

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	ANTENNAS AND PROPAGATION							
Course Code	AEC01	AEC011						
Programme	B.Tech	B.Tech						
Semester	V	ECE						
Course Type	Core							
Regulation	IARE - R16							
	Theory				Practical			
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits		
	3		1	4	-	-		
Chief Coordinator	Ms. A Usharani, Assistant Professor							
Course Faculty	Dr. V Sivanagaraju, Professor Ms. K C Koteswaramma, Assistant Professor							

I. COURSE OVERVIEW:

Antennas have become increasingly important to our society until now they are indispensible. This course will cover the fundamentals of antenna, radiation phenomenon, loop antennas, dipole antennas, very high frequency (VHF), ultra-high frequency(UHF), and microwave antennas like Yagi - Uda, helical antenna, reflector antenna, micro strip antenna, lens antenna, antenna arrays broadside and end fire, antenna measurements to measure the antenna parameters, wireless communication maintained through ground, space and sky.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC011	IV	Electromagnetic Theory and Transmission Lines	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Antennas and Propagation	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	×	Videos
×	✗ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz / Alternative Assessment Tool (AAT).

Table 1: Assessment	pattern for CIA
---------------------	-----------------

Component		Total Marks		
Type of Assessment	CIE Exam	Quiz / AAT		
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part–A shall have five compulsory questions of one mark each. In part–B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an	3	Lectures and Assignments
	engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics,	2	Assignments
PO 4	natural sciences, and engineering sciences. Conduct investigations of complex problems: Use research-	2	Lab related
101	based knowledge and research methods including design of	2	Exercises
	experiments, analysis and interpretation of data, and synthesis		
	of the information to provide valid conclusions		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	3	Lectures and Assignments
PSO 2	Problem-Solving Skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	3	Lectures and Assignments
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths, to be an entrepreneur, and a zest for higher studies.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:

S.No	Description						
Ι	Be Proficient in the radiation phenomena associated with various types of antennas and understand basic terminology and concepts of antennas along with emphasis on their applications.						
II	Analyze the electric and magnetic field emission from various basic antennas with mathematical formulation of the analysis.						
III	Explain radiation mechanism of different types of antennas and their usage in real time field.						
IV	Justify the propagation of the waves at different frequencies through different layers in the existing layered free space environment structure.						

IX. COURSE OUTCOMES (COs):

COs	Course Outcomes	CLO's	Course Learning Outcome
CO1	Discuss about the radiation	CLO 1	Discuss about the radiation mechanism in
	mechanism in wire antennas and		single wire, double wire antennas and the
	Analyze the concept of antenna		current distribution of thin wire antenna.
	properties based on reciprocity	CLO 2	Discuss the different parameters of an antenna
	theorem.		like radiation patterns, radiation intensity,
			beam efficiency, directivity and gain etc,.
		CLO 3	Analyze the concept of antenna properties
			based on reciprocity theorem; evaluate the
			field components of quarter wave monopole
			and half wave dipole.
CO2	Understanding the significance	CLO 4	Understand the significance of loop antennas
	of loop antennas uniform linear		in high frequency range and its types; derive
	arrays and helical antennas.		their radiation resistances and directivities.
		CLO 5	Discuss the uniform linear arrays such as
			broadside array and yagi array, derive their
			characteristics.
		CLO 6	Analyze the practical design considerations of
			monofilar helical antenna in axial and normal
			modes.
CO3	Desribe the various types of	CLO 7	Discuss the various types of Microwave
	Microwave antennas and their		antennas and analyze the design consideration
	applications.		of pyramidal horn.
		CLO 8	Analyze the concept of complementary in slot
			antennas using Babinet's principle and
			understand the impedance of slot antennas.
		CLO 9	Understand the significance, features and
			characteristics of micro strip patch antennas,
			analyze the impact of different parameters on

COs	Course Outcomes	CLO's	Course Learning Outcome
			characteristics.
CO4	Analyze the reflector	CLO 10	Understand and analyze the reflectors are
	Antennas with their applications,		widely used to modify the radiation pattern as
	measure the different antenna		a radiating element, its types.
	parameters.	CLO 11	Discuss various concepts related to antennas
			such as feed methods like front feed, rear feed,
			offset feed and aperture blockage.
		CLO 12	Discuss various methods and techniques for
			experimental measurements of antennas such
			as pattern measurement, directivity
			measurement, gain measurement etc.
CO5	Analyze the structure of	CLO 13	Understand the wave propagation through the
	atmosphere for the wave		complete study of the wave by the nature and
	propagation.		characteristics of media during the wave
			travels.
		CLO 14	Understand the space wave propagation
			focusing on field strength variation with
			distance and height, effect of earth's curvature,
			absorption and super refraction.
		CLO 15	Analyze the structure of ionosphere and
			understand the sky wave propagation through
			refraction and reflection by ionosphere.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLOs	At the end of the course, the student will have	POs	Strength of
CLO Code	CLOS	the ability to:	Mapped	Mapping
AEC011.01	CLO 1	Discuss about the radiation mechanism in single	PO 1	3
		wire, double wire antennas and the current		
		distribution of thin wire antenna.		
AEC011.02	CLO 2	Discuss the different parameters of an antenna	PO 1	3
		like radiation patterns, radiation intensity, beam		
		efficiency, directivity and gain etc.		
AEC011.03	CLO 3	Analyze the concept of antenna properties based	PO 2	3
		on reciprocity theorem; evaluate the field		
		components of quarter wave monopole and half		
		wave dipole.		

	CT O	At the end of the course, the student will have	POs	Strength of
CLO Code	CLOs	the ability to:	Mapped	Mapping
AEC011.04	CLO 4	Understand the significance of loop antennas in	PO 1	3
		high frequency range and its types; derive their		
		radiation resistances and directivities.		
AEC011.05	CLO 5	Discuss the uniform linear arrays such as	PO 1	3
		broadside array and end fire array, derive their		
		characteristics.		
AEC011.06	CLO 6	Analyze the practical design considerations of	PO 2,	2
		horn antennas and monofilar helical antenna in	PO 4	
		axial and normal modes.		
AEC011.07	CLO 7	Discuss the various types of Microwave antennas	PO 2,	2
		and analyze the design consideration of	PO 4	
		pyramidal horn.		
AEC011.08	CLO 8	Analyze the concept of complementary in slot	PO 4	2
		antennas using Babinet's principle and		
		understand the impedance of slot antennas.		
AEC011.09	CLO 9	Understand the significance, features and	PO 2	3
		characteristics of micro strip patch antennas,		
		analyze the impact of different parameters on		
		characteristics.		
AEC011.10	CLO 10	Understand and analyze the reflectors are widely	PO 1	3
		used to modify the radiation pattern as a radiating		
		element, its types.		
AEC011.11	CLO 11	Discuss various concepts related to antennas such	PO 2	3
		as feed methods like front feed, rear feed, offset		
		feed and aperture blockage.		
AEC011.12	CLO 12	Discuss various methods and techniques for	PO 4	2
		experimental measurements of antennas such as		
		pattern measurement, directivity measurement,		
		gain measurement etc.		
AEC011.13	CLO 13	Understand the wave propagation through the	PO 1	3
		complete study of the wave by the nature and		
		characteristics of media during the wave travels.		
AEC011.14	CLO 14	Understand the space wave propagation focusing	PO 1	3
		on field strength variation with distance and		
		height, effect of earth's curvature, absorption and		
		super refraction.		
AEC011.15	CLO 15	Analyze the structure of ionosphere and	PO 2	3
		understand the sky wave propagation through		
		refraction and reflection by ionosphere.		

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES :

Course Outcomes (COs)	Prog	ram Outcomes (I	Program Specific Outcomes (PSOs)			
	PO1	PO2	PO4	PSO1	PSO2	PSO3
CO 1	3	3		3	2	
CO 2	3	2	2	2	2	
CO 3		3	2	2	2	
CO 4	3	3	2	2	3	
CO 5	3	3		3	3	

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning							ogran tcom						Program Specific Outcomes		
Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												3		
CLO 2	2												2		
CLO 3	3													2	
CLO 4		2											3		
CLO 5		2											2		
CLO 6		3		2										3	
CLO 7				2										3	
CLO 8				2										2	
CLO 9		3											2		
CLO 10	3												3		
CLO 11		2											2		
CLO 12	2														
CLO 13	3												2		
CLO 14	2												3		
CLO 15		2			•									2	

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO4, PSO1, PSO2	SEE Exams	PO1, PO2, PO4, PSO1, PSO2	Assignments	PO 1 PO 2	Seminars	PO1, PO2, PO4, PSO1, PSO2
Laboratory Practices	-	Student Viva	_	Mini Project	_	Certification	-
Term Paper	PO1, PO2, PO4,PSO1, PSO2						

XIV. ASSESSMENT METHODOLOGIES – INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects By Experts		

XV. SYLLABUS

Unit-I ANTENNA BASICS AND THIN LINEAR WIRE ANTENNAS

Antenna fundamentals: Introduction, radiation mechanism, single wire, 2 wires, dipoles, current distribution on a thin wire antenna; Antenna Parameters, radiation patterns, patterns in principal planes, main lobe and side lobes, beam widths, radiation intensity, beam efficiency, directivity, gain and resolution, antenna apertures, aperture efficiency, effective height; Antenna properties based on reciprocity theorem; Thin linear wire antennas: Retarded potentials; Radiation from small electric dipole, Quarter wave monopole and half wave dipole, current distributions, evaluation of field components; power radiated, radiation resistance, beam widths, directivity, effective area and effective height; Natural current distributions, fields and patterns of thin linear center-fed antennas of different lengths; Illustrated problems.

Unit-II LOOP ANTENNAS AND ANTENNA ARRAYS

Loop Antennas: Introduction, small loop; Comparison of Far fields of small loop and short dipole; Radiation resistances and directivities of small and large loops. Antenna Arrays: Point sources, definition, patterns; Arrays of 2 isotropic sources, different cases; Principle of pattern multiplication; Uniform linear arrays - Broadside arrays; End-fire arrays; EFA with increased directivity; Derivation of their characteristics and comparison; BSAs with non-uniform amplitude distributions; General considerations and Binomial arrays; Folded Dipoles and their characteristics; Arrays with parasitic elements, Yagi-Uda array, Helical antennas-Helical geometry, Helix modes, Practical design considerations for monofilar Helical antenna in axial and normal modes.

Unit-III VHF,UHF AND MICROWAVE ANTENNAS

VHF, UHF and Microwave Antennas: Horn antennas- Types, Fermat's principle, optimum horns, design considerations of pyramidal horns; Illustrative problems; Lens antennas: Introduction, geometry of Non-metallic dielectric lenses zoning, tolerances, applications; Slot antenna, its pattern, Babinet's principle and complementary antennas, impedance of slot antennas. Microstrip Antennas: Introduction, features, advantages and limitations; Rectangular patch antennas- geometry and parameters, characteristics of micro strip antennas, Impact of different parameters on characteristics.

Unit-IV REFLECTOR ANTENNAS AND ANTENNA MEASUREMENTS

Reflector Antennas: Introduction, flat sheet and corner reflectors; Paraboloidal reflectors: Geometry, pattern characteristics, feed methods, reflector types- Related features; Illustrative problems. Antenna measurements: Introduction, concepts, reciprocity near and far fields; Coordinate system, sources of errors patterns to be measured; Pattern measurement arrangement directivity measurement; Gain measurements: Comparison method, absolute and 3-antenna methods.

Unit-V RADIO WAVE PROPAGATION

Wave Propagation - I: Introduction, definitions, categorizations, general classifications, different Modes of Wave Propagation; Ground wave propagation: Introduction, plane earth reflections, space and surface waves, wave tilt, curved earth reflections; Space wave propagation: Introduction, field strength variation with distance and height, effect of earth's curvature, absorption, super refraction, M-Curves, duct propagation,

scattering phenomena, tropospheric propagation, fading and path loss calculations; Wave propagation – II: Sky wave propagation: Introduction, structure of ionosphere, refraction and reflection of sky waves by ionosphere; Ray path, critical frequency, MUF, LUF, OF, virtual height and skip distance; Relation between MUF and skip distance; Multi-hop propagation.

Text Books:

- 1. John D. Kraus, Ronald J. Marhefka, Ahmad S. Khan, Antennas and Wave Propagation^{II}, TMH, 4th Edition, 2010.
- 2. C.A. Balanis, Antenna Theory, John Wiley and Sons, 2nd Edition, 2001.

Reference Books:

- 1. E.C. Jordan, K.G. Balmain, Electromagnetic Waves and Radiating Systems^{||}, PHI, 2nd Edition, 2000.
- 2. E.V.D. Glazier, H.R.L. Lamont, Transmission and Propagationl, Her Majesty's Stationery Office, 1958.
- 3. F.E. Terman, Electronic and Radio Engineeringl, McGraw-Hill, 4th Edition, 1955.
- 4. K.D. Prasad, Satya Prakashan, Antennas and Wave Propagation, Tech India Publications,1st Edition, 2001.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes	Reference
1-5	Understand the Antenna basics and different definitions of an antenna, different applications of an antenna and about the electromagnetic spectrum	CLO 1	T1 : 2.1 to 2.2
6-10	Understand the Antenna parameters like radiation intensity, gain ,beam solid angle properties	CLO 2	T1 : 2.3 to2.10 R1: 9.1 to 9.3
11-17	Evaluate the field components of short dipole or small current element, linear antennas	CLO 3	T1 : 6.2 to 6.4
18-20	Understand the far field differences in loop and dipole antennas	CLO 4	T1:7.1 to 7.7
21-25	Analyze the principle of pattern multiplication in arrays and description of uniform linear array	CLO 5	T1:5.1 to5.12
26-29	Understand the operation of folded dipoles and their applications like yagi-uda antenna and helical antenna	CLO 6	R1: 9.4 to 9.6
30-35	Analyze the importance of antennas in microwave region(VHF antennas,UHF antennas)	CLO 7	T1: 8.2 to8.4
35-38	Analyze the concept of complementary in slot antennas using Babinet's principle	CLO 8	T1: 8.5 to8.10
39-40	Understand the operation of micro strip antennas and their characteristics	CLO 9	T1:14.1to14.3 R1: 9.8 to 9.9
41	Analyze the applications of micro strip antennas and their impact on different parameters	CLO 9	T1: 14.4 to14.6
42-43	Evaluate the performance of reflector antennas and its classification	CLO 10	T1: 9.1 to 9.3
44-45	Analyze the pattern characteristics and feed methods in reflector antennas	CLO 11	T1: 9.5 to 9.9 R1: 9.6 to 9.8
46-50	Evaluate the measurements of antennas like gain measurement, directivity measurement and pattern measurement	CLO 12	T1: 21.1 to21.3
51-55	Analyze the categorizations of wave propagations such as ground, space and sky wave propagations	CLO 13	T1: 22.1 to22.3 R1: 9.7 to 9.8
56-58	Differentiate space and surface waves, discuss about field strength variation with height and distance	CLO 14	T1:23.1 to 23.5, 24.2 to 24.14
59-60	Illustrate the concept of sky wave propagation and its parameters like MUF,CF,LUF, virtual height and skip distance, relation between MUF and skip distance	CLO 15	T1:25.1 to 25.6 R1: 10.7 to 10.9

XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S.No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Advanced communications.	Seminars / NPTEL	PO 1, PO 2	PSO 1
2	Design an antenna	Seminars / Guest Lectures / NPTEL	PO 2, PO 4	PSO 1

Prepared by:

Mrs. A Usharani, Assistant Professor

HOD, ECE