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COURSE OBJECTIVES :

The course will able the students to

I Apply the principles in the theory of computation to 
the various stages in the design of compilers.

II Demonstrate the phases of the compilation process 
and able to describe the purpose and operation of 
each phase.

III Analyze problems related to the stages in the 
translation  process.

IV Exercise and reinforce prior programming knowledge 
with a non-trivial programming project to construct a
compiler.
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COURSE OUTCOMES (COs):

The course will able the students to

CO1 Understand the various phases of compiler and design 
the lexical analyzer

CO2 Explore the similarities and differences among various
parsing techniques and grammar transformation
techniques

CO3 Analyze and implement syntax directed translations 
schemes and intermediate code generation

CO4 Describe the concepts of type checking and analyze
runtime allocation strategies

CO5 Demonstrate the algorithms to perform code 
optimization and code generation.
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COURSE LEARNING OUTCOMES

The course will able the students to

CLO1 Define the phases of a typical compiler, including the 
front and backend.

CLO2 Recognize the underlying formal models such as finite 
state  automata, push-down automata and their 
connection to language  definition through regular 
expressions and grammars

CLO3 Identify tokens of a typical high-level programming 
language;  define regular expressions for tokens and 
design and implement a  lexical analyzer using a typical 
scanner generator.

CLO4 Explain the role of a parser in a compiler and relate the 
yield of a parse tree to a grammar derivation.
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COURSE LEARNING OUTCOMES

The course will able the students to

CLO5 Apply an algorithm for a top-down or a bottom-up parser
construction; construct a parser for a given context-free
grammar.

CLO6 Demonstrate Lex tool to create a lexical analyzer and 
Yacc tool to create a parser.

CLO7 Understand syntax directed translation schemes for a 
given context free grammar.

CLO8 Implement the static semantic checking and type 
checking using  syntax directed definition (SDD) and 
syntax directed translation  (SDT).
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COURSE LEARNING OUTCOMES

The course will able the students to

CLO9 Understand the need of intermediate code 
generation phase in  compilers.

CLO10 Write intermediate code for statements like assignment,
conditional, loops and functions in high level language.

CLO11 Explain the role of a semantic analyzer and type
checking; create a syntax-directed definition and an
annotated parse tree; describe the purpose of a syntax
tree.

CLO12 Design syntax directed translation schemes for a given 
context free grammar.
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COURSE LEARNING OUTCOMES

The course will able the students to

CLO13 Explain the role of different types of runtime 
environments and memory organization for 
implementation of programming  languages.

CLO14 Differentiate static vs. dynamic storage allocation and
the usage of activation records to manage program 
modules and their data.

CLO15 Understand the roleof symbol table data structure in the
construction of compiler.

CLO16 Learn the code optimization techniques to improve the
performance of a program in terms of speed & space
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COURSE LEARNING OUTCOMES

The course will able the students to

CLO17 Implement the global optimization using data flow
analysis such as basic blocks and DAG.

CLO18 Understand the code generation techniques to generate
target code.

CLO19 Design and implement a small compilerusing a software
engineering approach.

CLO20 Apply the optimization techniques to intermediate code
and generate machine code
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UNIT-I

INTRODUCTION TO COMPILERS
AND PARSING
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Running outcomes

The course will able the students to

CLO1 Define the phases of a typical compiler, including the front
and backend.

CLO2 Recognize the underlying formal models such as finite
state automata, push-down automata and their
connection to language definition through regular
expressions and grammars.

CLO3 Identify tokens of a typical high-level programming
language; define regular expressions for tokens and
design and implement a lexical analyzer using a typical
scanner generator.

CLO4 Explain the role of a parser in a compiler and relate the
yield of a parse tree to a grammar derivation
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Preprocessor:

A preprocessor produce input to compilers. They may perform 
the following  functions:

• Macro processing:

• File inclusion

• Rational preprocessor

• Language Extensions
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Definition of Compiler

Compiler:

• Compiler is a translator program that translates a program written  
in(HLL)the source program and translates it into an equivalent 
program  in (MLL) the target program.

• Executing a program written in HLL programming language is
basically oftwo parts.

• the source program must first be compiled translated into a object
program.

• Then the results object program is loaded into a memory
executed.
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Assembler:

• Programmers found it difficult to write or read programs 
in machine
language.

• Programs known as assembler were written to automate
the
translation of assembly language in to machine
language.

Interpreter:

• An interpreter is a program that appears to execute a 
source
program as if it were machine language
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Interpreter:

Advantages:

• Modification of user program can be easily made and
implemented
as execution proceeds.

• Type of object that denotes various may changedynamically.

• Debugging a program and finding errors is simplified task fora
program used for interpretation.

• The interpreter for the language makes it machine
independent.

Disadvantages:

• The execution of the program is slower.

• Memory consumption is more.
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linker : A linker combines one or more object files and possible some 
library code into either some executable, some library or a list of 
error messages.

Loader : A loader is a program that places programs into memory and
prepares them for execution.”

• It would be more efficient if subroutines could be translated into 
object

form the loader could ”relocate” directly behind the user’s program.

• The task of adjusting programs o they may be placed in arbitrary
core locations is called relocation.
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• A compiler operates in phases.
A phase  is  a logically interrelated operation that takes source 
program in one representation and produces output in another
representation.

There are two phases of compilation.

• Analysis (Machine Independent/Language Dependent)

• Synthesis (Machine Dependent/Language independent)
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The Phases of a Compiler
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Lexical Analysis:

• Lexical Analysis is also called as scanner

• It reads the source program one character at a time.
• carving the source program into a sequence of automatic units

called tokens.

Syntax Analysis:

• The second stage of translation is called syntax analysis or
parsing.

• In this phase expressions, statements, declarations etc… are
identified by using the results of lexical analysis.

• Syntax analysis is aided by using techniques based on formal
grammar of the programming language
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Intermediate Code Generations:

• An intermediate representation of the final machine language code
is produced.

• This phase bridges the analysis and synthesis phases of translation.

Code Optimization:
• This is optional phase described to improve the intermediate code

so that the output runs faster and takes less space.

Code Generation:

• The last phase of translation is code generation.

• A number of optimizations to Reduce the length of machine
language program are carried out during this phase.

• The output of the code generator is the machine language
program of the specified computer
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Table Management:

• This is the portion to keep the names used by the program and
records essential information about each.

• The data structure used torecord this information called a
Symbol Table.

Error Handlers:

• It is invoked when a flaw error in the source program is detected.

• The output of LA is a stream of tokens, which is passed to the
next phase, the syntax analyzer or parser.

• The SA groups the tokens together into syntactic structure called
as expression.

• Expression may further be combined to form statements.
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Example:

position:= initial + rate *60

• Lexical Analysis:

Tokens     : id1:=id2+id3*60

• Syntax Analysis:
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• Intermediate Code 

Generation:  temp1:=

int to real(60)  temp2:= 

id3 * temp1

temp3:= id2 + temp2

id1:= temp3

• Code

Optimization:

temp1: = id3 *

60.0 id1:= id2

+temp1
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• Code Generation:

MOVF id3,r1

MULF $60,r1  

MOVF id2,r2

ADDF r2,r1

MOVF r1,id1



Role of Lexical Analyzer

Role of Lexical Analyzer:

• The LA is the first phase of a compiler. Lexical analysis is 
called as linear
analysis or scanning.

• In this phase the stream of characters making up the source 
program is  read from left-to-right and grouped into tokens 
that are sequences of  characters having a collective
meaning.

• Upon receiving a get next token command form the parser, 
the lexical
analyzer reads the input character until it can identify the 
next token
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Token, Lexeme, Pattern:

Token: Token is a sequence of characters that can be treated as a single
logical entity. Typical tokens are: Identifiers, keywords, operators, 
special symbols and  Constants

Pattern:

• A set of strings in the input for which the same token is produced as  
output. This set of strings is described by a rule called a pattern
associated  with the token.

Lexeme:

• A lexeme is a sequence of characters in the source program that is
matched by the pattern for a token.
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Regular Expression

Regular Expressions:

There are 3 specifications of tokens

• Strings

• Language

• Regular expression

An alphabet or character class is a finite set of symbols.

A string over an alphabet is a finite sequence of symbols 
drawn from that  alphabet.

A language is any countable set of strings over some fixed
alphabet.
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Operations on strings

The following string-related terms are commonly used:

• A prefix of string s is any string obtained by removing zero or
more
symbols from the end of strings.

Example: ban is a prefix of banana.

• A suffix of string s is any string obtained by removing zero or
more
symbols from the beginning of s.

Example: nana is a suffix of banana.

• A substring of s is obtained by deleting any prefix and any suffix
from s.

Example: nan is a substring of banana.
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Operations on languages:

The following are the operations that can be applied to languages:

• Union

• Concatenation

• Kleene closure

• Positive closure

Operations on languages:

Let L={0,1} and S={a, b, c}     

• Union   : L U S= {0, 1, a, b, c}

• Concatenation: L.S= {0a, 1a, 0b, 1b, 0c, 1c}

• Kleene closure: L*= { ε, 0,1, 00….}

• Positive closure: L+= {0, 1, 00….}
38



Rules for Regular Expressions:

• ε is a regular expression, and L(ε) is { ε }, that is, the language
whose sole member is the empty string.

• Suppose r and s are regular expressions denoting the languages
L(r)
and L(s). Then,

– (r)|(s) is a regular expression denoting the language L(r) U L(s).

– (r)(s) is a regular expression denoting the language L(r)L(s).

– (r)* is a regular expression denoting (L(r))*.

– (r) is a regular expression denoting L(r).
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Description Of Automata:

• An automata has a mechanism to read input from input tape,

• Any language is recognized by some automation, Hence these  
automation are basically language “acceptors‟ or “language  
recognizers‟.

Types of Finite Automata

• Deterministic Automata

• Non-Deterministic Automata

43
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Finite Automata from Regular Expressions

Deterministic Automata:

A deterministic finite automata has at most one transition from each
state

on any input. A DFA is a special case of a NFA in which:

• It has no transitions on input € ,

• Each input symbol has at most one transition from any state

• DFA formally defined by 5 tuple notation M = (Q, ∑, δ, qo, F), where 
Q is a
finite „set of states‟, which is nonempty.

• ∑ is „input alphabets‟, indicates input set.

• qo is an „initial state‟ and qo is in Q ie, qo, ∑, Q F is a set of Final
states‟,

• δ is a „transmission function‟ or mapping function, using this
function the next state can be determined
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• The regular expression is converted into minimized DFA by the  
following procedure:

Regular expression → NFA → DFA → Minimized DFA

• The Finite Automata is called DFA if there is only one path for a  
specific input from current state to next state.
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Nondeterministic Automata:

A NFA is a mathematical model consists of

• A set of states S.

• A set of input symbols ∑.

• A transition is a move from one state to another.

• A state so that is distinguished as the start (or initial) state

• A set of states F distinguished as accepting (or final) state.

• A number of transition to a single symbol.
• A NFA can be diagrammatically represented by a labeled directed

graph, called a transition graph, in which the nodes are the states
and the labeled edges represent the transition function.

• The transition graph for an NFA that recognizes the language
(a|b)*abb is shown
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Finite Automata
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Pass and Phases of Translation:

A compiler can have many phases and passes.

• Pass: A pass refers to the traversal of a compiler through the entire
program.

• Phase: A phase of a compiler is a distinguishable stage, which takes
input from the previous stage, processes and yields output that can
be used as input for the next stage.

• A pass can have more than one phase.
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Phases:

Phases are collected into a front end and back end

Frontend:

• The front end consists of those phases, or parts of phase, that
depends
on the source language and is independent of the target machine.

• These normally include lexical and syntactic analysis, the creation of
the
symbol table, semantic analysis, and the generation of intermediate
code.

• Code optimization can be done by front end as well.

• The front end also includes the error handling that goes along with
each of these phases.
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Back end:

• The back end includes those portions of the compiler that depend 
on the  target machine and generally, these portions do not depend 
on the  source language.



Bootstrapping

Bootstrapping:

• Bootstrapping is the process of writing a compiler in the target
programming language which it is intended to complete.

• Applying this technique leads to a self-hosting compiler. A

compiler is characterized by three languages:

• Source Language

• Target Language

• Implementation Language
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LEX-lexical analyzer generator

lexical analyzer with Lex:

• First, a specification of a lexical analyzer is prepared by creating a
program lex.l in the Lex language.

• Then, lex.l is run through the Lex compiler to produce a C program
lex.yy.c.

• Finally, lex.yy.c is run through the C compiler to produce an object
program a.out.

• This a.out is the lexical analyzer that transforms an input stream
into a sequence of tokens
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• Lex.l is an a input file written in a language which describes 
the  generation of lexical analyzer.

• lex compiler transforms lex.l to a C program known as lex.yy.c.

• Lex.yy.c is compiled by the C compiler to a file called a.out.

• The output of C compiler is the working lexical analyzer which
takes
stream of input characters and produces a stream of tokens.

• yylval is a global variable which is shared by lexical analyzer
and
parser to return the name and an attribute value of token.

• Another tool for lexical analyzer generation is Flex
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Lex Specification:

A Lex program consists of three parts:

• definitions

• rules

• user subroutines



Lex Specification:

• Definitions include declarations of variables, constants, and
regular
definitions

• Rules are statements of the form p1 {action1} p2 {action2} … pn
{action}

where pi is regular expression and actioni describes what action 
the lexical
analyzer should take when pattern pi matches a lexeme.
Actions are written in C code.

• User subroutines are auxiliary procedures needed by the actions.
These
can be compiled separately and loaded with the lexical analyzer.

62



Structure of Lex Programs:

Lex program will be in following form

declarations

%%

translation rules

%%

auxiliary functions

Structure of Lex Programs:

• Declarations :This section includes declaration of variables, 
constants and regular definitions.

• Translation rules: It contains regular expressions and segments.

• Auxiliary functions: This section holds additional functions
which are used in actions. These functions are compiled 
separately and loaded with lexical analyzer. 63



Parsing

Parsing:

• Parsing is the activity of checking whether a string of symbols is in 
the  language of some grammar, where this string is usually the 
stream of  tokens produced by the lexical analyzer.

There are two main kinds of parsers

• Top-down

• Bottom-up

• Top-down: A top-down parser attempts to construct a tree from
the root, applying productions forward to expand non-terminals
into strings of symbols

• Bottom-up: A Bottom-up parser builds the tree starting with the
leaves, using productions in reverse to identify strings of symbols
that can be grouped together
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Role of parser

Role of parser:

• In this process of compilation the parser and lexical analyzer work  
together. That means, when parser required string of tokens it 
invokes  lexical analyzer .

• In turn, the lexical analyzer supplies tokens to syntax analyzer(parser).

• The parser collects sufficient number of tokens and builds a parse
tree.

• By building the parse tree, parser smartly finds the syntactical errors
if any. It is also necessary that the parse should recover from
commonly occurring errors
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Context-free Grammars:

Definition:

• Formally, a context-free grammar G is a 4-tuple G = (V, T, P, S), where:

• V is a finite set of variables (or nonterminals). These
describe
sets of “related” strings.

• T is a finite set of terminals (i.e., tokens).

• P is a finite set of productions, each of the form A →

• Where A Ɛ V is a variable, and Ɛ (V ᴜ T)* is a sequence of

terminals and no terminals.

• S Ɛ V is the start symbol
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A context-free grammar has four components:

• A set of non-terminals (V). Non-terminals are syntactic variables
that denote sets of strings.

• A set of tokens, known as terminal symbols (Σ). Terminals are the
basic symbols from which strings are formed.

• A set of productions (P). The productions of a grammar specify the
manner in which the terminals and non-terminals can be combined
to form strings.

• Each production consists of a non-terminal called the left side of 
the  production, an arrow, and a sequence of tokens and/or non-
terminals,  called the right side of the production.
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Syntax Analyzers:

• A syntax analyzer or parser takes the input from a lexical analyzer 
in  the form of token streams.

• The parser analyzes the source code (token stream) against the
production rules to detect any errors in the code.

• The output of this phase is a parse tree
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Derivation:

• A derivation is basically a sequence of production rules, in
order to  get the input string.

• During parsing, we take two decisions for some sentential form of
input:

• Deciding the non-terminal which is to be replaced.
• Deciding the production rule, by which, the non-terminal will be

replaced.
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Derivations are two types:

Left-most Derivation:

• If the sentential form of an input is scanned and replaced from left
to right, it is called left-most derivation.

• The sentential form derived by the left-most derivation is called the
left-sentential form.

Right-most Derivation:

• If we scan and replace the input with production rules, from right
to left, it is known as right-most derivation.

• The sentential form derived from the right-most derivation is called
the right-sentential form.
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Example of Derivation

Example:

Production rules:

E → E + E

E → E * E

E → id

Derive the following 
Input string:

id + id * id
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Right-mostDerivation:

E → E + E

E → E + E * E

E → E + E * id E

→  E  + id * id E

→ id + id * id

Example:

Left-most Derivation:

E → E * E

E → E + E * E

E → id + E * E E

→  id  + id * E E

→ id + id * id



Parse tree

Parse trees:

• A parse tree is a graphical depiction of a derivation. It is
convenient to see how strings are derived from the start
symbol. The start symbol of the derivation becomes the root
of the parse tree.

In a parse tree:

• All leaf nodes are terminals.

• All interior nodes are non-terminals.

• In-order traversal gives original input string.
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Example:

Let the production P is:

• E→ T | E+T

• T→ F | T*F

• F→ V | (E)

• V→a | b | c |d

Construct the parse tree for the following strings

• a * b + c

• a+ b * c
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a+b*ca*b+c
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Ambiguity:

• A grammar is ambiguous if there is any sentence with 
more than  one parse tree

• A grammar G is said to be ambiguous if it has more than 
one parse tree  (left or right derivation) for at least one
string.

Example:

• E → E + E

• E → E – E

• E → id

• For the string id + id – id, the above grammar generates two 
parse trees

82



83



Elimination of left recursion

Left Recursion:

• If there is any non terminal A, such that there is a derivation  AA
for some string a, then the grammar is left recursive.

• Top down parsers cannot handle left recursive grammars.

• If our expression grammar is left recursive:

• This can lead to non termination in a top-down parser.

• For a top-down parser, any recursion must be right recursion.

• Convert the left recursion to right recursion

Algorithm for eliminating left Recursion:

• Replace the above A productions by the following: A

β1 AI | β2 AI | - - - | βnAI

AI 1 AI | 2 AI | - - - |m AI |

Where, AI is a new non terminal.
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Example 1:

Remove the left recursion from the production: A → A | β

Left recursion eliminate by Applying the transformation yields:

• A → β AI

• AI →  AI |

Example 2:

Remove the left recursion from the productions:

E → E + T | T T → T * F | F

Applying the transformation yields:

E → T EI

T → F TI

EI  → T EI |

TI  → F TI | 
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Elimination left factoring

Left factoring:

• Left factoring is a grammar transformation that is useful for  
producing a grammar suitable for predictive parsing

Algorithm:

• For all A Ɛ non-terminal, find the longest prefix  that occurs in
two

or more right-hand sides of A

If  ≠  then replace all of the A productions,

A →  βI |  β2 | - - - |  βn | r

With

A →  AI | r

AI → βI | β2| - - - | βn | 

Where, AI is a new element of non-terminal.
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Algorithm:

• Repeat until no common prefixes remain.

• It is easy to remove common prefixes by left factoring, creating new
non-terminal

Let the given grammar:

A→ab1 | ab2 | ab3

• We can see that, for every production, there is a common prefix &
if we choose any production here, it is not confirmed that we will
not need to backtrack.

A →aA‘

A‘ → b1 | b2| b3
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Example:

• Left factoring is required to eliminate non-determinism of a  
grammar

Suppose a grammar, S

-> abS | aSb

• Here, S is deriving the same terminal a in the production rule (two
alternative choices for S), which follows non-determinism.

S →aS'

S' → bS | Sb

Thus, S' can be replaced for bS or Sb
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Eliminating ambiguity from dangling-else grammar

Ambiguity:

• A grammar is said to be ambiguous if it produces more than one  
parse tree for some sentence.

• An ambiguous grammar is one that produces more than one
leftmost or more than one rightmost derivation for the same
sentence

92



Consider the following ‘dangling else’ grammar

• stmt → if cond then stmt

| if cond then stmt else stmt

| other

Here “other” stands for any other statement.

• According to this grammar, the compound conditional 
statement: if

(a>b) then

if(c>d) then

printf(“Hello”);

else

printf(“KEIN Hello”);
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Eliminating ambiguity from dangling-else grammar
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• The above grammar has 2 different parse trees

• The problem here is that in the two different parse trees the ‘else’ 
is  matched with different ‘then’.

• In all programming languages with conditional statements of this 
form,  the first parse tree is preferred .

• The general rule is “ Match each else with the closest 
previous  unmatched then”.
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• The disambiguating rule can be incorporated directly into the
grammar.

• For example, we can rewrite the previous grammar as the following
unambiguous grammar.

• The idea is that a statement appearing between a then and an else 
must  be “matched” i.e., it must not end with an unmatched then 
followed by a  statement, for the else would then be forced to 
match with this  unmatched then.
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• A matched statement is either an if-then-else statement containing
no unmatched statement or it is any other kind of unmatched
statement.

• unambiguous grammar :

stmt→ matched_stmt | unmatched_stmt

matched_stmt→if cond then matched_ stmt else matched_stmt

|other

unmatched_stmt→if cond then stmt

| if cond then matched_stmt else unmatched_stmt

• The grammar generates only one parsing for the given input string 
and  that corresponds to the first tree.
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Classes of parsing

Classes of parsing:

• There are two parsing techniques, these parsing techniques work
on the following principle

• The parser scans the input string from left to right and identifiers
that the derivation is leftmost or rightmost

Two types of parsing:

• Top down parsing

• Bottom up parsing
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Top down parsing:

• When the parse tree can be constructed from root and expanded to
leaves, then such type of parse is called top-down parser.

• The name itself tells us that the parse tree can be built from top to

bottom.

Bottom up parsing:

• When the parse tree can be constructed from leaves to root, then
such type of parse is called as bottom–up parse.

• Thus the parse tree is built in bottom up manner.
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Top-down parsing:

Recursive descent parsing :

• It is a common form of top-down parsing.

• It is called recursive as it uses recursive procedures to process the
input.

• Recursive descent parsing suffers from backtracking.

Backtracking :

• It means, if one derivation of a production fails, the syntax
analyzer restarts the process using different rules of same
production.

• This technique may process the input string more than once to
determine the right production.
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Example:

S → if E then S else S 

| while E do S 

| print E

→ true | False | id

The input token string is:

If id then while true do print else
print.
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Backtracking

Backtracking:

• Top- down parsers start from the root node (start symbol) and 
match the
input string against the production rules to replace them (if
matched).

• To understand this, take the following example of CFG

S → rXd | rZd

X → oa | ea Z

→ ai
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For an input string: read, a top-down parser, will behave like this:

• It will start with S from the production rules and will match its yield 
to the left-most letter of the input, i.e. ‘r’.

• The very production of S (S → rXd) matches with it. So the top-
down parser advances to the next input letter (i.e. ‘e’).

• The parser tries to expand non-terminal ‘X’ and checks
its production from the left (X → oa).

• It does not match with the next input symbol. So the top-
down parser backtracks to obtain the next production rule
of X, (X → ea).

• Now the parser matches all the input letters in an ordered manner.
The string is accepted.
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Recursive-descent parsing:

Recursive descent parser is a top-down parser.

• It requires backtracking to find the correct production to beapplied.

• The parsing program consists of a set of procedures, one for each
non-terminal.

• Process begins with the procedure for start symbol.
• Start symbol is placed at the root node and on encountering each 

non- terminal, the procedure concerned is called to expand the non-
terminal  with its corresponding production.

• Procedure is called recursively until all non-terminals areexpanded.

• Successful completion occurs when the scan over entire input 
string is  done. ie., all terminals in the sentence are derived by 
parse tree
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Algorithm for Recursive-descent parsing:

void A()

{

choose an A-production, A ----> X1 X2 X3...Xk;

for (i = 1 to k)

if (Xi is a non-terminal)

call procedure Xi ();

else if (Xi equals the current input 

symbol a)  advance the input to 

the next symbol;

else error;

}
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Example for recursive decent parsing:

• A left-recursive grammar can cause a recursive-descent 
parser to go into an infinite loop.

• Hence, elimination of left-recursion must be done 
before parsing.

• Consider the grammar for arithmetic expressions

E → E+T | T

T → T*F | F

F → (E) | id
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After eliminating the left-recursion the grammar
becomes,

E → TE’

E’ → +TE’ |Ɛ

T → FT’

T’ → *FT’ | Ɛ

F → (E) | id

Now we can write the procedure for grammar as
follows:
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Recursive procedure:

Procedure E()

begin

T( );

EPRIME( );

End

Procedure EPRIME( )

begin

If input symbol=’+’ then  

ADVANCE( );

T( );
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Recursive procedure:

EPRIME( );

end Procedure

T( ) begin

F( );

TPRIME();

end

Procedure TPRIME( )  

begin

If input_symbol=’*’ then



Recursive procedure:

ADVANCE( );

F( );

TPRIME( );

end Procedure

F( ) begin

If input-symbol=’id’ then

ADVANCE( );

else if input-symbol=’(‘ then

ADVANCE( );
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Recursive procedure:

E( );

else if input-symbol=’)’ then

ADVANCE( );

end

else

ERROR( );



The construction of a predictive parser is aided by two functions
associated with a grammar G :

• FIRST

• FOLLOW
• If α is any string of grammar symbols, let FIRST (α) be the set of  

terminals that begin the strings derived from α. If α=>€,then € is 
also  in FIRST(α).

• Define FOLLOW (A), for non terminals A, to be the set of terminals a 
that can appear immediately to the right of A in some sentential
form

• The set of terminals a such that there exist a derivation of the 
form  S=>αAaβ for some α and β. If A can be the rightmost 
symbol in some  sentential form, then $ is in FOLLOW(A).
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Rules for first( ):

• If X is terminal, then FIRST(X) is {X}.

• If X → ε is a production, then add ε to FIRST(X).

• If X is non-terminal and X → aα is a production then add a
to FIRST(X).

• If X is non-terminal and X → Y1 Y2…Yk is a production, 
then place a in  FIRST(X) if for some i, a is in FIRST(Yi), and 
ε is in all of  FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1=> ε. If 
ε is in FIRST (Yj) for all  j=1,2,..,k, then add ε to FIRST(X).
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Rules for follow( ):

• If S is a start symbol, then FOLLOW(S) contains $.

• If there is a production A → αBβ, then everything in 
FIRST(β) except ε is placed in follow(B).

• If there is a production A → αB, or a production A → αBβ
where FIRST(β) contains ε, then everything in FOLLOW(A) is 
in FOLLOW(B).
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Example:

Constructthe FIRST and FOLLOW for the grammar:

A → BC | EFGH | H

B → b

C → c | 

E  →  e | 

F →CE

G → g

H →h | 
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Solution:

Finding first () set:

first (H) = first (h) ᴜ first () = {h, }

first (G) = first (g) = {g}

first (C) = first (c) ᴜ first () = {c, }

first (E) = first (e) ᴜ first () = {e, }

first (F) = first (CE) = (first (c) - {}) ᴜ first (E)

= (c, } {}) ᴜ {e, } = {c, e, }

first (B) = first (b)={b}
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Solution:

Finding first () set:

first (A) = first (BC) ᴜ first (EFGH) ᴜ first (H)

= first (B) ᴜ (first (E) – {}) ᴜ first (FGH) ᴜ {h, }

= {b, h, } ᴜ {e} ᴜ (first (F) – {}) ᴜ first (GH)

= {b, e, h, } ᴜ {C, e} ᴜ first (G)

= {b, c, e, h, } ᴜ {g} = {b, c, e, g, h, }
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Finding follow() sets:

follow(A) = {$}

follow(B) = first(C) – {} ᴜ follow(A) = {C, $}

follow(G) = first(H) – {} ᴜ follow(A)

={h, } – {} ᴜ {$} = {h, $}

follow(H) = follow(A) = {$} follow(F) =

first(GH) – {} = {g}

follow(E) = first(FGH) m- {} ᴜ follow(F)

= ((first(F) – {}) ᴜ first(GH)) – {} ᴜ follow(F)

= {c, e} ᴜ {g} ᴜ {g} = {c, e, g}

follow(C) = follow(A) ᴜ first (E) – {} ᴜ follow (F)

={$} ᴜ {e, } ᴜ {g} = {e, g, $}
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Predictive parser

Predictive parser:

• Predictive parsing is a special case of recursive descent
parsing where no backtracking is required.

• The key problem of predictive parsing is to determine the 
productionto be applied for a non-terminal in case of
alternatives

• The table-driven predictive parser has an input buffer, stack,
a parsing table and an outputstream.
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Input buffer:

• It consists of strings to be parsed, followed by $ to indicate the
end of the input string.

Stack:

• It contains a sequence of grammar symbols preceded by $ to
indicate the bottom of the stack.

• Initially, the stack contains the start symbol on top of $.

Parsing table:

• It is a two-dimensional array M[A, a], where ‘A’ is a non-terminal
and ‘a’ is a terminal
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Algorithm for construction of predictive parsing table:

Input : Grammar G

Output : Parsing table M

Method :

• For each production A → α of the grammar, do steps 2 and 3.

• For each terminal a in FIRST(α), add A → α to M[A, a].

• If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in
FOLLOW(A).
If ε is in FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A,
$].

• Make each undefined entry of M be error.
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Example :

Construct a predictive parsing table for the given grammar

Consider the following grammar :

E → E+T | T

T → T*F | F

F → (E) | id
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Construction of predictive parsing table



Step 1:

• Suppose if the given grammar is left Recursive then convert the 
given  grammar (and) into non-left Recursive grammar (as it goes 
to  infinite loop).

• After eliminating left-recursion the grammar is

E → TE’

E’ → +TE’ | ε

T → FT’

T’ → *FT’ | ε

F → (E) | id
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Step 2:

• Find the FIRST(X) and FOLLOW(X) for all the variables.

• The variables are: {E, EI, T, TI, F} Terminals are: {+, *, (, ), id} and $

Computation of FIRST() sets:

FIRST (F) = FIRST ((E)) U FIRST (id) = {(, id}

FIRST (TI) = FIRST (*FTI) U FIRST () = {*, }

FIRST (T) = FIRST (FTI) = FIRST (F) = {(, id}

FIRST (EI) = FIRST (+TEI) U FIRST () = {+, }

FIRST (E) = FIRST (TEI) = FIRST (T) = {(, id}
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Computation of FOLLOW() sets:

FOLLOW (E) = {$} U FIRST ( ) ) = {$, )}

FOLLOW (EI) = FOLLOW (E) = {$, )}

FOLLOW (T) = (FIRST (EI) - {}) U FOLLOW (E) U FOLLOW (EI)

= {+, ), $}

FOLLOW (TI) = FOLLOW (T) = {+, ), $}

FOLLOW (F) = (FIRST (TI) - {}) U FOLLOW (T) U FOLLOW (TI)

= {*, +, ), $}
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LL(1) grammar

LL(1) grammars:

• A grammar is LL(1) if it is possible to choose the next production
by looking at only the next token in the input string.

• The first "L" in LL(1) stands for scanning the input from left to
right.

• The second "L" stands for producing a leftmost derivation.

• The "1" stands for using one input symbol of look a head at each
step in making parsing action decisions.

• No LL (1) grammar can be ambiguous or left recursive.
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LL(1) grammars:

• If there were no multiple entries in the Recursive decent parser
table, the given grammar is LL (1).

• If the grammar G is ambiguous, left recursive then the recursive
decent table will have atleast one multiply defined entry.
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Consider this following grammar:

S → iEtS | iEtSeS | a

E → b

After eliminating left factoring, we have

S → iEtSS’ | a

S’→ eS | ε

E → b
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To construct a parsing table, we need FIRST() and FOLLOW() for all
the non-terminals

• FIRST(S) = { i, a }

• FIRST(S’) = {e, ε }

• FIRST(E) = { b}

• FOLLOW(S) = { $ ,e }

• FOLLOW(S’) = { $ ,e }

• FOLLOW(E) = {t}

152



153



Examples for LL(1) grammars

Example:

• Construct a predictive parsing table for the given grammar to

check whether given grammar is LL(1) or Not.

• Consider the following grammar:

S → AC$

C → c | 

A → aBCd | BQ | 

B → bB | d  Q → q

155



Example:

Solution:

Finding the first () sets:

First (Q) = {q}

First (B) = {b, d}

First (C) = {c, }

First (A) = First (aBCd) ᴜ First (BQ) ᴜ First ()

= {a} ᴜ First (B) ᴜ First (d) ᴜ{}

= {a} ᴜFirst (bB) ᴜ First (d) ᴜ {}

= {a} ᴜ {b} ᴜ {d} ᴜ {}

= {a, b, d, }
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Example:

Solution:

First (S) = First (AC$)

= (First (A) – {}) ᴜ (First (C) – {}) ᴜ First ()

= ({a, b, d, } – {}) ᴜ ({c, } – {}) ᴜ {}

= {a, b, d, c, }
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Example:

Solution:

Finding Follow () sets:

Follow (S) = {$}

Follow (A) = (First (C) – {}) ᴜ First ($) = ({c, } – {}) ᴜ {$}

Follow (A) = {c, $}

Follow (B) = (First (C) – {}) ᴜ First (d) ᴜ First (Q)

= {c} ᴜ {d} ᴜ{q}

= {c, d, q}

Follow (C) = (First ($) ᴜ First (d) = {d, $}

Follow (Q) = (First (A) = {c, $}
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UNIT-II

BOTTOM-UP PARSING



Running Outcomes

The course will able the students to

CLO4 Explain the role of a parser in a compiler and relate the
yield of a parse tree to a grammar derivation.

CLO5 Apply an algorithm for a top-down or a bottom-up
parser construction; construct a parser for a given
context-free grammar.

CLO6 Demonstrate Lex tool to create a lexical analyzer and
Yacc tool to create a parser.

162



Definition of bottom-up parsing, handles

Handle:

• Always making progress by replacing a substring with 
LHS of a  matching production will not lead to the 
goal/start symbol.

• A Handle of a string is a substring that matches the right side 
of a production

• If the grammar is unambiguous, every right sentential 
form has  exactly one handle.

• More formally, A handle is a production A→β and a position 
in the current right-sentential form αβω such that:

SαAωα/βω



Conflicts During Shift-Reduce Parsing

• Conflicts Type

– shift-reduce

– reduce-reduce

• Shift-reduce and reduce-reduce conflicts are caused by

– The limitations of the LR parsing method (even when the
grammar is unambiguous)

– Ambiguity of the grammar



Shift-Reduce Conflict







Stack Input Action

$ Id - num * id Shift

$ id - num * id Reduce factor  id

$ Factor - num * id Reduce Term  Factor

$ Term - num * id Reduce Expr  Term

$ Expr - num * id Shift

$ Expr - num * id Shift

$ Expr – num * id Reduce Factor  num

$ Expr – Factor * id Reduce Term  Factor

$ Expr – Term * id Shift

$ Expr – Term * id Shift

$ Expr – Term * id - Reduce Factor  id

$ Expr – Term & Factor - Reduce Term  Term *

Factor

$ Expr – Term - Reduce Expr  Expr –

Term

$ Expr - Reduce Goal  Expr

$ Goal - Accept

•shift until the top of the stack is the right end of a handle
•Find the left end of the handle & reduce.

Examples of conflicts during shift-reduce parsing



Procedure:
1.Shift until top of stack is the right end of a handle.
2. Find the left end of the handle and reduce.

•Dangling-else problem:

•stmtif expr then stmt/if expr then stmt/other then example string
is: if E1 then if E2 then S1 else S2 has two parse trees (ambiguity) and
so this grammar is not of LR(k) type.





LR Parser

• LR parser are table-driven

– Much like the non recursive LL parsers.

• The reasons of the using the LR parsing

– An LR-parsing method is the most general non backtracking  
shift-reduce parsing method known, yet it can be 
implemented  as efficiently as other.

– LR parsers can be constructed to recognize virtually all  
programming-language constructs for which context-
free  grammars can be written



LR(0)

• An LR parser makes shift-reduce decisions by maintaining states 
to  keep track.

• An item of a grammar G is a production of G with a dot at 
some  position of the body.

– Example

A → X Y Z                    

A → ．X Y Z



Model of an LR Parser



LR(0)

• An LR parser makes shift-reduce decisions by maintaining 
states to  keep track.

• An item of a grammar G is a production of G with a dot at 
some  position of the body.

– Example

A → X Y Z

A → ．X Y Z

A → X．Y Z  

A → X Y ．

Z  A → X Y Z

．



Function Closure

If I is a set of items for a grammar G, then closure(I) is the set of items
constructed from I.
Create closure(I) by the two 

rules:  add every item in I to
closure(I)
If A→α．Bβ is in closure(I) and B →γ is a production, then add the 
item B
→．γ to closure(I). Apply this rule untill no more new items can be
added
to closure(I).

Divide all the sets of items into two
Kernel items

initial item S’ → ．S, and all items whose dots are not at the left
end.

Nonkernel items
All items with their dots at the left end, except for S’ → ．S



Example

• The grammar G
E’ → E
E → E + T | T

T → T * F |
F  F → ( E ) | id

• Let I = { E’ → ．E } , then
closure(I) = {

E’→．E

E →．E + T  E →．T
T →．T * F
T →．F
F →．( E )
F →．id }



Function Goto

• Function Goto(I, X)

– I is a set of items

– X is a grammar symbol

– Goto(I, X) is defined to be the closure of the set of all 
items [A
 α X‧β] such that [A  α‧ Xβ] is in I.

– Goto function is used to define the transitions in the 
LR(0)  automation for a grammar.



Example

I = {

E’ → E．

E → E ．+ T }

Goto (I, +) = {

E → E +． T  

T →． T * F  

T →．F

F →．(E)

F →．id

}

The grammar G
E’ →E

E → E + T |T

T → T * F |F 

F → ( E )|id



Constructing the LR(0) Collection

1. The grammar is augmented with a new start symbol S’ and
production S’S

2. Initially, set C = 
closure({[S’•S]})  (this is the 
start state of the DFA)

3. For each set of items I  C and each grammar symbol X 
(NT)
such that
GOTO(I, X)  C and goto(I, X) 
,  add the set of items GOTO(I, 
X) to C

4. Repeat 3 until no more sets can be added to C



SLR Grammars

• SLR (Simple LR): a simple extension of LR(0) shift-reduce
parsing

• SLR eliminates some conflicts by populating the parsing table 
with  reductions A on symbols in FOLLOW(A)

• Function Goto(I, X)

– I is a set of items

– X is a grammar symbol

– Goto(I, X) is defined to be the closure of the set of all items
[A
 α X‧β] such that [A  α‧ Xβ] is in I.

– Goto function is used to define the transitions in the 
LR(0)  automation for a grammar.





SLR Parsing Table

• Reductions do not fill entire rows

• Otherwise the same as LR(0)



Example SLR Parsing Table



SLR Grammar and LR(0) Items



Example SLR Parsing Table



Construction of the Canonical LR(1)

• Augment the grammar with S’S

• Construct the set C={I0,I1,…,In} of LR(1) items

• State i of the parser is constructed from Ii

– If [A•a, b]  Ii and goto(Ii,a)=Ij then set action[i,a]=shift
j

– If [A•, a]  Ii then set action[i,a]=reduce A (apply 
only if
AS’)

– If [S’S•, $] is in Ii then set action[i,$]=accept

• If goto(Ii,A)=Ij then set goto[i,A]=j

• Repeat 3 until no more entries added

• The initial state i is the Ii holding item [S’•S,$]



Given S  CC, C
cC/d.

1. Number the grammar
productions:

• 1. SCC

• 2. CcC

• 3. Cd

2. The Augmented grammar is:

• SIS

• SCC

• CcC

• Cd.



• Constructing the sets of LR(1) items:

• We begin with:

• SI.S,$ begin with look-a-head (LAH) as $.

• Function closure tells us to add [B.r,b] for each production 
Br  and terminal b in FIRST (a).

• Now r must be SCC, and since  is  and a is $, b may 
only be $. Thus,

• S.CC,$



• S.CC,$

FIRST (C$) = FIRST ©

FIRST© = {c,d}

• I0 : SI.S,$

S.CC,$

C.cC,c/

d 

C.d.c/d

start computing goto (I0,X) for various non-

terminals  Goto (I0,S)

Goto (I0,C) ..so on



state
ACTION GOTO

c d $ S C

0 s3

s6

s3

r3

s6

r2

s4

s7

s4

r3

s7

r2

acc

r1

r3

r2

1 2

1

2 5

3 8

4

5

6 9

7

8

9

The grammar G
S’ → S

S → C C

C → c C | d

Example



Example Grammar

• Unambiguous LR(1)
grammar:

S  L = R | R
L  * R | id
R  L

• Augment with S’  S

• LR(1) items (next slide)







Grammar:

1. S’  S

2. S  L = R

3. S  R

4. L  * R

5. L  id

6. R  L

Example LR(1) Parsing Table



Lookahead LR

LALR

• LookAhead LR

• Try to merge states in LR(1) automata

• When the core items in two LR(1) states are the same

• merge them



state

ACTION GOTO

c d $ S C

0 s36

s36

s36

r3

r2

s47

s47

s47

r3

r2

acc

r3

r1

r2

1 2

1

2 5

36 89

47

5

89

state
ACTION GOTO

c d $ S C

0 s3

s6

s3

r3

s6  

r2

s4

s7

s4

r3

s7  

r2

acc

r1

r3

r2

1 2

1

2 5

3 8

4

5

6 9

7

8

9

Example



• Construct sets of LR(1) items

• Combine LR(1) sets with sets of items that share the same first  
part

Constructing LALR(1) Parsing Tables



• Another LALR example

Given grammar is

S  CC

C  cC  C  d



Error recovery

An LR parser can use any one of the following two techniques for error  
recovery:
• Panic mode
• Phrase level

Panic mode recovery:
It involves the following steps:
•Scan down the stack until a state ’a’ with goto on a particular non 
terminal ‘B’ is found (by removing states from the stack)
•Zero or more input symbols are discarded until a symbol ‘b’ is found 
that  can follow ‘B’.
•Then the parser stacks the stage goto(s, B) and resumes parsing



Phrase Level Recovery:
It involves the following steps:

•Deciding on programmer errors, basing on the language, that call 
error  routines in the parser table

•Designing appropriate error routines carefully that can modify the
top of the stack and/or some symbols on input in a way suitable for
error entries in the table.



Ambiguous Grammars

Ambiguous grammars provide a shorter and more natural
specification for certain constructs when compared to the
equivalent unambiguous grammars.

One can isolate a construct for optimization purposes using
ambiguous grammars

One can incorporate a special construct by adding new
productions to an existing ambiguous grammar

Ambiguous grammar can be handled by bottom up parser.



Creating LR Parsers for Ambiguous Grammars:

Panic mode recovery:
It involves the following steps:

•Scan down the stack until a state ’a’ with goto on a particular non 
terminal ‘B’ is found (by removing states from the stack)

•Zero or more input symbols are discarded until a symbol ‘b’ is found 
that  can follow ‘B’.

•Then the parser stacks the stage goto(s, B) and resumes parsing



Phrase Level Recovery:
It involves the following steps:

•Deciding on programmer errors, basing on the language, that call 
error  routines in the parser table

•Designing appropriate error routines carefully that can modify the
top of the stack and/or some symbols on input in a way suitable for
error entries in the table.



YACC is a automatic tool that generates the parser program.

YACC stands for Yet Another Compiler Compiler. This program 
is  available in UNIX OS.

The construction of LR parser requires lot of work for parsing the 
input  string. Hence, the process must involve automation to achieve  
efficiency in parsing an input.

Basically YACC is a LALR parser generator that reports conflicts 
or  uncertainties (if at all present) in the form of error messages
The typical YACC translator can be represented as shown in the
image

YACC-automatic parser  generator



YACC Specification



The YACC specification file consists of three parts

Declaration section: In this section, ordinary C declarations are 
inserted  and grammar tokens are declared. The tokens should be 
declared  between %{ and %}

Translation rule section:It includes the production rules of context free
grammar with corresponding actions

• The specification file comprising these sections can be written as:

%{

/ * declaration section */

%}

/* Translation rule section */

%%

/* Required C functions */
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UNIT-III

SYNTAX-DIRECTED TRANSLATION AND  INTERMEDIATE
CODE  GENERATION



Running Outcomes

The course will able the students to

CLO7 Understand syntax directed translation schemes for a 
given context free grammar.

CLO8 Implement the static semantic checking and type
checking using syntax directed definition (SDD) and
syntax directed translation (SDT).

CLO9 Write intermediate code for statements like assignment,
conditional, loops and functions in high levellanguage.

CLO10 Explain the role of a semantic analyzer and type
checking; create a syntax-directed definition and an
annotated parse tree; describe the purpose of a syntax
tree.



Running Outcomes

The course will able the students to

CLO11 Design syntax directed translation schemes for a given 
context free grammar.



Intermediate code forms:

An intermediate code form of source program is an internal form of 
a  program created by the compiler while translating the program  
created by the compiler while translating the program from a high –
level language to assembly code(or)object code(machine code).
An intermediate source form represents a more attractive form of 
target  code than does assembly.
An optimizing Compiler performs optimizations on the intermediate  
source form and produces an object module.



various intermediate code forms
are:
• Polish notation

• Abstract syntax trees(or)syntax trees

• Quadruples

• Triples

• Indirect triples

• Abstract machine
code(or)pseudocopde

three address
code



Three-Address Code

In three-address code, there is at most one operator on the right 
side  of an instruction; that is, no built-up arithmetic expressions 
are  permitted.

x + y*z → t1 = y * z
t2 = x + t1



Types of three address code

• Three-address instructions can be implemented as objects or as
record with fields for the operator and operands.

• Three such representations
– Quadruple, triples, and indirect triples



Quadruple

A quadruple (or quad) has four fields: op, arg1, arg2, and
result.



• A triple has only three fields: op, arg1, and arg2

•Using triples, we refer to the result of an operation x op y by its 
position,  rather by an explicit temporary name

Triples



Implementation of Three-Address Statements:

A three-address statement is an abstract form of intermediate  
code. In a compiler, these statements can be implemented as  
records with fields for the operator and the operands. Three  
such representations are:

Quadruples

Triples

 Indirect triples

Types of Three Address Statements 
and its Implementation



Quadruples

• A quadruple is a record structure with four fields, which are,  op, 
arg1, arg2 and result.

• The op field contains an internal code for the operator. The  three-
address statement x : =y op z is represented by placing y  in arg1, z 
in arg2 and x in result.



Triples
• To avoid entering temporary names into the symbol table, we  

might refer to a temporary value by the position of the  
statement that computes it.

• The fields arg1 and arg2, for the arguments of op, are either  
pointers to the symbol table or pointers into the triple  
structure (for temporary values).

Indirect Triples
• Another implementation of three-address code is that of  

listing pointers to triples, rather than listing the triples  
themselves. This implementation is called indirect triples



• Given input a : = b * - c + b * - c, the three-address code is as  
shown above.

• The synthesized attribute S.code represents the three-address  
code for the assignment S.

The non terminal E has two attributes :

1. E.place, the name that will hold the value of E, and

2. E.code, the sequence of three-address statements evaluating
E.

Syntax Directed Translation into Three-Address Code



PRODUCTION

SEMANTIC RULES

S
whileEd

oS1

S.begin := newlabel;

S.after := newlabel;

code := gen(S.begin ‘:’) ||

E.code ||

gen ( ‘if’ E.place ‘=’ ‘0’ ‘goto’
S.after)||

S1.code ||

gen ( ‘goto’ S.begin) ||  gen 

( S.after ‘:’)

Syntax Directed Translation into Three-Address Code



Syntax directed definition, construction of  syntax trees

• A SDD is a context free grammar with attributes and rules
• Attributes are associated with grammar symbols and rules

with productions
• Attributes may be of many kinds: numbers, types, table  

references, strings, etc.
• Synthesized attributes

• A synthesized attribute at node N is defined only in terms  of 
attribute values of children of N and at N it

• Inherited attributes
• An inherited attribute at node N is defined only in terms of

attribute values at N’s parent, N itself and N’s siblings



Syntax directed definition, construction of  syntax trees

Production

1) L -> E n

2) E -> E1 

+ T

3) E -> T

4) T -> T1 *

F

5) T -> F

6) F -> (E)

7) F -> digit

Semantic Rules

L.val = E.val

E.val = E1.val +

T.val

E.val = T.val

T.val = T1.val *

F.val  T.val =

F.val

F.val = E.val

F.val =

digit.lexval



Production

1) T -> FT’

2) T’ -> *FT’1

3) T’ -> ε

1) F -> digit

Semantic Rules

T’.inh = F.val

T.val = T’.syn  T’1.inh =

T’.inh*F.val  T’.syn = 

T’1.syn  T’.syn = T’.inh

F.val = F.val = digit.lexval



Syntax directed translation schemes:

• An SDT is a Context Free grammar with program fragments  
embedded within production bodies

• Those program fragments are called semantic actions
• They can appear at any position within production body
• Any SDT can be implemented by first building a parse tree and  then 

performing the actions in a left-to-right depth first order
• Typically SDT’s are implemented during parsing without

building a parse tree



Postfix translation schemes:

• Simplest SDDs are those that we can parse the grammar  
bottom-up and the SDD is s-attributed

• For such cases we can construct SDT where each action is  placed 
at the end of the production and is executed along  with the 
reduction of the body to the head of that production

• SDT’s with all actions at the right ends of the production  
bodies are called postfix SDT’s



Example of postfix SDT

1) L -> E n

2) E -> E1 + T

3) E -> T

4) T -> T1 * F

5) T -> F

6) F -> (E)

7) F -> digit

{print(E.val);}

{E.val=E1.val+T.val;}

{E.val = T.val;}

{T.val=T1.val*F.val;}

{T.val=F.val;}

{F.val=E.val;}

{F.val=digit.lexval;}



• Construction of Syntax Trees

SDDs are useful for is construction of syntax trees. A syntax  
tree is a condensed form of parse tree.

• Syntax trees are useful for representing programming  
language constructs like expressions and statements.

• They help compiler design by decoupling parsing 
from  translation.

• Each node of a syntax tree represents a construct; the  
children of the node represent the meaningful 

components of  the construct.



S-attributed and L-attributed Definitions

• S-Attributed Grammars are a class of attribute grammars  
characterized by having no inherited attributes. Inherited  
attributes, which must be passed down from parent nodes to  
children nodes of the abstract syntax tree during the semantic  
analysis of the parsing process, are a problem for bottom-up  
parsing because in bottom-up parsing, the parent nodes of  the 
abstract syntax tree are created after creation of all of  their 

children. YACC is based on the S-attributed approach.



S-attributed and L-attributed Definitions

L-Attributed definitions:
• A SDD is L-Attributed if the edges in dependency graph goes  from 

Left to Right but not from Right to Left.

• More precisely, each attribute must be either

– Synthesized

– Inherited, but if there us a production A->X1X2…Xn and there is  
an inherited attribute Xi.a computed by a rule associated with  
this production, then the rule may only use:

 Inherited attributes associated with the headA Either inherited or
synthesized attributes associated with the occurrences of symbols 
X1,Xz,…,Xi-1 located to the left of Xi

 Inherited or synthesized attributes associated with this occurrence  
of Xi itself, but in such a way that there is no cycle in the graph



S-attributed and L-attributed Definitions

• L-attributed grammars are a special type of attribute  grammars. 
They allow the attributes to be evaluated in one  left-to-right 
traversal of the abstract syntax tree. As a result,  attribute 
evaluation in L-attributed grammars can be  incorporated 
conveniently in top-down parsing. Many  programming languages 
are L-attributed. Special types of  compilers, the narrow 
compilers, are based on some form of  L-attributed grammar.

• Any S-attributed grammar is also an L-attributed grammar.

• Attribute evaluation in S-attributed grammars can be  
incorporated conveniently in both top-down parsing and  
bottom-up parsing.



Translation Schemes, Emitting a Translation

A SDT scheme is a context-free grammar with program  fragments 
embedded within production bodies .The program  fragments are 
called semantic actions and can appear at any  position within the 
production body.

Any SDT can be implemented by first building a parse tree and  then 
pre-forming the actions in a left-to-right depth first  order. i.e 
during preorder traversal.

The use of SDT’s to implement two important classes of SDD’s

• 1. If the grammar is LR parsable, then SDD is S-attributed.

• 2. If the grammar is LL parsable, then SDD is L-attributed.



Postfix Translation Schemes
• The postfix SDT implements the desk calculator SDD with one

change: the action for the first production prints the value. As

the grammar is LR, and the SDD is S-attributed.

L →E n {print(E.val);}

E → E1 + T { E.val = E1.val + T.val }  

E → E1 - T { E.val = E1.val - T.val }  

E → T { E.val = T.val }

T → T1 * F { T.val = T1.val * F.val }  

T → F { T.val = F.val }

F → ( E ) { F.val = E.val }

F → digit { F.val = digit.lexval }



Translation of simple statements

Translation scheme:

P → D ; E  

D → D ; D

D → id : T { addtype (id.entry , T.type) }  

T → char { T.type : = char }

T → integer { T.type : = integer }

T → ↑ T1 { T.type : = pointer(T1.type) }

T → array [ num ] of T1 { T.type : = array ( 1… num.val , T1.type) }



Translation of simple statements

Translation scheme for checking the type of statements:

1. Assignment statement: S→id: = E

2. Conditional statement: S→if E then S1



Translation of simple statements



Boolean Expressions

• Boolean expressions have two primary purposes. They are  used to 
compute logical values, but more often they are used  as 
conditional expressions in statements that alter the flow of  control, 
such as if-then-else, or while-do statements.

• Boolean expressions are composed of the boolean operators (  and, 
or, and not ) applied to elements that are boolean  variables or 
relational expressions. Relational expressions are  of the form E1 
relop E2, where E1 and E2 are arithmetic  expressions.



Boolean Expressions

Example:
E->EorE | EandE |notE | ( E ) |id relop id | true | false

Methods of Translating Boolean Expressions:

• There are two principal methods of representing the value of  

a boolean expression. They are :



Flow-of-Control Statements

S->if E then S

S->if E then S else S  S->while E 

do S

Attributes:

E.true: the label to which control flows if E is true. E.false: the

label to while control flows if E is false E/S.code: three-address

code for E/S

S.next: the next three-address code following the three
address code of S.

Functions to be used: || concatenate three address code



Flow-of-Control Statements

S->if E then S1 { E.true = newlabel; E.false = S.next;

S1.next = S.next; S.code = E.code || gen(E.true, “:”) || S1.code; }

S->if E then S1 else S2 {

E.true = newlabel; E.false =newlabel;S1.next = S.next;  

S2.next = S.next;
S.code = E.code || gen(E.true, “:”) ||S1.code|| gen(“goto” S.next)
||
gen(E.false ‘:’) || S2.code; }

S->while E do S1 {

S.begin = newlabel; E.true := newlabel;

E.false = S.next; S1.next = S.begin;

S.code = gen(S.begin ‘:’) || E.code || gen(E.true, ‘:’)

|| S1.code || gen(‘goto’ S.begin); }





Flow-of-Control Statements
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UNIT-IV

TYPE CHECKING AND RUN TIME ENVIRONMENT



Running Outcomes

The course will able the students to

CLO13 Explain the role of different types of runtime
environments and memory organization for
implementation of programming languages.

CLO14 Differentiate static vs. dynamic storage allocation and 
the usage of  activation records to manage program
modules and their data.

CLO15 Understand the role of symbol table data structure in the
construction of compiler.



Definition of Type Checking, Type Expressions

• Type checking has the potential for catching errors in programs. In  
principle, any check can be done dynamically, if the target code 
carries the  type of an element along with the value of the element. 

• A sound type  system eliminates the need for dynamic checking for 
type errors, because  it allows us to determine statically that these 
errors cannot occur when  the target program runs. An 
implementation of a language is strongly  typed if a compiler 
guarantees that the programs it accepts will run  without type
errors.



Rules for Type Checking:

• Type checking can take on two forms: synthesis and inference. 
Type  synthesis builds up the type of an expression from the types 
of its sub  expressions. It requires names to be declared before
they are used. The  type of E1 + E2 is defined in terms of the types 
of E1 and E2 • A typical  rule for type synthesis has the form



• A compiler has to do semantic checks in addition to syntactic
checks.

• Semantic Checks

– Static – done during compilation

– Dynamic – done duringrun-time

• Type checking is one of these static checking operations.

– we may not do all type checking at compile-time.

– Some systems also use dynamic type checking too.

Definition of Type Checking



• A type system is a collection of rules for assigning type
expressions to the parts of a program.

• A type checker implements a typesystem.

• A sound type system eliminates run-time type checking for type
errors.

• A programming language is strongly-typed, if every program its
compiler  accepts will execute without type errors.

– In practice, some of type checking operations are done at run-
time (so, most of the programming languages are not
strongly-typed).

– Ex: int x[100]; 
…  i will be
between  0 
and 99

x[i] most of the compilers cannot
guarantee that



• A Simple Type Checking:

P → D;E  

D → D;D

D → id:T

T → char

T → int T

→ real T

→ ↑T1

{ addtype(id.entry,T.type) }

{ T.type=char }

{ T.type=int }

{ T.type=real }

{ T.type=pointer(T1.type) }

T → array[intnum] of T1 {  
T.type=array(1..intnum.val,T1.type) }



Type Expressions:

• Types have structure, which we shall represent using type
expressions: a  type expression is either a basic type or is 
formed by applying an  operator called a type constructor to
a type expression. The sets of basic  types and
constructors depend on the language to be checked.



• A basic type is a type expression. Typical basic types for a 
language  include boolean, char, integer, float, and void; the latter 
denotes "the  absence of a value."

• A type name is a type expression.

• A type expression can be formed by applying the array type
constructor to a number and a typeexpression.

• A record is a data structure with named fields. A type
expression  can be formed by applying the record type 
constructor to the  field names and their types.

• A type expression can be formed by using the type constructor 
—>•  for function types. We write s —»• t for "function from 
type s to  type r."



• Type Names and RecursiveTypes:

• Once a class is defined, its name can be used as a type name in 
C++ or  Java; for example, consider Node in the program fragment

• p u b l i c class Node { • • • }

• p u b l i c Node n;

• Names can be used to define recursive types, which are needed
for
data structures such as linked lists. The pseudo code for a list
element

• class Cell { int info; Cell next; ••• }



Type Systems, Static and Dynamic Checking of Types

• A type system is a collection of rules that assign types to  
program constructs (more constraints added to checking the  
validity of the programs, violation of such constraintsindicate  
errors)

• A languages type system species which operations are valid  
for which types

• Type systems provide a concise formalization of the semantic  
checking rules



• Statically typed languages: all or almost all type checking occurs
at
compilation time. (C,Java)

• Dynamically typed languages: almost all checking of types is
done as
part of program execution (Scheme)

• Un typed languages: no type checking (assembly, machine code)



Static Type Checking:

Type checking done at compile-time. When using these languages 
you are  enforced to declare the type of variables before using 
them(compiler  needs to know of which data type do the variable 
belongs to).
For example consider a statement in c++ int
a=10;
here compiler needs to know the data type of variable "a" before
using it.
E.g., C,C++,JAVA,C# are some Statically TypedLanguages



Type checking done at run-time. When using these languages you
need not specify or declare the type of variable instead compiler
itself figures out what type a variable is when you first assign it a
value.
Now consider some statements in python:
str="Python"  
str2=10



Specification of a Simple Type Checker, Equivalence
of Type Expressions

• A type checker for a simple language checks the type of each 
identifier.  The type checker is a translation scheme that synthesizes 
the type of each  expression from the types of its sub expressions. 
The type checker can  handle arrays, pointers, statements and
functions.

• A Simple Language

• Consider the followinggrammar:

• P → D ; E

• D → D ; D | id :T

• T → char | integer | array [ num ] of T | ↑ T

• E → literal | num | id | E mod E | E [ E ] | E ↑



Translation scheme:

P → D ; E

D → D ; D

D → id : T { addtype (id.entry , T.type)} T →  

char { T.type : = char }

T → integer { T.type : = integer}

T → ↑ T1 { T.type : = pointer(T1.type)}

T → array [ num ] of T1 { T.type: = array ( 1… num.val , T1.type) }



In the above language,

→ There are two basic types : char and integer ; → type_erroris  
used to signal errors;

→ the prefix operator ↑ builds a pointer type. Example , ↑  
integer leads to the type expression

pointer ( integer).



Type checking of expressions

In the following rules, the attribute type for E gives the type
expression  assigned to the expression generated by E.

1. E → literal { E.type : = char } E→num { E.type : = integer}

Here, constants represented by the tokens literal and num have 
typechar

and integer.

2. E → id { E.type : = lookup ( id.entry ) }



Type equivalence

Name equivalence

Treat named types as basic types. Therefore two type
expressions are name  equivalent if and only if they are 
identical, that is if they can be  represented by the same 
syntax tree, with the same labels.

Structural equivalence

Replace the named types by their definitions and recursively 
check the

substituted trees.



RecursiveTypes:

In PASCAL a linked list is usually defined as 
follows. type link

= ^ cell;

cell = record
info:
type;  
next:
link;

end;



• The corresponding type graph has a cycle. So to decide structural  
equivalence of two types represented by graphs PASCAL compilers 
put a  mark on each visited node (in order not to visit a node 
twice). In C, a  linked listis usually defined as follows.

struct cell

{

int info;

struct cell *next;

};

Type



To avoid cyclic graphs, C compilers

• Require type names to be declared before they are used, 
except for  pointers to records.

• Use structural equivalence except for records for which 
they use name
equivalence.

Type



Type Conversions:

• Consider expressions like x + i, where x is of type float and i is of
type integer.

• Since the representation of integers and floating-point numbers is 
different  within a computer and different machine instructions 
are used for  operations on integers and floats, the compiler may 
need to convert one of  the operands of + to ensure that both 
operands are of the same type  when the addition occurs.

Type Conversions



• Suppose that integers are converted to floats when necessary, using 
a  unary operator ( f l o a t ) .

For example:

• The integer 2 is converted to a float in the code for the
expression 2*3.14:



• Type conversion rules vary from language to language. The rules for  
Java distinguish between widening conversions, which are intended 
to  preserve information, and narrowing conversions, which can lose
information.

• Conversion from one type to another is said to be implicit if it is
done automatically by the compiler.

• Implicit type conversions, also called coercions,



Conversion between data types can be done in two ways by casting:
• Implicit casting

• Explicit casting

Implicit casting
• Implicit casting doesn't require a casting operator. This casting is 

normally  used when converting data from smaller integral types to 
larger or derived  types to the base type.
int x = 123;

double y = x;

• In the above statement, the conversion of data from int to double 
is  done implicitly, in other words programmer don't need to 
specify any  type operators.



Explicit casting

• Explicit casting requires a casting operator. This casting is 
normally used  when converting a double to int or a base type to 
a derived type.

double y = 123;  

int x = (int)y;

In the above statement, we have to specify the type operator (int) 
when  converting from double to int else the compiler will throw an 

error. You can  learn more about casting here.



Conversion operators:

• Conversion operators help to cast user-defined types from 
one to the  other much like the basic types. For implicit or 
explicit conversion, we  have to create a static method in 
the corresponding class with method  name as the type it 
returns including the keyword that says implicit or  explicit.



– Enabling C++’s operators to work with class objects

– Using traditional operators with user-defined objects

– Requires great care; when overloading is misused, program

difficult to understand

– Examples of already overloaded operators

• Operator << is both the stream-insertion operator and the
bitwise left-shift operator

• + and -, perform arithmetic on multiple types

– Compiler generates the appropriate code based on the manner in

which the operator is used

Overloading of Functions and Operators



Syntax:

• return-data-type operator symbol-of-operator
(parameters)
{
//body of the function
}

Example:

• void operator ++ ( )
{
body of function;
}



• The value-number method can be applied to type expressions to 
resolve  overloading based on argument types, efficiently. Since 
the signature for a  function consists of the function name and 
the types of its arguments,  overloading can be resolved based 
on signatures. However, it is not always  possible to resolve 
overloading by looking only at the arguments of a  function.



• An overloaded symbol has different meanings depending on its 
context.  Overloading is resolved when a unique meaning is 
determined for each  occurrence of a name. Overloading in Java 
can be resolved by looking  only at the arguments of a function. 
The + operator in Java denotes either  string concatenation or 

addition, depending on the types of its operands.



1. Procedure call: Source language issue

• A procedure definition is a declaration that associates an 
identifier  with a statement.

• The identifier is the procedure name and the statement is the
procedure
body.

• For example, the following is the definition of a procedure named
read array:  Procedure 
read array  Var i: integer;
Begin
For i=1 to 9 do real(a[i])
End;

Run time environments: Source languageissues



2. Activation tree: Source language issue

• An activation tree is used to depict the way control enters and 
leaves  activations. In an activationtree,

• a) Each node represents an activation of a procedure.
b) The root represents the activation of the main program.
c)The node for a is the parent of the node b if and only if 
control  flows from activation a to b.
d)The node for a is to the left of the node for b if and only if the

lifetime of a occurs before the lifetime of b.



3. Control Stack: Source language issue
• A control stack used to keep track of live procedure  

activations.

• The idea is to push the node for activation onto the control stack as 
the  activation begins and to pop the node when the activation
ends.

4. The scope of declaration: Source language issue
A declaration is a syntactic construct that associates  information with 
a name.

• A declaration may be explicit, such as var i: integer;

• Or they may be implicit. Example, any variable name starting with i
is assumed to denote an integer.



5. Bindings of names: Source language issue
• Even if each time name declared once in a program, the same 

name may  denote different data objects at runtime.

• “Data object” corresponds to a storage location that 
holds  values.

• The term environment refers to a function that maps a name to a 
storage  location.

• The term state refers to a function that maps a storage location to  
the value held there.

• When an environment associates storage location s with a name x,
we say that x bound to s.

• This association referred as a binding of x.



• The compiler demands for a block of memory to an operating 
system. The  compiler utilizes this block of memory executing the 
compiled program.  This block of memory called runtime storage
organization.

• The runtime storage is subdivided to hold code and data such
as the generated target code and Data objects.

Storage Organization



• Heap area is the area of runtime storage in which the other 
information  stored. For time example memory for some data 
items allocated under  the program control. Memory required for 
these data items obtained  from this heap area.

• Moreover, A stack is used to manage the active procedure. 
Managing of  active procedures means when a call occurs then 
execution of activation  interrupted and information about the 
status of the stack is saved on the  stack. When the control 
returns from the call this suspended activation  resumed after 
storing the values of relevant registers.



• Activation Records: Storage organization
• Various field of activation record is as follows:

1.Temporary values: The temporary variables needed during the  
evaluation of expressions. Such variables stored in the temporary 
field of  activation record stored.

2.Local variables: The local data is a data that is local to the
execution

procedure stored in this field of activation record.





• Saved machine registers: This field holds the information regarding
the status of a machine just before the procedure called. This field
contains the registers and program counter.

• Control link: This field is optional. So it points to the activation
record of the calling procedure. So This link also called dynamic
link.



Similarly, Access link:

• This field is also optional. It refers to the nonlocal data in another  
activation record. This field also called static link field.

Actual parameters: This field holds the information about the actual  
parameters. Also, these actual parameters passed to the called  
procedure.

Return values: This field used to store the result of a function
call.



The different storage allocation strategies are,

• 1. Static allocation - lays out storage for all data objects at 
compile  time

• 2. Stack allocation - manages the run-time storage as a stack.

• 3. Heap allocation - allocates and de-allocates storage as needed
at
run time from a data area known as heap.

Storage Allocation Strategies



• Static Allocation
 In static allocation, names are bound to storage as the program is  

compiled, so there is no need for a run-time support package. Since 
the  bindings do not change at run- time, every time a procedure is 
activated,  its names are bound to the same storage locations. 
Therefore values of  local names are retained across activations of a
procedure.

• Stack Allocation of Space
 All compilers for languages that use procedures, functions or 

methods as  units of user-defined actions manage at least part of 
their run-time  memory as a stack. Each time a procedure is called, 
space for its local  variables is pushed onto a stack, and when the 
procedure terminates, that  space is popped off the stack.



Calling sequences:
 Procedures called are implemented in what is called as calling 

sequence,  which consists of code that allocates an activation record 
on the stack and  enters information into its fields. A return sequence is 
similar to code to  restore the state of machine so the calling procedure 
can continue its  execution after the call. The code in calling sequence 
is often divided  between the calling procedure (caller) and the 
procedure it calls (callee).

Storage Allocation Strategies



Variable length data on stack:
 The run-time memory management system must deal frequently 

with the  allocation of space for objects, the sizes of which are not 
known at the  compile time, but which are local to a procedure and 
thus may be  allocated on the stack. The reason to prefer placing 
objects on the stack is  that we avoid the expense of garbage 
collecting their space. The same  scheme works for objects of any 
type if they are local to the procedure  called and have a size that 
depends on the parameters of the call.



• Heap Allocation

Stack allocation strategy cannot be used if either of the 
following  is possible:

1.The values of local names must be retained when  
activation ends.

2. A called activation outlives the caller.
3. Heap allocation parcels out pieces of contiguous storage, as 

needed for  activation records or other objects. Pieces may 
be de-allocated in any  order, so over the time the heap will 
consist of alternate areas that are  free and in use.

Storage Allocation Strategies



• Scope rules determine the treatment of non-local names

• A common rule is lexical scoping or static scoping (most 
languages  use lexical scoping)

• In some cases, when a procedure refer to variables that are not 
local to it, then such variables are called nonlocal variables

• There are two types of scope rules, for the non-local names. They
are

1. Static scope

2. Dynamic scope

Access to Non-local Names



• Suppose procedure p at depth np refers to a non-local a at depth 
na,  then storage for a can be found as

– follow (np-na) access links from the record at the top of the
stack

– after following (np-na) links we reach procedure for which

a is local

• Therefore, address of a non local a in procedure p can be stored in
symbol table as

(np-na, offset of a in record of activation having a )

Access to Non-local Names



• Static Scope or Lexical Scope

• Lexical scope is also called static scope. In this type ofscope,
the scope is verified by examining the text of theprogram.

• Examples: PASCAL, C and ADA are the languages that usethe  
static scope rule.

• These languages are also called block structuredlanguages

Example:

{

Declaration statements

……….

}



• A block statement contains its own data declarations

• Blocks can be nested

• The property is referred to as block structured

• Scope of the declaration is given by most closely nested rule

– The scope of a declaration in block B includes B

– If a name X is not declared in B

then an occurrence of X is in the scope of declarator X in B′
such that

• B′ has a declaration of X

• B′ is most closely nested around B

• Blocks are simpler to handle than procedures

• Use stack for memory allocation

• Allocate space for complete procedure body at one time

Access to Non-local Names



Lexical scope without nested procedures:

• A procedure definition cannot occur within another
• Therefore, all non local references are global and can be

allocated
at compile time

• Any name non-local to one procedure is non-local to all
procedures

• In absence of nested procedures use stack allocation
• Storage for non locals is allocated statically
• A non local name must be local to the top of the stack
• Stack allocation of non local has advantage:

– Non locals have static allocations
– Procedures can be passed/returned as parameters

Access to Non-local Names



How to setup access links?

• suppose procedure p at depth np calls procedure x at depth

nx.

• The code for setting up access links depends upon whether the
called
procedure is nested within the caller.
– np < nx

Called procedure is nested more deeply than p. Therefore, x 
must be  declared in p. The access link in the called procedure 
must point to the  access link of the activation just below it

– np ≥ nx
From scoping rules enclosing procedure at the depth 1,2,… ,nx-
1 must  be same. Follow np-(nx-1) links from the caller, we 
reach the most  recent activation of the procedure that 
encloses both called and  calling procedure

Access to Non-local Names



Displays:

• Faster access to non locals

• Uses an array of pointers to activation records

• Non locals at depth i is in the activation record 
pointed to by d[i]

Access to Non-local Names



Justification for Displays:

• Suppose procedure at depth j calls procedure at depth i

• Case j < i then i = j + 1

– called procedure is nested within the caller

– first j elements of display need not be changed

– set d[i] to the new activation record

• Case j ≥ I
– enclosing procedure at depthes 1…i-1 are same and are left 

un- disturbed
– old value of d[i] is saved and d[i] points to the new record

– display is correct as first i-1 records are not disturbed

Access to Non-local Names



Parameter Passing:

• The communication medium among procedures is known as 
parameter  passing. The values of the variables from a calling 
procedure are  transferred to the called procedure by some 
mechanism. Before moving  ahead, first go through some basic 
terminologies pertaining to the values  in a program.

r-value

• The value of an expression is called its r-value.

• r-values can always be assigned to some other variable.

l-value

• The location of memory (address) where an expression is stored 
is  known as the l-value of that expression.

Parameter Passing



Formal Parameters:

• Variables that take the information passed by the caller 
procedure are  called formal parameters. These variables are 
declared in the definition  of the called function.

Actual Parameters:

• Variables whose values or addresses are being passed to the 
called  procedure are called actual parameters. These 
variables are specified in  the function call as arguments.



Call by value:

– actual parameters are evaluated and their r-values are passed
to the called procedure

– used in Pascal and C

– formal is treated just like a local name

– caller evaluates the actual parameters and places r-value

in the storage for formals

– call has no effect on the activation record ofcaller



Call by reference (call by address):

– the caller passes a pointer to each location of

actual  parameters

– if actual parameter is a name then l-value is passed

– if actual parameter is an expression then it is evaluated in a
new

location and the address of that location is passed



Copy restore (copy-in copy-out, call by value result):

– actual parameters are evaluated, r-values are passed by 
call by  value, l-values are determined before the call

– when control returns, the current r-values of the formals are
copied
into l-values of the locals



Call by name (used in Algol):

– names are copied

– local names are different from names of calling procedure  

swap(i,a[i])

temp = i

i = a[i]

a[i] = temp



A symbol table is simply a table which can be either linear or a hash 
table.  It maintains an entry for each name in the following format:

<symbol name, type, attribute>

For example, if a symbol table has to store information about the
following variable declaration:

static int interest;
Implementation:

A symbol table can be implemented in one of the following ways:

• Linear (sorted or unsorted) list

• Binary Search Tree

• Hash table

Symbol Tables



Store the following information aboutidentifiers.

• The name (as a string).

• The data type.

• The block level.

• Its scope (global, local, or parameter).

• Its offset from the base pointer (for local variables and
parameters only).



Operations:

1. insert()

2. lookup()

The install() function will insert a new symbol into the symbol table.

Each symbol has a block level.

– Block level 1 = Keywords.

– Block level 2 = Global variables.

– Block level 3 = Parameters and local variables.

install() will create an IdEntry object and store it in the table.



• Whenever a symbol is encountered, we must look it up in the
symbol table.

• If it is the first encounter, then idLookup() will return null.

• If it is not the first encounter, then idLookup() will return a reference 

to  the IdEntry for that identifier found in the table.

• Once we have the IdEntry object, we may add information to it.

• Since a variable should be declared when it first appears,

– If the parser is parsing a declaration, then it expects
idLookup() to return null.

– If the parser is not parsing a declaration, then it expects
idLookup() to return non-null.

– In each case, anything else is an error.



Scope Management:
• A compiler maintains two types of symbol tables: a global  symbol 

table which can be accessed by all the procedures  and scope
symbol tables that are created for each scope in  the program.

This symbol table data structure hierarchy is stored in the semantic  
analyzer and whenever a name needs to be searched in a symbol 
table,  it is searched using the following algorithm:

• first a symbol will be searched in the current scope, i.e.
current symbol table.

• if a name is found, then search is completed, else it will be searched
in the parent symbol table until,

• either the name is found or global symbol table has been searched
for the name.



• Storage is usually taken from heap

• Allocated data is retained until de-allocated

• Allocation can be either explicit or implicit

– Pascal : explicit allocation and de-allocation by new() and

dispose()

– Lisp : implicit allocation when cons is used, and de-

allocation through garbage collection

Language Facilities for Dynamic Storage Allocation



Dynamic Storage Allocation:

new(p); p^.key:=k; p^.info:=i;

– Garbage : unreachable cells

• Lisp does garbage collection

• Pascal and C do not

• head^.next := nil;

– Dangling reference

dispose(head^.next )•

Language Facilities for Dynamic Storage Allocation



Explicit Allocation of Fixed Sized Blocks

• Link the blocks in a list

• Allocation and de-allocation can be done with very little 
overhead

• blocks are drawn from contiguous area of storage
• An area of each block is used as pointer to the next block
• A pointer available points to the first block
• Allocation means removing a block from the available list
• De-allocation means putting the block in the available list
• Compiler routines need not know the type of objects to be held 

in the blocks
• Each block is treated as a variant record



Explicit Allocation of Variable Size Blocks:

• Storage can become fragmented

• Situation may arise

• If program allocates five blocks

• then de-allocates second and fourth block

• Fragmentation is of no consequence if blocks are of fixed size

• Blocks can not be allocated even if space is available



Implicit De-allocation:

• Requires co-operation between user program and run time system

• Run time system needs to know when a block is no longer in
use

• Implemented by fixing the format of storage blocks



References

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, ―Compilers–Principles, 
Techniques and Tools‖, Pearson Education, Low Price Edition, 2004



UNIT-V

CODE OPTIMIZATION AND CODE GENERATOR



Running Outcomes

The course will able the students to

CLO16 Learn the code optimization techniques to improve the
performance of a program in terms of speed & space.

CLO17 Implement the global optimization using data flow 
analysis such as basic blocks and DAG.

CLO18 Understand the code generation techniques to generate
target code.

CLO19 Design and implement a small compiler using a software
engineering approach.

CLO20 Apply the optimization techniques to intermediate 
code and  generate machine code



Principal Sources of Optimization

A transformation of a program is called local if it can be performed by
looking only at the statements in a basic block; otherwise, it is called
global. Many transformations can be performed at both the local and
global levels. Local transformations are usually performed first.

Function-Preserving Transformations: There are a number of ways in  
which a compiler can improve a program without changing the  
function it computes.

Function preserving transformations examples:

• Common sub expression elimination

• Copy propagation,

• Dead-code elimination

• Constant folding



Common Sub expressions elimination

An occurrence of an expression E is called a common sub-
expression if E was previously computed, and the values of
variables in E have not changed since the previous computation.
We can avoid recomputing the expression if we can use the
previously computed value.

For example

t1: = 4*i  t2: 

= a [t1]  t3: =

4*j

t4: = 4*i

t5: = n

t6: = b [t4] +t5



• The above code can be optimized using the common 
sub- expression elimination as

t1: = 4*i  t2: = 

a [t1]  t3: = 4*j  

t5: = n

t6: = b [t1] +t5

• The common sub expression t4: =4*i is eliminated as its 
computation is  already in t1 and the value of i is not been 
changed from definition to  use.



Copy Propagation

Copy Propagation:

Assignments of the form f : = g called copy statements, or copies for  
short. The idea behind the copy-propagation transformation is to 
use g  for f, whenever possible after the copy statement f: = g. Copy  
propagation means use of one variable instead of another. This may 
not  appear to be an improvement, but as we shall see it gives us 
an  opportunity to eliminate x.

For example:

x=pi

A=x*r*r

The optimization using copy propagation can be done as follows:

A=Pi*r*r; Here the variable x is eliminated



Dead-Code Elimination

A variable is live at a point in a program if its value can be used
subsequently; otherwise, it is dead at that point. A related idea is dead
or useless code, statements that compute values that never get used.
While the programmer is unlikely to introduce any dead code
intentionally, it may appear as the result of previous transformations.

Example:
i=0;
if(i=1)
{
a=b+5;
}
Here, ‘if’ statement is dead code because this condition will never
get satisfied.



Constant folding

Deducing at compile time that the value of an expression is a 

constant and  using the constant instead is known as constant 

folding. One advantage of  copy propagation is that it often turns 

the copy statement into dead  code.

For example

a=3.14157/2 can be replaced by

a=1.570 there by eliminating a division operation.



Loop Optimizations

In loops, especially in the inner loops, programs tend to spend the
bulk of their time. The running time of a program may be improved
if the number of instructions in an inner loop is decreased, even if
we increase the amount of code outside that loop.

Three techniques are important for loop optimization:

• Induction-variable elimination: which we apply to replace variables
from
inner loop.

• Reduction in strength: which replaces and expensive operation by a
cheaper one, such as a multiplication by an addition



Optimization of Basic Blocks

There are two types of basic block optimizations. They are :

1. Structure-Preserving Transformations

2. Algebraic Transformations



Structure-Preserving Transformations:The primary Structure-
Preserving Transformation on basic blocks are:

1. Common sub-expression elimination

2. Dead code elimination

3. Renaming of temporary variables

4. Interchange of two independent adjacent statements.



Algebraic Transformations:

• Algebraic identities represent another important class of 
optimizations on  basic blocks. This includes simplifying 
expressions or replacing expensive  operation by cheaper ones i.e. 
reduction in strength. Another class of  related optimizations is 
constant folding. Here we evaluate constant  expressions at compile 
time and replace the constant expressions by their  values. Thus 
the expression 2*3.14 would be replaced by 6.28.

• The relational operators <=, >=, <, >, + and = sometimes 
generate  unexpected common sub expressions. Associative 
laws may also be  applied to expose common sub
expressions.



For example, if the source code has the assignments.

a :=b+c

e :=c+d+b

the following intermediate code may be generated:  a

:=b+c

t :=c+d

e :=t+b

Example:

x:=x+0 can be removed

x:=y**2 can be replaced by a cheaper statement x:=y*y



The compiler writer should examine the language specification
carefully to determine what rearrangements of computations are
permitted, since computer arithmetic does not always obey the
algebraic identities of mathematics. Thus, a compiler may evaluate
x*y-x*z as x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c.



Loop Optimizations

Loop Optimizations:

In loops, especially in the inner loops, programs tend to spend the 
bulk of  their time. The running time of a program may be improved 
if the number  of instructions in an inner loop is decreased, even if 
we increase the  amount of code outside that loop.

Three techniques are important for loop optimization:

• Code motion, which moves code outside a loop.

• Induction-variable elimination, which we apply to replace variables
from inner loop.

• Reduction in strength, which replaces and expensive operation bya
cheaper one, such as a multiplication by an addition.



Code Motion

Code Motion: An important modification that decreases the
amount of code in a loop is code motion. This transformation takes
an expression that yields the same result independent of the
number of times a loop is executed (a loop-invariant computation)
and places the expression before the loop. Note that the notion
“before the loop” assumes the existence of an entry for the loop.
For example, evaluation of limit-2 is a loop-invariant computation in
the following while-statement:

while (i <= limit-2) /* statement does not change limit*/
Code motion will result in the equivalent of
t= limit-2;

while (i<=t) /* statement does not change limit or t */



Induction Variables

Loops are usually processed inside out. For example consider the 
loop  around B3. Note that the values of j and t4 remain in lock-
step; every time  the value of j decreases by 1, that of t4 decreases 
by 4 because 4*j is  assigned to t4. Such identifiers are called 
induction variables.

When there are two or more induction variables in a loop, it may be
possible to get rid of all but one, by the process of induction-variable
elimination. For the inner loop around B3 we cannot get rid of either j
or t4 completely; t4 is used in B3 and j in B4.

However, we can illustrate reduction in strength and illustrate a part 
of the  process of induction-variable elimination. Eventually j will be 
eliminated  when the outer loop of B2- B5 is considered.



Reduction In Strength

•Reduction in strength replaces expensive operations by equivalent
cheaper ones on the target machine. Certain machine instructions
are considerably cheaper than others and can often be used as
special cases of more expensive operators. For example, x² is
invariably cheaper to implement as x*x than as a call to an
exponentiation routine. Fixed-point multiplication or division by a
power of two is cheaper to implement as a shift. Floating-point
division by a constant can be implemented as multiplication by a
constant, which may be cheaper.



Loops In Flow Graph

A graph representation of three-address statements, called a flow
graph, is useful for understanding code-generation algorithms, even if
the graph is not explicitly constructed by a code-generation algorithm.
Nodes in the flow graph represent computations, and the edges
represent the flow of control.

Dominators:

In a flow graph, a node d dominates node n, if every path from initial
node
of the flow graph to n goes through d. This will be denoted by d dom
n. Every initial node dominates all the remaining nodes in the flow
graph and the entry of a loop dominates all nodes in the loop.
Similarly every node dominates itself.



Examples

• In the flow graph below

• Initial node,node1 dominates every node.

• node 2 dominates itself

• node 3 dominates all but 1 and 2.

• node 4 dominates all but 1,2 and 3.

• node 5 and 6 dominates only themselves,since flow of control 
can  skip around either by goin through the other.

• node 7 dominates 7,8 ,9 and 10.

• node 8 dominates 8,9 and 10.

• node 9 and 10 dominates only themselves.



Flow Graph

(a) Flow graph (b) Dominator tree



Dominator tree(cont..)

The way of presenting dominator information is in a tree, called the  
dominator tree, in which

• The initial node is the root.

• The parent of each other node is its immediate dominator.

• Each node d dominates only its descendents in the tree.



Natural Loops

Natural Loops:

One application of dominator information is in determining the 
loops of a  flow graph suitable for improvement. There are two 
essential properties of  loops:

A loop must have a single entrypoint, called the header. This 
entry point- dominates all nodes in the loop, or it would not 
be the sole entry to the  loop.

There must be at least one way to iterate the loop(i.e.)at least 
one path  back to the headerOne way to find all the loops in a 
flow graph is to  search for edges in the flow graph whose 
heads dominate their tails. If  a→b is an edge, b is the head 
and a is the tail. These types ofedges are  called as back edges.



Example

Example:
In the above graph,
7→4 4 DOM 7
10 →7 7 DOM 10
4→3
8→3
9 →1

• The above edges will form loop in flow graph. Given a back edge n
→ d, we define the natural loop of the edge to be d plus the set of
nodes that can reach n without going through d. Node d is the
header of the loop.

• The above edges will form loop in flow graph. Given a back edge n
→ d, we define the natural loop of the edge to be d plus the set of
nodes that can reach n without going through d. Node d is the
header of theloop.



Inner loops

If we use the natural loops as “the loops”, then we have the useful
property that unless two loops have the same header, they are either
disjointed or one is entirely contained in theother. Thus, neglecting
loops with the same header for the moment, we have a natural
notion of inner loop: one that contains no other loop.

When two natural loops have the same header, but neither is nested
within the other, they are combined and treated as a single loop.

Two loops with the same header



Pre-Headers

Several transformations require us to move statements “before the
header”. Therefore begin treatment of a loop L by creating a new
block, called the preheader. The pre-header has only the header as
successor, and all edges which formerly entered the header of L from
outside L instead enter the pre-header. Edges from inside loop L to the
header are not changed. Initially the pre-header is empty, but
transformations on L may place statements in it.



Reducible flow graphs

Reducible flow graphs:
Reducible flow graphs are special flow graphs, for which several
code optimization transformations are especially easy to perform,
loops are unambiguously defined, dominators can be easily
calculated, data flow analysis problems can also be solved
efficiently. Exclusive use of structured flow-of-control statements
such as if-then-else, while-do, continue, and break statements
produces programs whose flow graphs are always reducible.The
most important properties of reducible flow graphs are that

1. There are no jumps into the middle of loops from outside
2. The only entry to a loop is through its header
Definition:

A flow graph G is reducible if and only if we can partition the
edges into two disjoint groups, forward edges and back edges,
with the following properties.



Peephole Optimization

Peephole Optimization:

A simple but effective technique for locally improving the target code
is peephole optimization, a method for trying to improve the
performance of the target program by examining as short sequence of
target instructions(called the peephole) and replacing these
instructions by a shorter or faster sequence. Whenever possible.It is a
characteristics of peephole optimization that each improvement may
spawn opportunities for additional improvements.



Characteristics of peephole optimization

Characteristics of peephole optimization:

• Redundant-instruction elimination

• Flow-of-controloptimization

• Algebraic simplifications

• Use of machine idioms



Redundant-instruction elimination

At source code level, the following can be done by the user:

int add_ten(int
x)

int add_ten(int x) int add_ten(int x) int add_ten(int x)

{ { {

int y, z; int y; int y = 10; return x + 10;

y = 10; y = 10; return x + y; }

z = x + y; y = x + y; }

return z; return y;

} }



At compilation level, the compiler searches for instructions redundant
in nature. Multiple loading and storing of instructions may carry the
same meaning even if some of them are removed. For example:

MOV x, R0

MOV R0, R1

We can delete the first instruction and re-write the sentence as:

MOV x,R1



Unreachable code

Unreachable code is a part of the program code that is never
accessed because of programming constructs. Programmers may
have accidently written a piece of code that can never be reached.

Example:

void add_ten(int x)

{

Return x+10;

Printf(“value of x is %d”,x);

}

In this code segment, the printf statement will never be executed as
the program control returns back before it can execute, hence printf
can be removed.



Flow of control optimization

There are instances in a code where the program control jumps back 
and forth  without performing any significant task. These jumps can 
be removed. Consider  the following chunk of code:

...
MOV R1,
R2 GOTO
L1
...
L1 : GOTO L2
L2 : INC R1



Code Generation

The final phase in compiler model is the code generator. It takes as
input an intermediate representation of the source program and
produces as output an equivalent target program. The code generation
techniques presented below can be used whether or not an
optimizing phase occurs before code generation.

Fig: Position of code generator



Issues In The Design of a Code Generator:

The following issues arise during the code generation phase:

1. Input to code generator

2. Target program

3. Memory management

4. Instruction selection

5. Register allocation

6. Evaluation order



Input to code generator:

The input to the code generation consists of the intermediate
representation of the source program produced by front end , together
with information in the symbol table to determine run-time addresses
of the data objects denoted by the names in the intermediate
representation.

Intermediate representation can be :

a. Linear representation such as postfixnotation

b. Three address representation such as quadruples

c. Virtual machine representation such as stack machine code

d. Graphical representations such as syntax trees and dags.

Prior to code generation, the front end must be scanned, parsed and
translated into intermediate representation along with necessary
type checking. Therefore, input to code generation is assumed to be
error-free.



Target program

The output of the code generator is the target program. Like the
intermediate code, this output may take on a variety of forms:

• Absolute machine language

• Relocatable machine language

• Assembly language

Absolute machine language:

It can be placed in a fixed location in memory and immediately
executed. Eg:

“student-job “ compilers such as WATIV and PL/C.

Relocatable machine language:

A set of relocatable object modules can be linked together and
loaded for execution by a linking loader.we gain a great deal of
flexibility in being able to compile subroutines separately and to
call other previousily compiled programs from an object module.



Memory Management

Memory management:

Mapping names in the source program to addresses of data 
objects in  runtime memory is done cooperatively by the front 
end and the code  generator.

If machine code is being generated,labels in three-address
statements  have to be converted to addresses of 
instructions.this process is  analogous to the “back 
patching” technique.

Labels in three-address statements have to be converted to 
addresses of
Instructions.



Register allocation

Instructions involving register operands are shorter and faster than
those involving operands in memory. The use of registers is
subdivided into two subproblems :

1. Register allocation
2. Register assignment

Certain machine requires register pairs(even-odd register pairs) for 
some  operands and results. For example , consider the division 
instruction of  the form :

D x, y
where, x - dividend even register in even/odd register pair

y-divisor

even register holds the remainder
odd register holds the quotient



Evaluation order

Evaluation order:

The order in which the computations are performed can affect 
the efficiency of the target code.

Some computation orders require fewer registers to hold
intermediate results than others.



The TargetMachine

Familiarity with the target machine and its instruction set is a word.
prerequisite for designing a good code generator.
The target computer is a byte-addressable machine with 4 bytes to a
It has n general-purpose registers, R0, R1, . . . , Rn-1.  It 
has two-address instructions of the form:

op source, destination
where, op is an op-code, and source and destination are datafields. It 
hasthe following op-codes :

MOV(move source to destination) 
ADD(add  source to destination) 
SUB(substract source from destination)

The source and destinations of an instruction are specified by
combining registers and memory locations with address modes.



The Target Machine

For example : MOV R0, M stores contents of Register R0 into
memory location M.



Instruction cost

Instruction cost = 1+cost for source and destination address
modes.

This cost corresponds to the length of the instruction.

• Address modes involving registers have cost zero.

• Address modes involving memory location or literal have cost
one.

• Instruction length should be minimized if space is important. Doing
so also minimizes the time taken to fetch and perform the
instruction.



Example

For example : MOV R0, R1 copies the contents of register R0 into R1. 
It has cost one, since occupies only one word of memory.

The three-address statement a : = b + c can be implemented by
many different instruction sequences :

MOV b, R0
ADD c, R0 cost = 6

MOV R0, a

MOV b, a

ADD c, a cost = 6

Assuming R0, R1 and R2 contain the addresses of a, b, and c :



Example

MOV *R1, *R0
ADD *R2, *R0 cost = 2

Assuming R1 and R2 contain the values of b and c,respectively and that
the value of b is not needed after the assignment, we can use:

Add R2,R1
Mov R1,a cost=3

In order to generate good code for target machine, we must utilize its
addressing capabilities efficiently.



Runtime storage management

Run-time Storage Management:
Information needed during an execution of a procedure is kept in a
block of storage called an activation record, which includes storage for
names local to the procedure. The two standard storage allocation
strategies are:

1. Static allocation
2. Stack allocation

In static allocation, the position of an activation record in memory is
fixed
at compile time.
In stack allocation, a new activation record is pushed onto the stack for
each
execution of a procedure. The record is popped when the activation
ends.



Runtime storage management

The following three-address statements are associated with the run-
time allocation and deallocation of activationrecords:

Call,

Return,

Halt, and

Action, a placeholder for other statements.

We assume that the run-time memory is divided into areas for:

1. Code

2. Static data

3. Stack



Static allocation:

Static allocation:

The codes needed to implement static allocation are as follows:

MOV

#here+20,callee.static_area

/*It saves return address*/

GOTO callee.code_area /*It transfers control to the

target code for the
calledprocedure*/

where,
callee.static_area - Address of the activation record
callee.code_area - Address of the first instruction for called 
procedure  #here + 20 - Literal return address which is the address 
of the instruction  following GOTO.



Implementation of return statement:

A return from procedure callee is implemented by : GOTO
*callee.static_area

This transfers control to the address saved at the beginning of the 
activation  record.

Implementation of action statement:

The instruction ACTION is used to implement action statement.

Implementation of halt statement:

The statement HALT is the final instruction that returns control to the
operating system.



Stack allocation

Stack allocation:

Static allocation can become stack allocation by using relative 
addresses  for storage in activation records. In stack allocation, the 
position of  activation record is stored in register so words in 
activation records can  be accessed as offsets from the value in this
register.

The codes needed to implement stack allocation are as follows:

Initialization of stack:

MOV #stackstart , SP /* initializes stack */  

Code for the first procedure HALT /*  

terminate execution */





Basic Blocks and FlowGraphs

A basic block is a sequence of consecutive statements in which flow
of control enters at the beginning and leaves at the end without any
halt or possibility of branching except at the end.
The following sequence of three-address statements forms a basic
block t1 : = a * a

t2 : = a * b  t3 : = 2 
* t2  t4 : = t1 + t3  
t5 : = b * b  t6 : = 
t4 + t5



Basic Block Construction

Algorithm: Partition into basic blocks
Input: A sequence of three-address statements
Output: A list of basic blocks with each three-address statement in

exactly one block Method:
1. We first determine the set of leaders, the first statements ofbasic

blocks. The rules we use are of the following:
The first statement is a leader.
Any statement that is the target of a conditional or unconditional
goto
is a leader.
Any statement that immediately follows a goto or conditional goto
statementis a leader.

2. For each leader, its basic block consists of the leader and all
statements

up to but not including the next leader or the end of the program.



Example

Consider the following source code for dot product of two vectors:



Three addresscode

The three-address code for the above source program is given as (1)    
prod := 0
(2) i := 1
(3) t1 := 4* I
(4) t2 := a[t1] /*compute a[i] */
(5) t3 := 4* I
(6) t4 := b[t3] /*compute
(7) b[i] */  t5 := t2*t4
(8) t6 := prod+t5  
(9) prod := t6
(10)t7 := i+1
(11)i := t7
(12)if i<=20 goto (3)
Basic block 1: Statement (1) to (2)
Basic block 2: Statement (3) to (12)



Transformations on Basic Blocks

A number of transformations can be applied to a basic block
without expressions computed by the block. Two important 
classes of transformation are :

• Structure-preserving transformations

• Algebraic transformations



Structure Preserving Transformations

Structure-Preserving Transformations:
The primary Structure-Preserving Transformation on basic blocks are:

• Common sub-expression elimination
• Dead code elimination
• Renaming of temporary variables
• Interchange of two independent adjacent statements.



Common sub-expression elimination

Common sub expressions need not be computed over and over 
again.  Instead they can be computed once and kept in store from 
where it’s  referenced.

Example:
a: =b+c b: =a-d
c: =b+c d: =a-d

The 2nd and 4th statements compute the same expression: b+c and a-
d Basic block can be transformed to  a: = b+c
b: = a-d  c: = a
d: = b



Dead code elimination

Dead code elimination:

It is possible that a large amount of dead (useless) code may exist in
the program. This might be especially caused when introducing
variables and procedures as part of construction or error-correction of
a program - once declared and defined, one forgets to remove them in
case they serve no purpose. Eliminating these will definitely optimize
the code.

Renaming of temporary variables:

A statement t:=b+c where t is a temporary name can be changed to
u:=b+c where u is another temporary name, and change all uses of t to
u. In this a basic block is transformed to its equivalent block called
normal-form block.



Interchange of two independent adjacent  statements:

Interchange of two independent adjacent statements:

Two statements

t1:=b+c

t2:=x+y

can be interchanged or reordered in its computation in the basic block
when value of t1 does not affect the value of t2.



Basic Blocks and FlowGraphs

Basic Blocks:

A basic block is a sequence of consecutive statements in which flow of
control enters at the beginning and leaves at the end without any halt
or possibility of branching except at the end.The following sequence of
three-address statements forms a basic block.

t1 : = a * a  t2 : 
= a * b  t3 : = 2 
* t2  t4 : = t1 +
t3  t5 : = b * b  
t6 : = t4 + t5



Basic Block Construction

The following three-address statements are associated with the 
run- time allocation and Basic Block Construction:

Algorithm: Partition into basic blocks
Input: A sequence of three-address statements
Output: A list of basic blocks with each three-address statement in

exactly one block Method:
1. We first determine the set of leaders, the first statements of basic

blocks. The rules we use are of the following:
a. The first statement is a leader.
b. Any statement that is the target of a conditional or 

unconditional goto  is a leader.
c. Any statement that immediately follows a goto or conditional

goto statementis a leader.
2. For each leader, its basic block consists of the leader and all 

statements up to but not including the next leader or the end of the
program



Example

Consider the following source code for dot product of two vectors: The
three- address code for the above source program is given as :

(1) prod := 0
(2) i := 1
(3) t1 := 4* i
(4) t2 := a[t1] /*compute a[i] */(5) t3 := 4* i
(6) t4 := b[t3] /*compute b[i] */
(7) t5 := t2*t4
(8) t6 := prod+t5
(9) prod := t6
(10) t7 := i+1
(11) i := t7
(12) if i<=20 goto (3)

Basic block 1: Statement (1) to (2)
Basic block 2: Statement (3) to (12)



Transformations on Basic Blocks

Transformations on Basic Blocks:

A number of transformations can be applied to a basic block 
without  expressions computed by the block. Two important 
classes of  transformation are :

• Structure-preserving transformations

• Algebraic transformations



Flow Graphs

Flow Graphs:

Flow graph is a directed graph containing the flow-of-control  
information for the set of basic blocks making up a program.The 
nodes  of the flow graph are basic blocks. It has a distinguished 
initial node.

E.g.: Flow graph for the vector dot product is given as follows:

Flow graph for program



B1 is the initial node. B2 immediately follows B1, so there is an 
edge from B1 to  B2. The target of jump from last statement of B1 is 
the first statement B2, so  there is an edge from B1 (last statement) 
to B2 (first statement).B1 is the  predecessor of B2, and B2 is a 
successor of B1.



A Simple Code Generator

Register and Address Descriptors:
•A register descriptor is used to keep track of what is currently in 
each  registers. The registerdescriptors show that initially all the 
registers are empty.
•An address descriptor stores the location where the 
current value of  the name can be found at run time.



A Code-Generation Algorithm

The algorithm takes as input a sequence of three-address
statements constituting a basic block.
For each three-address statement of the form x : = y op z, perform
the following actions:

1. Invoke a function getreg to determine the location L where the
result of the computation y op z should be stored.

2. Consult the address descriptor for y to determine y’, the current
location of y. Prefer the register for y’ if the value of y is currently
both in memory and a register. If the value of y is not already in L,
generate the instruction MOV y’ , L to place a copy of y in L.

3. Generate the instruction OP z’ , L where z’ is a current location of
z. Prefer a register to a memory location if z is in both. Update the
address descriptor of x to indicate that x is in location L. If x is in L,
update its descriptor and remove x from all other descriptors.

4. If the current values of y or z have no next uses, are not live on exit
from the block, and are in registers, alter the register descriptor to
indicate that, after execution of x : = y op z , those registers will no
longer contain y or z



Generating Code for Assignment Statements

Generating Code for Assignment Statements:

The assignment d : = (a-b) + (a-c) + (a-c) might be 
translated into the
following three-address code sequence:

Code sequence for the example is:





Generating Code for Indexed Assignments

Generating Code for Indexed Assignments:

The table shows the code sequences generated for the indexed 
assignmen  a:= b[ i ] and a[ i ]:= b



Reduction In Strength

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer
assignments a : = *p and *p : = a

if x < 0 goto z ADD 
z, R0
MOV R0,x
CJ< z



Register Allocation and Assignment

Register Allocation and Assignment:
•Global Register Allocation
•Usage Counts
•Register Assignment for Outer Loops
•Register Allocation by Graph Coloring



Global Register Allocation

Global Register Allocation:

The code generation algorithm use registers to hold values 
for the  duration of a single basic block. However, all live 
variables were stored at  the end of each block. To save some 
of these stores and corresponding  loads, we might arrange 
to assign registers to frequently used variables  and keep 
these registers consistent across block boundaries (globally).
Since programs spend most of their time in inner loops, a 
natural  approach to global register assignment is to try to 
keep a frequently used  value in a fixed register throughout a
loop.
For the time being, assume that we know the loop structure 
of a flow  graph, and that we know what values computed in 
a basic block are used  outside that block.



Usage Counts

Usage Counts:

In this section we shall assume that the savings to be realized by 
keeping a  variable x in a register for the duration of a loop L is one unit 
of cost for each  reference to x if x is already in a register. However, if we 
use the approach to  generate code for a block, there is a good chance 
that after x has been  computed in a block it will remain in a register if 
there are subsequent uses of  x in that block. Thus we count a savings 
of one for each use of x in loop L that  is not preceded by an 
assignment to x in the same block. We also save two  units if we can 
avoid a store of x at the end of a block. Thus, if x is allocated a  register, 
we count a savings of two for each block in loop L for which x is live on  
exit and in which x is assigned a value.



Example

Example :
Consider the the basic blocks in the inner loop depicted in Fig,
where jump and conditional jump statements have been omitted.
Assume registers RO, Rl, and R2 are allocated to hold values
throughout the loop. Variables live on entry into and on exit from
each block are shown in Fig for convenience, immediately above
and below each block, respectively. There are some subtle points
about live variables that we address in the next chapter. For
example, notice that both e and f are live at the end of B1, but of
these, only e is live on entry to B2 and only f on entry to B3. In
general, the variables live at the end of a block are the union of
those live at the beginning of each of its successor blocks.



Example(cont..)



Example(cont..)



The Dag Representation for Basic Blocks

A DAG for a basic block is a directed acyclic graph with the following
labels on nodes:
1. Leaves are labeled by unique identifiers, either variable names or
constants.
2. Interior nodes are labeled by an operator symbol.
3.Nodes are also optionally given a sequence of identifiers for labels to

store
the computed values.

•DAGs are useful data structures for implementing transformations 
on  basic blocks.
•It gives a picture of how the value computed by a statement is 
used  in subsequent statements.
•It provides a good way of determining common sub - expressions.



Algorithm for construction of DAG

Input: A basic block

Output: A DAG for the basic block containing the following  
information:

1. A label for each node. For leaves, the label is an identifier. For
interior nodes, an operator symbol.

2. For each node a list of attached identifiers to hold the
computed values.

Case (i) x : = y OP z  Case (ii) 

x : = OP y  Case (iii) x : = y



Method

Step 1:

If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).

Step 2:

For the case(i), create a node(OP) whose left child is node(y) and 
right child  is node(z). (Checking for common sub expression). Let 
n be this node.

For case(ii), determine whether there is node(OP) with 
one child  node(y). If not create such a node.

For case(iii), node n will be node(y).

Step 3:

Delete x from the list of identifiers for node(x). Append x to the list
of attached identifiers for the node n found in step 2 and set node(x) 
to n.



EEXAMPL

Consider the block of three- addressstatements in



Stages in DAG Construction



Stages in DAG Construction



Stages in DAG Construction



Stages in DAG Construction



Example of DAG

t0 = a + b
t1 = t0 + c
d = t0 + t1

[t0 = a +b]



Example of DAG

[t1 = t0 + c]

[d = t0 +t1]



EEXAMPL

Consider the block of three- address statements in



Example
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