
ADVANCED DATABASES
Course Code:AIT505
Regulation: IARE-R16

IT

V SEMESTER ​
​

Prepared by:
Mr. D Rahul, Assistant Professor
Mr. N Bhaswanth, Assistant Professor

UNIT - I

ACTIVE DATABASES

3

• Introduction

• Representative Systems and Prototypes

• Applications of Active Rules

Active Databases: Topics

4

Passive DBMS: all actions on data result from explicit invocation

in application programs (they only do what application programs

tell them to do)

Active DBMS: execution of actions can be automatically

triggered in response to monitored events, including database

updates (upon deletion of the data about a customer) points in

time (on January 1, every hour) events external to the database

(whenever paper jams in the printer)

Active-Database Technology

5

• When an event occurs, if a condition holds, then an action

is performed

Event a customer has not paid 3 invoices at the due date

Condition if the credit limit of the customer is less than 20

000 Euros

Action cancel all current orders of the customer

• ECA rules are part of the database (⇒ “rule base”),

available to all applications

Event - Condition - Action Rules

6

Rules May Express Various Aspects of Application
Semantics

Static constraints (e.g., referential integrity, cardinality, value

restrictions) only regular students can register at the library

students can register in no more than 20 courses the salary of

employees cannot exceed the salary of their manager

7

Semantics Modeled by Rules (cont’d)

Implementation of generic relationships (e.g., generalization)

a person is a student or a lecturer, but not both

• Derived data: materialized attributes, materialized views,

replicated data

the number of students registered in a course must be part of the

course data

orders received are summarized daily in the planning database

8

Benefits of Active Technology

Simplification of application programs: part of the

functionality can be programmed with rules that belong to

the database

• Increased automation: actions are triggered without direct

user intervention

• Higher reliability of data thru more elaborate checks and

repair actions ⇒ better computer-aided decisions for

operational management

9

Relational prototype by IBM Almaden Research Center

• Event-Condition-Action rules in Starburst:

event: data-manipulation operations (INSERT, DELETE, UPDATE)
in SQL
condition: Boolean predicate in SQL on the current state of the
database
action: SQL statements, rule-manipulation statements,
rollback

Starburst

10

Starburst: Syntax of Rule Definition

<Starburst-rule> ::= CREATE RULE <rule-name> ON

<relation-name>

WHEN <list of trigger-events>

[IF <condition>]

THEN <list of SQL-statements>

[PRECEDES <list of rule-names>]

[FOLLOWS <list of rule-names>]

<trigger-event> ::= INSERTED | DELETED | UPDATED [(

<attributes>)

11

Starburst: Syntax of Rule Definition

<Starburst-rule> ::= CREATE RULE <rule-name> ON

<relation-name>

WHEN <list of trigger-events>

[IF <condition>]

THEN <list of SQL-statements>

[PRECEDES <list of rule-names>]

[FOLLOWS <list of rule-names>]

<trigger-event> ::= INSERTED | DELETED | UPDATED [(

<attributes>)

12

Starburst: Semantics

Rules are triggered by the execution of operations in

statements that are part of transactions

• Rules are statement-level: they are executed once per

statement even for statements that trigger events on several

tuples

• Execution mode is deferred: 3 all rules triggered during

transaction execution are placed in a conflict set 3 rules are

not considered until the end of the transaction (transaction

commit) unless an explicit PROCESS RULES is executed in the

transaction

13

Rule Processing

Algorithm for rule selection and execution

While the conflict set is not empty

(1) Select a rule R in the conflict set among those rules at

highest priority; take R out of the conflict set

(2) Evaluate the condition of R

(3) If the condition of R is true, then execute the action of R

14

Precise Definition of Rule Triggering

A rule is triggered if any of the transition relations corresponding to

its triggering operations is not empty

• Rule can reference transition relations (this can be more efficient

than referring to database relations)

15

Oracle: Triggers

Respond to modification operations (insert, delete, update) to a

relation Granularities for rules

 tuple-level (or row-level): a rule is triggered once for each tuple

concerned by the triggering event

 statement-level: a rule is triggered only once even if several

tuples are involved

 Immediate execution mode: rules are considered immediately

after the event has been requested (Starburst rules are

deferred)Rules can be considered and executed before, after, or

instead of the operation of the triggering event is executed 23

UNIT - II
TEMPORIAL AND OBJECT DATABASES

Temporal Databases

 Temporal Data Models: extension of relational model by adding

temporal attributes to each relation

 Temporal Query Languages: TQUEL, SQL3

 Temporal Indexing Methods and Query Processing

Temporal databases

 Some data may be inherently historical
 e.g., medical or judicial records

 Temporal databases provide a uniform and systematic way of
dealing with historical data

 Considerable effort has been expended on the development of
temporal databases and query languages
 TQuel [Snodgrass87], TSQL2 [Snodgrass95], SQL/Temporal

[Snodgrass96]
─But none of them has been adopted as the standard language of temporal databases in practice

─No established the theoretical foundations for management of time-dependent data

─No universal consensus on how temporal features should be added to the standard relational model

Outline

 The fundamental notions of temporal databases

 A formal foundation for temporal data models

 How to introduce time into the relational model

 Query languages for temporal databases

 Temporal extensions of SQL

 Limitations of simple linearly-ordered, first-order temporal data

models

 More complex models of time

Structure of time

 They used a very simple notion of time in this chapter:

 a linear ordering of time instants

 In addition to linear ordering, we may consider:

 Discrete or dense

 Bounded or unbounded

 Single dimensional or multi-dimensional

 Linear or non-linear

The time stamp model

 All the tuples in a relation have an additional temporal
attribute

 Example: Booking (meeting, room, time)

 A tuple (m,r,t) denotes the fact that:

meeting m is in room r at time t

Temporal attribute

 Single-dimensional: temporal relations were allowed
only a single temporal attribute

 Multiple dimensional: with each tuple in a relation
there can be more than one temporal attribute

 Example: two kinds of time are stored: the valid time (when
a particular tuple is true) and the transaction time (when the
particular tuple was inserted/deleted in the database)

 Non-1NF: can be flattened to obtain the 1NF

The snapshot model

 Different view from the time stamp model (of the same data)

Relational database histories

 A history over a database schema p and a data domain D is a
sequence H : (Do,..., Dn) of database instances such that:

1. all the states Do , . . . , Dn share the same schema p and the
same data domain D

2. Do is the initial instance of the database

3. Di results from applying an update to Di-1, for i > 1

Do D1 D2

time

…

…

Temporal database design

 Reconstruction of Jensen’s formal framework *Jensen96+

 Based on the notion of temporal functional dependency:

 Example: the temporal FD

means every meeting is held in a single room at any given time

 Several advantages: can use the classical notions of FD inference,
dependency closure, normal forms, mix temporal and non-
temporal FDs

A temporal FD holds in a snapshot temporal relation DB if the
(classical) FD holds in every snapshot of DB

Multiple dimensions

 How to express two temporal dimensions using temporal FD:
 valid time (VT)

 transaction time (TT)

 3 kind of temporal FDs:
 Transaction time:

 Valid time:

 Bitemporal:

 Example: means the record at any time of the
room booked for a meeting at any time is uniquely determined

 Disadvantage:
 Can no longer talk about, e.g., temporal keys, but only about valid-time,

transaction-time or bitemporal keys

 The framework becomes so complicated that it is unlikely to be of any use

Temporal queries

 Databases are inherently first-order structures

 Temporal extensions first-order logic

 Query: using a natural first-order query language

 The answer: the set of tuple that make the query true in the

given relational database

 Examples:

 find all meetings that always meet in the same room

 find all rooms in which the last meeting was 'DB group'

Temporal logic

 Historically, many different variants of temporal logic based on

different sets of connectives have been developed [Gabbay94]

 Some connectives are well-known and have been universally

accepted:

 sometime in the future

 always in the future

 In general any appropriate first-order formula in the language of

the temporal domain can be used to define a temporal

connective

First order temporal logic

 First they define the first order language of Tp extended with
propositional variables Xi :

 Then use it to define a (k-ary) temporal connective:

 an O-formula with exactly one free variable t0 and k
propositional variables X1,.., Xk

 They assume ti is the only temporal variable in the formula to
be substituted for Xi

 Example: common binary temporal connectives:

Temporal connectives

 Other temporal connectives:

 Sometime in the future:

 Sometime in the past:

 Always in the future:

 Always in the past:

 Next:

 Previous:

First order temporal logic

 : A set of temporal connectives , e.g. {since, until}

 : First order temporal logic (FOTL) over a schema

 :

Examples

 How to use temporal connectives to formulate queries:
 Find all rooms in which the last meeting was 'DB group‘:

 Find all meetings with a scheduled break:

Temporal extensions of SQL

 A point based extension of SQL: SQL/TP [Toman97]

 The syntax and semantics of SQL/TP are defined as a natural

extension of SQL

 An additional data type based on the point-based temporal

domain Tp (i.e., a linearly ordered set of time instants)

SQL/TP Example

 List all meetings with a scheduled break :

Extensions of SQL based on interval based language

 TSQL2 or SQL/Temporal [Snodgrass95]

 Time attributes range over intervals and the before relationship
denotes the before relationship between two intervals

Updating temporal databases

 Insertion: a new booking for a room for a meeting

 Unit is an auxiliary table that contains a single tuple

 The inner query produces:

 Deletion: Creating 20 minute break in the middle of meeting

Complex structure of time

 Complex structure of time: more complex than linearly ordered
sets of time instants

 Natural numbers, integers, reals

 Additional structures: durations, temporal distances, periodic
sets

 Impact on integrity constraints : more complex constraint
dependencies

 Impact on query languages (use new predicate symbols in the
same way the linear order < symbol has been used so far)

Time Ontology

38

◆Several different structures of time

•Linear is simplest and most common

◆5 fundamental temporal data types

◆Several dimensions of time

•TSQL2 supports transaction and valid time

Boundedness of Time

◆Assume a linear time structure

◆Boundedness

•Unbounded

•Time origin exists (bounded from the left)

•Bounded time (bounds on two ends)

◆Nature of bound

•Unspecified

•Specified

◆Physicists believe that the universe is bounded by the “Big Bang”

(12-18 billions years ago) and by the “Big Crunch” (? billion years

in the future)

39

Time Density

◆Discrete

•Time line is isomorphic to the integers

•Time line is composed of a sequence of non-decomposable time

periods, of some fixed minimal duration, termed chronons

•Between each pair of chronons is a finite number of other
chronons

◆Dense

•Time line is isomorphic to the rational numbers

• Infinite number of instants between each pair of chronons

◆Continuous

•Time line is isomorphic to the real numbers

• Infinite number of instants between each pair of chronons

◆Distance may optionally be defined 40

TSQL2: Time Ontology

◆Structure

•TSQL2 uses a linear time structure

◆Boundedness

•TSQL2 time line is bounded on both ends, from the start of time
to a point far in the future

◆Density

•TSQL2 do not differentiate between discrete, dense, and
continuous time ontologies

•No questions can be asked that give different answers

∗ E.g., instant a precedes instant b at some specified granularity.

Different granularities give different answers

•Distance is defined in terms of numbers of chronons

41

Ontological Temporal Types
◆Instant: chronon in the time line

•Event: instantaneous fact, something occurring at an instant

•Event occurrence time: valid-time instant at which the event
occurs in the real world

◆Instant Set: set of instants

◆Time period: time between two instants

•Also called interval, but conflicts with SQL data type INTERVAL

◆Time interval: a directed duration of time

◆Duration: amount of time with a known length, but no specific
starting or ending instants

•positive interval: forward motion time

•negative interval: backward motion time

◆Temporal element: finite union of periods
42

Temporal Data Types in SQL-92 and TSQL2

◆SQL92

•DATE (YYYY-MM-DD)

•TIME (HH:MM:SS)

•DATETIME (YYYY-MM-DD HH:MM:SS)

• INTERVAL (no default granularity)

◆TSQL2

•PERIOD: DATETIME - DATETIME

43

UNIT - III

44

COMPLEX QUERIES AND REASONING

Formal Relational Query Languages

 Two mathematical Query Languages form the basis for
“real” languages (e.g. SQL), and for implementation:

◦ Relational Algebra: More operational, very useful for
representing execution plans.

◦ Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-operational,
declarative.)

45

Example Instances

 “Sailors” and “Reserves”

relations for our examples.

 We’ll use positional or named

field notation, assume that

names of fields in query

results are `inherited’ from

names of fields in query input

relations.

46

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid sname rating age

28 yuppy 9 35.0

31 lubber 8 55.5

44 guppy 5 35.0

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96S1

S2

Relational Algebra

 Basic operations:

 Selection : Selects a subset of rows from relation.

 Projection : Deletes unwanted columns from relation.

 Cross-product : Allows us to combine two relations.

 Set-difference : Tuples in reln. 1, but not in reln. 2.

 Union : Tuples in reln. 1 and in reln. 2.

 Additional operations:

 Intersection, join, division, renaming
47

Projection

 Schema of result contains exactly

the fields in the projection list, with

the same names that they had in

the (only) input relation.

 Projection operator has to eliminate

duplicates! (Why??)

 Note: real systems typically don’t

do duplicate elimination unless

the user explicitly asks for it.

48

sname rating

yuppy 9

lubber 8
guppy 5
rusty 10


sname rating

S
,

()2

age

35.0
55.5

age S()2

Selection

 Selects rows that satisfy
selection condition.

 No duplicates in result!
(Why?)

 Schema of result identical to
schema of (only) input
relation.

 Result relation can be the
input for another relational
algebra operation! (Operator
composition.)

49


rating

S
8

2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating

yuppy 9

rusty 10

 
sname rating rating

S
,

(())
8

2

Set operations

 Union(U), Intersection(∩), Set-Difference(-) are set operations
available in in relational algebra

 Union(RUS):

 Two relational instances are said to be union compatible if the
following conditions hold—

 they have same number of the fields and corresponding fields

 taken in order from left to right,have the same domains

 Intersection(R ∩ S):returns a relational instance containing all
tuples that occur in both R and S.

 Set-difference(R-S): returns a relational instance containing all
tuples that occur in R but not in S.

 Cross product(RXS): returns a relational instance whose schema
contains all fields of R followed by all fields of S

50

Union, Intersection, Set-Difference

 All of these operations take
two input relations, which
must be union-compatible:

 Same number of fields.

 `Corresponding’ fields have
the same type.

 What is the schema of result?

51

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

S S1 2

S S1 2

sid sname rating age

22 dustin 7 45.0

S S1 2

Cross-Product

 Each row of S1 is paired with each row of R1.

 Result schema has one field per field of S1 and R1, with field
names `inherited’ if possible.
Conflict: Both S1 and R1 have a field called sid.
S1 X R1

52

 ((,),)C sid sid S R1 1 5 2 1 1  

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

Renaming operator(ρ): ρ (old name -> new name) or
ρ (position -> new name)

Joins

 Condition Join:

 Result schema same as that of cross-product.

 Fewer tuples than cross-product, might be able to
compute more efficiently

 Sometimes called a theta-join.

53

R c S c R S   ()

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S R
S sid R sid

1 1
1 1


. .

 Equi-Join: A special case of condition join where the condition
c contains only equalities.

 Result schema similar to cross-product, but only one copy of
fields for which equality is specified.

 Natural Join: Equijoin on all common fields.

 If two relations have no attributes in common,natural join is
simply cross product.

54

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1

Division

 Not supported as a primitive operator, but useful for expressing
queries like:

 Find sailors who have reserved all boats.

 Let A have 2 fields, x and y; B have only field y:

 A/B =

 i.e., A/B contains all x tuples (sailors) such that for every y tuple
(boat) in B, there is an xy tuple in A.

 Or: If the set of y values (boats) associated with an x value
(sailor) in A contains all y values in B, the x value is in A/B.

 In general, x and y can be any lists of fields; y is the list of fields in B,
and x y is the list of fields of A.

55

 x x y A y B| ,   



Examples of Division A/B

56

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2

s4 p2

s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

Relational Calculus

 Comes in two flavors: Tuple relational calculus (TRC) and Domain

relational calculus (DRC).

 Calculus has variables, constants, comparison ops, logical

connectives and quantifiers.

 TRC: Variables range over (i.e., get bound to) tuples.

 DRC: Variables range over domain elements (= field values).

 Both TRC and DRC are simple subsets of first-order logic.

 Expressions in the calculus are called formulas. An answer tuple is

essentially an assignment of constants to variables that make the

formula evaluate to true.
57

Tuple relational calculus

 A tuple rc query has the form {T|P(T)} where T is a tuple

variable and P(T) denotes a formula that describes T.

 Find all sailors with rating above 7

 {S|S € Sailors Л s.rating>7}

 Let Rel be a relation name, R & S be tuple variables,’a’ be an

attribute of R and ‘b’ be attribute of S. Let op denote

operator.

 An atomic formula is one of the following

 R € Rel, R.a € S.b, R.a op constant or constant op R.a

58

Tuple relational calculus

 A formula is recursively defined to be one of the following

-- any atomic formula

-- ┐P,PЛQ,P V Q or P=>Q

-- эR(P(R)) where R is tuple variable

-- forall R(P(R)) where R is tuple variable

 A variable is said to be free in formula if it does not contain
an occurence of quantifiers that bind it.

 Find the names and ages of sailors with rating above 7

 {P| эS є Sailors(S.Rating >7 Л P.name=S.Sname Л
P.age=S.age)

59

Queries

 Find the sailor name,boat id and reservation date for each
reservation

 {P|эR є Reserves эS є Sailors (R.Sid=S.sid Л P.bid=R.bid Л
P.day=R.day Л P.sname=S.sname)

 Find the names of sailors who have reserved boat 103

 {P|эR є Reserves эS є Sailors (R.Sid=S.sid Л R.bid=103 Л
P.sname=S.sname)

 Find the names of sailors who have reserved boat 103

 {P|эR є Reserves эS є Sailors (R.Sid=S.sid Л
P.sname=S.sname Л эB є Boats(B.bid=R.bid Л B.color=‘red’)
)}

60

Find sailors rated > 7 who’ve reserved a red boat

 Observe how the parentheses control the scope of each quantifier’s
binding.

 Find names of sailors who’ve reserved a red boat

61

I N T A I N T A Sailors T, , , | , , ,    





7

    





Ir Br D Ir Br D serves Ir I, , , , Re

     






























B BN C B BN C Boats B Br C red, , , , ' '









 SailorsATNIATIN ,,,,,|









 BoatsredBNBrservesDBrI '',,Re,,

є

Find sailors who’ve reserved all boats

62

I N T A I N T A Sailors, , , | , , ,  






   






















B BN C B BN C Boats, , , ,

     












































Ir Br D Ir Br D serves I Ir Br B, , , , Re

Find sailors who’ve reserved all boats (again!)

 To find sailors who’ve reserved all red boats:

63

I N T A I N T A Sailors, , , | , , ,  






 B BN C Boats, ,

    



































Ir Br D serves I Ir Br B, , Re

C red Ir Br D serves I Ir Br B      



































' ' , , Re

....

.

Data Definition Language

 The schema for each relation, including attribute
types.

 Integrity constraints

 Authorization information for each relation.

 Non-standard SQL extensions also allow specification
of

◦ The set of indices to be maintained for each
relations.

◦ The physical storage structure of each relation on
disk.

64

Allows the specification of:

Create Table Construct

 An SQL relation is defined using the create table
command:

create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

◦ r is the name of the relation
◦ each Ai is an attribute name in the schema of relation

r
◦ Di is the data type of attribute Ai
Example:

create table branch
(branch_name char(15),
branch_city char(30),
assets integer)

65

Domain Types in SQL

 char(n). Fixed length character string, with user-
specified length n.

 varchar(n). Variable length character strings, with
user-specified maximum length n.

 int. Integer (a finite subset of the integers that is
machine-dependent).

 smallint. Small integer (a machine-dependent
subset of the integer domain type).

 numeric(p,d). Fixed point number, with user-
specified precision of p digits, with n digits to the
right of decimal point.

 float(n). Floating point number, with user-specified
precision of at least n digits.

66

Integrity Constraints on Tables
 not null

 primary key (A1, ..., An)

67

Example: Declare branch_name as the primary key
for branch
.

create table branch
(branch_name char(15),
branch_city char(30) not

null,
assets integer,
primary key (branch_name))

primary key declaration on an attribute automatically
ensures not null in SQL-92 onwards, needs to be
explicitly stated in SQL-89

Basic Insertion and Deletion of Tuples

 Newly created table is empty

 Add a new tuple to account

insert into account

values ('A-9732', 'Perryridge', 1200)

Insertion fails if any integrity constraint is violated

 Delete all tuples from account

delete from account

68

Drop and Alter Table Constructs

 The drop table command deletes all information about the
dropped relation from the database.

 The alter table command is used to add attributes to an
existing relation:

alter table r add A D

where A is the name of the attribute to be added to relation r
and D is the domain of A.

◦ All tuples in the relation are assigned null as the value for the
new attribute.

 The alter table command can also be used to drop attributes of

a relation: alter table r drop A

where A is the name of an attribute of relation r

◦ Dropping of attributes not supported by many databases

69

Basic Query Structure

 A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

◦ Ai represents an attribute
◦ Ri represents a relation
◦ P is a predicate.

 This query is equivalent to the relational algebra
expression.

 The result of an SQL query is a relation.

70

))((
21,,, 21 mPAAA

rrr
n

  

The select Clause

 The select clause list the attributes desired in the result of
a query

 corresponds to the projection operation of the relational
algebra

 Example: find the names of all branches in the loan

relation: select branch_name

from loan

 In the relational algebra, the query would be:

branch_name (loan)

 NOTE: SQL names are case insensitive (i.e., you may use
upper- or lower-case letters.)

 E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name

 Some people use upper case wherever we use bold font. 71

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query
results.

 To force the elimination of duplicates, insert the keyword
distinct after select.

 Find the names of all branches in the loan relations, and
remove duplicates

select distinct branch_name
from loan

The keyword all specifies that duplicates not be removed.
select all branch_name
from loan

72

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”

select * from loan

 The select clause can contain arithmetic expressions

involving the operation, +, –, , and /, and operating on

constants or attributes of tuples.

 E.g.:

select loan_number, branch_name, amount 

100 from loan

73

“All” Construct

 Find the names of all branches that have greater assets than all branches

located in Brooklyn.

74

select branch_name
from branch
where assets > all

(select assets
from branch
where branch_city = 'Brooklyn')

“Exists” Construct

 Find all customers who have an account at all
branches located in Brooklyn.

75

select distinct S.customer_name
from depositor as S
where not exists (

(select branch_name
from branch
where branch_city = 'Brooklyn')
except
(select R.branch_name
from depositor as T, account as R
where T.account_number = R.account_number and

S.customer_name = T.customer_name))

 Note that X – Y = Ø  X Y

 Note: Cannot write this query using = all and its variants

Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any
duplicate tuples in its result.

 Find all customers who have at most one account at the
Perryridge branch.

select T.customer_name

from depositor as T

where unique (

select R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and

R.account_number = account.account_number
and

account.branch_name = 'Perryridge')
76

Example Query

 Find all customers who have at least two accounts at
the Perryridge branch.

77

select distinct T.customer_name
from depositor as T
where not unique (

select R.customer_name
from account, depositor as R
where T.customer_name = R.customer_name and

R.account_number = account.account_number
and

account.branch_name = 'Perryridge')

Modification of the Database – Deletion

 Delete all account tuples at the Perryridge branch

delete from account
where branch_name = 'Perryridge'

 Delete all accounts at every branch located in the city
‘Needham’.

delete from account
where branch_name in (select branch_name

from branch
where branch_city = 'Needham')

78

Modification of the Database – Insertion

 Provide as a gift for all loan customers of the Perryridge branch, a
$200 savings account. Let the loan number serve as the account
number for the new savings account

insert into account
select loan_number, branch_name, 200
from loan
where branch_name = 'Perryridge'

insert into depositor
select customer_name, loan_number
from loan, borrower
where branch_name = 'Perryridge'

and loan.account_number = borrower.account_number

 The select from where statement is evaluated fully before any of
its results are inserted into the relation

 Motivation: insert into table1 select * from table1 79

Modification of the Database – Updates

 Increase all accounts with balances over $10,000 by 6%, all
other accounts receive 5%.

◦ Write two update statements:

update account
set balance = balance  1.06
where balance > 10000

update account
set balance = balance  1.05
where balance  10000

◦ The order is important

◦ Can be done better using the case statement (next slide)

80

Case Statement for Conditional Updates

 Same query as before: Increase all accounts with balances

over $10,000 by 6%, all other accounts receive 5%.

update account

set balance = case

when balance <= 10000 then balance

*1.05

else balance * 1.06

end

81

Joined Relations – Examples

 loan inner join borrower on
loan.loan_number = borrower.loan_number

82

 loan left outer join borrower on
loan.loan_number = borrower.loan_number

Joined Relations – Examples
 loan natural inner join borrower

83

 loan natural right outer join borrower

Find all customers who have either an account or a loan (but not both) at the bank.

select customer_name
from (depositor natural full outer join borrower)
where account_number is null or loan_number is null

Joined Relations – Examples

 Natural join can get into trouble if two relations have an
attribute with same name that should not affect the join
condition

◦ e.g. an attribute such as remarks may be present in many
tables

 Solution:

◦ loan full outer join borrower using (loan_number)

84

Derived Relations

 SQL allows a subquery expression to be used in the from
clause

 Find the average account balance of those branches
where the average account balance is greater than $1200.

select branch_name, avg_balance
from (select branch_name, avg (balance)

from account
group by branch_name)
as branch_avg (branch_name, avg_balance)

where avg_balance > 1200

Note that we do not need to use the having clause, since
we compute the temporary (view) relation branch_avg in
the from clause, and the attributes of branch_avg can be
used directly in the where clause.

85

Integrity Constraints (Review)

 An IC describes conditions that every legal instance of a relation
must satisfy.

 Inserts/deletes/updates that violate IC’s are disallowed.

 Can be used to ensure application semantics (e.g., sid is a key),
or prevent inconsistencies (e.g., sname has to be a string, age
must be < 200)

 Types of IC’s: Domain constraints, primary key constraints, foreign
key constraints, general constraints.

 Domain constraints: Field values must be of right type. Always
enforced.

 EX:Create domain ratingval integer default 1 check(value>=1 and
value<=10)

 Rating ratingval
86

UNIT - IV
SPATIAL, TEXT AND MULTIMEDIA DATABASES

Why indexing?

 Speed up retrieval

 Non-key attributes

 Feature based

Applications

 Image databases (2-D, 3-D)

 Shapes, colors, textures

 Financial analysis

 Sales patterns, stock market prediction, consumer behavior

 Scientific databases

 Sensor data/Simulation results:

○ Scalar/vector fields

 Scientific databases

Traditional indexing methods

A record with k attributes



A point in k-dimensional space

Name Salary Age Dept

Smith 40000 45 3

Dilbert 35000 35 4

Wally 35000 37 4

Dogbert 45000 30 5

…

4 attributes: Name, salary, age, dept.

Spatial query complexity

 Exact match

name = ’Smith’ and salary=40000 and age=45

 Partial match

salary=40000 and age=45

 Range

35000 ≤ salary ≤ 45000 and age=45

 Boolean

((not name = ’Smith’) and salary ≥ 40000) or age ≥ 50

 Nearest-neighbor (similarity)

Salary  40000 and age  45

Inverted files

Given an attribute,

Name Salary Age Dept

• For each attribute value, store
1. A list of pointers to records having this

attribute value
2. (Optionally) The length of this list

• Organize the attribute values using
• B-trees, B+-trees, B*-trees
• Hash tables

B-tree

 B = Bayer or ”Balanced”

 Bayer: Binary B-Trees for Virtual Memory, ACM-SIGFIDET
Workshop 1971

 Data structure

 Balanced tree of order p

 Node: <P1, <K1,Pr1>, P2, <K2, Pr3>, … Pq>

q  p

For all search key fields X in subtree Pi: Ki-1< X < Ki

 Algorithm

 Guarantees logarithmic insert/delete time

 Keeps tree balanced

B-tree

5 8o o

1 3o o 6 7o o 9 12o o

o
Pr

Data pointer

P

Tree node pointer
Null tree pointer

B-tree variants

 B+-tree
(More commonly used than B-tree)

 Data pointers only at the leaf nodes

 All leaf nodes linked together

 Allows ordered access

Internal node: <P1, K1, P2, K2, …, Pq-1, Kq-1, Pq>

Leaf node: <<K1,Pr1>, <K2, Pr2>, …, <Kq-1, Prq-1>, Pnext>

B+-tree

K
1

K
i

K
q-1

P
1

P
i

... P
q

X X X

X  K
1

K
i
 < X  K

i

K
i-1

K
q-1

  X

...

K
1

K
q-1

Pr
i

... P
next

K
i

...Pr
1

Pr
q-1

data pointer data pointer data pointer

pointer to next leaf

node in tree

Internal node

Leaf node

B(+)-tree index SQL syntax

CREATE TABLE emp (

ssn int(11) NOT NULL default

'0',

name text,

PRIMARY KEY (ssn));

CREATE INDEX

part_of_name_index on emp

(name(10));

Multi dimensional index methods

 Point Access Methods

 Grid files

 k-D trees

 Spatial Access Methods

 Space filling curves

 R-trees

 Nearest (similarity)

Applications

 GIS

 CAD

 Image analysis, computer vision

 Rule indexing

 Information Retrieval

 Multimedia databases

Grid files

”multi dimensional hashing”

 Partition address space:
 Each cell corresponds to one

disk page

 Cuts allowed on predefined
points only (¼, ½, ¾, …) on
each axis

 Cut all the way  a grid is
formed

A

M

Z

0 25
37.5

50 100

name

age

Grid files

 Shortcomings

 Correlated values:

 Large directory is needed for high dimensionality

 OTOH:

 Fast

 Simple

k-D trees

 Binary search tree

 Each level splits in one dimension

○ dimension 0 at level 0,

○ dimension 1 at level 1

○ … (round robin)

Each internal node:

 left pointer

 right pointer

 split value

 data pointer

k-D trees

40

A1

A2

(20,30)

20

(10,10)

(40,50)

20

40 20,30

40,50

10,10

A1 < 10

A2 < 30

A1 < 40 A1 40

A2 30

A1 40

k-D trees

 Shortcomings
○ Incremental inserts/deletes can unbalance the tree
 Re-balancing is difficult

○ Re-constructing the tree from scratch

Space filling curves

Idea: Impose a linear ordering on multidimensional data



Allows for one-dimensional index and search on multidimensional
data

 Z-ordering

0 4 8 12 16

Y

X

01

11

10

00

00 01 10 11

z
O
= shuffle("1,2,1,2",x

O
,y

O
)

 = shuffle("1,2,1,2",00,11)

 = 0101 = (5)
10

Hilbert curves

 Z-ordering has long diagonal jumps in space 

 Connected objects split and separate far

 Distances are not preserved

 Hilbert curves preserve distances better

Space filling curves

 ”Quick” algorithm:

O(b) for calculcating values

b – number of bits of the z/Hilbert value

typically, b = xD

x – size of one dimension

R-trees

 B-trees in multiple dimensions

 Spatial object represented by its MBR

Minimum Bounding Rectangle

R-trees

 Nonleaf nodes

○ <ptr, R>

 ptr – pointer to a child node

 R – MBR covering all rectangles in the child node

 Leaf nodes

○ <obj-id, R>

 obj-id – pointer to object

 R – MBR of the object

R-trees

 Algorithms

 Insert

○ Find the most suitable leaf node

○ Possibly, extend MBRs in parent nodes to enclose the new

object

○ Leaf node overflow  split

 Split

○ Heuristics based

(Possible propagation upwards)

R-trees

 Range queries

 Traverse the tree

○ Compare query MBR with the current node’s MBR

 Nearest neighbor

 Branch and bound:

○ Traverse the most promising sub-tree

 find neighbors

 Estimate best- and worstcase

○ Traverse the other sub-trees

 Prune according to obtained thresholds

R-trees

 Spatial joins

”find intersecting objects”

 Naïve method:

○ Build a list of pairs of intersecting MBRs

○ Examine each pair, down to leaf level

(Faster methods exist)

Variants

 R+-tree

(Sellis et al 1987)

Avoids overlapping rectangles in internal nodes

 R*-tree

(Beckmann et al 1990)

Applications

 Spatial databases

 Text retrieval

 Multimedia retrieval

Text retrieval
 Full text scanning

Somewhat like sequence analysis in bioinformatics

 Inversion

Build an index using keywords

 Signature files

A hash-like structure  quick filtering of non-relevant
material

 Vector space model

document clustering

 Performance measures

Precision, recall, average precision

Vector space model

 Hypothesis:

Closely associated documents are relevant to the same
requests

 Method:

○ For each document

Generate a histogram vector containing word counts,
each bin counts one word

○ Group documents together in clusters, based on
histogram vector similarity.

 Popular metric: Cosine similarity

yx

yx
yx 


 
),cos(

Vector space model

 Given a query phrase q

 Generate a histogram vector
of q

 Compute similarity between q
and all document cluster
centroids

 Compute similarity between q
and all documents in the
relevant clusters

 Return a list of documents in
descending similarity

q

Retrieval list

Relevance feedback

 User pinpoints the most
relevant documents

 These documents are
added to the original
query vector histogram
 q’

 Similarity computations
based on q’

 A new improved retrieval
list is presented to the
user

q q'

Retrieval list

Retrieval performance

Precision p

The proportion of retrieved material that is
relevant.

Given a retrieval list of n items,

n

ng
p

)(


, where g(n) is the number of
items in the list relevant to the
query.

n

Retrieval performance

Average precision pavg

How the relevant items are distributed in the retrieval list.

○ R – the number of relevant items in the retrieval list

○ ni – the rank of each relevant item, 1  i  R

○ For each ni, calculate pni – the average precision of the
partial list of top ni items

○ The average precision is the average of all pni:





R

i

navg i
p

R
p

1

1

Multimedia databases

 Data structures

 Bitmap image: 2D (3D) array of pixels

 Sound clip/song: Sequence of samples

 Video: Sequence of images

 User requirements

 Music written by a particular artist

 Texture similarity

 ”Fuzzy” requirements, e.g. Musical preference

Multimedia databases

 Meta data queries

 Images and video described by text

○ Figure captions

○ Keywords

○ Associated paragraphs

 Retrieval based on text

○ Keywords

○ Textual features

Features

 Images

 Color of pixels

 Line segments and edges

 Texture

 Shape

 Sound

 Spectral content

 Rhythm (music)

 Video

 Motion

Color

 Perception-based models:

 CIE chromaticity (X,Y,Z)

 Opponent color model: Luv

 Hue, saturation, value or brightness

 Hardware-oriented models: RGB, CMY

 Color histograms

 Relative frequency distribution of each color dimension

 Compute similarity between corresponding histograms of

each color dimension

Histogram

Texture representation

 Pixel based

 Co-occurrence matrix

 Markov models

 Auto-regressive models

 Pattern properites

 Contrast

 Orientation

 PCA

Textures

Shapes, regions
 Image analysis methods

 Description of regions

○ Moments or normalized moments

○ 2 D transforms

 Description of boundaries

○ Chain encoding

○ Fourier descriptors

○ Skeletons

 Regions

○ Edge detection

○ Corners detection

○ Edge Linking

○ Region segmentation

○ Region description

Video

 Segments, scenes, and basic frames

 Transitions

 Motion

 Motion of objects

 Camera

 Compression standards

 MPEG 2 – Region coding and motion compensation

 MPEG 4 – Content-based compression and synthetic data
representation

 MPEG 7 – Standardization of structures and arbitrary
description schemes

UNIT - V
UNCERTAINITY IN DATABASES AND KNOWLEDGE

BASES

141

For example, consider the problem of representing image content

UNIT-II in a relational database. Consider a very simple relation

called face that specifies which persons' faces are contained in

which image files. Such a relation may have the schema

(File, Person, LLx, LLy, Ugx, URy)

Uncertainty in Image Database:

142

The attribute names may be interpreted as follows:

File is the name of an image file (e.g., iml .gif).
(LLx, LLy) and (URx, URy) specify the lower-left corner and the
upperright corner of a rectangle (with sides parallel to the x- and y-axes)
that bounds a particular person's face. Thus, in the above example, the
first tuple indicates that there is a face (in iml. gif) in the rectangular
region whose lower-left corner is at (10,10) and whose upper-right
corner is at (20,20). Thus, the (LLx,LLy) and (URx,URy) components of
any tuple uniquely capture a rectangle within the specified image.
Person specifies the name of the person whose face occurs in the
rectangle specified by a tuple in this relation. Thus, for instance, the first
tuple in the face relation states that the person in the rectangular region
whose lower-left corner is at (10,10) and whose upper-right corner is at
(20,20) is John Smith.

Uncertainty in Image Database:

143

Often, a tuple in a relational database is time stamped with an interval
of time. This often denotes the fact that the tuple was true at some time
instant in that interval. For example, we may have a temporal relation
called shipping that is maintained by a factory. This relation may have
the schema

(Item, Destination).

When extended to handle temporal information, we may have a new
additional attribute called ShipDate that denotes the date on which the
item was shipped. The expanded shipping relation may contain the
following tuples:

Uncertainty in Temporal Database

144

The first tuple above says that the factory shipped an order of

widget-1 to Boston sometime between January 1 and January 7

(inclusive). However, the precise date is unknown. Consider now

the query "find all places to which widget-1 was shipped on or

before January 5, 1996." As we will see below, some different

answers are possible:

Uncertainty in Temporal Database

145

As you are probably aware, it is not always possible to associate

a value with each and every column of each and every tuple in

a given relation. For example, because of some unforeseen

conditions (e.g., a coffee spill), the destination of a particular

shipment may not be deductible from a given shipping invoice.

However, the name of the intended recipient may be visible,

leading the database administrator to conclude that the

shipment was intended for one of the two factories of that

company, located in New York and Denver.

Uncertainty in DBs: A Null-Value Example

146

The database administrator, after speaking to the shipping
department, may conclude that most likely the shipment was
intended for Denver (with 90% certainty). In this case, the
following data may be entered into the database.

Uncertainty in DBs: A Null-Value Example

147

In classical logic, there is a close correspondence between

sets and logic. If F is a formula in such a logical language,

then F denotes the set of all interpretations that satisfy it,

where satisfaction. Formulas in fuzzy logic have exactly the

same syntax as those of classical logic. However, they differ

from classical logic in the following ways:

Fuzzy logic

148

An interpretation of a fuzzy language is a function, I, that maps

ground atoms in the language to real numbers in the unit

interval [0, 11].

The notion of satisfaction is fuzzy-if Sat(F) denotes the set of

interpretations that satisfy F, then each interpretation I of the

language has a degree of membership in Sat(F).

Fuzzy logic

149

Fuzzy logic

150

We are all familiar with standard set theory (usually called
naive set theory). Given a set S, we may associate with S a
characteristic function Xs, defined as

Fuzzy Sets

151

Fuzzy Sets

152

The relational model of data may be extended to

incorporate uncertainty either at the tuple level or at the

attribute level. In the tuple-level approach, we extend each

tuple to have one or more uncertainty attributes. Typically,

the uncertainty attribute would either be "a single real

number r G [0, 1] or an interval [ri, r 2] of real numbers, or

"a lattice element - drawn from the complete lattice of

truth values being considered.

Uncertainty in Relational Databases

153

Suppose (L) is a complete lattice of truth values. Suppose

R is a relation over schema (A1,..., An). The tuple-based

lattice extension, Rl, of relation R is a relation over schema

(A1 ,... , An, Unc) where dom(Unc) = L. A 1 ,... , An, are called

the data attributes of R. Notice that Rl handles uncertainty

at the tuple level, not the attribute level. If, for example, L

= [0, 1],then the following table shows a tuple-level table

that extends the face table

Lattice based relational databases

