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Course Outcomes

CO’s Course outcomes

CO1 Understand the concept of vibrations, equation of motion, response to harmonic

excitation, impulsive excitation, step excitation, periodic excitation (Fourier series),

Fourier transform), Laplace transform (Transfer Function).

CO2 Remember and describe the concept of Eigen value problem, damping effect;

Modeling of continuous systems as multi-degree-of-freedom systems, equations of

motion of undamped systems in matrix form, unrestrained systems, free and forced

vibration of undamped systems; using modal analysis, forced vibration of viscously

damped systems

CO3 Determine and apply the concept of nonlinear vibrations physical properties of

nonlinear systems single-degree-of-freedom and multi-degree-of-freedom nonlinear

systems. Random vibrations;, single-degree-of-freedom response, response to a white

noise.

CO4 Describe about transverse vibration of a string or cable, longitudinal vibration of a bar

or rod, torsional vibration of shaft or rod, lateral vibration of beams, the Rayleigh-Ritz

method.

CO5 Understand the concept of Collar's aero elastic triangle, static aero elasticity aero

elastic problems at transonic speeds, active flutter suppression. Effect of aero

elasticity in flight vehicle design.
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UNIT - I
SINGLE-DEGREE-OF-FREEDOM LINEAR SYSTEMS

Introduction to theory of vibration, equation of motion, free vibration,

response to harmonic excitation, response to an impulsive excitation,

response to a step excitation, response to periodic excitation (Fourier

series), response to a periodic excitation (Fourier transform), Laplace

transform (Transfer Function).
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UNIT - I

CLOs Course Learning Outcome

CLO1 Apply principles of engineering, basic science, and
mathematics (including multivariate calculus and differential
equations) to model, analyze, design, and realize physical
systems, components or processes, and work professionally
in mechanical systems areas.

CLO2 Become proficient in the modeling and analysis of one
degree of freedom systems - free vibrations, transient and
steady-state forced vibrations, viscous and hysteric damping.

CLO3 Understanding the response to periodic excitation (Fourier
series , Fourier transform)

CLO4 Using Laplace transforms and the Convolution integral
formulations to understand shock spectrum and system
response for impact loads.



Introduction to theory of vibration
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 Defined as oscillatory motion of bodies in response to
disturbance.

 Oscillations occur due to the presence of a restoring force

 Vibrations are everywhere:

• Human body: eardrums, vocal cords, walking and running

• Vehicles: residual imbalance of engines, locomotive wheels

• Rotating machinery: Turbines, pumps, fans, reciprocating
machines

• Musical instruments



Introduction to theory of vibration
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 Excessive vibrations can have detrimental effects:

• Noise

• Loosening of fasteners

• Tool chatter

• Fatigue failure

• Discomfort

 When vibration frequency coincides with natural frequency,
resonance occurs.



Basic Concepts of Vibration
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Vibration: Any motion that repeats itself after an interval of time is
called vibration or oscillation.

The swinging of a pendulum and the motion of a plucked string are
typical examples of vibration.

The theory of vibration deals with the study of oscillatory motions of
bodies and the forces associated with them.



Basic Concepts of Vibration
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Elementary Parts of Vibrating Systems: A vibratory system, in
general, includes a means for storing potential energy (spring or
elasticity), a means for storing kinetic energy (mass or inertia), and a
means by which energy is gradually lost (damper).

The vibration of a system involves the transfer of its potential
energy to kinetic energy and of kinetic energy to potential energy,
alternately.

If the system is damped, some energy is dissipated in each cycle of
vibration and must be replaced by an external source if a state of
steady vibration is to be maintained.



Basic Concepts of Vibration
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Fig.  A simple pendulum.

Example:



Number of degrees of freedom
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The minimum number of independent coordinates required to

determine completely the positions of all parts of a system at any

instant of time defines the number of degrees of freedom of the

system.



Single-degree-of-freedom systems
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Fig. Single-degree-of-freedom systems.



Two-degree-of-freedom systems
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Fig. Two-degree-of-freedom systems.



Three degree-of-freedom systems
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Fig. Three degree-of-freedom systems.



Infinite-number-of-degrees-of-freedom system
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Fig. A cantilever beam (an infinite-number-of-degrees-of-freedom 

system).



Discrete and continuous systems
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Systems with a finite number of degrees of freedom are called

discrete or lumped parameter systems, and those with an infinite

number of degrees of freedom are called continuous or distributed

systems.



Classification Of Vibration
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Vibration can be classified in several ways. Some of the important
classifications are as follows.

1. Free and Forced Vibration:

2. Undamped and Damped Vibration:

3. Linear and Nonlinear Vibration:

4. Deterministic and Random Vibration:



Free and forced vibration
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Free Vibration. If a system, after an initial disturbance, is left
to vibrate on its own, the ensuing vibration is known as free
vibration. No external force acts on the system.

The oscillation of a simple pendulum is an example of free
vibration.

Forced Vibration. If a system is subjected to an external force
(often, a repeating type of force), the resulting vibration is
known as forced vibration.



Free and forced vibration
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The oscillation that arises in machines such as diesel engines is
an example of forced vibration.

If the frequency of the external force coincides with one of the
natural frequencies of the system, a condition known as
resonance occurs, and the system undergoes dangerously large
oscillations.

Failures of such structures as buildings, bridges, turbines, and
airplane wings have been associated with the occurrence of
resonance.



Undamped and Damped Vibration
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If no energy is lost or dissipated in friction or other resistance
during oscillation, the vibration is known as undamped
vibration.

If any energy is lost in this way, however, it is called damped
vibration.

In many physical systems, the amount of damping is so small
that it can be disregarded for most engineering purposes.

However, consideration of damping becomes extremely
important in analyzing vibratory systems near resonance.



Linear and Nonlinear Vibration
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If all the basic components of a vibratory system the spring,
the mass, and the damper behave linearly, the resulting
vibration is known as linear vibration.

If, however, any of the basic components behave nonlinearly,
the vibration is called nonlinear vibration.

The differential equations that govern the behavior of linear
and nonlinear vibratory systems are linear and nonlinear,
respectively.



Linear and Nonlinear Vibration
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If the vibration is linear, the principle of superposition holds,
and the mathematical techniques of analysis are well
developed.

For nonlinear vibration, the superposition principle is not valid,
and techniques of analysis are less well known.

Since all vibratory systems tend to behave nonlinearly with
increasing amplitude of oscillation, knowledge of nonlinear
vibration is desirable in dealing with practical vibratory
systems.



Deterministic and Random Vibration
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If the value or magnitude of the excitation (force or motion) acting
on a vibratory system is known at any given time, the excitation is
called deterministic. The resulting vibration is known as
deterministic vibration.

Fig. Deterministic and random excitations.



Vibration Analysis Procedure
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A vibratory system is a dynamic one for which the variables such as
the excitations (inputs) and responses (outputs) are time
dependent.

The response of a vibrating system generally depends on the initial
conditions as well as the external excitations.

Step 1: Mathematical Modeling.

Step 2: Derivation of Governing Equations.

Step 3: Solution of the Governing Equations.

Step 4: Interpretation of the Results.



Step 1: Mathematical Modeling
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Fig. Modeling of a forging hammer.



Mathematical Modeling
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Fig. Modeling of a forging hammer.



EXAMPLE 1. Mathematical Model of a Motorcycle
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Mathematical Model of a Motorcycle
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Fig. Motorcycle with a rider a physical system and mathematical model.



Equation of Motion
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Consider the single-degree-of-freedom mechanical system shown in
Fig. The system consists of a concentrated mass m (kg), a spring with a
spring constant k (N-m), and a dashpot having a viscous damping
coefficient c (N-s/m).

The external applied load is F(t)(N) and the displacement x(t)(m) is
measured from the position of equilibrium.

The potential energy stored at any instance of time t, measured from
the position of equilibrium, can be written as



Equation of Motion
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Fig. Single-degree-of-freedom mechanical systems. 



Equation of Motion

 

 

The kinetic energy of the mass m reads  

 

Applying Lagrange's equation of motion, 

 

Where L = T — U and Q is the generalized force corresponding to the degree of freedom x, we 

obtain 

 

 



Free Vibrations
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Free Vibration: 

We consider first the response of the system because of initial conditions x(0) and x’(0) in free 

vibration, i.e., F(t) = 0. The equation of motion reads 

 
is a homogeneous differential equation that admits solutions in the form  

 
Where x0 is an arbitrary constant to be determined from the initial conditions and p is a parameter 

that depends on the system properties. Substituting the solution into the equation of motion, we 

obtain the system characteristic equation 

 
and has solutions p1 and P2, given by 

 



Free Vibrations
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Fig. Free vibration of an undamped single-degree-of-freedom system 



Response to Harmonic Excitation
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The external force F(t) can be written as 

the equation of motion

The solution can be written as



Response to Harmonic Excitation
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Fig. Curves of the dynamic amplification factor vs Ω for different values of ɤ
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Response to an Impulsive Excitation

Fig.  Dirac-delta function definition.

Dirac-delta function or a unit impulse function 8(t - a) is defined as



Response to an Impulsive Excitation
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we can write

Hence, if F = 1, we will have the impulsive response h(t) given by

and for a unit impulse applied at t = r, the response reads



Response to an Impulsive Excitation
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Fig. Deterministic function. 
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Response to a step excitation

 

Fig. Definition of a unit step function. 

A unit step function is defined as



Response to a step excitation
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Applying Duhamel's integral for the case of a step function applied at

t = 0 with null initial conditions, we get
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Response to periodic excitation (Fourier series)

Fig. Periodic function.

 

Fig. Periodic function. 



Response to periodic excitation (Fourier series)
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Figure represents a periodic external applied load F(t) with a period T.

We call 2n/ T the fundamental frequency of excitation and denote it

by

Now, if the function F(t) is periodic and possesses a finite number of

discontinuities and if the following relation is satisfied:

then from the theory of Fourier analysis, we can write F(t) as



Response to periodic excitation (Fourier series)
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we can write the permanent solution response as
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Response to a periodic excitation (Fourier transform): 

Consider again the exponential expansion: 

 

and the series coefficient given by 

We obtain  

 

Response to a Periodic excitation(Fourier Transform)
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Laplace transforms (Transfer Function)

we can obtain the Laplace transform of the velocity and the acceleration as

The Laplace transform of a function x(t) is defined as



Laplace transforms (Transfer Function)
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UNIT-II 
MULTI-DEGREE-OF-FREEDOM LINEAR SYSTEMS
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Equations of motion, free vibration, the Eigen value problem, response
to an external applied load, damping effect; Modeling of continuous
systems as multi-degree-of-freedom systems, using Newton's second
law to derive equations of motion, influence coefficients - stiffness
influence coefficients, flexibility influence coefficients, inertia influence
coefficients; potential and kinetic energy expressions in matrix form,
generalized coordinates and generalized forces, Lagrange‘s equations
to derive equations of motion, equations of motion of undamped
systems in matrix form, eigenvalue problem, solution of the Eigen
value problem, expansion theorem, unrestrained systems, free
vibration of undamped systems; forced vibration of undamped systems
using modal analysis, forced vibration of viscously damped systems.
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UNIT - II

CLOs Course Learning Outcome

CLO5 Become proficient in the modeling and analysis of multi-dof
systems - Lagrange’s equations, reduction to one-dof
systems for proportionally damped systems, modal analysis,
vibration absorbers, vibration transmission, Fourier
transforms.

CLO6 Convert the physical domain to mathematical formulation
and development of governing equation based on number of
masses in the system.

CLO7 Understanding the phenomenon of generalized coordinates
and generalized forces, Lagrange‘s equations to derive
equations of motion.



Equations of Motion
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Applying Lagrange equations,

We obtain the equations of motion of a discrete elastic mechanical

system of n degrees of freedom written in matrix form as

Where {Q} is the column of the generalized external forces.



Free Vibration: The Eigen Value Problem
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 Undamped Systems:

Equations of motion for undamped free vibration read

The system of equations is a system of second-order differential

equations with constant coefficients, whose solution can be written as

Defining

We get

This represents an eigenvalue problem.



Damped Systems
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For free vibration of a damped system, the equations of motion read

The system of equations admits solutions in the form

Where s and {q0} are in general complex. After substitution we obtain

This represents an eigenvalue problem of the second order.



Response to an External Applied Load
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For an externally applied load, the equations of motion read
The solution falls into two categories, the modal superposition
technique and numerical methods.

 The Modal Superposition Technique:

The modal superposition technique consists of transforming the
equations of motion into the modal base of the associated
conservative system. The associated conservative system is obtained
by the elimination of the damping from the equations of motion. For
free vibration, the equations of motion of the associated conservative
system read



Response to an External Applied Load
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The solution will give the eigenvalue matrix [λ] and the eigenvector

matrix [Q]. Making the transformation

Where {η} is the vector of the modal amplitude, the equations of

motion read



Response to an External Applied Load
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The result reads



Numerical Methods

54

The modal superposition technique described needs the
determination of the modal values of the associated conservative
system as a first step in the solution procedure,

which is a time-consuming process, especially if such information will
not be used in further analyses.

Numerical methods, on the other hand, work directly on the coupled
equations of motion and can be basically described as a step-by-step
successive extrapolation procedure.



Damping Effect
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To include a damping effect in the dynamic formulation, we need to

consider the work done by the damping forces and include it in

Hamilton's principle. Damping forces are difficult, if not impossible, to

calculate. However, two types of damping forces have been extensively

used and will be treated here, namely viscous damping and structural

damping.

 Viscous Damping:

A viscous damping arises when a body is moving in a fluid (e.g., a

dashpot); in such a case, we can assume that the damping force is

proportional to the velocity, and we write



Damping Effect
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 Structural Damping:

Structural damping, also known as hysteretic or solid damping, is due

to internal friction or friction among components of the system and is

proportional to elastic internal forces and acts in the velocity direction.

In such cases, if a harmonic motion was assumed for the solution of

the problem, we can write the damping force as

The equations of motion of the whole structure read



Modeling of continuous systems as multi-degree-of
- Freedom systems
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Different methods can be used to approximate a continuous system

as a multi degree-of-freedom system. A simple method involves

replacing the distributed mass or inertia of the system by a finite

number of lumped masses or rigid bodies. The lumped masses are

assumed to be connected by mass less elastic and damping

members. Linear (or angular) coordinates are used to describe the

motion of the lumped masses (or rigid bodies). Such models are

called lumped-parameter or lumped-mass or discrete-mass systems.



Modeling of continuous systems as multi-degree
-of- Freedom systems
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The minimum number of coordinate’s necessary to describe the

motion of the lumped masses and rigid bodies define the number of

degrees of freedom of the system.

Naturally, the larger the number of lumped masses used in the model,

the higher the accuracy of the resulting analysis.



Using Newton’s second law to derive equations of motion
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The following procedure can be adopted to derive the equations of

motion of a multi degree of- freedom system using Newton s second

law of motion:

1. Set up suitable coordinates to describe the positions of the various

point masses and rigid bodies in the system. Assume suitable positive

directions for the displacements, velocities, and accelerations of the

masses and rigid bodies.

2. Determine the static equilibrium configuration of the system and

measure the displacements of the masses and rigid bodies from their

respective static equilibrium positions.



Using Newton’s second law to derive equations of motion
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3. Draw the free-body diagram of each mass or rigid body in the

system. Indicate the spring, damping, and external forces acting on

each mass or rigid body when positive displacement and velocity are

given to that mass or rigid body.

4. Apply Newton s second law of motion to each mass or rigid body

shown by the free body diagram as



Influence coefficients
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The equations of motion of a multi degree-of-freedom system can

also be written in terms of influence coefficients, which are

extensively used in structural engineering.

Basically, one set of influence coefficients can be associated with

each of the matrices involved in the equations of motion.

The influence coefficients associated with the stiffness and mass

matrices are, respectively, known as the stiffness and inertia

influence coefficients.



Influence coefficients
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In some cases, it is more convenient to rewrite the equations of

motion using the inverse of the stiffness matrix (known as the

flexibility matrix) or the inverse of the mass matrix.

The influence coefficients corresponding to the inverse stiffness

matrix are called the flexibility influence coefficients, and those

corresponding to the inverse mass matrix are known as the inverse

inertia coefficients.



Stiffness influence coefficients
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For a simple linear spring, the force necessary to cause a unit

elongation is called the stiffness of the spring.

In more complex systems, we can express the relation between the

displacements at a point and the forces acting at various other

points of the system by means of stiffness influence coefficients.



Stiffness influence coefficients
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Multi degree-of-freedom spring-mass system. 



Aspects of stiffness influence coefficients are to be noted
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1. Since the force required at point i to cause a unit deflection at point

j and zero deflection at all other points is the same as the force

required at point j to cause a unit deflection at point i and zero

deflection at all other points.

2. The stiffness influence coefficients can be calculated by applying the

principles of statics and solid mechanics.

3. The stiffness influence coefficients for torsional systems can be

defined in terms of unit angular displacement and the torque that

causes the angular displacement.



Flexibility influence coefficients
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The generation of the flexibility influence coefficients, proves to be

simpler and more convenient than stiffness influence coefficients.



Inertia influence coefficients
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The elements of the mass matrix, mij, are known as the inertia
influence coefficients.

In matrix form

The velocity and impulse vectors given by



Potential and kinetic energy expressions in matrix form
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The elastic potential energy (also known as strain energy or energy of
deformation) of the ith spring is given by

The total potential energy can be expressed as

In matrix form as

The stiffness matrix is given by



Generalized Coordinates and Generalized Forces
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The equations of motion of a vibrating system can be formulated in a

number of different coordinate systems. As stated earlier, n

independent coordinates are necessary to describe the motion of a

system having n degrees of freedom. Any set of n independent

coordinates is called generalized coordinates, usually designated by q1,

q2, q3…..qn. The generalized coordinates may be lengths, angles, or any

other set of numbers that define the configuration of the system at any

time uniquely. They are also independent of the conditions of

constraint.

The configuration of the system can be specified by the six coordinates



Generalized Coordinates and Generalized Forces
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(xj, yj), j = 1, 2, 3. However, these coordinates are not independent but
are constrained by the relations

Triple pendulum



Lagrange s Equations to Derive Equations of Motion
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The equations of motion of a vibrating system can often be derived in
a simple manner in terms of generalized coordinates by the use of
Lagrange s equations. Lagrange equations can be stated, for an n-
degree-of-freedom system, as

The generalized force can be computed as follows:

Thus the equations of motion of the vibrating system can be derived,
provided the energy expressions are available.



Equations of Motion of Undamped Systems in Matrix Form
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The equations of motion of a multi degree-of-freedom system in matrix

form from Lagrange s equations.

The kinetic and potential energies of a multi degree-of-freedom system

can be expressed in matrix form as



Equations of Motion of Undamped Systems in Matrix Form
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Where the column vector of the generalized coordinates

From the theory of matrices,



Equations of Motion of Undamped Systems in Matrix Form
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All the relations represented can be expressed as

Differentiation of Equation with respect to time gives

So the equations of motion become



Eigen value Problem
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Assuming a solution of the form

The configuration of the system, given by the vector

is known as the mode shape of the system



Eigen value Problem
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From which we can obtain the relations

The solution of Equation can be expressed as

Where constants known as the amplitude and the phase angle, 

respectively



Solution of the Eigen value Problem
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Equation

Can also be expressed as

By multiplying we obtain

Where [I] is the identity matrix and

is called the dynamical matrix. The eigenvalue problem is known as

the standard eigenvalue problem.



Expansion Theorem
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The eigenvectors, due to their property of orthogonality, are linearly

independent. If x is an arbitrary vector in n-dimensional space, it can be

expressed as

The value of the constant Ci can be determined as

is known as the expansion theorem .

It is very useful in finding the response of multi degree-of-freedom

systems subjected to arbitrary forcing conditions according to a

procedure called modal analysis.



Unrestrained Systems
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Consider the equation of motion for free vibration in normal

coordinates:

The eigenvalue problem can be expressed as

That is,



Free Vibration of Undamped Systems
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The equation of motion for the free vibration of an undamped system

can be expressed in matrix form as

The most general solution can be expressed as a linear combination of

all possible solutions given by



Free Vibration of Undamped Systems
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If

Denote the initial displacements and velocities given to the system,

Which can be solved to find the n values of Ai.



Forced Vibration of Undamped Systems Using Modal Analysis
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When external forces act on a multi degree-of-freedom system, the
system undergoes forced vibration.

For a system with n coordinates or degrees of freedom, the
governing equations of motion are a set of n coupled ordinary
differential equations of second order.

The solution of these equations becomes more complex when the
degree of freedom of the system (n) is large and/or when the forcing
functions are non-periodic.

A more convenient method known as modal analysis can be used to
solve the problem. In this method, the expansion theorem is used,
and the displacements of the masses are expressed as a linear
combination of the normal modes of the system.



Modal Analysis
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The equations of motion of a multi degree-of-freedom system under
external forces are given by

To solve Equation by modal analysis, it is necessary first to solve the
eigenvalue problem.

the solution vector of Equation can be expressed by a linear
combination of the normal modes

can be rewritten as



Modal Analysis
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Where

The initial generalized displacements and the initial generalized
velocities can be obtained from the initial values of the physical
displacements and physical velocities as:



Modal Analysis
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Where



Forced Vibration of Viscously Damped Systems
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Modal analysis, applies only to undamped systems. In many cases,
the influence of damping upon the response of a vibratory system is
minor and can be disregarded.

However, it must be considered if the response of the system is
required for a relatively long period of time compared to the natural
periods of the system.

Further, if the frequency of excitation (in the case of a periodic force)
is at or near one of the natural frequencies of the system, damping is
of primary importance and must be taken into account.

In general, since the effects are not known in advance, damping
must be considered in the vibration analysis of any system.



Forced Vibration of Viscously Damped Systems
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This function is defined as

Where the matrix [c] is called the damping matrix and is positive
definite, like the mass and stiffness matrices. Lagrange s equations
can be written as

The equations of motion of a damped multi-degree-of-freedom
system in matrix form:



Forced Vibration of Viscously Damped Systems
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After substitution, we obtain

can be rewritten as



Forced Vibration of Viscously Damped Systems
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The solution can be expressed as

Where
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UNIT-III 
NONLINEAR AND RANDOM VIBRATION 

Introduction to nonlinear vibrations, simple examples of nonlinear
systems, physical properties of nonlinear systems, solutions of the
equation of motion of a single-degree-of-freedom nonlinear
system, multi-degree-of-freedom nonlinear systems. Introduction
to random vibrations; classification of random processes,
probability distribution and density functions, description of the
mean values in terms of the probability density function, properties
of the autocorrelation function, power spectral density function,
properties of the power spectral density function, white noise and
narrow and large bandwidth, single-degree-of-freedom response,
response to a white noise.
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UNIT - III

CLOs Course Learning Outcome

CLO8 Apply the Eigen value problem and describe expansion
theorem, unrestrained systems, free vibration of undamped
systems; forced vibration of undamped systems.

CLO9 Understand the concepts of nonlinear vibrations, simple
examples of nonlinear systems, physical properties of
nonlinear systems

CLO10 Formulate simple problem solutions of the equation of
motion of a single-degree-of-freedom nonlinear system,
multi-degree-of-freedom nonlinear systems.

CLO11 Understand the concept of random processes, probability
distribution and density functions, description of the mean
values in terms of the probability density function



Introduction to Nonlinear Vibrations
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The progress achieved in the past decades in the applied mechanics
field is attributed to the representation of complex physical problems
by simple mathematical equations.

In many applications, these equations are nonlinear. In spite of this
fact, simplifications consistent with the physical situation permit, in
most cases, a linearization process that simplifies the mathematical
solution of the problem while conserving the precision of the physical
results.

However, in few cases, the linear solutions are not sufficient to
describe adequately the problem at hand because new physical
phenomena are introduced and can be explained only if nonlinearity
is considered.
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Simple Examples of Nonlinear Systems

The equation of motion of the pendulum

can be written as

Can be written as

 Simple Pendulum in Free Vibrations



Physical Properties of Nonlinear Systems
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 Undamped Free Vibrations:
Physical considerations reveal that, for a mechanical system with
nonlinear stiffness in free vibrations, the period (and thus the
frequency) of the response will be a function of the amplitude of
vibration.

This is expected mathematically since k = k(x) and therefore T = T(x).

It is to be emphasized that the natural frequency is a constant and is a
property of the mechanical system, despite whether the system is
linear.

The frequency of response in free vibration of a linear system is
constant and is equal to the natural frequency of the system, while a
nonlinear system in free vibration responds with a frequency that is a
function of the amplitude of vibration.



Physical Properties of Nonlinear Systems
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As an example (the proof will be given in the next sections), for the
dependence of the period of free vibration on the amplitude of the
response, it can be shown that the period of the simple pendulum of
Fig. is given by

Where TO is the period of the linear system. A plot of T / To vs 0 is
shown in Fig. in next slide.



Physical Properties of Nonlinear Systems
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Period of free vibrations of a simple pendulum



Damped Free Vibrations
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Consider a nonlinear damped system having a hard spring

nonlinearity characteristic in free vibrations. The system equation of

motion can be written as

With initial conditions different from zero and an initial displacement

value in the nonlinear regime, physical considerations and Eq. reveal

that the response will appear as the curve sketched in Fig.

notice that, for nonlinear amplitude values, we will have smaller

periods of response (thus higher frequencies) compared to the linear

part.



Damped Free Vibrations
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Damped free vibration response of a nonlinear system



Forced Vibrations
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Consider an undamped linear single degree of freedom with a

harmonic external excitation. The equation of motion of the system

reads

The amplitude of the permanent response is sketched in Fig. Notice

that for P = 0, i.e., for free vibration, we will have a harmonic

response with a frequency of response equal to the undamped

natural frequency of the system.



Forced Vibrations
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Permanent response amplitude of a linear undamped system due to
harmonic external excitation.

The amplitude of the response when plotted against the frequency of
excitation will have the form sketched in Fig. for soft and hard
springs, respectively.

Free vibration response of linear and nonlinear systems



Exact Solutions
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Solutions of the Equation of Motion of a Single-Degree-of-Freedom
Nonlinear System

 Exact Solutions:

Very few nonlinear differential equations have exact solutions.

Exact mathematical solutions of nonlinear systems are studied not
only because of their importance for the cases

where they exist but also because these exact solutions can be used in
the studies of the performance and convergence of nonlinear
numerical algorithm solvers that are to be used for the solution of the
problems that do not have exact solutions.



Free vibration
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Consider an undamped single-degree-of- freedom system with
stiffness nonlinearity in free vibration.

The related equation of motion can be written as

Can be written as

Integrating, we obtain



Free vibration

103

We now consider the case when f ( x ) is given by

We obtain

Where

The extension to the case of a higher-order polynomial is
straightforward.



Forced vibration
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There is no exact solution for the general case of forced vibration of a

nonlinear dynamic single-degree-of-freedom system.

The solutions are therefore obtained using numerical methods that

will be discussed in the next section.



Multi degree-of-Freedom Nonlinear Systems
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The step-by-step numerical integration methods given in previous
chapter

Are otherwise directly extended for the analysis of arbitrary
nonlinear systems with multiple degrees of freedom.

As in the linear case, the time-history response is divided into short,

normally equal time increments, and the response is calculated at the
end of the time interval for a linearized system having properties
determined at the beginning of the interval.
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Are then modified at the end of the interval to conform to the state
of deformations and stresses at that time.

The mass matrix is usually constant in most practical applications so
that its inverse is evaluated once at the beginning of the solution
procedure.

The stiffness and the damping matrices are modified at the
beginning of each step. Therefore, during each step of the nonlinear
solution A triangular decomposition of the equivalent stiffness
matrix must be done to obtain the end displacements and velocities.

As in the linear case, the acceleration vectors are obtained solving
the equations of motion at the beginning of the interval to avoid
accumulation of errors during the solution procedure.
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Consider the record of a measured variable x (t),

which can represent for instance the displacement of a point in a
structure as a function of time.

we can conclude that the variable x(t) is predominantly harmonic,
while x(t) of Fig. is predominantly irregular.

Now if, in the process of Fig.la, during the repeated measurements of
the records at each time,

we obtain a different angle of phase and if, in the process of Fig., the
responses are different from each other during the repeated
measurements, we call such processes random processes.
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Record of a variable as a function of time
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Stationary Random Processes:

Consider n records of a random variable as given in Fig.

We define the complete set of xk(t),k = 1 , 2 , . . . , n

as a random process, and each record of the set will be called a
sample of the random process. Consider now the values of xk(t) for
the instant of time t = t’ we can write the mean value of the
random process at that instant of time



Stationary Random Processes
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Time history of a random process
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Consider a sample of an ergodic process as shown in Fig. 

We define the probability distribution function as

We will define the probability density function as

We verify the following relations:



Probability Distribution Functions
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Probability distribution function
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Considering a stationary random process (x(t)} for a continuous
function g(x), we can write the mean value g(x) as

We note that { l / n } represents the probability of the process to have
the value of g(x). Thus, we can write

We call g(x) the mean value or the mathematical expectation, and we
write
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Thus, we can write for the mean values the following expressions in
terms of the probability density function:

For the mean value g(x) = x,

For the mean square value g(x) = x2,

For the variance g(x) = (x — x)2,
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The autocorrelation function for an ergodic process reads

Making the transformation t — r = X, we get

and because the integration is made for T -> ∞, we can write

Hence we conclude that the autocorrelation function is an even
function.
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Consider the sample f ( t ) of an ergodic process and its
autocorrelation function, which can be written as

This implies that the autocorrelation function is the inverse
Fourier transform of Sf(ω)
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1. The Power Spectral Density Function Is a Positive Function

2. The Power Spectral Density Function Is an Even Function

3. Representation of the Power Spectral Density Function in the 
Positive Domain

4. The power spectral density function provides the necessary 
information on the frequency decomposition of a random 
process. 
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Now if the frequency decomposition is concentrated in turns of a
peak frequency a)Q as shown in Fig.a, we call such distribution a
narrow bandwidth distribution. where we have an equal frequency
distribution in a large band, and we call such distribution a large
bandwidth distribution. Now, if Sf(a>) is a constant for all the
frequency decompositions, i.e., from -∞ to ∞ as shown in Fig.4c,
We define such distribution as white noise; this is in comparison
with the white light distribution, which has a plain spectral
distribution in the large visible band frequency.

In many practical cases, processes having distributions as shown in
Fig.4d with an equal distribution in a large band of frequency can be
considered as white noise distribution for practical purposes.
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Narrow, large bandwidth and white noise distributions
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The response x(t) of a linear single-degree-of-freedom system due to 
an external applied load f(t), 

whether a deterministic or random excitation, can be written in 
terms of Duhamel's convolution integral as

Now, for random excitation, we can extend the integration to —∞, 
and we write
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The Fourier transform of the response reads

Considering now a random ergodic excitation f ( t ) to a single-
degree-of- freedom mechanical system, we can write the mean 
value of the response as

And, because the system is linear, we can invert the order of the 
mean and the integration operations to write
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In the sequel, we will calculate the autocorrelation function of 
the response to a single degree of freedom due to an ergodic 
external excitation. 

Using Eq. we can write

Using the definition of the power spectral density function and
Eq. we can write

We conclude that It represents an algebraic relation between
three functions, is a very important relation in structural
dynamics.
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Consider a single-degree-of-freedom mechanical system subjected to
an external random ergodic excitation having a power spectral density
function given by a white noise with intensity so- Thus, we can write

Now, for a single-degree-of-freedom system, the complex frequency
response function H(ω) reads

The autocorrelation function of the response can be obtained from
the inverse Fourier transform of Sx(a>) and reads
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Integrating, we obtain

And the mean square value of the response reads
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UNIT-IV 
DYNAMICS OF CONTINUOUS ELASTIC BODIES 

Introduction, transverse vibration of a string or cable, longitudinal

vibration of a bar or rod, torsional vibration of shaft or rod, lateral

vibration of beams, the Rayleigh-Ritz method.
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UNIT - IV

CLOs

CLO12 Understand the concept of autocorrelation function, power

spectral density function, properties of the power spectral

density function, white noise and narrow and large

bandwidth

CLO13 Understand the concepts of transverse vibration of a string

or cable

CLO14 Derive the equations longitudinal vibration of a bar or rod,

torsional vibration of shaft or rod

CLO15 Solve the problems for lateral vibration of beams, and the

Rayleigh-Ritz method.
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We have so far dealt with discrete systems where mass, damping,
and elasticity were assumed to be present only at certain discrete
points in the system.

In many cases, known as distributed or continuous systems, it is not
possible to identify discrete masses, dampers, or springs.

We must then consider the continuous distribution of the mass,
damping, and elasticity and assume that each of the infinite number
of points of the system can vibrate.

This is why a continuous system is also called a system of infinite
degrees of freedom.
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If a system is modeled as a discrete one, the governing equations are
ordinary differential equations, which are relatively easy to solve.

On the other hand, if the system is modeled as a continuous one, the
governing equations are partial differential equations, which are
more difficult.

The information obtained from a discrete model of a system may not
be as accurate as that obtained from a continuous model.

The choice between the two models must be made carefully, with
due consideration of factors such as the purpose of the analysis.

The influence of the analysis on design, and the computational time
available.
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A vibrating string
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Consider a tightly stretched elastic string or cable of length l
subjected to a transverse force f(x, t) per unit length, as shown in
Fig.(a). The transverse displacement of the string, w(x, t), is
assumed to be small. Equilibrium of the forces in the z direction
gives the net force acting on an element is equal to the inertia force
acting on the element.

For an elemental length dx

Hence the forced-vibration equation of the non uniform string, 

Equation, can be simplified to
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If the string is uniform and the tension is constant, Equation 
reduces to

We obtain the free-vibration equation

Or

Is also known as the wave equation.
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Consider an elastic bar of length l with varying cross-sectional
area A(x), The forces acting on the cross sections of a small
element of the bar are given by P and P + dP with

Where σ is the axial stress, E is Young s modulus, u is the axial
displacement, and du/dx is the axial strain.

If f(x, t) denotes the external force per unit length, the summation
of the forces in the x direction gives the equation of motion
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Longitudinal vibration of a bar
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The equation of motion for the forced longitudinal vibration of

a non uniform bar, Equation, can be expressed as

For a uniform bar, Equation reduces to

The free-vibration equation can be obtained from Equation,

by setting f = 0, as

Where
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Figure, represents a non uniform shaft subjected to an external
torque f(x, t) per unit length. If u(x, t) denotes the angle of twist of
the cross section, the relation between the torsional deflection and
the twisting moment Mt(x, t) is given by

Where G is the shear modulus and GJ(x) is the torsional stiffness,
with J(x) denoting the polar moment of inertia of the cross section in
the case of a circular section.

If the mass polar moment of inertia of the shaft per unit length is the
inertia torque acting on an element of length dx becomes
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Torsional vibration of a shaft



Torsional Vibration of a Shaft or Rod  

137

If an external torque f (x, t) acts on the shaft per unit length, the
application of Newton second law yields the equation of motion:

By expressing dMt as
The forced torsional vibration equation for a nonuniform shaft can be 
obtained For a uniform shaft, takes the form

Which, in the case of free vibration, reduces to

Where
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Consider the free-body diagram of an element of a beam shown
in Figure, where M(x, t) is the bending moment, V(x, t) is the
shear force, and f(x, t) is the external force per unit length of the
beam.

Since the inertia force acting on the element of the beam is

The force equation of motion in the z direction gives
Where ρ is the mass density and A(x) is the cross-sectional area of
the beam. The moment equation of motion about the y-axis
passing through point O in Figure leads to



Lateral Vibration of Beams

139

A beam in bending



Lateral Vibration of Beams
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By writing

By using the relation V = dM/dx

From the elementary theory of bending of beams (also known as 
the Euler-Bernoulli or thin beam theory), the relationship between 
bending moment and deflection can be expressed as
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Where E is Young s modulus and I(x) is the moment of inertia of the 
beam cross section about the y-axis. 

We obtain the equation of motion for the forced lateral vibration of a 
non-uniform beam:

Reduces to

For free vibration, f(x, t) = 0, and so the equation of motion becomes

Where



Rayleigh s Method

142

Rayleigh s method can be applied to find the fundamental natural
frequency of continuous systems.

This method is much simpler than exact analysis for systems with
varying distributions of mass and stiffness.

Although the method is applicable to all continuous systems, we shall
apply it only to beams in this section.4 Consider the beam shown in
Figure.

In order to apply Rayleigh s method, we need to derive expressions
for the maximum kinetic and potential energies and Rayleigh s
quotient.

The kinetic energy of the beam can be expressed as
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The maximum kinetic energy can be found by assuming a harmonic
variation w(x, t) = W(x) cos vt:

The potential energy of the beam V is the same as the work done in
deforming the beam. By disregarding the work done by the shear
forces, we have

Can be rewritten as

Since the maximum value of w(x, t) is W(x), the maximum value of V

is given by
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By equating Tmax to Vmax, we obtain Rayleigh s quotient:

For a stepped beam, can be more conveniently written as

here and correspond t Ei, Ii, Ai, li o the ith step (i = 1, 2, Á).
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The Rayleigh-Ritz method can be considered an extension of
Rayleigh s method.

It is based on the premise that a closer approximation to the exact
natural mode can be obtained by superposing a number of assumed
functions than by using a single assumed function, as in Rayleighs
method.

If the assumed functions are suitably chosen, this method provides
not only the approximate value of the fundamental frequency but
also the approximate values of the higher natural frequencies and
the mode shapes.
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An arbitrary number of functions can be used, and the number of
frequencies that can be obtained is equal to the number of
functions used.

A large number of functions, although it involves more
computational work, leads to more accurate results.
In the case of transverse vibration of beams, if n functions are
chosen for approximating the deflection W(x), we can write
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Where w1(x), w2(x), Á , wn(x) are known linearly independent
functions of the spatial coordinate x,

which satisfy all the boundary conditions of the problem, and c1,
c2, Á , cn are coefficients to be found.

To make the natural frequency stationary, we set each of the
partial derivatives equal to zero and obtain
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UNIT-V 

INTRODUCTION TO AEROELASTICITY 

Collar's aeroelastic triangle, static aeroelasticity phenomena,

dynamic aeroelasticity phenomena, aeroelastic problems at

transonic speeds, aeroelastic tailoring, active flutter suppression.

Effect of aeroelasticity in flight vehicle design.
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UNIT - V

CLOs

CLO16 Understand the concepts of Collar's aeroelastic triangle,

static aeroelasticity phenomena

CLO17 Understand the concept of dynamic aeroelasticity

phenomena

CLO18 Calculate the aero elastic problems at transonic speeds, aero

elastic tailoring, active flutter suppression. Effect of aero

elasticity in flight vehicle design.
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Aeroelasticity is a notably new branch of applied mechanics that
studies the interaction between fluid matters and flexible solid
bodies.

The typical application of aeroelasticity is in the branch of aircraft
engineering. However, aeroelastic issues are applicable also for civil
engineering (e.g., slender buildings, towers,
smokestacks, suspension bridges, electric lines, and pipelines) or
transportation engineering (cars, ships, submarines).

Also important are its applications in machine engineering
(compressors, turbines).

https://www.sciencedirect.com/topics/engineering/aircraft-engineering
https://www.sciencedirect.com/topics/engineering/civil-engineering
https://www.sciencedirect.com/topics/engineering/suspension-bridges
https://www.sciencedirect.com/topics/engineering/electric-lines
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Two factors drive aviation development:

1) the quest for speed; and,

2) the competition for new air vehicle military and commercial
applications.

These factors trigger the appearance of new aircraftft shapes,
devices and materials, as well as applications of new technologies
such as avionics.

These factors have created and continue to create new challenges
for the engineering discipline known as aeroelasticity.
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Three-ring aeroelastic interaction Venn diagram.
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Aeroelastic phenomena may be divided according to the diagrammed
definition of aeroelasticity (Collar’s triangle of forces – Figure ).

The sides of the triangle represent the relationships among the
particular pairs of forces representing specific areas of mechanics,
including aeroelasticity,

whereas the triangle’s interior represents the interference of all three
groups of forces typical for dynamic aeroelastic phenomena.

Static aeroelastic phenomena that exclude inertial forces are
characterized by the unidirectional deformation of the structure,
whereas dynamic aeroelastic phenomena that include inertial forces
are typical in their oscillatory property of structure deformation.

https://www.sciencedirect.com/topics/engineering/deformation
https://www.sciencedirect.com/topics/engineering/oscillatory
https://www.sciencedirect.com/topics/engineering/deformation-of-structure
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Problems with aeroelasticity have been occurring since the birth of
aviation.

The first famous event caused by an aeroelastic phenomenon was
the crash of Langley’s monoplane

which occurred only eight days before the Wright brothers’ first
successful flight.

Thus, the Wrights became famous as the first fliers and Langley is
only remarked in aeroelastic textbooks.

The cause of the crash was the torsional divergence of the wing with
low torsional stiffness.

https://www.sciencedirect.com/topics/engineering/divergence
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The early stage of aviation is characterized by biplanes that allow for

the design of a torsionally stiffer structure.

At this time, torsional divergence was the dominant aeroelastic

phenomenon. Torsional divergence was also the cause of several

crashes of Fokker’s high-wing monoplane D-8.

The low stiffness of the fuselage and tail planes, as well as the

unsuitable design of the control system,

caused the crashes of the British Handley-Page O/400 twin-engine

biplane bomber and the DH-9 biplane fighter during the First World

War.

https://www.sciencedirect.com/topics/engineering/fuselages
https://www.sciencedirect.com/topics/engineering/bombers
https://www.sciencedirect.com/topics/engineering/fighter-aircraft
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Aeroelastic interactions determine airplane loads and influence

flight performance in four primary areas:

1) wing and tail surface lift redistribution that change external

loads from preliminary loads computed on rigid surfaces;

2) stability derivatives, including lift effectiveness, that affects

flight static and dynamic control features such as aircraft trim

and dynamic response;

3) control effectiveness, including aileron reversal, that limits

maneuverability;

4) aircraft structural dynamic response to atmospheric turbulence

and buffeting, as well as structural stability, in particular flutter.



Collar’s triangle of forces
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Aero elasticity:

1. Aeroelastic problems would not exist if airplane structures where
perfectly rigid.

2. Many important aeroelastic phenomena involve inertia forces as
well as aerodynamic and elastic forces.

Static Aeroelasticity: Science which studies the mutual interaction
between aerodynamic forces and elastic forces, and the influence of
this interaction on airplane design.

Dynamic Aeroelasticity: Phenomena involving interactions of inertial,
aerodynamic, and elastic forces.



Collar diagram
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Describes the aeroelastic phenomena by means of a triangle of forces
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Phenomena involving all three types of forces:

1. F – Flutter: dynamic instability occurring for aircraft in flight at a
speed called flutter speed

2. B – Buffeting: transient vibrations of aircraft structural
components due to aerodynamic impulses produced by wake
behind wings, nacelles, fuselage pods, or other components of
the airplane

3. Z – Dynamic response: transient response of aircraft structural
components produced by rapidly applied loads due to gusts,
landing, gun reactions, abrupt control motions, and moving
shock waves
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Phenomena involving only elastic and aerodynamic forces:

1. L – Load distribution: influence of elastic deformations of
the structure on the distribution of aerodynamic pressures
over the structure

2. D – Divergence: a static instability of a lifting surface of an
aircraftft in flight, at a speed called the divergence speed,
where elasticity of the lifting surface plays an essential role
in the instability.

3. R – Control system reversal: A condition occurring in flight,
at a speed called the control reversal speed, at which the
intended effect of displacing a given component of the
control system are completely nullified by elastic
deformations of the structure.
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Every aircraft company has a large engineering division with a name

such as “Structures Technology.”

The purpose of the structures organization is to create an airplane

flight structure with structural integrity.

This organization also has the responsibility for determining and

fulfilling structural design objectives and structural certification of

production aircraft.
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Structural design requirements
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Beginning at the top of the “wheel” we have design loads.
These loads include airframe loads encountered during landing and
take-off, launch and deployment as well as in-flight loads and other
operational loadings. There are thousands of such “load sets.” Once
these load sets are identified, there are at least nine design criteria
that must be taken into account.
On the wheel in Figure stiffness and flutter are one important set of
criteria that must be addressed. The traditional airframe design and
development process can be viewed as six interconnected blocks,
shown in Figure.
Initial estimates of aircraft component weights use empirical data
gathered from past experience. On the other hand, if the designs
considered at this early stage have radical new forms, these
estimates may be in error; but these errors will only be discovered
later.
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All structures deform when external loads are applied although the
deflections may be barely discernible.

From an analysis perspective this means we can compute the internal
loads and the external deflections independently.
These structural analysis problems are called statically determinate
and include structural stability problems such as column buckling.

Both loads and deflections must be determined simultaneously.

This load/deflection interaction is represented graphically by the Venn
diagram

In Figure in which the overlapping orange area represents the
statically indeterminate problem area.
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Static aeroelasticity encompasses problems involving the intersection 
between steady-state aerodynamic and structural deformation 

interactions.
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Every aircraft company has a large engineering division with a name
such as “Structures Technology.”

The purpose of the structures organization is to create an airplane
flight structure.

Structural integrity

Has the responsibility for determining and fulfilling structural design
objectives and structural certification of production aircraft.

In addition, the organization conducts research and develops or
identifies new materials, techniques and information that will lead to
new aircraft or improvements in existing aircraft.



structural design and development process 
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The structural design and development process requires testing, 

analysis and feedback
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Modern aircraft are increasingly designed to be highly
maneuverable in order to achieve high-performance mission
objectives.

Toward this goal, aircraft designers have been adopting light-weight,
flexible, high aspect ratio wings in modern aircraft.

Aircraft design concepts that take advantage of wing flexibility to
increase maneuverability have been investigated
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By twisting a wing structure, an aerodynamic moment can be
generated to enable an aircraft to execute a maneuver in place of
the use of traditional control surfaces.

For example, a rolling moment can be induced by twisting the left
and right wings in the opposite direction.

Similarly, a pitching moment can be generated by twisting both
wings in the same direction.

Wing twisting or warping for flight control is not a new concept and
was used in the Wright Flyer in the 1903.
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The U.S. Air Force conducted the Active Flexible Wing program in the
1980’s and 1990’s to explore potential use of leading edge slats and
trailing edge flaps

To increase control effectiveness of F-16 aircraft for high speed
maneuvers.

In the recent years, the Active Aeroelastic Wing research program
also investigated a similar technology

To induce wing twist in order to improve roll maneuverability of F/A-
18 aircraft.
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Structural deflections of lifting surfaces interact with aerodynamic
forces to create aeroelastic coupling that can affect aircraft
performance.

Understanding these effects can improve the prediction of aircraft
flight dynamics and can provide insight into how to design a flight
control system that can reduce aeroelastic interactions with a rigid-
body flight controller.

Generally, high aspect ratio lifting surfaces undergo a greater degree
of structural deflections than low aspect ratio lifting surfaces.
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In general, a wing section possesses a lower stiffness than a
horizontal stabilizer or a vertical stabilizer.

As a result, its natural frequency is normally present inside a flight
control frequency bandwidth that potentially can result in flight
control interactions.

For example, when a pilot commands a roll maneuver, the aileron
deflections can cause one or more elastic modes of the wings to
excite.

The wing elastic modes can result in changes to the intended
aerodynamics of the wings, thereby potentially causing undesired
aircraft responses.
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Is a traditional method for suppressing elastic modes, but this usually
comes at an expense in terms of reducing the phase margin in a flight
control system.

If the phase margin is significantly reduced, aircraft responses may
become more sluggish to pilot commands.

Consequently, with a phase lag in the control inputs, potential pilot
induced oscillations (PIOs) can occur.

Numerous studies have been made to increase the understanding of
the role of aero-servoelasticity in the design of flight control systems.
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Aeroelasticity is the study of aerodynamic, elastic, and inertial forces
on a body in a fluid flow.

Flutter is an aeroelastic phenomenon where these forces start exciting
each other, leading to instability in the structure.

In an aircraft wing, this results in large cyclic bending and twisting
motions of the wing, likely leading to structural failure of the wing.

The onset of flutter, therefore, has to be avoided at all times and
rigorous flight testing procedures are in place to ensure that flutter
does not occur within an aircraft’s operational envelope.
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Information travel for airfoil in transonic flow. 
The path from B to A is much longer than from A to B.



Transonic flutter boundary 

178

Transonic flutter boundary with typical transonic dip, which 

linear theory cannot predict.
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Novel manufacturing techniques open up additional design space
for aerospace vehicles.

High aspect ratio wings in novel aircraft concepts, for example, over
the benefits of higher aerodynamic efficiency,

but present the challenge of being more susceptible to aero elastic
problems such as flutter.



Active flutter suppression

180

1. Wing flutter model aerodynamic model:

Three of the most common methods to predict unsteady loads
on an aircraft are strip theory (2D unsteady airfoil theory with 3D
corrections), the doublet-lattice method, and the unsteady
vortex-lattice method (uvlm).

Considering that our goal is to investigate aircraft concepts with
high aspect ratios, the use of strip theory here is appropriate.
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In strip theory, one assumes that the flow is two dimensional in cuts 

perpendicular to the span.
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Swept wing considered in model
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For the structural part of the model, we use Bernoulli-Euler beam

theory.

The beam equations are,

The appropriate boundary conditions here are,



Structural model
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Discretized beam model used in structural part of the 

flutter model.
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The beam equations can be rewritten as

Where

With boundary conditions
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STRUCTURAL ANALYSIS:

i. Supersonic Wing Characteristics:

The present work utilizes a wing platform with an aspect ratio of 5
and taper ratio of 0.5.

The wing leading edge swept back angle is 30°.

The airfoil of this supersonic wing is a double wedge shape as shown
in Fig.
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The wedge angle of the airfoil is 10°. Along the wing span, the
airfoil is divided into three parts which are the main wing box
and two control surfaces at the leading and trailing edge.

The portions of the leading and trailing edge have been
specified as 15% and 20% of the chord length, respectively.

The performance of the selected airfoil uses the characteristics
provided by for higher supersonic region analysis.

The present wing design is used as a baseline for further work
where the wing geometry as well as wing composite structure is
set as the sensitivity parameter to obtain an optimum
supersonic wing design.
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Double wedge airfoil
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External stores configuration of the wing
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External stores technical data
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Based on, the load factor for the fighter aircraft is set atnz = 5.5.

The load for this wing, as shown in Fig. 3, is assumed to be

elliptic load acting along the wing span wise (y-axis) direction

and symmetric quadratic load along chord wise (x-axis)

direction.

With this load assumption, the sizing of the wing box can be

conducted.
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The formula to calculate the load factor is given by Eq. (1) in
which L is the lift and W is the weight of one side of the aircraft
wing based on;

Here the lift can be calculated

The span wise elliptic load can be formulated as:
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Where the value of parameter a is half the span length since it is
the length of the major axis, and parameter b is the minor axis.

The value of b can be calculated using (6). The chord wise
quadratic load distribution is given by:

The area of the quadratic load in chord wise direction can be
calculated by integrating Eq. acting along the x axis.

Then, the volume of the elliptic load can be found by integrating
Eq. (5) along the y axis in Eq
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To find the minor axis of the elliptic equation, Eq. (3), equation (2) is
divided by 2 since this is only applicable for the half wing, equal to the
volume found in Eq. (3).

This expression can be written as:

The wing can be assumed as a beam along y axis to find the shear force
Q and moment M of each section as denoted in Eq. (8) and Eq. (9),
respectively.



Wing Sizing

196

To calculate the skin thickness of the overall wing, the wing is

divided into 4 regions along the span and the thickness in each

region is calculated based on the maximum load in the

respective region as shown in Fig. 4 and Fig. 5.
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Top view of skin thickness division region
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Skin thickness segment in a region
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The moment of inertia formula is given as:

The moment of inertia for the front and rear spar are calculated 

as a vertical segment in

The moment of inertia for the inclined segments which has an

inclination angle of θ, can be derived using Eq. (10).

This can be done by setting the limit for integration along z axis

starting from 0 to the end of each inclination segment denoted

as./. The final formula is given by Eq.
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By assuming the thickness to be constant at every skin and spar,

equation reduces to form an equation to find the thickness in

any region based on the associated moment Mating in that

region as shown in Eq.

Where 7 is calculated based onEq. (9), 89:;;<= is the height of the

inclination for the front spar of the wing only and( is the

summation moment of inertia of the wing box in terms of t as

given in Eq.
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The safety factor FS for the structural strength analysis
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Wish You All the Best


