
BIG DATA AND BUSINESS ANALYTICS

CSE

VII SEMESTER 




PPT ON
BIG DATA AND BUSINESS ANALYTICS

VII SEM (IARE-R16)



UNIT 1
INTRODUCTION TO BIG DATA



Big Data

• Big data is the term for a collection of data sets so large and
complex that it becomes difficult to process using on-hand
database management tools or traditional data processing
applications.

• The challenges include capture, curation, storage, search,
sharing, transfer, analysis, and visualization.

• The trend to larger data sets is due to the additional information
derivable from analysis of a single large set of related data, as
compared to separate smaller sets with the same total amount
of data, allowing correlations to be found to "spot business
trends, determine quality of research, prevent diseases, link
legal citations, combat crime, and determine real-time roadway
traffic conditions.”
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Big Data: 3V’s
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Volume (Scale) 

• Data Volume

• 44x increase from 2009 2020

• From 0.8 zettabytes to 35zb

• Data volume is increasing 
exponentially 

7

Exponential increase in 

collected/generated data



12+ TBs
of tweet data 

every day

25+ TBs of
log data 

every day
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2+ 

billion
people on 

the Web 

by end 

2011 

30 billion RFID 

tags today

(1.3B in 2005)

4.6 

billion
camera 

phones 

world wide

100s of 

millions 

of GPS 

enabled
devices 

sold 

annually

76 million smart 

meters in 2009…

200M by 2014 



Maximilien Brice, © CERN

CERN’s Large Hydron Collider (LHC) generates 15 PB a year 



The Earthscope

The Earthscope is the world's largest
science project. Designed to track North
America's geological evolution, this
observatory records data over 3.8 million
square miles, amassing 67 terabytes of
data. It analyzes seismic slips in the San
Andreas fault, sure, but also the plume of
magma underneath Yellowstone and
muchmore.(http://www.msnbc.msn.com/
id/44363598/ns/technology_and_science
-future_of_technology/#.TmetOdQ--uI)



Variety (Complexity) 

• Relational Data 
(Tables/Transaction/Legacy Data)

• Text Data (Web)

• Semi-structured Data (XML) 

• Graph Data

• Social Network, Semantic Web 
(RDF), … 

• Streaming Data 

• You can only scan the data once

• A single application can be 
generating/collecting many types of 
data  

• Big Public Data (online, weather, 
finance, etc)  11

To extract knowledge all these types of 
data need to linked together



A Single View to the Customer
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Velocity (Speed)

• Data is begin generated fast and need to be processed fast

• Online Data Analytics

• Late decisions missing opportunities

• Examples

• E-Promotions: Based on your current location, your 
purchase history, what you like  send promotions right 
now for store next to you

• Healthcare monitoring: sensors monitoring your activities 
and body   any abnormal measurements require 
immediate reaction
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Real-time/Fast Data

• The progress and innovation is no longer hindered by the 

ability to collect data

• But, by the ability to manage, analyze, summarize, visualize, 

and discover knowledge from the collected data in a timely 

manner and in a scalable fashion
14

Social media and networks

(all of us are generating data)
Scientific instruments

(collecting all sorts of data) 

Mobile devices 

(tracking all objects all the time)

Sensor technology and 

networks

(measuring all kinds of data) 



Real-Time Analytics/Decision Requirement

Customer

Influence

Behavior

Product 

Recommendations 

that are Relevant

& Compelling
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to join a 

Game or Activity

that expands

business 

Preventing Fraud  

as it is Occurring 

& preventing more

proactively 

Learning why Customers 
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and their offers; in

time to Counter 

Improving the

Marketing 

Effectiveness of a 

Promotion while it

is still in Play  



Some Make it 4V’s
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Harnessing Big Data

• OLTP: Online Transaction Processing (DBMSs)

• OLAP: Online Analytical Processing (Data Warehousing)

• RTAP: Real-Time Analytics Processing (Big Data Architecture &
technology)
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The Model Has Changed…

The Model of Generating/Consuming Data has Changed
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Old Model: Few companies are generating data, all others are
consuming data

New Model: all of us are generating data, and all of us are
consuming data



What’s driving Big Data

19

- Ad-hoc querying and reporting

- Data mining techniques

- Structured data, typical sources

- Small to mid-size datasets

- Optimizations and predictive analytics

- Complex statistical analysis

- All types of data, and many sources

- Very large datasets

- More of a real-time 



Big Data: 
Batch Processing & 

Distributed Data Store
Hadoop/Spark; HBase/Cassandra

BI Reporting
OLAP & 

Dataware house

Business Objects, SAS, 
Informatica, Cognos other SQL 

Reporting Tools

Interactive Business 
Intelligence &  

In-memory RDBMS

QliqView, Tableau, HANA

Big Data:
Real Time &
Single View

Graph Databases

The Evolution of Business Intelligence

1990’s 2000’s 2010’s

Speed

Scale

Scale

Speed



Big Data Analytics

• Big data is more real-time in
nature than traditional DW
applications

• Traditional DW architectures
(e.g. Exadata, Teradata) are not
well-suited for big data apps

• Shared nothing, massively
parallel processing, scale out
architectures are well-suited for
big data apps
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Big Data Technology
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Cloud Computing 

• IT resources provided as a service

• Compute, storage, databases, queues

• Clouds leverage economies of scale of commodity hardware

• Cheap storage, high bandwidth networks & multicore processors

• Geographically distributed data centers

• Offerings from Microsoft, Amazon, Google





Benefits

• Cost & management

• Economies of scale, “out-sourced” resource management

• Reduced Time to deployment

• Ease of assembly, works “out of the box”

• Scaling

• On demand provisioning, co-locate data and compute

• Reliability

• Massive, redundant, shared resources

• Sustainability

• Hardware not owned



Types of Cloud Computing

• Public Cloud: Computing infrastructure is
hosted at the vendor’s premises.

• Private Cloud: Computing architecture is
dedicated to the customer and is not shared
with other organisations.

• Hybrid Cloud: Organisations host some
critical, secure applications in private clouds.
The not so critical applications are hosted in
the public cloud

• Cloud bursting: the organisation uses its own
infrastructure for normal usage, but cloud is
used for peak loads.



Classification of Cloud Computing based on Service 
Provided

• Infrastructure as a service (IaaS)

• Offering hardware related services using the principles of cloud
computing. These could include storage services (database or disk
storage) or virtual servers.

• Amazon EC2, Amazon S3, Rackspace Cloud Servers and Flexiscale.

• Platform as a Service (PaaS)

• Offering a development platform on the cloud.

• Google’s Application Engine, Microsofts Azure, Salesforce.com’s
force.com .

• Software as a service (SaaS)

• Including a complete software offering on the cloud. Users can access a
software application hosted by the cloud vendor on pay-per-use basis.
This is a well-established sector.

• Salesforce.coms’ offering in the online Customer Relationship
Management (CRM) space, Googles gmail and Microsofts hotmail,
Google docs.

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://www.rackspacecloud.com/cloud_hosting_products/servers
http://www.rackspacecloud.com/cloud_hosting_products/servers
http://www.rackspacecloud.com/cloud_hosting_products/servers
http://www.rackspacecloud.com/cloud_hosting_products/servers
http://www.rackspacecloud.com/cloud_hosting_products/servers
http://www.flexiscale.com/
http://code.google.com/appengine/
http://code.google.com/appengine/
http://code.google.com/appengine/
http://code.google.com/appengine/
http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/
http://www.microsoft.com/windowsazure/
http://www.salesforce.com/platform/
http://www.salesforce.com/platform/
http://www.salesforce.com/platform/
http://www.gmail.com/
http://www.hotmail.com/
http://docs.google.com/
http://docs.google.com/
http://docs.google.com/


Infrastructure as a Service (IaaS)



More Refined Categorization

• Storage-as-a-service

• Database-as-a-service

• Information-as-a-service

• Process-as-a-service

• Application-as-a-service

• Platform-as-a-service

• Integration-as-a-service

• Security-as-a-service

• Management/

Governance-as-a-service

• Testing-as-a-service

• Infrastructure-as-a-service

InfoWorld Cloud Computing Deep Dive



Key Ingredients in Cloud Computing

• Service-Oriented Architecture (SOA)

• Utility Computing (on demand)

• Virtualization (P2P Network)

• SAAS (Software As A Service)

• PAAS (Platform AS A Service)

• IAAS (Infrastructure AS A Servie)

• Web Services in Cloud



Enabling Technology: Virtualization

Hardware

Operating System

App App App

Traditional Stack Hardware

OS

App App App

Hypervisor

OS OS

Virtualized Stack



Everything as a Service

• Utility computing = Infrastructure as a Service (IaaS)

• Why buy machines when you can rent cycles?

• Examples: Amazon’s EC2, Rackspace

• Platform as a Service (PaaS)

• Give me nice API and take care of the maintenance, 
upgrades, …

• Example: Google App Engine

• Software as a Service (SaaS)

• Just run it for me!

• Example: Gmail, Salesforce



Cloud versus cloud

• Amazon Elastic Compute Cloud

• Google App Engine

• Microsoft Azure

• GoGrid

• AppNexus



The Obligatory Timeline 

COBOL, 
Edsel

Amazon.com

Darkness
Web as a 

Platform

Web Services, 

Resources Eliminated

Web 

Awareness

InternetARPANET

Dot-Com Bubble Web 2.0 Web Scale
Computing



AWS

• Elastic Compute Cloud – EC2 (IaaS)

• Simple Storage Service – S3 (IaaS)

• Elastic Block Storage – EBS (IaaS)

• SimpleDB (SDB) (PaaS)

• Simple Queue Service – SQS (PaaS)

• CloudFront (S3 based Content Delivery Network – PaaS)

• Consistent AWS Web Services API



Azure platform offer to developers



Topic 1: Data Analytics & Data Mining

• Exploratory Data Analysis 

• Linear Classification (Perceptron & Logistic Regression)  

• Linear Regression 

• C4.5 Decision Tree 

• Apriori

• K-means Clustering 

• EM Algorithm 

• PageRank & HITS 

• Collaborative Filtering 



Topic 2: Hadoop/MapReduce Programming & Data 
Processing

• Architecture of Hadoop, HDFS, and Yarn

• Programming on Hadoop 

• Basic Data Processing: Sort and Join

• Information Retrieval using Hadoop

• Data Mining using Hadoop  (Kmeans+Histograms)

• Machine Learning on Hadoop (EM)

• Hive/Pig

• HBase and Cassandra 



Topic 3: Graph Database and Graph Analytics

• Graph Database (http://en.wikipedia.org/wiki/Graph_database)

• Native Graph Database (Neo4j) 

• Pregel/Giraph (Distributed Graph Processing Engine)

• Neo4j/Titan/GraphLab/GraphSQL



Cloud Resources

• Hadoop on your local machine

• Hadoop in a virtual machine on your local machine (Pseudo-Distributed on 
Ubuntu)

• Hadoop in the clouds with Amazon EC2



Where data comes from?

Different data generators in the world 
•Sensors

•CC cameras

•Social networks- Facebook, Linkedin,Twitter,Youtube

•Online shopping

•Airlines

•National Climatic Data Center[NCDC]

•Hospitlity data

•Newyork Stock Exchange[NYSE]





Why to store data?

Data dictates the fate of  company, because any 
business/company do some meaningful analysis for our further 
estimates about the projects.

Data analysis is important to business



Data Analysis:

In fact, no business can survive without analyzing available 
data.



Data Center Concept





Classification of big data 



Characteristics :3 V’s of big data



Draw backs of traditional system

Huge 

volume 

of data



Draw backs:

Expensive Scalability

Time consuming



Various big data technologies



Big data Global Market



Hadoop Global Job Trends



Challenges of big data



How to overcome the challenges?

Problem 1: Data is too big to store on one machine.

HDFS: Store the data on multiple machines!



Problem 2: Very high end machines are too expensive

HDFS: Run on commodity hardware!



Problem 3: Commodity hardware will fail!

HDFS: Software is intelligent enough to handle hardware failure!



Problem 4: What happens to the data if the machine stores the
data fails?

HDFS: Replicate the data!



Problem 5: How can distributed machines organize the data in a
coordinated way?

HDFS: Master-Slave Architecture!



Divide and conquer philosophy:

Divide Work

Combine Results



Distributed processing is non-trivial

How to assign tasks to different workers in an efficient way?

What happens if tasks fail?

How do workers exchange results?

How to synchronize distributed tasks allocated to different
workers?



Big data storage is challenging

Data Volumes are massive

Reliability of Storing PBs of data is challenging

All kinds of failures: Disk/Hardware/Network Failures

Probability of failures simply increase with the number of
machines …



One popular solution: Hadoop 

Hadoop Cluster at Yahoo! (Credit: Yahoo)



BIG DATA  QUESTIONS

What is data?

What is information?

List out different data generators in the world?

The data generation was vast from -----year and % ---?

How the data is upgraded and show the hierarchy?

What is data ananlysis?

What is data center?

What is batch data?

What is Streaming Data?

What is commodity hardware?



Drastical change in the environment of data analysis?

What is OLAP?

What is OLTP?

What is RTAP?

What is BIG DATA?

BIG DATA example?

What are classifications of big data?

What are characteristics of big data?

What are challenges of big data?

Drawbacks of traditional system?

Difference between big data and Hadoop?



UNIT 2
INTRODUCTION TO HADOOP



History of hadoop





Animal planet for hadoop











What is hadoop?



The name Hadoop is not an acronym; it's a made-up name. The
project's creator, Doug Cutting, explains how the name came about:
The name my kid gave a stuffed yellow elephant. usually called the
toy as hadoop



Features of hadoop:

Cost Effective System

A Large Cluster of Nodes

Parallel Processing Data

Distributed Data

Automatic Failover Management

Data Locality Optimization

Heterogenous Cluster

Scalability























Hadoop Components



Huge 

volume 

of data



Hadoop :It is basically for storing and processing for only huge
volume of data(rather than smaller) with in the cluster of
commodity hardware.

Example:10GB(for smaller)

Cluster

Commodity hardware: mobiles, laptops, pc’s

Example:500 TB



UNIT-3

THE HADOOP DISTRIBUTED FILESYSTEM



HDFS



What is HDFS

HDFS- Hadoop Distributed File System.

HDFS-It is specially designed Filesystem for storing huge 
dataset with a cluster of commodity hardware’s with streaming 
access pattern.



What is Streaming access pattern?

JAVA Slogan : Write once and run anywhere.

HDFS : Write once and read any number of times.



What is a FileSystem



Comparing FS and HDFS

• Block size is 4KB.

• Wastage of free space in the
blocks

• No reuse

• Memory wastage

• Block size is 64MB.

• No Wastage of free space in
the blocks

• Reuse

• No memory wastage



Why the block size is more?

Example:

HDFS: 1GB-64MB=16 blocks.

500GB-64MB=7,500blocks.

FS: 1GB-4KB=10,48,576blocks

500GB-4KB=52,42,88,000blocks



What is Hadoop cluster?

Master – Slave Architecture.

Data Node

Secondary Data Node

Job tracker

Name Node

Task Tracker







UNIT-4

UNDERSTANDING MAP REDUCE FUNDAMENTALS



 What is Map Reduce

 Few interesting facts about Map Reduce

 Map Reduce component and architecture

 How Map Reduce works in Hadoop



What is Map Reduce

Map Reduce is a programming model which is used to process
large data sets in a batch processing manner.

A Map Reduce program is composed of

 a Map() procedure that performs filtering and sorting (such
as sorting students by first name into queues, one queue for
each name)

 a Reduce() procedure that performs a summary operation
(such as counting the number of students in each queue,
yielding name frequencies).





Few interesting facts about Map Reduce

 Apache Hadoop Map-Reduce is an open source
implementation of Google's Map Reduce Framework.

 Although there are so many map-reduce implementation
like Dryad from Microsoft, Dicso from Nokia which have
been developed for distributed systems but Hadoop being
the most popular among them offering open source
implementation of Map-reduce framework.

 Hadoop Map-Reduce framework works on Master/Slave
architecture.







Map Reduce Architecture



Job Tracker:



 Job Tracker is the one to which client application submit map
reduce programs(jobs).

 Job Tracker schedule clients jobs and allocates task to the
slave task trackers that are running on individual worker
machines(date nodes).

Job tracker manage overall execution of Map-Reduce job.
Job tracker manages the resources of the cluster like:

Manage the data nodes i.e. task tracker.
To keep track of the consumed and available resource.
To keep track of already running task, to provide fault-
tolerance for task etc.



Task Tracker

 Each Task Tracker is responsible to execute and manage the
individual tasks assigned by Job Tracker.

 Task Tracker also handles the data motion between the
map and reduce phases.

 One Prime responsibility of Task Tracker is to constantly
communicate with the Job Tracker the status of the Task.

 If the Job Tracker fails to receive a heartbeat from a Task
Tracker within a specified amount of time, it will assume
the Task Tracker has crashed and will resubmit the
corresponding tasks to other nodes in the cluster.



How Map Reduce Engine Works:

The entire process can be listed as follows:
Client applications submit jobs to the Job Tracker.
The Job Tracker talks to the Name Node to determine the location of the
data
The Job Tracker locates TaskTracker nodes with available slots at or near
the data
The Job Tracker submits the work to the chosen TaskTracker nodes.
The TaskTracker nodes are monitored. If they do not submit heartbeat
signals often enough, they are deemed to have failed and the work is
scheduled on a different TaskTracker.
A TaskTracker will notify the Job Tracker when a task fails. The Job
Tracker decides what to do then: it may resubmit the job elsewhere, it
may mark that specific record as something to avoid, and it may may even
blacklist the TaskTracker as unreliable.
When the work is completed, the Job Tracker updates its status.
Client applications can poll the Job Tracker for information.



1.Client submits MapReduce job to Job Tracker:

Whenever client/user submit map-reduce jobs, it goes straightaway
to Job tracker. Client program contains all information like the map,
combine and reduce function, input and output path of the data.

Step by Step Process:





2.Job Tracker Manage and Control Job:

The Job Tracker puts the job in a queue of pending jobs and
then executes them on a FCFS(first come first serve) basis.
The Job Tracker first determine the number of split from the
input path and assign different map and reduce tasks to each
Task Tracker in the cluster. There will be one map task for each
split.
Job tracker talks to the Name Node to determine the location
of the data i.e. to determine the data node which contains the
data.





3.Task Assignment to Task Tracker by Job Tracker:

The task tracker is pre-configured with a number of slots
which indicates that how many task(in number) Task Tracker can
accept.
For example, a TaskTracker may be able to run two map tasks
and two reduce tasks simultaneously.
When the job tracker tries to schedule a task, it looks for an
empty slot in the TaskTracker running on the same server which
hosts the datanode where the data for that task resides.
If not found, it looks for the machine in the same rack. There is
no consideration of system load during this allocation.





4.Task Execution by Task Tracker:

Now when the Task is assigned to Task Tracker, Task tracker
creates local environment to run the Task.
Task Tracker need the resources to run the job. Hence it
copies any files needed from the distributed cache by the
application to the local disk, localize all the job Jars by copying it
from shared File system to Task Tracker's file system.
Task Tracker can also spawn multiple JVMs to handle many
map or reduce tasks in parallel.
TaskTracker actually initiates the Map or Reduce tasks and
reports progress back to the Job Tracker.





5.Send notification to Job Tracker:
When all the map tasks are done by different task tracker they 
will notify the Job Tracker. Job Tracker then ask the selected 
Task Trackers to do the Reduce Phase



6.Task recovery in failover situation:

Although there is single TaskTracker on each node, Task
Tracker spawns off a separate Java Virtual Machine
process to prevent the TaskTracker itself from failing if the
running job(process) crashes the JVM due to some bugs
defined in user written map reduce function



7.Monitor Task Tracker :

The Task Tracker nodes are monitored. A heartbeat is sent 
from the Task Tracker to the Job Tracker every few minutes to 
check its status.
If Task Tracker do not submit heartbeat signals often enough, 
they are deemed to have failed and the work is scheduled on a 
different Task Tracker.
A Task Tracker will notify the Job Tracker when a task fails. 
The Job Tracker decides what to do then: it may resubmit the 
job elsewhere, it may mark that specific record as something 
to avoid, and it may even blacklist the Task Tracker as 
unreliable.



8. Job Completion:

When the work is completed, the Job Tracker 
updates its status.
Client applications can poll the Job Tracker for 
information.



What is Parallel Programming?

In a parallel program, the processing is broken up into several 
parts and each of the part gets executed concurrently.

Important point to note here is that “Each part should have no 
dependency on other parts, No communication should be 
needed to other parts when executing all parts in parallel 
manner.”



Suppose you are writing a program and your program 
needs to access some common data. 

Now when you are executing several instances of that 
program at the same time, there could be conflicts like one 
instance of program is changing some data while 
other instance is reading it.

 So, you have to handle these cases in your program code. 
Here you’re doing Concurrency.

But if your program instance is working on some data 
which no other instance needs, then you’re doing 
here Parallelism.





In other words - Those programs where data is not 
dependent on each other and is isolated can be executed in 
parallel programming manner.

Parallel programs are not only faster but they can also be used 
to solve problems on large datasets using non-local resources.



MapReduce Works on 

Parallel Programming Concept



MapReduce programming model comes with 3 simple stages.

The Shuffle part is done automatically by Hadoop, we just need 
to implement the Map and Reduce parts.
Input for Map stage is always a <Key, Value> pair and it 
produces a set of intermediate key/value pairs as an output.

All intermediate values associated with the same 
intermediate key are grouped together and passed through to 
the reduce stage.

The Reduce stage concepts an intermediate key and a set of 
values for that key. It merges together these values to form a 
possibly smaller set of values.

3 Stages of MapReduce – Map, Shuffle and Reduce:





Map Reduce:

It is a programming model for processing large data sets. Users 
specify a map function that processes a key/value pair to 
generate a set of intermediate key/value pairs, and a reduce 
function that merges all intermediate values associated with 
the same intermediate key.
In Map reduce(MR), computation is near the data i.e. the 
computational tasks are directly performed on the data wherever 
it happens to reside, rather than the previous practices of first 
copying and aggregating raw data into a single repository before 
processing it. These older practices simply won’t work when the 
amount of data is beyond terabytes.
In MR, instead of moving huge volumes of raw data across a 
network, only code is sent over the network.



Map Reduce Phases:



Map Reduce Job:



Advantage of MR  

Same program can run on a small dataset as well as a huge 
dataset (easy scaling) with just a simple configuration 
change.



Input & Output Forms of MR:

In order for mapping, reducing (and other phases like –
combining, partitioning, and shuffling) to seamlessly work 
together, we need to agree on a common structure for the data 
being processed. Hence, we use key/value pairs as input & 
output for all of these phases.INPUT OUTPUT

Map() <K1,V1> list(<K2,V2>)

Reduce() <K2,list(V2)> list(<K3,V3>)



Map Phase:
The map function takes a key/value pair (<k1,v1>) and it
produces zero or more key/value pairs(list(<k2,v2>)) for one
input pair.

map(k1, v1) -->list(k2, v2)

A given input file will be processed in parallel by several
Mappers (as seen in figure-2). There will be one mapper task
for each block of data of the input file. Each mapper will
process all the key/value pairs in the block that it is running on.

So, number of mappers that run in MR job is equal to the
total number of blocks that the input file has.



Reduce Phase:

After all the mappers complete execution, then the Reduce 
phase will start. The reduce function is called once per unique 
(each) map output key. i.e. it will receive a key and a list of 
corresponding values of that key (emitted by all the 
mappers).
Like the map function, the reducer also emits zero or more 
key/value pairs. Reducer output is the final output of a MR Job 
and it can be written to flat files in HDFS

reduce(k2, list(v2)) -->list(k3, v3)
Number of reducers is configurable (can be chosen by the 
user).
Reducer phase is optional (You would not have a reducing 
phase when you don’t need any kind of aggregation)



Shuffle & Sort Phase:

The shuffle and sort phase occurs between Map & Reduce 
phases. By default, hadoop framework handles this phase. It is 
responsible for two primary activities:

1. Determining the reducer that should receive the map output 
key/value pair(called
partitioning).

2. Sorting all the input keys for a given reducer.



Java API to MapReduce:

The Java API to MapReduce is exposed by the 

org.apache.hadoop.mapreduce package. 

Writing a MapReduce program, at its core, is a matter of
subclassing Hadoop-provided Mapper and Reducer base classes,
and overriding the map() and reduce() methods with our own
implementation.



The Mapper Class:
To implement a Mapper, we will subclass the Mapper base 
class (which is present in org.apache.hadoop.mapreduce
package) and override the map()method, as follows:

class Mapper<K1, V1, K2, V2> 

{
void map(K1 key, V1 value, Mapper.Context

context) throws 
IOException,InterruptedException

...
}



The Mapper class is defined in terms of the key/value 

input and output types (K1, V1, K2, V2), and then the 

map() method takes an input key/value pair(K1 key, V1 

value) as its parameters.

The other parameter is an instance of the Context 

class(Mapper.Context context) that provides various 

mechanisms to communicate with the Hadoop framework, 

one of which is to output the results of a map method.



Notice that the map method only refers to a single instance of K1 and V1
key/value pairs.

 This is a critical aspect of the MapReduce model in which you write
classes that process a single record, and the framework is responsible for
all the work required to turn an enormous dataset into a stream of
key/value pairs. You will never have to write map or reduce classes that
try to deal with the full dataset.

Some other methods present in Mapper class are – setup(), cleanup() &
run().All these 3 methods take Context class reference as their input
parameter



public void map(Object key, Text value, Context context ) throws 
IOException, InterruptedException

{ 
StringTokenizer itr = new StringTokenizer(value.toString()); 
while (itr.hasMoreTokens()) 

{ 
word.set(itr.nextToken()); 
context.write(word, one); 

} 
}



sample input the first map emits:

< Hello, 1> < World, 1> < Bye, 1> < World, 1>

The second map emits:

< Hello, 1> < Hadoop, 1> < Goodbye, 1> < Hadoop, 1>

job.setCombinerClass(IntSumReducer.class);

The output of the first map:

< Bye, 1> < Hello, 1> < World, 2>`

The output of the second map:



The Reducer Class:
The Reducer base class works similar to the 
Mapper class and usually requires its subclasses to 
override a single reduce() method. Here is the 
class definition in brief:
public class Reducer<K2, V2, K3, V3>

{
void reduce(K2 key, Iterable<V2> 

values,
Reducer.Context context)throws 

IOException, 
InterruptedException

...
}



The Reducer class is defined in terms of the key/value input 
and output types (K2, V2, K3, V3), and then the reduce() method 
takes a single key and its associated list of values (K2 
key,Iterable<V2> values) as its parameters.

The other parameter is an instance of the Context 
class(Reducer.Context context) that provides various 
mechanisms to communicate with the Hadoop framework, one 
of which is to output the results of a reduce method.

Some other methods present in Reducer class are – setup(), 
cleanup() & run(). All these 3 methods take Context class 
reference as their input parameter.



•Thus the output of the job is:

< Bye, 1>
< Goodbye, 1> 
< Hadoop, 2>
< Hello, 2>
< World, 2>



The Driver Class:

The Driver class communicates with Hadoop framework 
and specifies the configuration elements needed to run a MR 
job like – which Mapper & Reducer class to use, where to find 
input data and its format, where to find output data and its 
format.

The driver logic usually exists in the main method of the class 
written to encapsulate a MR job.

There is no default parent Driver class to subclass.



public static void main(String[] args) throws Exception
{

// Create a configuration Object that is used to set 
other
options
Configuration conf = new Configuration();
GenericOptionsParser args = new 
GenericOptionsParser(conf,
args).getRemainingArgs();
// Create the Object representing the Job
Job job = Job.getInstance(conf, "word count");
// Set the name of the main class in the job jarfile
job.setJarByClass(ExampleDriver.class);



// Set the Mapper Class
job.setMapperClass(ExampleMapper.class);
// Set the Combiner Class
job.setCombinerClass(ExampleReducer.class);
// Set the Reducer Class
job.setReducerClass(IntSumReducer.class);
// Set the types for the final output key and value
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
//set input and output file paths
FileInputFormat.addInputPath(job, new Path(args(0)));
FileOutputFormat.setOutputPath(job, new 
Path(args(1)));
//Execute the job and wait for it to complete
System.exit(job.waitForCompletion(true) ? 0 : 1);

}



The Combiner Class:
In a MR job, data gets transferred between Map and 
Reduce phases. It consumes lot of network bandwidth. We 
can minimize this bandwidth by using a combiner function. 

A Combiner runs on MapReduce map() output and sends its 
output to reduce(). Combiner does local aggregation. Hence 
it is called as a mini-reducer.

Combiner function is an optimization and hence there is no 
guarantee on how many times it will be called.



Combiner’s Contract:

A Combiner can be used only if the algorithm satisfies 
commutative and associative properties.
eg: You can use combiner when you are trying to find the 
maximum value among a list of values but not when you want 
to find the average value of a list of value

max(10, 20, 25, 30) = 30
max(max(10,20), max(25,30)) = max(20,30)=30
whereas, avg(10, 20,25,30,35) = 85/4=21.25
& avg(avg(10,20),avg(25,30,35))=avg(15,30)=22.5



Partitioning:

When there are multiple reducers, the map tasks partition their 
output, each creating one partition for each reduce task. There can 
be many keys (and their associated values) in each partition, but 
the records for any given key are all in a single partition.

The partitioning can be controlled by a user-defined partitioning 
function, but normally the default partitioner—which buckets keys 
using a hash function—works very well. This functionality is 
provided by the HashPartitioner class within the 
org.apache.hadoop.mapreduce.lib.partition package, but it's 
necessary in some cases to provide a custom subclass of 
Partitioner with application-specific partitioning logic. 



• Notice that the getPartition function takes the key, value, and 
number of

• partitions as parameters, any of which can be used by the 
custom partitioning logic.

• A custom partitioning strategy would be particularly necessary 
if, for example, the data

• provided a very uneven distribution when the standard hash 
function was applied. Uneven partitioning can result in some 
tasks having to perform significantly more work than others, 
leading to much longer overall job execution time



Map Reduce word count walkthrough



DATA

INPUT SPLIT
HDFS 

BLOCK





The need for Input Split is – In an HDFS block, we divide the 
data based on size (and not on the number of lines), so, the 
records/lines would not be cut neatly (the last record in a block 
might be split in half).

If we send this block of data for a mapper to process, the last 
record that it will receive would not be a complete record.

Hence, to overcome such issues, an Input Split would
be formed which would have a record till the end even if that 
record crosses the block size



•Assume we have a file of 400MB with consists of 4 records
( e.g : csv file of 400MB and it has 4 rows, 100MB each)

EXAMPLE:

http://i.stack.imgur.com/2z6Fc.jpg


•If the HDFS Block Size is configured as 128MB, then the 4
records will not be distributed among the blocks evenly. It will
look like this

http://i.stack.imgur.com/Lc7be.jpg


Block 1 contains the entire first record and a 28MB chunk
of the second record.

If a mapper is to be run on Block 1, the mapper cannot
process since it won't have the entire second record.

This is the exact problem that input splits solve. Input
splits respects logical record boundaries



Therefore the input split 1 should have both the record 1
and record 2. And input split 2 will not start with the record 2
since record 2 has been assigned to input split 1. Input split 2
will start with record 3.

This is why an input split is only a logical chunk of data. It
points to start and end locations with in blocks.



Data Locality Optimization:

A MR job is split into several map & reduce tasks and Map 
tasks run on the Input splits. 

Ideally, the task JVM to run a map task would be initiated in 
the node where the split/block of data exists. 

While in some scenarios, JVMs might not be free to accept 
another task. 

In Such case, Task Tracker JVM will be initiated at a different 
location (can be on another Node in the same Rack or a 
different Rack)



















UNIT-5

INTRODUCTION TO PIG and HIVE



PIG
PIG’s are omnivores animals which means 

they can consume both plants and animals.

The PIG consumes any type of data whether 

Structured or unStructured or any other 

machine data & helps processing the same.



PIG is on the top of hadoop.



• Map Reduce is very powerful, but:

– It requires a Java programmer.

– User has to re-invent common functionality (join, filter, etc.).





What is PIG?
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