
1

LECTURE NOTES

ON

ADVANCED DATABASES

Course Code: AIT505

B.Tech V Sem (IARE-R16)

By

Mr. D Rahul, Assistant Professor

Mr. N Bhaswanth , Assistant Professor

DEPARTMENT OF INFORMATION TECHNOLOGY

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL, HYDERABAD - 500 043

2

UNIT - I

ACTIVE DATABASES

An active database system is a DBMS that supports an integrated subsystem for the

definition and management of production rules (active rules). The rules follow the

event-condition-action paradigm: each rule reacts to some events, evaluates a condi-

tion and, based on the truth value of the condition, might carry out an action. The ex-

ecution of the rules happens under the control of an autonomous subsystem, known as

the rule engine, which keeps track of the events that have occurred and schedules the

rules for execution. Thus, an active database system can execute either transactions,

which are explicitly initiated by the users, or rules, which are under the control of the

system. We say that the resulting system exhibits a reactive behavior which differs

from the typical passive behavior of a DBMS without active rules.

When a DBMS is active, the part of the application that is normally encoded by pro-

grams can also be expressed by means of active rules. As we shall see, active rules

can, for example, manage integrity constraints, calculate derived data and manage

exceptions, as well as pursue business objectives. This phenomenon adds a new di-

mension to the independence of the database, called knowledge independence: know-

ledge of a reactive type is removed from the application programs and coded in the

form of active rules. Knowledge independence introduces an important advantage,

because rules are defined with the DDL and are part of the schema, and therefore they

are shared by all the applications, instead of being replicated in all the application

programs. Modifications to the reactive behavior can be managed by simply changing

the active rules, without the need to modify the applications.

Many prototype systems, both relational and object-oriented, provide active rules that

are particularly expressive and powerful. In this chapter, we will concentrate on active

databases supported by relational DBMSs; almost all relational systems support sim-

ple active rules, called triggers, and therefore can be considered active databases in

their own right. In this chapter we will use the terms "active rule' and 'trigger' as syn-

onymous.

Unfortunately, there is no consolidated standard proposal for triggers, as they were not

defined in SQL-2. Thus, first we will give a general description, which can be adapted

3

easily enough to any relational system. Next, we will describe the syntax and seman-

tics of two specific relational systems, Oracle and DB2. Covering DB2 is particularly

useful because the SQL-3 standard for active rules includes a standardization of trig-

gers that uses the same solutions as DB2. We will complete this chapter with a discus-

sion on properties of active databases and with an illustration of their applications.

1.1 Trigger behavior in a relational system

The creation of triggers is part of the data definition language (DDL). Triggers can be

dynamically created and dropped; in some systems they can also be dynamically acti-

vated and deactivated. Triggers are based on the event-condition-action (ECA) para-

digm:

 The events are data manipulation primitives in SQL (insert, delete, update);

 The condition (which can sometimes be omitted) is a boolean predicate, ex-

pressed in SQL;

 The action is a sequence of generic SQL primitives, sometimes enriched by an

integrated programming language available within the environment of a spe-

cific product (for example, PL/SQL in Oracle).

Triggers respond to events relating to a given table, called the trigger’s target.

The ECA paradigm behaves in a simple and intuitive way: when the event is verified,

if the condition is satisfied, then the action is carried out. It is said that a trigger is acti-

vated by the event, is considered during the verification of its condition and is ex-

ecuted if the condition is true, and therefore the action part is carried out. However,

there are significant differences in the ways in that systems define the activation, con-

sideration and execution of triggers.

Relational triggers have two levels of granularity, called row-level and statement-level.

In the first case, activation takes place for each tuple involved in the operation; we say

that the system has a tuple-oriented behavior. In the second case, activation takes place

only once for each SQL primitive, referring to all the tuples invoked by the primitive,

with a set-oriented behavior. Furthermore, triggers can have immediate or deferred

functionality. The evaluation of immediate triggers normally happens immediately

after the events that activated them {after option). Less often, the evaluation of imme-

diate triggers logically precedes the event to which it refers (before option). The de-

4

ferred evaluation of triggers happens at the end of the transaction, following a com-

mit-work command.

Triggers can activate themselves one after another. This happens when the action of a

trigger is also the event of another trigger. In this case, it is said that the triggers are

cascading. Triggers can also activate themselves one after another indefinitely, gene-

rating a computation that does not terminate. We will address this problem in Section

1.5.

1.2 Definition and use of triggers in Oracle

We will look first at the syntactic characteristics of the command to create triggers,

and will then demonstrate their behavior using a typical application.

1.2.1 Trigger syntax in Oracle

The syntax for the creation of triggers in Oracle is as follows:

create trigoer TriggerName

 Mode Event {, Event}

 on TargetTable

 [[referencing Reference]

 for each row

 [when SQLPredicate]]

 PL/SQLBlock

The Mode is before or after, the Event is insert, delete, or update; update may be

followed by attribute names of the target table. The referencing clause allows the

introduction of variable names, for referring to the old and new values of the row that

is changed, with one or both of the following clauses:

old as OLDVanable

| new as NewVariable

We will now discuss the various characteristics in detail. Each trigger controls any

combination of the three DML update primitives (insert, delete. and update) on the

target table. The granularity of triggers is determined by the optional clause for each

row, which is present in the case of row-level granularity, while it is omitted in the

case of statement-level granularity. The condition (SQLPredicate) can be present only

in the triggers with row-level granularity and consists of a simple predicate on the

5

current tuple. Triggers with statement-level granularity, however, may substitute con-

dition predicates with the control structures of the action part. The action, both with

row and statement-level granularity, is written in PL/SQL, which extends SQL by

adding the typical constructs of a programming language (as shown in Appendix C).

The action part cannot contain DDL instructions or transactional commands.

References to the before (old) and after (new) states of the row that is modified are

possible only if a trigger is row-level. In the case of insert only the after state is de-

fined, and in the case of delete only the before state is defined. The old and new va-

riables are implicitly available to indicate, respectively, the old and new state of a

tuple. Variable names other than old and new can be introduced by the referencing

clause.

1.2.2 Behavior of triggers in Oracle

Triggers in Oracle are immediate and allow for both the before and after options on

both row- and statement-level granularity. Thus, combining the two granularities and

the two functions, four combinations are obtained for each event:

before row

before statement

after row

after statement

The execution of an insert, delete or update statement in SQL is interwoven with the

execution of the triggers that are activated by them, according to the following algo-

rithm:

1. The before statement-level are considered and possibly executed

2. For each tuple of the target table involved in statement:

(a) the before row-level triggers are considered and possibly executed

(b) the statement is applied to the tuple, and then the integrity checks relative to

the tuple are carried out.

(c) the after row-level triggers are considered and possibly executed.

3. The integrity checks for the entire table are carried out.

4. The after statement-level triggers are considered and possibly executed.

6

If an error occurs during the evaluation or one trigger, then all the modifications car-

ried out as a consequence of the SQL primitive that activates the trigger execution are

undone. Oracle thus guarantees a partial rollback of the primitive and of all the actions

caused by the triggers. Early versions of Oracle imposed a limit of one trigger per kind

(before/after row/statement); recent versions have abolished these limitations, without,

however, indicating how to prioritize triggers of the same kind that are activated by

the same event.

The actions carried out by the triggers can cause the activation of other triggers. In this

case, the execution of the current trigger is suspended and the other activated triggers

are considered, by recursively applying the algorithm illustrated above. The highest

number of triggers in cascade (that is, activated in sequence according to this schema)

is 32. Once this level is reached, the system assumes that an infinite execution has

occurred and suspends the execution, raising a specific exception.

1.2.3 Example of execution

We illustrate triggers in Oracle by showing them at work on a classical warehouse

management problem. The Reorder trigger, illustrated below, is used to generate a

new order automatically, by entering a tuple in the PENDINGORDERS table, when-

ever the available quantity, QtyAvbl, of a particular part of the WAREHOUSE table

fills below a specific reorder level (QtyLimit):

create trigger Reorder

after update of QtyAvbl on Warehouse

when (new.QtyAvbl < new.QtyLimit)

for each row

 declare

 X number;

 begin

 select count(•) into X

 from PendingOrders

 where Part = new.Part;

 if Z = 0

 then

7

 insert into PendingOrdera

 values (newPart, new.QtyReord, sysdate) ;

 end if;

 end;

This trigger has a row-level granularity and is consi-

dered immediately after each modification of the

attribute QtyAvbl. The condition is evaluated row

by row comparing the values of the attributes

QtyAvbl and QtyLimit; it is true if the available

quantity falls below the limit. The action is a pro-

gram written in PL/SQL. In the program, a numeric

variable X is initially declared; it stores the number of orders already placed for the

part being considered. We assume that PENDINGOROERS is emptied when the cor-

responding parts are delivered to the warehouse; at each time, only one order should

be present for each part. Thus, if X is not zero, no new order is issued. If instead X is

zero, an order is generated by inserting a tuple into the table PENDlNGORDERS. The

order contains the part numbers, the reorder quantity QtyReord (assumed to be fixed)

and the current date. The values of the tuples that refer to the execution of the trigger

are accessed by use of the correlation variable new. Assume that the initial content of

the WAREHOUSE table is as shown in Figure 1.1.

Consider then the following transaction activated on 10/10/1999:

T1: update Warehouse

 set QtyAvbl = QtyAvbl - 70

 where Part = 1

This transaction causes the activation, consideration and execution of the Reorder

trigger, causing the insertion into the PENDINGORDERS table of the tuple (1, 100,

10/10/1999). Suppose that next ihe following transaction is carried out:

T2: update Warehouse

 set QtyAvbl = QtyAvbl - 60

 where Part <= 3

Part QtyAvbl QtyLimit Qty-
Reord

1 200 150 100

2 780 500 200

3 450 400 120

Figure 1.1 initial state of

the WAREHOUSE table.

8

The trigger is thus considered for all parts, and the condition is verified for parts 1 and

3. However, the action on part 1 has no effect, because we assume that

PENDlNGORDERS still contains the tuple relating to part 1. Thus, the execution of

the trigger causes the insertion into PENDINGORDERS of the single tuple (3, 120,

10/10/1999), relating to part 3.

1.3 Definition and use of triggers in DB2

In this section we will first look at the syntactic characteristics of the create trigger

command, and will then discuss its behavior and an application example.

1.3.1 Trigger syntax in DB2

Each trigger in DB2 is activated by a single event, which can be any data modification

primitive in SQL. As in Oracle, triggers are activated immediately, before or after the

event to which they refer, and have both row and statement-level granularity. The

syntax of the creation instruction for triggers is as follows:

create trigger TriggerName

 Mode Event on TargetTable

 [referencing Reference]

 for each Level

 [when (SQLPredicate)]

 SQLProceduralStatement

where the Mode is before or after, the Event is insert, delete, or update (update may

be followed by attributes of the target table), and the Level is row or statement. The

referencing clause allows the introduction of variable names. If the level is row, the

variables refer to the tuple that is changed; they are defined by the clauses:

old as OldtupleVar

| new as NewTupleVar

If the level is statement, then the variables refer to the table that is changed, with the

clauses:

old_table as OldTableVar

| new_table as NewTableVar

As in Oracle, variables old, new, old_table and new_table are implicitly available,

while the referencing clause enables the introduction of different variables. In the case

9

of insertion, only the new or new_table variables are defined; in the case of deletion,

only the old and old_table variables are defined.

1.3.2 Behavior of triggers in DB2

In DB2, triggers activated before an event, the before-triggers, are used only to deter-

mine errors and to modify the values assigned to the new variables. These cannot con-

tain DML commands that cause a modification of the state of the database, and thus

cannot activate other triggers. The system guarantees a behavior in which the side-

effects of the before-triggers become visible before the execution of the SQL primitive

that activates them. The before-triggers can thus require the prior evaluation of the

new values produced by the SQL primitive, which are stored in temporary data struc-

tures.

Various triggers on different levels of granularity can refer to the same event. These

are considered in an order managed by the system, which takes into account their lime

of creation. Row-level and statement-level triggers can be ordered arbitrarily (while in

Oracle the relative ordering between triggers of different granularity is fixed, as illu-

strated by the algorithm in Section 1.2.2). If an action of a trigger with row-level gra-

nularity contains many SQL primitives, they are all carried out for one tuple before

moving on to the next.

DB2 manuals describe precisely how the evaluation of triggers is carried out with ref-

erence to integrity constraints, in particular the referential ones, which are associated

with a compensation action. Following a primitive S, the consideration and execution

of the before-triggers are first carried out, and can cause modifications to the new va-

riables. Then, the actions that are required for referential integrity are carried out.

These actions can cause the activation of many triggers, which are added to the after-

trigger activated by S. Finally, the system considers and executes all the activated trig-

gers, based on their system-defined priorities. When the execution of these triggers

contains SQL statements that may cause the activation of other triggers, the state of

execution of the rule scheduling algorithm is saved and the system reacts by consider-

ing the triggers that were subsequently activated, thus initiating a recursive evaluation.

At the end, the state of execution of the rule scheduling algorithm is restored, and the

execution of the trigger that was suspended is resumed

10

1.3.3 Example of execution

Consider a database containing the tables PART, DISTRIBUTOR, and AUDIT. The

PART table has as its primary key the attribute, PartNum; it has also three other

attributes, Supplier, City and Cost. A referential integrity constraint is present in the

table PART and refers to the DISTRIBUTOR table:

foreign key (Suppler)

references Distributor on delete null

Let us consider the following triggers:

 SoleSupplier is a before-trigger that prevents the modification of the Supplier

attribute unless it is changed to the null value. In all the other cases, this gives

an exception that forces a rollback of the primitive.

 AuditPart is an after-trigger that records in the AUDIT table the number of

tuples modified in the PART table.

create trigger SoleSupplier

before update of Supplier on Part

referencing new as N

for each row

when (N.Supplier is not null)

 signal sqlstate '70005' ('Cannot change supplier')

create trigger AuditPart

after update on Part

referencing old_table as OT

for each statement

 insert into Audit

 values(user, current-date, (select count(*) from OT))

For example, the removal from the DISTRIBUTOR table of all the suppliers located in

Penang causes the violation of the referential integrity constraint. At this point, the

management policy for violation of the referential integrity constraint causes the mod-

ification to the null value of all the tuples of the PART table that remain dangling after

the deletion. This activates the two triggers SoleSupplier and AuditPart. The first is a

before-trigger, which is thus considered first. Its evaluation, tuple by tuple, happens

11

logically before the modification, but it has available the N value, which describes the

variation. Thus, this value is found to be NULL, and the condition is found to be false.

Finally, the AuditPart trigger is activated, inserting into the table AUDIT a single

tuple containing the user code, the current data and the number of modified tuples.

1.4 Advanced features of active rules

Building on the basic characteristics of relational triggers, seen above, some advanced

systems and prototypes of active database systems have various characteristics that

increase the expressive power of active rules. Their advanced features are as follows.

Temporal and user-defined events With regard to events, these can include temporal

or user-defined events. The first ones allow the expression of time-dependent events

such as, for example, 'every Friday evening' or 'at 17:30 on 20/6/1999'. User defined

events are explicitly named and then raised by users' programs. For instance, a 'high-

water' user-defined event could be defined and then raised by an application; the rais-

ing would activate a rule that reacts to the event.

Event expressions The activation of triggers can depend not only on a single event,

but also on a set of events with a simple disjunctive interpretation. Activation can also

depend on generic boolean expression of events, constructed according to more com-

plex operators, such as precedence among events and the conjunction of events.

Instead-of mode As well as the before and after modes, there is also another mode,

called instead of. When the condition of the corresponding rule is true, the action is

carried out in place of the activation event. However, rules with instead of modes may

give rather complex and unintuitive semantics (such as: 'when updating the salary of

X, instead update the salary of Y'); therefore, this clause is not present in most sys-

tems.

Detached consideration and execution The consideration and/or execution of

rules can be detached. In this case, the consideration or execution would take place in

the context of another transaction, which can be completely independent or can be co-

ordinated with the transaction in which the event is verified, using mechanisms of

reciprocal dependence.

Priorities The conflicts between rules activated by the same event can be resolved by

explicit priorities, defined directly by the user when the rule is created. They can be

12

expressed either as a partial ordering (using precedence relations between rules), or as

a total ordering (using numeric priorities). The explicit priorities substitute priority

mechanisms implicitly present in the systems.

Rule sets Rules can be organized in sets and each rule set can be separately activated

and deactivated.

1.5 Properties of active rules

It is not difficult to design each individual active rule, once its event, condition and

action are clearly identified. However, understanding the collective behavior of active

rules is more complex, because their interaction is often subtle. For this reason, the

main problem in the design of active databases lies in understanding the behavior of

complex sets of rules. The main properties of these rules are termination, confluence

and identical observable behavior.

 A set of rules guarantees termination when, for each transaction that may activate

the execution of rules, this execution produces a final state in a finite number of

steps.

 A set of rules guarantees confluence when, for each transaction that may activate

the execution of rules, the execution terminates producing a unique final state,

which does not depend on the order of execution of rules.

 A set of rules guarantees an identical observable behavior when for each transac-

tion that may activate the execution of rules, this execution is confluent and all

the visible actions carried out by the rule are identical and produced in the same

order.

These properties are not of equal importance or desirability. In particular, termination

is an essential property; we must avoid a situation in which transactions, activated by

the user, cause infinite executions normally revealed by the raising of an exception

when the maximum number of recursively executed rules is exceeded. Note that infi-

nite executions are due to rules written by the database administrator, and the user

would have great difficulty in understanding the situation and finding a remedy. On

the other hand, confluence and identical observable behavior might not be essential,

especially in the presence of various equally acceptable solutions of the same problem.

13

The process of rule analysis allows the verification of whether the prop-

erties requested are valid for a particular set of rules. In particular, an

essential tool for verifying the termination of a set of rules is the activa-

tion graph, which represents interactions among rules. The graph is

created by adding a node for each rule and an arc from a rule R1 to a rule

R2 when the action of R1 contains a DML primitive that is also one of the

events of R2. A necessary condition for non-termination is the presence of

cycles in the activation graph: only in this case we can have an infinite se-

quence of execution of rules. An example of an activation graph is shown in

Figure 1.2.

Systems with many active rules are often cyclic. However, only a few cycles actually

correspond to critical situations. In fact, cyclicity is a necessary but not sufficient con-

dition for non-termination. Most cycles are indeed 'innocuous', as they describe an

acceptable mutual interaction between rules.

Let us consider, for example, the rule SalaryControl (written in DB2), which creates a

'conservative' policy of salary control. It reduces the salary of all the employees when

the average salary goes beyond a certain level:

create trigger SalaryControl

after update of Salary on Employee

then update Employee

 set Salary = 0.9 • Salary

 where (select avg(Salary) from Employee) > 100

The activation graph for this rule has only one node and a ring; thus, it presents a

cycle, which indicates the possibility that the rule is re-activated by itself. On the other

hand, whatever the initial transaction, the execution of the rule eventually terminates,

as the rule progressively reduces the salaries until they are again within the established

level. At this point, the condition is false. However, a slightly different rule, which

gives a rise of salary rather than decreasing it, presents termination problems:

create trigger SalaryControl2

after update of Salary on Employee

Cyclic acti-
vation

graph.

14

tben update Employee

 set Salary = 1.1 • Salary

 where (select avg(Salary) from Employee) > 100

The activation graph associated with this rule does not change. However, if the rule is

executed once, it will be executed an infinite number of times, causing non-

termination, as the operation carried out by the rule is unable to make its condition

false.

This example shows that the cycles give only 'indications' of possible causes of non-

termination. A detailed analysis of cycles, which can be partly automated, can give

rise to the conclusion that a cycle is innocuous, or instead to suggest modifications to

rules that guarantee its termination.

1.6 Applications of active databases

Active rules respond to several application needs. Many classic applications of active

rules are internal to the database: the active rule manager works as a subsystem of the

DBMS to implement some of its functions. In this case, triggers are generated by the

system and are thus not visible to the users. The typical characteristic of internal appli-

cations is the possibility of giving a declarative specification of the functions, from

which to derive the active rules The main functions that can be entrusted to active

rules of an internal type include the management of integrity constraints of a prede-

fined structure, the calculation of derived data and the management of replicated data.

Other functions include version management, privacy management, data security en-

forcement and event logging.

Other rules, classified as external, express knowledge specific to the application,

which are beyond predefined and rigid schemas. These rules are also called business

rules as they express the strategies of a company for carrying out its primary functions

(see also Chapter 5 and Chapter 6). In the case of business rules, there are no fixed

techniques for the derivation of rules based on specifications. Consequently, each

problem must be confronted separately. Below, we will look briefly at referential inte-

grity and then we show some business rules.

15

1.6.1 Referential integrity management

The management of integrity constraints using active rules requires first that the con-

straint be expressed in the form of an SQL predicate. The predicate will correspond to

the condition part of one or more active rules associated with the constraint; note,

however, that the predicate must be negated in the rule, so that the consideration yields

a truth value when the constraint is actually violated. After this, the designer will con-

centrate on the events that can cause a violation of the constraint. They contribute to

the event parts of active rules. Finally, the designer will have to decide which action to

carry out following the violation of the constraint. For example, the action could be to

force the partial rollback of the primitive that has caused the violation, or could carry

out a repair action, which corrects the violation of the constraint. This is how the ac-

tion part of the active rule is constructed.

We illustrate this general approach to integrity maintenance with active rules by

means of the classical referential integrity constraint. Note, however, that most sys-

tems manage referential integrity by means of ad hoc methods.

We look again at the simple referential integrity constraint discussed in Section 4.1.7.

Given the tables EMPLOYEE and DEPARTMENT, the constraint indicates that the

Dept attribute of EMPLOYEE is a foreign key referencing the attribute DeptName of

DEPARTMENT. The referential integrity specification is given by means of the fol-

lowing clause, inserted into the definition of the EMPLOYEE table:

foreign key(Dept) references Department(DeptName)

 on delete set null.

 on update cascade

We may consider the foreign key clause as a declarative specification of both the con-

dition of the constraint and of the repair actions that must be performed to restore the

database consistency. The operations that can violate this constraint are:

 insert into EMPLOYEE;

 delete from DEPARTMENT;

 update to EMPLOYEE.Dept;

 update to DEPARTMENT.DeptName.

16

The constraint can be expressed as an assertion for the table EMPLOYEE, which im-

poses for each employee the existence of a department to which the employee belongs:

exists (select * from Department

 where DeptName = Employee.Dept)

Note that this assertion indicates a property that must be true for all employees, but in

an active rule. we are interested in capturing the situations that violate the constraint.

We will therefore use the negation of the assertion illustrated above as the basis for

building the condition to be included within the active rules:

not exists (select * from Department

 where DeptName = Employee.Dept)

The constraint can also be expressed as an assertion, already presented in negative

form, for the table, DEPARTMENT. In this case, the constraint is violated if there is

an employee without a department:

exists (select * from Employee

 where Dept not in

 (select Deptname from Department))

We then need to construct four active rules. Two react to each insertion in

EMPLOYEE or modification of the Dept attribute, canceling the effect of the opera-

tions if they violate the constraint. Remember that, according to the definition of refe-

rential integrity, violations caused by operations on the internal table have to cause a

rejection of the operation. The other two rules react to each deletion from

DEPARTMENT or update of the Dept attribute, and implement the policies specified

with the constraint.

The first rule is coded by the following trigger in DB2:

create trigger DeptRef1

after insert on Employee

for each row

when (not exists

 (select * from Department

 where DeptName = New.Dept))

signal sqlstate '70006' ('employee without department'

17

The second rule is the same except for the event:

create trigger DeptRef1

after update on Employee

for each row

when (not exists

 (select * from Department

 where DeptName = New.Dept))

signal sqlstate '70006' ('employee without department'

The third rule reacts to the cancellation of a tuple of DEPARTMENT, imposing a null

value on the attribute Dept of the tuples involved:

create trigger DeptRef3

after delete on Department

for each row

when (exists

 (select * from Employee

 where Dept = Old.DeptName))

update Employee

 set Dept = null

 where Dept =Old.Deptname

Note that the condition is simpler than that shown above. It identifies as critical those

employees whose departments coincide with a department removed by the delete op-

eration. In fact, the condition could even be omitted, as the action is performed on all

and only the tuples that satisfy the condition.

The fourth rule reacts to modification of the attribute DeptName of DEPARTMENT,

reproducing on EMPLOYEE the same modification on the Dept attribute as in the

DEPARTMENT table:

create trigger DeptRef4

after update of Department on Deptname

for each row

when (exists

 (select • from Employee

18

 where DeptName = Old.DeptName))

update Employee

 set Dept = New.Deptname

 where Dept = Old.Deptname

Note that in this case, too, the condition is optimized and could even be omitted.

1.6.2 Business rules

Business rules express the strategies of a company in pursuing its objectives. Exam-

ples are the rules that describe the buying and selling of stocks based on the fluctua-

tions in the market, rules for the management of a transport network or of energy, or

rules for the management of a warehouse based on the variations of available quanti-

ties of each part (see Section 1.2.3). Some of these rules are simple alerters, which

limit themselves to the action part and emit messages and warnings, leaving the users

to manage abnormal situations.

Business rules have already been introduced in Section 5.3.1 to express schema con-

straints. Remember that these were classified as integrity or derivation rules. Integrity

rules are predicates that express conditions that must be true. In commercial DBMSs.

they can be programmed using the check clause or using assertions. However, many

DBMSs introduce restrictions on the predicate that are expressible using these clauses,

thus limiting their effective usability. Furthermore, the use of SQL-2 constraints goes

together with adopting the reaction policies present in the standard (or supported by

DBMSs), while the desired reaction is often different. Therefore, active rules (which

are supported by most relational DBMSs) can be used for the specification and im-

plementation of 'generic' constraints and 'arbitrary' reactions.

Let us look at how we can program the business rule BR2 introduced in Section 5.3.1,

using an active rule. The business rule is repeated here: (BR2) an employee must not

have a salary greater than that of the manager of the department to which he or she

belongs.

Let us use the tables EMPLOYEE and DEPARTMENT, where EmpNum is the pri-

mary key of EMPLOYEE and DeptNum is the primary key of DEPARTMENT;

EMPLOYEE has the attributes MgrSalary, and DeptNum and DEPARTMENT has

the attribute Director. The operations that can violate the constraint are the update of

19

the salary of the employees in their double role as employee and manager, and the

insertion of a new employee Let us suppose that among these, the critical modification

to be monitored is the increase in the salary awarded to an employee. Let us also sup-

pose that the reaction policy is to block the update, and to signal this behaviour. These

choices correspond to the following trigger, written using the DB2 syntax:

create trigger ExcessiveSalary

after update on Salary of Employee

for each row

when New.Salary > select Salary

 from Employee

 where EmpNum in

 (select Director

 from Department

 where DeptNum = New.DeptNum)

then signal sqlstate '70005' ('Salary too high')

The rules concerning warehouse management or the handling of suppliers illustrated

in Section 1.2.3 and Section 1.3.3, can be considered as other examples of application-

specific business rules.

Business rules are particularly advantageous when they express the reactive policies at

schema level (and are thus valid for all applications) because they allow an unambi-

guous and centralized specification. This allows the property of knowledge indepen-

dence, discussed in the introductory section to this chapter.

1.7 Properties of Active Rule Execution

Designing individual active rules is not too difficult, once it is well unders-

tood that the rule reacts to a give n event, tests a given condition, and performs a

given action. However, understanding the collective behavior of active rules is

much more difficult than just observing them individually because rule interac-

tions are often subtle and unexpected. Thus, the main problem in the design of an

active rule set regards their collective behavior. Termination, confluence, and

observable determinism are the most relevant properties for understanding the

collective behavior of a set of active rules:

20

 A rule set guarantees termination when, for any user-defined transaction

triggering the processing of rules, the processing eventually terminates,

producing a final state.

 A rule set guarantees confluence when, for any user-defined transaction

triggering the processing of rules, the processing eventually terminates,

producing a unique final state that does not depend on the order of execu-

tion of the rules.

 A rule set guarantees observable determinism when, in addition to conflu-

ence, for any user-defined transaction, all visible actions performed by

rules (including alerting by means of messages or output production) are

the same.

These abstract properties are not equally important or desirable; in the follow-

ing, we consider each of them separately. The process of checking, at rule design

time, that the above properties hold is termed rule analysis. Rule analysis is per-

formed through both formal, automatic techniques and informal reasoning.

1.8 Rule Modularization

Modularization is a key design principle in software design. It enables the de-

signer to focus on subsets of the original problem, thus partitioning a large design

space; in software engineering, modularization enables the separation of pro-

gramming "in the small" from programming "in the large." With active rules,

modules (or groups) typically consist of subsets of the entire active rule set, which

are put together due to shared properties (e.g., all rules dealing with a given appli-

cative problem, or defined by a given user, or relative to a given target). In this

section, we discuss modularization relative to termination, which is the main de-

sign problem of active rules.

The modularization approaches of active rules for providing termina-tion are

called stratifications. The term "stratification" was introduced in deductive data-

bases to denote the partitioning of deductive rules into com-ponents, so that the

ordering of components indicates a precedence in the evaluation of rules; when

rules are not stratified, their semantics relevant to negation or aggregates gives

rise to a number of problems, discussed in Part

Stratification in active databases induces a partitioning of active rules into

components, so that termination can be determined by reasoning only within

components; the designer can abstract rule behavior by reasoning locally on each

individual stratum separately and then reasoning globally on the behavior across

strata. The ordering of components in the stratification of active rules yields a

"preferred order" for their evaluation. Three approaches to stratification are possi-

21

ble:

 Behavioral stratification associates each stratum to a particular applicative

task; each stratum is responsible for performing the task. Global termina-

tion requires that interleaved executions of rules from different strata be

under control, so that the task being pursued by one stratum is not compro-

mised by rules from other strata.

 Assertion stratification associates each rule to an assertion, called the stra-

tum's post condition. Global termination requires that inter-leaved execu-

tions of rules from different strata do not compromise the post conditions

that were already established.

 Event-based stratification defines a stratum in terms of the input/ output re-

lationship between its triggering events and its actions. Global termination

requires that input/output events of all strata have some global acclivity

property.

1.9 Rule Debugging and Monitoring

Although rule analysis and modularization, performed at compile time, should drive

active rule design, the run-time debugging and monitoring of active rules is sometimes

required in order to tune their behavior. Commer-cial systems, however, are rather

inadequate for this purpose. Often, they do not even offer a trace facility for knowing

which active rules have been running, so the only monitoring that can be performed is

by looking at the rules' actions, which, in turn, become known only through the in-

spection of the database. In contrast, several research prototypes are focused on rule

debugging; in particular, we present the features of the debugger of Chimera.

The debugger can be invoked by a user by issuing a special command, or it can be

started during rule processing when given rules are being considered or executed. In

order to do so, it is possible to set spy points in the rules. When the debugger is called

into action, the execution of the current rule is completed (if rules are being

processed), after which execution proceeds interactively; execution of rules is availa-

ble at two levels of granularity:

 At the rule step level: After each rule execution, rule processing is halted

and the situation is presented to the user. At this level there is no possibili-

ty of interrupting the run-time system during the computation of triggered

rules and the evaluation of rules' conditions.

22

 At the intra-rule step level: Rule processing is halted at each of the three fun-

damental moments of rule execution (triggering, condition evaluation, and

action execution). The user can obtain information on the state of rule

processing and influence (in a limited way) the behavior of the rule execu-

tor.

The following functionalities are available in both modes:

 Information on rules: The system displays all available information about

rules, including their source code, triggering time, and event consumption

mode.

 Commands for rule activation and deactivation: Rules can be explicitly

deactivated during debugging, so that they are disregarded during subse-

quent rule processing. A deactivated rule can be reactivated at any time.

 Inspection of the conflict set: The system displays all rules that are current-

ly triggered in order of priority.

 Inspection of the deferred conflict set: The system displays those trig-gered

rules whose execution is deferred.

 Inspection of the trace: The system displays all rules that were considered

or executed since the last quiescent point.

 Information on occurred events: The system lists all events since the begin-

ning of the transaction. Each event is described by its event type, the list of

the OlDs of the objects affected by the event, and the indication of the da-

tabase state in which the event has occurred. For identifying the various

states of the database, all intermediate states since the beginning of the

transaction are numbered progressively. Events are listed in order of occur-

rence.

When the debugging mode is intra-rule step, the following additional options are

available:

 Display of the processing status: A graphical icon is used to show the current

point of execution, either the computation of triggered rules, the evaluation of

a rule's condition, or the execution of a rule's action.

 Detection of the next executable rule: Finds the rule with highest priority,

among those that have not been considered yet, whose condition is satisfied in

the current database state.

23

 Modification of dynamic priorities: Alters the chosen priority of trig-gered

rules with equal static priority. In this way, it is possible to force the selection

of a different rule from the one that would be chosen using the built-in con-

flict resolution strategy.

 Information on bindings produced by the condition's consideration: En-ables

the inspection of the objects that are bound by the evaluation of the rule's con-

dition.

1.10 IDEA Methodology

The use of objects and rules in modern database systems is the main focus of the

IDEA Esprit Project. In particular, it inspired the IDEA Methodology, a comprehen-

sive and systematic approach to the design of database appli-cations that use both de-

ductive and active rules. The IDEA Methodology reconciles deductive and active rules

by assigning them the role of express-ing knowledge about the application domain,

either with a purely declarative style or with a more procedural style.

The IDEA Methodology extends recently published object-oriented soft-ware engi-

neering methodologies, targeted toward arbitrary software systems and typically lead-

ing to implementations supported by an object-oriented programming language, such

as C++ or Smalltalk. Conversely, the IDEA Methodology focuses on information sys-

tems (e.g., software systems managing large amounts of structured data).

Objects, deductive rules, and active rules are the three ingredients of the IDEA Me-

thodology; each of them is fundamental for a precise conceptual description of an

information system. Objects provide encapsulation as a form of abstraction that

enables the designer to structure its applications. Deductive and active rules can be

used to establish and enforce data management policies, as they can provide a large

amount of the semen-tics that normally needs to be coded with application programs;

this trend in designing database applications, called knowledge independence, brings

the nice consequence that data management policies can effectively evolve just by

modifying rules instead of application programs. Even if objects and rules are not yet

fully supported by products, nevertheless their com-binned use at the conceptual level

generates a better understanding of the overall application.

Like most object-oriented methodologies, the IDEA Methodology includes the three

classical phases of analysis, design, and implementation. In addition, it includes proto-

typing as an intermediate phase, placed be-tween design and implementation, and

dedicated to verification and critical assessment of the conceptual schemas.

24

1. Analysis is devoted to the collection and specification of requirements at

the conceptual level. This phase is focused on modeling reality with semi-

formal, expressive representation devices, aiming at a natural and easy-to-

understand representation of the "universe of discourse." Therefore, this

phase uses conceptual models with an associated graphical representation

that are well established in software engineering practice, such as the Enti-

ty-Relationship model and State charts.

2. Design is the process of translating requirements into design documents that

provide a precise, unambiguous specification of the application. Design is

conducted by mapping from semiformal specifications into fully formal,

computer-process able specifications. The process is di-vided into schema de-

sign (concerned mostly with types, classes, relationships, and operations) and

rule design (further subdivided into deductive rule design and active rule de-

sign).

3. Rapid prototyping is the process of testing, at a conceptual level, the adequacy

of design results with respect to the actual user needs. A variety of formal

transformation methods can be applied to improve the quality of the design, to

verify its formal properties, or to trans-form design specifications into equiva-

lent specifications that exhibit different features. Tools, which are available on

the Internet, assist the automatic generation and analysis of active rules, and

enable the prototyping of applications written in Chimera.

4. Implementation is the process of mapping conceptual specifications into

schemas, objects, and rules of existing database platforms; the process is in-

fluenced by the features of the specific target environments that were selected.

These include Oracle, Illustrate, and DB2, three classic relational products

supporting triggers; ODE, an object-oriented database available on the Internet

to universities and research institutes; and Validity, the first deductive and ob-

ject-oriented database system that will be soon be brought to the market.

1.10.1 Active Rule Design

Active rule design in the IDEA Methodology considers two different ap-proaches for

internal and external rules.

The design of external rules follows a declarative approach, consisting of giving a

declarative specification of active rules and then semiautomat-ically generating them

with generation algorithms (supported by suitable rule generation tools). The rationale

25

of this approach is that a generation algorithm is able to generate rules that satisfy

given quality criteria, in particular guaranteeing termination and/or confluence.

Integrity constraints constitute a natural application of this approach. A constraint on a

database can be represented as a condition that must always be false. From a declara-

tive specification of constraints, a user can easily generate a set of active rules capable

of guaranteeing the consistency of the database; it is sufficient to write an abort rule as

defined in Section 3.1. This simple solution to the problem does not use all the power

of active rules because the reaction consists simply in discarding all the work done by

the transaction; thus, a tool developed for assisting the IDEA Methodology is able to

automatically generate repair rules, as defined in Section 3.1, implementing repairing

policies that heuristically try to maximize the user's satisfaction, expressed informally.

Maintenance of materialized views is another classical application of rule generators;

several approaches have been developed for the incremental maintenance of materia-

lized views, as defined in Section 3.2. In the IDEA Methodology we classify rules into

classes and then generate active rules to maintain views according to the mapping

technique that applies to each class.

The design of business rules requires understanding the business process, and in par-

ticular the applicative goal that is pursued by the rules. In order to understand this

goal, it is convenient to associate rules with a metric that measures the progress in

achieving the task's objective. This goal-directed design of active rules is useful both

for designing individual rules and for understanding their interaction and modulariza-

tion. The following overall design strategy is suggested:

1. Identify applicative tasks for active rules. Associate each task to the condi-

tion under which the task should be executed. Give a simple description of

the task in the form: "if condition, then action."

2. For each task, detect the events that cause the task to be executed; for each

task, identify a metric that indicates the "progress" toward the solution of the

task.

3. Generate active rules responding to the events that are associated with the

task. The designer should constantly check that rules, if running, improve

the metric and thus "progress" toward the task's solution.

26

1.10.2 Active Rule Prototyping

Prototyping denotes a methodological phase in which design results are tested; to this

purpose, design results are implemented on a small scale, typi-cally with rapid proto-

typing software, and their adequacy and conformity to requirements are evaluated by

designers and by users. During prototyping we look at rule collections, regardless of

the techniques that are required in order to collect them; thus, we consider a new as-

pect of knowledge design, called knowledge design in the large; in contrast, the design

techniques for individual active and deductive rules can be regarded as knowledge

design in the small. Active rule prototyping in the IDEA Methodology has two facets:

com-pile-time rule analysis, which can be used in order to prove properties of active

rules, and run-time testing, which can be used to experiment with rules in order to

assess and fine-tune their behavior. Both analysis and testing are assisted by rapid

prototyping environments made available by the IDEA Project.

1.10.3 Active Rule Implementation

During the final implementation phase, the conceptual specifications are mapped into

schemas, objects, and rules of five existing database platforms. Although all the se-

lected database platforms implement some form of active rules, the mapping of active

rules is difficult and problematic because of the intrinsically operational nature of

active rule semantics, which is quite different in the five proposed systems, and also

because of the heavy limitations that each product is introducing with respect to active

rules supported in the conceptual model. In the end, two specific mapping techniques

have emerged, used primarily for the mapping to relational products.

Meta-triggering uses the native active rule engine in order to detect events, but

then requires a second active engine in order to render the semantics of conceptual

rules; in practice, the second active engine is capable of executing the Chimera

rule processing algorithm on each of the selected target systems. In this way, meta-

triggering preserves all features of conceptual active rules. Typically, the second

active engine is programmed by using stored procedures and imperative language

attachments; it is application-independent and therefore can be reused for develop-

ing arbitrary applications.

Macro-triggering uses instead just the native active rule engine avail-able on each

target system; conceptual triggers are aggregated to con-stitute macro-triggers,

defined on each target system. Macro-triggers normally do not have the same se-

mantics as the conceptual active rules, but differences are well identified.

27

1.10.4 Design Tools Supporting the IDEA Methodology

A complete tool environment for assisting the design of active rules applica-

tions was developed at Polytechnic di Milano in the context of the IDEA

Project, for supporting the IDEA Methodology. The architecture of the tools

provided in the IDEA design environment is represented in Figure 4.3. lade is

used during analysis in order to collect the schema specifications by means of

the Object Model (an extended entity-relationship model). These specifications

are semi automatically mapped into schema declarations in Chimera and into

constraints and triggers useful to preserve schema integrity.

Argonaut supports the generation of active rules from the declarative spe-

cification of integrity constraints and views. In the former case, active rules correct

integrity violations; in the latter case, they incrementally maintain materialized

views corresponding to both non recursive and recursive deductive rules.

Arachne supports the compile-time termination analysis of a set of Chime-

ra active rules. The tool determines the potential causes of infinite executions ori-

ginating from the mutual interaction of active rules. Two differ-ent types of analy-

sis are performed: a syntactic analysis that compares the events produced by rule

actions with the events triggering the rules, and a more complex analysis that also

considers rule conditions in order to detect irrelevant interactions in advance.

The Algres Tested is an execution environment that permits the rapid pro-

totyping of the design specifications. It provides functionalities for brows-ing

schemas and rules and for monitoring the execution of transactions and active

rules. The run-time debugger includes several features for temporarily changing

the parameters of active rules (their coupling mode, priority, and event consump-

tion mode). If any active rule is modified during the testing session, the Arachne

rule analyzer can be interactively called to analyze the new rule set, thus verifying

the correctness of the performed modifications.

28

29

UNIT – II

TEMPORAL DATABASES

Time is a pervasive aspect of reality. Events occur at specific points in time; objects

and the relationships among objects exist over time. The ability to model this temporal

dimension of the real world is essential to many computer applications, such as ac-

counting, banking, inventory con-trol, econometrics, law, medical records, land and

geographical information systems, and airline reservations.

A temporal database is one that supports some aspect of time. This part summarizes

the major concepts, approaches, and implementation strategies underlying temporal

databases.

This part commences with a case study that illustrates the difficulties a developer en-

counters when implementing via SQL an application that man-ages time-varying in-

formation. We then consider time itself, in particular how it is modeled. The design

space of temporal data models is surveyed. Chapter 5 ends by listing the many tem-

poral query languages that have been defined.

2.1 The Time Domain

Models of time in a temporal logic represent time as an arbitrary set of instants with

an imposed partial order. Additional axioms introduce other, more refined models of

time. For example, linear time can be specified by adding an axiom imposing a total

order on this set. In the linear model, time advances from the past to the future in a

step-by-step fashion. In the branching model, also termed the possible futures or hy-

pothetical model, time is linear from the past to now, where it then divides into sever-

al time lines, each representing a potential sequence of events. Along any future path,

additional branches may exist. The structure of branching time is a tree rooted at now.

Generalizations allow branches in the past, or allow branches to join. Recurrent

processes may be associated with a cyclic model of time. An example is a week, in

which each day recurs every seven days.Axioms may also be added to temporal logics

to characterize the density of the time line. Combined with the linear model, discrete

models of time are isomorphic to the natural numbers, implying that each point in

time has a single successor. Dense models of time are isomorphic to either the ration-

als or the reals: between any two moments of time another moment exists. Continuous

models of time are isomorphic to the reals, that is, they are both dense and, unlike the

rationales, contain no "gaps."In the continuous model, each real number corresponds

to a "point" in time; in the discrete model, each natural number corresponds to a non-

30

decom-posable unit of time with an arbitrary duration. Such a nondecomposable unit

of time is referred to as a chronon. A chronon is the smallest duration of time that can

be represented in this model. It is not a point, but a line segment on the time line. Al-

though time itself is perceived by most to be continuous, the discrete time model is

generally used. Several practical arguments justify this choice. First, measures of time

are inherently imprecise. Clocking instruments in-variably report the occurrence of

events in terms of chronons, not time
"points."

 Hence, events, even so-called instantane-

ous events, can at best be measured as having occurred during a chronon. Second, most

natural language references to time are compatible with the discrete time model. For

example, when we say that an event occurred at 4:30 PM, we usually don't mean that

the event occurred at the "point" in time associated with 4:30 PM, but at some time in

the chronon (perhaps minute) associated with 4:30 PM. Third, the concepts of chro-

non and period allow us to naturally model events that are not instantaneous but have

duration. Finally, any implementation of a data model with a temporal dimension will

of necessity have to have some discrete encoding for time.

Axioms can also be placed on the boundedness of time. Time can be bounded ortho-

gonally in the past and in the future. A finite encoding implies bounds from the left

(i.e., the existence of a time origin) and from the right. Models of time may include

the concept of distance, though most temporal logics do not do so.

Finally, one can differentiate relative time from absolute time (more pre-cise terms are

unanchored and anchored). For example, "9 AM, January 1, 1996" is an absolute time,

and "9 hours" is a relative time. This distinction, though, is not as crisp as we would

hope, because absolute time is with re-spect to another time (in this example, mid-

night, January 1, AD 1), termed an anchor. Relative time can be distinguished from

distance in that the former has a direction. For example, you could envision a relative

time of -9 hours, but distance is unsigned.

2.2 Time Data Types

Several temporal data types have proven useful. The most basic is a time instant,

which is a particular chronon on the time line. An event is an instantaneous fact, that

is, something occurring at an instant. The event occurrence time of an event is the

instant at which the event occurs in the real world.

SQL-92 provides three instant data types: DATE (a particular day, with a year in the

range AD 1-9999), TIME (a particular second within a range of 24 hours), and

TIMESTAMP (a particular fraction of a second, defaulting to microsecond, of a par-

31

ticular day).

A time period is the time between two instants. In some of the liter-ature, this notion is

called a time interval, but this usage conflicts with the SQL-92 data type INTERVAL,

which is a different concept altogether. SQL-92 does not include periods, but periods

are now part of the evolving SQL3 specification.

A time interval is a directed duration of time, that is, an amount of time with a known

length, but not specific starting or ending instants. A positive interval denotes forward

motion of time, toward the future. SQL-92 supports two kinds of intervals, month-year

and second-day intervals.Two final temporal data types are instant sets, which are

(logically!) sets of instants, and temporal elements, which are finite unions of periods.

Temporal types must be representable. A bounded discrete represen-tation, as an in-

teger count of the instants since the origin, is the simplest option. A bounded dense

representation is also not difficult to manage, as all rationals may be expressed as the

ratio between two integers. A floating point representation may also be employed. A

continuous representation is the most difficult to implement.

2.3 Associating Facts with Time

The previous sections discussed the time domain itself. We now turn to associating

time with facts.

2.3.1 Dimensionality

In the context of databases, two time dimensions are of general interest: the valid time

dimension and the transaction time dimension.

Valid time concerns the time a fact was true in reality. The valid time of an event is

the time at which the event occurred in the real world, independent

Figure 2.1: Structure of a snapshot relation

of the recording of that event in some database. Valid times can also be in the future,

if it is expected that some fact will be true at a specified time after now.Transaction

time concerns the time the fact was present in the database as stored data. The transac-

tion time (a period) of a fact identifies the transaction that inserted the fact into the

32

database and the transaction that removed this fact from the database.

These two dimensions are orthogonal. A data model supporting neither is termed

snapshot, as it captures only a single snapshot in time of both the database and the

enterprise that the database models. A data model supporting only valid time is termed

valid-time, one that supports only trans-action time is termed transaction-time, and

one that supports both valid and transaction time is termed bitemporal. Temporal is a

generic term implying some kind of time support.

2.3.2 Underlying Data Model

Time has been added to many data models: the entity-relationship model, semantic

data models, knowledge-based data models, and deductive data models. However,

by far the majority of work in temporal databases is based on the relational and

object-oriented models. For this reason, we focus on these two data models in our

subsequent discussion.

2.3.3 Valid Time

These models may be compared along the valid-time dimension by asking two basic

questions: how is valid time represented and how are facts associated with valid time.

Categorizes most of the data models along these two aspects. We do not include the

OODAPLEX, Sciore-1, and TIGUKAT data models, as these two aspects are arbitra-

rily specifiable in these models.

Valid times can be represented with single chronon identifiers (i.e., in-stant time-

stamps), with periods (i.e., as period timestamps), or as valid-time elements, which are

finite sets of periods. Valid time can be associated with papers describing these mod-

els may be found in the bibliographic notes at the end of this chapter.

2.3.4 Transaction Time

The same general issues are involved in transaction time, but there are about three

times as many alternatives. The choices made in the various data models are characte-

rized in Table 5.4. OODAPLEX is not included, as it can support virtually any of

these options (while that is also possi-ble in TIGUKAT, specific support for version-

ing has been added to the data model and language). Transaction time may be

represented with the following

33

2.3.5 Representative Data Models

To ground this discussion, let's examine five representative models. One of the sim-

plest is Segev's valid-time data model, in which tuples are time-stamped with the in-

stant that the tuple became valid. This allows the history of the attribute values of a

key to be succinctly captured. In the following relation instance, we see that Eric

started working in the shoe department on June 1 (in these examples, we omit the

month and year from the timestamp). He moved to the book department on June 6,

and returned to the shoe department on June 11. He resigned on June 13; this requires

a separate tuple, with null values for all the nonkey attributes.

Name Dept Time

Eric Shoe 1
Eric Book 6

Eric Shoe 11
Eric Null 13

This data model can use such a simple timestamp because it does not permit mul-

tiple values at any point in time. By using period timestamps, as for example in Sar-

da's data model, multiple values can be accommo-dated. The following shows the

same information as above, in a period-timestamped model.

Name Dept Time

Eric Shoe [1-5]
Eric Book [6-10]
Eric Shoe [11-13]

Note that null values are not required in Sarda's model when an em-ployee resigns.
Several of the models timestamp attribute values instead of tuples. This allows

more history to be captured in a single tuple. In the HRDM, attribute values are func-

tions from time to a value domain:

2.4 Temporal Query Languages

A data model consists of a set of objects with a specified structure, a set of constraints

on those objects, and a set of operations on those objects. In the two previous sections

we have investigated in detail the structure of, and constraints on, the objects of tem-

34

poral databases. Here, we complete the picture by discussing the operations, specifi-

cally temporal query languages. Many temporal query languages have been proposed.

In fact, it seems that each researcher feels it necessary to define a new data model and

query language. Lists the major temporal query language proposals to date. The under-

lying data model is a reference. The next column lists the conventional query language

the temporal proposal is based on. Most of the query languages have a formal defini-

tion.

Lists the object-oriented query languages that support time. Note that many "nested"

relational query languages and data models, such as HQuel, HRDM, HTQuel,

TempSQL, and TBE, have features that might be considered to be object-oriented.

The data model and conventional query language on which the temporal query lan-

guage is based are identified in the second and third columns. The fourth column indi-

cates whether the language has been implemented. It is rare for an object-oriented

query language to have a formal semantics. Also in contrast to temporal relational

query languages, most object-oriented query languages have been implemented.

2.5 TSQL2

The Temporal Structured Query Language, or TSQL2, was designed by a committee

of 18 researchers who had individually designed many of the lan-guages listed in the

previous chapter. The goal of TSQL2 was to consolidate approaches to temporal data

models and calculus-based query languages, to achieve a consensus extension to SQL-

92 and an associated data model upon which future research could be based. Addition-

ally, TSQL2 is being incorporated into the evolving SQL3 standard.

2.5.1 Time Ontology

TSQL2 uses a linear time structure, bounded on both ends. The origin is 18 billion

years ago, when the Big Bang is thought to have occurred; the time line extends 18

billion years into the future.

The TSQL2 time line is a discrete representation of the real time line, which can be

considered to be discrete, dense, or continuous. The TSQL2 time line consists of

atomic (nondecomposable) chronons. Consecutive chronons may be grouped together

into granules, with different groupings yielding distinct granularities. TSQL2 allows a

value of a temporal data type to be converted from one granularity to another.

TSQL2 is carefully designed not to require choosing among the discrete, dense, and

continuous time ontologies. Rather, TSQL2 permits no question to be asked that

would differentiate among these three ontologies. For ex-ample, it is not possible to

35

ask if an instant a precedes an instant b. It is only possible to ask that question in terms

of a specified granularity, such as seconds, days, or years. Different granularities could

yield different answers to this question. Similarly, distance is in terms of a specified

granularity, and is represented as an integral number of granules.

TSQL2 inherits the temporal types in SQL-92, DATE, TIME, TIME-STAMP, and

INTERVAL, and adds the PERIOD data type.

2.5.1 Data Model

TSQL2 employs a very simple underlying data model. This data model retains the

simplicity and generality of the relational model. It has no illu-sions of being suitable

for presentation, storage, or query evaluation. Instead, separate, representational data

models, of equivalent expressive power, are employed for implementation and for

ensuring high performance. Other presentational data models may be used to render

time-varying behavior to the user or application. A coordinated suite of data models

can achieve in concert goals that no single data model could attain. Employee Jake

was hired by the company as temporary help in the shipping department for the period

from time 10 to time 15, and this fact became current in the database at time 5. This is

shown in Figure 6. 1(a). The arrows pointing to the right signify that the tuple has not

been logically deleted; it continues through to the transaction time until changed (U.

C.).

2.5.2 Language Constructs

We now turn to the statements available in TSQL2.

2.5.2.1 Schema Definition

This language is a strict superset of SQL-92, and so it supports conventional relations

in all their grandeur. To explore the temporal features of TSQL2, we'll need a tempor-

al relation. Envision a patient database at a doctor's office. Included in this database is

information on the drugs prescribed to each patient.

Example : Define the Prescription relation

CREATE TABLE Prescription (Name CHAR(30),

Physician CHAR(30),Drug CHAR(30), Dosage CHAR(30),

Frequency INTERVAL MINUTE)

AS VALID STATE DAY AND TRANSACTION

The Name column specifies the patient's name. The Frequency is the number of mi-

nutes between drug administrations.

36

The AS clause is new in TSQL2. The valid time specifies the period(s) during which

the drug was prescribed. The transaction time specifies when this information was

recorded as current in the database. Tuples that have not been updated or deleted will

have a transaction time that includes now.

The valid time has a granularity of 1 day. The granularity of the trans-action time is

system-dependent, but most likely will be no coarser than a millisecond, to differen-

tiate consecutive transactions.

The Prescription relation is a bitemporal state relation, as it includes both kinds of

time. There are six kinds of relations:

 snapshot relations, which have no temporal support

 valid-time state relations, specified with AS VALID STATE (STATE is op-

tional)

 valid-time event relations, specified with AS VALID EVENT "

 Transaction-time relations, specified with AS TRANSACTION

 Bitemporal state relations, specified with AS

VALID STATE AND

TRANSACTION

 Bitemporal event relations, specified with AS VALID EVENT AND

TRANSACTION

 The type of a relation can be changed at any time, using the ALTER

TABLE statement.

Example : What drugs have been prescribed with Proventil?

SELECT Pl.Name, P2.Drug

FROM Prescription AS P1, Prescription AS P2
WHERE P1.Drug = 'Proventil' AND P2.Drug <> 'Proventil'

AND P1.Name = P2.Name

The result is a set of tuples, each specifying a patient and a drug, along with the max-

imal period(s) during which both that drug and Proventil were prescribed to that pa-

tient.

37

Restructuring

One of the most powerful constructs of TSQL2 is restructuring. Whereas TSQL2 au-

tomatically performs coalescing on the result of a query, restruc-turing in the FROM

clause allows coalescing to be performed on the under-lying tuples.

Example: Who has been on a drug for more than a total of six months?

SELECT Name, Drug

FROM Prescription(Name, Drug) AS P

WHERE CAST(VALID(P) AS INTERVAL MONTH)

> INTERVAL '6' MONTH

Notice that the FROM clause mentions in parentheses several of the at-tributes of the

Prescription relation. This clause projects out the Name and Drug attributes, then coa-

lesces the result, which is then manipulated in the remainder of the query. By restruc-

turing on Name and Drug, the timestamp associated with each name-drug pair indi-

cates the maximal period(s) when that patient was prescribed that drug, independent of

the prescribing physi-cian, the dosage, or the frequency. Hence, a single pair may be

computed from many pairs of the underlying Prescription relation. The other attributes

are not available via P.

The new VALID(P) construct returns the valid-time element (set of max-imal periods)

associated with P. Then, the CAST operator converts it to the type INTERVAL

MONTH by summing the durations (in months) of each of the maximal periods. This

computes the total number of months that patient has been prescribed that drug, ignor-

ing gaps when the drug was not prescribed. This total is compared with the interval

constant 6 months.

The result is a relation with two columns, the patient's name and the drug, along with

a timestamp specifying when that drug was prescribed.

2.6 Adding Temporal Support

In the following, we visit each of these components in turn, reviewing what

changes need to be made to add temporal support.

DDL Compiler

The changes to support time involve adding temporal domains, such as pe-riods, and

38

adding constructs to specify support for transaction and valid time in the definition of

relations. A more substantial change is the data dictionary, which must now consist of

transaction-time relations. Schema versioning concerns only the recording of the data,

and hence does not in-volve valid time. The attributes and their domains, the indexes,

and even the names of the relations vary over transaction time.

Query Compiler

Optimization of temporal queries is more involved than that of conventional queries,

for several reasons. First, optimization of temporal queries is more critical, and thus

easier to justify expending effort on, than conventional optimization. The relations that

temporal queries are defined over are larger, and are growing monotonically, with the

result that unoptimized queries take longer and longer to execute. This justifies trying

harder to optimize the queries, and spending more execution time to perform the opti-

mization.

Second, the predicates used in temporal queries are harder to optimize. In traditional

database applications, predicates are usually equality predi-cates (hence the prevalence

of equijoins and natural joins); if a less-than join is involved, it is rarely in combina-

tion with other less-than predicates. On the other hand, in temporal queries, less-than

joins appear more frequently, as a conjunction of several inequality predicates. As an

example, the TSQL2 OVERLAPS operator is translated into two "<" predicates on

the underly-ing timestamps (see Example 5.3). Optimization techniques in conven-

tional databases focus on equality predicates, and often implement inequality joins as

Cartesian products, with their associated inefficiency.

However, there is greater opportunity for query optimization when time is present.

Time advances in one direction; the time domain is continuously expanding, and

the most recent time point is the largest value in the domain. This implies that a

natural clustering or sort order will manifest itself, which can be exploited during

query optimization and evaluation. The integrity constraint BEGIN(p)

PRECEDES END(p) holds for every period p. Also, for many relations, the pe-

riods associated with a key are contiguous in time,

39

40

with one period starting exactly when the previous period ended. An ex-ample is

salary data, where the periods associated with the salaries for each employee are con-

tiguous. Semantic query optimization can exploit these integrity constraints, as well

as additional ones that can be inferred.

The importance of efficient query optimization and evaluation for tem-poral da-

tabases was underscored by an initial study that analyzed the per-formance of a brute-

force approach to adding time support to a conventional DBMS. In this study, the

university Ingres DBMS was extended in a min-imal fashion to support TQuel. The

results were discouraging. Sequential scans, as well as access methods such as hash-

ing and ISAM, suffered from rapid performance degradation due to ever-growing

overflow chains. Because adding time creates multiple tuple versions with the same

key, reorganization did not help to shorten overflow chains. The objective of work in

temporal query evaluation, then, is to avoid looking at all of the data, because the

alternative implies that queries will continue to slow down as the database accumu-

lates facts. We emphasize that these results do not imply that a time-varying database

implemented on a conventional DBMS will be much less efficient than that database

implemented on a brute-force temporal DBMS. In fact, simulating a time-varying

database on a conventional DBMS, which is currently the only alternative available

to application programmers, will encounter all of the problems listed above.

A single query can be optimized by replacing the algebraic expression with an

equivalent one that is more efficient, by changing an access method associated with a

particular operator, or by adopting a particular implemen-tation of an operator. The

first alternative requires a definition of equivalence in the form of a set of tautolo-

gies. Tautologies have been identified for many of the algebras listed in Table 5.5.

Some of these temporal algebras support the tautologies defined in the standard rela-

tional algebra, enabling existing query optimizers to be used.

To determine which access method is best for each algebraic operator, metadata,

that is, statistics on the stored temporal data, and cost models, that is, predictors of

the execution cost for each operator implementation/access method combination are

needed. Temporal data requires additional metadata, such as the time period over

which the relation is defined (termed the lifespan), the lifespans of the tuples, the

surrogate and tuple arrival distributions, the distributions of the time-varying

attributes, regu-larity and granularity of temporal data, and the frequency of the null

values that are sometimes introduced when attributes within a tuple aren't syn-

chronized. Such statistical data may be updated by random sampling or by a scan

through the entire relation. In particular, selectivity estimates on the size of the re-

sults of various temporal joins have been derived.

41

Run-Time Evaluator

A wide variety of binary joins have been considered, including time-join and time-

equijoin (TE-join), event-join and TE-outerjoin, contain-join, contain-semijoin and

intersect-join, and temporal natural join. The various algo-rithms proposed for these

joins have generally been extensions to nested loop or merge joins that exploit sort

orders or local workspace, as well as hash joins.

Several approaches have been proposed for implementing temporal joins. Some of

these exploit ordering of the input tables to achieve higher efficiency. If the underly-

ing tables are ordered, coalescing can be handled in a manner similar to that for pro-

jection.

Coalescing is an important operation, since value-equivalent tuples may be present in

the representation. Also, the semantics of some queries demand that the input rela-

tions be coalesced prior to evaluation. If prior coalescing is required, this is most

easily accomplished if the input relation is sorted on the explicit attribute values. The

temporal element associated with the conceptual tuple is easily reconstructed during a

scan of the relation. If indexes or precomputed results are available, then it may be

possible to avoid the relation scan.

We note that for many predicates prior coalescing is not required. For example, if a

preicate references only the explicit attributes of a relation, then the coalescing opera-

tion can be eliminated.

Conventional indexes have long been used to reduce the need to scan an entire rela-

tion to access a subset of its tuples. Indexes are even more important in temporal rela-

tions that grow monotonically in size. Many temporal indexing strategies are availa-

ble. Most of the indexes are based on B+-trees, which index on values of a single key;

the remainder are based on R-trees, which index on ranges (periods) of multiple keys.

The worst-case performance for most proposals has been evaluated in terms of total

space required, update per change, and several important queries.

2.7 Minimal Support Needed for TSQL2

The preceding discussed in general terms how a conventional DBMS could be

extended to provide temporal support. In the remainder of this chapter, we describe

the minimal changes needed by each component of the architecture to support a spe-

cific temporal query language: TSQL2.

42

Note that the precompiler and host language compiler are largely inde-pendent of

the database query language-they require only small changes to support temporal

literal/timestamp conversion. For each of the remain-ing components, the data dictio-

nary and data files, as well as those within the DBMS proper, we describe the minim-

al modifications needed by these components to support TSQL2 queries.

Data Dictionary and Data Files

The data dictionary and data files contain the database, the actual data managed

by the DBMS. The data dictionary records schema information such as file structure

and format, the number and types of attributes in a table, integrity constraints, and

associated indexes. The data files contain the physical tables and access paths of the

database.

For a minimal extension, the data files require no revision. We can store tuple-

timestamped temporal tables in conventional tables, where the time-stamp attributes

are stored as explicit atomic attributes. However, the data dictionary must be ex-

tended in a number of ways to support TSQL2. The most significant extensions in-

volve schema versioning, multiple granularities, and vacuuming.

For schema versioning, the data dictionary must record, for each table, all of its

schemas and when they were current. The data files associated with a schema must

also be preserved. This is easily accomplished by making a transaction-time table

recording the schemas for a single table. The trans-action time associated with a tuple

in this table indicates the time when the schema was current.

Multiple granularities are associated in a lattice structure specified at system gen-

eration time. A simple option is to store the lattice as a data structure in the data dic-

tionary. Alternatively, if the lattice is fixed (i.e., new granularities will not be added

after the DBMS is generated), then the lattice can exist as a separate data structure

outside of the data dictionary.

Vacuuming specifies what information should be physically deleted from the da-

tabase. Minimally, this requires a timestamp, the cutoff time, to be stored for each

transaction-time or bitemporal table cataloged by the data dictionary. The cutoff time

indicates that all data current in the table before the value of the timestamp has been

physically deleted from the table.

DDL Compiler

The DDL compiler translates TSQL2 CREATE and ALTER statements into execut-

able transactions. Each of these statements affects both the data dictionary and the

data files. The CREATE statement adds new definitions, of either tables or indexes,

43

to the data dictionary and creates the data files containing the new table or index.The

ALTER variants change an existing schema by updating the data dictionary, and

possibly updating the data file containing the table. Numerous changes are needed by

the DDL compiler, but each is straight-forward and extends existing functionality in

small ways. First, the syntactic analyzer must be extended to accommodate the ex-

tended TSQL2 syntax for each of the CREATE and ALTER statements. The seman-

tic analyzer must be extended in a similar manner, for example, to ensure that an

existing table being transformed into a valid-time state table with the ADD VALID

STATE command is not already a valid-time table.

Query Compiler

The query compiler translates TSQL2 data manipulation language (DML) state-

ments into an executable, and semantically equivalent, internal form called the query

execution plan. As with the DDL compiler, each phase of the query compiler-

syntactic analysis, semantic analysis, and query plan generation-must be extended to

accommodate TSQL2 queries.We use the model that the initial phase of the compila-

tion, syntactic analysis, creates a tree-structured query representation, which is then

refer-enced and augmented by subsequent phases. Abstractly, the query compiler

performs the following steps:

" Parse the TSQL2 query. The syntactic analyzer, extended to parse the

TSQL2 constructs, produces an internal representation of the query, the
parse tree.

" Semantically analyze the constructed parse tree. The parse tree pro-

duced by the syntactic analyzer is checked for types and other semantic

constraints, and simultaneously augmented with semantic information.

" Lastly, a query execution plan, essentially an algebraic expression that is

semantically equivalent to the original query, is produced from the aug-

mented parse tree by the query plan generator.

The minimal changes required by the query compiler are summarized as follows:

" The syntactic and semantic analyzers must be extended to support
TSQL2.

" The query execution plan generator must be extended to support the ex-

tended TSQL2 algebra, including the new coalescing, join, and slic-ing op-

44

erations. In a minimally extended system, it may be acceptable to use exist-

ing algebraic equivalences for optimization, even with the extended opera-

tor set. Such an approach preserves the performance of

conventional snapshot queries. Later inclusion of optimization rules for the

new operators would be beneficial to the performance of temporal queries.

"* Support for vacuuming must be included in the compiler. Query mod-

ification, which normally occurs after semantic analysis and prior to query

optimization, must be extended to include vacuuming support.

The need to extend the syntactic and semantic analyzers is self-evident and

straightforward. Extending the query plan generator to use the extended algebra is

also straightforward, assuming that temporal aspects of the query are not considered

during query optimization. In the worst case, the same performance would be en-

countered when executing a temporal query on a purely snapshot database. Lastly, in

order to support vacuuming, the query compiler, within its semantic analysis phase,

must support automated query modification based on vacuuming cutoff times stored

in the data dictionary.

Run-Time Evaluator

The run-time evaluator interprets a query plan produced by the query com-piler. The

run-time evaluator calls the transaction and data manager to retrieve data from the

data dictionary and data files.

We assume that the run-time evaluator makes no changes to the query plan as re-

ceived from the query compiler; that is, the query plan, as gen-erated by the query

compiler, is optimized and represents the best possible evaluation plan for the query.

As such, the changes required for the run-time evaluator are small. In particular,

since evaluation plans for any new operators have already been selected by the query

compiler, the run-time evaluator must merely invoke these operations in the same

manner as non-temporal operations. Additionally, evaluation algorithms for new

temporal operators (e.g., coalescing) are similar to well-known algorithms for snap-

shot operators. For example, coalescing can be implemented with slightly modi-fied

duplicate elimination algorithms, which have been studied thoroughly.

45

UNIT-III

COMPLEX QUERIES AND REASONING

The importance of complex queries in advanced database systems can-not be overstated. At the introduction of

the relational model, powerful logic-based queries were primarily motivated by their importance for end users.

Subsequently, a long experience with SQL and large-scale commercial applications has shown that powerful

query languages are essential in modern databases that use distributed environments, parallel machines, and

client/server architectures.

Since support for complex queries means support for complex reasoning on large databases, this line of data-

base work is also tackling problems previ-ously addressed in research domains, such as knowledge representa-

tion, non-monotonic reasoning, and expert systems. The next three chapters provide a unified introduction to

the complex field of database and knowledge-based systems. In Chapter 8, we revisit relational query languages

and extend them with more powerful constructs such as recursion, complex objects, and flexible set aggregates.

In Chapter 9, we discuss the implementation of these extended queries in deductive databases and SQL sys-

tems. Finally, in Chap-ter 10, we explore recent advances in nonmonotonic reasoning that provide a unified

model for temporal reasoning, active databases, and nondeterministic queries.

The Logic of Query Languages

First-order logic provides a conceptual foundation for relational query lan-guages. This foundation was estab-

lished from the very first introduction of the relational data model by E. F. Codd, who introduced the parallel

notions of relational calculus and relational algebra. Relational calculus provides a logic-based model for declar-

ative query languages; relational al-gebra provides its operational equivalent: safe queries in predicate calculus

can be transformed into equivalent relational expressions, and vice versa. The transformation of a calculus ex-

pression into an equivalent relational al-gebra expression represents the first step in efficient query implementa-

tion and optimization.

However, relational calculus has limited expressive power and cannot express many important queries, such as

transitive closures and generalized aggregates. This situation has led to the design of more powerful logic-based

languages that subsume relational calculus. First among these is the rule-based language Datalog, which is the

focus of a large body of research and also of this chapter.

3.1 Datalog

In a Datalog representation, the database is viewed as a set of facts, one fact for each tuple in the corresponding

table of the relational database, where the name of the relation becomes the predicate name of the fact. For in-

stance, the facts in Example 3.2 correspond to the relational database of Example 3.1.

Example 3.1 A relational database about students and the courses they took

student

 took

 Name Course Grade

Name Major Year Joe Doe cs123 2.7

Joe Doe cs senior Jim Jones csl01 3.0

Jim Jones cs junior Jim Jones cs143 3.3

Jim Black ee junior Jim Black cs143 3.3

 Jim Black csl01 2.7

46

Example 3.2 The Datalog equivalent of Example 3.1

student('Joe Doe', cs, senior).

student('Jim Jones', cs, junior).

student('Jim Black', ee, junior).

took('Joe Doe', cs123, 2.7).

took('Jim Jones', cs101, 3.0).
took('Jim Jones', cs143, 3.3).

took('Jim Black', cs143, 3.3).

took('Jim Black', cslO1, 2.7).

A fact is a logical predicate having only constants (i.e., no variables) as its arguments. We will use the

accepted convention of denoting constants by tokens that begin with lowercase characters or numbers, while

denoting variables by tokens that begin with uppercase. Thus, in a predicate such as

took(Name, cs143, Grade)

Name and Grade denote variables, while cs143 denotes a constant. How-ever, tokens in quotes, such as 'Jim

Black', denote constants. Also, Name, cs143, and Grade are, respectively, the first, second, and third argu-

ment of the ternary predicate took. Both student and took are three-argument predicates, or equivalently,

ternary predicates, or predicates with arity 3.

Rules constitute the main construct of Datalog programs. For instance, Example 3.3 defines all students at

the junior level who have taken csl01 and cs143. Thus, firstreq(Name) is the head; student (Name, Major,

junior), took(Name, csl01, Gradel), and took(Name, cs143, Grade2) are, re-spectively, the first, second, and

third goal of the rule. Together, these three goals form the body of the rule.

Example 3.3 Find the name of junior-level students who have taken both csl01 and cs143

firstreq(Name) +- student (Name, Major, junior), took(Name, cst01, Gra-

del), took(Name, cs143, Grade2).

The commas separating the goals stand for logical conjuncts. Therefore, the order in which the goals appear in

the rule is immaterial. Since the commas separating the goals stand for logical AND, the symbols "A" and

"&" are often used in their place. Another common notational variation is the use of the symbol ":-" instead of

the arrow to separate the head from the body of the rule.

A logical disjunct is represented via multiple rules with the same head predicate (i.e., sharing the same predi-

cate name and arity). Thus, to find those juniors who took either course cs131 or course cs151, with grade bet-

ter than 3.0, we would write the following:

Example 3.4 Junior-level students who took course cs131 or course cs151 with grade better than 3.0

scndreq(Name) -- took(Name, csl3L, Grade), Grade> 3.0, student(Name, Major, ju-

nior).

scndreq(Name) - took(Name, csli, Grade), Grade> 3.0, student(Name, -, junior).

Observe that in the first rule of Example 3.4, the variable Maj or occurs only once; therefore, it can be replaced

with the symbol "_", which is called an anonymous variable, and stands for a uniquely named variable that does

not appear anywhere else in the rule (see the second rule of Example 3.4).

47

The set of rules having as their heads a predicate with the same name p is called the definition of p.

Thus, the definition of a derived predicate is similar to the definition of a virtual view in relational databases.

The meaning of such a definition is independent of the order in which these rules are listed, and independent of

the order in which the goals appear in the rules.

Table 3.1 displays the corresponding nomenclatures of Datalog and the relational model.

 Therefore, base predicates correspond to database relations and are defined by the database schema, while de-

rived predicates are defined by rules.

It is also common to use the terms extensional database and intensional database to refer to base predicates and

derived predicates, respectively.

In deductive databases, the assumption normally made is that these two form disjoint sets: that is, base predi-

cates never appear in the heads of rules.

Since rules are merely definitional devices, concrete Datalog programs also contain one or more query goals to

specify which of the derived relations must actually be computed. Query goals can have different forms. A query

that contains no variables is called a boolean query or a closed query; the answer to such a query is either yes or
no. For instance,

?firstreq('Jim Black')

is a closed query with answer yes or no depending on whether 'Jim Black' has satisfied the first requirement. On

the other hand, consider the goal

?f irstreq(X)

Since X is a variable, the answer to this query is a (possibly empty) set of facts for the students who satisfy the

first requirement, as follows:

firstreq('Jim Jones')

firstreq('Jim Black')

In general, query goals will mix variables and constants in their arguments. Rules represent a powerful formal-

ism from both theoretical and practical viewpoints. Their practical appeal follows from the ability to view goals

in rules as search patterns. For instance, in the second rule of Example 3.4, we are searching for took tuples

with cs151 as their second argument, and a grade greater than 3.0. Also, we are looking for the pattern

junior in the third column of student, where the first attribute in this tuple is identical to the first value in

the tuple of took, since all occurrences of the same variable in a rule must be assigned the same value.

48

The scope of variables, however, is local to rules, and identically named variables in different rules are con-

sidered independent.

The second important benefit of the Datalog formalism is its ability to break up the problem into smaller

subproblems, each expressed by simple rules. Thus, complex patterns of computation and logical decisions can

be achieved through rather simple Datalog rules that are stacked one upon another in a rich semantic structure.

For instance, say that in order to take the individual-study course cs298, a junior must have satisfied both re-

quirements. Then we can simply write the following:

Example 3.4 Both requirements must be satisfied to enroll in cs298

req-cs298(Name) +- f irstreq(Name), scndreq(Name).

Therefore, derived relations can be used as goals in rules in the same fashion as database relations.

Datalog rules discussed so far are nonrecursive rules without negation. Additional expressive power can be

achieved by allowing recursion and nega-tion in Datalog. We will next discuss negation; we discuss recursion

later in this chapter.

Negation in Datalog rules can only be applied to the goals of the rule. Negation can never be used in the heads

of rules. For instance, in Example 3.6, the second goal of the second rule is negated. This rule is meant to com-

pute junior students who did not take course cs143.

Example 3.6 Junior-level students who did not take course cs143

hastaken(Name, Course) +- took(Name, Course, Grade).

lacks-cs143(Name) +- student(Name, -, junior), -ihastaken(Name, cs143).

Thus, hastaken defines the courses completed by a student, independent of the final grade. Then, the second rule

selects those students for whom the pattern cs143 does not appear in the second column.

A frequent use of negation is in conjunction with universally quantified queries that are often expressed by

words such as "each" and "every." For instance, say we would like to express the following query: "find the

senior students who completed all requirements for a cs major."

The universally quantified condition "all requirements must be satisfied" can only be expressed in Datalog by

transforming it into an equivalent con-dition where universal quantification is replaced by existential quantifica-

tion and negation. This transformation normally requires two steps.

The first step is that of formulating the complementary query. For the example at hand, this could be "find stu-

dents who did not take some of the courses required for a cs major." This can be expressed using the first rule in

Example 3.7. Having derived those senior students who are missing some required courses, as the second step,

we can now reexpress the original query as "find the senior students who are NOT missing any requirement for a

cs major." This corresponds to the second rule in Example 3.7.

Example 3.7 Find the senior students who completed all the re-quirements for the cs major: ?allreqsat(X)

reqm-issing(Name) *- student(Name, ,senior),

req(cs, Course),

-7hastaken(Name, Course).

all-req-sat(Name) student(Name, , senior), -ireqinissing(Name).

Turning a universally quantified query into a doubly negated existen-tial query is never without difficulty,

49

but this is a skill that can be mastered with some practice. Indeed, such a transformation is common in natu-

ral lan-guages, particularly in euphemistic nuances. For instance, our last sentence,

" ... is never without difficulty," was obtained by rephrasing the original sentence " ... is always difficult."

3.2 Relational Calculi

Relational calculus comes in two main flavors: the domain relational calculus (DRC) and the tuple relational

calculus (TRC). The main difference between the two is that in DRC variables denote values of single

attributes, while in TRC variables denote whole tuples.

For instance, the DRC expression for a query ?firstreq(N) is

{(N) 13Gl(took(N, cslO1, G1)) A 3G 2 (took(N, cslS3, G2)) A

IM(student(N, M, junior)) }

The query ?scndreq(N) can be expressed as follows:

{(N) I EG, IM(took(N, cs131, G) A G > 3.0 A student(N,M,junior)) V 3G, 3M(took(N, cs151, G) A G

> 3.0 A student(N, M,junior))}

There are obvious syntactic differences that distinguish DRC from Da-talog, including the use of set definition

by abstraction instead of rules.

Furthermore, DRC formulas contain many additional constructs such as ex-plicit quantifiers, nesting of paren-

theses, and the mixing of conjunctions and disjunctions in the same formula.

Negation and universal quantification are both allowed in DRC. There-fore, the query ?all-req-sat(N) can be

expressed either using double nega-tion, or directly using the universal quantifier as shown in Example 3.3. This

formula also features the implication sign -+, where p --+ q is just a shorthand for -,p V q.

Example 3.8 Using a universal quantifier to find the seniors who completed all cs requirements

{(N)I]M(student(N, M, senior)) A

VC(req(cs, C) -+]G(took(N, C, G))} (3.1)

The additional syntactic complexity of DRC does not produce a more powerful language. In fact, for each do-

main predicate calculus expression there is an equivalent, nonrecursive Datalog program. The converse is also

true, since a nonrecursive Datalog program can be mapped into an equivalent DRC query.

Relational calculus languages are important because they provide a link to commercial database languages. For

instance, Query-By-Example (QBE) is a visual query language based on DRC. However, languages such as

QUEL and SQL are instead based on TRC.In TRC, variables range over the tuples of a relation. For

instance, the TRC expression for a query ?firstreq(N) is the following:

50

Example 3.9 The TRC equivalent of the query ?firstreq(N) in Example 3.3

{(t[1])I lu3s(took(t) A took(u) A student(s) A t[2] = csl01 A u[2] = cs13 A t[l] = u[1] A

s[3] =junior A s[1] = t[1])}

In Example 3.9, t and s are variables denoting, respectively, tuples in took and student. Thus, t[1] denotes the

first component in t (i.e., that corresponding to attribute Name); t[2] denotes the Course value of this tuple. In

general, if ji,.-- ,-jn denote columns of a relation R, and t E R, then we will use the notation t[j ,... ,j,-] to denote

the n-tuple (t[jl],...,t[jn]).

The main difference between DRC and TRC is that TRC requires an explicit statement of equality, while in

DRC equality is denoted implicitly by the presence of the same variable in different places. For instance, in

Example 3.9, the explicit conditions t[1] = u[1] and s[1] = t[1] are needed to express equality joins. Once

again, however, these differences do not change the power of the language: TRC and DRC are equivalent,

and there are mappings that transform a formula in one language into an equivalent one in the other.

3.3 Relational Algebra

Datalog rules and DRC or TRC formulas are declarative logic-based lan-guages, but relational algebra (RA)

is an operator-based language. However, formulas in logical languages can be implemented by transforming

them into equivalent RA expressions.

The main operators of relational algebra can be summarized as follows:

1 Union. The union of relations R and S, denoted R U S, is the set of

tuples that are in R, or in S, or in both. Thus, it can be defined using TRC as follows:

RUS- {tit e RVt E S}

This operation is defined only if R and S have the same number of columns.

2. Set difference. The difference of relations R and S, denoted R - S, is the set of tuples that belong to R

but not to S. Thus, it can be defined as follows: (t - r denotes that both t and r have n components and

t[1] = r[1] A ... A t[n] - r[n]):

R - S = {tlt E R A -,3r(r E S A t - r)}

This operation is defined only if R and S have the same number of columns (arity).

3. Cartesian product. The Cartesian product of R and S is denoted R x S. R x S = It I(3r E R) (Is C S) (t[1,.

.. ,n] = r At[n + 1,.. ., n +m] -- s)}I

If R has n columns and S has m columns, then R x S contains all the possible m + n tuples whose first

m components form a tuple in R and the last n components form a tuple in S. Thus, R x S has m + n

columns and JRI x ISI tuples, where R1 and ISI denote the respective cardinalities of the two relations.

" Projection. Let R be a relation with n columns, and L = $1,..., $n be a list of the columns of R. Let L' be a

sublist of L obtained by

51

 eliminating some of the elements, and (2) reordering the remaining ones in an arbitrary order.

Then, the projection of R on columns L, denoted 7L,, is defined as follows:

7rn R = {r[L'] I r C R}

R Selection. UFR denotes the selection on R according to the selection formula F, where F obeys one of the

following patterns:

3.4 Syntax and Semantics of Datalog Languages

Following the general introduction to logic-based query languages in the previous sections, we can now present

a more formal definition for such languages. Thus, we relate the syntax and semantics of query languages to

those of first-order logic. Then, we introduce the model-theoretic semantics of Datalog pro

grams and present a fixpoint theorem that provides the formal link to the bottom-up implementation of such

programs.

3.4.1 Syntax of First-Order Logic and Datalog

First-order logic follows the syntax of context-free languages. Its alphabet consists of the following:

a. Constants.

b. Variables: In addition to identifiers beginning with uppercase, x, y, and z also represent variables in

this section.

c. Functions, such as f(tl, ... , t.), where f is an n-ary functor and ti, ...- , tn are the arguments.

d. Predicates.

e. Connectives: These include basic logical connectives V, A, -7, and the implication symbols +-, -+,

and ++.

f. Quantifiers:] denotes the existential quantifier and V denotes the universal quantifier.

g. Parentheses and punctuation symbols, used liberally as needed to avoid ambiguities.

Terms, atoms, and formulas that contain no variables are called ground.

Example 3.25 Well-formed formulas in first-order logic

]Gl(took(N, csl01, Gi)) A IG 2 (took(N,cs143, G2)) A

IM(student(N, M, junior)) (3.4)

3N,]M(student(N, M, senior) A VC(req(cs, C) -+ 3G(took(N, C, G))))

VxVyVz (p(x, z) V ýq(x, y) V -ir(y, z)) (3.6)

VxVy (-ip(x,y) V q(f(x,y),a)) (3.7)

A WFF F is said to be a closed formula if every variable occurrence in F is quantified. If F contains some

variable x that is not quantified, then x is said to be a (quantification-) free variable in F, and F is not a closed

formula. The variable N is not quantified in the first formula in Example 3.25 (3.4), so this formula is not

closed. The remaining three WFFs in Example 3.25 are closed.

52

positive and negated atoms, whose every variable is universally quantified. A clause is called a definite clause if

it contains exactly one positive atom and zero or more negated atoms. Thus a definite clause has the form

Vxl, ... , Vxs (A V-Bi V ... V -Bn)

Since F <- G _ F V -,G, the previous clause can be rewritten in the standard rule notation:

A - B1, ... , Bn.

A is called the head, and B 1 , ... , Bn, is called the body of the rule.

In Example 3.25, only the WFFs 3.6 and 3.7 are clauses and are written as follows:

Example 3.26 The rule-based representation of clauses 3.6 and 3.7

p(x,z) +- q(x,y),r(y,z)

q(f(x, y), a) *- p(x, y).

A definite clause with an empty body is called a unit clause. It is custom-ary to use the notation "A." instead of

the more precise notation "A -- ." for such clauses. A fact is a unit clause without variables (see Example 3.27).

Example 3.27 A unit clause (everybody loves himself) and three facts

loves(X, X).

loves(marc, mary).

loves(mary, tom).

hates(marc, tom).

Definition 3.4 A positive logic program is a set of definite clauses.

We will use the terms definite clause program and positive program as synonyms.

3.3.2 Semantics

Positive logic programs have a very well defined formal semantics since al-ternative plausible semantics pro-

posed for these programs have been shown to be equivalent. More general programs (e.g., those containing ne-

gation) are less well behaved and more complex in this respect and will be discussed in later chapters. For the

rest of this chapter, the word "program" simply means a positive logic program (i.e., a set of definite clauses).

Implementation of Rules and Recursion

3.4 Rule-Rewriting Methods

The grandma predicate can be computed using the following relational alge-bra expression:

GRANDMA = 7r$,$ ((FATHER U MOTHER) M$1=$2 MOTHER)
3 2

which is the result of replacing selections on Cartesian products with equiv-alent joins in the RA expression
produced by Algorithm 3.2. Then the answer to the query goal ?grandma(marc, GM) is 0r$ marc
GRANDMA. But

2
this approach is inefficient since it generates all pairs grandma/grand-child, even if most of them are later

53

discarded by the selection 9$2=marc. A better

approach is to transform the original RA expression by pushing selection into the expression as is currently done

by query optimizers in relational databases. Then we obtain the equivalent expression:

7r$ 3 ,S2 ((_$2=maxcFATHER U a$2=,macMOTHER) N91=92 MOTHER)

In the RA expression so obtained, only the parents of marc are selected from the base relations mother and father

and processed through the rest of the expression. Moreover, since this selection produces a binary relation where

all the entries in the second column are equal to marc, the projection 7r$1 could also be pushed into the expres-

sion along with selection.

The optimization performed here on relational algebra can be performed directly by specializing the original

rules via an SLD-like pushing of the query constants downward (i.e., into the rules defining the goal predicate);

this produces the following program, where we use the notation X/a to denote that X has been instantiated to a:

Example 3.7 Find the grandma of marc

?grandma(GM,
marc)

grandma(Old, Young/marc) +- parent (Mid, Young/marc),

 mother(Old, Mid).

parent(F, Cf/marc) *- father(F, Cf/marc).

parent (M,Cm/marc) +- mother(M, Cm/marc).

Thus, the second argument in the predicate parent is set equal to the constant marc.

3.4.1 Left-Linear and Right-Linear Recursion

If, in Example 3.6, we need to compute all the anc pairs, then a bottom-up approach provides a very effective

computation for this recursive predicate. However, consider the situation where the goal contains some constant;

for example, say that we have the query ?anc(tom, Desc). As in the case of nonrecursive rules, we want to avoid

the wasteful approach of generating all the possible ancestor/person pairs, later to discard all those whose first

component is not tom. For the recursive anc rule of Example 3.6, we can observe that the value of Old in the

head is identical to that in the body; thus we can specialize our recursive predicate to anc(tom, -) throughout the

fixpoint computation. As previously discussed, Prolog performs this operation during execution. Most deductive

databases prefer a compilation-oriented approach where the program is compiled for a query form, such as

anc($Name, X). The dollar sign before Name denotes that this is a deferred constant, i.e., a parameter whose

value will be given at execution time. Therefore, deferred constants are treated as a constant by the compiler,

and the program of Example 3.8 is rewritten using $Name as the first argument of anc.

Transitive-closure-like computations can be expressed in several equiv-alent formulations; the simplest of

these use recursive rules that are either left-linear or right-linear. The left-linear version of anc is that of Ex-

ample 3.6. Consider now the right-linear formulation of ancestor:

Example 3.9 Right-linear rules for the descendants of tom

anc(Old, Young) <-- parent(Old, Young).

anc(Old, Young) +- parent(Old, Mid),anc(Mid, Young).

With the right-linear rules of Example 3.9, the query ?anc($Name, X) can no longer be implemented by

54

specializing the rules. (To prove that, say that we replace Old with the constant $Name = tom; then, the tran-

sitive closure cannot be computed using parent(tom, Mid), which only yields children of tom, while the

grandchildren of tom and their children are also needed.)

While it is not possible to specialize the program of Example 3.9 for a query ?anc($Name,X), it is possi-

ble to transform it into an equivalent pro-gram for which such a specialization will work. Take, for instance,

the right-linear program of Example 3.9; this can be transformed into the equivalent left-linear program of

Example 3.6, on which the specialization approach can then be applied successfully. While recognizing the

equivalence of programs is generally undecidable, many simple left-linear rules can be detected and

1
As a further improvement, the constant first argument might also be dropped from the recursive predi-

cate. Transformed into their equivalent right-linear counterparts. Symmetric conclusions follow for the left-

linear program of Example 3.6, which, for a query such as ? anc(Y, SD), is transformed into its right-linear

equivalent of Exam-ple 3.3. Techniques for perfoming such transformations will be discussed in Section 3.6.

After specialization, left-linear and right-linear rules can be be supported efficiently using a single fixpoint

computation. However, more complex re-cursive rules require more sophisticated methods to exploit bindings in

query goals. As we shall see in the next section, these methods generate a pair of fixpoint computations.

3.4.2 Magic Sets Method

To illustrate the basic idea behind magic sets, let us first consider the fol-lowing example, consisting of two non

recursive rules that return the names and addresses of senior students:

Example 3.10 Find the graduating seniors and the addresses of their parents

snr par-add(SN, PN, Paddr) <- senior(SN),parent(PN, SN), address(PN, Paddr).

 senior(SN) -- student(SN,_, senior), graduating(SN).

A bottom-up computation on the rules of Example 3.10 determines grad-uating seniors, their parents, and the

parents' addresses in an efficient man-ner. But, say that we need to find the address of a particular parent, for

example, the address of Mr. Joe Doe, who has just called complaining that he did not get his invitation to his

daughter's graduation. Then, we might have the following query: ?snr par-add (SN, 'Joe Doe', Addr). For this

query, the first rule in Example 3.10 can be specialized by letting PN = 'Joe Doe'. Yet, using a strict bottom-up

execution, the second rule still generates all names of graduating seniors and passes them up to the senior(SN) of

the first rule. An optimization technique to overcome this problem uses an aux-iliary "magic" relation computed

as follows:

Example 3.11 Find the children of Joe Doe, provided that they are graduating seniors

snr par-add-q('Joe Doe').
m.senior(SN) +- snrparaddq(PN), parent (PN, SN).

The fact snr par-add-q('Joe Doe') stores the bound argument of the original query goal. This bound argument

is used to compute a value of SN that is then passed to m.senior(SN) by the bottom-up rule in Example 3.11,

emulat-ing what the first rule in Example 3.10 would do in a top-down computation. We can now improve

the second rule of Example 3.10 as follows:

 Example 3.12 Restricting search via magic sets

55

senior(SN) *- m.senior(SN),

student(SN, -, senior), graduating(SN).

Therefore, the bottom-up rules of Example 3.12 are designed to emulate the top-down computation where

the binding is passed from SN in the head to the first goal of parent. This results in the instantiation of SN,

which is then passed to the argument of senior.

The "magic sets" notion is very important for those recursive predicates that are not amenable to the specia-

lization treatment used for left-linear and right-linear rules. For instance, the recursive rule in Example 3.13 is a

linear rule that is neither left-linear nor right-linear.

 Example 3.13 People are of the same generation if their parents are of the same generation

?sg(marc, Who).

 sg(X, Y) +- parent(XP, X), sg(XP, YP), parent(YP, Y).

sg(A, A).

The recursive rule here states that X and Y are of the same generation if their respective parents XP and YP

also are of the same generation. The exit rule sg(X, X) states that every element of the universe is of the same

generation as itself. Obviously this rule is unsafe, and we cannot start a bottom-up computation from it. Howev-

er, consider a top-down computa-tion on these rules, assuming for simplicity that the fact parent(tom, marc) is in

the database. Then, the resolvent of the query goal with the first rule is +- parent(XP, marc), sg(XP, YP), par-

ent(YP, Y). Then, by unifying the first goal in this list with the fact parent(tom, marc), the new goal list becomes

+- sg(tom, YP),parent(YP, Y). Thus, the binding was passed from the first argument in the head to the first ar-

gument of the recursive predicate in the body. Now, the recursive call unfolds as in the previous case, yielding

the parents of tom, who are the grandparents of marc. In summary, the top-down computation generates all the

ancestors of marc using the recur-sive rule. This computation causes the instantiation of variables X and

XP,while Y and YP remain unbound. The basic idea of magic sets is to emulate this top-down binding passing

using rules to be executed in a bottom-up fashion. Therefore, we can begin by restricting our attention to the

bound arguments and use the following rule: sg(X) +- parent (XP, X), sg(XP). Then, we observe that the top-

down process where bindings are passed from X to XP through parent can be emulated by the bottom-up execu-

tion of the magic rule m.sg(XP) +- m.sg(X), parent(XP, X); the rule is constructed from the lastone by exchang-

ing the head with the recursive goal (and adding the prefix
"im."). Finally,

 as the exit rule for the magic predicate, we

add the fact m.sg(marc), where marc is the query constant.

In summary, the magic predicate m.sg is computed as shown by the first two rules in Example 3.14. Example

3.14 also shows how the original rules are rewritten with the addition of the magic goal m.sg to restrict the bot-

tom-up computation.

Example 3.14 The magic sets method applied to Example 3.13

m.sg(marc).

m.sg(XP) -- m.sg(X), parent (XP, X).
sg'(X, X) *- m.sg(X).

sg'(X, Y) +- parent (XP, X), sg'(XP, YP), parent (YP, Y), m.sg(X).

?sg'(marc, Z).

Observe that, in Example 3.14, the exit rule has become safe as a result of the magic sets rewriting, since

only people who are ancestors of marc are considered by the transformed rules. Moreover, the magic goal in the

recursive rule is useful in narrowing the search because it eliminates people who are not ancestors of marc.

56

Following our strict stratification approach, the fixpoint for the magic predicates will be computed before

that of the modified rules. Thus, the magic sets method can be viewed as an emulation of the top-down compu-

ta-tion through a cascade of two fixpoints, where each fixpoint is then computed efficiently using the differential

fixpoint computation.The fixpoint computation works well even when the graph representing parent is a directed

acyclic graph (DAG) or contains directed cycles. In the case of a DAG, the same node and its successors are

visited several times using SLD-resolution. This duplication is avoided by the fixpoint computation, since every

new result is compared against those previously memorized. In the presence of directed cycles, SLD-resolution

flounders in an infinite loop, while the magic sets method still works.An additional virtue for the magic sets

method is its robustness, since the method works well in the presence of multiple recursive rules and even non-

linear rules (provided that the binding passing property discussed in Section 3.6 holds).One problem with the

magic sets method is that the computation per-formed during the first fixpoint might be repeated during the

second fixpoint. For the example at hand, for instance, the ancestors of marc are computed during the computa-

tion of ms.sg and revisited again as descendants of those ancestors in the computation of sg'. The counting me-

thod and the supple-monetary magic sets technique discussed next address this problem.

3.4.3 The Counting Method

The task of finding people who are of the same generation as marc can be expressed as that of finding the ances-

tors of marc and their levels, where marc is a zero-level ancestor of himself, his parents are first-generation (i.e.,

first-level) ancestors, his grandparents are second-generation ancestors, and so on. This computation is per-

formed by the predicate sg up

The counting method mimics the original top-down SLD-resolution to such an extent that it also shares some of

its limitations. In particular, cycles in the database will throw the rewritten rules into a perpetual loop; in fact, if

sgup(J, XP) is true and XP is a node in the loop, then sg up(J + K, XP), with K the length of the cycle, holds as

well.

Another problem with counting is its limited robustness, since for more complex programs, the technique be-

comes inapplicable or requires several modifications. For instance, let us revise Example 3.13 by adding the goal

XP $7YP to the recursive rule, to avoid the repeated derivation of people who are of the same generation as

themselves. Then, the rules defining sg up must be modified to memorize the values of XP, since these are

needed in the second fixpoint. By contrast, the supplementary magic technique discussed next disregards the

level information and instead relies on the systematic memorization of results from the first fixpoint, to avoid

repeating the same computation during the second fixpoint.

3.4.4 Supplementary Magic Sets

In addition to the magic predicates, supplementary predicates are used to store the pairs bound-arguments-in-

head/bound-arguments-in-recursive-goal produced during the first fixpoint. For instance, in Example 3.16, we

compute spm.sg, which is then used during the second fixpoint computation, since the join of spm.sg with sg' in

the recursive rule returns the memorized value of X for each new XP. Described, and in fact the two terms are

often used as synonyms. Frequently, the magic predicate and the supplementary magic predicate are written in a

mutually recursive form. Thus, for Example 3.16, we have the following rules:

Example 3.17 The magic and supplementary magic rules for 3.13

m.sg(marc).
spm.sg(X, XP) +- m.sg(X), parent (XP, X)

m.sg(XP) +- spm.sg(X, XP).

To better understand how the method works, let us revise the previous example. Say that we only want to search

up to kth generations where the parents and their children lived in the same state. Then, we obtain the following

57

program:

As illustrated by this example, not all the bound arguments are memo-rized. Only those that are needed for

the second fixpoint are stored in the supplementary magic relations. In our case, for instance, St is not included.

Because of its generality and robustness, the supplementary magic tech-nique is often the method of choice

in deductive databases. In fact, the method works well even when there are cycles in the underlying database.

Moreover, the method entails more flexibility with arithmetic predicates. For instance, the expression KP = K - 1

is evaluated during the first fixpoint, where K is given and the pair (K, KP) is then memorized in the supplemen-

tary relations for use in the second fixpoint. However, with the basic magic sets method from the second fix-

point, K can only be computed from the values of KP taken from 6stsg(XP, KP, YP), provided that the equation

KP = K - 1 is first solved for K. Since this is a simple equation, solving it is a simple task for a compiler; howev-

er, solving more general equations might either be very difficult or impossible. An alternative approach consists

in using the arithmetic equality as is, by taking each value of K from the magic set and computing K - 1. Howev-

er, this computation would then be repeated with no change at each step of the second fixpoint computation. The

use of sup-plementary magic predicates solves this problem in a uniform and general way since the pairs K, KP

are stored during the first fixpoint and then used during the second fixpoint.

The supplementary magic method can be further generalized to deal with nonlinear rules, including nonlinear

rules as discussed in the next section (see also Exercise 3.7).

3.6 Compilation and Optimization

Most deductive database systems combine bottom-up techniques with top-down execution. Take for instance the

fiat parts program shown in Example 3.3, and say that we want to print a list of part numbers followed by their

weights using the following query: ?part-weight(Part, Weight). An execu-tion plan for this query is displayed by

the rule-goal graph.

The graph depicts a top-down, left-to-right execution, where all the pos-sible unifications with rule heads are

explored for each goal. The graph shows the names of the predicates with their bound/free adornments posi-

tioned as superscripts. Adornments are vectors of f or b characters. Thus, a kth char-acter in the vector being

equal to b or f denotes that the kth argument in the predicate is respectively bound or free. An argument in a

predicate is said to be bound when all its variables are instantiated; otherwise the argument is said to be free, and

denoted by f.

3.6.1 Non-recursive Programs

The rule-goal graph for a program P is denoted rgg(P). The rule-goal graph for a non-recursive program is

constructed as follows:

Algorithm 3.11 Construction of the rule-goal graph rgg(P) for a nonre-cursive program P.

" Initial step: The query goal is adorned according to the constants and deferred constants (i.e., the va-

riables preceded by $), and becomes the root of rgg(P).

" Bindings passing from goals to rule heads: If the calling goal g unifies with the head of the rule r, with

mgu -y, then we draw an edge (labeled with the name of the rule, i.e., r) from the adorned calling goal

to the adorned head, where the adornments for h(r) are computed as follows:

58

(i) all arguments bound in g are marked bound in h(r)Y;

 (ii) all variables in such arguments are also marked bound; and

 (iii) the arguments in h(r)y that contain only constants or variables marked bound in (ii) are adorned b,

while the others are adorned f.

For instance, say that our goal is g = p(f(Xi), 1-, Z 1 , a), and the head of r is h(r) = p(X 2 ,g(X 2 ,Y 2),Y 2 ,W 2

). (If g and h(r) had variables in common, then a renaming step would be required here.) A most general unifier

exists for the two: y = {X 2 /f(Xl), Y 1 /g(f(X 1),Y 2), Z 1/Y 2 , W2 /a}; thus, bindings might be passed from

this goal to this head in a top-down execution, and the resulting adornments of the head must be computed. The

unified head is h(r)•/= p(f(X1), g(f(Xi), Y2), Y2 , a). For instance, say that the goal was adorned pbffb; then

variables in the first argument of the head (i.e., Xi) are bound. The resulting adorned head is pbffb, and there is

an edge from pbffb to pbffb +-. But if the adorned goal is pfbfb, then all the variables in the second argument of

the head (i.e.,X 1 , Y2) are bound. Then the remaining arguments of the head are bound as well. In this case,

there is an edge from the adorned goal pfbfb to the adorned head pbbbb.

 Left-to-right passing of bindings to goals: A variable X is bound after the nfh goal in a rule, if X is among

the bound head variables (as for the last step), or if X appears in one of the goals of the rule preceding the nth

goal.

The (n + 1)th goal of the rule is adorned on the basis of the variables that are bound after the nfth goal. For

simplicity of discussion, we assume that the rule-goal graph for a non-recursive program is a tree, such as that

of Figure 3.1. Therefore, rather than drawing multiple edges from different goals to the same adorned rule head,

we will duplicate the rule head to ensure that a tree is produced, rather than a DAG.

The rule-goal graph determines the safety of the execution in a top-down mode and yields an overall execu-

tion plan, under the simplifying assumption that the execution of a goal binds all the variables in the goal. The

safety of the given program (including the bound query goal) follows from the fact that certain adorned predi-

cates are known to be safe a priori. For instance, base predicates are safe for every adornment. Thus, part
f
 is

safe. Equality and comparison predicates are treated as binary predicates. The pattern 0 bb is safe for 0 denoting

any comparison operator, such as < or >Moreover, there is the special case of =bf or =fb where the free argu-

ment consists of only one variable; in either case the arithmetic expression in the bound argument can be com-

puted and the resulting value can be assigned to the free variable.

Definition 3.12 Let P be a program with rule-goal graph rgg(P), where rgg(P) is a tree. Then P is safe if the

following two conditions hold:

a. Every leaf node of rgg(P) is safe a priori, and

b. every variable in every rule in rgg(P) is bound after the last goal.

Given a safe rgg(P), there is a simple execution plan to compute rules and predicates in the program. Basi-

cally, every goal with bound adornments generates two computation phases. In the first phase, the bound values

of a goal's arguments are passed to its defining rules (its children in the rule-goal graph). In the second phase, the

goal receives the values of the f-adorned arguments from its children. Only the second computation takes place

for goals without bound arguments. Observe that the computation of the heads of the rules follows the computa-

tion of all the goals in the body. Thus, we have a strict stratification where predicates are computed according to

the post order traversal of the rule-goal graph.

Both phases of the computation can be performed by a relational algebra expression. For instance, the set of

59

all instances of the bound arguments can be collected in a relation and passed down to base relations, possibly

using the magic sets technique-resulting in the computation of semijoins against the base relations. In many im-

plementations, however, each instance of bound arguments is passed down, one at a time, to the children, and

then the computed values for the free arguments are streamed back to the goal.

3.6.2 Recursive Predicates

The treatment of recursive predicates is somewhat more complex because a choice of recursive methods must be

performed along with the binding passing analysis.

The simplest case occurs when the goal calling a recursive predicate has no bound argument. In this case,

the recursive predicate, say p, and all the predicates that are mutually recursive with it, will be computed in a

single differential fixpoint. Then, we fall back into the treatment of rules for the nonrecursive case, where

 step 3 of Algorithm 3.11 is performed assuming that rule heads have no bound argument

d. safety analysis is performed by treating the recursive goals (i.e., p and predicates mutually recursive

with it) as safe a priori-in fact, they are bound to the values computed in the previous step.

When the calling goal has some bound arguments, then, a binding passing analysis is performed to decide

which method should be used for the case at hand. After this analysis, the program is rewritten according to the

method selected.

Figure 3.2 illustrates how the binding passing analysis is performed on recursive rules. The binding passing from

a goal to the recursive rule heads remains the same as that used for the nonrecursive case (step 2 in Algorithm

3.11). There are, however, two important differences. The first is that we allow cycles in the graph, to close the

loop from a calling recursive goal to a matching adorned head already in the graph. The second difference is that

the left-to-right binding passing analysis for recursive rules is more restrictive than that used at step 3 of Algo-

rithm 3.11; only particular goals (called chain goals) can be used.

An adorned goal qYý in a recursive rule r is called a chain goal when it satisfies the following conditions:

a. SIP independence of recursive goals: q is not a recursive goal (i.e., not the same predicate as that

in the head of r, nor a predicate mutually recursive with q; however, recursive predicates of lower

strata can be used as chain goals).

b. Selectivity: q'Y has some argument bound (according to the bound variables in the head of r and

the chain goals to the left of q7).

The basic idea behind the notion of chain goals is that the binding in the head will have to reduce the search

space. Any goal that is called with all its adornment free will not be beneficial in that respect. Also, there is no

sideway information passing (SIP) between two recursive goals; bindings come only from the head through non

recursive goals.

The algorithm for adorning the recursive predicates and rules constructs a set of adorned goals A starting

from the initial query goal (or a calling goal) q that has adornment -/, where -y contains some bound argument.

Algorithm 3.13 Binding passing analysis for recursive predicates

Initially A - {qY}, with qY the initial goal, where q is a recursive predicate and -y is not a totally free adorn-

ment.

For each h E A, pass the binding to the heads of rules defining q.

60

For each recursive rule, determine the adornments of its recursive goals (i.e., of q or predicates mutually

recursive with q). If the last step generated adornments not currently in A, add them to A and resume from

step 2. Otherwise halt.

The calling goal g is said to have the binding passing property when A does not contain any recursive predi-

cate with totally free adornment. In this case, we say that g has the unique binding passing property when A

contains only one adornment for each recursive predicate.

When the binding passing property does not hold, then a totally free adornment occurs, and mutually recur-

sive predicates must be computed as if the calling goal had no bound arguments. Otherwise, the methods de-

scribed in the previous sections are applicable, and the recursive program is rewritten according to the method

selected.

3.6.3 Selecting a Method for Recursion

For simplicity of discussion, we assume that the unique binding passing property holds and concentrate on the

rewriting for the magic sets method, which can then be used as the basis for other methods.

Let qY E A, and r be a recursive rule defining q. Then, if the recursive rank of r is k, then there are k magic

rules corresponding to r: one for each recursive goal in r. If p is one of these goals, then the head of the magic

rule is named m.p, and has as arguments the arguments of p bound according to qy. The body of the magic rule

consists of the following goals: the recursive goal m.q with the bound arguments in qY, and the chain goals of r.

The (one and only) exit rule for all the magic predicates is actually the fact m.g', where g' is obtained from the

calling goal by eliminating its free arguments.

Finally, each original rule r is augmented with the addition of a magic goal as follows. Say that q is the head of

r, qy G A, and q' is obtained from h(r) by eliminating all the arguments that are free (i.e., denoted by an f in -y);

then, m.q' is the magic goal added to r.

The rewriting methods for supplementary magic predicates, and for the counting method, can be derived as sim-

ple modifications of the templates for magic sets. While the counting method is limited to the situation where we

have only one recursive rule and this rule is linear, the other two methods are applicable whenever the binding

passing property holds (see Exercise 3.7).

The magic sets method can also be used as the basis for detecting and handling the special cases of left-linear

and right-linear rules. For instance, if we write the magic rules for Example 3.8, we obtain:

m.anc(tom).
m.anc(Old) +- m.anc(Old).

Obviously the recursive magic rule above is trivial and can be eliminated. Since the magic relation anc now con-

tains only the value tom, rather than appending the magic predicate goal to the original rules, we can substitute

this value directly into the rules. It is simple for a compiler to recognize the situation where the body and the

head of the rule are identical, and then to eliminate the magic rule and perform the substitution. Consider now

the application of the magic sets method to Example 3.3. We obtain

 m.anc(tom).

m.anc(Mid) *- parent(Old, Mid), m.anc(Old). anc'(Old, Young) -

m.anc(Old),parent(Old, Young). anc'(Old, Young) +- parent (Old, Mid), anc'(Mid,

Young),

rn.anc'(Old).

61

?anc'(tom, Young).

Observe that the recursive rule defining anc' here plays no useful role. In fact, the second argument of anc' (i.e.,

Young) is simply copied from the goal to the head of the recursive rule. Moreover, once this second argument is

dropped, then this rule simply revisits the magic set computation leading back to torn. Thus, every value of

Young produced by the exit rule satisfies the query. Once the redundant recursive rule is eliminated, we obtain

the following program:

 m.anc(tom).

m.anc(Mid) +- m.anc(Old), parent (Old, Mid).

anc'(Old, Young) *- m.anc(Old),parent (Old, Young).

?anc'(tom, Young).

In general, for the recursive rule to be dropped, the following two con-ditions must hold: (1) all the recursive

goals in the recursive rule have been used as chain goals (during the binding passing analysis), and (2) the free

arguments in the recursive goal are identical to those of the head. These are simple syntactic tests for a compiler

to perform. Therefore, the transforma-tion between right-linear recursion and left-linear recursion can be com-

piled as a special subcase of the magic sets method.

3.6.4 Optimization Strategies and Execution Plan

Several variations are possible in the overall compilation and optimization strategy described in the previous

sections. For instance, the requirement of having the unique binding passing property can be relaxed easily (see

Exercise 3.9). The supplementary magic method can also be generalized to allow the passing of bindings be-

tween recursive goals in the same rule; however, the transformed programs so produced can be complex and

inefficient to execute.

A topic that requires further research is query optimization. Most rela-tional databases follow the approach

of estimating the query cost under all possible join orders and then selecting the plan with the least-cost esti-

mate. This approach is not commonly used in deductive database prototypes be-cause of its prohibitive cost for

large programs and the difficulty of obtaining reliable estimates for recursive predicates. Therefore, many sys-

tems use in-stead simple heuristics to select an order of execution for the goals. For instance, to select the next

goal, precedence is given to goals that have more bound arguments and fewer unbound arguments than the other

goals.

In other systems, the order of goal execution is that in which they appear in the rule (i.e., the Prolog conven-

tion also followed in the rule-goal graph of Figure 3.1). This approach leaves the control of execution in the

hands of the programmer, with all the advantages and disadvantages that follow. A promising middle ground

consists of using the optimization techniques of relational systems for simple rules and queries on base predi-

cates, while letting the programmer control the execution of more complex programs, or predicates more re-

mote from the base predicates.

Although different systems often use a different mix of recursive meth-ods, they normally follow the same gen-

eral approach to method selection. Basically, the different techniques, each with its specific applicability pre-

conditions, are ranked in order of desirability; the first applicable method in the list is then selected. Therefore,

the binding passing property is tested first, and if this is satisfied, methods such as those for left-linear and right-

linear recursion are tried first; then if these fail, methods such as magic sets and supplementary magic are tried

next. Several other techniques have been proposed for recursion, and novel approaches and refinements are be-

ing pro-posed frequently-although it is often difficult to evaluate the comparative effectiveness of the different

techniques.

62

An additional generalization that should be mentioned allows some arguments of a goal to remain uninstantiated

after its execution. In this approach, variables not bound by the execution of the goal will need to be bound by

later goals, or will be returned to the head of the rule, and then to the calling goal, as unbound variables.

In addition to the global techniques discussed above, various optimizations of a local and specialized nature can

be performed on Datalog-like languages. One such technique consists in avoiding the generation of multi-ple

bindings for existential variables, such as variables that occur only once in a rule. Techniques for performing

intelligent backtracking have also been used; these can, for example, simulate multiday joins in a tuple at a time

execution model. Therefore, many of the local optimization techniques used are specific to the low-level execu-

tion model adopted by the system; this, in turn, depends on many factors, including whether the system is pri-

marily de-signed for data residing on secondary storage or data already loaded in main memory. These alterna-

tives have produced the assortment of techniques and design choices explored by current deductive database

prototypes.

3.7 Recursive Queries in SQL

The new SQL3 standards include support for recursive queries. For instance, the BoM program of Example 3.15

is expressible in SQL3, using the view construct as follows:

Example 3.20 Recursive views in SQL3

CREATE RECURSIVE view all-subparts (Major, Minor) AS SELECT PART

SUBPART
FROM assembly
UNION

SELECT all.Major assb.SUBPART
FROM all-subparts all, assembly assb

 WHERE all.Minor- assb.PART

The SELECT statement before UNION is obviously equivalent to the exit rule in Example 3.15, while the

SELECT statement after UNION corre-sponds to the recursive rules. Therefore we will refer to them as exit

select and recursive select, respectively.

Since all-subparts is a virtual view, an actual query on this view is needed to materialize the recursive rela-

tion or portions thereof. For instance, the query of Example 3.21 requests the materialization of the whole rela-

tion.

Example 3.21 Materialization of the view of Example 3.20

SELECT *

FROM all-subparts

The WITH construct provides another way, and a more direct one, to express recursion in SQL3. For in-

stance, a query to find all the super parts using 'top-tube' can be expressed as follows:

Example 3.22 Find the parts using ‘top-tube'

WITH RECURSIVE all-super(Major, Minor) AS (SELECT PART,

63

SUBPART
FROM assembly
UNION
SELECT assb.PART, all.Minor
FROM assembly assb, all-super all
WHERE assb.SUBPART = all.Major
)

SELECT *

WHERE Minor = 'top-tube'

3.2.6 Implementation of Recursive SQL Queries

The compilation techniques developed for Datalog apply directly to recursive SQL queries. For instance, the

query of Example 3.21 on the view defined in Example 3.20 requires the materialization of the whole transitive

closure, and can thus be implemented efficiently using the differential fixpoint Algorithm 3.4. Then, TE(S') and

TR(S') are, respectively, computed from the exit select and the recursive select in Example 3.20. Here too, the

computation of TR(S') - S' will be improved using the differential fixpoint technique. In fact, this step is simple

to perform since there is only one recursive relation in the FROM clause of Example 3.20; therefore, this is a

case of linear recursion. Thus, the recursive relation all-subparts in the FROM clause is replaced with 5all-

subparts, which contains new tuples generated in the previous iteration of Algorithm 3.4. Consider now Example

3.22. This requires the passing of the condition Minor= 'top-tube' into the recursive SQL query defined using

WITH. Now, the recursive select in Example 3.22 uses right-linear recursion, whereby the second argument of

the recursive relation is copied unchanged by TR. Thus, the condition Minor = 'top-tube' can simply be attached

unchanged to the WHERE clause of the exit select and the recursive select, yielding the following equivalent

SQL program:

Example 3.23 Specialization of the query of Example 3.22

WITH RECURSIVE all-super(Major, Minor) AS (SELECT PART,

SUBPART

FROM assembly

WHERE SUBPART = 'top-tube'
UNION

SELECT assb.PART, all.Minor

FROM assembly assb, all-super all
WHERE assb.SUBPART = all.Major

)AND all.Minor - 'top-tube'

SELECT *

However, say that the same query is expressed against the virtual view of Example 3.20, as follows:

SELECT *

FROM all-subparts

WHERE Minor = 'top-tube'

Since all-subparts is defined in Example 3.20 using left-linear recursion, the addition of the condition

64

Minor = 'top-tube' to the recursive select would not produce an equivalent query. Instead, the SQL compiler

must trans-form the original recursive select into its right-linear equivalent before the condition Minor = 'top-

tube' can be attached to the WHERE clause. The compilation techniques usable for such transformations are

basically those previously described for Datalog.

65

UNIT – IV

Spatial, Text, and Multimedia Databases

.

The problem we focus on in this part is the design of fast searching methods that will search a database of spa-

tial, text, or multimedia objects to locate those that match a query object, exactly or approximately. Objects can

be 2-dimensional color images, gray-scale medical images in 2-D or 3-D (e.g., MRI brain scans), 1-dimensional

time series, digitized voice or music, video clips, and so on. A typical query by content would be "in a collection
of color photographs, find ones with the same color distribution as a sunset photograph."

4.1 Secondary Keys

Access methods for secondary key retrieval have attracted much interest. The problem is stated as fol-

lows: Given a file, say, EMPLOYEE (name, salary, age), organize the appropriate indices so that we can answer

efficiently queries on any and all of the available attributes. Classified the possible queries into the following

classes, in increasing order of complexity:

1. Exact match query, when the query specifies all the attribute values of

the desired record. For example,

name = 'Smith' and salary = 40,000 and age -= 45

2. Partial match query, when only some of the attribute values are specified. For example

salary = 40,000 and age = 45

3. Range queries, when ranges for some or all of the attributes are specified. For example

35,000 < salary _< 45,000 and age = 45

4. Boolean queries:

((not name = 'Smith') and salary >_ 40,000) or age > 50

4.2 Inverted Files

This is the most popular approach in database systems. An inverted file on a given attribute (say, salary) is built

as follows: For each distinct attribute value, we store

1. a list of pointers to records that have this attribute value (postings list)

2. optionally, the length of this list

The set of distinct attribute values is typically organized as a B-tree or as a hash table. The postings lists may

be stored at the leaves, or in a separate area on the disk. Below Figure shows an index on the salary of an

EMPLOYEE table. A list of unique salary values is maintained, along with the postings lists. Given indices

on the query attributes, complex Boolean queries can be resolved by manipulating the lists of record pointers

before accessing the actual records. Notice that indices can be created automatically by a relational DBMS,

with the SQL command CREATES INDEX.

66

4.3 Spatial access method

The secondary-key access methods, which handle queries on keys that may have duplicates (e.g., salary, or age,

in an EMPLOYEE file). As mentioned, records with k numerical attributes can be envisioned as k-dimensional

points. Here we examine spatial access methods, which are designed to handle multidimensional points, lines,
rectangles, and other geometric bodies.

There are numerous applications that require efficient retrieval of spatial objects:

 Traditional relational databases, where, as we mentioned, records with k-attributes become points in k-D

spaces.

 Geographic information systems (GISs), which contain, for example, point data, such as cities on a 2-

dimensional map.

 Medical image databases with, for example, 3-dimensional MRI brain scans, which require the storage

and retrieval of point sets, such as digitized surfaces of brain structures [21].

 Multimedia databases, where multidimensional objects can be represented as points in feature space

[227, 157]. For example, 2-D color images correspond to points in (R,G,B) space (where R, G, and B are
the average amount of red, green, and blue [152]).

 Time-sequence analysis and forecasting [452, 87], where k successive values are treated as a point in k-

D space; correlations and regularities in this k-D space help in characterizing the dynamical process that

generates the time series.

 Rule indexing in expert database systems [420] where rules can be represented as ranges in address

space (e.g., "all the employees with salary in the range 10K-20K and age in the range 30-50 are entitled
to specific health benefits").

4.4 1-D Time Series

Here the goal is to search a collection of (equal-length) time series, to find the ones that are similar to a desirable
series. For example, in a collection of yearly stock price movements, we want to find the ones that are similar to

IBM. For the rest of the section, we shall use the following notational conventions: If S and Q are two se-

quences, then

1. Len(S) denotes the length of S

2. S[i : j] denotes the subsequence that includes entries in positions I Through j

3. S[i] denotes the ith entry of sequence S

4. D(S, Q) denotes the distance of the two (equal-length) sequences S and Q

4.5 2-D Color Images

The goal is to study ways to query large on-line image databases using the images' content as the basis of the

queries. Examples of the content we use include color, texture, shape, position, and dominant edges of image

items and regions. Potential applications include medical ("give me other images that contain a tumor with a

texture like this one"), photojournalism ("give me images that have blue at the top and red at the bottom"), and

many others in art, fashion, cataloging, retailing, and industry.

4.6 Sub pattern Matching:

Up to now, we have examined the whole match case. The question is, Could we extend the philosophy of the

quick-and-dirty test, so that we can handle subpattern matching queries? Let's focus on 1-D time series to illu-

strate the problem and the solution more clearly. Then, the problem is defined as follows:

67

1. We are given a collection of N sequences of real numbers S1, S2 , SN, each one of potentially different

length.

2. The user specifies query subsequence Q of length Len(Q) (which may vary) and the tolerance c, that is,

the maximum acceptable dissimilarity (= distance).

3. We want to find quickly all the sequences Si (1 < i < N), along with the correct offsets k, such that the

subsequence Si[k : k + Len(Q) - 1] matches the query sequence: D(Q, Si[k : k + Len(Q) - 1]) • E.

4.6.1 Sketch of the Approach-ST-Index:

Without loss of generality, we assume that the minimum query length is w, where w (Ž 1) depends on the appli-

cation. For example, in stock price databases, analysts are interested in weekly or monthly patterns because

shorter patterns are susceptible to noise [139]. Notice that we never lose the ability to answer shorter than w

queries because we can always resort to sequential scanning.

Generalizing the reasoning of the method for whole matching, we use a sliding window of size w and place it at

every possible position (offset), on every data sequence. For each such placement of the window, we extract the

features of the subsequence inside the window. Thus, a data sequence of length Len(S) is mapped to a trail in

feature space, consisting of Len(S) -w + 1 points: one point for each possible offset of the sliding window.

BELOW Figure gives an example of a trail: Consider the sequence S1, and assume that we keep the first k = 2

features (e.g., the amplitude of the first and second coefficient of the w-point DFT). When the window of length

w is placed at offset = 0 on S1, we obtain the first point of the trail; as the window slides over S1, we obtain the

rest of the points of the trail.

68

UNIT - V

Uncertainty in Databases and Knowledge Bases

5.1 Uncertainty in Image Database:

For example, consider the problem of representing image content UNIT-II in a relational database. Consider a

very simple relation called face that specifies which persons' faces are contained in which image files. Such a

relation may have the schema

(File, Person, LLx, LLy, Ugx, URy)

and a simple instance of the face relation is shown below:

The attribute names may be interpreted as follows:

 File is the name of an image file (e.g., iml .gif).

 (LLx, LLy) and (URx, URy) specify the lower-left corner and the upperright corner of a rectangle

(with sides parallel to the x- and y-axes) that bounds a particular person's face. Thus, in the above

example, the first tuple indicates that there is a face (in iml. gif) in the rectangular region whose

lower-left corner is at (10,10) and whose upper-right corner is at (20,20). Thus, the (LLx,LLy) and

(URx,URy) components of any tuple uniquely capture a rectangle within the specified image.

 Person specifies the name of the person whose face occurs in the rectangle specified by a tuple in

this relation. Thus, for instance, the first tuple in the face relation states that the person in the rectan-

gular region whose lower-left corner is at (10,10) and whose upper-right corner is at (20,20) is John

Smith.

5.2 Uncertainty in Temporal Database:

Often, a tuple in a relational database is time stamped with an interval of time. This often denotes the fact that

the tuple was true at some time instant in that interval. For example, we may have a temporal relation called

shipping that is maintained by a factory. This relation may have the schema

69

(Item, Destination).

When extended to handle temporal information, we may have a new additional attribute called ShipDate that

denotes the date on which the item was shipped. The expanded shipping relation may contain the following

tuples:

The first tuple above says that the factory shipped an order of widget-1 to Boston sometime between January 1

and January 7 (inclusive). However, the precise date is unknown. Consider now the query "find all places to

which widget-1 was shipped on or before January 5, 1996." As we will see below, some different answers are

possible:

 If we were to assume that the probability of being shipped on any given day is equally likely, then there

is a 5 probability that the Boston shipment was on or before January 5. Thus, we should return the an-

swer

 On the other hand, if we know that nothing is shipped from the factory over the weekend, then we know,

since January 1, 1996, was a Monday, that the probability of the shipment going out between January 1

and January 5 is 1, and we should return the answer

70

5.3 Uncertainty in DBs: A Null-Value Example

As you are probably aware, it is not always possible to associate a value with each and every column of each and

every tuple in a given relation. For example, because of some unforeseen conditions (e.g., a coffee spill), the

destination of a particular shipment may not be deductible from a given shipping invoice. However, the name of

the intended recipient may be visible, leading the database administrator to conclude that the shipment was in-

tended for one of the two factories of that company, located in New York and Denver.

The database administrator, after speaking to the shipping department, may conclude that most likely the ship-

ment was intended for Denver (with 90% certainty). In this case, the following data may be entered into the da-

tabase.

5.4 Fuzzy logic

In classical logic, there is a close correspondence between sets and logic. If F is a formula in such a logical lan-

guage, then F denotes the set of all interpretations that satisfy it, where satisfaction. Formulas in fuzzy logic have

exactly the same syntax as those of classical logic. However, they differ from classical logic in the following

ways:

 An interpretation of a fuzzy language is a function, I, that maps ground atoms in the language to real

numbers in the unit interval [0, 11].

 The notion of satisfaction is fuzzy-if Sat(F) denotes the set of interpretations that satisfy F, then each in-

terpretation I of the language has a degree of membership in Sat(F).

Therefore, strictly speaking, given any formula F, and an interpretation I, we should use the notation XSat(F)(I)

to denote the degree of membership of I in Sat(F). However, in order to simplify notation, we will merely write

I(F) for this quantity.

Suppose I is an interpretation. If X is any set of real numbers between 0 and 1 inclusive, we will use the notation

inf(X) (pronounced infimum of X) to denote the largest real number that is smaller than all elements of X. The

notation sup(X) (pronounced supremum of X) denotes the smallest real number that is greater than or equal to all

elements of X. Then I(F) may be defined inductively as follows:

71

5.5 Fuzzy Sets

We are all familiar with standard set theory (usually called naive set theory). Given a set S, we may associate

with S a characteristic function Xs, defined as

In standard set theory, the concepts of union, intersection, and difference are defined in the standard ways:

5.6 Uncertainty in Relational Databases

The relational model of data may be extended to incorporate uncertainty either at the tuple level or at the

attribute level. In the tuple-level approach, we extend each tuple to have one or more uncertainty attributes. Typ-

ically, the uncertainty attribute would either be "a single real number r G [0, 1] or an interval [ri, r 2] of real

numbers, or "a lattice element - drawn from the complete lattice of truth values being considered. For example,

the first approach would perhaps be preferred when fuzzy logic is the selected mode of uncertainty. On the other

hand, as we have already seen, knowing the probabilities of events only allows us, in general, to infer a probabil-

ity range for conjunctions; hence, you would expect that operations such as join and Cartesian product (both akin

to conjunction), and union (similar to disjunction), would only allow us to infer the existence of probability

ranges, rather than point probabilities, unless there is reason to believe that something like the independence

assumption may be made.

5.7 Lattice based relational databases

Suppose) is a complete lattice of truth values. Suppose R is a relation over schema (A1,..., An). The

tuple-based lattice extension, R
l
, of relation R is a relation over schema (A1 ,... , An, Unc) where dom(Unc) = L.

A 1 ,... , An, are called the data attributes of R. Notice that R
l
 handles uncertainty at the tuple level, not the

72

attribute level. If, for example, L = [0, 1],then the following table shows a tuple-level table that extends the face

table

