density Spectrum 

The above definition of energy spectral density is suitable for transients (pulse-like signals) whose 

energy is concentrated around one time window; then the Fourier transforms of the signals generally 

exist. For continuous signals over all time, such as stationary processes, one must rather define 

the power spectral density (PSD); this describes how power of a signal or time series is distributed 

over frequency, as in the simple example given previously. Here, power can be the actual physical 

power, or more often, for convenience with abstract signals, is simply identified with the squared value 

of the signal.  

Power density spectrum can be calculated by using the formula: 

 

 The spectrum of a real valued process (or even a complex process using the above definition) is 

real and an even function of frequency:  

 

 If the process is continuous and purely indeterministic, the autocovariance function can be 

reconstructed by using the Inverse Fourier transform 

 The PSD can be used to compute the variance (net power) of a process by integrating over 

frequency: 

 

 

https://en.wikipedia.org/wiki/Stationary_process
https://en.wikipedia.org/wiki/Power_(physics)
https://en.wikipedia.org/wiki/Even_function
https://en.wikipedia.org/wiki/Inverse_Fourier_transform
https://en.wikipedia.org/wiki/Variance
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Relation between Autocorrelation Function and Energy/Power Spectral Density Function: 
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1. Relation between Autocorrelation Function and Energy Spectral Density Function: 

 

 

2. Relation between Autocorrelation Function and Power Spectral Density Function: 
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Relation between Convolution and Correlation: 
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Detection of Periodic Signals in the presence of Noise by Correlation: 

 

 Extraction of Signal from Noise by filtering. 
              Whenever we wish to use correlation for signal detection, we use a two-part system. The first 

part of the system performs the correlation and produces the correlation value or correlation signal, 

depending upon whether we are doing in-place or running correlation. The second part of the system 

examines the correlation or correlation signal and makes a decision or sequence of decisions. See the 

block diagram given in Figure  

 
          
 

 

   

 

 
 


