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RADIATION MECHANISM –SINGLE 
WIRE, 2 WIRES
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Introduction

 Antennas are everywhere cat our homes & workplaces cars
& aircrafts, ships, satellites

 We are having infinite variety of antennas but all operate
on the same basic participle of electromagnetism history-
antennas are our electronic eyes & ears on the world. They
are our links with space

 Antennas were commonly called “aerials” (still used in some
countries) ex: japan-middle sky wire.

 Antennas are the essential communication line for aircraft &
ships
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Introduction

 Antennas for all types of wireless devices & cellular phones line 
us to everyone and every thing.

 By using the antennas and then arrays and probes we could visit 
the planets of the solar systems & beyond that also [ex: 
responding to our commands and reading back photograph & 
data at cm x &]

 Electromagnetic spectrum and radio frequency band in 
accordance with us expectations, the third world was will be won 
by the side who will have a better command ever the 
electromagnetic spectrum CHF, VHF, UHF, SHF)- SHF further 
divided into a number of bounds and sub bounds like ELF, SLF, 
ULF, L,S,C,X, Ku, K, Ka.
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Antenna Basics

 Before going to study the antennas, first we have to understand the –
a)meaning of antenna
b) purpose (Application)
c)Parameters (what type of)
d)Types (how many-classifications)

 We have to discuss the theoretical and practical aspects of antennas
and their selection criterion for specific applications and range of
applications.

 Here the words “specific” & range” are very important to analyze
(where it is used, at what frequency depends on application)

 There is no rule for selecting an antenna for a particular frequency
range or application while choosing an antenna many electrical,
mechanical and structure aspects are to be taken into account.
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Antenna Basics

 Application- everywhere we are using the same antenna 
may be used for t∝’ ion & R∝’ ion *ex: radars, mobiles+

 Separate antennas required for televisions & radio but the 
principle is some and the parameters (called antenna 
parameters, \ selection factors) antennas may vary in size 
from order of a few millimeters to 1000’s feet

 Requirements- for tx lng antennas- high gain, high efficiency
for Rx lng antennas- low side lobes, large SNR

 Antennas- it is a region of transition between a transmission 
line and (shape) space. Antennas radiate electromagnetic 
energy in the desired direction. An antenna may be 
isotropic\ (also called omni directional) or anisotropic 
(directional)
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Radiation from a Two Wire

 The  free-space waves are also periodic but a constant phase 
point P0 moves outwardly with the speed of light and travels 
a distance of λ/2 (to P1) in the time of one-half of a period. 

 It has been shown that close to the antenna the constant 
phase point P0 moves faster than the speed of light but 
approaches the speed of light at points far away from the 
antenna (analogous to phase velocity inside a rectangular 
waveguide).
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Radiation Mechanism

 Radiation Mechanism

The radiation from the antenna takes place when the Electromagnetic 
field generated by the source is transmitted to the antenna system 
through the Transmission line and separated from the Antenna into 
free space

 Radiation from a Single Wire

Conducting wires are characterized by the motion of electric charges 
and the creation of current flow. 

Assume that an electric volume charge density, qv (coulombs/m3), is 
distributed uniformly in a circular wire of cross-sectional area A and 
volume V.
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Radiation Mechanism

 Figure: Charge uniformly distributed in a circular cross section 
cylinder wire

 Current density in a volume with volume charge density qv (C/m3)

Jz = qv vz (A/m2)                ---------------- (1)
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Radiation Mechanism

 Surface current density in a section with surface charge density qs
(C/m2)

Js = qsvz (A/m)                   ------------------ (2)

 Current in a thin wire with a linear charge density ql (C/m):

Iz = ql vz (A)                         -------------------- (3)

 To accelerate/decelerate charges, one needs sources of electromotive 
force and/or discontinuities of the medium in which the charges 
move. 

 Such discontinuities can be bends or open ends of wires, change in 
the electrical properties of the region, etc.
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Radiation Mechanism

 Application- everywhere we are using the same antenna may be 
used for t∝’ ion & R∝’ ion *ex: radars, mobiles+

 Separate antennas required for televisions & radio but the 
principle is some and the parameters (called antenna parameters, 
\ selection factors) antennas may vary in size from order of a few 
millimeters to 1000’s feet

 Requirements- for tx lng antennas- high gain, high efficiency
- for Rx lng antennas- low side lobes, large SNR

 Antennas- it is a region of transition between a transmission line 
and (shape) space. Antennas radiate electromagnetic energy in 
the desired direction. An antenna may be isotropic\ (also called 
omni directional) or anisotropic (directional)
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Radiation Mechanism

 It is a fundamental single wire antenna. From the principle of 
radiation there must be some time varying current. For a single wire 
antenna,

 If a charge is not moving, current is not created and there is no 
radiation.

 If charge is moving with a uniform velocity:

 There is no radiation if the wire is straight, and infinite in extent.

 There is radiation if the wire is curved, bent, discontinuous, 
terminated, or truncated, as shown in Figure.
If charge is oscillating in a time-motion, it radiates even if the wire is 
straight
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Radiation Mechanism


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Radiation from a Two Wire

 Let us consider a voltage source connected to a two-conductor 
transmission line which is connected to an antenna. This is shown in 
Figure (a). 

 Applying a voltage across the two conductor transmission line 
creates an electric field between the conductors. The electric field

 has associated with it electric lines of force which are tangent to the 
electric field at each point and their strength is proportional to the 
electric field intensity. 

 The electric lines of force have a tendency to act on the free 
electrons (easily detachable from the atoms) associated with each 
conductor and force them to be displaced. 

 The movement of the charges creates a current that in turn creates 
magnetic field intensity. 
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Radiation from a Two Wire

 Associated with the magnetic field intensity are magnetic lines of force 
which are tangent to the magnetic field. We have accepted that electric 
field lines start on positive charges and end on negative charges. 

 They also can start on a positive charge and end at infinity, start at infinity 
and end on a negative charge, or form closed loops neither starting nor 
ending on any charge. 

 Magnetic field lines always form closed loops encircling current-carrying 
conductors because physically there are no magnetic charges. In some 
mathematical formulations, it is often convenient to introduce equivalent 
magnetic charges and magnetic currents to draw a parallel between 
solutions involving electric and magnetic sources.

 The electric field lines drawn between the two conductors help to exhibit 
the Distribution of charge. 
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Radiation from a Two Wire

 If we assume that the voltage source is sinusoidal, we expect the electric 
field between the conductors to also be sinusoidal with a period equal to 
that of the applied source. 

 The relative magnitude of the electric field intensity is indicated by the 
density (bunching) of the lines of force with the arrows showing the 
relative direction (positive or negative). 

 The creation of time- varying electric and magnetic fields between the 
conductors forms electromagnetic waves which travel along the 
transmission line, as shown in Figure 1.11(a). 

 The electromagnetic waves enter the antenna and have associated with 
them electric charges and corresponding currents. If we remove part of b 
the antenna structure, as shown in Figure (b), free-space waves can be 
formed by ―connecting‖ the open ends of the electric lines (shown 
dashed). 
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Radiation from a Two Wire

 The  free-space waves are also periodic but a constant phase point 
P0 moves outwardly with the speed of light and travels a distance 
of λ/2 (to P1) in the time of one-half of a period. 

 It has been shown that close to the antenna the constant phase 
point P0 moves faster than the speed of light but approaches the 
speed of light at points far away from the antenna (analogous to 
phase velocity inside a rectangular waveguide).
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RADIATION MECHANISM-DIPOLES

19



Radiation from a Dipole
 Now let us attempt to explain the mechanism by which the electric 

lines of force are detached from the antenna to form the free-space 
waves. 

 This will again be illustrated by an example of a small dipole antenna 
where the time of travel is negligible. This is only necessary to give a 
better physical interpretation of the detachment of the lines of force. 

 Although a somewhat simplified mechanism, it does allow one to 
visualize the creation of the free-space waves. 

 Figure(a) displays the lines of force created between the arms of a 
small center-fed dipole in the first quarter of the period during which 
time the charge has reached its maximum value (assuming a 
sinusoidal time variation) and the lines have traveled outwardly a 
radial distance λ/4.
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Radiation from a Dipole

 For this example, let us assume that the number of lines formed is 
three. 

 During the next quarter of the period, the original three lines 
travel an additional λ/4 (a total of λ/2 from the initial point) and 
the charge density on the conductors begins to diminish. 

 This can be thought of as being accomplished by introducing 
opposite charges which at the end of the first half of the period 
have neutralized the charges on the conductors. 

 The lines of force created by the opposite charges are three and 
travel a distance λ/4 during the second quarter of the first half, 
and they are shown dashed in Figure (b).

 The end result is that there are three lines of force pointed 
upward in the first λ/4 distance and the same number of lines 
directed downward in the second λ/4. 
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Radiation from a Dipole

 Since there is no net charge on the antenna, then the lines of force must 
have been forced to detach themselves from the conductors and to 
unite together to form closed loops. 

 This is shown in Figure(c). In the remaining second half of the period, 
the same procedure is followed but in the opposite direction.

 After that, the process is repeated and continues indefinitely and 
electric field patterns are formed
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CURRENT DISTRIBUTION ON A 
THIN WIRE ANTENNA
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Current distribution on a thin wire antenna

 Let us consider a lossless two wire transmission line in which 
the movement of charges creates a current having value I with 
each wire. 

 This current at the end of the transmission line is reflected 
back, when the transmission line has parallel end points 
resulting in formation of standing waves in combination with 
incident wave.

 When the transmission line is flared out at 900 forming 
geometry of dipole antenna (linear wire antenna), the current 
distribution remains unaltered and the radiated fields not 
getting cancelled resulting in net radiation from the dipole.

 If the length of the dipole l< λ/2, the phase of current of the 
standing wave in each transmission line remains same
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Current distribution on a thin wire antenna

 If diameter of each line is small d<< λ/2, the current distribution along the lines 
will be sinusoidal with null at end but overall distribution depends on the length of 
the dipole (flared out portion of the transmission line).
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Current distribution on a thin wire antenna

Fig. Current distribution on a lossless two-wire transmission line, flared 
transmission line 

The current distribution for dipole of length l << λ

For l= λ /2
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Current distribution on a thin wire antenna

 For λ /2<l< λ
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Current distribution on a thin wire antenna

 When l> λ, the current goes phase reversal between adjoining half-
cycles. Hence, current is not having same phase along all parts of 
transmission line. 

 This will result into interference and canceling effects in the total 
radiation pattern.

 The current distributions we have seen represent the maximum 
current excitation for any time. 
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Current distribution on a thin wire antenna
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ANTENNA PARA METERS -
RADIATION PATTERNS
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antenna parameters
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Basic antenna parameters

 Radiation pattern, gain, efficiency, impedance, frequency 
characteristics, shape, size, weight f appearance of antennas 
and cost is also one of the factor

 Another definition: A radio antenna may be defined as the 
structure associated with the region of transition between a 
guided wave and a free space wave (Antennas convert electrons 
to photons) 

 [Photon is a quantum unit of electromagnetic energy] an 
antenna may be defined as [to radiate or receive 
electromagnetic waves as system of elevated conductors which 
couples or matches the tx or Rx to antenna is a transition device 
or transducer free space between a guided wave and a free 
space wave 
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Basic antenna parameters  

 Motion of electric charges & creation of current flow.All antennas 
involve the same basic principle that radiation is produced by 
acceleration / decelerated charge. The basic equation of radiation may 
be expressed simply
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Basic antenna parameters

 = time charging current

 L= length of current element 

 Q=charge c

 = time change of velocity which equals the acceleration of charge 
ms-2

 Curved, bent, discontinues there is a radiation 

 IL & Qv radiates:

[if the charge is not moving current is not created & there is no 
radiation.

 Moving with uniform velocity there is no radiation if the wire is 
straight 

 If the wire]

0

I

0

V
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Basic antenna parameters

 For steady state harmonic variation, we focus on current

 For transients or pulses, we focus on charge

 Radiation ┴ to the acceleration 

 Radiation power ┴ (i( )2/(QV)2
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Basic antenna parameters

 The two wire tx’ ion line is connected to the ‘tx’ (RF Generator). At 
first stage, the spacing between lines (wires) is assumed to be a 
small fraction of a wave length after that the t∝’ion line opens out in 
a tapered transition.

 As the separation approaches the order of wave length or more, the 
wave tends to be radiated then the opened out line acts like an 
antenna which launches a free space wave [currents are flow out 
and end there but the fields associated with them keep on going]

 Recall the transmission lines. There would be perfect reflection of a 
wave. 

 If it is open circuited/short circuited.An equivalent circuit of a 
line with loss can be 
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Basic antenna parameters

 In terms of R, L, G, C (with loss)

 In terms of L&C (without loss)

 The process of carrying energy of a propagating wave is shared by 
electric field (F) & magnetic field (H) or V/I                                                                               
energy share



 [Basic concept of radiation:-[Electromagnetic energy consist of E & M 
fields+ at the OC end, the current becomes ‘o’ and pert of the energy 
shared by magnetic field becomes ‘o’ but it is mathematically. All of 
us know very well about the energy can neither be created nor be 
destroyed we have to survive the energy of magnetic field how it is 
possible
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Basic antenna parameters

 So what is electric field carrying energy i.e the line parameter 

cannot change either                ε,’A’, d gets altered

 So the possibility is only the change of voltage by which the 
additional energy can be carried by the electric filed.

 Then the voltage rises at the C and to enable it to carry the total 
energy current wave following by a voltage wave at OC end voltage 
wave followed by a current wave at SC and

 Wave possess a moment of inertia like property, it will take some 
time to change its direction, this time may be small , some energy is 
likely to leak into the space this process of leakage can be termed 
as “Radiation”
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Basic antenna parameters

 If the opening at the end is more, the more time will be taken by the 
wave to change its direction and thus more energy will leak into the 
space. So the maximum radiation will occur when the two wires at 
the end are flared to form a 180 angle.

 From the circuit point of view, the antennas appear to the tx’ ion lines 
as a resistance ‘Rπ’ called “radiation resistance”.

 In the tx’ ion case- Radiated power is desorbed by object at a distance 
tress, buildings, sky, gud, other

 Rx’ ion case- passive radiation from distant objects active radiation 
other antennas
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Patterns

 It is a SD quantity (quantities) involving the variation of field 
or power (proportional to the squared field) as ‘E’ 
(amplitude field pattern) a function E2 (power pattern) of 
the spherical co-ordinate 2 and  

 Pattern with radians ‘ ’ proportional to the field intensity in 
the direction 2 and  

 The pattern has its main lobe in the z-direction with 
(minimum radiation) minor lobes in other direction. To 
specify the radiation patters w.r to field intensity field 
pattern & polarization requires 3 patterns

 The  component of ‘E’ field as a function of the angles  &   

 The  component of ‘E’ field as a function of the angles

(    )& ,E    

(    )& ,E    
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Patterns

 The normalized field pattern for the electric field is given by                                         
(no directions)

 [Patterns may be also be expressed in terms of the power per 
unit area]

 Normalized power pattern=                   (no directions)

 =pointing vector=                                           w/m2
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Half power beam width

 The half power level occurs at those angles θ and φ
for which             (the angular beam width at the half 
=               power level or half power beam width)

 Pb1) an antenna has a field pattern given by                                                     
find HPBW

 Sol: E(θ) at half power = 0.707

HPBW=2 =660

( , )nE  

2 00.707 cos 0.707 & 33COS    

2( ) cosE   0 00 90  

1
0.907

2

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Half power beam width

 Pb2) an antenna has a field pattern given by                           find 
HPBW, FNBW

 Sol: E(θ) at half power=0.707

( ) cos cos2E    0 00 90  

1
0.707 cos cos 2

2
  

1

1

1 1 1
cos cos ( )

22 cos 2cos
 

 




  
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Beam Area/ Beam Solid angle 

 In spherical co-ordinate system, an incremental area dA on the 
surface of a sphere is the product of the length πda in the d 
(latitude) direction and                      (longitude) in the direction

 ΦὩ=solid angle expressed in steadies or the area of the strip of 
width extending around the sphere at a constant angle  is given 
by (2π r.sinθ ) (πdθ )

 By integrating over for

angle subtended by a sphere

sin d  

2. sin sindA d d d d         
2   AdA d 

22 sin 4to r d r





      

45



Beam Area/ Beam Solid angle 
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Beam Area/ Beam Solid angle 

 The beam area or beam solid angle or ΩA of an antenna is     
given           by the integral of the normalized power pattern over 
a sphere (4π sr)

 The beam area ΩA is the solid angle through which all the 
power at radiated by the antenna the beam area of an 
antenna can often be described approximately in terms of the 
angles subtended by the half power points of the main lobe in 
the two principle planes.

 Beam area 
A HP HP  

2

0 0

( , )sinA np d d

 

 

    
 

   

sind d d   
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PATTERNS IN PRINCIPAL 
PLANES, MAIN LOBE AND SIDE 
LOBES
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Principal Patterns

 For a linearly polarized antenna, performance is often described in 
terms of its principal E- and H-plane patterns. 

 The E-plane is defined as ―the plane containing the electric field vector 
and the direction of maximum radiation,‖ and  the H-plane as  ―the 
plane  containing the  magnetic-field vector and the direction of 
maximum radiation.‖ 

 Although it is very difficult to illustrate the principal patterns without 
considering a specific example, it is the usual practice to orient most 
antennas so that at least one of the principal plane patterns coincide with 
one of the geometrical principal planes. 

49



Principal Patterns

 An illustration is shown in Figure 2.5. For this example, the x-z plane 
(elevation plane; φ = 0) is the principal E-plane and the x-y plane 
(azimuthal plane; θ = π/2) is the principal H-plane. Other coordinate 
orientations can be selected. 

 The omni directional pattern of Figure

 2.6 has an infinite number of principal E-planes (elevation plan es; φ 
= φc) and one principal H- plane (azimuthal plane; θ = 90◦).
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Principal Patterns

Fig. Principal E- and H-plane patterns for a pyramidal horn antenna



Fig. Principal E- and H-plane patterns for a pyramidal horn antenna

Fig. Omni directional antenna pattern
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Radian and Steradian
 The measure of a plane angle is a radian. One radian is defined as the 

plane angle with its vertex at the center of a circle of radius r that is 
subtended by an arc whose length is r. 

 A graphical illustration is shown in Figure (a). Since the circumference 
of a circle of radius r is C = 2πr, there are 2π rad (2πr/r) in a full circle.

 The measure of a solid angle is a steroidal. One steadied is defined as 
the solid angle with its vertex at the center of a sphere of radius r 
that is subtended by a spherical surface area equal to that of a square 
with each side of length r. 

 A graphical illustration is shown in Figure (b). Since the area of a 
sphere of radius r is A = 4πr2, there are 4π sr (4πr2/r2) in a closed 
sphere.
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Radian and Steradian

 Although the radiation pattern characteristics of an antenna involve 
three-dimensional vector fields for a full representation, several 
simple single-valued scalar quantities can provide the information 
required for many engineering applications.

 These are:

 Half-power beam width, HPBW Beam area, ΩA

 Beam efficiency, εM Directivity D or gain G Effective aperture Ae
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BEAM WIDTHS, RADIATION 
INTENSITY
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Beam widths

 Half power beam width: the half power level occurs at those angles 
and  for which (the angular beam width at the half =             power 
level or half power beam width)

 Pb1) an antenna has a field pattern given by    find HPBW

 Sol: at half power = 0.707

0.707 =                             =               & =330

0.707= 

1
0.907

2


2cos  0.707cos
1

cos cos 2
2

  

1
cos

2 cos





1

1

1 1
cos ( )

2 2cos








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Beam Area/ Beam Solid angle

 Beam Area/ Beam Solid angle (   A):

 In spherical co-ordinate system, an incremental area dA on the surface of 

a sphere is the product of the length da in the d (latitude) direction d
and                       (longitude) in the direction

 dA=       .                   = 

 dA=

 =solid angle expressed in steradians or the area of the strip of width     
extending around the sphere at a constant angle  is given by

 (2   r.sin   ) (      )

 By integrating over for                                              angle subtended by a 
sphere



sin d  
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d  sin d   2 sin d d   
2
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Beam Area/ Beam Solid angle

 The beam area or beam solid angle or ΩA of an antenna is given by the 
integral of the normalized power pattern over a sphere (4π sr)
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Beam Area/ Beam Solid angle

 The beam area ΩA is the solid angle through which all the power at 
radiated by the antenna the beam area of an antenna can often be 
described approximately in terms of the angles subtended by the 

half power points of the main lobe in the two principle planes.

 Beam area

 Pb:  An antenna has a field pattern given by

Find the beam area ΩA
A HP HP   2 0 0( ) cos 0 90E     

2

0 0

( , )sinA np d d
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Radiation Intensity

 the power radiated from an antenna per unit solid angle is called the 
radiation intensity ‘U’ watts/steraduan

 [Which does not depend upon the distance from the radiator?]

=radiated power

We know                                                                  

 There are           +meters surface area per unit solid angle

 Power radiated per unit area in any direction is given by the 
pointing vector  p=EXH w/m2

2.U P P 

2

2
&

ds ds
d

d



 Ω

Ω

2
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Radiation Intensity

 Where E & H are orthogonal to each other relation between E&H   
= 

 =intrinsic impedance

 Simple pointing vector               watts/m

 But this is average pointing vector

0

E

H


0
2

1 2

0 0

/
E E

P E H P E watts m
 

   

2

0

E
P




2
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1 ( , )

2

E
P

 



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Radiation Intensity

 P=





 8=phase difference but4 E+H 
Why we are taking PCV E&H are changing with time then

 Pq=real part of p complex=Re {P}

 watts      

*1
[ ]

2
ExH

0

jwt

eE a E e

* ( 8)

0

jw

nH a H e 
( 8)

0

j wt

nH a H e 

1
{ }

2
eR ExH

61



Radiation Intensity

 In this E&H instantaneous values if runs values will be omitted 
are taken 

 So that  



 From          we can calculate normalized power 

2.U P 

2
2

0

1 ( , )

2

E
U

 





( , )U  

( , )
( , )

( , )
u

m

U
P

U

 
 

 

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BEAM EFFICIENCY Beam 
Efficiency, Directivity, Gain and 
Resolution
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Beam efficiency

 The beam area or beam solid angle consists of the main 
beam area plus the minor lobe area   ΩA= ΩM + Ωm

 Beam efficiency is defined as the ratio of the main beam 
area to the total beam area                   dimension less

 The ratio of minor lobe area to the total beam area is called 
the stray factor                                          

M

A

M 
Ω

Ω

mA M

A A A

 
ΩΩ Ω

Ω Ω Ω
[ !]M m  

m
m

A

 
Ω

Ω
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Directivity (D) 

 The directivity and gain are probably the most important parameters of 
an antenna

 The directivity of an antenna is equal to the ratio of the maximum power 
density              max. w/m2 to its average value over a sphere

 Dimension less

 This ‘D’ from pattern 

 The average power density over a sphere is given by

( , )P  

max( , )

( , )avg

P
D

P

 

 

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Directivity (D) 

2
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Directivity (D) 

4 ( )

( )A

str
D

str



Ω

2
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0
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( , ) ( , )sin

4
avgP P d d

n
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



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  
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[Ratio of the area of the sphere to the beam area
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Gain

 the gain ‘G’ of an antenna is defined as the maximum power  
density of antenna / Test antenna with a reference antenna

• Gain is always less then dirDirective gain in a given 
direction is defined as the ratio of the radiation intensity 
in that direction to the average radiated power.

 ectivity (maximum directive gain) due to    ohmic losses in the 
antenna the ratio of the    gain to the directivity is the antenna 
efficiency factor G=KD  K=0 to1

max

max

( , )

( , ) Re

P ofAUT
G

P of alanten

 

 

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Gain

 Gain=m.r.i from test/m.r.i from isotropic

 with same power i/p in a gain direction

 If the half power beam widths of an antenna are known, its 
directivity ‘D’

=               no. of rq degrees in sphere

 Approximately  

 *the directivity –beam width product is 40,000(apper)

4 ( )

( )A

str
D

str



Ω

41,253

HP HP 

40,000

HP HP

D
 


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Directivity and Resolution

 The resolution of an antenna may be defined as equal to half the 
beam width between first nulls FNBW/2 To distinguish between tx’s
on two adjacent satellites half power beam width then the 
*Directivity will half of the 

 Become

 No.of TX’s or sources of radiation distribution over the slay 

uniformly

2

FNBW
HPBW  2

40,000
4

( )
D x

FNBW


0 0

HA P HP Ω

Beam area 
2 2

A

FNBW FNBW

 

   
     

   

(

4

A

N



Ω
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Directivity and Resolution

 But we know   

 We conclude that ideally the number of point sources the antenna 
can resolve is numerically equal to the directivity of the antenna * 
when the antenna beam aligned with one satellite.

 Signification:- the directivity is equal to the number of point 
sources in the sky that the antenna can resolve (T&C) [under 
the ideal conditions of a uniform source distribution]

4

A

D



Ω
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ANTENNA APERTURES, APERTURE 
EFFICIENCY, EFFECTIVE HEIGHT
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Antenna apertures

 the concept of aperture is most simply introduced by considering a 
receiving antenna

 Let us consider pointing vector or power density of the plane wave 
be‘s’ watts/m2

 The area or physical aperture- APm2

Power                              (physical aperture)

 The total power extracting by the horn from a passing wave being 
proportional to the aperture or area of its mouth

 But the field response of horn is not uniform across the aperture ‘A’ 
because ‘E’ at the side walls must equal to ‘0’

2

P P

E
P A SA

Z
 
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Antenna apertures



 Aperture Watts' intrinsic impedance (377 for air)efficiency

 Assuming that uniform field ‘E’ in the for field at a distanc

 e ‘r’ the power radiated is also given by

e
op

P

A

A
 

• Horn parabolic} 50 to 80% 

op

0.5 to 0.82

0

E
P Ae

Z

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Antenna apertures

 Assuming that uniform field ‘E’ in the for field at a distance ‘r’ the 
power radiated is also given by 

2 2

0

ΩA

E
p

Z



• By equating above two eq’s

2

2

2

4

4

a e
e A

e

e

E A
E A
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D

D
A

 









   





• If Ae is known, we can determine A at a given wavelength

2
4 eA

D 


 (Directivity from aperture)
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Antenna apertures

 From that 
2

4
e

D
A





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Effective height

 The effective height h(units) of an antenna is another parameter 
related to the aperture. By multiplying the effective height ‘h’ by the 
incident field (v/m) of the same polarization given the voltage v 
induced.       V=hE

 The effective height may be defined as the ratio of the induced 
voltage to the incident field h=v/E (m)


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Effective length

 The term effective length of an antenna represents the “effectiveness 
of  an antenna as radiator or collector of electromagnetic wave energy

 Effective length /height indicates how far an antenna is effective in 
transmitting or receiving the electromagnetic energy.

 Definition:-The effective length may be defined in terms of induced 
voltage V and incident field

 Effective length is the ratio of induced voltage at the terminal of the 
receiving antenna under open circuit condition to the incident electric 
field intensity or strength.

 Here ‘v’ is the induced voltage under open circuited condition at the 
antenna terminals due to ‘E’ field.

 Power received by the terminal load impendence is given by 2

rms LP I R
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Effective length

2
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equalentvoltage
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Effective length

 From this 
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Effective length

 Under the conditions for max-effective aperture

2 2 2

2
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Effective length

e
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A R
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Radian

 Radian:-The measure of a plane angle is a radian one radian is defined 
as the plane angle with its vertex at the center of a circle of radius  that 
is subtended by an arc whose length is 

C=2  r   (2    rad)

 The measure of a solid angle is a steraduan one steraduan is defined as 
the solid angle with its vertex at the center of a sphere of radians  that is 
subtended by a spherical surface area equal to that of a square with 
each side of length ‘r’

 

2

2

2

4

4
4

A r

r
str
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Antenna properties based on 
Reciprocity theorem
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Antenna Theorems

 The well known network theorems including superposition 
theorem, the venin's theorems, maximum power transfer 
theorem, compensation theorem and reciprocity theorem lead to 
very useful antenna theorems which relate the properties make it 
possible to derive/ correlate the properties of a receiving 
antenna from its properties as a transmitting antenna.

 Equality of directional patterns

 Equality of transmitting and receiving antenna impedance

 Equality of effective length
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Field zones

 The fields surrounding the antenna are divided into 3 principle 
regions

 Reactive Near field

 Radiating Near field or Fresnel Region

 Far field or Fraunhofer Region

Reactive Near field:
 The fields are predominately reactive fields which mean E&H fields are 

out of phase by 900 to each other boundary of this region is given as

0.3
0.62R



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Antenna Theorems

 Radiating Near field or Fresnel Region:

It is the region between near &far fields the reactive fields are not 
dominate. Here the shape of the radiation pattern may vary appreciably 
with distance & the radiating fields being to move

Radiating varies from

To

This field may or may not exit depends on R&S

 Equality of effective length:

In this region, the radiation pattern does not change shape with distance.

 This region is dominated by radiated fields with E&H fields orthogonal to 
each other & the direction of propagation as with plane wave.

0.3
0.62



22D



22D
R


 R D R V
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Antenna Theorems

 The powers radiated in a given direction from district parts of the 
antenna are approximately parallel. So the fields in the far field region 
behave like plane waves.  
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Antenna Theorems

 Antenna Efficiency:

The efficiency of the antenna is defined as the ratio of power 
radiated to the total i/p power to the antenna and is denoted by ɳ 
or k

 K=power radiated/total i/p power=GP/D

 In terms of resistances   

 Loss resistance may consist-

 Ohmic loss in the anti conductor

 Dielectric loss

 I2R loss in antenna & ground

 Loss in earth connections

 Leakage loss insulation

100r

r L

R
K

R R
 


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Antenna Theorems

 Radiation resistance:   

 It is defined as that fictitious resistance when substituted in series 
with the antenna will consume the some power as is actually radiated

2

r
r

P
R

I

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Reciprocity theorem

 Most powerful in circuit & field theories Rayleigh Helmholtz →Rayleigh 
Reciprocity Theorem

 For antennas stat:

If an emf is applied to the terminals of an antenna no.1 & the current 
measured at the terminals of antenna no.2. then an equal current both 
in amplitude and phase will be obtained at the terminals of antenna 
no. of if the same e.m.f is applied to the terminals of antenna no.2

12 21 12 21
12 21

2 1 2 1

m

E E E E
Z Z Z

I I I I
     
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Reciprocity theorem

 Application of Reciprocity theorem:
Equality of Directional patterns:

 The directional patterns of transmitting and receiving antennas 
are identical if all the media are linear, passive, isotropic and 
the reciprocity holds good.

 Consider the tx antenna no.1 as test antenna which is placed at 
the centre of the observation circle. The receiving antenna no.2 
is moved along along the surface the antenna no.2 is always 
kept perpendicular to the radius vector & perellel to the electric 
vector (if the polerization is linear)

 If a voltage ‘E’ is applied at no.1 & the resulting current ‘I’ at the 
terminals of RXing antenna 2 is measured- which will be the 
indication of electric field at the location of antenna no.2
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Reciprocity theorem

 If the process is reversed same will be occursed same voltage is 
applied to 2 & ‘I’ at no.1 this time the Rxing petterns of 2

 Accordingly to reciprocity theorem, for every position of test 
antenna no.1, the ratio E/I is the same.

 It is provided that radiation pattern of a test antenna no.1 observed 
by moving receiving antenna no.2 is identical with the positions 
inter changed

 Equality of Directivities:

If the radiation pattern of an antenna is same whether it is 
transmitting or receiving then the directivities will be same.

 Proof of reciprocity theorem
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Reciprocity theorem
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Equality of Directivities

 Sub I1 in I2   (eq1)
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Equality of Directivities
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Equality of Directivities

 From (3)
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Equality of Directivities

 From (4) I2 in I1

 Equation (2) & (6)

 If I1 = I2
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Maximum power transfer theorem

 E12=E21

If I1 = I2→ E21 = E12

 Maximum power transfer theorem:

In any linear, bilateral N/W, a maximum power is transferred to load 
if load impendence is complex conjugate of eq.impedance of the 
N\W

 Maximum power transferred to the load is Pmax=V2/4R
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RETARDED POTENTIAL 
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Retarded Potential 

 Retarded Potential (Time Varying Potential):

Application Maxwell’s equations to the antenna radiation. Let us check & 
modify those eq’s in different form radiation is a time varying 
phenomena.

 Step (1)

We know 

Substitute ‘B’ in this 
t
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Retarded Potential 

 Then

 Which satisfies both the static & the time varying conditions?

 Step (2)

 Subs (E)

A
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Retarded Potential 

 Step (3)
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Retarded Potential 

 L.H.S

 Equating L.H.S & R.H.S  is defined

 As per the Helmholtz theorem “A Vector field is completely define 
only when both its curt & divergence are known.
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Retarded Potential 

 There are some conditions which specify divergence of A. 

 Two conditions we have to take Lorentz gauge condition & coulomb’s 
gauge condition.

 Using (1) L.G 
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Retarded Potential 

 Step (4)

For sinusoidal time variations  V=V0ejwt, A=A0ejwt

 If P&J in the expressions of V&A are given in Maxwell’s equations as 
above

 They become functions of‘t’ & this ‘t1’ is replaced by (t1)

t1=t-r/v

P&J can be [P] & [J]
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Retarded Potential 

 Suppose      P=e-rcosɷt

e-rcos(ɷt-v)

 ‘R’ is distance between the elemental volume dv located in a current 
carrying conductor. 

 V-wave travelling velocity

 So the equation of V&A are called as advanced potentials 
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Retarded Potential 

The vector electric potential eq represents the super

position of potentials due to various current elements at distant point (p) (r)

 The effect of reaching a ‘p’ from a given element at an instant t due to a current 
which is followed at an earlier time.
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Retarded  Potential:
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Retarded Potential 

 Hence retardation time must be taken into according for sinusoidal time 
variation characterized by

 If P&J in the expressions of V and A given by they become functions of 
time and this time t is replaced by t1

 Such that t1=t-r/v

 P’ replaced by *P+

 ‘J’ replaced by *J

0 0&jwt jwtV V e A A e 

2 2P
V V 




   

2 2A J j     
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Retarded Potential 

[ ]
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P dv
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
 

•The above two equations are called “retarded potentials”
•If t1=t+r/v then called “advanced potentials”
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RADIATION FROM SMALL 
CURRENT ELEMENT
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Radiation from small current element  

 A small current element (short dipole) is considered as the basic 
source of radiation

 For to find the E&H fields everywhere around in free space using 
the concept of retarded vector potential

 Let us consider the small current element and the current flowing 
through it is ‘I’. the current is constant along the length because of 
short length

 Purpose:

This isolated current concept is unreal but still any physical circuit or 
antenna system carrying current may be considered to consist 
joined in series i.e end to end and hence if the Electromagnetic 
field of this building block is known the e.m field of any physical 
antenna having specified current distribution can be calculated
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Magnetic field components:

To find the electromagnetic field at any arbitrary point ‘p’(r, Ɵ, ø), first 
calculate the vector magnetic potential ‘A’

As the current element is placed along the z-axis the vector potential 
will have only one component in +ve ‘Z’ direction & it is retarded by 
time ‘r/v’ sec
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Magnetic field components:

 The current element 

 The integration of the current density J over a cross section area gives 
current I & this current is assumed to be constant along the length ‘dl’
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Magnetic field components
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Cartesian to spherical 
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Cartesian to spherical

 Thus the first two terms in the  are equal to ‘o’
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Cartesian to spherical

Let us calculate the electric field.

(J is constant)

Hɵ=0,   Hr=0
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Cartesian to spherical
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Cartesian to spherical

 Apply integration on both sides
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Cartesian to spherical

 Therefore we have calculated all the 3 components of electric field 
intensity vector 

 We conclude here that out of six components of electromagnetic 
field, only three components Er, Eɵ &Hø exist in the current element 
or Hertzian dipole & rest components Eɵ, Hr, Hø are everywhere ‘0’
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Cartesian to spherical

 Apply Integration
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UNIT-II
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QUARTERWAVE MONOPOLE 
AND HALFWAVE DIPOLE –
CURRENT DISTRIBUTIONS
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Half wave dipole and monopole

 The half wave dipole can be considered as a chain of 
Hertzian dipoles. For the uniform current distribution the 
+ve charges at the end of one Hertzian dipole gets cancelled 
with an equal negative charge at the opposite end of the 
adjacent dipole.

 But when the current distribution is not constant (non 
uniform suppose sinusoidal)

 So the successive dipoles of the chain have slightly different 
current amplitudes, where adjacent charges are not can 
called completely
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Power radiated by the half wave dipole & the 
Monopole
 A dipole antenna is a vertical radiator fed in the centre

 It produces maximum radiation in the plane normal to the axis 

 In case of Hertzian dipole the expressions for E & H are derived 
assuming uniform current throughout the length

 At the ends antenna current is ‘o’ for the dipole, the current is 
not uniform throughout the length as it is maximum at centre & 
‘o’ at ends 

 Practically Hertzian dipole is not used but Half wave dipole 
(λ/2) & quarter wave monopole (λ/4)
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power radiated by the half wave dipole & the 
Monopole
 The current element Idz is placed at a distance z from z=0 plane.

 ‘AZ’ at point ‘P’ due to current element Idz is given by

 The vector potential at point ‘P’ due to all suds currents can be 
obtained by integrating the vector potential DaZ over the total 
length of the antenna
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Power radiated by the half wave dipole & the 
Monopole
 The vector potential at point ‘P’ due to all suds currents can be 

obtained by integrating the vector potential DaZ over the total 
length of the antenna

 R=R-Z cosɵ

 Substitute ‘R’ in the above equation
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Power radiated by the half wave dipole & the 
Monopole

 For quarter wave monopole  H=λ/4       β=2Π/λ

 Charging limits of integration
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Power radiated by the half wave dipole & the 
Monopole
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Power radiated by the half wave dipole & the 
Monopole

 By taking LCM
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Power radiated by the half wave dipole & the 
Monopole
 From Maxwell’s equation 

 We have to consider the radiation field only
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Power radiated by the half wave dipole & the 
Monopole
 for half wave dipole & monopole 
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Power Radiated & Radiation resistance of λ/2 dipole 
& λ/4 monopole
 Power Radiated & Radiation resistance of λ/2 dipole & λ/4 

monopole

 The field components Eɵ & HƟ are in time phase the maximum valve 
of the poyting vector can be obtained by Pmax=| Eɵ || HƟ

 Multiplying the magnitudes=

 Average value of the power is help of the maximum value
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Power Radiated & Radiation resistance of λ/2 
dipole & λ/4 monopole

 Semispherical surface 0.609 by Trapezoidal rule
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Power Radiated & Radiation resistance of λ/2 dipole 
& λ/4 monopole
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Directivity of current element

 Directivity is defined as the maximum directive gain. Gain of an 
electric element obtained by comparing it with total radiated 
power.

 G=power radiated by the current element Pr(avg) /total power 
radiated by the same current element

 ɵ=900 →power will be maximum
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Directivity of current element

 Beam Area:
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Effective Area
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Current distributions of this wire Antenna
Consider a current element placed at a center of a spherical 
coordinate system. Then the power radiated per unit area at point 
p can be calculated using pointing theorem.

 The radial power is

 Short Linear Antennas

The current element that we have considered previously is not a 
practical, but it is hypothetical. It is useful in the theoretical 
calculations such as the components of the fields, radiation of 
power etc. The practical example of the centre-fed antenna is an 
elementary dipole.

 The length of such centre-fed antenna is very short in wavelength. 
The current amplitude on such antenna is maximum at the center 
and it decreases uniformly to zero at the ends. The current 
distribution of short dipole is as shown in the Figure
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Current distributions of this wire Antenna

 If we consider same current I flowing through the hypothetical 
current element and the practical short dipole, both of same 
length, then the practical short dipole radiate only one-
quarter of the power that is radiated by the current element. 
This is because the field strengths at every point on the short 
dipole reduce to half of the values for the current element and 
hence the power density reduces to one quarter. So obviously 
for same current, the radiation resistance for the short dipole 
is ¼ times. Hence the radiation resistance is given by

 Another practical example of an antenna is a monopole or short 
vertical antenna mounted on a reflecting plane as shown in the 
Figure.
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Current distributions of this wire Antenna

 Let the monopole is of length h. Again if we consider same current I 
flows through a monopole of length h and a short dipole of length / 
= 2h then the field strength produced by both the antennas is same 
above the reflecting plane. But the monopole radiates only through 
the hemispherical surface above the plane. So the radiated power 
of a monopole is half of that radiated by a short dipole. Hence the 
radiation resistance of a monopole is half of the radiation resistance 
of the short dipole.

R rad (short dipole)  = 200(L/λ) 2

R rad (monopole)  = 400(h/λ) 2



142



Power Radiated, Radiation Resistance, 
Beamwidths, Directivity, Effective Area and 
Effective height
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Power Radiated by current element and its radiation 
resistance

 For calculation of radiated power, pointing vector method is 
used (the current element is situated at the centre of a 
great spheres)

 The power flow per unit area at any point ‘P’ on the sphere 
is given by pointing vector

 Out of 3 components                       only the radial component 
contributes to power flow become 

P E H  ( )r r cvP P ds 

( , , )rP P P P 

rP E H 
rP E H  rP E H 
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Power Radiated by current element and its radiation 
resistance

 We                                        do not contribute to the net power 
flow.

 Since the radiation field component from the current 
element,              are tangential to a spherical surface.

 The poynting vector will be radial everywhere showing 
radial flow of power from the current element

0H  0E  &P P 

&H H 
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resistance
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Power Radiated by current element and its radiation 
resistance

 Consider a sphere, and its elemental area on the spherical shell 
is 
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Power Radiated by current element and its radiation 
resistance

 By willi’s formula 
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Power Radiated by current element and its radiation 
resistance

 This is defined as the fictitious resistance which when 
inserted in series with the antenna will consume the same 
amount of power as is actually radiated
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Induction (near) field and Radiation (far) field

 Let us examine the expression for

Amplitude   induction field   radiation field 

Induction field:   

 The first terms varies inversely as square of the distance 
(1/r2) & this field will predominate at points close to the 
current element. It represents the energy shorted in the 
magnetic field surrounding the current element or 
conductor.

 This energy is alternatively stored in the field and 
returned to the source during each half cycle.
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Radiation field

 The second term varies inversely as distance (1/r) which accounts 
for the radiation of electromagnetic waves from a conductor 
under suitable conditions.



 The radiation component of the magnetic field is produced by the 
alternating electric field and electric radiation component arises 
from the alternating magnetic field.



 The flow of current or movement of the charge in the conductor 
establishes local induction fields.Whereas the radiation fields 
exist as a consequence of the charging induction fields. 

 1/w ∞ (1/r3) term varying-near the current element

 Indendepend of ‘w’∞ (1/r2) induction term
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Radiation field

 The two terms in ‘Er’ belongs to the induction field and are 
negligible at a distance where r>>λ hence no radial 
component Er is present in the radiation field.In ‘Eɵ’ also 
same 
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Radiation field

At a distance r>>λ
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Effective Area and Effective height
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Effective length or radiation height of linear antennas

 For linear current distribution expression for the radioactive field 
is given by 

 This radiation cannot be true for practical antennas due to non-
uniform current distribution which are either linear or sinusoidal 
or co-sinusoidal
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Effective length or radiation height of linear antennas

 Due to this reason, there is a reduction of radiated power 
and makes the antenna equivalent to a shorter one with 
same current.

 So the length of antenna may be taken by finding the mean 
value of current over the length

 l/2=le=effective length or height
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Note

 equivalent or radiation length le will be (l/2) as the mean 
value of current (Im/2)

(le=l/2)
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Natural current distributions; fields and patterns 
of Thin Linear Center-fed Antennas of different 
lengths
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Finite length dipole

 A finite length dipole is still in the order of a<<λ, where and a is 
the thickness of the. 

 However, the length l of the antenna is in the same order of 
magnitude as the operating wave length λ/10<l≤2λ

 The current distribution is now approximated to a sinusoidal 
function:
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Finite length dipole
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Current Distributions along the Length of a LINEAR Wire 
Antenna
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Finite Dipole Geometry & Far-Field Approximations
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Illustrated Problems

 Problem 1:

A radiating element of 1cm carries an effective current of 0.5 
amp at 3 GHz. Calculate the radiated power.

Solution:

Ieff =0.5Amp,

F =3GHz,

dl = 1cm = .001m

The formula for radiated power is given by
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Illustrated Problems

Problem 2:

Evaluate the radiation resistance of a radiating element having 
length L = 5 m at

(a) f = 30 kHz (b) f = 30 MHz (c) f = 15 MHz

Solution:

(a) At f = 30 kHz, λ = 104 m and λ/10 = 103, thusL << λ/10

Radiation resistance for an element of length dl with uniform 
current distribution is given by

Rrad = 800(dl/λ)2 = 800(5/104)2 = 20 milli-ohms
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Illustrated Problems

(b) At f = 30 MHz, λ = 10 m and L = λ/2

Radiation resistance for an element of length dl with non-uniform 
current distribution is given by

Rrad =200(L/λ)2 = 200(1/2)2= 50 ohms

(c) At f = 15 MHz, λ = 20 m and L = λ/4

Radiation resistance for an element of length h = 2dl = 2L with 
non-uniform current distribution is given by

Rrad = 400(h/λ)2 = 400(1/4)2= 25 ohms
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Illustrated Problems

Problem 3: 

Calculate the average power available at 1 km distance if an 
element radiates in the θ = 600 direction and carries a maximum 
current of 5 amp.

Solution:

The Average power is given by:
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LOOP ANTENNAS
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Introduction

 A radio direction finder (DE) is used to determine the 
direction of arrival of radial signal.

 Radio waves are propagating between TX & RX

 To find the direction of the unknown transmitter w.r.t
Receiver & this process of finding the direction of incoming 
radio signal from a tx & its position is known as Direction 
finding.

 Radio Direction finder (R.D.F)

 We can obtain the location by determining the direction of 
radio wave at two receiving points 

 DF consists------------ directional antenna, receiver direction 
indicator

 For direction finding, we are using loop antennas 
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Loop antennas

 The structure of this antenna is a radiating coil of any convenient cross 
section of one or more turns carrying radio frequency current.

 A loop of more than one turn is called frame

 Dimensions of loop are small compared to wave length
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Different shapes of Loop
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Small loop

 The radiation efficiency of closed loop antenna is low 
for tx’ion purposes unless their dimensions are made 
comparable to the wave length employed

 Let us consider/ take the small loop (circular) of low 
dimension compared to the wave length ‘λ’ so that 
the magnitude and phase remain the same 
throughout the loop
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Small loop

 The field pattern of small circuit loop of radius ‘r’ may be determined 
by considering a square loop of the same area.

d2=Πr2

d=side length of the square loop  

 Its field pattern can be analyzed by treating loop as four short linear 
dipoles
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Small loop

 To find the far-field pattern in the yz-plane, it is only necessary to

consider two of the four small linear dipole, assuming that the loop is

placed at the centre of the co-ordinate system; its far field component

will have only ‘Eɵ’

Eɵ=field component due to +field component due to
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Small loop

E0=Electric field amplitude of dipoleAD+BC

Ψ=2π/λ dcos(90-θ)=phase difference

Ψ=βdsinθ

Eφ=-2jE0sin (βdsinθ/2)

 The term ’j’ indicates that the total field Eφ is in phase 
quadrature with the individual dipole field ‘E0’
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Small loop

 Here θ=900 because it is measured from x-axis instead of z-axis.

[I]=Retarded current

If deex
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Small loop

 For field pattern EP field. Instantaneous value Eφ of 
loop area ‘A’

 The other component of far field is magnetic field 
component Hθ which is given by 

120E H 

120

E
H








2

[ ]sin
AH

I

r


 




176



Comparison of far fields of small 
loop and short dipole
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Comparison of far fields of small loop and short dipole

 Electric dipole 

 Electric 

 Magnetic

2

2

120 [ ]sin .I A
E

r


 




060 [ ]sin90j I L

r





[ ]sin

2

L
H

r

j I







2

[ ]sin ( )
H

r

I A


 




178



Loop antenna-General Case

 Consider a loop antenna with uniform, in phase current & 
any convenient size.

 Placed / located at the centre of the spherical co-ordinate 
system.

 Assuming the current ‘I’ uniform along the loop, the far field 
expressions can be obtained by finding the vector potential 
of the electric current.

 To find the vector potential consider first a pair of short 
dipoles placed diamenetrically opposite to each other loop 
of any radius a  with length “adø
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Loop antenna-General Case

•To find total vector potential over the loop we can
integrate vector potential obtained for above pair of short
dipoles over the entire loop.

•The for field component will have only a ø comp while the
other components in r &ø direction will be zero.
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Loop antenna-General Case

 dM = current moment due to the pair of infinitesimal 
dipoles placed diametrically opposite

 The ø-component of the retarded current moment 
due to one dipole is 

 I0=peak current or maximum current in time on the 
loop
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Loop antenna-General Case

•The cross section on through the loop in x-z plane is as
shown.

•The resultant moment dM at a large distance due to a 
dipole pair
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Loop antenna-General Case

 Radiant

 J1 (βasinθ)= Bessel’s function of the first or der and of 
argument (βasinθ)
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NOTE

 Dipoles different orientation w.r.t ø & situated at 
the origin

 The far electric field of the loop has only a ø 
component
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NOTE

 Instaneous electric field at a large distance ‘r’ from a loop of 
any radius ‘a’
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Power radiated & Radiation 
Resistance of loop Antennas
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Power radiated & Radiation Resistance of loop 
Antennas
 To calculate the radiation resistance of a loop antenna the 

poynting vector is integrated over a large sphere giving the total 
power ‘p’ radiated this power is then equated to the square of 
the current on the loop times the ‘Rr’

P=Irms Rr

Im=max (or) peak current 

The average poynting vector of a far field is given by 

The radial                                          (E=ηH)
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Power radiated & Radiation Resistance of loop 
Antennas

 The total power radiated ‘P’ is obtained by integrating the Pr over a 

large sphere.
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Power radiated & Radiation Resistance of loop 
Antennas
 For small arguments of the first order barrel function the following

(Area of the circle=πa2)

Assuming the loss less antenna, this power equals the power delivered to 
the loop terminals
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Power radiated & Radiation Resistance of loop 
Antennas
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Power radiated & Radiation Resistance of loop 
Antennas
 This is the equation of small single turn circular loop antenna or square 

with uniform in phase current.

Case:

 If the loop antenna has N no.of turns so the magnetic field passes 
through all the loops the radiation resistance is equal to that of single 
turn multiplied by N2

 The radiation resistance in terms of circumference can be written 
by the following equations (circumference) (C)=2π
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Power radiated for any radius ‘a’

 c/λ >5 i.e is loop is large
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Directivity of loop Antennas

 D=maximum radiation intensity/ average radiation intensity

 Maximum radiation intensity for a loop antenna is given by 
multiplication of power with r2

 Average radiation intensity is given by dividing the total power with 4π
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Directivity of loop Antennas

 Substituting c
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For small loop

 For small loop

D=3/2
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For large loop

 For large loop

When the loop size restricted to
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ANTENNA ARRAYS
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Antenna Arrays

 Antenna array is one of the common methods of combining 
the radiations from a group or array of similar antennas.

 The total field produced by an antenna array system at a 
great assistance from it & it is the vector sum of the fields 
produced by the individual antennas of the array system.

 The relative phases of individual field components depend 
on the relative distance of the individual antennas of the 
array.

 An antenna array is said to be linear, if the individual 
antennas of the array are equally spaced along a straight 
line.


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Various types of antenna array-
Broad side array

 In which a number of identical parallel antennas are set up 
along a line drawn ‘┴’ to their respective axes

 An arrangement in which the principal direction radiation is 
perpendicular to the array axis and also to the plane containing 
the array element

 Radiation pattern of Broad side array
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End fire array

The end fire array is nothing but broad side array except 

that individual elements are fed in, out of phase (1800

usually) 
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End fire array

 Thus in the end fire array, a number of identical 
antennas are spaced equally along a line and 
individual elements are fed with currents of equal 
magnitude but their phases varies.

 The arrangement in which the principal direction of 
radiation coincides with the direction of the array 
axis
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Arrays of 2 isotropic point sources
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Arrays of 2 isotropic point sources

 Let us assume that the two point sources are 
separated by a distance & have the same 
polarization.

 The superposition or addition of fields from the 
various sources at a great distance with due regard 
to phases

1. Equal amplitude & phase--------case (1)

2. Equal amplitude & opposite phase case(2)

3. Unequal amplitude any opposite phase case(3)

203



Arrays of two point sources with equal amplitude and 
phase

 Two isotropic point sources symmetrically situated w.r.t
origin

 To calculate fields at a great distant point, at distance (R) 
from the origin ‘o’ which is taken as reference point for 
phase calculation
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Arrays of two point sources with equal amplitude and 
phase

 Path difference between the two waves in is given by 

 Path difference =dcosθ

 Thus the total far field at distant point ‘p’ in the 
direction of ‘θ’ is given by
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Arrays of two point sources with equal amplitude and 
phase

 - Field component due to source

 - Source

 In this case amplitudes are same
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Arrays of two point sources with equal amplitude and 
phase

 The above equation is the far field pattern of 2 
isotropic point sources of same amplitude and 
phase.

 The total amplitude is 2E0 maximum value may be 
‘1’

The pattern is said to be normalized eq (1) becomes

(if d=λ/2)
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Maxima direction

 E is maximum when                   is max

Where n=0, 1, 2-----

( if n=0)
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Minimum direction

 E is minimum when                  is minimum

(n=0, 1, 2, …..)
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Half power point direction

 Power                   ts times the max

 This is the simplest type of “Broad side array”
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Arrays of two point sources with equal amplitude and 
opposite phase

 This is exactly similar to above except that point 
source 1 is out of phase or opposite phase (1800) to 
source 2 i.e when there is maximum in source 1 at 
one particular instant, then there is minimum in 
source 2 at that instant and vice versa

 The total far field at distant point PL is given by

 Because phase of source 1 and source 2 at distant 
point P       is  and     since the reference between 
midway
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Arrays of two point sources with equal amplitude and 
opposite phase

2jE0=1→ (normalization)
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Maximum direction& Minimum direction

(n=0, 1, 2, …..)
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Half power point directions

This is simplest type of “End fire array”
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Arrays of two point sources with unequal amplitude and 
any phase

 Let us consider two point sources are not equal and any 
phase difference says α

E1= Field due to source-(1)

E2= Field due to source-(2)

 α=phase angle by which the current ‘I2’ of source (2)-leads 
the current I1 of source (1)

 α=phase angle by which the current ‘I2’ of source (2)-leads 
the current I1 of source (1)

 If α=0 or 1800 →      

cosd    

1 2 0E E E 
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Arrays of two point sources with unequal amplitude 
and any phase

 The total field

Ø=phase angle

If E1= E2, K=1
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Non-isotropic but similar point sources

 Point source (1)                                       To distant point ‘p’

 Array of two isotropic point source were up to considered, and this may be extended to the 
sources which are not isotropic and provided. Their field patterns are similar to that of isotropic 
point source.   

 Field patterns of non-isotropic must have the same shape & orientation

 Amplitudes are not necessarily equal

 So there are called non-isotropic but similar point source.

217



Non-isotropic but similar point sources

 Let us now consider 2 short dipoles which are superimposed over 
the two isotropic point sources & are separated by a distance.

E0= E1sinθ   (for isotropic field pattern)------------- (1)

 Field pattern for two identical isotropic sources is given by
E0=2 E0cosΨ/2                           ------------ (2)

Where Ψ=βdcosθ+α
Combing equations (1) & (2)

E= 2E1sinθcosΨ/2 
Enormal= sinθcosΨ/2       

Sinθ = pattern of individual isotropic source
cosΨ/2= pattern of Array of two isotropic point sources

 The above equation leads to the “principle of multiplication of 
pattern”
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Multiplication of pattern (or) 
pattern multiplication

219



Multiplication of pattern (or) pattern multiplication

 It is being stated as follows:

 “The total field pattern of an array of non-isotropic 
but similar sources is the multiplication of the 
individual source patterns and the pattern of an 
array of isotropic point sources each located at the 
phase center of individual source and having the 
relative amplitude & phase. Whereas total phase 
pattern is the addition of the phase pattern of the 
individual sources & the array of isotropic point 
source”

   ( , ) ( , ) ( , ) ( , )i a pi paE E E E E          
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Multiplication of pattern (or) pattern multiplication

 =multiplication of field pattern

 =addition of phase pattern

 Ei (θ, φ)= field pattern of individual source

 Ea (θ, φ)= field pattern of array of isotropic 
point sources

 Epi (θ, φ)= field pattern of individual source

 Epa (θ, φ)= field pattern of array of isotropic 
point sources

 ( , ) ( , )i aE E   

 ( , ) ( , )pi paE E   
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Radiation pattern of 4 isotropic elements fed in phase, spaced 
λ/2 apart

Radiation pattern of 8-isotropic elements fed in spaced λ/2

apart
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Multiplication of pattern (or) pattern multiplication
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Multiplication of pattern (or) pattern multiplication
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Linear array with ‘n’ isotropic 
point sources of equal amplitude 
and spacing
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Linear array with ‘n’ isotropic point sources of equal 
amplitude and spacing

 For point to point communication, at higher frequencies a 
single narrow beam of the radiation pattern is required 
which is usually obtained by multiunit linear arrays

 Calculation of far field pattern for equally spaced ‘n’ 
isotropic point sources and are fed within phase currents of 
equal amplitudes
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Linear array with ‘n’ isotropic point sources of equal 
amplitude and spacing

 The total far fields patterns at a distant point ‘P’ is 
obtained by adding vector ally the fields of 
individual sources as

α=phase difference in adjacent sources

 Multiply the ejΨ term to the eq (1) on both sides for 
computation
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0 0 0 0 0 0

j j j j j n j

tE E e E e E e E e E e E e          

 2 3 4 ( 1)

0

j j j j j n

tE E e e e e e         

cosd    
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Linear array with ‘n’ isotropic point sources of equal 
amplitude and spacing

 2 3 4
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j j j j j jn

tE e E e e e e e          

Subtracting eq (2) from (1)

Above equation is in the form of where ‘a’ is common ratio
because it is geometric series if (a<1)

Then

Eq (3) may be rewritten as
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Linear array with ‘n’ isotropic point sources of equal 
amplitude and spacing

 The above equation is the total field pattern of linear 
array of n-isotropic point sources as reference point for 
phase.
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Linear array with ‘n’ isotropic point sources of equal 
amplitude and spacing

 Note: if the reference point is sifted to the centre of 
the co-ordinate then phase angle                is 
automatically eliminated and eq(4) reduces to      
array factor

 =array factor or secondary pattern

 E0= individual source pattern or primary pattern
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Array of ‘n’ isotropic sources of equal amplitude and spacing (broad side 
case):
Major lobe (maxima direction):

 An array is said to be broad side array, if the phase 
angle is such that it makes maximum radiation 
perpendicular to the line of array i.e 900 and 2700

In broad side array sources are in phase i.e α=0 & Ψ=0

For maximum must be satisfied

 The principal maximum occurs in these directions

cos cos 0d d        

cos 0d   cos 0 
0 090 270or 
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Minor lobe (maxima direction)

 This equation is maximum when numerator is 
maximum i.e is maximum provided 

not equal to ‘0’ 

(N=1, 2, 3,4)

 (N=0 corresponds to major lobe maxima)
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Minor lobe (maxima direction)

minor lobe maxima

For broad side array α=0
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Minor lobe (minima direction):
Direction of pattern minima

[Provided]
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Beam width of major lobe

 For broad side α=0

 It is defined as the angle between first nulls or 
double the angle between first null and major lobe 
maximum directions

BWFN=2r

R=angle between first null and maximum of major lobe=900-θ 
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Beam width of major lobe

r is very small0 

BWFN=2r

First null occurs when N=1
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Beam width of major lobe

L =nd total length of array in meter
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Beam width of major lobe
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Array of n sources of equal 
amplitude and spacing (end-fire 
case)
Major lobe (maxima)
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Array of n sources of equal amplitude and spacing (end-fire case)
Major lobe (maxima)

 For an array to be end fire, the phase angles is such that 
makes the maximum radiation in the line of array i.e θ=00 or 
1800

 Thus for an array to be end fire Ψ=0 & θ=00 &1800

[Phase difference depends on the spacing]
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Minor lobe (maxima)
Direction of pattern maxima

For end fire case
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Minor lobe (maxima)
Direction of pattern maxima
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Minor lobe minima:
Direction of pattern minima
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Beam width of major lobes

 Beam width=2θ1
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Array of ‘n’ isotropic sources of equal amplitude and spacing 
end fire array with increased directivity

 The maximum radiation can be directed along the axis of the 
uniform array by allowing the phase shift α between elements 
equal to ±βd

 This produces a maximum field in the direction θ=0 
but does not give the maximum directivity.

 In order to improve the directivity of an EFA 
without destroying any other characteristics, 
required phase shift between closely spaced 
elements of a very long array should be

  , 0 d for     0  d  180 
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Array of ‘n’ isotropic sources of equal amplitude and spacing 
end fire array with increased directivity

For max in θ=0 ----- (1)

For max in θ=π ----- (2)

 These conditions are referred to as the “Hansen 
wood yard conditions for increased directivity”

 These conditions do not necessarily yield the 
maximum possible directivity
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Array of ‘n’ isotropic sources of equal amplitude and spacing 
end fire array with increased directivity

 For maximum radiation along θ=0

 For maximum radiation along θ=1800
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Array of ‘n’ isotropic sources of equal amplitude and spacing 
end fire array with increased directivity

 For array of ‘n’ elements the condition |Ψ|=π is satisfied by 
using (1) for θ=0 & (2) for θ=1800 and choosing for each 
spacing of

 If the element is large
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Array of ‘n’ isotropic sources of equal amplitude and spacing 
end fire array with increased directivity

 Effect of uniform amplitude distribution and non-
uniform amplitude distribution

Uniform – broad side array
Non-uniform – Binominal

Parameters    USA/BSA      NUAD/BA
Beam width   Narrow            winder
Directivity         high                 low

Side lobes         exists       does not exist

 To overcome the drawbacks a scientist named 
dolpls introduced an array with narrow beam 
width, high gain & minimum side lobes
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Array of ‘n’ isotropic sources of equal amplitude and 
spacing end fire array with increased directivity

 For this, Tchelys’chef’s polynormal is used & array is 
called. Dolph tcheby schef’s array 

 If beam width is specified then it is possible to 
reduce the side lobe level (with this we can over 
come the disadvantage of UAD (BSA).

 If side lobe level is specified then it is possible to 
reduce the beam width & there by increase the 
directivity (NUAD) based on the above ‘2’ start’s 
the array was designed polynomial.

 TN(x) = cos(ncos-1x) for 1x1≤±1
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Cos-1x=δ     Cosδ=x
For n=0      T0(X) = cos(0)=1
For n=1      T1(X) = cos(cos-1x)=cosδ=x
For n=2      T2(X) = cos(2cos-1x)=cos(28)

= 2cos2δ-1 = 2X2-1
For n=3      T3(X) = cos(3cos-1x)=cos(38)

For higher values of n this can = 4cos38-3cos8 be obtained by using = 4X3-3X

Tn+1(x) = 2xTn(x)- Tn+1(x)
For n=3    

T4(x) = 2xT3(x)- T2(x)=2x(4x3-3x)-2x2+1=8x4-8x2+1
n=5                T5(x) = 16x5-20x3+5x

T6(x) = 32x6-48x4+5x2-1
T7(x) = 64x7-112x5+56x3.7x

The degree of the polynomial is same the value of ‘n’ the value can be 
either even or odd
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Binominal arrays

 in case of BSA as the no. of elements ↑’s D↑’s & 
also no. of side lobes ↑’s but in some applications 
it is desirable that side lobes should be eliminated 
totally &reduced to min desired level this can be 
achieved by binominal array.

 Definition: it is an array in which all the elements 
are fed with current of non-uniform amplitudes & 
and the amp’s arranged according to the co-
efficient of binomial series 

      1 1 0 2 1 3 2 4 3
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Binominal arrays
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Comparison of Amplitude Distributions 
for Eight-Source Arrays
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Comparison of Amplitude Distributions for Eight-
Source Arrays
 In the problem worked in the preceding section, the side-lobe level was 26 dB 

below the maximum of the main beam (R = 20). 

 It is of interest to compare the amplitude for this case with the distributions 
for other side-lobe levels. 

 This is done in Fig. 5−48 for a uniform distribution and three optimum (D-T) 
distributions with side-lobe levels −20 dB, −40 dB, and −∞ dB below the main 
beam maximum. 

 The infinite decibel 5–18 Comparison of Amplitude Distributions for Eight-
Source Arrays

 case corresponds to R=∞ (zero side-lobe level) and is identical with Stone’s 
binomial distribution. The relative amplitudes for this case are 1, 7, 21, 35, 35, 
21, 7, 1 (Riblet-1). 
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Comparison of Amplitude Distributions for Eight-
Source Arrays

 The ratio of amplitudes of the center sources to the edge sources is 
35 to 1.

 Such a large ratio might be difficult to achieve in practice. Both the 
binomial and edge distributions are special cases of the 

 Dolph-Tchebyscheff (DT) distribution, but the uniform amplitude 
distribution is not.
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 At the other extreme from the binomial distribution, we might try an edge distribution in 
which only the end sources of the array are supplied with power, the three central sources 
being either omitted or inactive. 

 The relative amplitudes of the five-source array are, accordingly, 1, 0, 0, 0, 1. 

 The array has, therefore, degenerated to two sources 2λ apart and has the field patter 
designated as edge in Fig. 5−41.

 The beam width between half power points of the “main” lobe (normal to the array) is 15◦, 
but “minor” lobes are the same amplitude as the “main” lobe.

 Comparing the binomial and edge distributions for the five-source array with λ/2 spacing, 
we have Table 5−5.
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 Although for most applications it would be desirable to combine the 15◦ beam width of 
the edge distribution with the zero side-lobe level of the binomial distribution, this 
combination is not possible. 

 However, if the distribution is between the binomial and the edge type, a compromise 
between the beam width and the side lobe level can be made; i.e., the side-lobe level will 
not be zero, but the beam width will be less than for the binomial distribution. 

 An amplitude distribution of this nature for linear in-phase broadside arrays was proposed 
by Dolph (1) which has the further property of optimizing the relation between beam 
width and side-lobe level; i.e., if the side-lobe level is specified, the beam width between 
first nulls is minimized; or, conversely, if the beam width between first nulls is specified, 
the side-lobe level is minimized. Dolph’s distribution is based on the properties of the 
Tchebyscheff polynomials and accordingly will be referred to as the Dolph-Tchebyscheff or 
optimum distribution.
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Comparison of Amplitude Distributions for Eight-
Source Arrays

 The D-T optimum amplitude distribution, as discussed in the 
preceding sections, is optimum only if d ≥ λ/2,which covers the cases 
of most Relative field pattern of broadside array of eight isotropic 
sources spaced λ/2 apart. 

 The D-T amplitude distribution gives a minimum beam width for a 
side-lobe level 120 of  the main lobe. 

 The pattern is shown in rectangular coordinates at (a) and in polar at 
(b). 

 Both diagrams show the pattern only from −90◦ to +90◦, the other half 
of the pattern being identical.

 Uniform and three optimum (D-T) source distributions for eight in-
phase isotropic sources spaced λ/2 with field patterns. 
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Comparison of Amplitude Distributions for Eight-
Source Arrays
 The distributions result in Side-Lobe Levels (SLLs) ranging from −13 dB 

for the uniform array to −∞ for the binomial array. Note that as the 
SLL is reduced, the distribution is more tapered, the HPBW is larger, 
and the gain is less. 

 Thus, if low SLL is required, the gain is reduced. Conversely, if 
maximum gain is desired, a larger SLL must be tolerated. This is the 
designer’s dilemma interest for broadside arrays. 

 By a generalization of the method, however, cases with smaller 
spacing can also be optimized

 In conclusion, it should be pointed out that the properties of the 
Tchebyscheff polynomials may be applied not only to antenna 
patterns as discussed above but also to other situations. 
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Comparison of Amplitude Distributions for Eight-
Source Arrays

 It is necessary, however, that the function to be optimized be 
expressible as a polynomial.
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Comparison of Amplitude Distributions for Eight-
Source Arrays

 The D-T (Dolph-Tchebyscheff) source amplitude distributions 
for linear arrays on N sources are given by the computer 
program ARRAYPATGAIN on the book’s web site 
antennas3.com. 

 The program also plots the pattern and gives the HPBW and 
gain as discussed in App. C–3a.
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Linear Broadside Arrays with No uniform Amplitude 
Distributions. General Considerations

• Let us begin by comparing the field patterns of four amplitude 
distributions, namely, uniform, binomial, edge,
and optimum. 

• To be specific, we will consider a linear array of five isotropic point sources 
with λ/2 spacing.

• If the sources are in phase and all equal in amplitude, we may calculate 
the pattern as discussed in Sec. 

• 5−13 the result being as shown in Fig. 5−41 by the pattern designated 
uniform. 

• A uniform distribution yields the maximum directivity or gain. The pattern 
has a half-power beam width of 23◦, but the side lobes are relatively large. 
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Linear Broadside Arrays with No uniform 
Amplitude Distributions. General Considerations

 The amplitude of the first side lobe is 24 percent of the main-
lobe maximum. In some applications this minor-lobe amplitude 
may be undesirably large.

 To reduce the Side-Lobe Level (SLL) of linear in-phase broadside 
arrays, John Stone Stone (1) proposed that the sources have 
amplitudes proportional to the coefficients of a binomial series 
of the form where n is the number of sources.
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Linear Broadside Arrays with No uniform Amplitude 
Distributions. General Considerations

• Thus, for arrays of three to six sources the relative amplitudes are given by Table 5−4, 
where the amplitudes are arranged as in Pascal’s triangle (any inside number is equal to 
the sum of the adjacent numbers in the row above).

• Applying the binomial distribution to the array of five sources spaced λ/2 apart, the 
sources have the relative amplitudes 1, 4, 6, 4, 1. The resulting pattern, designated 
binomial, is shown in Fig. 5−41. 

• Methods of calculating such patterns are discussed in the next section. The pattern has 
no minor lobes, but this has been achieved at the expense of an increased beam width 
(31◦). 

• For spacing’s of λ/2 or less between elements, the minor lobes are eliminated by Stone’s 
binomial distribution. However, the increased beam width and the large ratio of current 

amplitudes required in large arrays are disadvantages.
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Linear Broadside Arrays with No uniform Amplitude 
Distributions. General Considerations
 At the other extreme from the binomial distribution, we might try an edge distribution in which only 

the end sources of the array are supplied with power, the three central sources being either omitted 
or inactive. 

 The relative amplitudes of the five-source array are, accordingly, 1, 0, 0, 0, 1. 

 The array has, therefore, degenerated to two sources 2λ apart and has the field patter designated as 
edge in Fig. 5−41. 

 The beam width between half power points of the “main” lobe (normal to the array) is 15◦, but 
“minor” lobes are the same amplitude as the “main” lobe.

 Comparing the binomial and edge distributions for the five-source array with λ/2 spacing, we have 
Table 5−5.

 Although for most applications it would be desirable to combine the 15◦ beam width of the edge 
distribution with the zero side-lobe level of the binomial distribution, this combination is not possible. 
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Linear Broadside Arrays with No uniform Amplitude 
Distributions. General Considerations
 At the other extreme from the binomial distribution, we might try an edge distribution in which only 

the end sources of the array are supplied with power, the three central sources being either omitted 
or inactive. 

 The relative amplitudes of the five-source array are, accordingly, 1, 0, 0, 0, 1. 

 The array has, therefore, degenerated to two sources 2λ apart and has the field patter designated as 
edge in Fig. 5−41. 

 The beam width between half power points of the “main” lobe (normal to the array) is 15◦, but 
“minor” lobes are the same amplitude as the “main” lobe.

 Comparing the binomial and edge distributions for the five-source array with λ/2 spacing, we have 
Table 5−5.

 Although for most applications it would be desirable to combine the 15◦ beam width of the edge 
distribution with the zero side-lobe level of the binomial distribution, this combination is not possible. 
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Linear Broadside Arrays with No uniform Amplitude 
Distributions. General Considerations
 The beam width between half-power points is 27◦, which is less than for the 

binomial distribution. 

 Smaller beam widths can be obtained only by raising the side-lobe level. 

 The Dolph-Tchebyscheff distribution includes all distributions between the 
binomial and the edge. 

 In fact, the binomial and edge distributions are special cases of the Dolph-
Tchebyscheff distribution, the binomial distribution corresponding to an 
infinite ratio between main- and side-lobe levels and the edge distribution to a 
ratio of unity. The uniform distribution is, however, not a special case of the 
Dolph-Tchebyscheff distribution.

 Referring to Fig. 5−41, we may draw a number of general conclusions regarding 
the relation between patterns and amplitude distributions. 
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Linear Broadside Arrays with No uniform Amplitude 
Distributions. General Considerations
 We note that if the amplitude tapers to a small value at the edge of the 5–15 

Linear Broadside Arrays with No uniform Amplitude Distributions. General 
Considerations

 Normalized field patterns of broadside arrays of five isotropic point sources 
spaced λ/2 apart. 

 All sources are in the same phase, but the relative amplitudes have four different 
distributions: edge, uniform, optimum, and binomial. Only the upper half of the 
pattern is shown. 

 The relative amplitudes of the five sources are indicated in each case by the array 
below the pattern, the height of the line at each source being proportional to its 
amplitude. 

 All patterns are adjusted to the same maximum amplitude. 
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Linear Broadside Arrays with No uniform Amplitude 
Distributions. General Considerations
 Array (binomial distribution), minor lobes can be eliminated. 

 On the other hand, if the distribution has an inverse taper with maximum amplitude at the edges and 
none at the center of the array (edge distribution), the minor lobes are accentuated, being in fact equal 
to the “main” lobe.

 From this we may quite properly conclude that the side-lobe level is closely related to the abruptness 
with which the amplitude distribution ends at the edge of the array. 

 An abrupt discontinuity in the distribution results in large minor lobes,while a gradually tapered 
distribution approaching zero at the edge minimizes the discontinuity and the minor-lobe amplitude.

 In the next section, we shall see that the abrupt discontinuity produces large higher “harmonic” terms 
in the Fourier series representing the pattern.

 On the other hand, these higher harmonic terms are small when the distribution tapers gradually to a 
small value at the edge. 
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Linear Broadside Arrays with No uniform Amplitude 
Distributions. General Considerations
 There is an analogy between this situation and the Fourier analysis of wave shapes. 

 Thus, a square wave has relatively large higher harmonics, whereas a pure sine wave has 
none, the square wave being analogous to the uniform array distribution while the pure 
sine wave is analogous to the binomial distribution.

 The preceding discussion has been concerned with arrays of discrete sources separated by 
finite distances. 

 However, the general conclusions concerning amplitude distributions which we have drawn 
can be extended to large arrays of continuous distributions of an infinite number of point 
sources, such as might exist in the case of a continuous current distribution on a metal sheet 
or in the case of a continuous field distribution across the mouth of an electromagnetic 
horn or across a parabolic reflector antenna.
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Linear Broadside Arrays with No uniform 
Amplitude Distributions. General Considerations

 If the amplitude distribution follows a Gaussian error curve, which 
is similar to a binomial distribution for discrete sources, then minor 
lobes are absent but the beam width is relatively large. 

 An increase of amplitude at the edge reduces the beam width but 
results in minor lobes, as we have seen. 

 Thus, in the case of a high-gain parabolic reflector type of antenna, 
the illumination of the reflector by the primary antenna is usually 
arranged to taper toward the edge of the parabola. 

 However, a compromise is generally made between beam width 
and side-lobe level so that the illumination is not zero at the edge 
but has an appreciable value as in a Dolph-Tchebyscheff
distribution
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GENERAL CONSIDERATIONS 
AND BINOMIAL ARRAYS
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General considerations

 Uniform amplitude arrays produce small half-power beam width and possess 
the largest directivity. 

 But in certain instances the side lobe level of the radiation pattern has to be 
maintained at a desired level. 

 The side lobe level can be reduced by varying the amplitude excitations of 
the array elements. 

 Non uniform amplitude excitations of a linear antenna array produce a 
pattern with smaller side lobe level and a slightly increased half power beam 
width in comparison to the uniform linear antenna array. 

 In this section, we will discuss arrays with uniform spacing but non uniform 
amplitude distribution. Often, the broadside arrays are classified according 
to the type of their excitation amplitude
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Binomial Arrays

 The categories are:

(a) Uniform amplitude array: Relatively high directivity, but the side-
lobe levels are high; 

 (b) Dolph–Chebyscheff array: 

 For a given number of elements, its maximum directivity is next to 
that of the uniform array.

 Side-lobe levels are the lowest in comparison with the other two 
types of arrays for a given directivity; 

 (c) Binomial array: Does not have good directivity but has very l
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Binomial Arrays

 The binomial array was investigated and proposed by J. S. Stone to 
synthesize patterns without side lobes.

 Let us first consider a 2–element array with equal current amplitudes 
and spacing, the array factor is given by 

 AF=1+ejΨ

 For a board slid array (β=0)with element spacing d less than one-half 
wavelength, the array factor hasFor a broadside array ( no side lobe ) 

 This can be proved in the following way:
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Binomial Arrays

 Where ψ = kd cosθ

 The first null of this array factor can be obtained as

 As long as the d <  λ/2, the first null does not exist. If d = λ/2, then null will 
be at θ=00 and 1800 . Thus, in “visible” the “visible” range of ,  All 
secondary lobes are eliminated.

 An array formed by taking the product of two arrays of this type gives:

 As long as the d <  λ/2, the first null does not exist. If d = λ/2, then null will 
be at θ=00 and 1800 . Thus, in “visible” the “visible” range of ,  All 
secondary lobes are eliminated.

11 2
cos cos

2 2 2
n nd

d

  
 



  
      

 

   21 1 1 2j j j jAF e e e e        

277



Binomial Arrays

 An array formed by taking the product of two arrays of this type gives:

 This array factor, being the square of an array factor with no side lobes, 
will also has no side lobes.

 Mathematically, the array factor above represents a 3-element equally-
spaced array driven by current amplitudes with rations of 1:2:1. 

 In a similar fashion, equivalent arrays with more elements may be 
formed.  

 2-element AF=1+ejΨ

 3-element AF= (1+ejΨ)2 =1+2ejΨ+ ej2Ψ

 4-element AF= (1+ejΨ)3 =1+3ejΨ+ 3ej2Ψ+ ej3Ψ

   21 1 1 2j j j jAF e e e e        
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Binomial Arrays

 Similarly for N-element the array factor can be expressed as N-element 
AF= (1+ejΨ)N-1

 if d≤λ/2, the above AF does not have side lobes regardless of the number 
of  element N.

 The excitation amplitude distribution can be obtained easily by the 
expansion of the binome

 Making use of Pascal’s triangle, this can be given by 
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Binomial Arrays

 The relative excitation amplitudes at each element of an (N+1) element 
array can be determined from this triangle

 An array with a binomial distribution of the excitation amplitudes is called 
a binomial array

 The excitation distribution as given by the binomial expansion gives the 
relative values of the amplitudes

 It is immediately seen that there is too wide variation of the amplitude, 
which is a disadvantage of the binomial arrays

 The overall efficiency of such an antenna would be low

 Besides, the binomial array has a relatively wide beam 
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Binomial Arrays

 Its HPBW is the largest as compared to the uniform or the Dolph-Chebyshev
array

 An approximate closed-form expression for the HPBW of a binomial array 
with d=λ/2 is 

 Where L=(N-1)d is the array length

 The directivity of a broadside binomial array with spacing d=λ/2 can be 
calculated as: 

1.06 1.06 1.75

1 2 / /
HPBW

N L L 
  



0 2( 1)

0

2

cos cos
2

N
D

d
 

 




  
  
  



0

(2 2)(2 4).........2

(2 3)(2 5).........1

N N
D

N N

 


 

0 1.77 1.77 1 2 /D N L   

281



Binomial Arrays

 The array factor of a 10 element broad side binominal array 
(N=10)

 Radiation pattern for 10-element broad side binomial array
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FOLDED DIPOLES AND THEIR 
CHARACTERISTICS
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Folded Dipole Antenna

 A very important variation of conventional half wave dipole is the 
folded dipole in which two half wave dipoles-one continuous & the 
other split at the center

 Those two dipoles are folded & joined together in parallel at the 
ends
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Folded Dipole Antenna

 The split dipole is fed at the centre by a balanced transmission line

 The two dipoles have the same voltages at their ends

 Radiation pattern of a folded dipole and a conventional half wave 
dipole is same but the i/p impedance of the folded dipole is higher

 Difference – Directivity, Band width (Broad for F.D)

 Directivity of Folded Dipole is bi-directional 

 Due to the distribution of currents in the parts of the folded dipole 
the i/p impedance becomes higher
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Folded Dipole Antenna

 If the radii of the two conductors are equal, then equal currents flow in 
both the conductors, in the same direction i.e currents are equal in 
magnitude and phase in the two dipole

 Total power is equal to the conventional dipole I/P impedance is higher

 It can be proved that the i/p impedance at the terminals of a folded 
dipole antenna is equal to the square of no of conductors comprising 
the antenna times the impedance at the terminals of C.D
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Equation of i/p impedance

 The equation for the i/p impedance or Terminal impedance or radiation 
resistance of F.D Antenna 

 Let ‘V’ be the emf applied at the AA’

 Fig:- Equivalent diagram of two wire folded 1 /2 wave dipole 

 By nodal analysis 

 =Current flowing at the terminals of dipole no.1&2

 =self impedances of dipole no.1 & mutual impedance between 
1&2
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Equation of i/p impedance

 V’ divided equally in each dipole; hance voltage in each dipole is 
V/2 as shown by nodal analysis

 The two dipoles in the system are very close to each other. 
The spacing ‘a’ between two dipoles is of the order of λ/100
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Equation of i/p impedance

 Suppose for a folded dipole of 3 wires, it can be proved that 
termination impendence

 For ‘n’ no.of wires

n=no.of Half wave dipoles.
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For unequal radii of 2 dipoles

 r2&r1=radii of elements

 Impedance transformation depends on the relative spacing ‘a’ then 
according to Uda & Musleiave
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ARRAYS WITH PARASITIC 
ELEMENTS, YAGI-UDA ARRAY
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Voltage & current relations in parasitic Antennas 

 Antennas can also be constructed with parasitic elements in which 
currents are induced by the fields from a driven element such 
elements have no transmission line connection

 Dipole can be used as a parasitic element let us consider the case of 
an array in free space consisting of one driven element λ/2 dipole 
element & one parasitic element (2)
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 Both elements are vertical so that the azimuth angle ø is as 
indicated. The circuit relations for the elements are

 From eq (2) 
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Voltage & current relations in parasitic Antennas 
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Voltage & current relations in parasitic Antennas 
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Voltage & current relations in parasitic Antennas 
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Voltage & current relations in parasitic Antennas 

 eq (4) in (5)
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Yagi-Uda Antenna

 After the names prof S-Uda & H-Yagi, this antenna is called Yagi-Uda Antenna

 [This antenna was invented and described in Japanese by the former 
sometime around 1928 & after wards it was described by H.Yagi in English]

 Arrangement of elements:

 It consists of a driven element, a reflector and one or more director’s i.e Yagi-
Uda antenna is an array of a driven element (or) active element

 Driven element → where the power from the Tx is fed or which feeds 
received power to the RX

 Parasitic element→ passive elements which are not connected directly to the 
transmission line but electrically coupled
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Yagi-Uda Antenna

 The driven element is a resonant half-wave dipole usually of 
metallic rod at the frequency of operation

 The parasitic elements of continuous metallic rods are arranged 
parallel to the driven element and at the same line of sight level

 They are arranged co-linearly & close together with one reflector & 
one director
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Yagi-Uda Antenna

• The parasitic elements are excited from the voltage induced in them by 
the current flow in the driven element

• The phase & currents flowing due to the induced voltage depends on 
the spacing between the elements and upon the reactance of the 
elements

• Spacing between element in front of driven element is known as 
director and its number may be more than one (1/5% more than D.E)
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Yagi-Uda Antenna

 Whereas the element in back of it is known as reflector (5% more 
than D.Ele)

 Reflector length=500/f (MHz) feet

 Driven element length= 475/f (MHz) feet

 Director length=455/f(MHz) feet
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Yagi-Uda Antenna

Action:

 The spacing between the elements and the lengths of the parasitic 
elements determine the phases of currents

 A parasitic element of equal or greater than λ/2 will be inductive while 
elements of lengths less than λ/2

 Inductive → Lag the induced voltage
 Capacitive→ Lead the induced voltage

 Properly spaced dipoles shorter than λ/2 acts as director and the fields of 
driven element in the direction away from the driven element

 If more than one director are employed then each director will excite the 
next

 Additional gain is achieved by using additional directors in the beam 
direction
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Yagi-Uda Antenna

 The distance between two elements may range from 0.1λ to 0.3λ, 
close spacing of elements are used in parasitic arrays to get a good 
excitation
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Characteristics of Yagi-Uda Antenna

 If three elements array – one reflector, one driven & one director-
beam Antenna

 Unidirectional beam of moderate directivity with light weight, low 
cost & simplicity in feed system design

 Gain-8db 

 Front to back ratio-20db

 Super directive or Super gain Antenna
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HELICAL ANTENNAS-HELICAL 
GEOMETRY, HELIX MODES
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Helical Antenna

 It is another basic type of radiator

 It is the simplest antenna to provide circularly polarized waves or 
nearly

 Used in extra terrestrial communications in which satellite relays 
etc

 Helical antenna to provide circular polarization characteristics
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Helical Geometry

 It consists of a helix of thick copper code or tubing wound in the 
shape of screw thread and used as an antenna in conjunction with a 
flat metal plate called a ground plane

 It is fed between one end and a ground plane 

 The ground plane is simply made of sheet or of screen or of radial & 
Concentra conductor

 The helix is fed by co-axial cable C=circumference of helix πD 

D=Diameter 

α=pitch angle=tan-1S/D
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Helical Geometry
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Helical Geometry

Radiation pattern of helical antenna

d= diameter of helix conductor
A=Axial length
N=Number of one turns
L=Length of one turn
l=spacing of helix from the ground plane
D=Diameter of one the helix turn
S=Distance between turns (turn spacing)
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Helical Geometry

 In general, the one end of the helix is connected to the Centre 
conductor of the cable and the outer conductor is connected to the 
ground plane 

 The parameters on which the mode of radiation depend are the 
diameter of helix ‘D’ & turn spacing 

 For N turns of helix, the total length of the antenna is equal to NS & 
Circumference πd

 If one turn of helix is unrolled on a plane surface, the circumference 
(πD), Spacing S, turn length ’l’ & pitch angle α are related by triangle

2 2 2 2( )L S C S D   
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Helical Geometry

 Pitch angle ‘α’ is the angle between a time tangent to the helix wire 
and the plane normal to the helix axis, it can be calculated from the 
triangle.

 So the properties of helical antenna can be described in terms of 
these geometric parameters

 The different radiation characteristics are obtained by charging there 
parameters in relate on to wave length
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Helix modes
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Helix modes
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PRACTICAL DESIGN 
CONSIDERATIONS FOR 
MONOFILAR HELICAL ANTENNA 
IN AXIAL AND NORMAL MODES

314



Helical Antenna

 Helical antenna is useful at very high frequency and ultra high frequencies 
to provide circular polarization.

Consider a helical antenna 

 Here helical antenna is connected between the coaxial cable and ground 
plane. Ground plane is made of radial and concentric conductors. The 
radiation characteristics of helical antenna depend upon the diameter (D) 
and spacing S

In the above figure,

L = length of one turn = √S2+(πD)2 N = Number of turns

D = Diameter of helix = πD

α = Pitch angle = tan-1(S/πD)

l = Distance between helix and ground plane. Helical antenna is operated in 
two modes. 

They are,

 Normal mode of radiation

 Axial mode of radiation
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Normal mode of radiation

 In this, the radiation field is maximum in broad way i.e in the direction 
normal to the helix axis (2) this mode of radiation is obtained if the 
dimensions of the helix is small compared with wave length i.e N<<<λ

 Bandwidth of such a small helix is very narrow & radiation effiency is 
low 

 The between & rad effiency can be increased by increasing the size of 
helix & to have the current in phase along the helix axis 

 Phase shifted may be required to limit the practical situations

 Radiation pattern is a combination of the equivalent radiation 
from a short dipole positioned on the same helix & a small loop 
which is also co-axial with the helix axis. 
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Normal mode of radiation

The helix become linear antenna suppose for a helix of fixed diameter
If s→ 0 helix collapses to a loop
If s→ constant D→0    linear conductor (S.D)
Loop & linear antennas are limiting cases of the helix.
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Normal mode of radiation

 Radiation patterns of these two equivalent radiators are same

 Polarizations are at right angles & the phase angle at any point in 
space is at 900 apart

 Hence the resultant field is either circularly polarized or elliptically 
polarized depending upon the field strength ratio or the amplitudes of 
the two components (which in turn depends on the pitch angle α)

 α→ small loop radiation predominates

 α→ large → dipole radiation predominates

 For the middle values of the ‘α’ the polarization is circular at one 
value of α. the polarization is elliptical at one value of α.
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Normal mode of radiation

 A helical antenna may be considered of having a no.of small loops & 
short dipoles connected in series

 Loop diameter → helix diameter

 Dipole length → helix spacing

 Then far field of the small loop is given by

 Far field of a short dipole is given by 
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Normal mode of radiation

 Length of the dipole there is 900 phase shift between them due to 
presence of j operator

 The ration of magnitudes of these equations provides axial ratio 
(AR) of elliptical polarization
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Normal mode of radiation
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AR=α→ Linear vertical polarization
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1 1tan tan
2 2
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C
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This is the condition for pitch angle to get circular polarization

Very narrow Bandwidth Radiation efficiency is very small. Practically this 
made of operation is very rarely used
Practical design considerations of monofilar helical
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Axial or beam mode of radiation

 In this, the radiation field is maximum in the end fire direction 
i.e along the helix axis

 Polarization is circular or nearly circular this mode occurs 
when the helix circumference and spacing‘s’ are of the order 
of one wave length (=λ)

 It produces a fairly directional beam in the axial direction with 
minor lobes at oblique angles

 Mostly used in practical applications
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Axial or beam mode of radiation

• The helix is operated in conjunction with a ground plane & is fed by a 
coaxial cable

• α varies from 120 to 180 & 140 is optimum pitch angle 

• The antenna gain & beam width depends upon the helix length (NS)

• The terminal impedance is 100Ω at frequency C=λ      R=140C/λ

• Summary of Empirical Relation for Radiation properties of axial mode 
helix 0 012 18  
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Axial or beam mode of radiation

3 4

4 3
c to 

3 15N to

Wire diameter‘d’ – negligible
Ground plane diameter – 1/2λ

In 3-dimensuional spherical co-ordinate with θ=0 axis coincident with 
helix axis 
The pattern does not depend on angle ø
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Axial or beam mode of radiation
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UNIT-III
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HORN ANTENNAS- TYPES
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Horn Antenna

 A horn antenna may be regarded as a flared out or opened out 
waveguide

 a wave guide is capable of radiating radiation into open space 
provided the same is excited at one end and opened at the other 
end 

 The radiation is much greater through wave guide than the 2-wire 
tx’ion line

 In wave guide, a small portion of the incident wave is radiated 
and the large portion is reflected back by the open ckt

 The open ckt is a discontinuity which matches the wave guide to 
space very poorly
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Horn Antenna

 To overcome these difficulties, the mouth of the waveguide is opened 
out which assume the shape of electromagnetic horn, just like a opened 
out tx’ion line which gives a dipole

 If the waveguide is terminated by any type of horn, the abrupt 
discontinuity existed is replaced by a gradual transformation

 Then all the energy incident in forward direction in the waveguide will 
now be radiated (provided the impedance matching is proper)

 This improves directivity and reduces diffract a (diffraction around the 
edge will provide a poor radiation) 
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Types of horn antennas
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Types of horn antennas

 If flaring is done only in one direction, then sectional 
horn is produced, flaring in the direction of electric 
vector & the magnetic vector, the Sect oral E-plane horn 
& sectional 4-plane horn are obtain

 If flaring is done along the both the walls (E&H) of the 
rectangular waveguide, then pyramidal horn is obtained

 By flaring the walls of circular wave guide a conical horn 
is formed
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The principle of equality of path 
length (Fermat’s principle)
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The principle of equality of path length (Fermat’s 
principle)

 This principle is applicable to horn design but with a different emphasis

 instead of requiring a constant phase across the horn mouth, the phase 
may deviate but by less than a specified amount ‘s’ equal to path length 
difference between a ray travelling along the side and along the axis of 
the horn
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The principle of equality of path length (Fermat’s 
principle)

 δ= path length difference

 l= horn length (m)

 a=aperture (m)

aE for ‘E’ plane aH for H-plane

θ= flare angle θE for ‘E’ plane                   

θH for H-plane

From the Geometry 

 Axial Length: L=a2/88   (δ<<L)

 Flare angle:  θ=2tan-1 a/2L =2cos-1 (L/L+8)
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

Neglected
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The principle of equality of path length (Fermat’s principle)
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Optimum horn

 To obtain uniform horn, aperture distribution as possible, a very long 
horn with a small flere angle is required, But, for practical convenience 
the horn should be as short as possible

 An optimum horn is between these extremes and has the minimum 
beam width

 If flare angle is very high then a path            

θ↑     A↑     D↑

θ↓     A↓     D↓

 ‘θ’ value should be selected such that D is mix
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Design Considerations of 
Pyramidal Horns, Illustrative 
Problems
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Horn Antenna Design considerations (optimum 
pyramidal norm)
 Horns are most widely used microwave antennas wireless 

communications primary antenna for electromagnetic sensing parabolic 
reflector RF heating, Bio medicine.

 The horn antenna may be considered as an RF transformer or impedance 
match between the wave guide feeder & free space

Impedance consideration:

 Impedance matching is very desirable in com’s standing waves increase 
the loss 

 Suppose a wave guide without a horn in operation, the sudden interface 
of the conductive walls or free air, there may be abrupt change in 
impedance at the interface

 This often results in reflections, losses and standing waves.
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Impedance consideration

 When the flare angle becomes two large as it tends to 900, so there is no horn, 
resulting losses, reflections & standing waves

 In design there is an optimum flare angle for different horn types by using this 
horn we can overcome all difficulties

 Such type of horn is considered as optimum horn

Aperture & Slant length considerations:
 To realize design an optimum pyramidal horn, the width of the aperture is in 

either the E-field or it-field direction is dependent on the intended wavelength 
& the slant length of the aperture 
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Aperture & Slant length considerations

aE=width of the aperture in the E- field direction

LE=slant length of the E-field direction

aH = width

LH=

λ=

 To get an optimum conical horn, the diameter of the cylindrical horn 
aperture is dependent on the slant length of the cone from the 
approximate

d=diameter, L=slant

 The between for practical horn antennas can be of the order of 20:1 
for instance operating from 1GHZ-20 GHZ

2E EL 

2H Ha L

3d L
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Frequency considerations

 The gain G of pyramidal horn antenna is the ratio of the power 
intensity along its beam axis to the intensity of an isotropic 
antenna with the same i/p power

G→ For pyramidal horn

Frequency considerations:

 For any waveguide to be operational at intended frequency

 The horn low cut off frequency
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Directivity

LC → low cut off wavelength

F=C/λ

λLC (mm)=1.706xbase length (mm)

λHC= 1.3065x base length (mm)

Directivity:

 Assuming no loss D in terms of efficiency aperture is given 
by

 Aperture efficiency
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Directivity

For rectangular w/G

For circular w/G
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Operation of horn antenna

 The EM wave propagation in a waveguide is same as that in free space 
but it is restricted by the conducting walls of waveguide from being 
spherically spreading

 On reaching the waveguide mouth these propagating fields spread 
laterally and wave front becomes spherical according to Huygens’s 
principle

 Near the mouth of the wave guide there exit transition region. It is the 
region where change of propagation takes place i.e from wave guide to 
free space


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Operation of horn antenna

 The flaring provides impedance matching, high radiation 
efficiency, high directivity

 Horn produces a uniform phase spherical wave front with a 
larger aperture in comparison to a waveguide and thus the 
directivity is greater

1) calculate the directivity of 20 turn helix, having α=120

circumference equal to one wave length 

 sol: The directivity of a helical antenna is given by

N=20turns     C=λ        α=120

 S=ctanα S=λ tan120 S=0.2126λ
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Illustrative Problems

L1 W1 θE & θH --?

2

3

15 20 0.2126
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 



  


63.78D 

10log 10log63.78Dind D  

18.046D 

2) Find out the length LL width W & half flare which the mouth

height h=10λ. The horn is fed by a rectangular w.g with TE10

mode. 1 1tan cos
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Illustrative Problems

 Typical values
0.2 ' 'E in E plane 

0.375 ' 'H in H plane 

210 100
62.5

8 0.2 1.6
L





  



1 1 010
tan tan 4.6

2 2 62.5
E

h

L






    


1 1 062.5
cos cos 6.3

8 62.5 0.375
H

L

L
     

 

tan
2

H

W

L
  2 tan HW L 

  1 02 62.5 tan 6.3 13.8W   

348



Illustrative Problems

 Find out the power gain in dB of paraboloidal reflector of open mouth 
aperture 10λ 

 Find out the beam width between first nulls & power gain of a 2m 
paraboloidal reflector operating at 6000MHz
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Lens Antennas
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Lens Antennas

Lens antennas may be divided into two types:

 delay lenses – in which the electrical path length is increased by 
the lens medium

 Fast lenses in which the electrical path length is decreased by the 
lens medium

 In the first case, the wave is retarded by the lens medium

 Dielectric and H-phase metal plate lenses are of delay type

 E-plane metal plate lenses are of the fast type.
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Lens Antennas

 Dietetics lens sub divided into

 Lenses constructed of non-metallic, dielectrics, such as Lucite or 
polystyrene

 Lenses constructed of metallic or artificial dielectrics
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Geometry of Non-metallic Dielectric Lenses
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Geometry of Non-metallic Dielectric Lenses

 Let us determine the shape of the plane convex lens of fig shown 
above for transformation the spherical wave front from an isotropic 
point source or primary antenna into a plane wave front

 A wave front is defined as a surface on all points of which the field is 
in the same phase

 The field over the plane surface can be made everywhere in phase by 
shaping the lens

 So that all paths from the source to the plane are of equal electrical 
path length

 This is the principle of equality of electrical path length (optical) 
(Fermat’s principle)
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Geometry of Non-metallic Dielectric Lenses

 The electrical length of the path opposite must equal the electrical length 
of path 0QQ1

OPP1=OQQ11

OP1= OQ11

OQ=L & OP=R

OP=OQ+QQ1
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Geometry of Non-metallic Dielectric Lenses

λ0=Wave length in free space

λd= Wave length in the lens

=index of refraction

But x=OQ1-OQ

X=Rcosθ-L

 f=frequency Hz

 v0=velocity in free space m/s

 vd =velocity in dielectric m/s

 μ = permeability of the dielectric medium H/m

 ε = permittivity of the dielectric medium

In general 
0 0 0

0 0d d d

f v
n

f v
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Geometry of Non-metallic Dielectric Lenses

Where n>1
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Geometry of Non-metallic Dielectric Lenses

 This equation gives the required shape of the lens. It is the 
equation of a hyperbola. Whose focal length is ‘L’ and radius of 
curvature (R)

R=L (n-1) provided ‘θ’ is small

 The asymptote of the hyperbola is at ‘0’ eq (1) implies that as 
long as θ is small the hyperbola lens can be replaced by a plano
concave spherical lens of radius R=L (n-1) this is also the optical 
formula
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Zoning, Tolerances, Applications
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Zoning

 The weight of the lens can be reduced by removing sections of 
Lens, which is called zoning of Lens

Classification:

 Curved surface zoning & plane surface zoning

 In general the zoning of lens is carried out in such a way that 
particular design frequency the performance of lens antenna is 
not affected 

 The zone step is denoted by ‘z’

 so in the zoned lens antenna, the thickness ‘z’ of the lens 
antenna is such that the electrical length of the thickness Z in 
dielectric is an integral length of x longer that in air 

 That means ‘z’ in dielectric may be 3λd & that in air is 2λ0 where 
λd & λ0 are the wave length in the dielectric & air respectively
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Zoning

 For 1λ difference

 Refractive  0
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Flat sheet Reflectors

Curved surface zoning Plane surface zoning

Zoning is done along the curved 

surface of lens

Zoning is done along the plane 

surface of lens

Mechanically stronger than 

plane surface zoning

Mechanically weaker than 

curved surface zoning

It has less weight Comparatively bulker

Less power dissipation power dissipation is more
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Applications

 They are used as feeders (called feed horn) for larger antenna



 Structures such as parabolic antenna, as directive antenna for such 
device as radar guns, automatic doors openers, micro wave 
radiometer

 A common element of phase array

 statellite and microwave communications

 Used in the calibration, other high gain antenna

 Used for making electromagnetic interference measurement
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Slot antenna, its pattern, Babinet’s principle 
and complementary antennas
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Slot Antennas

 Slot antennas are useful in many applications, especially where 
low-profile or flush mountings are required as, for example, on 
high-speed aircraft. 



 Any slot has its complementary form in wires or strips, so that 
pattern and impedance data of these forms can be used to 
predict the patterns and impedances of the corresponding slots. 



 The discussion is based largely on a generalization and extension 
of Babinet’s (Ba-bi-naý’s) principle by Henry Booker (1). 



 The antenna shown in Fig. 7–21a, consisting of two resonant λ/4 
stubs connected to a 2-wire transmission line, is an inefficient 
radiator. 


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Slot Antennas

 The long wires are closely spaced (w<<λ) and carry currents of opposite phase so that their fields tend 
to cancel. The end wires carry currents in the same phase, but they are too short to radiate efficiently. 
Hence, enormous currents may be required to radiate appreciable amounts of power. 

 The antenna in Fig. 7–21b, on the other hand, is a very efficient radiator. In this arrangement a λ/2 slot 
is cut in a flat metal sheet. 

 Although the width of the slot is small (w<<λ), the currents are not confined to the edges of the slot 
but spread out over the sheet. 

 This is a simple type of slot antenna. Radiation occurs equally from both sides of the sheet. If the slot 
is horizontal, as shown, the radiation normal to the sheet is vertically polarized.

 A slot antenna may be conveniently energized with a coaxial transmission line as in Fig. 7–22a. The 
outer conductor of the cable is bonded to the metal sheet. 
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Slot Antennas

 Since the terminal resistance at the center of a resonant λ/2 slot 
in a large sheet is about 500Ω and the characteristic 
impedance of coaxial transmission lines is usually much less, an 
off-center feed such as shown in Fig. 7–22b may be used to 
provide a better impedance match. 

 For a 50Ω coaxial cable the distance s should be about λ/20. 

 Slot antennas fed by a coaxial line in this manner are illustrated 
in Fig. 7–22c and d. The radiation normal to the sheet with the 
horizontal slot
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Patterns of Slot Antennas in Flat Sheets. Edge 
Diffraction

 Consider the horizontal λ/2 slot antenna of width w in a perfectly conducting 
flat sheet of infinite extent, as inFig.7–26a. 

 The sheet is energized at the terminals FF. 

 It has been postulated by Booker (1) that the radiation pattern of the slot is 
the same as that of the complementary horizontal λ/2 dipole consisting of a 
perfectly conducting flat strip of width w and energized at the terminals FF, 
as indicated in Fig. 7–26b, but with two differences. 

 These are (1) that the electric and magnetic fields are interchanged and (2) 
that the component of the electric field of the slot normal to the sheet is 
discontinuous from one side of the sheet to the other, the direction of the 
field reversing. 

 The tangential component of the magnetic field is, likewise, discontinuous.
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Patterns of Slot Antennas in Flat Sheets. Edge 
Diffraction

•The patterns of the λ/2 slot and the complementary dipole are  

compared in Fig. 7–27. 

•The infinite flat sheet is coincident with the xz plane, and the long 

dimension of the slot is in the x direction (Fig. 7–27a). 

•A  λ/2 slot in an infinite flat sheet (a) and a complementary λ/2 
dipole antenna (b).
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Patterns of Slot Antennas in Flat Sheets. Edge 
Diffraction

•Radiation-field patterns of slot in an infinite sheet (a) and of 

complementary dipole antenna (b). The patterns have the same shape but 

with E and H interchanged.

•The complementary dipole is coincident with the x axis (Fig. 7–27b).

•The radiation-field patterns have the same doughnut shape, as indicated, 

but the directions of E and H are interchanged. 
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Operation of horn antenna

 The solid arrows indicate the direction of the electric field E and the dashed 
arrows the direction of the magnetic field H.

 If the xy plane is horizontal and the z axis vertical as in Fig. 7–27a, the 
radiation from the horizontal slotis vertically polarized everywhere in the xy
plane.

 Turning the slot to a vertical position (coincident with the z axis) rotates the 
radiation pattern through 90◦ to the position shown in Fig. 7–28. The 
radiation in this case is everywhere horizontally polarized; i.e., the electric 
field has only an Eφ component. 

 If the slot is very  thin(w <<λ) and λ/2 long (L = λ/2), the variation of Eφ as a 
function of θ is given by

 
 cos / 2 cos

sin
E

 




  
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 Assuming that the sheet is perfectly conducting and infinite in 
extent, the magnitude of the field component Eφ remains 
constant as a function of φ for any value of θ. 

Thus,      Eφ (φ) = constant

 Consider now the situation where the slot is cut in a sheet of 
finite extent as suggested by the dashed lines in Fig. 7–28. 



 This change produces relatively little effect on the Eφ(θ) 
pattern given by (1). However there must be a drastic change in 
the Eφ(φ)

 Pattern since in the x direction, for example, the fields radiated 
from the two sides of the sheet are equal in magnitude but 
opposite in phase so that they cancel.
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Corner Reflectors

 Hence, there is a null in all directions in the plane of the sheet. For a sheet of 
given length L in the x direction, the field pattern in the xy plane might then 
be as indicated by the solid curve in Fig. 7–29a. The dashed curve is for an 
infinite sheet (L = ∞).

 If one side of the slot is boxed in, there is radiation in the plane of the sheet 
as suggested by the pattern in Fig. 7–29b.1 With a finite sheet the pattern 
usually exhibits a scalloped or undulating characteristic, as suggested in Fig. 
7–29. 

 As the length L of the sheet is increased, the pattern undulations become 
more numerous but the magnitude of the undulations decreases, so that for 
a very large sheet the pattern conforms closely to a circular shape. 

 Measured patterns illustrating this effect are shown in Fig. 7–30 for 3 values 
of L.A method due to Andrew Alford for locating the angular positions of the 
maxima and minima is described by Dorne (1) and Lazarus.  
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impedance of slot antennas
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impedance of slot antennas

 If a electric screen (with slot) and its complement (strip dipole) 
are immersed in a medium with an intrinsic impedance η and 
have terminal impedance of ZS and ZC, respectively, the 
impedances are related by

2

4
S CZ Z



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impedance of slot antennas

 Far Field Electric and Magnetic Fields

 Radiation pattern of the slot is identical in shape to that of the 
dipole except that the E and H-fields are interchanged

,S C S CE H E H    

2 2
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Micro strip Antennas(patch 
antennas)
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Micro strip Antennas(patch antennas)

•Is space craft or air craft applications, where size weight, 
cost, performance, ease of installation and Aerodynamic 
profile constraints, low profile antennas are required

•In order to meet there specification micro strip or patch 
antennas are used

•There antennas can be mounted to metal or other 
existing surfaces & they require space for the feed line 
which is normally placed behind the ground plane
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Micro strip Antennas(patch antennas)

•Patch antennas can be directly printed on to a circuit 
board; there are becoming in creartygly popular within 
the mobile phone market.

•Micro strip or patch antennas are popular for low profile 
applications at frequencies above 100 mHz also celled 
printed antennas
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Features of micro strip antennas

 Basically a patch antenna is a metal patch suspended 
over a ground plane.

 The assembly is usually contained in a plastic redone 
which protects 

Radom: -
 A dome or the structure protecting reder equipment 

& made from material transparent to radio waves, 
especially one on the outer surface of all aircraft

 The structure form damage
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Radom

 There are constructed on a dielectric substrate, by 
using to deprecate PCB’S

 A micro strip patch antenna consists of radiating 
patch on one side of a dielectric sub state which has 
a ground plane on the other side

 The simplest patch antennas uses a λ/2 wave length 
long patch with a larger ground plane to give better 
performance. But at the cost of large antenna size
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Radom

 Patch antennas are simple to fabricate & carry to 
modify

 Ground plane > active patch

 It is a narrow band, wide beam antenna fabricated 
by etching the antenna element pattern in metal 
trace bonded to the opposite side of the substrate 
which forms a ground plane

 To get wide between, thick substrata is used
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Types

 Square → by using of regular shapes

 Rectangular → of well defined geometry

 Triangular → we can simplify the analysis

 elliptical→ &performance well be Circular rectangular & 
circular predicted we widely used

 Square patches are used to generate a pencil bean and rectangular 
patch for a fan beam

 The size of micro strip antennas is inversely proportioned to its 
frequency

Ex:-for low freq tike am at 1 MHz filed patch size foot ball
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Types
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Types

 The micro strip antennas is contracted on a this dielectric sheet 
using a printed circuit board & etching techniques

 Alost common board is dual copper coated poly 
tietrafluoroethy lane

385



Advantages of micro strip antenna

 Micro strip antenna has several advantages compared 
to conventional microwave antenna 

 These antennas are used in many applications over the 
broad frequency range from 100MHz to 50GHz

 Some of the principal advantages of these antennas 
are:

 Low weight, low cost, low profile and conformal

 Easy to fabricate and can be integrated with other micr
ostrip components in monolithic application like RFIC 
and MMIC.
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Advantages of micro strip antenna

 Low weight, low cost, low profile and conformal 

 Easy to fabricate and can be integrated with other micro 
strip components in monolithic application like RFIC and 
MMIC

• The antenna can be easily mounted on missiles, rockets and 
satellite without major alterations.

 The antenna has low scattering cross section

 Dual frequency antenna can be easily made

 Microstrip antennas are compatible with modular designs 
(Solid state devices such as oscillators, amplifiers, variable 
attenuators, mixer, phase shifters ete. can be added directly 
to the antenna substrate board)

:
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Disadvantages

 Narrow bandwidth
 Radiation efficiency deteriorates as 

frequency and antenna array size increases 
due to an increase in the feeding network 
losses

 Lower power handling capacity
 Poor isolation between the feed and the 

radiating elements
 In recent years, with the advancement of 

technology, efforts have been made to 
minimize these effects dramatically

388



Applications of MSA

 For many practical designs, the advantages of MSA far 
outweigh their disadvantages. 

 With continuous research and development, the micro strip 
antennas have been applied in many different and 
successful applications. 

 Now a days it is the most popular antenna in the wireless 
communication market.

 We can find applications of MSA in many various fields of 
high-tech technology which includes
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Applications of MSA

 Satellite communication

 Mobile communication

 Missile telemetry

 Biomedical radiator

 Radar system

 Radio altimeter
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Limitations

 Low between, low efficiency low gain antennae’s with low 
power handling capacity

 The design complexity gets enhanced due to their smaller 
size

 There antennas also suffer from the effects of   radiations 
from feeds and junctions

 Surface wave excitation is also the limitation
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Rectangular patch / micro 
strip antennas
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Rectangular patch / micro strip antennas
Geometry & parameters

Basic structure of rectangular micro strip antennas   
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Rectangular patch / micro strip antennas
Geometry & parameters
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Rectangular patch / micro strip antennas
Geometry & parameters

 The dimension L is universally taken to mean the long 
dimension, which causes resonance at its half wave. Length 
frequency

 The radiating edges are at the ends of the L-dimension of the 
rectangle which sets the single polarization

 If Radiation occurs at the ends of the W-dimensions is far leers 
& referred to as the cross polarization

395



The E-died distribution under the patch

 Due to the half wave nature of the patch, the fields under the L-edges of 
opposite polarity& when the field lines Crowe out and finally propagate out 
into the direction moaned. To the substrates they are now in the rime 
direction (both facing left)

 In the far field perpendicular to the substrate the redaction from the two 
sides adds up because the fields are in phase, the radiation intensity drops 
as the fields of 2edges go farther &farther out of phase for effective 
radiation of micro strip antennas at two angles, the fields exactly cancel, 
MSA depends on directions 

 The structure has to be half wavelength resonator (L-λ∕2)
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The E-died distribution under the patch

 The dielectric (trident) sub striate should be sufficiently thicker 
& with low dielectric cuneal

 The height of the substrate should be limited to a fraction of 
wave length

 Let us consider a rectangular MSA. Fed by a micro strip tx ion  
line as shown in fig the critical or centre  frequency of  
operation of an antenna is a  approximately given by 

 c=velocity of light
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Characteristics of Micro strip Antennas

 All the characteristics (parameters) of an antenna are equally applicable to the 
micro strip antenna (MSA)

 This figure shows a cross section in a horizontal plane. The RP in the vertical 
plane is similar but not identical

 Power radiated at 1800 is about 15dB less than the power in the center of the 
beam. For linearly polarized MSA i.e 900

 The beam width is about 650 and the gain is about 9dBi

 An infinitely large ground plan would prevent any back radiation, but the real 
antenna has a fairly small ground plane & the power in the backward direction 
is only about 2dB down from that in the main beam
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Beam width & Directivity

 There are different radiation patterns for an MSA from 
these we can be described that MSA’S generally have 
a very wide beam width, both in azimuth and 
elevation

 For TM10

h=thickness of the substrate

Pr=Radiated power

η0=120π

k0=wave number
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Gain

 Gain of a rectangular MSA with air dielectric is roughly estimated between 7-
9dB in view of the following counts

 Gain of the patch from the directivity relative to the vertical axis is normally 
about 2dB provided the length of the patch is half wavelength

 if the patch is of square shape, the pattern in the horizontal plane will be 
directional. such a patch is equivalent to a pair of dipoles repeated by half a 
wavelength thus counts to 3dB

 if the addition of the ground plane cuts off most or all radiation behind the 
antenna the power averaged over all the directions is reduced by a factor of 2 
& thus gain is increased by 3dB
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Bandwidth

 The impedance Bandwidth of a patch antenna is strongly 
influence by the spacing between the patch and the ground 
plane

 As the patch is moved closer to the ground plane less energy is 
radiated & more energy is stored in the patch capacitance & 
inductance

 The quality factor Q of the antenna increases & impedance 
between (↓) decreases

 The feed structure also affects the bandwidth 

 The voltage standing ratio ‘S’ is an important parameter to be 
accounted, particularly at the i/p and under resonance 
conditions
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Quality factor & Efficiency

 MSA’S have a very high quality factor ‘Q’ represents the losses 
associated with the antenna 

 A large ‘Q’ leads to narrow bandwidth & low efficiency Q can be 
reduced by increasing  the thickness of the dielectric substrate

 The total loss factor for MSA is given by

Lr = loss in radiation

Lc = loss in conductor

Ld = loss in dielectric

 This loss results in the reduction of radiation efficiency
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Polarization & Return loss

 A very important advantage of patch antennas is their ability to have 
polarization diversity

 Patch antennas can easily be designed to have vertical, horizontal, 
right-hand circular or left-hand circular polarizations

 This unique property allows patch antennas to be used in many types 
of communication links L

 The return loss is defined as the ratio of the Fourier transforms of the 
incident pulse and the reflected signal

 The between of a patch antenna is very small 

 RMSA----- order of 3%

:
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Radar cross section

 The GPS guidance system require low-radar cross section 
(RCS) plat form, the RCS of a conventional patch antenna is 
after too high to be acceptable

 to reduce the RCS a standard technique is used to cover 
patch with a magnetic absorbing material (reduces antenna 
gain by several D (reduces antenna gain by several dB’s)   
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Impact of Different Parameters on 
Characteristics
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Impact of Different Parameters on Characteristics

 The parameters (L, W, h, A and εr ) shown in different illustrations of 
rectangular patch antennas control

The antenna properties: 

 Therefore, the nature and quantum of impact of these parameters is to 
be properly

 Accounted for an efficient design

 It can be stated that the length L and the width W, or the aspect ratio 
of the Patch controls the resonant frequency.

 Earlier, it was also noted that the width w controls the input 
impedance and the radiation pattern.
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Impact of Different Parameters on Characteristics

 The wider the patch becomes, the lower will be the input 
impedance. Since the dimension helps in maximizing

 The efficiency, the best choice for the dimension W is given by 

 In this equation, the net dielectric constant used is the average 
of the dielectric constant of the substrate and that of air to 
obtain a half-wavelength.

 The permittivity εr of the substrate controls the fringing field. 
Lower the εr, wider more will be the fringing and better will be 
the radiation. 

  0/ [2 1 / 2 ]W c f R 
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Impact of Different Parameters on Characteristics

 A decrease in εr also increases the antenna bandwidth. The efficiency 
of the antenna also increases with the lower value for permittivity. 

 The impedance of the antenna increases with higher permittivities. 

 Higher values of permittivity result in ‘shrinking’ of the patch antenna. 
In cell phones, there is given very little space and the antenna needs 
to be half-wavelength long. 

 One technique is to use a substrate with a very high permittivity.

 Equation (1) of Sec. 14–4 can be manipulated to yield a relation for L 
which is given as below:
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Impact of Different Parameters on Characteristics

 Thus, if the effective permittivity is increased by a factor of 4, the 
required length decreases by a factor of 2.

 Using higher values for permittivity is frequently exploited for 
miniaturization of antennas.

 As a general principle, ‘an antenna occupying more space in a 
spherical volume will have a wider bandwidth’.

 The impact of this principle is noticed when the increased thickness 
of a dipole antenna increases its bandwidth. 

 Since increase in height increases the volume, the bandwidth is 
bound to increase

 Thus, the height h of the substrate controls the bandwidth. Besides, 
the increase in height also results in a more efficient antenna. 
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Impact of Different Parameters 

 Increase of height, however, induces surface waves that travel within 
the substrate. 

 This may result in undesired radiations which may couple to other 
components. 

 Equation shows the dependence of bandwidth on various parameters 
discussed above.

 Similarly, the bandwidth can also be written in terms of the 
proportionality relation, i.e.,
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UNIT-IV
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Reflector Antennas
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Reflector Antennas

 Reflectors are widely used to modify the radiation pattern of a radiating 
element

Ex: the backward radiation from an antenna may be eliminated with a 
plane sheet reflector of large enough dimensions

Types of Reflectors:

 Flat sheet Reflectors a) Small     b) Large       α=1800

 corner Reflectors

 Active corner α<1800

 Passive corner α=900

 Parabolic Reflectors

 Elliptical Reflectors

 Hyperbolic Reflectors

 Circular Reflectors
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Types of Reflectors
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Flat sheet Reflectors

 The problem of an antenna at a distance‘s’ from a perfectly 
conducting plane sheet reflector of infinity extent is readily 
handled by the method of images (Brown- Scientist)

 In this method the reflector is replaced by on image of the 
antenna at a distance 2s from the antenna

 Assuming zero reflector losses, the gain in field intensity at a 
distance‘s’ from an infinite plane is 
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Flat sheet Reflectors

 The gain in eq(1) expressed relative to a λ/2 antenna in free 
space with same power input

 The field patterns of λ/2 antennas at distances s= λ/4, λ/8 & 
λ/16 from the flat sheet reflector are shown
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Flat sheet Reflectors

 Field patterns of a λ/2 antenna at spacing’s of ¼, 1/8 & 1/16 16 from infinite flat 
sheet reflector

 When the reflecting sheet is reduced in size, the analysis is simple

 There are 3 principal angular regions Region-1 (air front of sheet) in this region 
above or the radiated field is given by the resultant of the direct field of the 
dipole and the reflected field from the sheet

 Region-2: (above & below at the sides of sheet)

 In this there is only direct field from the dipole this region is in the shadow of the 
reflected field
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Flat sheet Reflectors

Region-2: (below or behind  the sheet)

 In this, the sheet acts as a shield, producing a full shadow (no 
direct or reflected fields, only diffracted fields)
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Corner Reflectors

 Two flat reflecting sheets intersecting at an angle or corner form an 
effective directional antenna 

 When the corner angle α=900, the sheets intersects at right angles, 
forming a square corner reflector

 A corner with α=1800 is equivalent to a flat sheet reflector & limiting 
case of the corner reflector

 There are practical disadvantages to angles much less than 900
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 Assuming perfectly conducting reflecting sheets of infinite extent, the 
method of images can be applied to analyze the corner reflector antenna 
for angles α=1800 /n 

 Where ‘n’ is any positive antigen n=1, 2, 3…..

if n=1    α=1800 or – flat sheet

n=2   α=900     or π/2, radium   - square corner reflector

n=3   α=600           or π/3, radium   

n=4   α=450           or π/4, radium   

 Method of images can only be used for these angles – π, π/2, π/3, π/4 
etc

 Corner reflectors of intermediate angle cannot be determined by this 
method by applying interpolation we can estimate
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Corner Reflectors

 Let us now analyze the method of images for square corner reflector

 In the analysis of 900 corner reflector, there are 3 images 2, 3, 4 
corresponding to one driven antenna

 The driven antenna 1 and the 3 images have currents of equal magnitude

 The phase of the currents 1&2 are same and the image element 3&4 with 
1800 phase shift w.r.t 1&2 

 All the elements are assumed to be λ/2 long
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 The field pattern Eø(θ) in the horizontal plane, at a large distance ‘r’ 
from the antenna is given by

 To obtain frequency of operation of a patch antenna accurately we 
should consider dimensional ‘w’ also so the expression for the 
frequency of operation of patch antenna considering L&W is given by

   12 cos( cos ) cos( sin )r rø KI S SE   

rS d

   12 cos( cos ) cos( sin )ø KI d dE     
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Corner Reflectors

for dominant mode with n=1, m=0
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Paraboloidal Reflectors: Geometry, 
Pattern Characteristics
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Paraboloidal Reflectors: (Geometry & parameters)

“A parabola may be defined as the locus of a point which moves in such way 
that its distance from the fixed point (called focus) plus its distance from a 
straight line (called directrix) is constant”

Geometry of the 2D-plane curve parabolic Reflector

OF= Focal length=f

k= a constant (depends on the shape)

f= Focus

O=vertex

OO’= Axis of the parabola

FP1= P1 P1
1= FP2= P2 P2

1+ FP3+ P3 P3
1=K

Y2=4fx
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Paraboloidal Reflectors: (Geometry & parameters)

 The open mouth ‘D’ of the parabola is known as the 
Aperture

 The ratio of focal length to Aperture size known as “fover D 
ratio” Range-0.25 to 0.5

 A cylindrical parabola converts a cylindrical wave radiated 
by an in phase line source at focus into a plane wave at the 
aperture

 All the wave originating from focus will be reflected 
parallel to the parabola axis 
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 This implies that all the wave thus, reaching at the aperture 
plane are in phase so a very strong and concentrated beam of 
radiation is there along the cylindrical parabolic reflector 
parabola axis
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Pattern Characteristics: Main Beam

 Main beam is the region around the direction of maximum 
radiation the main beam is cetered at 90 degrees

 Side lobes:

 Sides’ lobes are smaller beams that are away from the 
main beam. Radiate in directions other than the main 
beam and can never be completely eliminated


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Pattern Characteristics: Main Beam

Half Power Beam width (HPBW):
 Half Power Beam width is the angular separation in which the magnitude of 

the radiation pattern decreases by 50% (or-3Db) from the peak of the main 
beam

Null to Null Beam width:
 Null to Null Beam width the angular separation from which the magnitude of 

the radiation pattern decreases to zero (negative infinity Db) away from the 
main beam
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Feed Methods, Reflector types-
Related Features
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Feed Methods

 The parabolic reflector antenna has two basic components. They 
are,

Source a primary radiator  or Feed radiator or Feed

Reflector a secondary radiator

 A primary radiator or feed is said to be ideal if it radiates the 
energy towards the reflector such that it illuminates the entire 
surface of the reflector and if no enrgy is radiated in any other 
directions

 But such an ideal radiator us not available in practice for a 
secondary radiator, paraboloid is the best choice to use
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Feed Methods

There are number of feeds available for a parabolic reflector

 Dipole Feed

 Horn Feed

 cassegrain Feed

 Offset Feed
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Dipole Feed

 Feeding a parabolic reflector with dipole antenna is not very much suitable

 It can also be fed by using a dipole with parasitic reflector or with a coaxial cable

 End fire arrays of dipoles can also be used in front of the reflector

 Which are spaced such that the pattern illuminates the entire paraboloid
reflector?

 If a parabolic reflector is fed with a dipole, the system is changed from 
unbalanced to a balanced system
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Horn Feed

 A paraboloid reflector antenna is fed with a waveguide horn 

 If circlar polarization is required, then a helix or a conical horn 
antenna is used to feed the paraboloid

 If the feed is placed at the moved along the axis, the pattern is 
broadened

 But if the feed is moved laterally from the focus point, the 
pattern is narrowed or the beam is deteriorated

 A paraboloid fed with a horn
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Cassegrain Feed

 The primary radiator or feed is placed at the vertex of the paraboloid instead of 
placing it at the focus

 This system employes a hyperboloid secondary reflector

 One of the hyperboloid’s foci coincides with the focus point of the paraboloid

 The radiation emitted from the primary radiator are reflected from secondary 
reflector which illuminates the paraboloid reflector

 The rays reflected from the secondary reflector will align in parallel to each other 
after reflecting at the paraboloid surface
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Cassegrain Feed

A parabolid reflector which is fed by using a horn atenna as a primary radiator
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Offset Feed

 The offset feed system overcomes the problem of aperture blocking due 
to the secondary reflector dimensions .

 The dimensions depends on the distance between horn feed and 
hyperboloid reflector

 The feed radiator is placed at the focus with this system all the rays are 
perfectly collimated without formation of the region of blocked rays

Reflector types- Related Features:

 In addition to the paraboloid reflector, there are some reflectors in which 
properties of parabola are used
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Antenna measurements
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Antenna measurements

 Accurate measurements are necessary to establish the 
actual performance of antennas

 Antennas having strict specifications are needed in many 
applications as in mobile and personal communications, 
satellite communications, remote sensing & Radar

 In many situations, antenna properties can be calculated 
theoretically very accurately however for complex antennas 
this might not be possible

 Modeling of usage environment is difficult 
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Antenna measurements

Ex:-If the antenna is close to the human head or is installed on an air 
plane

 Performance of real world antennas has to be checked by 
measurements, because due to fabrication tolerances & in some 
cases due to fabrication error, they may not work as well as 
predicated

 The measurement results give valuable information for trouble 
shooting
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Basic concepts

 The most common antenna measurement is to measure its 
radiation properties like directional pattern, gain, phase 
pattern in the far field

 The basic procedure is to place a transmitting or receiving 
source antenna at different locations w.r.t to the antenna 
under test (AUT) and get a no.of samples of the pattern by 
notating the AUT

 To ensure the “sharpness” of the pattern sample only one 
direct signal path should exist between the AUT & Source 
antenna
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Reciprocity in Antenna Measurements

 Two important consequences of the principle from the antenna 
measurement point of view 

 The tx‘ing & rx‘ing patterns are same

 Power flow is the same either way

 All the radiation parameters of the AUT can be measured in 
either transmission or reception mode
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Reciprocity in Antenna Measurements

 In practical antenna measurements one has to be careful in 
applying the reciprocity principle

 The emf’s in the terminals of the interchanged antennas are of 
same frequency

 Linear, passive & isotropic medium

 Power flow is equal for matched impedances only
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Reciprocity in Antenna Measurements

Conditions: 
 Should be met without problems
 Should be considered always 

 TFS=voltage transmission co-efficient between the antenna 
terminals
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Near field and far field

 The measurement usually takes place in the far field 

 There are several advantages of the far field measurement

 The measured field pattern is valid for any distance in the far field region: only simple 
transformation is required (1/r)

 If a power pattern is required, only power (amplitude) measurement is needed

 Coupling & multiple reflections between the antennas are not significant

 The result is not very sensitive to the changes in the location of the antennas
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Near field and far field

 The main disadvantages of the field measurements 
is the required large distance between the 
antennas leading to large antenna ranges
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Cylindrical parabola

 Parabolic cylinder is formed by moving the parabolic contour parallel 
to itself

 i.e, a plane sheet curved to parabolic shape in one dimension only 
forms the parabolic cylinder 

 It has a focal line instead of the focal point and a rectangular mouth.

 If a line source of radiation is directed along the focal line cylinder, 
then the parabolic cylinder curvature will be uniformly illuminated
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Cylindrical parabola

•Truncated Paraboloid (or) cut paraboloid Reflector:

•When the cut paraboloid reflectors are viewed from a point on the parabolic 

axis, their appearance is not circular 

•These are used to generate fan beams which are required in search radars
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Pill Box Antenna (or) Short cylinder with plates

 Pill box antenna is a cylinder which is short in the axial direction

 It has conducting end plates through which it is fed by using a coaxial cable or 
by a probe

 some times, the pill box antenna can also be fed by a wave guide horn

 This antenna is used to generate a fan beam required in search

 Two types of feed methods 

449



Cheese Antenna

 When a pill box antenna and parabolic cylinder are combined 
the result structure resembles a cheese antenna 
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COORDINATE SYSTEM, SOURCES 
OF ERRORS PATTERNS TO BE 
MEASURED
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Co-ordinate system

 Fig: IEEE Standard Spherical co-ordinate System

 AUT is at the origin

 Thelivation angle ‘θ’ is measured from the Z-axis
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Co-ordinate system

 The azimuth angle ‘φ’ is measured from the projection of the radius 
vector to the xy-plane with φ=0 increasing counter clock wise

 Moving  the source antenna along lines of constaint φ or constant θ 
results in conical cuts or φ cuts

 When ‘θ’ is content, results in great circle cuts or θ cuts

 When ‘φ’ is constant, the cut along the equator with θ=π/2 belongs 
to both the categories.

 Orthogonal great circle cuts through the axis of the main lobe of the 
antenna & the cuts are selected to coincide with the assumed 
direction of the E&ds fields in the main lobe & then they are called 
E&H plane cuts
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Sources of error in Antenna measurements           

 Any measured quantity has a margin of error 

 Thus the complete value for the gain of an antenna might be 
15dB±0.5dB indicating half decibel uncertainty

 To reduce the measurement uncertainty to an acceptable level, the 
critical sources of error have to be recognized

 A pure plane wave is an ideal test field for the measurement of far 
field patterns

 Insufficient distance between the antennas causes 
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Sources of error in Antenna measurements

 Phase curvature amplitude taper reflections from surrounding }can 
have significant impact on the main beam
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PATTERN MEASUREMENT 
ARRANGEMENT DIRECTIVITY 
MEASUREMENT
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Radiation pattern measurement

 The radiation pattern of an antenna is a 3-D figure & needs 
measurements of field intensity all over spatial angles

 Hence for radiation pattern of ‘AUT’ the various spatial angles must 
be specified 

 Radiation pattern is function of direction (θ or φ)

457



 For most antennas, it is generally necessary to take radiation pattern in XY plane 
(Horizontal plane) & XZ-plane (vert-plane)

 For horizontal antennas: 

 two patterns are sufficient 

 The φ component of ‘E’ is measured as a function of φ in XY plane (θ=900)

 It is represented as Eφ(θ=900, φ) & is called E-plane pattern

 The φ component of ‘E’ is measured as a function of ‘θ’ in xz-plane (φ=00)

 It is represented as Eφ(θ, φ=00) & is called H-plane pattern
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Radiation pattern measurement

 For vertical Antennas:

The θ component of b ‘E’ is measured as a function of φ in XY-plane 
(φ=900)

 It is represented as Eθ (θ=900, φ) & is called H-plane pattern

 The θ component of the is measured as a function of ‘φ’ in xz-plane 
(φ=00)

 It is represented as Eφ(θ, φ=00) & is called as E-plane pattern
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Fundamental procedure

Require two antennas 1) AUT (Antenna under test)
2) Source Antenna

 AUT→ primary antenna 
 Source→ secondary antenna } either tx’ing or Rx’ing

 Step1) →primary antenna kept stationary where as secondary antenna is transported 
around along a circular path at a constant distance

 Step2) → the field strength reading & direction of the secondary antenna w.r.t primary 
antenna are recorded along the circle at different points

 Step3) → from the readings, the post of radiation pattern of primary antenna is made 
either in rectangular from or in polar form
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Arrangements for radiation patter 
measurement
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Arrangements for radiation patter 
measurement
 The equipment may be entirely automatic or point to point plot

 It is usual to operate the antenna under test as a receives placing it 
under proper illumination by source antenna 

 The source is fixed & the AUT is rotated on a vertical axis by antenna 
support shaft

 For Eφ(θ=900, φ) pattern measurement, the antenna support shaft is 
rotated with both antennas horizontal and 

 For Eφ(θ, φ=00) pattern the antenna support shaft is rotated with both 
antenna vertical 

 Indication may be on a direct reading meter calibrated in field intensity
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 If large numbers of patterns are to be taken “automatic pattern 
recorder” may also be used

 Distance requirement:

In order to obtain accurate far-field radiation pattern, the distance 
between two antennas must be large otherwise near field pattern is 
obtained

 Phase difference between centre and edges of receiving array for 
distance requirement 

 The distance should be

 d= max. Dimension of either antenna

 From fig
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Arrangements for radiation patter measurement

 r≥8          8≤d

 82 can be neglected 
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Uniform illumination requirement:

 The requirement for an accurate field pattern is that primary antenna 
should produce a plane wave of uniform amplitude & phase over the 
distance at least equal to ‘r’

 The interference between direct rays and indirect rays should be 
avoided as possible 

 Reflections from surrounding objects like building trees etc

 Test should be conducted in open plain area and antenna should be 
directional and installed on higher
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Measurement of Gain
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Measurement of Gain

Definition:

Gain = maximum Radiation Intensity (Test 
or subject)/Maximum Radiation 
Intensity (reference)

G=KD

K= antenna efficiency factor/effectiveness 
ratio

D>G (Dis always greater than Gain)
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Direct comparison Method

 As defined above, gain is a comparison of two 
antennas & gain measurement by comparison is 
done 


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Direct comparison Method 

 At higher frequency the comparison method is done 

 In this measurement of gain is done by comparing the 
signal strengths tx’ted or Rx’ted with the unknown gain 
antenna and standard gain antenna 

 A standard gain antenna is that antenna where gain is 
accurately known so that it can be used in measurement of 
other antenna

 Electromagnetic horn antenna at µ-wave frequency is 
mostly used as standard gain antenna
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Direct comparison Method

 At AUT side, there will be two antennas one the subject antenna under 
test and the other a standard antenna

 Alternator pad – ( Rx)  To maintain the matched

 Power bridge (Tx)- to check on the stability of the transmutation

 Step1) - standard antenna is connected to the receiver with the help of 
switch ‘s’ and the antenna is aimed at secondary any antenna in the 
direction of max. Signal intensity
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Direct comparison Method

 The i/p to the Tx’ing antenna is adjusted to a convenient level and 
corresponding reading at the receiver is recorded

 Attenuator dial setting (w1) & power bridge reading (p1)                                 

 Step2) – now connect the subject antenna whose gain is to be measured 
in place of standard gain antenna 

 The attenuator dial is adjusted such that receiver indicates the same 
previous reading as was with standard gain antenna
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Direct comparison Method

 Let the attenuator dial setting be ‘w2’ and power bridge 
reading p2

 Case-1) when p1= p2   (no correction)
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Direct comparison Method

 Case 2) - when p1≠ p2   The power level is changed 
during the measurements and p1≠ p2 then actual 
power gain of the subject antenna can be obtained 
by multiplying Gp with ratio p1/ p2
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Absolute gain of identical 
antennas
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Absolute gain of identical antennas

 The identical Antennas having distance ‘r’ is shown                            
Pt=tx’ed power                 Pr=Rx’ed power

 Aet, Aer=Effective apertures of tx’ing and Rx’ing antenna
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Absolute gain of identical antennas

 Antennas are identical

From friis’s tx’ion eq
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Absolute gain of identical antennas
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The modified three-antenna method

 The three-antenna technique [6, 7] does not require a priori knowledge of the gain of 
any of the three antennas involved. 

 On the other hand, in the modified three-antenna method, one of the antennas 
needs to be a reference antenna whose gains and error limits have been established 
through absolute calibration.

 The reference antenna acts as a Reference Material (RM), which is defined as “a 
material or substance one or more of whose property values are sufficiently 
homogeneous and well established to be used for the calibration of an apparatus, 
the assessment of a measurement method, or for assigning values to materials”

 In the modified three-antenna method, measurements are done just as in the case of 
the three-antenna method, with the RM also analyzed as presumed unknown
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The modified three-antenna method

 A comparison of the result obtained for the RM with its reference values essentially constitutes 
a “calibration of the whole measurement process against a traceable reference” and provides 
useful information on the combined effect of many of the potential sources of uncertainty.

 The parameter used for this purpose is the so called bias, defined as the value obtained for the 
RM divided by the value expected

 An overall uncertainty estimation from the above method requires that two contributions be 
taken into account at the minimum the uncertainty associated with the bias, and the precision 
of the measurement.

 The bias uncertainty is estimated by combining the standard uncertainty on the RM values and 
the limiting error associated with the bias. Even when the bias is insignificant or is corrected for, 
the uncertainty associated with its determination needs to be considered in the overall 
uncertainty assessment.
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The modified three-antenna method

 A measure of the precision, defined as “the closeness of agreement between independent test 
results obtained under prescribed conditions is obtained by estimating the standard deviation 
associated with the measured data on the test antenna and by subsequently estimating the 
limiting error.

 An actual measurement by using the modified three-antenna method would proceed as follows: 
Power measurements are done and repeated n times using all the pairs of the three antennas, 
with the RM also analyzed as presumed unknown.

 In this measurement effort, the antenna combinations were rotated n times, with a single 
reading taken each time.

 The gains of the three antennas at a range r and wavelength λ are then determined by using 
simultaneous equations of the form
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The modified three-antenna method

 Where GT and GR are the transmitting and receiving antenna gains, iPL is 
the power delivered to the power meter 

 When the generator and the load are directly connected and fPL is the 
power delivered when the antennas are connected.

 The variables ΓT , ΓR, ΓG and ΓL represent, respectively, the reflection 
coefficient of transmitting antenna, receiving antenna, generator and 
power meter.

 In this work, the reflection coefficient values for the antennas were 
measured by using the HP 8510 B network analyzer, while for the 
generator and the power meter, the values given by the manufacturers 
were employed.
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The modified three-antenna method

 At each frequency, the “true” value Gr of the RM in dB 
(obtained through absolute calibration, or quoted by the 
manufacturer) is subtracted from its measured value Gm for 
each of the n trials.

 This gives the value of the bias β. The bias is used to correct 
the estimated (uncorrected) test antenna gains.

 Thus, if Gu and G respectively represent the uncorrected and 
corrected gain values, then this operation proceeds as 
follows
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The modified three-antenna method

 Selvan The overall standard uncertainty U for the measurement is 
then estimated from the following equation

 where σβ is the standard deviation of the bias values, σG is the 
standard deviation of the bias-corrected test antenna gain values 
and URM is the standard uncertainty on the reference antenna 
gain values.

 The division by n in assumes normal distribution. The uncertainty 
with 99% confidence limits is, of course, given by 3U.
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The modified three-antenna method

 The measurement is repeated n times so as to be able to account for the 
random errors and to ensure the sustenance of the uncertainty estimate.

 As regards the effects of systematic error sources, the use of the same 
instrumentation throughout the measurement run will ensure their nearly 
identical effect on the gains of all the antennas.

 It is desirable that the cables at the generator and load ends are not 
disturbed during the measurements; this is anyway quite practical, as only 
the antennas need to be replaced.
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UNIT-V
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Wave Propagation
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Wave Propagation

•Modern radio engg has penetrated all branches of national and 
international economy, science, industry culture and our everyday 
life

•One of its important applications involves long distance 
communications by means of electromagnetic waves

•In terms of wavelength, the lower limit of radio waves propogated
in free space is (8x1011 m) and the upper limit is 3x108m

• Some frequencies are generated by fluctuations of  the soler
electron proton stream as it penetrates the earth’s atmosphere 
these waves are closely related to magneto hydro dynamic waves 
(mechanical waves produced by the ion plasma of the atmosphere)
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Wave Propagation

[103Hz-1016Hz presently extends Radio spectrum limits]

•The waves longer than 105m (sub audio & audio waves) 
have little or no commercial usage

•The waves having wave lengths between 103-105m, find 
applications in submarine & mine communications(can 
penetrate duper into water and earth)

•The waves having extremely high frequencies (short ‘λ’s) 
of terra range gaining ground in optical com’s to their high 
b/w capability, very high speed. 488



Wave Definition and Broad categorization

 Mathematical relations of E&H are given by 

 This wave equation leads to the following equation
*“It a physical phenomenon that occurs at one place at a given time 
is reproduced at other places at later times, the time delay being 
proportion to the space reparation from the first location, the group 
of phenomena constitutes a wave”+

 Depending on the nature and location of space, some or all the 
characteristic of a propagating wave may get altered 
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Wave Categorizations and 
General
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Categorizations and General

 There are mainly due to variation of media parameters (σ, ε, μ) on 
the way or the shape & characteristics of obstacles(Reflection, 
diffraction, absorption, rotation of plane of polarization)

 Electromagnetic waves can be classified in a no. of ways

 Guided waves:-

 Waves guided by manmade structions such as parallel wire pairs, co-
axial cables, wave guides, strip lines, optical fibers etc.

 Unguided waves:-

 Waves prorogating in the terrestrial atmosphere over and along the 
earth & in outer space

491



General classification

Plane wave- defined as which the equip has surface is a 
plane

Uniform plane wave:-
If the equiphase surface is also an equi amplitude surface 
then it is called uniform plane wave

Non-Uniform plane wave:-
The equiphase and equi-amplitude surfaces are neither 
same nor the parallel  E & H need not necessarily be 
orthogonal
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General classification

 Slow wave:-
When the phase velocity normal to the equiphase
surface is less than velocity of light ‘c’ referred to as a 
slow wave

 Forward wave:-
A wave travelling in an assigned direction from the 
point of origin is called forward wave

 Backward wave:-
A reflected wave, when a forward wave stribes a 
reflecting surface
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General classification

 Travelling wave:-
 When a wave is progressing only in one direction and there is no 

reflected wave present it is called travelling wave

 Standing wave:-
 If both forward and reflected waves are simultaneously present, they 

combine to result in a wave called standing wave

 Surface wave:-
 If a wave is supported by some kind of surface between two media, it is 

called surface wave
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General classification

 Trapped wave:-

Sometimes a surface wave is also called a trapped 
wave because it carries energy within a small distance 
from the interface

 Leaky wave:-

When discontinuities are densely placed along the line

 Classification based on orientation of field vector:  

Linearly, circularly, elliptically, vertically horizontally
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General classification

 Classification Based on the Presence of field components

 TE (Transverse Electric Waves)

 TM (Transverse Magnetic Waves)

 TEM (Transverse Electromagnetic Waves)

 Classification based on Modes of propagation:

 Ground waves

 Space waves

 Sky waves
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Different Modes of Wave Propagation

 There are four major modes that the waves 
transmitted from a transmitter may follow to reach the 
destination and they are

(a) Surface wave propagation

(b) Space wave propagation

(c) Troposphere propagation

(d) Ionosphere propagation

 The first two propagation modes are grouped into 
ground wave propagation, but the behave differently 
enough for separate consideration.
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Different Modes of Wave Propagation

Meaning of different terms in Figure :

TX = Transmitting antenna

RX = Receiving antenna

Path A = Ground wave propagation

Path B = Sky or ionosphere propagation

Path C = Space wave propagation
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Ground Wave propagation
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Ground Wave propagation

 Ground Wave propagation is a method of radio wave 
propagation that uses the area between the surface of the 
earth and the ionosphere for transmission.

 The ground wave can propagate a considerable distance 
over the earth's surface particularly in the low 
frequency and medium frequency portion of the radio 
spectrum.

 Ground wave radio signal propagation is ideal for relatively 
short distance propagation on these frequencies during the 
daytime.
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Ground Wave propagation

 Sky-wave ionospheric propagation is not possible during the day 
because of the attenuation of the signals on these frequencies caused 
by the D region in the ionosphere.

 In view of this, lower frequency radio communications stations need to 
rely on the ground-wave propagation to achieve their coverage.

 Typically, what is referred to as a ground wave radio signal is made up of 
a number of constituent waves.
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Ground Wave propagation

 If the antennas are in the line of sight then there will be a 
direct wave as well as a reflected signal.

 As the names suggest the direct signal is one that travels 
directly between the two antennas and is not affected by 
the locality.

 There will also be a reflected signal as the transmission will 
be reflected by a number of objects including the earth's 
surface and any hills, or large buildings that may be 
present.

 In addition to this there is a surface wave.
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Ground Wave propagation

 This tends to follow the curvature of the Earth and enables coverage 
beyond the horizon. It is the sum of all these components that is known 
as the ground wave.

 Beyond the horizon the direct and reflected waves are blocked by the 
curvature of the Earth, and the signal is purely made up of the diffracted 
surface wave.

 It is for this reason that surface wave is commonly called ground wave 
propagation.
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Plane Earth Reflections

 For Elevated tx’ing & RX’ing antennas within the line 
of right of each other, the received signal reaching 
the receiver through a direct path and that 
reaching after being reflected by the ground

 These two paths are shown in fig
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Plane Earth Reflections

 For a smooth plane and finitely conducting earth 
the magnitude and phase of the reflected wave 
differ from that of the incident wave

 When the earth is rough, the reflected wave tends 
to be scattered & may be much reduced in 
amplitude

 The roughness is generally estimated by the 
Rayleigh criterion4 sin /R   
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Plane Earth Reflections

 σ=standard deviate on of the surface irregularities relative to the 
mean surface height
θ=angle of incidence

if R<0.1-smooth (reflecting surface)
R>1.0 rough (reflecting surface)

 When the incident wave is near grazing angle over a smooth earth, 
the reflection coefficient approaches (-1) for both polarizations 
(θ→0)

 The earth is not a good conductor like copper or silicon not a perfect 
dielectric

 For a medium having dielectric constant ‘ε’ and conductivity σ, 
Maxwell’s equations can be written as
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Plane Earth Reflections

 The expression for reflection coefficient (Er/ Et) for 
(Rr) horizontal polarization (RH) & for vertical 
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Plane Earth Reflections

 If the medium 1 is free space ε1= ε01

 Medium 2 is flat earth surface

 Then  
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Plane Earth Reflections
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Plane Earth Reflections

 Let

 RH& RV are both complex quantities, and then can be written as

RH= RH< RH amplitudes & RV= RV< RV phases
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Plane Earth Reflections

 When the incident wave is horizontally polarized the phase of the reflected wave 
differs from that of the incident wave by nearly 1800 for all angles of incidences

 For angles of incidence near grazing (Ψ=0), then reflected wave is equal in magnitude 
but 1800 out of phase with the incident wave

 When the incident wave is vertically polarized At grazing incident E, the reflected 
wave is equal to that of the incident wave and has an 1800 phase reversal

 When the angle of incidence is increased from ‘0’ both magnitude & phase angle of 
Rv↓ rapidly the magnitude reaches to its min value while the phase shift goes 
through -900 at an angle called Brewster angle
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Space wave and Surface waves
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Space wave and Surface waves

 In 1909, According to summer field the ground wave 
can be divided into two parts, a space wave and a 
surface wave.

 The space wave dominates at larger distances above 
the earth 

 Surface wave is stronger nearer to the earth’s surface

 Norton reduced the complexity of the expressions 
developed by A-Somerfield and made suitable for the 
engineering work
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Space wave and Surface waves

 The expressions for the electric field of an electric 
dipole above a finitely conducting plane earth 
surface & clearly shows 

 The distinction between surface wave and space 
wave
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Space wave propagation

 It is used at frequencies greater than bands are VHF, UHF and other higher 
frequency bands

 It is also called troposphere propagation & also called line of sight 
propagation (receiver should be placed within the line of sight distance)

 In ground wave propagation frequency ↑ ‘s alteration↑ ‘s

 In ionosphere propagation, the ionosphere does not reflect EM waves above 
30Hz therefore we go for space wave propagation which is exhaustively used 
above 30Hz 
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Space wave propagation

 Space wave energy is divided into direct wave and 
Reflected wave. The net field strength at the 
receiver is the vector sum of direct wave and 
reflected wave

 In this field strength is inversely proportional to 
distance i.e this propagation covers only few 
kilometers

 In this attenuation occurs due to rain fog, snow, 
clouds, absorption by gases present in the 
atmosphere.
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Wave Tilt

 The wave front starts tilting in the forward direction as it 
progresses

 The magnitude of the tilts will depend upon the conductivity & 
permittivity of the earth

 Whenever there is even slight forward tilt in the electric field, the 
respective poynting vector drops vertically downwards

 This supplies sufficient power to the earth over which the wave 
can be easily passed

517



Wave Tilt

 Basically the electric field vector has two components

parallel to the earth surface

perpendicular to the earth surface

 But due to a even alight forward tilt, these two components 
are not in phase & thus just above the surface of the earth, 
the electric field is found to be elliptically polarized
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Wave Tilt

 The components EZ & EP are respectively z-
component & Radial component

 R1 R2 & d are distances

 Rv -Reflection coefficient

 F – Attenuation constant depends on the earths 
constant

 Equation 1 & 2 may be combined & separated into 
the following two parts 

 The field strengths for space and surfaces wave can 
be given as 
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Wave Tilt

 In the above relations u4 & higher order terms are discarded
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Curved Earth Reflections
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Curved Earth Reflections

 For greater distances, reduction in field strength below the 
free space value is much more; this enhanced reduction is 
mainly due to the curvature of the earth rather than due to 
losses in the ground

 The effect of the curvature of the earth is entirely negligible 
up to certain distance and all the relations obtained are 
valid up

 Surface waves- Rx’ed by diffraction

 Space waves- - Rx’ed by refraction from lower atmosphere
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Curved Earth Reflections

 The problem of curved earth can be easily tacked by 
the application of Maxwell’s equations

 One solution is in the form of an infinite series of 
spherical harmonics with co-efficient containing twelve 
barrel functions

 For which 

= radius of the earth in wave lengths=103to 108
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Curved Earth Reflections

 Whether tx’ing and rx’ing antennas are within line of sight 
range or not

 the problem reduces to finding the distance to visible horizon 
(optical)

 Earth radius ‘a’, antenna height h1, α-angle

From OAC triangle

-------------1

α is small in all practical problems
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Curved Earth Reflections

Then                               -----2 

Mathematical function 

For eq 1&2

The horizontal distance is 
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Curved Earth Reflections

 The curvature of the earth has the following effect on the wave 
propagation within the LOS Range:-

 For fixed antenna heights, the path length difference between DR 
and RR will be different from that of flat earth

 The reflection at the convex surface will result in divergence of RR 
path and hence will reduce the power received via RR

[DR=Direct ray, RR=Reflected Ray]

 To understand the process, consider the figure a tangent plane MN 
touching the earth at the point of reflection. the antenna heights can 
now be measured from this plane
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Curved Earth Reflections

 Practically there is little difference between h1&h2n 
&& h2+ h2

1

h1= h1-∆ h1

h2
1= h2-∆ h2

∆ h1=A11A1

∆ h2=B11B1

d1, d2-Loss ranges at heights h1&h2
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Curved Earth Reflections

 From triangles OAC & OBC with angles of luculent and 
reflection being the same 

 From the fig
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SPACE WAVE
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SPACE WAVE

The space wave follows two distinct paths from the 
transmitting antenna to the receiving antenna—one 
through the air directly to the receiving antenna, the 
other reflected from the ground to the receiving antenna

This is illustrated

The primary path of the space wave is directly from the 
transmitting antenna to the receiving antenna

So, the receiving antenna must be located within the 
radio horizon of the transmitting antenna. 
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SPACE WAVE

 Because space waves are refracted slightly, even when propagated 
through the troposphere, the radio horizon is actually about one-
third farther than the line-of-sight or natural horizon.

 Although space waves suffer little ground attenuation, they 
nevertheless are susceptible to fading. 

 This is because space waves actually follow two paths of different 
lengths (direct path and ground reflected path) to the receiving 
site and, therefore, may arrive in or out of phase. 

 If these two component waves are received in phase, the result is a 
reinforced or stronger signal. Likewise, if they are received out of 
phase, they tend to cancel one another, which results in a weak or 
fading signal
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Field Strength Variation with Distance and 
Height

 Electric field strength E at a distance from TX antenna due 
to ground wave,

E = 120 π ht hr I s (volt/meter)
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Field Strength Variation with Distance and 
Height
where, 

120 π – Intrinsic impedance of free space ht , 

hr – Effective heights of transmitting and receiving antennas 

Is – Antenna currents 

d – Distance between TX and RX antennas

λ – Wavelength  

 If d is large, the reduction in the field strength due to ground 
attenuation and atmospheric absorption increases and thus actual 
voltage received at receiving point decreases
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Field Strength Variation with Distance and 
Height

 According to sommerfield, the field strength for ground wave 
propagation for a flat earth is given by,            Eg = E0A d

where, 

Eg – Ground wave field strength at the surface of earth at unit 
distance form the TX antenna 

E0 – Ground wave field strength 

A – Attenuation factor (Earth losses) 

D – Distance from TX antenna
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Field Strength Variation with Distance and 
Height
 Unit distance field strength E0 depends on  Power radiation of TX 

antenna Directivity in vertical and horizontal planes

 If the antenna is non directional in the horizontal plane, producing a 
radiated field which is proportional to the cosine of the angle of 
elevation, then the field at unit distance for a radiated power is given by

E0 = 300 (√p)/d v/m, 
where,          

P is the radiated power in KW and
D is the distance in metres
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Field Strength Variation with Distance and 
Height
The attenuation factor A depends on  
 Frequency
 Dielectric constant
 Conductivity of earth

 The attenuation factor is expresses in termsof two auxiliary variables, 
the numerical distance p and phase constant b.  

These two constants are determined by  
 Frequency
 distance and dielectric characteristics of ground.
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For vertically polarized wave

The parameters p and b are given by 

 P = πdcosb/xλ

 B = tan-1*(εr+1)/x+ = 2b2 – b1 

 X = 1.8 * 1012σ/f(Hz) mhos/cm 

 Where, 

 εr = dielectric constant of the earth relative to air. 

 σ = Conductivity of the earth
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For Horizontally  polarized wave

The parameters p and b are given by 

 P = πdx/λcosb

 B = 180 – b1

 b1 = tan-1*(εr-1)/x] 

 b2 = tan-1 (εr/x) 

Where, 

 b2 = power factor angle of the impedance offered by the 
earth to the flow of current
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Effect of Earth’s Curvature
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Effect of Earth’s Curvature

 The curvature of earths creates shadow zones, also called 
differed zones

 Due to curvature of earth 

 The effective antenna (h1
t, h

1
r) & actual antenna (ht, hr)  

heights difference the quantum of difference will depend on 
the separation between Tx and Rx
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Effect of Earth’s Curvature

 Change in the number & location of maximas & 
minimas

 There is reduction in d1, beyond which two waves 
tend to be out of phase

 The effect of reflection is less when the angle of 
incidence is moderate or large

 At larger distance, for small incidence angles, DW 
and RW in phase opposition
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Absorption

In VHF, the rain attenuates the wave partly due to 
absorption and partly by scattering

Attenuation is a function of wave length, ε

Drop diameter (water) & drop concentration and the 
losses due to scattering

For heavy rains-serious attenuation (λ=3cm)

Moderate rains- λ=1cm
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Absorption

Attenuation is proportional to the mass of 
water/unit volume and drop size

Losses in ice are considerably less than in liquid 
water

Due to molecular interaction, absorption of 
energy takes place at certain wavelengths due to 
water vapors and gases with peaks
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Super Refraction

544



Super Refraction

 The phenomenon of refraction in the troposphere is due to 
change in refractive index.

 The reflective index ‘n’ for free space is given by

T=absolute temp of air

P=air pressure in mille bars

w=partial pressure of water in mille bars

 The gradient of refractive index n is not always uniform
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Super Refraction

 Ray paths are dependent on variation of n with height

 Variation of ‘n’ leads to the phenomena such as reflection, 
refraction, scattering, fading and ducting

 Duct can be assumed to be a wave guide with leakage

 ‘n’ is replaced by a modified index ‘N’ 

a=6.37x106m (radius of the earth)

h
N n

a
 
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Super Refraction

 N’ is always approx unity since h<<a 

 Let us introduce a new parameter called the refractive index ‘M’

 The gradient of ‘N’ can be written as

 Refractive n=         height ↑ ↓

 Super refraction occurs in areas where warm land air goes out over cool 
sea

  61 10M N  

6
6

2 2
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Super Refraction

It is as shown the temperature inversion zone hot 

land area creates super refractor or duct 

phenomenon
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M-Curves

 ‘M’ is the modified refractive index which was introduced to 
study the characteristics of troposphere

 M-Curves are curves that shows the variation of modified 
index of refraction with height (dM/dn)

 M-Curve is useful in predicting the tx’ion path
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Duct propagation

 When the modified refractive index decreases with height 
change of tx’ion path occurs which is referred as duct 
propagation

 In this propagation the waves from transmitter reach the 
receiver after successive reflections from the ground and 
region beyond the line of sight
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Features of duct propagation

•It happens when (dM/dn) is –ve i.e <0

•When dielectric constant changes with height suddenly & 
rapidly

•It takes place at VHF, UHF & microwave range & in areas 
which covers land & sea

•It is a rare phenomenon & happens during monsoons

•It occurs due to super reflection & temp inversion
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Duct propagation

 When the modified refractive index decreases with height 
change of tx’ion path occurs which is referred as duct 
propagation

 In this propagation the waves from transmitter reach the 
receiver after successive reflections from the ground and 
region beyond the line of sight
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Features of duct propagation

•It happens when (dM/dn) is –ve i.e <0

•When dielectric constant changes with height suddenly & 
rapidly

•It takes place at VHF, UHF & microwave range & in areas 
which covers land & sea

•It is a rare phenomenon & happens during monsoons

•It occurs due to super reflection & temp inversion
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Tropospheric Scattering
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Tropospheric Scattering

 It is the phenomenon in which we can receive signal beyond 
the optical horizon at VHF & UHF range 

 In the upper part of tropospheric region‘n’ (refractive 
index) varies contimously when waves passing through such 
region gets scattered

 Due to this scattered signal we can even receive the signal 
when the receiver is in shadow zone

 The field strength of scattered signal is far better than the 
signal due to diffraction 
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Tropospheric Scattering

 Both tx’ing & Rx’ing antennas should be of high 
power & high gain
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Fading and Path Loss Calculations
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FADING

 The most troublesome and frustrating problem in receiving radio 
signals is variations in signal strength, most commonly known as 
FADING. 

 There are several conditions that can produce fading. 

 When a radio wave is refracted by the ionosphere or reflected 
from the Earth's surface, random changes in the polarization of 
the wave may occur. 

 Vertically and horizontally mounted receiving antennas are 
designed to receive vertically and horizontally polarized waves, 
respectively. 

 558



FADING

 Therefore, changes in polarization cause changes in the received 
signal level because of the inability of the antenna to receive 
polarization changes Fading also results from absorption of the 
rf energy in the ionosphere. 

 Absorption fading occurs for a longer period than other types of 
fading, since absorption takes place slowly.

 Usually, however, fading on ionospheric circuits is mainly a 
result of multipath propagation
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Path Loss:

 Suppose s(t) of power P t is transmitted through a given channel  

 The received signal r(t) of power P r is averaged over any 
random variations due to shadowing.  

 We define the linear path loss of the channel as the ratio of 
transmit power to receiver power

 We define the path loss of the channel also in dB

 (Non negative number)

t
L

r

P
P

P


1010log t
L

r

P
P dB dB

P

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Sky Waves
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Sky Wave

 The sky wave, often called the ionospheric wave, is 
radiated in an upward direction and returned to 
Earth at some distant location because of refraction 
from the ionosphere. 

 This form of propagation is relatively unaffected by 
the Earth's surface and can propagate signals over 
great distances. 

 Usually the high frequency (hf) band is used for sky 
wave propagation
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Sky Wave

 The following in-depth study of the ionosphere and 
its effect on sky waves will help you to better 
understand the nature of sky wave propagation
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Structure of the ionosphere

 As we stated earlier, the ionosphere is the 
region of the atmosphere that extends from 
about 30 miles above the surface of the Earth to 
about 250 miles. 

 It is appropriately named the ionosphere 
because it consists of several layers of 
electrically charged gas atoms called ions. 

 The ions are formed by a process called 
ionization
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INTRODUCTION
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Refraction in the ionosphere

 When a radio wave is transmitted into an ionized layer, 
refraction, or bending of the wave, occurs. 

 As we discussed earlier, refraction is caused by an abrupt 
change in the velocity of the upper part of a radio wave as it 
strikes or enters a new medium. 

 The amount of refraction that occurs depends on three 
main factors:

(1) the density of ionization of the layer, 

(2) the frequency of the radio wave, and

(3) the angle at which the wave enters the layer.


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Density of Layer

 illustrates the relationship between radio waves and ionization density. 

 Each ionized layer has a central region of relatively dense ionization, which 
tapers off in intensity both above and below the maximum region.

 As a radio wave enters a region of INCREASING ionization, the increase in 
velocity of the upper part of the wave causes it to be bent back TOWARD 
the Earth

 While the wave is in the highly dense center portion of the layer, however, 
refraction occurs more slowly because the density of ionization is almost 
uniform. 
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Density of Layer 

 As the wave enters into the upper part of the layer of DECREASING 
ionization, the velocity of the upper part of the wave decreases, and 
the wave is bent AWAY from the Earth.

 If a wave strikes a thin, very highly ionized layer, the wave may be bent 
back so rapidly that it will appear to have been reflected instead of 
refracted back to Earth. 

 To reflect a radio wave, the highly ionized layer must be approximately 
no thicker than one wavelength of the radio wave.

 Since the ionized layers are often several miles thick, ionospheric
reflection is more likely to occur at long wavelengths (low 
frequencies).
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Types of reflectors

1) Flat sheet reflectors
a)small
b) large

2)corner reflectors
a) active corner
b) passive corner

3) parabolic reflectors
4) Elliptical reflectors
5)Hyper bolic reflectors
6) circular reflectors
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Types of reflectors
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Reflection of Sky Waves by 
Ionosphere
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Reflection of Sky Waves by Ionosphere

Sky Wave

 The sky wave, often called the ionospheric wave, is radiated in an upward 
direction and returned to Earth at some distant location because of 
refraction from the ionosphere. 

 This form of propagation is relatively unaffected by the Earth's surface and 
can propagate signals over great distances. 

 Usually the high frequency (hf) band is used for sky wave propagation. 

 The following in-depth study of the ionosphere and its effect on sky waves 
will help you to better understand the nature of sky wave propagation.
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 As we stated earlier, the ionosphere is the region of the atmosphere that 
extends from about 30 miles above the surface of the Earth to about 250 
miles. 

 It is appropriately named the ionosphere because it consists of several 
layers of electrically charged gas atoms called ions. The ions are formed by 
a process called ionization.

Ionization:

 Ionization occurs when high energy ultraviolet light waves from the sun 
enter the ionospheric region of the atmosphere, strike a gas atom, and 
literally knock an electron free from its parent atom. 

 A normal atom is electrically neutral since it contains both a positive 
proton in its nucleus and a negative orbiting electron. 

STRUCTURE OF THE IONOSPHERE
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STRUCTURE OF THE IONOSPHERE

 When the negative electron is knocked free from the atom, the atom becomes 
positively charged (called a positive ion) and remains in space along with the free 
electron, which is negatively charged. 

 This process of upsetting electrical neutrality is known as IONIZATION. 

 The free negative electrons subsequently absorb part of the ultraviolet energy, 
which initially freed them from their atoms. 

 As the ultraviolet light wave continues to produce positive ions and negative 
electrons, its intensity decreases because of the absorption of energy by the free 
electrons, and an ionized layer is formed. 

 The rate at which ionization occurs depends on the density of atoms in the 
atmosphere and the intensity of the ultraviolet light wave, which varies with the 
activity of the sun.
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 Since the atmosphere is bombarded by ultraviolet light waves of 
different frequencies, several ionized layers are formed at different 
altitudes. 

 Lower frequency ultraviolet waves penetrate the atmosphere the least; 
therefore, they produce ionized layers at the higher altitudes. 

 Conversely, ultraviolet waves of higher frequencies penetrate deeper 
and produce layers at the lower altitudes

 An important factor in determining the density of ionized layers is the 
elevation angle of the sun, which changes frequently. 

 For this reason, the height and thickness of the ionized layers vary, 
depending on the time of day and even the season of the year.

STRUCTURE OF THE IONOSPHERE

575



STRUCTURE OF THE IONOSPHERE

 Recombination Recall that the process of ionization involves ultraviolet light waves 
knocking electrons free from their atoms. 

 A reverse process called RECOMBINATION occurs when the free electrons and positive 
ions collide with each other. Since these collisions are inevitable, the positive ions 
return to their original neutral atom state.

 The recombination process also depends on the time of day. Between the hours of 
early morning and late afternoon, the rate of ionization exceeds the rate of 
recombination. 

 During this period, the ionized layers reach their greatest density and exert maximum 
influence on radio waves. 

 During the late afternoon and early evening hours, however, the rate of recombination 
exceeds the rate of ionization, and the density of the ionized layers begins to decrease. 

 Throughout the night, density continues to decrease, reaching a low point just before 
sunrise. 576



Four Distinct Layers

 The ionosphere is composed of three layers designated D, E, and F, 
from lowest level to highest level 

 The F layer is further divided into two layers designated F1 (the lower 
layer) and F2 (the higher layer). 

 The presence or absence of these layers in the ionosphere and their 
height above the Earth varies with the position of the sun. 

 At high noon, radiation in the ionosphere directly above a given point 
is greatest. At night it is minimum. 

 When the radiation is removed, many of the particles that were 
ionized recombine. 
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 The time interval between these conditions finds the position and number of 
the ionized layers within the ionosphere changing. 

 Since the position of the sun varies daily, monthly, and yearly, with respect to 
a specified point on Earth, the exact position and number of layers present 
are extremely difficult to determine. 

 However, the following general statements can be made:

 The D layer ranges from about 30 to 55 miles. Ionization in the D layer is low 
because it is the lowest region of the ionosphere. This layer has the ability to 
refract signals of low frequencies. 

 High frequencies pass right through it and are attenuated. After sunset, the D 
layer disappears because of the rapid recombination of ions.

Four Distinct Layers
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Four Distinct Layers

 The E layer limits are from about 55 to 90 miles. This layer is also known as the Kennelly-
Heaviside layer, because these two men were the first to propose its existence. 

 The rate of ionic recombination in this layer is rather rapid after sunset and the layer is almost 
gone by midnight. This layer has the ability to refract signals as high as 20 megahertz. 

 For this reason, it is valuable for communications in ranges up to about 1500 miles.

 The E layer limits are from about 55 to 90 miles. This layer is also known as the Kennelly-
Heaviside layer, because these two men were the first to propose its existence. 

 The rate of ionic recombination in this layer is rather rapid after sunset and the layer is almost 
gone by midnight. This layer has the ability to refract signals as high as 20 megahertz. 

 For this reason, it is valuable for communications in ranges up to about 1500 miles.

 The F layer exists from about 90 to 240 miles. During the daylight hours, the F layer separates 
into two layers, the F1 and F2 layers
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Four Distinct Layers

 The ionization level in these layers is quite high and varies 
widely during the day. 

 At noon, this portion of the atmosphere is closest to the 
sun and the degree of ionization is maximum. 

 Since the atmosphere is rarefied at these heights, 
recombination occurs slowly after sunset. 

 Therefore, a fairly constant ionized layer is always present. 

 The F layers are responsible for high-frequency, long 
distance transmission
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REFRACTION IN THE IONOSPHERE

•When a radio wave is transmitted into an ionized layer, 
refraction, or bending of the wave, occurs. 

•As we discussed earlier, refraction is caused by an abrupt 
change in the velocity of the upper part of a radio wave as 
it strikes or enters a new medium. 

The amount of refraction that occurs depends on three 
main factors:
(1) The density of ionization of the layer
(2) The frequency of the radio wave, and 
(3) The angle at which the wave enters the layer.
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Ray Path, Critical Frequency, MUF
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Ray Path

 The path that a refracted wave follows to the receiver depends on the 
angle at which the wave strikes the ionosphere. 

 You should remember, however, that the rf energy radiated by a 
transmitting antenna spreads out with distance. 

 The energy therefore strikes the ionosphere at many different angles 
rather than a single angle. 

 After the rf energy of a given frequency enters an ionospheric region, the 
paths that this energy might follow are many. 
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 It may reach the receiving antenna via two or more paths 
through a single layer.

 It may also, reach the receiving antenna over a path involving more 
than one layer, by multiple hops between the ionosphere and 
Earth, or by any combination of these paths.

 When the angle is relatively low with respect to the horizon  (ray 1), 
there is only slight penetration of the layer and the propagation 
path is long. 

 When the angle of incidence is increased  (rays 2 and 3), the rays 
penetrate deeper into the layer but the range of these rays 
decreases. 

Ray Path
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Ray Path

 When a certain angle is reached (ray 3), the penetration of the layer 
and rate of refraction are such that the ray is first returned to Earth at 
a minimal distance from the transmitter. 

 Notice, however, that ray 3 still manages to reach the receiving site on 
its second refraction (called a hop) from the ionospheric layer.

 As the angle is increased still more (rays 4 and 5), the rf energy 
penetrates the central area of maximum ionization of the layer. 

 These rays are refracted rather slowly and are eventually returned to 
Earth at great distances. 
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 As the angle approaches vertical incidence (ray 6), the 
ray is not returned at all, but passes on through the 
layer

Ray Path
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Critical Frequency

 Critical Frequency is defined as the highest frequency which can be 
reflected by a particular ionospheric layer at vertical incidence.

 Each layer has different critical frequency. It is usually denoted by f0

or fc, 

 For the regular layers it is proportional to the the square root of the 
maximum electron density in the layer

 The refractive index ‘μ’ is given by

2
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Critical Frequency

Where,

N is the electron density

At vertical incidence, angle of incidence=00

N=Nmax

f=fc

 As the angle of incidence goes on decreasing, the electron density goes 
on increasing and it reaches to maximum electron density (Nmax) then,

0
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Critical Frequency

fc is expressed in MHz

Nmax is expressed in per cubic meter

 The critical frequency (wave) will get reflected only for vertical incidence 
not for any other angle of incidence

 It is clear from the critical frequency that the radio waves of frequency 
equal to or less than the critical frequency (f<fc) will certainly be reflected 
back by the ionosphere layer irrespective of the angle of incidence

 Radio waves of frequency greater than critical frequency (f<fc) will also be 
returned to earth only when the angle of incidence is glancing otherwise 
the wave will penetrate the layer concerned for a wave of frequency 
greater than critical frequency to be reflected, the condition is, 
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Critical Frequency

sini > μ

Where,
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MUF: Maximum Usable Frequency

 As we discussed earlier, the higher the frequency of a radio wave, the lower the rate of 
refraction by an ionized layer. 

 Therefore, for a given angle of incidence and time of day, there is a maximum frequency 
that can be used for communications between two given locations. 

 This frequency is known as the MAXIMUM USABLE FREQUENCY (muf).

 Waves at frequencies above the muf are normally refracted so slowly that they return to 
Earth beyond the desired location, or pass on through the ionosphere and are lost. 

 You should understand, however, that use of an established muf certainly does not 
guarantee successful communications between a transmitting site and a receiving site. 

 Variations in the ionosphere may occur at any time and consequently raise or lower the 
predetermined muf. 
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MUF: Maximum Usable Frequency

 This is particularly true for radio waves being refracted by the highly 
variable F2 layer. The muf is highest around noon when ultraviolet light 
waves from the sun are the most intense. 

 It then drops rather sharply as recombination begins to take place.

MUF range=8-35 MHz

 For a sky wave to return to earth, angle of reflection, i.e <r=900
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MUF: Maximum Usable Frequency
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MUF: Maximum Usable Frequency

 This means that fmuf is greater than fc by a factor seci. this gives 
the maximum frequency which can be used for sky wave 
communication for a given angle of incidence (i) between two 
points on the earth

2 2seccf i

secmuf cf f i
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LUF, OF, Virtual Height and Skip 
Distance
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Lowest Usable Frequency:(LUF)

 As there is a maximum operating frequency that can be used for 
communications between two points, there is also a minimum operating 
frequency. 

 This is known as the LOWEST USABLE FREQUENCY (luf). 

 As the frequency of a radio wave is lowered, the rate of refraction 
increases. 

 So a wave whose frequency is below the established luf is refracted back 
to Earth at a shorter distance than desired,

 . 
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 The transmission path that results from the rate of 
refraction is not the only factor that determines the luf

 As a frequency is lowered, absorption of the radio wave 
increases. 

 A wave whose frequency is too low is absorbed to such an 
extent that it is too weak for reception. 

 Likewise, atmospheric noise is greater at lower frequencies; 
thus, a low-frequency radio wave may have an unacceptable 
signal-to-noise ratio. 

Lowest Usable Frequency:(LUF)
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Lowest Usable Frequency:(LUF)

 For a given angle of incidence and set of ionospheric conditions, 
the luf for successful communications between two locations 
depends on the refraction properties of the ionosphere, 
absorption considerations, and the amount of atmospheric 
noise present
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Optimum Working Frequency

 Neither the muf nor the luf is a practical operating frequency. 

 While radio waves at the luf can be refracted back to Earth at the 
desired location, the signal-to-noise ratio is still much lower than 
at the higher frequencies, and the probability of multipath 
propagation is much greater. 

 Operating at or near the muf can result in frequent signal fading 
and dropouts when ionospheric variations alter the length of the 
transmission path. 

 The most practical operating frequency is one that you can rely on 
with the least amount of problems
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Optimum Working Frequency

 It should be high enough to avoid the problems of 
multipath, absorption, and noise encountered at the lower 
frequencies; but not so high as to result in the adverse 
effects of rapid changes in the ionosphere. 

 A frequency that meets the above criteria has been 
established and is known as the OPTIMUM WORKING 
FREQUENCY. 

 It is abbreviated "fot" from the initial letters of the French 
words for optimum working frequency,
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Virtual Height

 The virtual height of an ionosheric layer is the equivalent altitude of a 
reflection that would produce the same effect as the actual refraction

c=speed of light=3x108

T=round trip time

2
v

cT
h 
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Skip Distance 

APPLICATION OF SKY WAVE

 Satellite communication

 Mobile communication

 The minimum distance from the transmitter to the point on ground at 
which of a given frequency will return to the earth by the ionosphere is 
called skip distance

For flat earth

 Dskip=skip distance

 h=height at which the reflection occurs

 fMUF=maximum usable frequency

 fc=Critical frequency
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Relation between MUF and Skip 
Distance
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Relation between MUF and Skip Distance

 The ionized layer which as assumed to be thin with sharp 
ionization density gradient so as to obtain mirror like 
reflections

d – Skip distance 

h – Height of the ionospheric layer

θi – Angle of lucidness

θr – Angle of reflection
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Relation between MUF and Skip Distance

 From the fig:
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Relation between MUF and Skip Distance

 Above equation gives MUF in terms of skip distance
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Relation between MUF and Skip Distance
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Multi-hop Propagation
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Multi-hop Propagation

 The transmission path is limited by the skip distance and 
the curvature of the earth

 The longest single hop propagation is obtained when the 
transmitted ray is tangential at the earth surface
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Multi-hop Propagation

 Skip distance decreases as the heights are different multiple hop 
in East-West

 The maximum practical distance covered by a sky wave in single 
hop is 2000km for E-layer and 4000km for F2 layer

 The long distance short wave communication generally involves 
two to four transmission paths and each contribute appreciable 
energy to the receiver
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