

1

LECTURE NOTES

ON

COMPILER DESIGN

B. Tech V semester

Course Code: AIT004

Dr K Srinivas Reddy

 Professor

Ms. Y Harika Devi

Assistant Professor

COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)

DUNDIGAL, HYDERABAD - 500 043

2

UNIT -I

OVERVIEW OF COMPILATION

1. Overview Of Language Processing System

Preprocessor
A preprocessor produce input to compilers. They may perform the following functions.

1. Macro processing: A preprocessor may allow a user to define macros that

are

 short hands for longer constructs.

2. File inclusion: A preprocessor may include header files into the program text.

3. Rational preprocessor: these preprocessors augment older languages

with more modern flow-of-control and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add capabilities to the

language by certain amounts to build-in macro

1.2 Compiler

Compiler is a translator program that translates a program written in (HLL) the

source program and translates it into an equivalent program in (MLL) the

target program. As an important part of a compiler is error showing to the

programmer.

 Source program
Compiler

target program

 Error msg

3

Executing a program written n HLL programming language is basically of two parts. the

source program must first be compiled translated into a object program. Then the results

object program is loaded into a memory executed.

1.3 Assembler: programmers found it difficult to write or read programs in machine language.

They begin to use a mnemonic (symbols) for each machine instruction, which they would

subsequently translate into machine language. Such a mnemonic machine language is

now called an assembly language. Programs known as assembler were written to

automate the translation of assembly language in to machine language. The input to an

assembler program is called source program, the output is a machine language translation

(object program).

1.4 Interpreter: An interpreter is a program that appears to execute a source
program as if it were machine language.

Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also

uses interpreter. The process of interpretation can be carried out in following phases.

1. Lexical analysis

2. Syntax analysis

3. Semantic analysis

4. Direct Execution

Advantages:

Disadvantages:

Loader and Link-editor:

Once the assembler procedures an object program, that program must be p laced into

4

memory and executed. The assembler could place the object program directly in memory

and transfer control to it, thereby causing the machine language program to be

execute. This would waste core by leaving the assembler in memory while the user‟s

program was being executed. Also the programmer would have to retranslate his program

with each execution, thus wasting translation time. To overcome this problems of wasted

translation time and memory. System programmers developed another component called

loader.

“A loader is a program that places programs into memory and prepares them for

execution.” It would be more efficient if subroutines could be translated into object form the

loader could ”relocate” directly behind the user‟s program. The task of adjusting programs o

they may be placed in arbitrary core locations is called relocation. Relocation loaders

perform four functions.

1.6 Translator

A translator is a program that takes as input a program written in one language and

produces as output a program in another language. Beside program translation, the translator

performs another very important role, the error-detection. Any violation of d HLL

specification would be detected and reported to the programmers. Important role of translator

are:

1. Translating the hll program input into an equivalent ml program.

2. Providing diagnostic messages wherever the programmer violates specification of the hll.

Type Of Translators:-

1. Interpreter

2. Compiler

3. preprocessor

List Of Compilers

5

4. Phases Of A Compiler:
A compiler operates in phases. A phase is a logically interrelated operation that takes

source program in one representation and produces output in another representation. The

phases of a compiler are shown in below

There are two phases of compilation.

a. Analysis (Machine Independent/Language Dependent)

b. Synthesis (Machine Dependent/Language independent)

Compilation process is partitioned into no-of-sub processes called „phases‟.

Lexical Analysis:-
Lexical Analysis or Scanners reads the source program one character at a time, carving the

source program into a sequence of automatic units called tokens.

Syntax Analysis:-
The second stage of translation is called syntax analysis or parsing. In this phase

expressions, statements, declarations etc… are identified by using the results of lexical

analysis. Syntax analysis is aided by using techniques based on formal grammar of the

programming language.

6

Intermediate Code Generations:-

An intermediate representation of the final machine language code is produced. This phase

bridges the analysis and synthesis phases of translation.

Code Optimization:-

This is optional phase described to improve the intermediate code so that the output runs

faster and takes less space.

Code Generation:-
The last phase of translation is code generation. A number of optimizations to Reduce the

length of machine language program are carried out during this phase. The output of the

code generator is the machine language program of the specified computer.

Table Management (or) Book-keeping:-

This is the portion to keep the names used by the program and records essential

information about each. The data structure used to record this information called a „Symbol

Table‟.

Error Handlers:-
It is invoked when a flaw error in the source program is detected. The output of LA is a

stream of tokens, which is passed to the next phase, the syntax analyzer or parser. The SA

groups the tokens together into syntactic structure called as expression. Expression may

further be combined to form statements. The syntactic structure can be regarded as a tree

whose leaves are the token called as parse trees.

The parser has two functions. It checks if the tokens from lexical analyzer, occur in

pattern that are permitted by the specification for the source language. It also imposes

on tokens a tree-like structure that is used by the sub-sequent phases of the compiler.

Example, if a program contains the expression A+/B after lexical analysis this expression

might appear to the syntax analyzer as the token sequence id+/id. On seeing the /, the syntax

analyzer should detect an error situation, because the presence of these two adjacent

binary operators violates the formulations rule of an expression.

Syntax analysis is to make explicit the hierarchical structure of the incoming token stream

by identifying which parts of the token stream should be grouped.

Example, (A/B*C has two possible interpretations.)

1- divide A by B and then multiply by C or

2- multiply B by C and then use the result to divide A.

Each of these two interpretations can be represented in terms of a parse tree.

Intermediate Code Generation:-
The intermediate code generation uses the structure produced by the syntax analyzer to

create a stream of simple instructions. Many styles of intermediate code are possible.

7

One common style uses instruction with one operator and a small number of

operands.The output of the syntax analyzer is some representation of a parse tree. The

intermediate code generation phase transforms this parse tree into an intermediate language

representation of the source program.

Code Optimization:-
This is optional phase described to improve the intermediate code so that the

output runs faster and takes less space. Its output is another intermediate code

program that does the same job as the original, but in a way that saves time and / or

spaces.

/* 1, Local Optimization:-

There are local transformations that can be applied to a

program to make an improvement. For example,

If A > B goto L2

Goto L3 L2 :

This can be replaced by a single statement If A < B goto L3

Another important local optimization is the elimination of common

sub-expressions

A := B + C + D

E := B + C + F
Might be evaluated as

 T1 := B + C

 A := T1 + D

 E := T1 + F

Take this advantage of the common sub-expressions B + C.

 Loop Optimization:-

 Another important source of optimization concerns about increasing the speed of loops.

A typical loop improvement is to move a computation that produces the same result

each time around the loop to a point, in the program just before the loop is entered.*/

Code generator :-
C produces the object code by deciding on the memory locations for data, selecting code

to access each data and selecting the registers in which each computation is to be done.

Many computers have only a few high speed registers in which computations can be

performed quickly. A good code generator would attempt to utilize registers as efficiently as

possible.

Error Handing:-

One of the most important functions of a compiler is the detection and reporting of

errors in the source program. The error message should allow the programmer to determine

exactly where the errors have occurred. Errors may occur in all or the phases of a compiler.

8

Whenever a phase of the compiler discovers an error, it must report the error to the error

handler, which issues an appropriate diagnostic msg. Both of the table-management and

error-Handling routines interact with all phases of the compiler.

Example:

position:= initial + rate *60

Lexical Analyzer

Tokens id1 = id2 + id3 * id4

Syntsx Analyzer

=

id1 +

id2 *

id3 id4

Semantic Analyzer

=

id1 +

id2 *

id3 60

int to real

Intermediate Code Generator

temp1:= int to real

(60) temp2:= id3 *

temp1 temp3:= id2 +

temp2

id1:= temp3.

9

Code Optimizer

Temp1: = id3 * 60.0

Id1:= id2 +temp1

Code Generator

MOVF id3,r2

MULF *60.0 r2

MOVF id2, r2

ADDF r2, r1

MOVF r1,id1

2.1 Lexical Analyzer:

The LA is the first phase of a compiler. Lexical analysis is called as linear analysis or

scanning. In this phase the stream of characters making up the source program is read from

left-to-right and grouped into tokens that are sequences of characters having a collective

meaning.

Upon receiving a „get next token‟ command form the parser, the lexical analyzer reads

the input character until it can identify the next token. The LA return to the parser

representation for the token it has found. The representation will be an integer code, if

the token is a simple construct such as parenthesis, comma or colon.

LA may also perform certain secondary tasks as the user interface. One such task is striping

out from the source program the commands and white spaces in the form of blank, tab and

new line characters. Another is correlating error message from the compiler with the source

program.

10

Lexical Analysis Vs Parsing:

Lexical analysis

Parsing

 A Scanner simply turns an input String (say a file)

into a list of tokens. These tokens represent

things like identifiers, parentheses, operators etc.

The lexical analyzer (the "lexer") parses

individual symbols from the source code file into

tokens. From there, the "parser" proper turns those

whole tokens into sentences of your grammar

A parser converts this list of tokens into a Tree-

like object to represent how the tokens fit

together to form a cohesive whole

(sometimes referred to as a sentence).

A parser does not give the nodes any

meaning beyond structural cohesion. The next

thing to do is extract meaning from this structure

 (sometimes called contextual

analysis).

Token, Lexeme, Pattern:

Token: Token is a sequence of characters that can be treated as a single logical entity.

Typical tokens are,

1) Identifiers 2) keywords 3) operators 4) special symbols 5) constants

Pattern: A set of strings in the input for which the same token is produced as output. This set

of strings is described by a rule called a pattern associated with the token.

Lexeme: A lexeme is a sequence of characters in the source program that is matched by the

pattern for a token.

Example:
Description of token

Token

lexeme

pattern

const

const

const

if

if

If

relation

<,<=,= ,< >,>=,>

< or <= or = or < > or >= or letter

followed by letters & digit

 i

pi

any numeric constant

nun

3.14

any character b/w “and “except"

literal

"core"

pattern

A pattern is a rule describing the set of lexemes that can represent a particular

token in source program.

11

Lexical Errors:
Lexical errors are the errors thrown by the lexer when unable to continue. Which means

that there‟s no way to recognise a lexeme as a valid token for you lexer? Syntax errors, on the

other side, will be thrown by your scanner when a given set of already recognized valid

tokens don't match any of the right sides of your grammar rules. Simple panic-mode error

handling system requires that we return to a high-level parsing function when a parsing or

lexical error is detected.

Error-recovery actions are:

5. Difference Between Compiler And Interpreter:

1. A compiler converts the high level instruction into machine language while an

interpreter converts the high level instruction into an intermediate form.

2. Before execution, entire program is executed by the compiler whereas after

translating the first line, an interpreter then executes it and so on.

3. List of errors is created by the compiler after the compilation process while an

interpreter stops translating after the first error.

4. An independent executable file is created by the compiler whereas interpreter is

required by an interpreted program each time.

5. The compiler produce object code whereas interpreter does not produce object code. In the

process of compilation the program is analyzed only once and then the code is generated

whereas source program is interpreted every time it is to be executed and every time the

source program is analyzed. Hence interpreter is less efficient than compiler.

6. Examples of interpreter: A UPS Debugger is basically a graphical source level

debugger but it contains built in C interpreter which can handle multiple source files.

7. Example of compiler: Borland c compiler or Turbo C compiler compiles the programs

written in C or C++.

4. Regular Expressions:

4.1 Specification Of Tokens
There are 3 specifications of tokens:

1) Strings

2) Language

3) Regular expression

Strings and Languages
An alphabet or character class is a finite set of symbols.

A string over an alphabet is a finite sequence of symbols drawn from that alphabet.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

12

A language is any countable set of strings over some fixed alphabet.

In language theory, the terms "sentence" and "word" are often used as synonyms for "string."

The length of a string s, usually written |s|, is the number of occurrences of symbols in s. For

example, banana is a string of length six. The empty string, denoted ε, is the string of length

zero.

Operations on strings
The following string-related terms are commonly used:

1. A prefix of string s is any string obtained by removing zero or more symbols from the

end of strings.

For example, ban is a prefix of banana.

2. A suffix of string s is any string obtained by removing zero or more symbols from

the beginning of s.

For example, nana is a suffix of banana.

3. A substring of s is obtained by deleting any prefix and any suffix from s.

 For example, nan is a substring of banana.

4. The proper prefixes, suffixes, and substrings of a string s are those prefixes, suffixes,

and substrings, respectively of s that are not ε or not equal to s itself.

5. A subsequence of s is any string formed by deleting zero or more not necessarily

consecutive positions of s.

For example, baan is a subsequence of banana.

Operations on languages:
The following are the operations that can be applied to languages:

1. Union

2. Concatenation

3. Kleene closure

4.Positive closure

The following example shows the operations on strings:

Let L={0,1} and S={a,b,c}

1

.
Union : L U S={0,1,a,b,c}

2
.

Concatenation : L.S={0a,1a,0b,1b,0c,1c}

3

.
Kleene closure : L

*
={ ε,0,1,00….}

4 Positive closure : L
+
={0,1,00….}

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

13

.

4.2 Regular Expressions:
Each regular expression r denotes a language L(r).

Here are the rules that define the regular expressions over some alphabet Σ and the languages

that those expressions denote:

1. ε is a regular expression, and L(ε) is { ε }, that is, the language whose sole member is the

empty string.

2. If„a‟is a symbol in Σ, then „a‟is a regular expression, and L(a) = {a}, that is, the

language with one string, of length one, with „a‟in its one position.

3. Suppose r and s are regular expressions denoting the languages L(r) and L(s). Then,

o (r)|(s) is a regular expression denoting the language L(r) U L(s).

o (r)(s) is a regular expression denoting the language L(r)L(s).

o (r)* is a regular expression denoting (L(r))*.
o (r) is a regular expression denoting L(r).

4. The unary operator * has highest precedence and is left associative.

5. Concatenation has second highest precedence and is left associative.
 has lowest precedence and is left associative.

 0
Regular Definitions:
For notational convenience, we may wish to give names to regular expressions and to define

regular expressions using these names as if they were symbols.

Identifiers are the set or string of letters and digits beginning with a letter. The

following regular definition provides a precise specification for this class of string.

Example-1,
Ab*|cd? Is equivalent to (a(b*)) | (c(d?)) Pascal identifier

Letter - A | B | ……| Z | a | b |……| z| Digits - 0 | 1 | 2 | …. | 9

Id - letter (letter / digit)*

Shorthand‟s

Certain constructs occur so frequently in regular expressions that it is convenient to introduce

notational shorthands for them.

1. One or more instances (+):

o The unary postfix operator + means “ one or more instances of” .

http://notes.pmr-insignia.org/

14

o If r is a regular expression that denotes the language L(r), then (r)
+
 is a regular

expression that denotes the language (L (r))
+

o Thus the regular expression a

+
 denotes the set of all strings of one or more a‟s.

o The operator

+
 has the same precedence and associativity as the operator

*
.

2. Zero or one instance (?):

- The unary postfix operator ? means “zero or one instance of”.

- The notation r? is a shorthand for r | ε.

- If „r‟ is a regular expression, then (r)? is a regular expression that denotes the

language L(r) U { ε }.

3. Character Classes:

- The notation [abc] where a, b and c are alphabet symbols denotes the regular expression

 a | b | c.

- Character class such as [a – z] denotes the regular expression a | b | c | d | ….|z.

- We can describe identifiers as being strings generated by the regular expression,

[A–Za–z][A–Za–z0–9]*

Non-regular Set
A language which cannot be described by any regular expression is a non-regular set.

Example: The set of all strings of balanced parentheses and repeating strings cannot be

described by a regular expression. This set can be specified by a context-free grammar.

Recognition Of Tokens:

Consider the following grammar fragment:

stmt → if expr then stmt

|if expr then stmt else stmt |ε

expr → term relop term |term

term → id |num

where the terminals if , then, else, relop, id and num generate sets of strings given by

the following regular definitions:

If → if

then → then

else → else
relo

p → <|<=|=|<>|>|>=

id → letter(letter|digit)
*

num → digit
+
 (.digit

+
)?(E(+|-)?digit

+
)?

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

15

For this language fragment the lexical analyzer will recognize the keywords if, then, else, as

well as the lexemes denoted by relop, id, and num. To simplify matters, we assume keywords

are reserved; that is, they cannot be used as identifiers.

Lexeme

Token Name

Attribute Value

 Any ws

_

_

 if

if

_

 then

then

_

 else

else

_

 Any id

id

pointer to table entry

 Any number

number

pointer to table

entry

 <

relop

LT

 <=

relop

LE

 =

relop

ET

 < >

relop

NE

Transition Diagram:
Transition Diagram has a collection of nodes or circles, called states. Each

state represents a condition that could occur during the process of scanning the input

looking for a lexeme that matches one of several patterns .Edges are directed from

one state of the transition diagram to another. each edge is labeled by a symbol or

set of symbols.If we are in one state s, and the next input symbol is a, we look

for an edge out of state s labeled by a. if we find such an edge ,we advance the

forward pointer and enter the state of the transition diagram to which that edge

leads.

Some important conventions about transition diagrams are
1. Certain states are said to be accepting or final .These states indicates that a

lexeme has been found, although the actual lexeme may not consist of all

positions b/w the lexeme Begin and forward pointers we always indicate an

accepting state by a double circle.

2. In addition, if it is necessary to return the forward pointer one position, then

we shall additionally place a * near that accepting state.

3. One state is designed the state ,or initial state ., it is indicated by an edge

labeled “start” entering from nowhere .the transition diagram always begins in

the state before any input symbols have been used.

16

As an intermediate step in the construction of a LA, we first produce a

stylized flowchart, called a transition diagram. Position in a transition diagram,

are drawn as circles and are called as states.

The above TD for an identifier, defined to be a letter followed by any no of

letters or digits.A sequence of transition diagram can be converted into

program to look for the tokens specified by the diagrams. Each state gets a

segment of code.

Automata:
Automation is defined as a system where information is transmitted and used for

performing some functions without direct participation of man.

1. An automation in which the output depends only on the input is called automation

without memory.
2. An automation in which the output depends on the input and state also is called as

 automation with memory.

3. An automation in which the output depends only on the state of the machine is called

a Moore machine.

4. An automation in which the output depends on the state and input at any instant of time is

called a mealy machine.

Description Of Automata
1. An automata has a mechanism to read input from input tape,

2. Any language is recognized by some automation, Hence these automation are

basically language „acceptors‟ or „language recognizers‟.

Types of Finite Automata
Deterministic Automata
Non-Deterministic Automata.

Deterministic Automata:
A deterministic finite automata has at most one transition from each state on any input.

A DFA is a special case of a NFA in which:-

1. it has no transitions on input € ,

2. Each input symbol has at most one transition from any state.

DFA formally defined by 5 tuple notation M = (Q, ∑, δ, qo, F), where Q is a finite „set of

states‟, which is non empty.

17

∑ is „input alphabets‟, indicates input set.

qo is an „initial state‟ and qo is in Q ie, qo, ∑, Q F is a

set of „Final states‟,

δ is a „transmission function‟ or mapping function, using this function the next

state can be determined.

The regular expression is converted into minimized DFA by the following procedure:

Regular expression → NFA → DFA → Minimized DFA
The Finite Automata is called DFA if there is only one path for a specific input

from current state to next state.

a

 So
a

S2

b

S1

From state S0 for input „a‟ there is only one path going to S2. similarly from so

there is only one path for input going to S1.

Nondeterministic Automata:

A NFA ia A mathematical model consists of

A set of states S.
A set of input symbols ∑.
A transition is a move from one state to another.
A state so that is distinguished as the start (or initial) state

A set of states F distinguished as accepting (or final) state.

A number of transition to a single symbol.

A NFA can be diagrammatically represented by a labeled directed graph, called a transition

graph, in which the nodes are the states and the labeled edges represent the transition

function.

This graph looks like a transition diagram, but the same character can label two or more

transitions out of one state and edges can be labeled by the special symbol € as well as input

symbols.

18

The transition graph for an NFA that recognizes the language (a|b)*abb is shown

5. Bootstrapping:

When a computer is first turned on or restarted, a special type of absolute loader, called as

bootstrap loader is executed. This bootstrap loads the first program to be run by the

computer usually an operating system. The bootstrap itself begins at address O in the

memory of the machine. It loads the operating system (or some other program) starting at

address 80. After all of the object code from device has been loaded, the bootstrap program

jumps to address 80, which begins the execution of the program that was loaded.

Such loaders can be used to run stand-alone programs independent of the operating system or

the system loader. They can also be used to load the operating system or the loader itself into

memory.

Loaders are of two types:

 Linking loader.

 Linkage editor.

Linkage loaders, perform all linking and relocation at load time.

Linkage editors, perform linking prior to load time and dynamic linking, in which the linking

function is performed at execution time.

A linkage editor performs linking and some relocation; however, the linkaged program is

written to a file or library instead of being immediately loaded into memory. This approach

reduces the overhead when the program is executed. All that is required at load time is a very

simple form of relocation.

Me mory

L ibrary
L inking
Loader

Objec t
Progra m

Linking Loa de r

L inking
Loader

Me mory

L ibrary

Objec t
Progra m

L inkage
Ed it or

L inked
Progra m

Re loc at ing
Loader

Linka ge Editor

6. Pass And Phases Of Translation:

19

Phases: (Phases are collected into a front end and back end)

Frontend:
 The front end consists of those phases, or parts of phase, that depends primarily on the
source language and is largely independent of the target machine. These normally include
lexical and syntactic analysis, the creation of the symbol table, semantic analysis, and the
generation of intermediate code.
 A certain amount of code optimization can be done by front end as well. the front end
also includes the error handling tha goes along with each of these phases.

Back end:
The back end includes those portions of the compiler that depend on the target machine and
generally, these portions do not depend on the source language .

7. Lexical Analyzer Generator:

Creating a lexical analyzer with Lex:

 First, a specification of a lexical analyzer is prepared by creating a program lex.l in the

Lex language. Then, lex.l is run through the Lex compiler to produce a C program

lex.yy.c.

 Finally, lex.yy.c is run through the C compiler to produce an object program a.out, which

is the lexical analyzer that transforms an input stream into a sequence of tokens.

Lex Specification

A Lex program consists of three parts:

{ definitions }

%%

{ rules }

%%

{ user subroutines }

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

20

o Definitions include declarations of variables, constants, and regular definitions

o Rules are statements of the form p1 {action1}p2 {action2} … pn {action}

o where pi is regular expression and actioni describes what action the lexical analyzer

should take when pattern pi matches a lexeme. Actions are written in C code.

o User subroutines are auxiliary procedures needed by the actions. These can be

compiled separately and loaded with the lexical analyzer.

8. Input Buffering

The LA scans the characters of the source program one at a time to discover

tokens. Because of large amount of time can be consumed scanning characters,

specialized buffering techniques have been developed to reduce the amount of

overhead required to process an input character.

Buffering techniques:

1. Buffer pairs

2. Sentinels

The lexical analyzer scans the characters of the source program one a t a time to discover

tokens. Often, however, many characters beyond the next token many have to be examined

before the next token itself can be determined. For this and other reasons, it is desirable for

the lexical analyzer to read its input from an input buffer. Figure shows a buffer divided into

two halves of, say 100 characters each. One pointer marks the beginning of the token being

discovered. A look ahead pointer scans ahead of the beginning point, until the token is

discovered .we view the position of each pointer as being between the character last read and

the character next to be read. In practice each buffering scheme adopts one convention either

a pointer is at the symbol last read or the symbol it is ready to read.

Token beginnings look ahead pointer, The distance which the look ahead pointer may have

to travel past the actual token may be large.

For example, in a PL/I program we may see: DECALRE (ARG1, ARG2… ARG n) without

knowing whether DECLARE is a keyword or an array name until we see the character that

follows the right parenthesis.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

21

TOPDOWN PARSING

Context-free Grammars: Definition:

Formally, a context-free grammar G is a 4-tuple G = (V, T, P, S), where:

1. V is a finite set of variables (or nonterminals). These describe sets of “related” strings.

2. T is a finite set of terminals (i.e., tokens).

3. P is a finite set of productions, each of the form

 A  

 where A  V is a variable, and   (V  T)* is a sequence of terminals and

nonterminals.

S  V is the start symbol.

Example of CFG:

E ==>EAE | (E) | -E | id

 A==> + | - | * | / |

 Where E, A are the non-terminals while id, +, *, -, /,(,) are the terminals.

 Syntax analysis:

In syntax analysis phase the source program is analyzed to check whether if conforms to the

source language‟s syntax, and to determine its phase structure. This phase is often separated

into two phases:

 Lexical analysis: which produces a stream of tokens?

 Parser: which determines the phrase structure of the program based on the context-free

grammar for the language?

Parsing:

Parsing is the activity of checking whether a string of symbols is in the language of some

grammar, where this string is usually the stream of tokens produced by the lexical analyzer.

If the string is in the grammar, we want a parse tree, and if it is not, we hope for some kind of

error message explaining why not.

There are two main kinds of parsers in use, named for the way they build the parse trees:

 Top-down: A top-down parser attempts to construct a tree from the root, applying

productions forward to expand non-terminals into strings of symbols.

 Bottom-up: A Bottom-up parser builds the tree starting with the leaves, using productions

in reverse to identify strings of symbols that can be grouped together.

In both cases the construction of derivation is directed by scanning the input sequence from

left to right, one symbol at a time.

22

Parse Tree:

Parser
Re s t of

front end
Lexic a l

Ana ly zer

Symbo l
Tab le

A parse tree is the graphical representation of the structure of a sentence according to its

grammar.

Example:

Let the production P is:

 E T | E+T

 T F | T*F

 F V | (E)

 V a | b | c |d

The parse tree may be viewed as a representation for a derivation that filters out the choice

regarding the order of replacement.

Parse tree for a * b + c

E

E T

T

+

+ F

V

b

F

V

a

F

V

c

23

Parse tree for a + b * c is:

E

E T

T

+

* T

F

V

F

V

a

F

V

c

b

Parse tree for (a * b) * (c + d)

E

T

F T *

F

F

c

E (E)

+

T

F

d

T

T

T

E

V

a

+

V

V

(E) F

F

V

b

2.2 Syntax Trees:

Parse tree can be presented in a simplified form with only the relevant structure information

by:

 Leaving out chains of derivations (whose sole purpose is to give operators difference

precedence).

24

 Labeling the nodes with the operators in question rather than a non-terminal.

The simplified Parse tree is sometimes called as structural tree or syntax tree.

a * b + c a + b * c (a + b) * (c + d)

E

+

c

b a

*

E E

+ *

a *

c b

(E) (E)

+ +

a b c d

Synt ax T re e s

Syntax Error Handling:

If a compiler had to process only correct programs, its design & implementation would be

greatly simplified. But programmers frequently write incorrect programs, and a good

compiler should assist the programmer in identifying and locating errors.The programs

contain errors at many different levels.

For example, errors can be:

1) Lexical – such as misspelling an identifier, keyword or operator

2) Syntactic – such as an arithmetic expression with un-balanced parentheses.

3) Semantic – such as an operator applied to an incompatible operand.

4) Logical – such as an infinitely recursive call.

Much of error detection and recovery in a compiler is centered around the syntax analysis

phase.

The goals of error handler in a parser are:

 It should report the presence of errors clearly and accurately.

 It should recover from each error quickly enough to be able to detect subsequent errors.

 It should not significantly slow down the processing of correct programs.

2.3 Ambiguity:

Several derivations will generate the same sentence, perhaps by applying the same

productions in a different order. This alone is fine, but a problem arises if the same sentence

has two distinct parse trees. A grammar is ambiguous if there is any sentence with more than

one parse tree.

Any parses for an ambiguous grammar has to choose somehow which tree to return. There

are a number of solutions to this; the parser could pick one arbitrarily, or we can provide

some hints about which to choose. Best of all is to rewrite the grammar so that it is not

ambiguous.

25

There is no general method for removing ambiguity. Ambiguity is acceptable in spoken

languages. Ambiguous programming languages are useless unless the ambiguity can be

resolved.

Fixing some simple ambiguities in a grammar:

 Ambiguous language unambiguous

(i) A  B | AA Lists of one or more B‟s A  BC

 C  A | E

(ii) A  B | A;A Lists of one or more B‟s with punctuation A  BC

 C  ;A | E

(iii) A  B | AA | E lists of zero or more B‟s A  BA | E

Any sentence with more than two variables, such as (arg, arg, arg) will have multiple parse

trees.

2.4 Left Recursion:

If there is any non terminal A, such that there is a derivation A 


 A  for some string,

then the grammar is left recursive.

Algorithm for eliminating left Recursion:

1. Group all the A productions together like this:

 A  A 1 | A 2 | - - - | A m | 1 | 2 | - - - | n

Where,

A is the left recursive non-terminal,

 is any string of terminals and

 is any string of terminals and non terminals that does not begin with A.

2. Replace the above A productions by the following:

 A  1 A
I
| 2 A

I
 | - - - | n A

I

A

I
  1 A

I
| 2 A

I
| - - - |m A

I
| 

Where, A
I
 is a new non terminal.

Top down parsers cannot handle left recursive grammars.

If our expression grammar is left recursive:

26

 This can lead to non termination in a top-down parser.

 for a top-down parser, any recursion must be right recursion.

 we would like to convert the left recursion to right recursion.

Example 1:

Remove the left recursion from the production: A  A  | 

Applying the transformation yields:

A   A
I

A
I
  A

I
| 

 
Remaining part after A.

Example 2:
Remove the left recursion from the productions:

E  E + T | T

T  T * F | F

Applying the transformation yields:

 E  T E
I
 T  F T

I

E
I
 T E

I
|  T

I
 * F T

I
| 

Example 3:

Remove the left recursion from the productions:

E  E + T | E – T | T

T  T * F | T/F | F

Applying the transformation yields:

E  T E
I

T  F T
I

E  + T E
I
| - T E

I
|  T

I
 * F T

I
| /F T

I
| 

Example 4:

Remove the left recursion from the productions:

S  A a | b

A  A c | S d | 

1.The non terminal S is left recursive because S  A a  S d a

 But it is not immediate left recursive.

2.Substitute S-productions in A  S d to obtain:

 A  A c | A a d | b d | 

3.Eliminating the immediate left recursion:

 S  A a | b

Left Recursive.

 Eliminate

27

 A  b d A
I
| A

I

 A
I
 c A

I
| a d A

I
| 

Example 5:

Consider the following grammar and eliminate left recursion.

S  A a | b

A  S c | d

The nonterminal S is left recursive in two steps:

S  A a  S c a  A a c a  S c a c a - - -

Left recursion causes the parser to loop like this, so remove:

Replace A  S c | d by A  A a c | b c | d

and then by using Transformation rules:

A  b c A
I
| d A

I

A
I
 a c A

I
 | 

2.5 Left Factoring:

Left factoring is a grammar transformation that is useful for producing a grammar suitable

for predictive parsing.

When it is not clear which of two alternative productions to use to expand a non-terminal A,

we may be able to rewrite the productions to defer the decision until we have some enough of

the input to make the right choice.

Algorithm:

For all A  non-terminal, find the longest prefix  that occurs in two or more right-hand

sides of A.

If    then replace all of the A productions,

A   I |  2 | - - - |  n | r

With

A   A
I
| r

A
I
 I | 2| - - - | n | 

Where, A
I
 is a new element of non-terminal.

Repeat until no common prefixes remain.

It is easy to remove common prefixes by left factoring, creating new non-terminal.

For example consider:

V    |  r

Change to:

V   V
I

V
I
  |

r

Example 1:
Eliminate Left factoring in the grammar:

S  V := int

28

V  alpha „[„ int ‟]‟ | alpha

Becomes:

S  V := int

V  alpha V
I

V
I
 ‟[„ int ‟] | 

Top Down Parsing:

Top down parsing is the construction of a Parse tree by starting at start symbol and

“guessing” each derivation until we reach a string that matches input. That is, construct tree

from root to leaves.

The advantage of top down parsing in that a parser can directly be written as a program.

Table-driven top-down parsers are of minor practical relevance. Since bottom-up parsers are

more powerful than top-down parsers, bottom-up parsing is practically relevant.

For example, let us consider the grammar to see how top-down parser works:

S  if E then S else S | while E do S | print

E  true | False | id

The input token string is: If id then while true do print else print.

1. Tree:

S

Input: if id then while true do print else print.

Action: Guess for S.

2. Tree:

S

if E then S e ls e S

Input: if id then while true do print else print.

Action: if matches; guess for E.

3. Tree:

S

if E then S e ls e S

id

Input: id then while true do print else print.

Action: id matches; then matches; guess for S.

29

4. Tree:

S

if E then S e ls e S

id w hi le E do S

Input: while true do print else print.

Action: while matches; guess for E.

5. Tree:

S

if E then S e ls e S

id while E do S

t rue

Input: true do print else print

Action: true matches; do matches; guess S.

6. Tree:

S

if E then S e ls e S

id while E do S

t rue print

Input: print else print.

Action: print matches; else matches; guess for S.

30

7. Tree:

S

if E then S e ls e S

id while E do S

t rue print

print

Input: print.

Action: print matches; input exhausted; done.

Recursive Descent Parsing:

Top-down parsing can be viewed as an attempt to find a left most derivation for an input

string. Equivalently, it can be viewd as a attempt to construct a parse tree for the input

starting from the root and creating the nodes of the parse tree in preorder.

The special case of recursive –decent parsing, called predictive parsing, where no

backtracking is required. The general form of top-down parsing, called recursive descent,

that may involve backtracking, that is, making repeated scans of the input.

Recursive descent or predictive parsing works only on grammars where the first terminal

symbol of each sub expression provides enough information to choose which production to

use.

Recursive descent parser is a top down parser involving backtracking. It makes a repeated

scans of the input. Backtracking parsers are not seen frequently, as backtracking is very

needed to parse programming language constructs.

Example: consider the grammar

S→cAd

A→ab|a

And the input string w=cad. To construct a parse tree for this string top-down, we initially

create a tree consisting of a single node labeled scan input pointer points to c, the first symbol

of w. we then use the first production for S to expand tree and obtain the tree of Fig(a).

 S S S

 c A d c A d c A

d

 a b a

 Fig(a) Fig(b) Fig(c)

31

The left most leaf, labeled c, matches the first symbol of w, so we now advance the input

pointer to a ,the second symbol of w, and consider the next leaf, labeled A. We can then

expand A using the first alternative for A to obtain the tree in Fig (b). we now have a match

for the second input symbol so we advance the input pointer to d, the third, input symbol, and

compare d against the next leaf, labeled b. since b does not match the d ,we report failure

and go back to A to see where there is any alternative for Ac that we have not tried but that

might produce a match.

In going back to A, we must reset the input pointer to position2,we now try second

alternative for A to obtain the tree of Fig(c).The leaf matches second symbol of w and the

leaf d matches the third symbol .

The left recursive grammar can cause a recursive- descent parser, even one with

backtracking, to go into an infinite loop.That is ,when we try to expand A, we may eventually

find ourselves again trying to ecpand A without Having consumed any input.

Predictive Parsing:

Predictive parsing is top-down parsing without backtracking or look a head. For many

languages, make perfect guesses (avoid backtracking) by using 1-symbol look-a-head. i.e., if:

A  I | 

2 | - - - | n.

Choose correct i by looking at first symbol it derive. If  is an alternative, choose it

last.

This approach is also called as predictive parsing. There must be at most one production in

order to avoid backtracking. If there is no such production then no parse tree exists and an

error is returned.

The crucial property is that, the grammar must not be left-recursive.

Predictive parsing works well on those fragments of programming languages in which

keywords occurs frequently.

 For example:

stmt  if exp then stmt else stmt

| while expr do stmt

| begin stmt-list end.

then the keywords if, while and begin tell, which alternative is the only one that could

possibly succeed if we are to find a statement.

The model of predictive parser is as follows:

32

A predictive parser has:

 Stack

 Input

 Parsing Table

 Output

The input buffer consists the string to be parsed, followed by $, a symbol used as a right end

marker to indicate the end of the input string.

The stack consists of a sequence of grammar symbols with $ on the bottom, indicating the

bottom of the stack. Initially the stack consists of the start symbol of the grammar on the top

of $.

Recursive descent and LL parsers are often called predictive parsers, because they operate by

predicting the next step in a derivation.

The algorithm for the Predictive Parser Program is as follows:

Input: A string w and a parsing table M for grammar G

Output: if w is in L(g),a leftmost derivation of w; otherwise, an error indication.

Method: Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$

in the input buffer. The program that utilizes the predictive parsing table M to produce a

parse for the input is:

Set ip to point to the first symbol of w$;

repeat

 let x be the top stack symbol and a the symbol pointed to by ip;

 if X is a terminal or $ then

 if X = a then

 pop X from the stack and advance ip

 else error()

 else /* X is a non-terminal */

 if M[X, a] = X  Y1 Y2 Yk then begin

33

 pop X from the stack;

 push Yk, Yk-1,Y1 onto the stack, with Y1 on top;

 output the production X  Y1 Y2 Yk

end

else error()

until X = $ /*stack is empty*

FIRST and FOLLOW:

The construction of a predictive parser is aided by two functions with a grammar G. these

functions, FIRST and FOLLOW, allow us to fill in the entries of a predictive parsing table

for G, whenever possible. Sets of tokens yielded by the FOLLOW function can also be used

as synchronizing tokens during pannic-mode error recovery.

 If α is any string of grammar symbols, let FIRST (α) be the set of terminals that begin the

strings derived from α. If α=>€,then € is also in FIRST(α).

Define FOLLOW (A), for nonterminals A, to be the set of terminals a that can appear

immediately to the right of A in some sentential form, that is, the set of terminals a such that

there exist a derivation of the form S=>αAaβ for some α and β. If A can be the rightmost

symbol in some sentential form, then $ is in FOLLOW(A).

Computation of FIRST ():
To compute FIRST(X) for all grammar symbols X, apply the following rules until no more

terminals or € can be added to any FIRST set.

 If X is terminal, then FIRST(X) is {X}.

 If X→€ is production, then add € to FIRST(X).

 If X is nonterminal and X→Y1 Y2……Yk is a production, then place a in FIRST(X) if for

some i,a is in FIRST(Yi),and € is in all of FIRST(Yi),and € is in all of FIRST(Y1),…..

FIRST(Yi-1);that is Y1………. Yi-1==>€.if € is in FIRST(Yj), for all j=,2,3…….k, then add € to

FIRST(X).for example, everything in FIRST(Y1) is surely in FIRST(X).if Y1 does not derive

€,then we add nothing more to FIRST(X),but if Y1=>€,then we add FIRST(Y2) and so on.

FIRST (A) = FIRST (I) U FIRST (2) U - - - U FIRST (n)

Where, A  1 | 2 | - - - |n, are all the productions for A.

FIRST (A) = if   FIRST (A) then FIRST (A)

else (FIRST (A) - {}) U FIRST ()

Computation of FOLLOW ():
 To compute FOLLOW (A) for all nonterminals A, apply the following rules until nothing

can be added to any FOLLOW set.

 Place $ in FOLLOW(s), where S is the start symbol and $ is input right end marker .

 If there is a production A→αBβ,then everything in FIRST(β) except for € is placed in

FOLLOW(B).

 If there is production A→αB, or a production A→αBβ where FIRST (β) contains €

(i.e.,β→€),then everything in FOLLOW(A)is in FOLLOW(B).

34

Example:

Construct the FIRST and FOLLOW for the grammar:

A  BC | EFGH | H

B  b

C  c | 

E  e | 

F  CE

G  g

H  h | 

Solution:

Finding first () set:

1. first (H) = first (h)  first () = {h, }

2. first (G) = first (g) = {g}

3. first (C) = first (c)  first () = c, }

4. first (E) = first (e)  first () = {e, }

5. first (F) = first (CE) = (first (c) - {})  first (E)

 = (c, } {})  {e, } = {c, e, }

6. first (B) = first (b)={b}

7. first (A) = first (BC)  first (EFGH)  first (H)

 = first (B)  (first (E) – {})  first (FGH)  {h, }

 = {b, h, }  {e}  (first (F) – {})  first (GH)

 = {b, e, h, }  {C, e}  first (G)

 = {b, c, e, h, }  {g} = {b, c, e, g, h, }

Finding follow() sets:

1. follow(A) = {$}

2. follow(B) = first(C) – {}  follow(A) = {C, $}

3. follow(G) = first(H) – {}  follow(A)

 ={h, } – {}  {$} = {h, $}

4. follow(H) = follow(A) = {$}

5. follow(F) = first(GH) – {} = {g}

35

6. follow(E) = first(FGH) m- {}  follow(F)

 = ((first(F) – {})  first(GH)) – {}  follow(F)

 = {c, e}  {g}  {g} = {c, e, g}

7. follow(C) = follow(A)  first (E) – {}  follow (F)

 ={$}  {e, }  {g} = {e, g, $}

Example 1:

Construct a predictive parsing table for the given grammar or Check whether the given

grammar is LL(1) or not.

E  E + T | T

T  T * F | F

F  (E) | id

Step 1:

Suppose if the given grammar is left Recursive then convert the given grammar (and ) into

non-left Recursive grammar (as it goes to infinite loop).

E  T E
I

E
I
 + T E

I
| 

T
I
 F T

I

T
I
 * F T

I
| 

F  (E) | id

Step 2:
Find the FIRST(X) and FOLLOW(X) for all the variables.

The variables are: {E, E
I
, T, T

I
, F}

Terminals are: {+, *, (,), id} and $

Computation of FIRST() sets:

FIRST (F) = FIRST ((E)) U FIRST (id) = {(, id}

FIRST (T
I
) = FIRST (*FT

I
) U FIRST () = {*, }

FIRST (T) = FIRST (FT
I
) = FIRST (F) = {(, id}

FIRST (E
I
) = FIRST (+TE

I
) U FIRST () = {+, }

FIRST (E) = FIRST (TE
I
) = FIRST (T) = {(, id}

Computation of FOLLOW () sets:

 Relevant production

FOLLOW (E) = {$} U FIRST ()) = {$,)} F  (E)

36

FOLLOW (E
I
) = FOLLOW (E) = {$,)} E  TE

I

FOLLOW (T) = (FIRST (E
I
) - {}) U FOLLOW (E) U FOLLOW (E

I
) E  TE

I

 = {+,), $} E
I
 +TE

I

FOLLOW (T
I
) = FOLLOW (T) = {+,), $} T  FT

I

FOLLOW (F) = (FIRST (T
I
) - {}) U FOLLOW (T) U FOLLOW (T

I
) T  T

I

 = {*, +,), $}

Step 3:
Construction of parsing table:

Terminals

Variables

+ * () id $

E E  TE
I
 E  TE

I

E
I

E
I


+TE
I

 E
I
  E

 I
 

T T  FT
I
 T  FT

I

T
I
 T

I
  T

I
 *FT T

I
  T

I
 

F F  (E) F  id

Fill the table with the production on the basis of the FIRST(). If the input symbol is an

 in FIRST(), then goto FOLLOW() and fill   , in all those input symbols.

Let us start with the non-terminal E, FIRST(E) = {(, id}. So, place the production E 

TE
I
 at (and id.

For the non-terminal E
I
, FIRST (E

I
) = {+, }.

So, place the production E
I
 +TE

I
 at + and also as there is a  in FIRST(E

I
), see

FOLLOW(E
I
) = {$,)}. So write the production E

I
  at the place $ and).

Similarly:

For the non-terminal T, FIRST(T) = {(, id}.

So place the production T  FT
I
 at (and id.

For the non-terminal T
I
, FIRST (T

I
) = {*, }

So place the production T
I
 *FT

I
 at * and also as there is a  in FIRST (T

I
), see

FOLLOW (T
I
) = {+, $,)}, so write the production T

I
  at +, $ and).

For the non-terminal F, FIRST (F) = {(, id}.

So place the production F  id at id location and F  (E) at (as it has two productions.

Table 3.1. Parsing Table

37

Finally, make all undefined entries as error.

As these were no multiple entries in the table, hence the given grammar is LL(1).

Step 4:

Moves made by predictive parser on the input id + id * id is:

STACK INPUT REMARKS

$ E id + id * id $

E and id are not identical; so see E on id in parse table, the

production is ETE
I
; pop E, push E

I
and T i.e., move in

reverse order.

$ E
I
T id + id * id $

See T on id the production is T  F T
I
;

Pop T, push T
I
 and F; Proceed until both are identical.

$ E
I
 T

I
F id + id * id $ F  id

$ E
I
 T

I
id id + id * id $ Identical; pop id and remove id from input symbol.

$ E
I
 T

I
 + id * id $ See T

I
 on +; T

I
  so, pop T

I

$ E
I
 + id * id $ See E

I
 on +; E

I
 +T E

I
; push E

I
 , + and T

$ E
I
 T + + id * id $ Identical; pop + and remove + from input symbol.

$ E
I
 T id * id $

$ E
I
 T

I
 F id * id $ T  F T

I

$ E
I
 T

I
 id id * id $ F  id

$ E
I
 T

I
 * id $

$ E
I
 T

I
 F * * id $ T

I
 * F T

I

$ E
I
 T

I
 F id $

$ E
I
 T

I
 id id $ F  id

$ E
I
 T

I
 $ T

I
 

$ E
I
 $ E

I
 

$ $ Accept.

Predictive parser accepts the given input string. We can notice that $ in input and stuck, i.e.,

both are empty, hence accepted.

LL (1) Grammar:

The first L stands for “Left-to-right scan of input”. The second L stands for “Left-most

derivation”. The „1‟ stands for “1 token of look ahead”.

Table 3.2 Moves made by the parser on input id + id

* id

38

No LL (1) grammar can be ambiguous or left recursive.

If there were no multiple entries in the Recursive decent parser table, the given grammar is

LL (1).

If the grammar G is ambiguous, left recursive then the recursive decent table will have atleast

one multiply defined entry.

The weakness of LL(1) (Top-down, predictive) parsing is that, must predict which

production to use.

Error Recovery in Predictive Parser:

Error recovery is based on the idea of skipping symbols on the input until a token in a

selected set of synchronizing tokens appear. Its effectiveness depends on the choice of

synchronizing set. The Usage of FOLLOW and FIRST symbols as synchronizing tokens

works reasonably well when expressions are parsed.

For the constructed table., fill with synch for rest of the input symbols of FOLLOW set and

then fill the rest of the columns with error term.

Terminals

Variables

+ * () id $

E error error E  TE
I
 synch E  TE

I
 synch

E
I

E
I


+TE
I

error error E
I
  error E

 I
 

T synch error T  FT
I
 synch T  FT

I
 synch

T
I
 T

I
  T

I
 *FT error T

I
  error T

I
 

F synch synch F  (E) synch F  id synch

If the parser looks up entry in the table as synch, then the non terminal on top of the stack is

popped in an attempt to resume parsing. If the token on top of the stack does not match the

input symbol, then pop the token from the stack.

The moves of a parser and error recovery on the erroneous input) id*+id is as follows:

STACK INPUT REMARKS

$ E) id * + id $ Error, skip)

$ E id * + id $

$ E
I
 T id * + id $

$ E
I
 T

I
F id * + id $

Table3.3 :Synchronizing tokens added to parsing table for table 3.1.

39

$ E
I
 T

I
 id id * + id $

$ E
I
 T

I
 * + id $

$ E
I
 T

I
F * * + id $

$ E
I
 T

I
F + id $ Error; F on + is synch; F has been popped.

$ E
I
 T

I
 + id $

$ E
I
 + id $

$ E
I
 T + + id $

$ E
I
 T id $

$ E
I
 T

I
 F id $

$ E
I
 T

I
 id id $

$ E
I
 T

I
 $

$ E
I
 $

$ $ Accept.

Example 2:

Construct a predictive parsing table for the given grammar or Check whether the given

grammar is LL(1) or not.

S  iEtSS
I
 | a

S
I
  eS | 

E  b

Solution:

Computation of First () set:

1. First (E) = first (b) = {b}

2. First (S
I
) = first (eS)  first () = {e, }

3. first (S) = first (iEtSS
I
)  first (a) = {i, a}

Computation of follow() set:

1. follow (S) = {$}  first (S
I
) – {}  follow (S)  follow (S

I
)

 = {$}  {e} = {e, $}

2. follow (S
I
) = follow (S) = {e, $}

3. follow (E) = first (tSS
I
) = {t}

Table 3.4. Parsing and error recovery moves made by predictive parser

40

The parsing table for this grammar is:

 a b e i t $

S S  a S 

iEtSS
I

S
I
 S

I
  

S
I
  eS

 S
I
  

E E  b

As the table multiply defined entry. The given grammar is not LL(1).

Example 3:

Construct the FIRST and FOLLOW and predictive parse table for the grammar:

S  AC$

C  c | 

A  aBCd | BQ | 

B  bB | d

Q  q

Solution:

Finding the first () sets:

First (Q) = {q}

First (B) = {b, d}

First (C) = {c, }

First (A) = First (aBCd)  First (BQ)  First ()

 = {a}  First (B)  First (d) {}

 = {a}  First (bB)  First (d)  {}

 = {a}  {b}  {d}  {}

 = {a, b, d, }

First (S) = First (AC$)

 = (First (A) – {})  (First (C) – {})  First ()

 = ({a, b, d, } – {})  ({c, } – {})  {}

 = {a, b, d, c, }

Finding Follow () sets:

Follow (S) = {#}

Follow (A) = (First (C) – {})  First ($) = ({c, } – {})  {$}

 Follow (A) = {c, $}

Follow (B) = (First (C) – {})  First (d)  First (Q)

 = {c}  {d}  {q} = {c, d, q}

Follow (C) = (First ($)  First (d) = {d, $}

Follow (Q) = (First (A) = {c, $}

The parsing table for this grammar is:

41

 a b c D q $ #

S SAC$ SAC

$

SAC

$

SAC

$

 SAC

$

A AaBCd ABQ A ABQ A

B BbB Bd

C Cc C C

Q Qq

Moves made by predictive parser on the input abdcdc$ is:

Stack symbol Input Remarks

#S abdcdc$# S  AC$

#$CA abdcdc$# A  aBCd

#$CdCBa abdcdc$# Pop a

#$CdCB bdcdc$# B  bB

#$CdCBb bdcdc$# Pop b

#$CdCB dcdc$# B  d

#$CdCd dcdc$# Pop d

#$CdC cdc$# C  c

#$Cdc cdc$# Pop C

#$Cd dc$# Pop d

#$C c$# C  c

#$c c$# Pop c

#$ $# Pop $

Accepted

42

UNIT- II

BOTTOM UP PARSING

Bottom Up Parsing:

 Bottom-up parser builds a derivation by working from the input sentence back towards the

start symbol S. Right most derivation in reverse order is done in bottom-up parsing.

(The point of parsing is to construct a derivation. A derivation consists of a series of rewrite

steps)

Sr0r1r2- - - rn-1rnsentence

Bottom-up

Assuming the production A, to reduce ri ri-1 match some RHS  against ri then replace 

with its corresponding LHS, A.

In terms of the parse tree, this is working from leaves to root.

Example – 1:

Sif E then S else S/while E do S/ print

E true/ False/id

Input: if id then while true do print else print.

Parse tree:

Basic idea: Given input string a, “reduce” it to the goal (start) symbol, by looking for

substring that match production RHS.

E

I

true

S

if E then S Clse S

I

Print

id While do S

I

Print

I

S

43

Top down Vs Bottom-up parsing:

Top-down Bottom-up

1. Construct tree from root to leaves

2. “Guers” which RHS to substitute for

nonterminal

3. Produces left-most derivation

4. Recursive descent, LL parsers

5. Recursive descent, LL parsers

6. Easy for humans

1. Construct tree from leaves to root

2. “Guers” which rule to “reduce”

terminals

3. Produces reverse right-most derivation.

4. Shift-reduce, LR, LALR, etc.

5. “Harder” for humans.

 Bottom-up can parse a larger set of languages than topdown.

 Both work for most (but not all) features of most computer languages.

44

Example – 2:

Right-most derivation

SaAcBe llp: abbcde/ SaAcBe

AAb/b  aAcde

Bd aAbcde

  abbcde

Bottom-up approach

“Right sentential form” Reduction

abbcde

aAbcde Ab

Aacde AAb

AacBe Bd

S SaAcBe

Steps correspond to a right-most derivation in reverse.

(must choose RHS wisely)

Example – 3:

SaABe

AAbc/b

Bd

1/p: abbcde

Right most derivation:

S  aABe

  aAde Since () Bd

  aAbcde Since () AAbc

  abbcde Since () Ab

45

Parsing using Bottom-up approach:

Input Production used

abbcde

aAbcde Ab

AAde AAbc

AABe Bd

S parsing is completed as we got a start symbol

Hence the 1/p string is acceptable.

Example – 4

EE+E

EE*E

E(E)

Eid

1/p: id1+id2+id3

Right most derivation

 E E+E

 E+E*E

 E+E*id3

 E+id2*id3

 id1+id2*id3

Parsing using Bottom-up approach:

Go from left to right

id1+id2*id3

 E+id2*id3 Eid

 E+E*id3 Eid

E*id3 EE+E

E*E Eid

 E

= start symbol, Hence acceptable.

46

Handles:

Always making progress by replacing a substring with LHS of a matching production will

not lead to the goal/start symbol.

For example:

abbcde

aAbcde Ab

aAAcde Ab

struck

Informally, A Handle of a string is a substring that matches the right side of a production,

and whose reduction to the non-terminal on the left side of the production represents one step

along the reverse of a right most derivation.

If the grammar is unambiguous, every right sentential form has exactly one handle.

More formally, A handle is a production A and a position in the current right-sentential

form  such that:

SA/

For example grammar, if current right-sentential form is

a/Abcde

Then the handle is AAb at the marked position. „a‟ never contains non-terminals.

Handle Pruning:

Keep removing handles, replacing them with corresponding LHS of production, until we

reach S.

Example:

EE+E/E*E/(E)/id

Right-sentential form Handle Reducing production

a+b*c a Eid

E+b*c b Eid

47

E+E*C C Eid

E+E*E E*E EE*E

E+E E+E EE+E

E

The grammar is ambiguous, so there are actually two handles at next-to-last step.

We can use parser-generators that compute the handles for us.

Shift- Reduce Parsing:

Shift Reduce Parsing uses a stuck to hold grammar symbols and input buffer to hold string to

be parsed, because handles always appear at the top of the stack i.e., there‟s no need to look

deeper into the state.

A shift-reduce parser has just four actions:

1. Shift-next word is shifted onto the stack (input symbols) until a handle is formed.

2. Reduce – right end of handle is at top of stack, locate left end of handle within the stack.

 Pop handle off stack and push appropriate LHS.

3. Accept – stop parsing on successful completion of parse and report success.

4. Error – call an error reporting/recovery routine.

Possible Conflicts:

Ambiguous grammars lead to parsing conflicts.

1. Shift-reduce: Both a shift action and a reduce action are possible in the same state

(should we shift or reduce)

Example: dangling-else problem

2. Reduce-reduce: Two or more distinct reduce actions are possible in the same state.

(Which production should we reduce with 2).

Example:

Stmt id (param) (a(i) is procedure call)

Param id

Expr  id (expr) /id (a(i) is array subscript)

Stack input buffer action

$…aa (i) ….$ Reduce by ?

48

Should we reduce to param or to expr? Need to know the type of a: is it an array or a

function. This information must flow from declaration of a to this use, typically via a symbol

table.

Shift – reduce parsing example: (Stack implementation)

Grammar: EE+E/E*E/(E)/id

Input: id1+id2+id3

One Scheme to implement a handle-pruning, bottom-up parser is called a shift-reduce parser.

Shift reduce parsers use stack and an input buffer.

The sequence of steps is as follows:

1. initialize stack with $.

2. Repeat until the top of the stack is the goal symbol and the input token is “end

 of life”.

a. Find the handle

If we don‟t have a handle on top of stack, shift an input symbol onto the stack.

b. Prune the handle

if we have a handle (A) on the stack, reduce

(i) pop // symbols off the stack (ii)push A onto the stack.

Stack input Action

$ id1+id2*id3$ Shift

$ id1 +id2*id3$ Reduce by Eid

$E +id2*id3$ Shift

$E+ id2*id3$ Shift

$E+ id2 *id3$ Reduce by Eid

$E+E *id3$ Shift

$E+E* id3$ Shift

$E+E* id3 $ Reduce by Eid

$E+E*E $ Reduce by EE*E

$E+E $ Reduce by EE+E

$E $ Accept

49

Example 2:

Goal  Expr

Expr  Expr + term | Expr – Term | Term

Term  Tem & Factor | Term | factor | Factor

Factor  number | id | (Expr)

The expression grammar : x – z * y

Stack Input Action

$ Id - num * id Shift

$ id - num * id Reduce factor  id

$ Factor - num * id Reduce Term  Factor

$ Term - num * id Reduce Expr  Term

$ Expr - num * id Shift

$ Expr - num * id Shift

$ Expr – num * id Reduce Factor  num

$ Expr – Factor * id Reduce Term  Factor

$ Expr – Term * id Shift

$ Expr – Term * id Shift

$ Expr – Term * id - Reduce Factor  id

$ Expr – Term & Factor - Reduce Term  Term * Factor

$ Expr – Term - Reduce Expr  Expr – Term

$ Expr - Reduce Goal  Expr

$ Goal - Accept

50

1. shift until the top of the stack is the right end of a handle

2. Find the left end of the handle & reduce.

Procedure:

1. Shift until top of stack is the right end of a handle.

2. Find the left end of the handle and reduce.

* Dangling-else problem:

stmtif expr then stmt/if expr then stmt/other then example string is: if E1 then if E2 then S1

else S2 has two parse trees (ambiguity) and so this grammar is not of LR(k) type.

Operator – Precedence Parsing:

Precedence/ Operator grammar: The grammars having the property:

1. No production right side is should contain .

2. No production sight side should contain two adjacent non-terminals.

Is called an operator grammar.

Operator – precedence parsing has three disjoint precedence relations, <.,=and .> between

certain pairs of terminals. These precedence relations guide the selection of handles and

have the following meanings:

RELATION MEANING

a<.b „a‟ yields precedence to „b‟.

a=b „a‟ has the same precedence „b‟

a.>b „a‟ takes precedence over „b‟.

51

Operator precedence parsing has a number of disadvantages:

1. It is hard to handle tokens like the minus sign, which has two different precedences.

2. Only a small class of grammars can be parsed.

3. The relationship between a grammar for the language being parsed and the operator-

precedence parser itself is tenuous, one cannot always be sure the parser accepts exactly

the desired language.

Disadvantages:

1. L(G) L(parser)

2. error detection

3. usage is limited

4. They are easy to analyse manually

Example:

Grammar: EEAE|(E)|-E/id

 A+|-|*|/|

Input string: id+id*id

The operator – precedence relations are:

 Id + * $

Id .> .> .>

+ <. .> <. .>

* <. .> .> .>

$ <. <. <.

Solution: This is not operator grammar, so first reduce it to operator grammar form, by

eliminating adjacent non-terminals.

Operator grammar is:

EE+E|E-E|E*E|E/E|EE|(E)|-E|id

The input string with precedence relations interested is:

$<.id.> + <.id.> * <.id.> $

Scan the string the from left end until first .> is encounted.

$<.id.>+<.id.>*<.id.<$

This occurs between the first id and +.

Scan backwards (to the left) over any =‟s until a <. Is encounted. We scan backwards to $.

52

$<.id.>+<.id.>*<.id.>$

  

Everything to the left of the first .> and to the right of <. Is called handle. Here, the handle is

the first id.

Then reduce id to E. At this point we have:

E+id*id

By repeating the process and proceding in the same way:

$+<.id.>*<.id.>$

substitute Eid,

After reducing the other id to E by the same process, we obtain the right-sentential form

E+E*E

Now, the 1/p string afte detecting the non-terminals sis:

  $+*$

Inserting the precedence relations, we get:

$<.+<.*.>$

  

The left end of the handle lies between + and * and the right end between * and $. It

indicates that, in the right sentential form E+E*E, the handle is E*E.

Reducing by EE*E, we get:

E+E

Now the input string is:

 $<.+$

Again inserting the precedence relations, we get:

 $<.+.>$

  

reducing by EE+E, we get,

 $ $

and finally we are left with:

E

Hence accepted.

53

Input string Precedence relations

inserted

Action

id+id*id $<.id.>+<.id.>*<.id.>$

E+id*id $+<.id.>*<.id.>$ Eid

E+E*id $+*<.id.>$ Eid

E+E*E $+*$

E+E*E $<.+<.*.>$ EE*E

E+E $<.+$

E+E $<.+.>$ EE+E

E $$ Accepted

LR Parsing Introduction:

The "L" is for left-to-right scanning of the input and the "R" is for constructing a

rightmost derivation in reverse.

Why LR Parsing:

1. LR parsers can be constructed to recognize virtually all programming-

language constructs for which context-free grammars can be written.

2. The LR parsing method is the most general non-backtracking shift-reduce

parsing method known, yet it can be implemented as efficiently as

other shift-reduce methods.

3. The class of grammars that can be parsed using LR methods is a proper subset

of the class of grammars that can be parsed with predictive parsers.

54

4. An LR parser can detect a syntactic error as soon as it is possible to do so on a

left-to-right scan of the input.

The disadvantage is that it takes too much work to constuct an LR parser by

hand for a typical programming-language grammar. But there are lots of LR

parser generators available to make this task easy.

LR Parsers:

LR(k) parsers are most general non-backtracking shift-reduce parsers. Two cases of interest

are k=0 and k=1. LR(1) is of practical relevance.

„L‟ stands for “Left-to-right” scan of input.

„R‟ stands for “Rightmost derivation (in reverse)”.

„K‟ stands for number of input symbols of look-a-head that are used in making parsing

decisions. When (K) is omitted, „K‟ is assumed to be 1.

LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token)

for handle recognition.

LR(1) parsers recognize languages that have an LR(1) grammar.

A grammar is LR(1) if, given a right-most derivation

Sr0r1r2- - - rn-1rnsentence.

We can isolate the handle of each right-sentential form ri and determine the production by

which to reduce, by scanning ri from left-to-right, going atmost 1 symbol beyond the right

end of the handle of ri.

Parser accepts input when stack contains only the start symbol and no remaining input

symbol are left.

LR(0) item: (no lookahead)

Grammar rule combined with a dot that indicates a position in its RHS.

Ex– 1: S
I
  .S$

 S.x

 S.(L)

Ex-2: AXYZ generates 4LR(0) items –

55

A.XYZ

AX.YZ

AXY.Z

AXYZ.

The „.‟ Indicates how much of an item we have seen at a given state in the parse.

A.XYZ indicates that the parser is looking for a string that can be derived from XYZ.

AXY.Z indicates that the parser has seen a string derived from XY and is looking for one

derivable from Z.

 LR(0) items play a key role in the SLR(1) table construction algorithm.

 LR(1) items play a key role in the LR(1) and LALR(1) table construction algorithms.

LR parsers have more information available than LL parsers when choosing a production:

* LR knows everything derived from RHS plus „K‟ lookahead symbols.

* LL just knows „K‟ lookahead symbols into what‟s derived from RHS.

Deterministic context free languages:

The schematic form of an LR parser is shown below:

It consists of an input, an output, a stack, a driver program, and a parsing table that has two

parts:

action and goto.

56

The LR parser program determines Sm, the current state on the top of the stack, and ai, the

current input symbol. It then consults action [Sm, ai], which can have one of four values:

1. Shift S, where S is a state.

2. reduce by a grammar production A

3. accept and

4. error

The function goes to takes a state and grammar symbol as arguments and produces a state.

The goto function of a parsing table constructed from a grammar G using the SLR, canonical

LR or LALR method is the transition function of DFA that recognizes the viable prefixes of

G. (Viable prefixes of G are those prefixes of right-sentential forms that can appear on the

stack of a shift-reduce parser, because they do not extend past the right-most handle).

Augmented Grammar:

If G is a grammar with start symbol S, then G
I
, the augmented grammar for G with a new

start symbol S
I
 and production S

I
S.

The purpose of this new start stating production is to indicate to the parser when it should

stop parsing and announce acceptance of the input i.e., acceptance occurs when and only

when the parser is about to reduce by S
I
S.

Construction of SLR Parsing Table:

Example:

The given grammar is:

1. EE+T

2. E T

3. T T*F

4. TF

5. F(E)

6. Fid Step I: The Augmented grammar is:

E
I
E

EE+T

ET

TT*F

57

TF

F(E)

Fid

Step II: The collection of LR (0) items are:

 I0: E
I
.E

 E.E+T

 E.T

 T.T*F

 T.F

 F.(E)

 F.id

Start with start symbol after since () there is E, start writing all productions of E.

Start writing „T‟ productions

Start writing F productions

Goto (I0,E): States have successor states formed by advancing the marker over the

symbol it preceeds. For state 1 there are successor states reached by advancing the masks

over the symbols E,T,F,C or id. Consider, first, the

I1: E
 I
E. - reduced Item (RI)

EE.+T

Goto (I0,T):

I2: ET. - reduced Item (RI)

TT.*F

Goto (I0,F):

I2: ET. - reduced item (RI)

TT.*F

Goto (I0,C):

58

I4: F(.E)

E.E+T

E.T

T.T*F

T.F

F.(E)

F.id

If „.‟ Precedes non-terminal start writing its corresponding production. Here first E then T

after that F.

Start writing F productions.

Goto (I0,id):

I5: F id. - reduced item.

E successor (I, state), it contains two items derived from state 1 and the closure operation

adds no more (since neither marker precedes a non-terminal). The state I2 is thus:

Goto (I1,+):

I6: EE+.T start writing T productions

T.T*F

T.F start writing F productions

F.(E)

F.id

Goto (I2,*):

I7: TT*.F start writing F productions

F.(E)

F.id

Goto (I4,E):

59

I8: F(E.)

EE.+T

Goto (I4,T):

I2: ET. these are same as I2.

TT.*F

Goto (I4,C):

I4: F(.E)

E.E+T

E.T

T.T*F

T.F

F.(E)

F.id

goto (I4,id):

I5: Fid. - reduced item

Goto (I6,T):

I9: EE+T. - reduced item

TT.*F

Goto (I6,F):

I3: TF. - reduced item

Goto (I6,C):

I4: F(.E)

60

E.E+T

E.T

T.T*F

T.F

F.(E)

F.id

Goto (I6,id):

I5: Fid. - reduced item.

Goto (I7,F):

I10: TT*F - reduced item

Goto (I7,C):

I4: F(.E)

E.E+T

E.T

T.T*F

T.F

F.(E)

F.id

Goto (I7,id):

I5: Fid. - reduced item

Goto (I8,)):

I11: F(E). - reduced item

Goto (I8,+):

I11: F(E). - reduced item

Goto (I8,+):

61

I6: EE+.T

T.T*F

T.F

F.(E)

F.id

Goto (I9,+):

I7: TT*.f

F.(E)

F.id

Step IV: Construction of Parse table:

Construction must proceed according to the algorithm 4.8

Sshift items

Rreduce items

Initially E
I
E. is in I1 so, I = 1.

Set action [I, $] to accept i.e., action [1, $] to Acc

Action Goto

State Id + * () $ E T F

I0 S5 S4 1 2 3

1 S6 Accept

2 r2 S7 R2 R2

3 R 4 R 4 R4 R4

4 S5 S4 8 2 3

5 R 6 R 6 R6 R6

6 S5 S4 9 3

7 S5 S4 10

8 S 6 S11

62

9 R1 S7 r1 r1

10 R3 R3 R3 R3

11 R5 R5 R5 R5

As there are no multiply defined entries, the grammar is SLR®.

STEP – III Finding FOLLOW () set for all non-terminals.

 Relevant production

FOLLOW (E) = {$} U FIRST (+T) U FIRST ()) E
E
/B +

T
/B

 = {+,), $} F(E)

 B

FOLLOW (T) = FOLLOW (E) U ET

 FIRST (*F) U TT*F

 FOLLOW (E) EE+T

 B

 = {+,*,),$}

FOLLOW (F) = FOLLOW (T)

 = {*,*,),$}

Step – V:

Consider I0:

1. The item F.(E) gives rise to goto (I0,C) = I4, then action [0,C] = shift 4

2. The item F.id gies rise goto (I0,id) = I4, then action [0,id] = shift 5

the other items in I0 yield no actions.

Goto (I0,E) = I1 then goto [0,E] = 1

Goto (I0,T) = I2 then goto [0,T] = 2

Goto (I0,F) = I3 then goto [0,F] = 3

Consider I1:

1. The item E
I
E. is the reduced item, so I = 1

This gives rise to action [1,$] to accept.

2. The item EE.+T gives rise to

63

goto (I1,+)=I6, then action [1,+] = shift 6.

3. Consider I2:

The item ET. is the reduced item, so take FOLLOW (E),

FOLLOW (E) = {+,),$}

The first item +, makes action [Z,+] = reduce ET.

ET is production rule no.2. So action [Z,+] = reduce 2.

The second item, makes action [Z,)] = reduce 2

The third item $, makes action [Z,$] = reduce 2

3. The item TT.*F gives rise to

goto [I2,*]=I7, then action [Z,*] = shift 7.

4. Consider I3:

TF. is the reduced item, so take FOLLOW (T).

FOLLOW (T) = {+,*,),$}

So, make action [3,+] = reduce 4

Action [3,*] = reduce 4

Action [3,)] = reduce 4

Action [3,$] = reduce 4

In forming item sets a closure operation must be performed to ensure that whenever the

marker in an item of a set precedes a non-terminal, say E, then initial items must be included

in the set for all productions with E on the left hand side.

The first item set is formed by taking initial item for the start state and then performing the

closure operation, giving the item set;

We construct the action and goto as follows:

1. If there is a transition from state I to state J under the terminal symbol K, then set

action [I,k] to SJ.

2. If there is a transition under a non-terminal symbol a, say from state „i‟ to state „J‟,

set goto [I,A] to SJ.

64

3. If state I contains a transition under $ set action [I,$] to accept.

4. If there is a reduce transition #p from state I, set action [I,k] to reduce #p for all

terminals k belonging to FOLLOW (A) where A is the subject to production #P.

If any entry is multiply defined then the grammar is not SLR(1). Blank entries are

represented by dash (-).

5. Consider I4 items:

The item Fid gives rise to goto [I4,id] = I5 so,

Action (4,id)  shift 5

The item F.E action (4,c) shift 4

The item goto (I4,F)  I3, so goto [4,F] = 3

The item goto (I4,T)  I2, so goto [4,F] = 2

The item goto (I4,E)  I8, so goto [4,F] = 8

6. Consider I5 items:

Fid. Is the reduced item, so take FOLLOW (F).

FOLLOW (F) = {+,*,),$}

Fid is rule no.6 so reduce 6

Action (5,+) = reduce 6

Action (5,*) = reduce 6

Action (5,)) = reduce 6

Action (5,)) = reduce 6

Action (5,$) = reduce 6

7. Consider I6 items:

goto (I6,T) = I9, then goto [6,T] = 9

goto (I6,F) = I3, then goto [6,F] = 3

goto (I6,C) = I4, then goto [6,C] = 4

goto (I6,id) = I5, then goto [6,id] = 5

8. Consider I7 items:

goto (I7,F) = I10, then goto [7,F] = 10

goto (I7,C) = I4, then action [7,C] = shift 4

65

goto (I7,id) = I5, then goto [7,id] = shift 5

9. Consider I8 items:

goto (I8,)) = I11, then action [8,)] = shift 11

goto (I8,+) = I6, then action [8,+] = shift 6

10. Consider I9 items:

EE+T. is the reduced item, so take FOLLOW (E).

FOLLOW (E) = {+,),$}

EE+T is the production no.1., so

Action [9,+] = reduce 1

Action [9,)] = reduce 1

Action [9,$] = reduce 1

goto [I5,*] = I7, then acgtion [9,*] = shift 7.

11. Consider I10 items:

TT*F. is the reduced item, so take

FOLLOW (T) = {+,*,),$}

TT*F is production no.3., so

Action [10,+] = reduce 3

Action [10,*] = reduce 3

Action [10,)] = reduce 3

Action [10,$] = reduce 3

12. Consider I11 items:

F(E). is the reduced item, so take

FOLLOW (F) = {+,*,),$}

F(E) is production no.5., so

Action [11,+] = reduce 5

66

Action [11,*] = reduce 5

Action [11,)] = reduce 5

Action [11,$] = reduce 5

VI Moves of LR Parser on id*id+id:

 STACK INPUT ACTION

1. 0 id*id+id$ shift by S5

2. 0id5 *id+id$ sec 5 on *

 reduce by Fid

 If A

 Pop 2*| | symbols.

 =2*1=2 symbols.

 Pop 2 symbols off the stack

 State 0 is then exposed on F.

 Since goto of state 0 on F is

 3, F and 3 are pushed onto

 the stack

3. 0F3 *id+id$ reduce by T F

 pop 2 symbols push T. Since

 goto of state 0 on T is 2, T

 and 2, T and 2 are pushed

 onto the stack.

4. 0T2 *id+id$ shift by S7

5. 0T2*7 id+id$ shift by S5

6. 0T2*7id5 +id$ reduce by r6 i.e.

 F id

 Pop 2 symbols,

 Append F,

 Secn 7 on F, it is 10

7. 0T2*7F10 +id$ reduce by r3, i.e.,

67

 T T*F

 Pop 6 symbols, push T

 Sec 0 on T, it is 2

 Push 2 on stack.

8. 0T2 +id$ reduce by r2, i.e.,

 E T

 Pop two symbols,

 Push E

 See 0 on E. It 10 1

 Push 1 on stack

9. 0E1 +id$ shift by S6.

10. 0E1+6 id$ shift by S5

11. 0E1+6id5 $ reduce by r6 i.e.,

 F id

 Pop 2 symbols, push F, see 6

 on F

 It is 3, push 3

12. 0E1+6F3 $ reduce by r4, i.e.,

 T F

 Pop2 symbols,

 Push T, see 6 on T

 It is 9, push 9.

13. 0E1+6T9 $ reduce by r1, i.e.,

 E E+T

 Pop 6 symbols, push E

 See 0 on E, it is 1

 Push 1.

14. 0E1 $ Accept

68

Procedure for Step-V

The parsing algorithm used for all LR methods uses a stack that contains alternatively state

numbers and symbols from the grammar and a list of input terminal symbols terminated by $.

For example:

AAbBcCdDeEf/uvwxyz$

Where, a. . .. f are state numbers

A E are grammar symbols (either terminal or non-terminals)

u . . . z are the terminal symbols of the text still to be parsed.

The parsing algorithm starts in state I0 with the configuration –

0 / whole program upto $.

Repeatedly apply the following rules until either a syntactic error is found or the parse is

complete.

(i) If action [f,4] = Si then transform

aAbBcCdDeEf / uvwxyz$

to

aAbBcCdDeEfui / vwxyz$

This is called a SHIFT transition

(ii) If action [f,4] = #P and production # P is of length 3, say, then it will be of the

form P  CDE where CDE exactly matches the top three symbols on the stack, and

P is some non-terminal, then assuming goto [C,P] = g

aAbBcCdDEfui / vwxyz$

will transform to

aAbBcPg / vwxyz$

The symbols in the stack corresponding to the right hand side of the production have been

replaced by the subject of the production and a new state chosen using the goto table.

This is called a REDUCE transition.

(iii) If action [f,u] = accept. Parsing is completed

(iv) If action [f,u] = - then the text parsed is syntactically in-correct.

Canonical LR(O) collection for a grammar can be constructed by augmented grammar and

two functions, closure and goto.

69

The closure operation:

If I is the set of items for a grammar G, then closure (I) is the set of items constructed from I

by the two rules:

initially, every item in I is added to closure (I).

5. Canonical LR Parsing:

Example:

S  CC

C cC/d.

1. Number the grammar productions:

S CC

C cC

C d

2. The Augmented grammar is:

S
I
 S

S CC

C cC

C d.

Constructing the sets of LR(1) items:

We begin with:

S
I
 .S,$ begin with look-a-head (LAH) as $.

We match the item [S
I
 .S,$] with the term [A .B,a]

In the procedure closure, i.e.,

A = S
I

  = 

70

B = S

  = 

a = $

Function closure tells us to add [B.r,b] for each production Br and terminal b in FIRST

(a). Now r must be SCC, and since  is  and a is $, b may only be $. Thus,

S.CC,$

We continue to compute the closure by adding all items [C.r,b] for b in FIRST [C$] i.e.,

matching [S.CC,$] against [A.B,a] we have, A=S, =, B=C and a=$. FIRST (C$)

= FIRST ©

FIRST© = {c,d}

We add items:

C.cC,C

CcC,d

C.d,c

C.d,d

None of the new items have a non-terminal immediately to the right of the dot, so we have

completed our first set of LR(1) items. The initial I0 items are:

 I0 : S
I
.S,$

 S.CC,$

 C.cC,c/d

 C.d.c/d

Now we start computing goto (I0,X) for various non-terminals i.e.,

Goto (I0,S):

I1 : S
I
S.,$  reduced item.

Goto (I0,C):

 I2 : SC.C, $

71

 C.cC,$

 C.d,$

Goto (I0,C) :

 I2 : Cc.C,c/d

 C.cC,c/d

 C.d,c/d

Goto (I0,d) :

 I4 : Cd., c/d  reduced item.

Goto (I2,C) : I5

 : SCC.,$  reduced item.

Goto (I2,C) : I6

 Cc.C,$

 C.cC,$

 C.d,$

Goto (I2,d) : I7

 Cd.,$  reduced item.

Goto (I3,C) : I8

 CcC.,c/d  reduced item.

Goto (I3,C) : I3

 Cc.C, c/d

 C.cC,c/d

 C.d,c/d

Goto (I3,d) : I4

 Cd.,c/d.  reduced item.

Goto (I6,C) : I9

 CcC.,$  reduced item.

Goto (I6,C) : I6

 Cc.C,$

72

 C,cC,$

 C.d,$

Goto (I6,d) : I7

 Cd.,$  reduced item.

All are completely reduced. So now we construct the canonical LR(1) parsing table –

Here there is no neet to find FOLLOW () set, as we have already taken look-a-head for each

set of productions while constructing the states.

Constructing LR(1) Parsing table:

 Action goto

State C D $ S C

I0 S3 S4 1 2

1 Accept

2 S6 S7 5

3 S3 S4 8

4 R3 R3

5 R1

6 S6 S7 9

7 R3

8 R2 R2

9 R2

1. Consider I0 items:

The item S.S.$ gives rise to goto [I0,S] = I1 so goto [0,s] = 1.

The item S.CC, $ gives rise to goto [I0,C] = I2 so goto [0,C] = 2.

The item C.cC, c/d gives rise to goto [I0,C] = I3 so goto [0,C] = shift 3

The item C.d, c/d gives rise to goto [I0,d] = I4 so goto [0,d] = shift 4

2. Consider I0 items:

The item S
I
S.,$ is in I1, then set action [1,$] = accept

3. Consider I2 items:

73

The item SC.C,$ gives rise to goto [I2,C] = I5. so goto [2,C] = 5

The item C.cC, $ gives rise to goto [I2,C] = I6. so action [0,C] = shift The item C.d,$

gives rise to goto [I2,d] = I7. so action [2,d] = shift 7

4. Consider I3 items:

The item C.cC, c/d gives rise to goto [I3,C] = I8. so goto [3,C] = 8

The item C.cC, c/d gives rise to goto [I3,C] = I3. so action [3,C] = shift 3.

The item C.d, c/d gives rise to goto [I3,d] = I4. so action [3,d] = shift 4.

5. Consider I4 items:

The item C.d, c/d is the reduced item, it is in I4 so set action [4,c/d] to reduce cd.

(production rule no.3)

6. Consider I5 items:

The item SCC.,$ is the reduced item, it is in I5 so set action [5,$] to SCC (production

rule no.1)

7. Consider I6 items:

The item Cc.C,$ gives rise to goto [I6 ,C] = I9. so goto [6,C] = 9

The item C.cC,$ gives rise to goto [I6 ,C] = I6. so action [6,C] = shift 6

The item C.d,$ gives rise to goto [I6 ,d] = I7. so action [6,d] = shift 7

8. Consider I7 items:

The item Cd., $ is the reduced item, it is in I7.

So set action [7,$] to reduce Cd (production no.3)

9. Consider I8 items:

The item CCC.c/d in the reduced item, It is in Is, so set action[8,c/d] to reduce Ccd

(production rale no .2)

10. Consider I9 items:

The item C cC, $ is the reduced item, It is in I9, so set action [9,$] to reduce CcC

(Production rale no.2)

74

If the Parsing action table has no multiply –defined entries, then the given grammar is called

as LR(1) grammar

LALR Parsing:

Example:

1. Construct C={I0,I1,……….,In} The collection of sets of LR(1) items

2. For each core present among the set of LR (1) items, find all sets having that core, and

replace there sets by their Union# (clus them into a single term

I0 same as previous

I1  “

I2  “

I36 – Clubbing item I3 and I6 into one I36 item.

C cC,c/d/$

CcC,c/d/$

Cd,c/d/$

I5 some as previous

I47 Cd,c/d/$

I89 CcC, c/d/$

75

LALR Parsing table construction:

State
Action Goto

c d $ S C

Io S36 S47 1 2

1 Accept

2 S36 S47 5

36 S36 S47 89

47 r3 r3

5 r1

89 r2 r2 r2

76

UNIT- III

SEMANTIC ANALYSIS

Intermediate code forms:

An intermediate code form of source program is an internal form of a program created by the

compiler while translating the program created by the compiler while translating the program

from a high –level language to assembly code(or)object code(machine code).an intermediate

source form represents a more attractive form of target code than does assembly. An

optimizing Compiler performs optimizations on the intermediate source form and produces an

object module.

Analysis + syntheses=translation

 Creates an generate targe code

 Intermediate code

 In the analysis –synthesis model of a compiler, the front-end translates a source program into

an intermediate representation from which the back-end generates target code, in many

compilers the source code is translated into a language which is intermediate in complexity

between a HLL and machine code .the usual intermediate code introduces symbols to stand

for various temporary quantities.

We assume that the source program has already been parsed and statically checked.. the

various intermediate code forms are:

The ordinary (infix) way of writing the sum of a and b is with the operator in the middle:

a+b. the postfix (or postfix polish)notation for the same expression places the operator at the

right end, as ab+.

77

In general, if e1 and e2 are any postfix expressions, and Ø to the values denoted by e1 and e2

is indicated in postfix notation nby e1e2Ø.no parentheses are needed in postfix notation

because the position and priority (number of arguments) of the operators permits only one

way to decode a postfix expression.

Example:

1. (a+b)*c in postfix notation is ab+c*,since ab+ represents the infix expression(a+b).

2. a*(b+c)is abc+* in postfix.

3. (a+b)*(c+d) is ab+cd+* in postfix.

Postfix notation can be generalized to k-ary operators for any k>=1.if k-ary operator Ø is

applied to postfix expression e1,e2,……….ek, then the result is denoted by e1e2…….ek Ø.

if we know the priority of each operator then we can uniquely decipher any postfix

expression by scanning it from either end.

Example:

 Consider the postfix string ab+c*.

The right hand * says that there are two arguments to its left. since the next –to-rightmost

symbol is c, simple operand, we know c must be the second operand of *.continuing to the

left, we encounter the operator +.we know the sub expression ending in + makes up the first

operand of *.continuing in this way ,we deduce that ab+c* is “parsed” as (((a,b)+),c)*.

a. syntax tree:

The parse tree itself is a useful intermediate-language representation for a source program,

especially in optimizing compilers where the intermediate code needs to extensively

restructure.

 A parse tree, however, often contains redundant information which can be eliminated, Thus

producing a more economical representation of the source program. One such variant of a

parse tree is what is called an (abstract) syntax tree, a tree in which each leaf represents an

operand and each interior node an operator.

78

Exmples:

1) Syntax tree for the expression a*(b+c)/d

 2) syntax tree for if a=b then a:=c+d else b:=c-d

Three-Address Code:

• In three-address code, there is at most one operator on the right side of aninstruction; that is,

no built-up arithmetic expressions are permitted.

x+y*z � t1 = y * z

t2 = x + t1

• Example

Problems:
Write the 3-address code for the following expression

1. if(x + y * z > x * y +z)

79

a=0;

2. (2 + a * (b – c / d)) / e

3. A :=b * -c + b * -c

Address and Instructions

•

• Example Three-address code is built from two concepts: addresses and instructions.

• An address can be one of the following:

– A name: A source name is replaced by a pointer to its symbol table entry.

• A name: For convenience, allow source-program names to

Appear as addresses in three-address code. In an

Implementation, a source name is replaced by a pointer to

its symbol-table entry, where all information about the name is kept.

– A constant

• A constant: In practice, a compiler must deal with many different types of constants and

variables

– A compiler-generated temporary

• A compiler-generated temporary. It is useful, especially in optimizing compilers, to

create a distinct name each time a temporary is needed. These temporaries can be combined,

if possible, when registers are allocated to variables.

A list of common three-address instruction forms:

Assignment statements

– x= y op z, where op is a binary operation

– x= op y, where op is a unary operation

– Copy statement: x=y

– Indexed assignments: x=y[i] and x[i]=y

– Pointer assignments: x=&y, *x=y and x=*y

Control flow statements

– Unconditional jump: goto L

– Conditional jump: if x relop y goto L ; if x goto L; if False x goto L

– Procedure calls: call procedure p with n parameters and return y, is

Optional

param x1

param x2

…

param xn

call p, n

– do i = i +1; while (a[i]<v);

80

The multiplication i * 8 is appropriate for an array of elements that each take 8 units of space.

C. quadruples:

• Three-address instructions can be implemented as objects or as record with fields for the

operator and operands.

• Three such representations

– Quadruple, triples, and indirect triples

• A quadruple (or quad) has four fields: op, arg1, arg2, and result.

Example

D. Triples

• A triple has only three fields: op, arg1, and arg2

• Using triples, we refer to the result of an operation x op y by its position, rather by

an explicit temporary name.

Example

d. Triples:

• A triple has only three fields: op, arg1, and arg2

81

• Using triples, we refer to the result of an operation x op y by its position, rather by an

explicit temporary name.

Example

Fig: Representations of a = b * - c + b * - c

Fig: Indirect triples representation of 3-address code

-> The benefit of Quadruples over Triples can be seen in an optimizing compiler, where

instructions are often moved around.

 ->With quadruples, if we move an instruction that computes a temporary t, then the

instructions that use t require no change. With triples, the result of an operation is referred to

by its position, so moving an instruction may require changing all references to that result.

This problem does not occur with indirect triples.

 Single-Assignment Static Form

Static single assignment form (SSA) is an intermediate representation that facilitates certain

code optimization.

• Two distinct aspects distinguish SSA from three –address code.

82

– All assignments in SSA are to variables with distinct names; hence the term static single-

assignment.

Type Checking:
•A compiler has to do semantic checks in addition to syntactic checks.

•Semantic Checks

–Static –done during compilation

–Dynamic –done during run-time

•Type checking is one of these static checking operations.

–we may not do all type checking at compile-time.

–Some systems also use dynamic type checking too.

•A type system is a collection of rules for assigning type expressions to the parts of a

program.

•A type checker implements a type system.

•A sound type system eliminates run-time type checking for type errors.

83

•A programming language is strongly-typed, if every program its compiler accepts will

execute without type errors.

In practice, some of type checking operations is done at run-time (so, most of the

programming languages are not strongly yped).

–Ex: int x[100]; … x[i] most of the compilers cannot guarantee that i will be between 0 and

99

Type Expression:
•The type of a language construct is denoted by a type expression.

•A type expression can be:

–A basic type

•a primitive data type such as integer, real, char, Boolean, …

•type-error to signal a type error

•void: no type

–A type name

•a name can be used to denote a type expression.

–A type constructor applies to other type expressions.

•arrays: If T is a type expression, then array (I,T)is a type expression where I denotes index

range. Ex: array (0..99,int)

•products: If T1and T2 are type expressions, then their Cartesian product T1 x T2 is a type

expression. Ex: int x int

•pointers: If T is a type expression, then pointer (T) is a type expression. Ex: pointer (int)

•functions: We may treat functions in a programming language as mapping from a domain

type D to a range type R. So, the type of a function can be denoted by the type expression

D→R where D are R type expressions. Ex: int→int represents the type of a function which

takes an int value as parameter, and its return type is also int.

Type Checking of Statements:

S ->d= E { if (id.type=E.type then S.type=void

84

else S.type=type-error }

S ->if E then S1 { if (E.type=boolean then S.type=S1.type

else S.type=type-error }

S->while E do S1 { if (E.type=boolean then S.type=S1.type

else S.type=type-error }

Type Checking of Functions:

E->E1(E2) { if (E2.type=s and E1.type=st) then

E.type=t

else E.type=type-error }

Ex: int f(double x, char y) { ... }

f: double x char->int

argument types return type

Structural Equivalence of Type Expressions:

•How do we know that two type expressions are equal?

•As long as type expressions are built from basic types (no type names), we may use

structural equivalence between two type expressions

Structural Equivalence Algorithm (sequin):

if (s and t are same basic types) then return true

else if (s=array(s1,s2) and t=array(t1,t2)) then return (sequiv(s1,t1) and sequiv(s2,t2))

else if (s = s1 x s2and t = t1 x t2) then return (sequiv(s1,t1) and sequiv(s2,t2))

else if (s=pointer(s1) and t=pointer(t1)) then return (sequiv(s1,t1))

else if (s = s1 s2and t = t1 t2) then return (sequiv(s1,t1) and sequiv(s2,t2))

else return false

85

Names for Type Expressions:

•In some programming languages, we give a name to a type expression, and we use that

name as a type expression afterwards.

type link = ↑cell; ? p,q,r,s have same types ?

var p,q : link;

var r,s : ↑cell

•How do we treat type names?

–Get equivalent type expression for a type name (then use structural equivalence), or

–Treat a type name as a basic type

Syntax Directed Translation:

 A formalist called as syntax directed definition is used fort specifying translations for

programming language constructs.

 A syntax directed definition is a generalization of a context free grammar in which each

grammar symbol has associated set of attributes and each and each productions is

associated with a set of semantic rules

Definition of (syntax Directed definition) SDD :

SDD is a generalization of CFG in which each grammar productions X->α is associated with

it a set of semantic rules of the form

a: = f(b1,b2…..bk)

Where a is an attributes obtained from the function f.

• A syntax-directed definition is a generalization of a context-free grammar in which:

– Each grammar symbol is associated with a set of attributes.

– This set of attributes for a grammar symbol is partitioned into two subsets called

synthesized and inherited attributes of that grammar symbol.

– Each production rule is associated with a set of semantic rules.

• Semantic rules set up dependencies between attributes which can be represented by a

dependency graph.

86

• This dependency graph determines the evaluation order of these semantic rules.

• Evaluation of a semantic rule defines the value of an attribute. But a semantic rule may also

have some side effects such as printing a value.

The two attributes for non terminal are :

1) Synthesized attribute (S-attribute) : (↑)

An attribute is said to be synthesized attribute if its value at a parse tree node is determined

from attribute values at the children of the node

2) Inherited attribute: (↑,→)

An inherited attribute is one whose value at parse tree node is determined in terms of

attributes at the parent and | or siblings of that node.

 The attribute can be string, a number, a type, a, memory location or anything else.

 The parse tree showing the value of attributes at each node is called an annotated parse

tree.

The process of computing the attribute values at the node is called annotating or decorating

the parse tree.Terminals can have synthesized attributes, but not inherited attributes.

Annotated Parse Tree

• A parse tree showing the values of attributes at each node is called an Annotated parse

tree.

• The process of computing the attributes values at the nodes is called annotating (or

decorating) of the parse tree.

• Of course, the order of these computations depends on the dependency graph induced by

the semantic rules.

Ex1:1) Synthesized Attributes :

Ex: Consider the CFG :

S→ EN

E→ E+T

E→E-T

E→ T

T→ T*F

T→T/F

T→F

F→ (E)

87

F→digit

N→;

Solution: The syntax directed definition can be written for the above grammar by using

semantic actions for each production.

Production rule Semantic actions

S →EN S.val=E.val

E →E1+T E.val =E1.val + T.val

E →E1-T E.val = E1.val – T.val

E →T E.val =T.val

T →T*F T.val = T.val * F.val

T →T|F T.val =T.val | F.val

F → (E) F.val =E.val

T →F T.val =F.val

F →digit F.val =digit.lexval

N →; can be ignored by lexical Analyzer as; I

 is terminating symbol

For the Non-terminals E,T and F the values can be obtained using the attribute “Val”.

The taken digit has synthesized attribute “lexval”.

In S→EN, symbol S is the start symbol. This rule is to print the final answer of expressed.

Following steps are followed to Compute S attributed definition

1. Write the SDD using the appropriate semantic actions for corresponding production rule of

the given Grammar.

2. The annotated parse tree is generated and attribute values are computed. The Computation

is done in bottom up manner.

3. The value obtained at the node is supposed to be final output.

PROBLEM 1:

Consider the string 5*6+7; Construct Syntax tree, parse tree and annotated tree.

Solution:

The corresponding annotated parse tree is shown below for the string 5*6+7;

88

Syntax tree:

Annotated parse tree :

Advantages: SDDs are more readable and hence useful for specifications

Disadvantages: not very efficient.

Ex2:

PROBLEM : Consider the grammar that is used for Simple desk calculator. Obtain

the Semantic action and also the annotated parse tree for the string

3*5+4n.

L→En

E→E1+T

89

E→T

T→T1*F

T→F

F→ (E)

F→digit

Solution :

Production rule Semantic actions

L→En L.val=E.val

E→E1+T E.val=E1.val + T.val

E→T E.val=T.val

T→T1*F T.val=T1.val*F.val

T→F T.val=F.val

F→(E) F.val=E.val

F→digit F.val=digit.lexval

The corresponding annotated parse tree U shown below, for the string 3*5+4n.

90

Dependency Graphs:

Dependency graph and topological sort:

 For each parse-tree node, say a node labeled by grammar symbol X, the dependency

graph has a node for each attribute associated with X.

 If a semantic rule associated with a production p defines the value of synthesized attribute

A.b in terms of the value of X.c. Then the dependency graph has an edge from X.c to A.b

 If a semantic rule associated with a production p defines the value of inherited attribute

B.c in terms of the value X.a. Then , the dependency graph has an edge from X.a to B.c.

Applications of Syntax-Directed Translation

• Construction of syntax Trees

– The nodes of the syntax tree are represented by objects with a suitable number of fields.

– Each object will have an op field that is the label of the node.

– The objects will have additional fields as follows

• If the node is a leaf, an additional field holds the lexical value for the leaf. A constructor

function Leaf (op, val) creates a leaf object.

• If nodes are viewed as records, the Leaf returns a pointer to a new record for a leaf.

• If the node is an interior node, there are as many additional fields as the node has children

in the syntax tree. A constructor function

Node takes two or more arguments:

Node (op , c1,c2,…..ck) creates an object with first field op and k additional fields for the k

children c1,c2,…..ck

Syntax-Directed Translation Schemes

A SDT scheme is a context-free grammar with program fragments embedded within

production bodies .The program fragments are called semantic actions and can appear at any

position within the production body.

Any SDT can be implemented by first building a parse tree and then pre-forming the actions

in a left-to-right depth first order. i.e during preorder traversal.

The use of SDT‟s to implement two important classes of SDD‟s

1. If the grammar is LR parsable, then SDD is S-attributed.

2. If the grammar is LL parsable, then SDD is L-attributed.

91

Postfix Translation Schemes

The postfix SDT implements the desk calculator SDD with one change: the action for the

first production prints the value. As the grammar is LR, and the SDD is S-attributed.

L →E n {print(E.val);}

E → E1 + T { E.val = E1.val + T.val }

E → E1 - T { E.val = E1.val - T.val }

E → T { E.val = T.val }

T → T1 * F { T.val = T1.val * F.val }

T → F { T.val = F.val }

F → (E) { F.val = E.val }

F → digit { F.val = digit.lexval }

92

Symbol Tables

A symbol table is a major data structure used in a compiler:

 Associates attributes with identifiers used in a program.

 For instance, a type attribute is usually associated with each identifier.

 A symbol table is a necessary component.

 Definition (declaration) of identifiers appears once in a program

 Use of identifiers may appear in many places of the program text

 Identifiers and attributes are entered by the analysis phases

 When processing a definition (declaration) of an identifier

 In simple languages with only global variables and implicit declarations:

 The scanner can enter an identifier into a symbol table if it is not already there

 In block-structured languages with scopes and explicit declarations:

 The parser and/or semantic analyzer enter identifiers and corresponding attributes

 Symbol table information is used by the analysis and synthesis phases

 To verify that used identifiers have been defined (declared)

 To verify that expressions and assignments are semantically correct – type checking

 To generate intermediate or target code

Symbol Table Interface:

The basic operations defined on a symbol table include:

 allocate – to allocate a new empty symbol table

 free – to remove all entries and free the storage of a symbol table

 insert – to insert a name in a symbol table and return a pointer to its entry

 lookup – to search for a name and return a pointer to its entry

 set_attribute – to associate an attribute with a given entry

 get_attribute – to get an attribute associated with a given entry

 ther operations can be added depending on requirement

For example, a delete operation removes a name previously inserted

Some identifiers become invisible (out of scope) after exiting a block

 This interface provides an abstract view of a symbol table.

 Supports the simultaneous existence of multiple tables

 Implementation can vary without modifying the interface

93

Basic Implementation Techniques:

First consideration is how to insert and lookup names

Variety of implementation techniques

Unordered List

Simplest to implement

Implemented as an array or a linked list

Linked list can grow dynamically – alleviates problem of a fixed size array

Insertion is fast O(1), but lookup is slow for large tables – O(n) on average

Ordered List

If an array is sorted, it can be searched using binary search – O(log2 n)

Insertion into a sorted array is expensive – O(n) on average

Useful when set of names is known in advance – table of reserved words

Binary Search Tree

Can grow dynamically

Insertion and lookup are O(log2 n) on average

Hash Tables and Hash Functions:

 A hash table is an array with index range: 0 to TableSize – 1

 Most commonly used data structure to implement symbol tables

 Insertion and lookup can be made very fast – O(1)

 A hash function maps an identifier name into a table index

 A hash function, h(name), should depend solely on name

 h(name) should be computed quickly

 h should be uniform and randomizing in distributing names

 All table indices should be mapped with equal probability

 Similar names should not cluster to the same table index.

Storage Allocation:

 Compiler must do the storage allocation and provide access to variables and data

 Memory management

94

 Stack allocation

 Heap management

 Garbage collection

Storage Organization:

• Assumes a logical address space

 Operating system will later map it to physical addresses, decide how touse cache

memory, etc.

• Memory typically divided into areas for

 Program code

 Other static data storage, including global constants and compilergenerated data

 Stack to support call/return policy for procedures

 Heap to store data that can outlive a call to a procedure

Static vs. Dynamic Allocation:

 Static: Compile time, Dynamic: Runtime allocation

 Many compilers use some combination of following

 Stack storage: for local variables, parameters and so on

 Heap storage: Data that may outlive the call to the procedure that created it

 Stack allocation is a valid allocation for procedures since procedure calls are nest

95

Example:

Consider the quick sort program

Activation for Quicksort:

96

Activation tree representing calls during an execution of quicksort:

Activation records

 Procedure calls and returns are usually managed by a run-time stack called the control

stack.

 Each live activation has an activation record (sometimes called a frame)

 The root of activation tree is at the bottom of the stack

 The current execution path specifies the content of the stack with the last

 Activation has record in the top of the stack.

A General Activation Record

Activation Record

 Temporary values

 Local data

 A saved machine status

 An “access link”

 A control link

97

 Space for the return value of the called function

 The actual parameters used by the calling procedure

 Elements in the activation record:

 Temporary values that could not fit into registers.

 Local variables of the procedure.

 Saved machine status for point at which this procedure called. Includes return address

and contents of registers to be restored.

 Access link to activation record of previous block or procedure in lexical scope chain.

 Control link pointing to the activation record of the caller.

 Space for the return value of the function, if any.

 actual parameters (or they may be placed in registers, if possible)

Downward-growing stack of activation records:

Designing Calling Sequences:

 Values communicated between caller and callee are generally placed at the beginning of

callee‟s activation record

 Fixed-length items: are generally placed at the middle

98

 Items whose size may not be known early enough: are placed at the end of activation

record

 We must locate the top-of-stack pointer judiciously: a common approach is to have it

point to the end of fixed length fields

Access to dynamically allocated arrays:

ML:

 ML is a functional language

 Variables are defined, and have their unchangeable values initialized, by a statementof

the form:

val (name) = (expression)

 Functions are defined using the syntax:

fun (name) ((arguments)) = (body)

 For function bodies we shall use let-statements of the form:

let (list of definitions) in (statements) end

99

A version of quick sort, in ML style, using nested functions:

Access links for finding nonlocal data:

100

Sketch of ML program that uses function-parameters:

\

Actual parameters carry their access link with them:

Maintaining the Display:

101

Memory Manager:

 Two basic functions:

 Allocation

 Deallocation

 Properties of memory managers:

 Space efficiency

 Program efficiency

 Low overhead

Typical Memory Hierarchy Configurations:

Locality in Programs:

The conventional wisdom is that programs spend 90% of their time executing 10% of the

code:

 Programs often contain many instructions that are never executed.

 Only a small fraction of the code that could be invoked is actually executed in atypical

run of the program.

 The typical program spends most of its time executing innermost loops and tight

recursive cycles in a program.

102

UNIT- IV

CODE OPTIMIZATION

Introduction

 The code produced by the straight forward compiling algorithms can often be made to

run faster or take less space, or both. This improvement is achieved by program

transformations that are traditionally called optimizations. Compilers that apply code-

improving transformations are called optimizing compilers.

 Optimizations are classified into two categories. They are

 Machine independent optimizations:

 Machine dependant optimizations:

Machine independent optimizations:

Machine independent optimizations are program transformations that improve the target

code without taking into consideration any properties of the target machine.

Machine dependant optimizations:
Machine dependant optimizations are based on register allocation and utilization of special

machine- instruction sequences.

The criteria for code improvement transformations:

 Simply stated, the best program transformations are those that yield the most benefit for

the least effort.

 The transformation must preserve the meaning of programs. That is, the optimization

must not change the output produced by a program for a given input, or cause an error

such as division by zero, that was not present in the original source program. At all times

we take the “safe” approach of missing an opportunity to apply a transformation rather

than risk changing what the program does.

 A transformation must, on the average, speed up programs by a measurable amount. We

are also interested in reducing the size of the compiled code although the size of the code

has less importance than it once had. Not every transformation succeeds in improving

every program, occasionally an “optimization” may slow down a program slightly.

 The transformation must be worth the effort. It does not make sense for a compiler writer

to expend the intellectual effort to implement a code improving transformation and to

have the compiler expend the additional time compiling source programs if this effort is

not repaid when the target programs are executed. “Peephole” transformations of this

kind are simple enough and beneficial enough to be included in any compiler.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

103

 Flow analysis is a fundamental prerequisite for many important types of code

improvement.

 Generally control flow analysis precedes data flow analysis.

 Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA

constructs such as

o control flow graph

o Call graph

 Data flow analysis (DFA) is the process of ascerting and collecting information prior to

program execution about the possible modification, preservation, and use of certain

entities (such as values or attributes of variables) in a computer program.

Principal Sources of Optimization

 A transformation of a program is called local if it can be performed by looking only at

the statements in a basic block; otherwise, it is called global.

 Many transformations can be performed at both the local and global levels. Local

transformations are usually performed first.

Function-Preserving Transformations

 There are a number of ways in which a compiler can improve a program without

changing the function it computes.

 The transformations

o Common sub expression elimination,

o Copy propagation,

o Dead-code elimination, and

o Constant folding, are common examples of such function-preserving transformations.

The other transformations come up primarily when global optimizations are

performed.

 Frequently, a program will include several calculations of the same value, such as an

offset in an array. Some of the duplicate calculations cannot be avoided by the

programmer because they lie below the level of detail accessible within the source

language.

Common Sub expressions elimination:
 An occurrence of an expression E is called a common sub-expression if E was

previously computed, and the values of variables in E have not changed since the

previous computation. We can avoid recomputing the expression if we can use the

previously computed value.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

104

 For example

t1: =4*i

t2: =a [t1]

t3: =4*j

t4:=4*i

t5: =n

t 6: =b [t 4] +t 5

The above code can be optimized using the common sub-expression elimination as

 t1: =4*i

t2: =a

[t1] t3:

=4*j t5:

=n

 t6: =b [t1] +t5

The common sub expression t 4: =4*i is eliminated as its computation is already in t1. And

value of i is not been changed from definition to use.

Copy Propagation:
Assignments of the form f : = g called copy statements, or copies for short. The idea behind

the copy-propagation transformation is to use g for f, whenever possible after the copy

statement f: = g. Copy propagation means use of one variable instead of another. This may

not appear to be an improvement, but as we shall see it gives us an opportunity to eliminate

x.

For example:

 x=Pi;

……

A=x*r*r;

The optimization using copy propagation can be done as follows:

A=Pi*r*r;

Here the variable x is eliminated

Dead-Code Eliminations:
A variable is live at a point in a program if its value can be used subsequently; otherwise, it

is dead at that point. A related idea is dead or useless code, statements that compute values

that never get used. While the programmer is unlikely to introduce any dead code

intentionally, it may appear as the result of previous transformations. An optimization can

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

105

be done by eliminating dead code.

Example:

i=0;

if(i=1)

{

a=b+5;

}

Here, „if‟ statement is dead code because this condition will never get satisfied.

Constant folding:

o We can eliminate both the test and printing from the object code. More generally,

deducing at compile time that the value of an expression is a constant and using the

constant instead is known as constant folding.

o One advantage of copy propagation is that it often turns the copy statement into dead

code.

For example,

a=3.14157/2 can be replaced by

a=1.570 there by eliminating a division operation.

Loop Optimizations:
o We now give a brief introduction to a very important place for optimizations, namely

loops, especially the inner loops where programs tend to spend the bulk of their time.

The running time of a program may be improved if we decrease the number of

instructions in an inner loop, even if we increase the amount of code outside that loop.

o Three techniques are important for loop optimization:

 code motion, which moves code outside a loop;

 Induction -variable elimination, which we apply to replace variables from inner loop.

 Reduction in strength, which replaces and expensive operation by a cheaper one, such as

a multiplication by an addition.

Code Motion:

 An important modification that decreases the amount of code in a loop is code motion.

This transformation takes an expression that yields the same result independent of the

number of times a loop is executed (a loop-invariant computation) and places the

expression before the loop. Note that the notion “before the loop” assumes the existence

of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant

computation in the following while-statement:

while (i <= limit-2) /* statement does not change Limit*/

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

106

 Code motion will result in the equivalent of

t= limit-2;

while (i<=t) /* statement does not change limit or t */

Induction Variables :

 Loops are usually processed inside out. For example consider the loop around B3.

 Note that the values of j and t4 remain in lock-step; every time the value of j decreases by

1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called

induction variables.

 When there are two or more induction variables in a loop, it may be possible to get rid of

all but one, by the process of induction-variable elimination. For the inner loop around

B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4.

 However, we can illustrate reduction in strength and illustrate a part of the process of

induction-variable elimination. Eventually j will be eliminated when the outer loop of

B2 - B5 is considered.

Example:

As the relationship t 4:=4*j surely holds after such an assignment to t 4 in Fig. and t4 is not

changed elsewhere in the inner loop around B3, it follows that just after the statement j:=j -1

the relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t 4:= 4*j by

t4:= t4-4. The only problem is that t 4 does not have a value when we enter block B3 for the

first time. Since we must maintain the relationship t4=4*j on entry to the block B3, we place

an initializations of t4 at the end of the block where j itself is initialized, shown by the dashed

addition to block B1 in second Fig.

The replacement of a multiplication by a subtraction will speed up the object code if

multiplication takes more time than addition or subtraction, as is the case on many machines.

Reduction in Strength:

 Reduction in strength replaces expensive operations by equivalent cheaper ones on the

target machine. Certain machine instructions are considerably cheaper than others and

can often be used as special cases of more expensive operators.

 For example, x² is invariably cheaper to implement as x*x than as a call to an

exponentiation routine. Fixed-point multiplication or division by a power of two is

cheaper to implement as a shift. Floating-point division by a constant can be implemented

as multiplication by a constant, which may be cheaper.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

107

Optimization of Basic Blocks

There are two types of basic block optimizations. They are :

Structure -Preserving Transformations

Algebraic Transformations

Structure- Preserving Transformations:
The primary Structure-Preserving Transformation on basic blocks are:

 Common sub-expression elimination

 Dead code elimination

 Renaming of temporary variables

 Interchange of two independent adjacent statements.

Common sub-expression elimination:
Common sub expressions need not be computed over and over again. Instead they can be

computed once and kept in store from where it‟s referenced when encountered again – of

course providing the variable values in the expression still remain constant.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

108

Example:

a: =b+c

b: =a-d

c: =b+c

d: =a-d

The 2
nd

 and 4
th

 statements compute the same expression: b+c and a-d

Basic block can be transformed to

a: =b+c

b: =a-d

c: =a

d: =b

Dead code elimination:
It‟s possible that a large amount of dead (useless) code may exist in the program. This might

be especially caused when introducing variables and procedures as part of construction or

error -correction of a program – once declared and defined, one forgets to remove them in

case they serve no purpose. Eliminating these will definitely optimize the code.

Renaming of temporary variables:

 A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is

another temporary name, and change all uses of t to u.

 In this we can transform a basic block to its equivalent block called normal-form block.

Interchange of two independent adjacent statements:
Two statements

t1:=b+c

t2:=x+y

can be interchanged or reordered in its computation in the basic block when value of t1 does

not affect the value of t2.

Algebraic Transformations:

 Algebraic identities represent another important class of optimizations on basic blocks.

This includes simplifying expressions or replacing expensive operation by cheaper ones

i.e. reduction in strength.

 Another class of related optimizations is constant folding. Here we evaluate constant

expressions at compile time and replace the constant expressions by their values. Thus

the expression 2*3.14 would be replaced by 6.28.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

109

 The relational operators <=, >=, <, >, + and = sometimes generate unexpected common

sub expressions.

 Associative laws may also be applied to expose common sub expressions. For example,

if the source code has the assignments

a :=b+c e

:=c+d+b

the following intermediate code may be generated:

a :=b+c t

:=c+d

e :=t+b

Example:

x:=x+0 can be removed

x:=y**2 can be replaced by a cheaper statement x:=y*y

 The compiler writer should examine the language carefully to determine what

rearrangements of computations are permitted; since computer arithmetic does not

always obey the algebraic identities of mathematics. Thus, a compiler may evaluate x*y-

x*z as x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c.

Loops in Flow Graph
A graph representation of three-address statements, called a flow graph, is useful for

understanding code-generation algorithms, even if the graph is not explicitly constructed by a

code-generation algorithm. Nodes in the flow graph represent computations, and the edges

represent the flow of control.

Dominators:
In a flow graph, a node d dominates node n, if every path from initial node of the flow graph

to n goes through d. This will be denoted by d dom n. Every initial node dominates all the

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop.

Similarlyeverynode dominates itself.

Example:

*In the flow graph below,

*Initial node,node1 dominates every node. *node 2 dominates itself

*node 3 dominates all but 1 and 2. *node 4 dominates all but 1,2 and 3.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

110

*node 5 and 6 dominates only themselves,since flow of control can skip around either by goin

through the other.

*node 7 dominates 7,8 ,9 and 10. *node 8 dominates 8,9 and 10.

*node 9 and 10 dominates only themselves.

 The way of presenting dominator information is in a tree, called the dominator tree in

which the initial node is the root.

 The parent of each other node is its immediate dominator.

 Each node d dominates only its descendents in the tree.

 The existence of dominator tree follows from a property of dominators; each node has a

unique immediate dominator in that is the last dominator of n on any path from the initial

node to n.

 In terms of the dom relation, the immediate dominator m has the property is d=!n and d

dom n, then d dom m.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

111

D(1)={1}

D(2)={1,2}

D(3)={1,3}

D(4)={1,3,4}

D(5)={1,3,4,5}

D(6)={1,3,4,6}

D(7)={1,3,4,7}

D(8)={1,3,4,7,8}

D(9)={1,3,4,7,8,9}

D(10)={1,3,4,7,8,10}

Natural Loop:

 One application of dominator information is in determining the loops of a flow graph

suitable for improvement.

The properties of loops are

o A loop must have a single entry point, called the header. This entry point-dominates all

nodes in the loop, or it would not be the sole entry to the loop.

o There must be at least one wayto iterate the loop(i.e.)at least one path back to the header.

 One way to find all the loops in a flow graph is to search for edges in the flow graph

whose heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These

types of edges are called as back edges.

Example:

In the above graph,

7 → 4 4 DOM 7

0 →7 7 DOM 10

4 → 3

8 → 3

9 →1

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

112

 The above edges will form loop in flow graph.

 Given a back edge n → d, we define the natural loop of the edge to be d plus the set of

nodes that can reach n without going through d. Node d is the header of the loop.

Algorithm: Constructing the natural loop of a back edge.

Input: A flow graph G and a back edge n→d

Output: The set loop consisting of all nodes in the natural loop n→d.

Method: Beginning with node n, we consider each node m*d that we know is in loop, to

make sure that m‟s predecessors are also placed in loop. Each node in loop, except for d, is

placed once on stack, so its predecessors will be examined. Note that because d is put in the

loop initially, we never examine its predecessors, and thus find only those nodes that reach n

without going through d.

Procedure insert(m);

if m is not in loop then

begin loop := loop U

{m}; push m onto stack

end;
stack : =empty;

loop :

={d};

insert(n;

while stack is not empty do begin

pop m, the first element of stack, off stack;

for each predecessor p of m do insert(p)

end;

InnerLoop:

 If we use the natural loops as “the loops”, then we have the useful property that unless

two loops have the same header, they are either disjointed or one is entirely contained in

the other. Thus, neglecting loops with the same header for the moment, we have a natural

notion of inner loop: one that contains no other loop.

 When two natural loops have the same header, but neither is nested within the other, they

are combined and treated as a single loop.

Pre-Headers:

 Several transformations require us to move statements “before the header”. Therefore

begin treatment of a loop L by creating a new block, called the preheater.

 The pre -header has only the header as successor, and all edges which formerly entered

the header of Lfrom outside L instead enter the pre-header.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

113

 Edges from inside loop L to the header are not changed.

 Initially the pre-header is empty, but transformations on L may place statements in it.

Reducible flow graphs:

 Reducible flow graphs are special flow graphs, for which several code optimization

transformations are especially easy to perform, loops are unambiguously defined,

dominators can be easily calculated, data flow analysis problems can also be solved

efficiently.

 Exclusive use of structured flow-of-control statements such as if-then-else, while-do,

continue, and break statements produces programs whose flow graphs are always

reducible. The most important properties of reducible flow graphs are that there are no

jumps into the middle of loops from outside; the only entry to a loop is through its

header.

Definition:

 A flow graph G is reducible if and only if we can partition the edges into two disjoint

groups, forward edges and back edges, with the following properties.

 The forward edges from an acyclic graph in which every node can be reached from initial

node of G.

 The back edges consist only of edges where heads dominate theirs tails.

 Example: The above flow graph is reducible.

 If we know the relation DOM for a flow graph, we can find and remove all the back

edges.

 The remaining edges are forward edges.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

114

 If the forward edges form an acyclic graph, then we can say the flow graph reducible.

 In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7

whose heads dominate their tails, the remaining graph is acyclic.

 The key property of reducible flow graphs for loop analysis is that in such flow graphs

every set of nodes that we would informally regard as a loop must contain a back edge.

Peephole Optimization

 A statement-by-statement code-generations strategy often produce target code that

contains redundant instructions and suboptimal constructs .The quality of such target

code can be improved by applying “optimizing” transformations to the target program.

 A simple but effective technique for improving the target code is peephole optimization,

a method for trying to improving the performance of the target program by examining a

short sequence of target instructions (called the peephole) and replacing these instructions

by a shorter or faster sequence, whenever possible.

 The peephole is a small, moving window on the target program. The code in the peephole

need not contiguous, although some implementations do require this.it is characteristic of

peephole optimization that each improvement may spawn opportunities for additional

improvements.

 We shall give the following examples of program transformations that are characteristic

of peephole optimizations:

 Redundant-instructions elimination

 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms

 Unreachable Code

Redundant Loads And Stores:
If we see the instructions sequence

(1) MOV R0,a

(2) MOV a,R0

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the

value of a is already in register R0.If (2) had a label we could not be sure that (1) was always

executed immediately before (2) and so we could not remove (2).

Unreachable Code:

 Another opportunity for peephole optimizations is the removal of unreachable

instructions. An unlabeled instruction immediately following an unconditional jump may

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

115

be removed. This operation can be repeated to eliminate a sequence of instructions. For

example, for debugging purposes, a large program may have within it certain segments

that are executed only if a variable debug is 1. In C, the source code might look like:

#define debug

0 ….

If (debug) {

Print debugging information

}

In the intermediate representations the if-statement may be translated as:

 debug =1 goto L2

goto L2

L1: print debugging information

L2:…………………………(a)

 One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter

what the value of debug; (a) can be replaced by:

If debug ≠1 goto L2

Print debugging information

L2:……………………………(b)

 As the argument of the statement of (b) evaluates to a constant true it can be replaced by

If debug ≠0 goto L2

Print debugging information

L2: ……………………………(c)

 As the argument of the first statement of (c) evaluates to a constant true, it can be

replaced by goto L2. Then all the statement that print debugging aids are manifestly

unreachable and can be eliminated one at a time.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

116

Flows-Of-Control Optimizations:

 The unnecessary jumps can be eliminated in either the intermediate code or the target

code by the following types of peephole optimizations. We can replace the jump

sequence

goto L1

….

L1: gotoL2

 by the sequence

goto L2

….

L1: goto L2

 If there are now no jumps to L1, then it may be possible to eliminate the statement

L1:goto L2 provided it is preceded by an unconditional jump .Similarly, the sequence

if a < b goto L1

….

L1: goto L2

can be replaced by

Ifa < b goto L2

….

L1: goto L2

 Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional

goto. Then the sequence

goto L1

……..

L1: if a <b goto L2

L3:…………………………………..(1)

 Maybe replaced by

Ifa<b goto L2

goto L3

…….

L3:………………………………….(2)

 While the number of instructions in (1) and (2) is the same, we sometimes skip the

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

117

unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time

Algebraic Simplification:

 There is no end to the amount of algebraic simplification that can be attempted through

peephole optimization. Only a few algebraic identities occur frequently enough that it is

worth considering implementing them .For example, statements such as

x := x+0

Or

x := x * 1

 Areoften produced by straightforward intermediate code-generation algorithms, and they

can be eliminated easily through peephole optimization.

Reduction in Strength:

 Reduction in strength replaces expensive operations by equivalent cheaper ones on the

target machine. Certain machine instructions are considerably cheaper than others and

can often be used as special cases of more expensive operators.

 For example, x² is invariably cheaper to implement as x*x than as a call to an

exponentiation routine. Fixed-point multiplication or division by a power of two is

cheaper to implement as a shift. Floating-point division by a constant can be implemented

as multiplication by a constant, which may be cheaper.

X
2
 → X*X

 Useof Machine Idioms:

 The target machine may have hardware instructions to implement certain specific

operations efficiently. For example, some machines have auto-increment and auto-

decrement addressing modes. These add or subtract one from an operand before or after

using its value.

 The use of these modes greatly improves the quality of code when pushing or popping a

stack, as in parameter passing. These modes can also be used in code for statements like

i : =i+1.

i:=i+1 → i++

i:=i-1 → i--

Code Improvig Transformations

 Algorithms for performing the code improving transformations rely on data-flow

information. Here we consider common sub-expression elimination, copy propagation and

transformations for moving loop invariant computations out of loops and for eliminating

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

118

induction variables.

 Global transformations are not substitute for local transformations; both must be

performed.

Elimination of global common sub expressions:

 The available expressions data-flow problem discussed in the last section allows us to

determine if an expression at point p in a flow graph is a common sub-expression. The

following algorithm formalizes the intuitive ideas presented for eliminating common sub-

expressions.

Algorithm: Global common sub expression elimination.

Input : A flow graph with available expression information.

Output: A revised flow graph.

Method: For every statement s of the form x := y+z
6
 such that y+z is available at the

beginning of block and neither y nor r z is defined prior to statement s in that block, do the

following.

 To discover the evaluations of y+z that reach s‟s block, we follow flow graph edges,

searching backward from s‟s block. However, we do not go through any block that

evaluates y+z. Thelast evaluation of y+z in each block encountered is an evaluation of

y+z that reaches s.

 Create new variable u.

 Replace each statement w: =y+z found in (1) by

 u : = y + z w : =u

 Replace statement s by x:=u.

Some remarks about this algorithm are in order.

 The search in step(1) of the algorithm for the evaluations of y+z that reach statement s

can also be formulated as a data-flow analysis problem. However, it does not make sense

to solve it for all expressions y+z and all statements or blocks because too much

irrelevant information is gathered.

 Not all changes made by algorithm are improvements. We might wish to limit

the number of different evaluations reaching s found in step (1), probably to one.

 Algorithm will miss the fact that a*z and c*z must have the same value in

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

119

a :=x+y c :=x+y

vs

b :=a*z d :=c*z

 Because this simple approach to common sub expressions considers only the literal

expressions themselves, rather than the values computed by expressions.

Copy propagation:

 Various algorithms introduce copy statements such as x :=copies may also be generated

directly by the intermediate code generator, although most of these involve temporaries

local to one block and can be removed by the dag construction. We may substitute y for

x in all these places, provided the following conditions are met every such use u of x.

 Statement s must be the only definition of x reaching u.

 On every path from s to including paths that go through u several times, there are

no assignments to y.

 Condition (1) can be checked using ud-changing information. We shall set up a new

data-flow analysis problem in which in[B] is the set of copies s: x:=y such that every

path from initial node to the beginning of B contains the statement s, and subsequent to

the last occurrence of s, there are no assignments to y.

Algorithm: Copy propagation.

Input: A flow graph G, with ud-chains giving the definitions reaching block B, and

 with c_in[B] representing the solution to equations that is the set of copies x:=y that reach

block B along every path, with no assignment to x or y following the last occurrence of

x:=y on the path. We also need ud-chains giving the uses of each definition.

Output: A revised flow graph.

Method: For each copy s : x:=y do the following:

 Determine those uses of x that are reached by this definition of namely, s: x: =y.

 Determine whether for every use of x found in (1) , s is in c_in[B], where B is the block

of this particular use, and moreover, no definitions of x or y occur prior to this use of x

within B. Recall that if s is in c in[B]then s is the only definition of x that reaches B.

 If s meets the conditions of (2), then remove s and replace all uses of x found in (1) by

y.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

120

Detection of loop-invariant computations:

 Ud-chains can be used to detect those computations in a loop that are loop-invariant, that

is, whose value does not change as long as control stays within the loop. Loop is a region

consisting of set of blocks with a header that dominates all the other blocks, so the only

way to enter the loop is through the header.

 If an assignment x := y+z is at a position in the loop where all possible definitions of y

and z are outside the loop, then y+z is loop-invariant because its value will be the same

each time x:=y+z is encountered. Having recognized that value of x will not change,

consider v := x+w, where w could only have been defined outside the loop, then x+w is

also loop-invariant.

Algorithm: Detection of loop-invariant computations.

Input: A loop L consisting of a set of basic blocks, each block containing sequence of

three -address statements. We assume ud-chains are available for the individual statements.

Output: the set of three-address statements that compute the same value each time

executed, from the time control enters the loop L until control next leaves L.

Method: we shall give a rather informal specification of the algorithm, trusting that the

principles will be clear.

 Mark “invariant” those statements whose operands are all either constant or have all

their reaching definitions outside L.

 Repeat step (3) until at some repetition no new statements are marked “invariant”.

 Mark “invariant” all those statements not previously so marked all of whose operands

either are constant, have all their reaching definitions outside L, or have exactly one

reaching definition, and that definition is a statement in L marked invariant.

Performing code motion:

 Having found the invariant statements within a loop, we can apply to some of them an

optimization known as code motion, in which the statements are moved to pre-header of

the loop. The following three conditions ensure that code motion does not change what

the program computes. Consider s: x: =y+z.

 The block containing s dominates all exit nodes of the loop, where an exit of a loop is a

node with a successor not in the loop.

 There is no other statement in the loop that assigns to x. Again, if x is a temporary

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

121

assigned only once, this condition is surely satisfied and need not be changed.

 No use of x in the loop is reached by any definition of x other than s. This condition too

will be satisfied, normally, if x is temporary.

Alternative code motion strategies:
 The condition (1) can be relaxed if we are willing to take the risk that we may actually

increase the running time of the program a bit; of course, we never change what the

program computes. The relaxed version of code motion condition (1) is that we may

move a statement s assigning x only if:

1‟. The block containing s either dominates all exists of the loop, or x is not used outside the

loop. For example, if x is a temporary variable, we can be sure that the value will be used

only in its own block.

If code motion algorithm is modified to use condition (1‟), occasionally the running

time will increase, but we can expect to do reasonably well on the average. The

modified algorithm may move to pre-header certain computations that may not be

executed in the loop. Not only does this risk slowing down the program significantly,

it may also cause an error in certain circumstances.

 Even if none of the conditions of (2i), (2ii), (2iii) of code motion algorithm are met by

an assignment x: =y+z, we can still take the computation y+z outside a loop. Create a

new temporary t, and set t: =y+z in the pre-header. Then replace x: =y+z by x: =t in the

loop. In many cases we can propagate out the copy statement x: = t.

Maintaining data-flow information after code motion:

 The transformations of code motion algorithm do not change ud-chaining

information, since by condition (2i), (2ii), and (2iii), all uses of the variable assigned

by a moved statement s that were reached by s are still reached by s from its new

position.

 Definitions of variables used by s are either outside L, in which case they reach the pre-

header, or they are inside L, in which case by step (3) they were moved to pre-header

ahead of s.

 If the ud-chains are represented by lists of pointers to pointers to statements, we can

maintain ud-chains when we move statement s by simply changing the pointer to s

when we move it. That is, we create for each statement s pointer ps, which always

points to s.

 We put the pointer on each ud-chain containing s. Then, no matter where we move s,

we have only to change ps , regardless of how many ud-chains s is on.

 The dominator information is changed slightly by code motion. The pre-header is now

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

122

the immediate dominator of the header, and the immediate dominator of the pre-header

is the node that formerly was the immediate dominator of the header. That is, the pre-

header is inserted into the dominator tree as the parent of the header.

Elimination of induction variable:

 A variable x is called an induction variable of a loop L if every time the variable x

changes values, it is incremented or decremented by some constant. Often, an induction

variable is incremented by the same constant each time around the loop, as in a loop

headed by for i := 1 to 10.

 However, our methods deal with variables that are incremented or decremented zero,

one, two, or more times as we go around a loop. The number of changes to an induction

variable may even differ at different iterations.

 A common situation is one in which an induction variable, say i, indexes an array,

and some other induction variable, say t, whose value is a linear function of i, is the

actual offset used to access the array. Often, the only use made of i is in the test for

loop termination. We can then get rid of i by replacing its test by one on t.

 We shall look for basic induction variables, which are those variables i whose only

assignments within loop L are of the form i := i+c or i-c, where c is a constant.

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

123

UNIT-V

OBJECT CODE GENERATION

Object Code Generation:

The final phase in our compiler model is the code generator. It takes as input an

intermediate representation of the source program and produces as output an equivalent

target program.

The requirements traditionally imposed on a code generator are severe. The output code must

be correct and of high quality, meaning that it should make effective use of the resources of

the target machine. Moreover, the code generator itself should run efficiently.

Issues in the design of a code generator

While the details are dependent on the target language and the operating system, issues such

as memory management, instruction selection, register allocation, and evaluation order are

Inherent In Almost All Code Generation Problems.

Input to the code generator

The input to the code generator consists of the intermediate representation of the source

program produced by the front end, together with information in the symbol table that is used

to determine the run time addresses of the data objects denoted by the names in the

intermediate representation.

124

There are several choices for the intermediate language, including: linear representations

such as postfix notation, three address representations such as quadruples, virtual machine

representations such as syntax trees and dags.

We assume that prior to code generation the front end has scanned, parsed, and translated the

source program into a reasonably detailed intermediate representation, so the values of names

appearing in the intermediate language can be represented by quantities that the target

machine can directly manipulate (bits, integers, reals, pointers, etc.). We also assume that the

necessary type checking has take place, so type conversion operators have been inserted

wherever necessary and obvious semantic errors (e.g., attempting to index an array by a

floating point number) have already been detected. The code generation phase can therefore

proceed on the assumption that its input is free of errors. In some compilers, this kind of

semantic checking is done together with code generation.

Target Programs

The output of the code generator is the target program. The output may take on a variety of

forms: absolute machine language, relocatable machine language, or assembly language.

 Producing an absolute machine language program as output has the advantage that it can be

placed in a location in memory and immediately executed. A small program can be compiled

and executed quickly. A number of “student-job” compilers, such as WATFIV and PL/C,

produce absolute code.

Producing a relocatable machine language program as output allows subprograms to be

compiled separately. A set of relocatable object modules can be linked together and loaded

for execution by a linking loader. Although we must pay the added expense of linking and

loading if we produce relocatable object modules, we gain a great deal of flexibility in being

able to compile subroutines separately and to call other previously compiled programs from

an object module. If the target machine does not handle relocation automatically, the

compiler must provide explicit relocation information to the loader to link the separately

compiled program segments.

Producing an assembly language program as output makes the process of code generation

somewhat easier .We can generate symbolic instructions and use the macro facilities of the

assembler to help generate code .The price paid is the assembly step after code generation.

Because producing assembly code does not duplicate the entire task of the assembler, this

choice is another reasonable alternative, especially for a machine with a small memory,

where a compiler must uses several passes.

125

Memory Management

Mapping names in the source program to addresses of data objects in run time memory is

done cooperatively by the front end and the code generator. We assume that a name in a

three-address statement refers to a symbol table entry for the name.

If machine code is being generated, labels in three address statements have to be converted to

addresses of instructions. This process is analogous to the “back patching”. Suppose that

labels refer to quadruple numbers in a quadruple array. As we scan each quadruple in turn we

can deduce the location of the first machine instruction generated for that quadruple, simply

by maintaining a count of the number of words used for the instructions generated so far.

This count can be kept in the quadruple array (in an extra field), so if a reference such as j:

goto i is encountered, and i is less than j, the current quadruple number, we may simply

generate a jump instruction with the target address equal to the machine location of the first

instruction in the code for quadruple i. If, however, the jump is forward, so i exceeds j, we

must store on a list for quadruple i the location of the first machine instruction generated for

quadruple j. Then we process quadruple i, we fill in the proper machine location for all

instructions that are forward jumps to i.

Instruction Selection

The nature of the instruction set of the target machine determines the difficulty of instruction

selection. The uniformity and completeness of the instruction set are important factors. If the

target machine does not support each data type in a uniform manner, then each exception to

the general rule requires special handling.

Instruction speeds and machine idioms are other important factors. If we do not care about

the efficiency of the target program, instruction selection is straightforward. For each type of

three- address statement we can design a code skeleton that outlines the target code to be

generated for that construct.

For example, every three address statement of the form x := y + z, where x, y, and z are

statically allocated, can be translated into the code sequence

 MOV y, R0 /* load y into register R0 */

 ADD z, R0 /* add z to R0 */

 MOV R0, x /* store R0 into x */

Unfortunately, this kind of statement – by - statement code generation often produces poor

code. For example, the sequence of statements

126

 a := b + c

 d := a + e

Would be translated into

 MOV b, R0

 ADD c, R0

 MOV R0, a

 MOV a, R0

 ADD e, R0

 MOV R0, d

Here the fourth statement is redundant, and so is the third if „a‟ is not subsequently used.

 The quality of the generated code is determined by its speed and size.

A target machine with a rich instruction set may provide several ways of implementing a

given operation. Since the cost differences between different implementations may be

significant, a naive translation of the intermediate code may lead to correct, but unacceptably

inefficient target code. For example if the target machine has an “increment” instruction

(INC), then the three address statement a := a+1 may be implemented more efficiently by the

single instruction INC a, rather than by a more obvious sequence that loads a into a register,

add one to the register, and then stores the result back into a.

 MOV a, R0

 ADD #1,R0

 MOV R0, a

Instruction speeds are needed to design good code sequence but unfortunately, accurate

timing information is often difficult to obtain. Deciding which machine code sequence is best

for a given three address construct may also require knowledge about the context in which

that construct appears.

127

Register Allocation

 Instructions involving register operands are usually shorter and faster than those involving

operands in memory. Therefore, efficient utilization of register is particularly important in

generating good code. The use of registers is often subdivided into two sub problems:

1. During register allocation, we select the set of variables that will reside in registers at a

point in the program.

2. During a subsequent register assignment phase, we pick the specific register that a

variable will reside in.

Finding an optimal assignment of registers to variables is difficult, even with single register

values. Mathematically, the problem is NP-complete. The problem is further complicated

because the hardware and/or the operating system of the target machine may require that

certain

Certain machines require register pairs (an even and next odd numbered register) for some

operands and results. For example, in the IBM System/370 machines integer multiplication

and integer division involve register pairs. The multiplication instruction is of the form

 M x, y

where x, is the multiplicand, is the even register of an even/odd register pair.

The multiplicand value is taken from the odd register pair. The multiplier y is a single

register. The product occupies the entire even/odd register pair.

The division instruction is of the form

 D x, y

where the 64-bit dividend occupies an even/odd register pair whose even register is x; y

represents the divisor. After division, the even register holds the remainder and the odd

register the quotient.

 Now consider the two three address code sequences (a) and (b) in which the only difference

is the operator in the second statement. The shortest assembly sequence for (a) and (b) are

given in(c).

128

 Ri stands for register i. L, ST and A stand for load, store and add respectively. The optimal

choice for the register into which „a‟ is to be loaded depends on what will ultimately happen

to e.

 t := a + b t := a + b

 t := t * c t := t + c

 t := t / d t := t / d

(a) (b) fig. 2 Two three address code sequences

 L R1, a L R0, a

 A R1, b A R0, b

 M R0, c A R0, c

 D R0, d SRDA R0, 32

ST R1, t D R0, d

 ST R1, t

 (a) (b)

 fig.3 Optimal machine code sequence

Choice of evaluation order

The order in which computations are performed can affect the efficiency of the target code.

Some computation orders require fewer registers to hold intermediate results than others.

Picking a best order is another difficult, NP-complete problem. Initially, we shall avoid the

problem by generating code for the three -address statements in the order in which they have

been produced by the intermediate code generator.

Approaches to code generation

The most important criterion for a code generator is that it produce correct code. Correctness

takes on special significance because of the number of special cases that code generator must

face. Given the premium on correctness, designing a code generator so it can be easily

implemented, tested, and maintained is an important design goal.

129

Basic Blocks And Flow Graphs

A graph representation of three-address statements, called a flow graph, is useful for

understanding code-generation algorithms, even if the graph is not explicitly constructed by a

code-generation algorithm. Nodes in the flow graph represent computations, and the edges

represent the flow of control. Flow graph of a program can be used as a vehicle to collect

information about the intermediate program. Some register-assignment algorithms use flow

graphs to find the inner loops where a program is expected to spend most of its time.

Basic Blocks

A basic block is a sequence of consecutive statements in which flow of control enters at the

beginning and leaves at the end without halt or possibility of branching except at the end.

The following sequence of three-address statements forms a basic block:

t1 := a*a

t2 := a*b

t3 := 2*t2

t4 := t1+t3

t5 := b*b

t6 := t4+t5

A three-address statement x := y+z is said to define x and to use y or z. A name in a basic

block is said to live at a given point if its value is used after that point in the program,

perhaps in another basic block.

The following algorithm can be used to partition a sequence of three-address statements into

basic blocks.

Algorithm 1: Partition into basic blocks.

Input: A sequence of three-address statements.

Output: A list of basic blocks with each three-address statement in exactly one block.

Method:

1. We first determine the set of leaders, the first statements of basic blocks.

The rules we use are the following:

 I) The first statement is a leader.

 II) Any statement that is the target of a conditional or unconditional goto is a leader.

III) Any statement that immediately follows a goto or conditional goto statement is a leader.

2. For each leader, its basic block consists of the leader and all statements up to but not

including the next leader or the end of the program.

130

Example: Consider the fragment of source code shown in fig. 7; it computes the dot product

of two vectors a and b of length 20. A list of three-address statements performing this

computation on our target machine is shown in fig. 8.

 begin

 prod := 0;

 i := 1;

 do begin

 prod := prod + a[i] * b[i];

 i := i+1;

 end

 while i<= 20

 end

fig 7: program to compute dot product

Let us apply Algorithm 1 to the three-address code in fig 8 to determine its basic blocks.

Statement (1) is a leader by rule (I) and statement (3) is a leader by rule (II), since the last

statement can jump to it. By rule (III) the statement following (12) is a leader. Therefore,

statements (1) and (2) form a basic block. The remainder of the program beginning with

statement (3) forms a second

basic block.

(1) prod := 0

(2) i := 1

(3) t1 := 4*i

(4) t2 := a [t1]

(5) t3 := 4*i

(6) t4 :=b [t3]

(7) t5 := t2*t4

(8) t6 := prod +t5

(9) prod := t6

(10) t7 := i+1

(11) i := t7

(12) if i<=20 goto (3)

131

 fig 8. Three-address code computing dot product

 prod := 0

 i := 1

 Transformations on basic blocks

 A basic block computes a set of expressions. These expressions are the values of the names

live on exit from block. Two basic blocks are said to be equivalent if they compute the same

set of expressions.

A number of transformations can be applied to a basic block without changing the set of

expressions computed by the block. Many of these transformations are useful for improving

the quality of code that will be ultimately generated from a basic block. There are two

important classes of local transformations that can be applied to basic blocks; these are the

structure-preserving transformations and the algebraic transformations.

Structure-preserving transformations

The primary structure-preserving transformations on basic blocks are:

1. Common sub-expression elimination

2. dead-code elimination

 3. Renaming of temporary variables

 4. Interchange of two independent adjacent statements

We assume basic blocks have no arrays, pointers, or procedure calls.

1. Common sub-expression elimination

Consider the basic block

a:= b+c

b:= a-d

c:= b+c

d:= a-d

The second and fourth statements compute the same expression,

namely b+c-d, and hence this basic block may be transformed into the equivalent block

a:= b+c

b:= a-d

c:= b+c

d:= b

Although the 1
st
 and 3

rd
 statements in both cases appear to have the same expression on the

right, the second statement redefines b. Therefore, the value of b in the 3
rd

 statement is

different from the value of b in the 1
st
, and the 1

st
 and 3

rd
 statements do not compute the same

expression.

132

2. Dead-code elimination

Suppose x is dead, that is, never subsequently used, at the point where the statement x:= y+z

appears in a basic block. Then this statement may be safely removed without changing the

value of the basic block.

3. Renaming temporary variables

Suppose we have a statement t:= b+c, where t is a temporary. If we change this statement to

u:= b+c, where u is a new temporary variable, and change all uses of this instance of t to u,

then the value of the basic block is not changed. In fact, we can always transform a basic

block into an equivalent block in which each statement that defines a temporary defines a

new temporary. We call such a basic block a normal-form block.

4. Interchange of statements

Suppose we have a block with the two adjacent statements

t1:= b+c

t2:= x+y

Then we can interchange the two statements without affecting the value of the block if and

only if neither x nor y is t1 and neither b nor c is t2. A normal-form basic block permits all

statement interchanges that are possible.

The target machine characteristics are

 Byte-addressable, 4 bytes/word, n registers

 Two operand instructions of the form

 Op source, destination

 Example opcodes: MOV, ADD, SUB, MULT

 Several addressing modes

 An instruction has an associated cost

 Cost corresponds to length of instruction

Addressing

Modes &

Extra Costs

133

1) Generate target code for the source language statement

“(a-b) + (a-c) + (a-c);”

The 3AC for this can be written as

 t := a – b

 u := a – c

 v := t + u

 d := v + u //d live at the end

Show the code sequence generated by the simple code generation algorithm

What is its cost? Can it be improved?

 Total cost=12

