

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	ADVANCED STRUCTURAL ANALYSIS							
Course Code	BSTB01							
Programme	M.Tech							
Semester	I STE							
Course Type	Core							
Regulation	IARE - R18							
	Theory				Practical			
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits		
	3		-	3	-	-		
Chief Coordinator	Dr. Venu M, Professor							
Course Faculty	Dr. Venu M, Professor							

I. COURSE OVERVIEW:

This course mainly deals with matrix analysis of structures. It begins with a review of the basic concepts of structural analysis and matrix algebra, and shows how the latter provides an excellent mathematical framework for the former. This is followed by detailed descriptions, and demonstrations through many examples, of how matrix methods can be applied to linear static analysis of skeletal structures (plane and space trusses; beams and grids; plane and space frames) by the stiffness method, and also the flexibility method. Also, it is shown how simple structures can be conveniently solved using a reduced stiffness formulation, involving far less computational effort. Finally, the analysis of elastic instability and second-order response is discussed. The main objective is to enable the student to have a good grasp of all the fundamental issues in these advanced topics in structural analysis, besides enjoying the learning process, and developing analytical and intuitive skills.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	Strength of Materials – II	-
-	-	-	Structural Analysis	-

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIAExamination	Total Marks
Advanced Structural Analysis	70 Marks	30	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each theory course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIE during the semester, marks are awarded by taking average of two sessional examinations.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.
50 %	To test the application skill of the concept.

The emphasis on the questions is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty/teacher handling the course as given in Table 4. CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Technical Seminar and Term Paper.

Table 1. Assessment pattern for CI	Table 1:	: Assessment	pattern	for	CIA
------------------------------------	----------	--------------	---------	-----	-----

Component	Theory		Total Marka
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	Total Marks
Max. CIA	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			by
PO 3	Capable to apply the core, multidisciplinary	2	Assignments, Tutorials
	knowledge for understanding the problems in		
	structural engineering and allied fields.		
PO 4	Apply appropriate techniques, resources, modern	2	Assignments
	engineering and Information Technology (IT) tools		
	including predictions, modeling of complex		
	structural engineering activities.		
PO 5	Able to identify and analyze the impact of Structural	2	Assignments
	Engineering in development projects and find a		
	suitable solution from number of alternatives.		
PO 6	Conceptualize and design civil engineering	2	Presentation on
	structures considering various socio-economic		realworld problems
	factors.		

3 = **High**; **2** = **Medium**; **1** = Low

VII. COURSE OBJECTIVES :

The cour	se should enable the students to:
Ι	Analyze the skeleton structures using stiffness analysis code.
Π	Use direct stiffness method understanding its limitations.

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Know the physical significance, effects of	CLO 1	Understand the physical significance of stiffness influence coefficients.
settlements, temperature change and lack of fit, member approach and structure approach.		CLO 2	Understand the effects of settlements of stiffness influence coefficients.
		CLO 3	Solve the problems on temperature change and lack of fit.
		CLO 4	Know the member approach and structure approach.
CO 2	Understand the force method	CLO 5	Understand the force method.
	and displacement method,	CLO 6	Understand the displacement method.

COs	Course Outcome	CLOs	Course Learning Outcome
	degree of freedom,local	CLO 7	Know concept of degree of freedom.
	coordinates and global	CLO 8	Understand the concept of local coordinates.
	coordinates.	CLO 9	Understand the concept of global coordinates.
CO 3	Understand the stiffness	CLO 10	Develop the stiffness matrix for global coordinates
	matrix in global coordinates,		and know the boundary conditions.
	boundary conditions,	CLO 11	concepts on solution of stiffness matrix equations.
	solution of stiffness matrix	CLO 12	Know the calculation of reactions and member
	equations, calculation of		forces.
	reactions and member forces	CLO 13	Understand the stiffness method for beams, plane
	for beams, plane trusses,		trusses and plane rigid jointed frames.
	plane rigid jointed frames	CLO 14	Understand the formulation of grid structures.
and grids. CLO 15 Conc			Concept of structure and member approach.
CO 4	Know the boundary value	CLO 16	Understand the solutions for boundary value
	problems: approximate		problems.
	solution of boundary value	CLO 17	Know the modified galerkin method.
	problems, modified galerkin	CLO 18	Understand the modified galerkin method for one-
	method for one-dimensional		dimensional BVP.
	BVP, matrix formulation of	CLO 19	Understand the matrix formulation of the modified
	the modified galerkin		galerkin method.
	method.	~ ~ ~ ~	
~~ ~	Understand the shape	CLO 20	Know the shape functions for linear elements.
CO 5	functions linear element,	CLO 21	Understand the solution for Poisson's equation.
	solution for Poisson's	CLO 22	Formulation of general one dimensional equilibrium
	equation, general one		problem.
	dimensional equilibrium	CLO 23	Solution of general one dimensional equilibrium
	problem.		problem.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have	PO's	Strength of
		the ability to:	Mapped	Mapping
BSTB01.01	CLO 1	Understand the physical significance of stiffness influence coefficients.	PO 3	2
BSTB01.02	CLO 2	Understand the effects of settlements of stiffness influence coefficients.	PO 3	2
BSTB01.03	CLO 3	Solve the problems on temperature change and lack of fit.	PO 3, PO 4	1
BSTB01.04	CLO 4	Know the member approach and structure approach.	PO 3	2
BSTB01.05	CLO 5	Understand the force method.	PO 3	2
BSTB01.06	CLO 6	Understand the displacement method.	PO 5, PO 6	1
BSTB01.07	CLO 7	Know concept of degree of freedom.	PO 3	1
BSTB01.08	CLO 8	Understand the concept of local coordinates.	PO 3, PO 4	2
BSTB01.09	CLO 9	Understand the concept of global coordinates.	PO 3	1
BSTB01.10	CLO 10	Develop the stiffness matrix for global coordinates and know the boundary conditions.	PO 3, PO 4	1
BSTB01.11	CLO 11	Concepts on solution of stiffness matrix equations.	PO 3, PO 4, PO 5	2
BSTB01.12	CLO 12	Know the calculation of reactions and member forces.	PO 3, PO 4, PO 6	1

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BSTB01.13	CLO 13	Understand the stiffness method for beams, plane trusses and plane rigid jointed frames.	PO 3, PO 6	2
BSTB01.14	CLO 14	Understand the formulation of grid structures.	PO 3, PO 4	2
BSTB01.15	CLO 15	Concept of structure and member approach.	PO 3	2
BSTB01.16	CLO 16	Understand the solutions for boundary value problems.	PO 3	2
BSTB01.17	CLO 17	Know the modified galerkin method.	PO 3, PO 4 PO 5, PO 6	1
BSTB01.18	CLO 18	Understand the modified galerkin method for one-dimensionalBVP.	PO 3, PO 6	2
BSTB01.19	CLO 19	Understand the matrix formulation of the modified galerkin method.	PO 3, PO 5	2
BSTB01.20	CLO 20	Know the shape functions for linear elements.	PO 3, PO 4 PO 5, PO 6	2
BSTB01.21	CLO 21	Understand the solution for Poisson's equation.	PO 3, PO 4	1
BSTB01.22	CLO 22	Formulation of general one dimensional equilibrium problem.	PO 3, PO 4, PO 6	2
BSTB01.23	CLO 23	Solution of general one dimensional equilibrium problem.	PO 3, PO 5, PO 6	2

3= High; 2 = Medium; 1 = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)					
(COs)	PO 3	PO 4	PO 5	PO 6		
CO 1	2	1				
CO 2	2	2	2	1		
CO 3	2	2	2	1		
CO 4	2	1	2	1		
CO 5	2	2	1	2		

3 = High; **2** = Medium; **1** = Low

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

	Program Outcomes (POs)						
(CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO 1			2				
CLO 2			2				
CLO 3			2	1			
CLO 4			2				

	Program Outcomes (POs)						
(CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CLO 5			2				
CLO 6					2	1	
CLO 7			1				
CLO 8			2	2			
CLO 9			1				
CLO 10			2	1			
CLO 11			2	2	2		
CLO 12			1	2		1	
CLO 13			2			2	
CLO 14			2	2			
CLO 15			2				
CLO 16			2				
CLO 17			2	1	2	1	
CLO 18			2			2	
CLO 19			2		2		
CLO 20			2	2	1	2	
CLO 21			1	2			
CLO 22			2	2		2	
CLO 23			2		2	2	
·I		3 = H	igh; 2 = Med	ium; 1 = Lov	w		

XII. ASSESSMENT METHODOLOGIES-DIRECT:

CIE Exams	PO3, PO4, PO5,PO6	SEE Exams	PO3, PO4, PO5, PO6	Assignments	PO3, PO4, PO5, PO6	Seminars	-
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	-						

XIII. ASSESSMENT METHODOLOGIES-INDIRECT:

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS

UNIT-I	INFLUENCE COEFFICIENTS					
Physical Signi and Structure	Physical Significance, Effects of Settlements, Temperature Change and Lack of Fit, Member Approach and Structure Approach.					
UNIT-II	STIFFNESS METHOD APPLIED TO LARGE FRAMES					
Force method	and displacement method, Degree of Freedom, Local Coordinates and Global Coordinates.					
UNIT-III	STIFFNESS MATRIX ASSEMBLY OF STRUCTURES AND APPLICATION TO SIMPLE PROBLEMS					
Stiffness Matr Calculation of	ix in Global Coordinates, Boundary Conditions, Solution of Stiffness Matrix Equations, Reactions and Member Forces.					
Beams, Plane Approach.	Trusses, Plane Rigid Jointed Frames and Grids by Structure Approach and Member					
UNIT-IV	BOUNDARY VALUE PROBLEMS (BVP)					
Boundary Val Method for On	ue Problems: Approximate Solution of Boundary Value Problems, Modified Galerkin e-Dimensional BVP, Matrix Formulation of the Modified Galerkin Method.					
UNIT-V	LINEAR ELEMENT					
Linear Elemen Problem.	t: Shape Functions, Solution for Poisson's Equation, General One Dimensional Equilibrium					
Text Books:						
 G. S. Pano Education C.S. Redd Ashok. K. J. Meek, " S SBhavik Edition, 2 	dit and S.P. Gupta, "Structural Analysis – A Matrix Approach", McGraw Hill 2 nd Edition, 2008. y, "Basic Structural Analysis", 3 rd Edition, McGraw Hill Education. Jain, "Advanced Structural Analysis", Nem Chand & Bros. 3 rd Edition, 2010. Matrix Methods of Structural Analysis", McGraw Hill Education.1 st Edition, 2011. catti, "Finite Element Analysis", New Age International Pvt. Ltd., Publishers.1 st 009.					
Reference Bo	oks:					
 Todd, J.D., "Structural theory and analysis", The Mac Million Press Ltd., New York. Menon, D., "Advanced structural analysis", Narosa Publishing House, New Delhi. McCarmac, J. and Elling, R. E., "Structural Analysis: A Classical and Matrix A Approach", Harper and Row Publishers. 						
Web Referen	nces:					
 nptel.ac.in https://npt http://web 	//courses/Webcourse-contents//Structural%20Analysis/pdf/m2l7.pdf. el.ac.in/reviewed_pdfs/105106050/lec1.pdf .iitd.ac.in/~sbhalla/rc717.pdf					
E-Text Books	8					
 https://phi http://www http://priod 	ndia.com//matrix_methods_of_structural_analysis_theory_and_problems w.uomisan.edu.iq/library/admin/book/91314849583.pdf deep.weebly.com/uploads/6/5/4/9/65495087/wjspencerauth					

XV. COURSE PLAN:

ſ	Lecture No.	Topics to be covered	Course	Reference
			Learning	
			Outcomes	
			(CLOs)	
	1-2	Physical significance of stiffness influence coefficients.	CLO 1	T1:133–142
ĺ	3-5	Effects of settlements of stiffness influence coefficients.	CLO 2	T1:133–142

Lecture No.	Topics to be covered	Course Learning	Reference
		Outcomes	
		(CLOs)	
6-8	Problems on temperature change and lack of fit.	CLO 3	T1:140–170
9	Member approach and structure approach.	CLO 4	T1:140–170
10	Introduction to the force method.	CLO 5	T1:185
11	Introduction to the displacement method.	CLO 6	T1:199
12-13	Degree of freedom.	CLO 7	T1:1 – 25
14-15	Concept of local coordinates.	CLO 8	T5:33 – 38
16-17	Global coordinates.	CLO 9	T5:39 – 53
18-20	Stiffness matrix for global coordinates and know the	CLO 10	T1:185–221
	boundary conditions.		
21	Solution of stiffness matrix equations	CLO 11	T1:185–221
22-24	Calculation of reactions and member forces.	CLO 12	T1:185–221
25-26	Stiffness method for beams, plane trusses and plane rigid	CLO 13	T1:227–252
	jointed frames.		
27-28	Formulation of grid structures.	CLO 14	T1:253–300
29	Concept of structure and member approach.	CLO 15	T1:318–337
30	Solutions for boundary value problems.	CLO 16	T5:338–345
31	Modified galerkin method.	CLO 17	T5:118–119
32-33	Modified galerkin method for one-dimensionalBVP.	CLO 18	T5:118–119
34-35	Matrix formulation of the modified galerkin method.	CLO 19	T5:118–119
36-39	Shape functions for linear elements.	CLO 20	T5:55 - 80
40-41	Solution for Poisson's equation.	CLO 21	T5:82 - 95
42-45	General one dimensional equilibrium problems	CLO 22	T5:96 – 98

XVI. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S.No.	Description	Proposed Actions	Relevance with POs
1	Experimental analysis of Structure and the behaviour under loads	Seminars / Guest Lectures / NPTEL	PO 3, PO 4, PO 5, PO 6
2	Advanced Structural Analysis of using Software packages	Seminars / Guest Lectures / NPTEL	PO 5, PO 6
3	Thermal analysis of a structures using FEM	Assignments / Laboratory Practices	PO 3, PO 6

Prepared by:

Dr.Venu M, Professor

HOD, CE