
1

LECTURE NOTES

ON

CLOUD COMPUTING

(AIT007)

Prepared by

Mr. A. Praveen

Assistant Professor

INFORMATION TECHNOLOGY

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad -500 043

2

UNIT – 1

Systems Modelling, Clustering and Virtualization

1. Scalable Computing Over the Internet

1.1 Scalability: Scalability is the capability of a system or network or process to handle a growing

amount of works like database storage, software usage and so on [1]. A scalable system should

be able to handle the ever-increasing data, levels of computations and should be efficient.

1.2 NOTE: Generally, a computer uses a centralized system to solve the problems. A parallel and

distributed computing system uses multiple computers to solve large scale problems over the

Internet [2].

1.3 Parallel Computing: Execution of many processes is carried out simultaneously in this case.

Large problems can be divided into smaller ones, solved at the same time and integrated later.

1.4 Distributed Computing: A distributed system is a model in which components located on

connected computers (through a network) interchange/monitor their actions by passing messages.

Distributed computing may refer to systems situated at different physical locations or different

actions being performed on the same system.

Distributed Computing is centred on data and based on networks.

NOTE: Data Center is a centralised repository and distribution of data and information

organised around a particular concept (ex: Telecommunications, Health data, business data etc.).

A typical data center may have a capacity in Petabytes.

1.5 Internet Computing: Data centers and super computer sites must be upgraded to meet the

demands of millions of users who utilize the Internet. High Performance Computing (HPC),

which was a standard for measuring the system performance, is no longer used. High Throughput

Computing (HTC) came into existence with emergence of computing clouds. Here, the systems

are parallel and distributed.

1.6 Platform Evolution:

Figure 1.1 [2]: Evolutionary Trend towards parallel, distributed and cloud computing

Computer technology has gone through five generations of development, each spanning at 10 to

20 years. By the start of 1990s, the use of HPC and HTC systems has sky-rocketed. These use

clusters, grids, Internet and clouds.

The general trend is to control shared web resources and massive data over the Internet. In the

above figure 1.1, we can observe the evolution of HPC and HTC systems.

3

NOTE: HPC contains super computers which are gradually replaced by clusters of inter-

cooperating systems that share the data among them. A cluster is a collection of homogeneous

computers, which are physically connected.

HTC shows the formation of peer-to-peer (P2P) networks for distributed file sharing and apps. A

P2P system is built over many client machines and is globally distributed. This leads to

formation of computational grids or data grids.

1.7 High Performance Computing (HPC): HPC stressed upon the speed performance. The speed

of HPC systems has increased from Gflops to Pflops (FLOP=> Floating Point Operations Per

Second) these days, driven by the requirements from different fields like science, engineering,

medicine and others [3]. The systems that generally have high speed are super computers, main

frames and other servers.

It should be noted here that the number of users (in HPC) is limited – less than 10% of all the

users. The majority of the market now uses servers, PCs or mobile devices that conduct Internet

searches and other assigned tasks.

1.8 High Throughput Computing: The market-oriented computing is now going through a strategic

change from HPC to HTC paradigm (concept). HTC concentrates more on high-flux computing

(ex: Internet searches, web apps used by many users simultaneously). The performance goal has

shifted from speed of the device to the number of tasks completed per unit of time (throughput).

 HTC needs not only to improve the speed but also to solve other problems like time availability,

cost, security and reliability.

1.9 New Computing Concepts: It can be seen from Figure 1.1that SOA (Software Oriented

Architecture) has made the web services available for all tasks. The Internet Clouds have become

a major factor to consider for all types of tasks. Three new paradigms have come into existence:

(a) Radio-Frequency Identification (RFID): This uses electro-magnetic fields to automatically

identify and track tags attached to objects [4]. These tags contain electronically stored

information.

(b) Global Positioning System (GPS): It is a global navigation satellite system that provides the

geographical location and time information to a GPS receiver [5].

(c) Internet of Things (IoT): It is the internetworking of different physical devices (vehicles,

buildings etc.) embedded with electronic devices (sensors), software, and network

connectivity [6]. Data can be collected and exchanged through this network (IoT).

1.10 Computing Paradigm Distinctions:

(a) Centralized Computing: All computer resources like processors, memory and storage are

centralized in one physical system. All of these are shared and inter-connected and

monitored by the OS.

(b) Parallel Computing: All processors are tightly coupled with centralized shared memory or

loosely coupled with distributed memory (parallel processing). Inter processor

communication is achieved by message passing. This methodology is known as parallel

computing.

NOTE: Coupling is the inter-dependence between software/hardware modules.

(c) Distributed Computing: A distributed system consists of multiple autonomous computers

with each device having its own private memory. They interconnect among themselves by

the usage of a computer network. Here also, information exchange is accomplished by

message passing.

(d) Cloud Computing: An Internet Cloud of resources can either be a centralized or a

distributed computing system. The cloud applies parallel or distributed computing or both.

Cloud can be built by using physical or virtual resources over data centers. CC is also

called as utility/ service/concurrent computing.

1.11 NOTE: IoT is a networked connection of general objects used everyday including computers,

systems and sensors. IoT is supported by Internet Clouds to access any ‘thing’ at any place at

4

any time. Internet Computer is a larger concept that covers all computing paradigms,

emphasizing on distributed and cloud computing.

1.12 Explanation on the recent surge in networks of clusters, data grids. Internet Clouds are the

result of moving desktop computing to service-oriented computing using server clusters and

huge databases at data centers.

In the future, both HPC and HTC will demand multicore processors that can handle large

number of computing threads per core. Both concentrate upon parallel and distributed

computing. The main work lies in the fields of throughput, efficiency, scalability and reliability.

Main Objectives:

(a) Efficiency: Efficiency is decided by speed, programming and throughput demands’

achievement.

(b) Dependability: This measures the reliability from the chip to the system at different levels.

Main purpose here is to provide good QoS (Quality of Service).

(c) Adaption in the Programming Model: This measures the ability to support unending

number of job requests over massive data sets and virtualized cloud resources under

different models.

(d) Flexibility: It is the ability of distributed systems to run in good health in both HPC

(science/engineering) and HTC (business).

1.13 Degrees of ‘Parallelism’:

(a) Bit-level parallelism (BLP) 8 bit, 16, 32, and 64.

(b) Instruction-level parallelism (ILP): The processor executes multiple instructions

simultaneously. Ex: Pipelining, supercomputing, VLIW (very long instruction word), and

multithreading.

Pipelining: Data processing elements are connected in series where output of one element

is input to the next.

Multithreading: Multithreading is the ability of a CPU or a single core in a multi-

core processor to execute multiple processes or threads concurrently, supported by the OS.

(c) Data-level Parallelism (DLP): Here, instructions are given like arrays (single instruction,

multiple data SIMD). More hardware support is needed.

(d) Task-level Parallelism (TLP): It is a process of execution where different threads

(functions) are distributed across multiple processors in parallel computing environments.

(e) Job-level Parallelism (JLP): Job level parallelism is the highest level of parallelism where

we concentrate on a lab or computer center to execute as many jobs as possible in any

given time period [7]. To achieve this, we purchase more systems so that more jobs are

running at any one time, even though any one user's job will not run faster.

1.14 Usage of CC: It is used in different fields for different purposes. All applications demand

computing economics, web-scale data collection, system reliability, and scalable performance.

Ex: Distributed transaction processing is practiced in the banking industry. Transactions

represent 90 percent of the existing market for reliable banking systems. [Give an example of

demonetization to increase Internet transactions.]

https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Operating_system

5

 Table 1.1 [2]

1.15 Major computing paradigms and available services/capabilities are coming together to produce

a technology convergence of cloud/utility computing where both HPC and HTC are utilised to

achieve objectives like reliability and scalability. They also aim to reach autonomic operations

that can be self-organized and support dynamic recovery. Ex: Interpretation of sensor data,

effectors like Google Home and Amazon Echo, smart home devices etc.

CC focuses on a business model where a customer receives different computing resources

(storage, service, security etc.) from service providers like AWS, EMC, Salesforce.com.

A new hype (exciting) cycle is coming into picture where different important and significant

works needed by the customer are offered as services by CC. Ex: SaaS, IaaS, Security as a

Service, DM as a Service etc. Many others are also along the pipeline.

Figures 1.2 and 1.3 [2] depict various actions discussed above (as in 2010).

6

1.16 Internet of Things: The IoT [8] refers the networked interconnection of everyday objects,

tools, devices or computers. It can be seen as a wireless network of sensors that interconnect all

things we use in our daily life. RFID and GPS are also used here. The IoT demands universal

addressability of all the objects or things that may be steady or moving.

These objects can be interconnected, can exchange data and interact with each other by the

usage of suitable applications (web/mobile). In the IoT era, CC can be used efficiently and in a

secure way to provide different services to the humans, computers and other objects. Ex: Smart

cities, inter-connected networks, self-controlling street lights/traffic lights etc.

1.17 NOTE: CPS means cyber–physical system where physical objects and computational

processes interact with each other. Ex: Wrest bands to monitor BP. CPS merges the 3Cs which

are computation, communication and control to provide intelligent feedbacks between the cyber

and physical worlds.

2. Technologies for Network based Systems

2.1 Multi-core CPUs and Multithreading Technologies: Over the last 30 years the speed of the

chips and their capacity to handle variety of jobs has increased at an exceptional rate. This is

crucial to both HPC and HTC system development. Note that the processor speed is measured

in MIPS (millions of instructions per second) and the utilized network bandwidth is measured

in Mbps or Gbps.

2.2 Advances in CPU Processors: The advanced microprocessor chips (by Intel, NVIDIA, AMD,

Qualcomm etc.) assume a multi-core architecture with dual core, quad core or more processing

cores. They exploit parallelism at different levels. Moore’s law has proven accurate at these

levels. Moore's law is the observation that the number of transistors in a dense integrated circuit

doubles approximately every two years.

2.3 Multi-core CPU: A multi-core processor is a single computing component with two or more

independent actual processing units (called "cores"), which are units that read and execute

program instructions [9]. (Ex: add, move data, and branch). The multiple cores can run multiple

instructions at the same time, increasing overall speed for programs open to parallel computing.

2.4 Many-core GPU: (Graphics Processing Unit) Many-core processors are specialist multi-core

processors designed for a high degree of parallel processing, containing a large number of

7

simpler, independent processor cores [10]. Many-core processors are used extensively in

embedded computers and high-performance computing. (Main frames, super computers).

2.5 GPU Computing: A GPU is a graphics co-processor mounted on a computer’s graphics card to

perform high level graphics tasks in video editing apps. (Ex: Intel Xeon, NVIDIA). A modern

GPU chip can be built with hundreds of processing cores. These days, parallel GPUs or GPU

clusters are gaining more attention.

Starting as co-processors attached to the CPU, the GPUs these days possess 128 cores on a

single chip (NVIDIA). Hence they have 1024 threads (128*8) executing tasks concurrently, on

a single GPU. This can be termed as massive parallelism at multicore and multi-threading

levels. GPUs are not restricted to videos only – they can be used in HPC systems to super

computers for handling high level calculations in parallel.

2.6 GPU Programming Model: Figure 1.7 and 1.8 [2] show the interaction between a CPU and

GPU in performing parallel execution of floating-point operations concurrently.

Floating-point operations involve floating-point numbers and typically take longer to execute

than simple binary integer operations. A GPU has hundreds of simple cores organised as

multiprocessors. Each core can have one or more threads. The CPU instructs the GPU to

perform massive data processing where the bandwidth must be matched between main memory

and GPU memory.

2.7 NOTE: Bandwidth is the bit-rate of available or consumed information capacity expressed

typically in metric multiples of bits per second. Variously, bandwidth may be characterized as

network bandwidth, data bandwidth, or digital bandwidth.

2.8 In future, thousand-core GPUs may feature in the field of Eflops/10
18

 flops systems.

8

2.9 Power Efficiency of the GPU: The major benefits of GPU over CPU are power and massive

parallelism. Estimation says that 60 Gflops/watt per core is needed to run an exaflops system.

[One exaflops is a thousand petaflops or a quintillion, 10
18

, floating point operations per

second]. A GPU chip requires one-tenth less of the power that a CPU requires. (Ex: CPU: 100,

GPU: 90).

CPU is optimized (use most effectively) for latency (time between request and response) in

caches and memory; GPU is optimized for throughput with explicit (open) management of on-

chip memory.

Both power consumption and software are the future challenges in parallel and distributed

systems.

9

2.10 Memory, Storage and WAN:

(a) Memory Technology: The upper curve in Figure 1.10 shows the growth of DRAM chip

capacity from 16 KB to 64 GB. [SRAM is Static RAM and is 'static' because the memory does

not have to be continuously refreshed like Dynamic RAM. SRAM is faster but also more

expensive and is used inside the CPU. The traditional RAMs in computers are all DRAMs]. For

hard drives, capacity increased from 260 MB to 3 TB and lately 5 TB (by Seagate). Faster

processor speed and higher memory capacity will result in a wider gap between processors and

memory, which is an ever-existing problem.

(b) Disks and Storage Technology: The rapid growth of flash memory and solid-state drives

(SSD) also has an impact on the future of HPC and HTC systems. An SSD can handle 300,000

to 1 million write cycles per block, increasing the speed and performance. Power consumption

should also be taken care-of before planning any increase of capacity.

(c) System-Area Interconnects: The nodes in small clusters are interconnected by an Ethernet

switch or a LAN. As shown in Figure 1.11 [2], a LAN is used to connect clients to servers. A

Storage Area Network (SAN) connects servers to network storage like disk arrays. Network

Attached Storage (NAS) connects clients directly to disk arrays. All these types of network

appear in a large cluster built with commercial network components (Cisco, Juniper). If not

much data is shared (overlapped), we can build a small cluster with an Ethernet Switch +

copper cables to link to the end machines (clients/servers).

10

(d) WAN: We can also notice the rapid growth of Ethernet bandwidth from 10 Mbps to 1 Gbps and

still increasing. Different bandwidths are needed for local, national, and international levels of

networks. It is also estimated that computers will be used concurrently in the coming future and

higher bandwidth will certainly add more speed and capacity to aid the cloud/distributed

computing. Note that most data centers use gigabit Ethernet as interconnect in their server

clusters.

2.11 Virtual Machines and Middleware: A typical computer has a single OS image at a time. This

leads to a rigid architecture that tightly couples apps to a specific hardware platform i.e., an app

working on a system might not work on another system with another OS (non-portable).

To build large clusters, grids and clouds, we need to increase the capacity of computing, storage

and networking resources in a virtualized manner. A cloud of limited resources should

aggregate all these dynamically to bring out the expected results.

(a) Virtual Machines: As seen in Figure 1.12 [2], the host machine is equipped with a physical

hardware. The VM is built with virtual resources managed by a guest OS to run a specific

application (Ex: VMware to run Ubuntu for Hadoop). Between the VMs and the host platform

we need a middleware called VM Monitor (VMM). A hypervisor (VMM) is a program that

11

allows different operating systems to share a single hardware host. This approach is called bare-

metal VM because a hypervisor handles CPU, memory and I/O directly. VM can also be

implemented with a dual mode as shown in Figure 1.12 (d). Here, part of VMM runs under user

level and another part runs under supervisor level.

NOTE: The VM approach provides hardware independence of the OS and apps. The VM can

run on an OS different from that of the host computer.

(b) VM Primitive operations: A VMM operation provides VM abstraction to the guest OS. The

VMM can also export an abstraction at full virtualization so that a standard OS can run it as it

would on physical hardware. Low level VMM operations are indicated in Figure 1.13 [2].

 The VMs can be multiplexed between hardware machines as shown in 1.13 (a)

 A VM can be suspended and stored in a stable storage as shown in 1.13(b)

 A suspended VM can be resumed on a new hardware platform as shown in 1.13 (c)

 A VM can be migrated from one hardware platform to another as shown in 1.13 (d)

Advantages:

 These VM operations can enable a VM to work on any hardware platform.

 They enable flexibility (the quality of bending easily without breaking) in porting distributed

app executions.

 VM approach enhances the utilization of server resources – multiple server functions can be

integrated on the same hardware platform to achieve higher system efficiency. [VMware

claims that server resource utilization has increased from 5-15% to 60-80%].

 Eliminates server crashes due to VM usage or shows more transparency in the operations that

are being carried out.

(c) Virtual Infrastructures: Virtual Infrastructure connects resources to distributed applications in

such a way that a resource needed by an app is exactly mapped to it. This decreases the costs

and increases efficiency and server response.

2.12 Data Center Virtualization for Cloud Computing: Cloud architecture is built with products

like hardware and network devices. Almost all cloud platforms use x86 (Family of Intel 8086

processors). Low-cost terabyte disks and gigabit Ethernet are used to build data centers. A data

center takes into consideration the performance/price ratio instead of only speed.

12

(a) Data Center Growth and Cost Breakdown: Large data centers are built with thousands of

servers and smaller ones have hundreds of the same. The cost of maintaining a data center has

increased and much of this money is spent on management and maintenance which did not

increase with time. Electricity and cooling also consume much of the allocated finance.

(b) Low Cost Design Philosophy: High-end switches or routers that provide high bandwidth

networks cost more and do not match the financial design of cloud computing. For a fixed

budget, typical switches and networks are more desirable.

Similarly, usage of x86 servers is more preferred over expensive mainframes. Appropriate

software ‘layer’ should be able to balance between the available resources and the general

requirements like network traffic, fault tolerance, and expandability. [Fault tolerance is the

property that enables a system to continue operating properly even when one or more of its

components have failed].

(c) Convergence of Technologies: CC is enabled by the convergence of technologies in four

areas:

 Hardware virtualization and multi-core chips

 Utility and grid computing

 SOA, Web 2.0 and Web Service integration

 Autonomic Computing and Data Center Automation

Web 2.0 is the second stage of the development of the Internet, where static pages transformed

into dynamic and the growth of social media.

Data is increasing by leaps and bounds every day, coming from sensors, simulations, web

services, mobile services and so on. Storage, acquisition and access of this huge amount of data

sets requires standard tools that support high performance, scalable file systems, DBs,

algorithms and visualization. With science becoming data-centric, storage and analysis of the

data plays a huge role in the appropriate usage of the data-intensive technologies.

Cloud Computing is basically focused on the massive data that is flooding the industry. CC

also impacts the e-science where multi-core and parallel computing is required. To achieve the

goals in these fields, one needs to work on workflows, databases, algorithms and virtualization

issues.

Cloud Computing is a transformative approach since it promises more results than a normal

data center. The basic interaction with the information is taken up in a different approach to

obtain a variety of results, by using different types of data to end up with useful analytical

results.

It should also be noted that a cloud provides sources on demand at the infrastructure, platform,

or software level. At platform level, MapReduce offers a new programming model that

transparently handles data parallelism with natural fault tolerance capability. Iterative

MapReduce extends MapReduce to support a broader range of DM algorithms.

A typical cloud runs on an extremely large cluster of standard PCs. In each cluster node,

multithreading is practised with a large number of cores in many-core GPU clusters. Hence,

data science, cloud computing and multi-core computing are coming together to revolutionize

the next generation of computing and take up the new programming challenges.

2.13 System Models for Cloud Computing: Distributed and Cloud Computing systems are built

over a large number of independent computer nodes, which are interconnected by SAN, LAN

or WAN. Few LAN switches can easily connect hundreds of machines as a working cluster. A

WAN can connect many local clusters to form large cluster of clusters. In this way, millions of

computers can be brought together by using the above mentioned methodology, in a

hierarchical manner.

13

Large systems are highly scalable, and can reach web-scale connectivity either physically or

logically. Table 1.2 [2] below shows massive systems classification as four groups: clusters,

P2P networks, computing grids and Internet clouds over large data centers. These machines

work collectively, cooperatively, or collaboratively at various levels.

2.14 Clusters are more popular in supercomputing apps. They have laid the foundation for cloud

computing. P2P are mostly used in business apps. Many grids formed in the previous decade

have not been utilized per their potential due to lack of proper middleware or well-coded apps.

NOTE: The advantages of cloud computing include its low cost and simplicity for providers

and users.

2.15 Clusters of Cooperative Computers: A computing cluster consists of inter-connected

standalone computers which work jointly as a single integrated computing resource.

Particularly, this approach yields good results in handling heavy workloads with large datasets.

(a) The Figure 1.1.5 [2] below shows the architecture of a typical server cluster that has low

latency and high bandwidth network. [Latency is the delay from input into a system to

desired outcome]. For building a large cluster, an interconnection network can be utilized

using Gigabit Ethernet, Myrinet or InfiniBrand switches.

14

Through a hierarchical construction using SAN, LAN or WAN, scalable clusters can be built

with increasing number of nodes. The concerned cluster is connected to the Internet through a

VPN (Virtual Private Network) gateway, which has an IP address to locate the cluster.

Generally, most clusters have loosely connected nodes, which are autonomous with their own

OS.

(b) Single-System Image (SSI): It was indicated that multiple system images should be integrated

into a single-system image for a cluster. A cluster-OS is more desired these days, or a

middleware to support SSI that includes sharing of CPUs, memory, I/O across all the nodes in

the cluster. An SSI is an illusion (something that doesn’t exist actually) that shows the

integrated resources as a single and powerful resource. SSI can be created by software or

hardware. Finally, a cluster is with multiple system images is only a collection of the resources

of independent computers that are loosely inter-connected.

(c) HW, SW and MW Support: It should be noted that MPPs (Massively Parallel Processing) are

clusters exploring high-level parallel processing. The building blocks here are the computer

nodes (PCs, Symmetric Multi-Processors (SMPs), work stations or servers), communication

software like Parallel Virtual Machine (PVM), Message Passing Interface (MPI), and a network

interface card in each node. All the nodes are interconnected by high bandwidth network (Ex:

Gigabit Ethernet).

To create SSIs, we need special cluster middleware support. Note that both sequential and

parallel apps can run on the cluster but parallel environments give effective exploitation of the

resources. Distributed Shared memory (DSM) makes all the data to be shared by all the

clusters, thus bringing all the resources into availability of every user. But SSI features are

expensive and difficult to achieve; so users generally prefer loosely coupled machines.

(d) Major Cluster Design Issues: A cluster-wide OSs or a single OS controlling the cluster

virtually is not yet available. This makes the designing and achievement of SSI difficult and

expensive. All the apps should rely upon the middleware to bring out the coupling between the

machines in cluster or between the clusters. But it should also be noted that the major

advantages of clustering are scalable performance, efficient message passing, high system

availability, good fault tolerance and a cluster-wide job management which react positively to

the user demands.

2.16 Grid Computing Infrastructures: Grid computing is designed to allow close interaction

among applications running on distant computers simultaneously.

(a) Computational Grids: A computing grid provides an infrastructure that couples computers,

software/hardware, sensors and others together. The grid can be constructed across LAN, WAN and

other networks on a regional, national or global scale. They are also termed as virtual platforms.

15

Computers, workstations, servers and clusters are used in a grid. Note that PCs, laptops and others can

be viewed as access devices to a grid system. Figure 1.6 [2] below shows an example grid built by

different organisations over multiple systems of different types, with different operating systems.

(b) Grid Families: Grid technology demands new distributed computing models,

software/middleware support, network protocols, and hardware infrastructures. National grid

projects are followed by industrial grid platforms by IBM, Microsoft, HP, Dell-EMC, Cisco,

and Oracle. New grid service providers (GSPs) and new grid applications have emerged

rapidly, similar to the growth of Internet and web services in the past two decades. Grid

systems are classified in essentially two categories: computational or data grids and P2P grids.

Computing or data grids are built primarily at the national level.

2.17 Peer-to-Peer Network Families: In the basic client-server architecture, the client machines are

connected to a central server for different purposes and these are essentially P2P networks. The

P2P architecture offers a distributed model of networked systems. Note that P2P network is

client-oriented instead of server-oriented.

(a) P2P Systems: Here, every node acts as both a client and a server. Peer machines are those

connected to the Internet; all client machines act autonomously to join or leave the P2P system

at their choice. No central coordination DB is needed. The system is self-organising with

distributed control.

Basically, the peers are unrelated. Each peer machine joins or leaves the P2P network at any

time. The participating peers form the physical network at any time. This physical network is

not a dedicated interconnection but a simple ad-hoc network at various Internet domains

formed randomly.

(b) Overlay Networks: As shown in Figure 1.17 [2], an overlay network is a virtual network

formed by mapping each physical machine with its ID, through a virtual mapping.

16

If a new peer joins the system, its peer ID is added as a node in the overlay network. The P2P

overlay network distinguishes the logical connectivity among the peers. The types here are

unstructured and structured. Unstructured P2P ON is a random one and has no fixed route of

contact – flooding is used to send queries to all nodes. This resulted in sudden increase of network

traffic and unsure results. On the other hand, structured ONs follow a pre-determined methodology

of connectivity for inserting and removing nodes from the overlay graph.

(c) P2P Application Families: There exist 4 types of P2P networks: distributed file sharing,

collaborative platform, distributed P2P computing and others. Ex: BitTorrent, Napster, Skype,

Geonome, JXTA, .NET etc.

(d) P2P Computing Challenges: The main problems in P2P computing are those in hardware,

software and network. Many hardware models exist to select from; incompatibility exists

between the software and the operating systems; different network connections and protocols

make it too complex to apply in real-time applications. Further, data location, scalability,

performance, bandwidth etc. are the other challenges.

P2P performance is further affected by routing efficiency and self-organization among the

peers. Fault tolerance, failure management, load balancing, lack of trust among the peers (for

security, privacy and copyright violations), storage space availability are the other issues that

have to be taken care of. But it should also be noted that the distributed nature of P2P network

increases robustness since the failure of some peers doesn’t affect the full network – fault

tolerance is good.

Disadvantages here are that since the total system is not centralized, management of the total

network is difficult – anyone can logon and put in any type of data. Security is less.

NOTE: P2P computing or networking is a distributed application architecture that partitions

tasks or workloads between peers [11].

It can be concluded that P2P networks are useful for small number of peers but not for large

networks with multiple peers.

2.18 Cloud Computing over Internet: Cloud Computing is defined by IBM as follows: A cloud

is a pool of virtualized computer resources. A cloud can host a variety of different workloads

that include batch-style backend jobs and interactive and user-facing applications.

17

Since the explosion of data the trend of computing has changed – the software apps have to be

sent to the concerned data. Previously, the data was transferred to the software for computation.

This is the main reason for promoting cloud computing.

A cloud allows workloads to be deployed and scaled out through rapid provisioning of physical

or virtual systems. The cloud supports redundant, self-recovering, and highly scalable

programming models that allow workloads to recover from software or hardware failures. The

cloud system also monitors the resource use in such a way that allocations can be rebalanced

when required.

(a) Internet Clouds: The idea in CC is to move desktop computing to a service-oriented platform

using server clusters and huge DBs at data centers. CC benefits both users and providers by

using its low cost and simple resources through machine virtualization. Many user applications

are satisfied simultaneously by CC and finally, its design should satisfy the security norms, be

trustworthy and dependable. CC is viewed in two ways: a centralized resource pool or a server

cluster practising distributed computing.

(b) The Cloud Landscape: A distributed computing system is controlled by companies or

organisations. But these traditional systems encounter several bottlenecks like constant

maintenance, poor utilization, and increasing costs and updates of software or hardware. To get

rid of these, CC should be utilized as on-demand computing.

CC offers different types of computing as services:

 Infrastructure as a Service (IaaS): This model provides different infrastructures like

servers, storage, networks and the data center fabric (here, databases) to the user on demand.

A typical user can deploy and run multiple VMs where guest operating systems can be used

for specific applications. Note that that the user cannot manage or control the cloud

infrastructure but can specify when tor request and release the concerned resources. Ex:

AWS, MS Azure, Cisco Metapod, Google Compute Engine etc.

 Platform as a Service (PaaS): In this model, the user can install his own apps onto a

virtualized cloud platform. PaaS includes middleware, DBs, development tools, and some

computing languages. It includes both hardware and software. The provider supplies the API

and the software tools (ex: Java, Python, .NET). The user need not manage the cloud

infrastructure which is taken care of by the provider.

 Software as a Service (SaaS): It is browser-initiated application software paid cloud

customers. This model is used in business processes, industry applications, CRM, ERP, HR

and collaborative (joint) applications. Ex: Google Apps, Twitter, Facebook, Cloudera,

Salesforce etc.

(c) Inter clouds offer four deployment models: private, public, managed and hybrid.

 Private Cloud: Private cloud is a type of cloud computing that delivers similar advantages to

public cloud, including scalability and self-service, but through a proprietary architecture.

18

 Public Cloud: A public cloud is one based on the standard cloud computing model, in which

a service provider makes resources, such as applications and storage, available to the

general public over the Internet.

 Managed Cloud: Managed cloud hosting is a process in which organizations share and

access resources, including databases, hardware and software tools, across a remote network

via multiple servers in another location. [12]

 Hybrid Cloud: A hybrid cloud is an integrated cloud service utilising both private and public

clouds to perform distinct functions within the same organisation. [13]

2.19 NOTE: The different service level agreements (SLAs) mean that the security responsibility is

shared among all the cloud providers, consumers, and the third-party cloud-enabled software

service providers.

2.20 Software Environments for Distributed Systems and Clouds – SOA: In grids that use

Java/CORBA, an entity is a service or an object. Such architectures build on the seven OSI

layers (APSTNDP) that provide networking abstractions. Above this we have a base service

environment like .NET, Java etc. and a broker network for CORBA, which enables

collaboration between systems on different operating systems, programming languages and

hardware [14]. By using this base, one can build a higher level environment reflecting the

special features of distributed computing. The same is reflected in the figure 1.20 [2] below.

(a) Layered Architecture for Web Services and Grids: The entity interfaces correspond to the

WSDL (web services description language) like XML, Java and CORBA interface definition

language (IDL) in the distributed systems. These interfaces are linked with high level

communication systems like SOAP, RMI and IIOP. These are based on message-oriented

middleware infrastructures like JMS and Web Sphere MQ.

At entity levels, for fault tolerance, the features in (Web Services Reliable Messaging) WSRM

and its framework are same as the levels of OSI model. Entity communication is supported by

higher level services for services, metadata, and the management of entities, which can be

discussed later on. Ex: JNDI, CORBA trading service, UDDI, LDAP and ebXML. Note that the

services have a common service: a shared memory. This enables effective exchange of

information. This also results in higher performance and more throughputs.

(b) Web Services and Tools: Loose Coupling and support of heterogeneous implementations

make services (SaaS, IaaS etc.) more attractive than distributed objects. It should be realised

that the above figure corresponds to two choices of service architecture: web services or

(Representational State Transfer) REST systems.

19

In web services, the aim is to specify all aspects of the offered service and its environment. This

idea is carried out by using SOAP. Consequently, the environment becomes a universal

distributed OS with fully distributed capability carried out by SOAP messages. But it should be

noted that this approach has had mixed results since the protocol can’t be agreed upon easily

and even if so, it is hard to implement.

In the REST approach, simplicity is stressed upon, and difficult problems are delegated to the

apps. In a web services language, REST has minimal information in the header and the message

body carries the needed information. REST architectures are more useful in rapid technology

environments. Above the communication and management layers, we can compose new entities

or distributed programs by grouping several entities together.

Java and CORBA use RPC methodology through RMI. In grids, sensors represent entities that

output data as messages; grids and clouds represent collection of services that have multiple

message-based inputs and outputs.

(c) The Evolution of SOA: Software Oriented Architecture applies to building grids, clouds, their

combinations and even inter-clouds and systems of systems. The data collections is done

through the sensors like ZigBee device, Bluetooth device, Wi-Fi access point, a PC, a mobile

phone and others. All these devices interact among each other or with grids, clouds and

databases at distant places.

Raw Data Data Information Knowledge Wisdom Decisions

(d) Grids Vs Clouds: Grid systems apply static resources, while a cloud stresses upon elastic

resources. Differences between grid and cloud exist only in dynamic resource allocation based

on virtualization and autonomic computing. A ‘grid of clouds’ can also be built and can do a

better job than a pure cloud because it can support resource allocation. Grid of clouds, cloud of

grids, cloud of clouds and inter-clouds are also possible.

2.21 Distributed Operating Systems: To promote resource sharing and fast communication, it is

best to have a distributed operating system that can manage the resources efficiently. In

distributed systems or more generally, a network needs an operating system itself since it deals

with many heterogeneous platforms. But such an OS offers low transparency to the users. It

should be noted that middleware can also be used to generate resource sharing but only till we

attain a certain level. The third approach is to develop a truly distributed OS to achieve highest

efficiency and maximum transparency. Comparison can be seen in Table 1.6 [2].

20

2.22 Amoeba vs DCE: Distributed Computing Environment is a middleware-based system for

DCEs. Amoeba was developed by academicians in Holland. But it should be noticed that DCE,

Amoeba and MOSIX2 are all research prototypes used only in academia.

MOSIX2 vs Linux Clusters: MOSIX is a distributed OS, which runs with a virtualization layer

in the Linux environment. This layer provides a single-system image to user apps. MOSIX

supports both sequential and parallel apps and the resources are discovered and migrated

among the Linux nodes. (MOSIX uses Linux Kernel). A MOSIX enabled grid can extend

indefinitely as long as interoperation the clusters exists.

Transparency in programming environments that handle user data, OS, and hardware plays a

key role in the success of clouds. This concept is divided into 4 levels as seen below [2]: Data,

app, OS, and hardware. Users will be able to chose the OS they like as well as the app they like

– this is the main concept behind Software as a Service (SaaS).

21

2.23 Message-Passing Interface (MPI): MPI is a library of sub-programs that can be called from C

or FORTRAN to write parallel programs running on a distributed system. The goal here is to

represent clusters, grid systems, and P2P systems with upgraded web services and other utility

apps. Distributed programming can also be supported by Parallel Virtual Machine (PVM).

2.24 MapReduce: it is a web programming model for scalable data processing on large data

clusters. It is applied mainly in web-scale search and cloud computing apps. The user specifies

a Map function to generate a set of intermediate key/value pairs. Then the user applies a

Reduce function to merge all intermediate values with the same (intermediate) key. MapReduce

is highly scalable to explore high degrees of parallelism at different job levels and can handle

terabytes of data on thousands of client machines. Many MapReduce programs can be executed

simultaneously. Ex: Google’s clusters.

2.25 Hadoop Library: Hadoop enables users to write and run apps over vast amounts of distributed

data. Users can easily scale Hadoop to store and process Petabytes of data in the web space.

The package is economical (open source), efficient (high level of parallelism) and is reliable

(keeps multiple data copies).

2.26 Open Grid Services Architecture: OGSA is driven by large-scale distributed computing apps.

These apps must provide take into account high degree of resource and data sharing. The key

features here are: distributed executed environment, public key infrastructure (PKI) services,

trust management and security problems in grid computing.

Globus is a middleware library that implements OGSA standards for resource discovery,

allocation and security enforcement.

2.27 Performance Metrics: In a distributed system, system throughput is measured in MIPS, Tflops

(Tera Floating point Operations per Second) or Transactions per Second (TPS). Other measures

also exist: job response and network latency. An interconnection network with low latency and

high bandwidth is preferred. The key factors to be considered for performance are OS boot

time, compile time, I/O data rate, and the runtime support system used.

22

2.28 Dimensions of Scalability: System scaling can increase or decrease resources depending on

different practical factors.

 Size Scalability: This targets higher performance or more functionality by increasing the

machine size (cache, processors, memory etc.). We can determine the size scalability by

counting the number of processors installed. That is more processors => more ‘size’.

 Software Scalability: Upgrades in OS/compilers, adding mathematical libraries, installing

new apps, and using more user friendly environments are the factors considered in

determining software scalability.

 Application Scalability: This refers to matching problem size scalability (increasing data)

with machine size scalability (effectively use the resources to obtain the best result

possible).

 Technology Scalability: Here, systems that can adapt to changes in different aspects of

technology like component or network are considered. Three aspects play an important

role here: time, space and heterogeneity. Time is concerned with processors, motherboard,

power supply packaging and cooling. All these have to be upgraded between 3 to 5 years.

Space is related to packaging and energy concerns. Heterogeneity refers to the use of

hardware components or software packages from different vendors; this affects scalability

the most.

2.29 Scalability versus OS Image Count: In Figure 1.23 [2], scalable performance is estimated

against the multiplicity of OS images in distributed systems. Note that scalable performance

means we can ever increase the speed of the system by adding more servers of processors, or by

enlarging memory size and so on. The OS image is counted by the no. of independent OS

images observed in a cluster, grid, P2P network or the cloud.

An SMP (Symmetric multiprocessor) server has a single system image or a single node in a

large cluster. NUMA (non-uniform memory access) machines are SMP machines with

distributed and shared memory. NUMA machine can run with multiple OS and can scale a

hundreds of processors. Note that clusters can be SMP servers or high-end machines with loose

coupling. Obviously, clusters have more scalability than NUMA machines.

23

2.30 Amdahl’s Law: Consider the execution of a given program on a uniprocessor workstation with

a total execution time of T minutes. Say the program is running in parallel with other servers on

a cluster of many processing nodes. Assume that a fraction α of the code must be executed

sequentially (sequential bottleneck). Hence, (1-α) of the code can be compiled for parallel

execution by n processors. The total execution time of the program is calculated by αT + (1-α)

T/n where the first term is for sequential execution time on a single processor and the second

term is for parallel execution time on n parallel nodes.

Note that all communication overhead, the I/O time and exception handling time are ignored

here. Amdahl’s Law states that the speedup factor of using n-processor system over the use of a

single processor is given by:

Speedup S= T/[αT + (1-α) T/n] = 1/[α + (1-α)/n] ---- (1.1)

The maximum speedup of n can be obtained only if α is reduced to zero or the code can be

parallelized with α = 0.

As the cluster becomes large (that is n ∞), S approaches 1/α, which is the threshold

on the speedup of S. Note that the threshold is independent of n. The sequential bottleneck is

the portion of the code that cannot be parallelized. Ex: The maximum speed achieved is 4, if

α=0.25 or 1-α=0.75, even if a user uses hundreds of processors. This law deduces that we

should make the sequential bottleneck as small as possible.

2.31 Problem with fixed workload: In Amdahl’s law, same amount of workload was assumed for

both sequential and parallel execution of the program with a fixed problem size or dataset. This

was called fixed-workload speedup by other scientists. To execute this fixed-workload on n

processors, parallel processing leads to a system efficiency E which is given by:

E = S/n = 1/[α n + 1-α] ---- (1.2)

Generally, the system efficiency is low, especially when the cluster size is large. To execute a

program on cluster with n=256 nodes, and α=0.25, efficiency E = 1/[0.25x256 + 0.75] = 1.5%,

which is very low. This is because only a few processors, say 4, are kept busy whereas the

others are kept idle.

2.32 Gustafson’s Law: To obtain higher efficiency when using a large cluster, scaling the problem

size to match the cluster’s capability should be considered. The speedup law proposed by

Gustafson is also referred to as scaled-workload speedup.

Let W be the workload in a given program. When using an n-processor system, the user scales

the workload to W
’
= αW + (1-α)nW. Note that only the portion of the workload that can be

parallelized is scaled n times in the second term. This scaled workload W
’
 is the sequential

execution time on a single processor. The parallel execution time W
’
 on n processors is defined

by a scaled-workload speedup as:

S
’
 = W

’
/W = [αW + (1-α) nW]/W = α+ (1-α) n ---- (1.3)

This speedup is known as Gustafson’s law. By fixing the parallel execution time at level W, we

can obtain the following efficiency:

E
’
 = S

’
/n = α/n+ (1-α) ---- (1.4)

Taking previous workload values into consideration, efficiency can be improved for a 256-node

cluster to E
’
 = 0.25/256 + (1-0.25) = 0.751. For a fixed workload Amdahl’s law must be used

and for scaled problems users should apply Gustafson’s law.

24

NOTE: In addition to performance, system availability and application flexibility are two other

important design goals in a distributed computing system. They can be found in 2.33.

2.33 System Availability: High availability (HA) is needed in all clusters, grids, P2P networks and

cloud systems. A system is highly available if it has a long mean time to failure (MTTF) and a

short mean time to repair (MTTR).

System Availability = MTTF/(MTTF + MTTR) ---- (1.5)

System availability depends on many factors like hardware, software and network components.

Any failure that will lead to the failure of the total system is known as a single point of failure.

It is the general goal of any manufacturer or user to bring out a system with no single point of

failure. For achieving this goal, the factors that need to be considered are: adding hardware

redundancy, increasing component reliability and designing testability. In the Figure 1.24 [2]

below, the effects of system availability are estimated by scaling the system size in terms of no.

of process cores in the system.

2.34 As a distributed system increases in size, availability decreases due to a higher chance of failure

and difficulty in isolating the features. Both SMP and MPP are likely to fail under centralized

resources with one OS. NUMA machines are a bit better here since they use multiple OS.

Note here that private clouds are created out of virtualized data centers; hence a cloud has

availability similar to that of a cluster. A grid is a cluster of clusters. Therefore, clusters, clouds

and grids have decreasing availability as the system increases in size.

2.35 Threats to networks and systems:

25

The Figure 1.25 [2] presents a summary of various attack types and the damaged caused by

them to the users. Information leaks lead to a loss of confidentiality. Loss of data integrity can

be caused by user alteration, Trojan horses, service spoofing attacks, and Denial of Service

(DoS) – this leads of loss of Internet connections and system operations. Users need to protect

clusters, grids, clouds and P2P systems from malicious intrusions that may destroy hosts,

network and storage resources. Internet anomalies found generally in routers, gateways and

distributed hosts may hinder (hold back) the usage and acceptance of these public resources.

2.36 Security Responsibilities: The main responsibilities include confidentiality, integrity and

availability for most Internet service providers and cloud users. In the order of SaaS, PaaS and

IaaS, the providers increase/transfer security control to the users. IN brief, the SaaS model

relies on the cloud provider for all the security features. On the other hand, IaaS wants the users

to take control of all security functions, but their availability is still decided by the providers.

Finally, the PaaS model divides the security aspects in this way: data integrity and availability

is with the provider while confidentiality and privacy control is the burden of the users.

2.37 Copyright Protection: Collusive (secret agreement) piracy is the main source of copyright

violation within the boundary of a P2P network. Clients may illegally share their software,

allotted only to them, with others thus triggering piracy. One can develop a proactive (control

the situation before damage happens) content poisoning scheme to stop colluders (conspirers)

and pirates, detect them and stop them to proceed in their illegal work.

2.38 System Defence Technologies: There exist three generations of network defence. In the first

generation, tools were designed to prevent intrusions. These tools established themselves as

access control policies, cryptographic systems etc. but an intruder can always slip into the

system since there existed a weak link every time. The second generation detected intrusions in

a timely manner to enforce remedies. Ex: Firewalls, intrusion detection systems (IDS),

public key infrastructure (PKI) services (banking, e-commerce), reputation systems etc. The

third generation provides more intelligent responses to intrusions.

2.39 Data Protection Infrastructure: Security infrastructure is required to protect web and cloud

services. At the user level, one needs to perform trust negotiation and reputation aggregation

over all users. At the app end, we need to establish security precautions and intrusion detection

systems to restrain virus, worm, malware, and DDoS attacks. Piracy and copyright violations

26

should also be detected and contained. These can be studied in detail later when the three types

of clouds are encountered and the general services offered by the cloud are discussed.

2.40 Energy Efficiency in Distributed Computing: The primary goals in parallel and distributed

computing systems are HP and HT and also performance reliability (fault tolerance and

security). New challenges encountered in this area (distributed power management-DPM) these

days include energy efficiency, workload and resource outsourcing. In the forth-coming topics,

the energy consumption issues in servers and HPC systems are discussed.

Energy consumption in parallel and distributed computing raises different issues like monetary

(financial), environmental and system performance issues. The megawatts of power needed for

PFlops has to be within the budget control and the distributed usage of resources has to be

planned accordingly. The rising of temperature due to more usage of the resources (cooling) is

also to be addressed.

2.41 Energy Consumption of Unused Servers: To run a data center, a company has to spend huge

amount of money for hardware, software, operational support and energy every year. Hence,

the firm should plan accordingly to make maximum utilization of the available resources and

yet the financial and cooling issues should not cross their limits. For all the finance spent on a

data center, it should also not lie down idle and should be utilized or leased for useful work.

Idle servers can save a lot of money and energy; so the first step in IT departments is to identify

the unused or underused servers and plan to utilize their resources in a suitable manner.

2.42 Reducing Energy in Active Servers: In addition to identifying unused/underused servers for

energy savings, we should also apply necessary techniques to decrease energy consumption in

active distributed systems. These techniques should not hinder the performance of the

concerned system. Power management issues in distributed computing can be classified into

four layers, as seen in Figure 1.26 [2].

27

2.43 Application Layer: Most apps in different areas like science, engineering, business, financial

etc. try to increase the system’s speed or quality. By introducing energy-conscious applications,

one should try to design the usage and consumption in a planned manner such that the apps

manage to use the new multi-level and multi-domain energy management methodologies

without reducing the performance. For this goal, we need to identify a relationship between the

performance and energy consumption areas (correlation). Note that these two factors (compute

and storage) are surely correlated and affect completion time.

2.44 Middleware layer: The middleware layer is a connection between application layer and

resource layer. This layer provides resource broker, communication service, task analyzer &

scheduler, security access, reliability control, and information service capabilities. It is also

responsible for energy-efficient techniques in task scheduling. In distributed computing system,

a balance has to be brought out between efficient resource usage and the available energy.

2.45 Resource Layer: This layer consists of different resources including the computing nodes and

storage units. Since this layer interacts with hardware devices and the operating systems, it is

responsible for controlling all distributed resources. Several methods exist for efficient power

management of hardware and OS and majority of them are concerned with the processors.

Dynamic power management (DPM) and dynamic voltage frequency scaling (DVFS) are the

two popular methods being used recently. In DPM, hardware devices can switch from idle

modes to lower power modes. In DVFS, energy savings are obtained based on the fact that

 power consumption in CMOS [15] (Complementary Metal-Oxide Semiconductor) circuits

have a direct relationship with frequency and the square of the voltage supply. [P = 0.5 CV
2
f]

Execution time and power consumption can be controlled by switching among different

voltages and frequencies.

28

2.46 Network Layer: The main responsibilities of the network layer in distributed computing are

routing and transferring packets, and enabling network services to the resource layer. Energy

consumption and performance are to measured, predicted and balanced in a systematic manner

so as to bring out energy-efficient networks. Two challenges exist here:

 The models should represent the networks systematically and should possess a full

understanding of interactions among time, space and energy.

 New and energy-efficient algorithms have to be developed to rope in the advantages to the

maximum scale and defend against the attacks.

Data centers are becoming more important in distributed computing since the data is ever-

increasing with the advent of social media. They are now another core infrastructure like power

grid and transportation systems.

2.47 DVFS Method for Energy Efficiency: This method enables the exploitation of idle time (slack

time) encountered by an inter-task relationship. The slack time associated with a task is utilized

to the task in a lower voltage frequency. The relationship between energy and voltage

frequency in CMOS circuits is calculated by:

2

2()

eff

t

E C fv t

v v
f K

v

 ---- (1.6)

where v, Ceff, K and vt are the voltage, circuit switching capacity, a technology dependent factor

and threshold voltage; t is the execution time of the task under clock frequency f. By reducing v

and f, the energy consumption of the device can also be reduced.

References

 https://en.wikipedia.org/wiki/Scalability

 Kai Hwang et al, Distributed and Cloud Computing – From Parallel Processing to the Internet

of Things, Morgan Kaufmann, Elsevier, 2012.

 https://en.wikipedia.org/wiki/High-throughput_computing

 https://en.wikipedia.org/wiki/Radio-frequency_identification

 https://en.wikipedia.org/wiki/Global_Positioning_System

 https://en.wikipedia.org/wiki/Internet_of_things

 https://www.phy.ornl.gov/csep/ca/node10.html

 https://en.wikipedia.org/wiki/Internet_of_things#cite_note-31

 https://en.wikipedia.org/wiki/Multi-core_processor

 https://en.wikipedia.org/wiki/Manycore_processor

 https://en.wikipedia.org/wiki/Peer-to-peer

 https://www.techopedia.com/definition/29016/managed-cloud-hosting

 http://www.interoute.com/cloud-article/what-hybrid-cloud

 https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture

 https://en.wikipedia.org/wiki/CMOS

https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/High-throughput_computing
https://en.wikipedia.org/wiki/Radio-frequency_identification
https://en.wikipedia.org/wiki/Global_Positioning_System
https://en.wikipedia.org/wiki/Internet_of_things
https://www.phy.ornl.gov/csep/ca/node10.html
https://en.wikipedia.org/wiki/Internet_of_things#cite_note-31
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Manycore_processor
https://en.wikipedia.org/wiki/Peer-to-peer
https://www.techopedia.com/definition/29016/managed-cloud-hosting
http://www.interoute.com/cloud-article/what-hybrid-cloud
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://en.wikipedia.org/wiki/CMOS

29

UNIT – 2

Virtual Machines and Virtualization of Clusters and Data Centers

3. The massive usage of virtual machines (VMs) opens up new opportunities for parallel, cluster grid,

cloud and distributed computing. Virtualization enables the users to share expensive hardware

resources by multiplexing (i.e., multiple analog/digital are combined into one signal over a shared

medium [2]) VMs on the same set of hardware hosts like servers or data centers.

4. Implementation Levels of Virtualization: Virtualization is a concept by which several VMs are

multiplexed into the same hardware machine. The purpose of a VM is to enhance resource sharing by

many users and improve computer performance in terms of resource utilization and application

flexibility. Hardware resources (CPU, memory, I/O devices etc.) or software resources (OS and apps)

can be virtualized at various layers of functionality.

The main idea is to separate hardware from software to obtain greater efficiency from the system. Ex:

Users can gain access to more memory by this concept of VMs. With sufficient storage, any computer

platform can be installed in another host computer [1], even if processors’ usage and operating

systems are different.

4.1 Levels of Virtualization Implementation: A traditional computer system runs with a host OS

specially adjusted for its hardware architecture. This is depicted in Figure 3.1a [1].

After virtualization, different user apps managed by their own OS (i.e., guest OS) can run on the

same hardware, independent of the host OS. This is often done by adding a virtualization layer as

shown in Figure 3.1b [2].

This virtualization layer is called VM Monitor or hypervisor. The VMs can be seen in the

upper boxes where apps run on their own guest OS over a virtualized CPU, memory and I/O

devices.

4.2 The main function of the software layer for virtualization is to virtualize the physical hardware of

a host machine into virtual resources to be saved by the VMs. The virtualization software creates

the abstract of VMs by introducing a virtualization layer at various levels of a computer. General

virtualization layers include the instruction set architecture (ISA) level, hardware level, OS level,

library support level, and app level. This can be seen in Figure 3.2 [1]. The levels are discussed

below.

30

4.2.1 Instruction Set Architecture Level: At the ISA level, virtualization is performed by

emulation (imitate) of the given ISA by the ISA of the host machine. Ex: MIPS binary code

can run on an x86-based host machine with the help of ISA simulation. Instruction emulation

leads to virtual ISAs created on any hardware machine.

Basic level of emulation can be traced at code interpretation. An interpreter (line-by-line

compiler) program works on the instructions one-by-one and this process is slow. To speedup,

dynamic binary translation can be used where it translates blocks of dynamic source

instructions to target instructions. The basic blocks can also be extended to program traces or

super blocks to increase translation efficiency. This emulation requires binary translation and

optimization. Hence, a Virtual-ISA requires a processor specific translation layer to the

compiler.

4.2.2 Hardware Abstraction Level: Hardware level virtualization is performed on the bare

hardware. This approach generates a virtual hardware environment and processes the

hardware in a virtual manner. The idea is to virtualize the resources of a computer by utilizing

them concurrently. Ex: IBM Xen hypervisor (VMM) runs Linux or other guest OS

applications. [Discussed later]

4.2.3 OS Level: This refers to an abstraction layer between the OS and the user apps. The OS level

virtualization creates isolated containers on a single physical server and OS instances to

utilize software and hardware in data centers. The containers behave like real servers. OS

level virtualization is used in creating virtual hosting environments to allocate hardware

resources among a large number of ‘distrusting’ users. It can also be used to indirectly merge

server hardware by moving resources on different hosts into different containers or VMs on

one server.

4.2.4 NOTE: Containers [3] use the host operating system as their base, and not the hypervisor.

Rather than virtualizing the hardware (which requires full virtualized operating system images

for each guest), containers virtualize the OS itself, sharing the host OS kernel and its

resources with both the host and other containers.

31

4.2.5 Library Support Level: Most applications use APIs exported by user-level libraries rather

than lengthy system calls by the OS. Virtualization with library interfaces is possible by

controlling the communication link between apps and the rest of the system through API

hooks.

Ex: (a) Wine (recursive acronym for Wine Is Not an Emulator) is a free and open

source compatibility layer software application that aims to allow applications designed

for MS-Windows to run on Linux OS.

(b) vCUDA by NVIDIA. (CUDA – No acronym)

NOTE: Library [4] in computing is a collection of non-volatile (stable) resources used by

computer programs to develop software. These include configuration data (organised data),

documentation, help data, message templates, code subroutines classes and specifications.

4.2.6 User-App Level: An app level virtualization brings out a real VM; this process is also known

as process level virtualization. Generally HLL VMs are used where virtualization layer is an

app above the OS; it can run programs written and compiled to an abstract machine definition.

Ex: JVM and .NET CLR (Common Language Runtime).

Other forms of app level virtualization are app isolation, app sandboxing or app streaming.

Here, the app is wrapped in a layer and is isolated from the host OS and other apps. This

makes the app more much easier to distribute and remove from user workstations. Ex:

LANDesk (an app virtualization platform) – this installs apps as self-contained, executable

files in an isolated environment. No actual installation is required and no system

modifications are needed.

Note from Table 3.1 [1] that hardware and OS support will yield the highest performance. At

the same time, the hardware and app levels are most expensive to implement. User isolation is

difficult to archive and ISA offers best flexibility.

4.3 VMM Design Requirement and Providers: As seen before, hardware-level virtualization

inserts a layer between real hardware and traditional OS. This layer (VMM/hypervisor) manages

the hardware resources of the computer effectively. By the usage of VMM, different traditional

operating systems can be used with the same set of hardware simultaneously.

4.4 Requirements for a VMM:

(a) For programs, a VMM should provide an identical environment, same as the original

machine.

(b) Programs running in this environment should show only minor decreases in speed.

(c) A VMM should be in complete control of the system resources.

Some differences might still be caused due to availability of system resources (more than one

VM is running on the same system) and differences caused by timing dependencies.

https://en.wikipedia.org/wiki/Recursive_acronym
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Compatibility_layer
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Operating_system

32

The hardware resource requirements (like memory) of each VM is reduced, but the total sum of

them is greater that of the real machine. This is needed because of any other VMs that are

concurrently running on the same hardware.

A VMM should demonstrate efficiency in using the VMs. To guarantee the efficiency of a

VMM, a statistically dominant subset of the virtual processor’s instructions needs to be executed

directly by the real processor with no intervention by the VMM. A comparison can be seen in

Table 3.2 [1]:

The aspects to be considered here include (1) The VMM is responsible for allocating hardware

resources for programs; (2) a program can’t access any resource that has not been allocated to it;

(3) at a certain juncture, it is not possible for the VMM to regain control of the resources already

allocated. Note that all processors might not satisfy these requirements of a VMM.

A VMM is tightly related to the architectures of the processors. It is difficult to implement a

VMM on some types of processors like x86. If a processor is not designed to satisfy the

requirements of a VMM, the hardware should be modified – this is known as hardware assisted

virtualization.

4.5 Virtualization Support at the OS Level: CC is transforming the computing landscape by

shifting the hardware and management costs of a data center to third parties, like banks. The

challenges of CC are: (a) the ability to use a variable number of physical machines and VM

instances depending on the needs of the problem. Ex: A work may need a single CPU at an

instance but multi-CPUs at another instance (b) the slow operation of instantiating new VMs.

As of now, new VMs originate either as fresh boots or as replicates of a VM template – unaware

of the current status of the application.

4.6 Why OS Level Virtualization (Disadvantages of hardware level virtualization):

(a) It is slow to initiate a hardware level VM since each VM creates its own image from the

beginning.

(b) Redundancy content is high in these VMs.

(c) Slow performance and low density

(d) Hardware modifications maybe needed

33

To provide a solution to all these problems, OS level virtualization is needed. It inserts a

virtualization layer inside the OS to partition the physical resources of a system. It enables

multiple isolated VMs within a single OS kernel. This kind of VM is called a Virtual Execution

Environment (VE) or Virtual Private System or simply a container. From the user’s point of

view, a VE/container has its own set of processes, file system, user accounts, network interfaces

(with IP addresses), routing tables, firewalls and other personal settings.

Note that though the containers can be customized for different people, they share the same OS

kernel. Therefore this methodology is also called single-OS image virtualization. All this can be

observed in Figure 3.3 [1].

4.7 Advantages of OS Extensions:

(a) VMs at the OS level have minimal start-up shutdown costs, low resource requirements and

high scalability.

(b) For an OS level VM, the VM and its host environment can synchronise state changes

These can be achieved through two mechanisms of OS level virtualization:

(a) All OS level VMs on the same physical machine share a single OS kernel

(b) The virtualization layer can be designed in way that allows processes in VMs can access as

many resources as possible from the host machine, but can never modify them.

4.8 Disadvantages of OS Extension: The main disadvantage of OS extensions is that all VMs at OS

level on a single container must have the same kind of guest OS. Though different OS level VMs

may have different OS distributions (Win XP, 7, 10), they must be related to the same OS family

(Win). A Windows distribution can’t run on a Linux based container.

As we can observe in Figure 3.3, the virtualization layer is inserted inside the OS to partition the

hardware resources for multiple VMs to run their applications in multiple virtual environments.

To implement this OS level virtualization, isolated execution environments (VMs) should be

created based on a single OS kernel. In addition, the access requests from a VM must be

34

redirected to the VM’s local resource partition on the physical machine. For example, ‘chroot’

command in a UNIX system can create several virtual root directories within an OS that can be

used for multiple VMs.

To implement the virtual root directories’ concept, there exist two ways: (a) duplicating common

resources to each VM partition or (b) sharing most resources with the host environment but

create private copies for the VMs on demand. It is to be noted that the first method incurs (brings

up) resource costs and burden on a physical machine. Therefore, the second method is the

apparent choice.

4.9 Virtualization on Linux or Windows Platforms: Generally, the OS-level virtualization systems

are Linux-based. Windows based virtualization platforms are not much in use. The Linux kernel

offers an abstraction layer to allow software processes to with and operate on resources without

knowing the hardware details. Different Linux platforms use patched kernels to provide special

support for extended functionality.

Note that most Linux platforms are not tied to a special kernel. In such a case, a host can run

several VMs simultaneously on the same hardware. Examples can be seen in Table 3.3 [1].

4.10 Middleware Support for Virtualization: This is the other name for Library-level

Virtualization and is also known as user-level Application Binary Interface or API emulation.

This type of virtualization can create execution environments for running alien (new/unknown)

programs on a platform rather than creating a VM to run the entire OS. The key functions

performed here are API call interception and remapping (assign a function to a key).

5. Virtualization Structures/Tools and Mechanisms: It should be noted that there are three classes of

VM architecture [Page 1]. Before virtualization, the OS manages the hardware. After virtualization, a

virtualization layer is inserted between the hardware and the OS. Here, the virtualization layer is

responsible for converting parts of real hardware into virtual hardware. Different operating systems

like Windows and Linux can run simultaneously on the same machine in this manner. Depending

on the position of the virtualization layer, several classes of VM architectures can be framed out:

Hypervisor Architecture, para-virtualization and host-based virtualization.

5.1 Hypervisor and Xen Architecture: The hypervisor (VMM) supports hardware level virtualization on

bare metal devices like CPU, memory, disk and network interfaces. The hypervisor software exists

35

between the hardware and its OS (platform). The hypervisor provides hypercalls for the guest

operating systems and applications. Depending on the functionality, a hypervisor can assume micro-

kernel architecture like MS Hyper-V or monolithic hypervisor architecture like the VMware ESX for

server virtualization.

Hypercall: A hypercall is a software trap from a domain to the hypervisor, just as a syscall is a

software trap from an application to the kernel. Domains will use hypercalls to request privileged

operations like updating page tables.

Software Trap: A trap, also known as an exception or a fault, is typically a type of synchronous

interrupt caused by an exceptional condition (e.g., breakpoint, division by zero, invalid memory

access). A trap usually results in a switch to kernel mode, wherein the OS performs some action

before returning control to the originating process. A trap in a system process is more serious than a

trap in a user process and might be fatal. The term trap might also refer to an interrupt intended to

initiate a context switch to a monitor program or debugger.

Domain: It is a group of computers/devices on a network that are administered as a unit with common

rules and procedures. Ex: Within the Internet, all devices sharing a common part of the IP address are

said to be in the same domain.

Page Table: A page table is the data structure used by a virtual memory system in an OS to store the

mapping between virtual addresses and physical addresses.

Kernel: A kernel is the central part of an OS and manages the tasks of the computer and hardware

like memory and CPU time.

Monolithic Kernel: These are commonly used by the OS. When a device is needed, it is added as a

part of the kernel and the kernel increases in size. This has disadvantages like faulty programs

damaging the kernel and so on. Ex: Memory, processor, device drivers etc.

Micro-kernel: In micro-kernels, only the basic functions are dealt with – nothing else. Ex: Memory

management and processor scheduling. It should also be noted that OS can’t run only on a micro-

kernel, which slows down the OS.

[SIM – Micro SIM]

5.2 The size of the hypervisor code of a micro-kernel hypervisor is smaller than that of monolithic

hypervisor. Essentially, a hypervisor must be able to convert physical devices into virtual resources

dedicated for the VM usage.

5.3 Xen Architecture: It is an open source hypervisor program developed by Cambridge University. Xen

is a micro-kernel hypervisor, whose policy is implemented by Domain 0.

36

As can be seen in Figure 3.5 [1], Xen doesn’t include any device drivers; it provides a mechanism by

which a guest-OS can have direct access to the physical devices. The size of Xen is kept small, and

provides a virtual environment between the hardware and the OS. Commercial Xen hypervisors are

provided by Citrix, Huawei and Oracle.

The core components of Xen are the hypervisor, kernel and applications. Many guest operating

systems can run on the top of the hypervisor; but it should be noted that one of these guest OS

controls the others. This guest OS with the control ability is called Domain 0 – the others are called

Domain U. Domain 0 is first loaded when the system boots and can access the hardware directly and

manage devices by allocating the hardware resources for the guest domains (Domain U).

Say Xen is based on Linux and its security level is some C2. Its management VM is named as

Domain 0, which can access and manage all other VMs on the same host. If a user has access

to Domain 0 (VMM), he can create, copy, save, modify or share files and resources of all the VMs.

This is a huge advantage for the user but concentrating all the resources in Domain 0 can also become

a privilege for a hacker. If Domain 0 is hacked, through it, a hacker can control all the VMs and

through them, the total host system or systems. Security problems are to be dealt with in a careful

manner before handing over Xen to the user.

A machine’s lifetime can be thought of as a straight line that progresses monotonically (never

decreases or increases) as the s/w executes. During this time, executions are made, configurations are

changed, and s/w patches can be applied. VM is similar to tree in this environment; execution can go

into N different branches where multiple instances of VM can be done in this tree at any time. VMs

can also be allowed to rollback to a particular state and rerun from the same point.

5.4 Binary Translation with Full Virtualization: Hardware virtualization can be categorised into two

categories: full virtualization and host-based virtualization.

Full Virtualization doesn’t need to modify the host OS; it relies upon binary translation to trap and to

virtualize certain sensitive instructions. Normal instructions can run directly on the host OS. This is

done to increase the performance overhead – normal instructions are carried out in the normal

manner, but the difficult and precise executions are first discovered using a trap and executed in a

virtual manner. This is done to improve the security of the system and also to increase the

performance.

Binary Translation of Guest OS Requests Using a VMM:

37

This approach is mainly used by VMware and others. As it can be seen in Figure 3.6 [1], the VMware

puts the VMM at Ring 0 and the guest OS at Ring 1. The VMM scans the instructions to identify

complex and privileged instructions and trap them into the VMM, which emulates the behaviour of

these instructions. Binary translation is the method used for emulation (A => 97 => 01100001) [5].

Note that full virtualization combines both binary translation and direct execution. The guest OS is

totally decoupled from the hardware and run virtually (like an emulator).

Full virtualization is ideal since it involves binary translation and is time consuming. Binary

translation also is cost consuming but it increases the system performance. (Same as 90% of the host).

In a host-based virtualization system both host and guest OS are used and a virtualization layer is

built between them. The host OS is still responsible for managing the hardware resources. Dedicated

apps might run on the VMs and some others can run on the host OS directly. By using this

methodology, the user can install the VM architecture without modifying the host OS. The

virtualization software can rely upon the host OS to provide device drivers and other low level

services. Hence the installation and maintenance of the VM becomes easier.

Another advantage is that many host machine configurations can be perfectly utilized; still four layers

of mapping exist in between the guest and host operating systems. This may hinder the speed and

performance, in particular when the ISA (Instruction Set Architecture) of a guest OS is different from

that of the hardware – binary translation MUST be deployed. This increases in time and cost and

slows the system.

5.5 Para-Virtualization with Compiler Support: Para-Virtualization modifies the guest operating

systems; a para-virtualized VM provides special APIs which take up user apps needing those changes.

Para-virtualization tries to reduce the virtualization burden/extra-work to improve the

performance – this is done by modifying only the guest OS kernel. This can be seen in Figure 3.7 [1].

38

Ex: In a typical para-virtualization architecture, which considers an x86 processor, a virtualization

layer is inserted between h/w and OS. According to the x86 ‘ring definition’ the virtualization layer

should also be installed at Ring 0. In Figure 3.8 [1], we can notice that para-virtualization replaces

instructions that cannot be virtualized with hypercalls (placing a trap) that communicate directly with

the VMM. Notice that if a guest OS kernel is modified for virtualization, it can’t run the hardware

directly – that should be done through the virtualization layer.

5.6 Disadvantages of Para-Virtualization: Although para-virtualization reduces the

overhead, it has other problems. Its compatibility (suitability) and portability can be in doubt because

it has to support both the modified guest OS and the host OS as per requirements. Also, the

maintenance cost of para-virtualization is high since it may require deep kernel modifications. Finally,

the performance advantage of para-virtualization is not stable – it varies as per the workload. But

compared with full virtualization, para-virtualization is more easy and practical since binary

translation is not much considered. Many products utiliza para-virtualization to overcome the less

speed of binary translation. Ex: Xen, KVM, VMware ESX.

5.7 Note: Kernel based VM (KVM): This is a Linux para-virtualization system – it is a

part of the Linux kernel. Memory management and scheduling activities are carried out by the

existing Linux kernel. Other activities are taken care of by the KVM and this methodology makes it

easier to handle than the hypervisor. Also note that KVM is hardware assisted para-virtualization tool,

which improves performance and supports unmodified guest operating systems like Windows, Linux,

Solaris and others.

5.8 Virtualization of CPU, Memory and I/O Devices: Processors employ a special

running mode and instructions, known as hardware-assisted virtualization. Through this, the VMM

and guest OS run in different modes; all sensitive instructions of the guest OS and its apps are caught

by the ‘trap’ in the VMM.

5.8.1 H/W Support for Virtualization: Modern operating systems and processors permit

multiple processes to run simultaneously. A protection mechanism should exist in the processor so

that all instructions from different processes will not access the hardware directly – this will lead to

a system crash.

39

All processors should have at least two modes – user and supervisor modes to control the access to

the hardware directly. Instructions running in the supervisor mode are called privileged

instructions and the others are unprivileged.

Ex: VMware Workstation

5.8.2 CPU Virtualization: A VM is a duplicate of an existing system; majority of

instructions are executed by the host processor. Unprivileged instructions run on the host machine

directly; other instructions are to be handled carefully. These critical instructions are of three types:

privileged, control-sensitive and behaviour-sensitive.

Privileged=> Executed in a special mode and are trapped if not done so.

Control-Sensitive=> Attempt to change the configuration of the used resources

Behaviour-Sensitive=> They have different behaviours in different situations (high load or

storage or capacity)

A CPU is VZ only if it supports the VM in the CPU’s user mode while the VMM runs in a

supervisor’s mode. When the privileged instructions are executed, they are trapped in the VMM.

In this case, the VMM acts as a mediator between the hardware resources and different VMs so

that correctness and stability of the system are not disturbed. It should be noted that not all CPU

architectures support VZ.

Process:

 System call triggers the 80h interrupt and passes control to the OS kernel.

 Kernel invokes the interrupt handler to process the system call

 In Xen, the 80h interrupt in the guest OS concurrently causes the 82h interrupt in the

hypervisor; control is passed on to the hypervisor as well.

 After the task is completed, the control is transferred back to the guest OS kernel.

5.8.3 Hardware Assisted CPU VZ: Since full VZ or para-VZ is complicated, this new

methodology tries to simplify the situation. Intel and AMD add an additional mode called privilege

mode level to the x86 processors. The OS can still run at Ring 0 and hypervisor at Ring 1. Note

that all privileged instructions are trapped at the hypervisor. Hence, no modifications are required

in the VMs at OS level.

40

VMCS=> VM Control System

VMX=> A virtual router

5.8.4 Memory Virtualization: In the traditional methodology, the OS maintains mappings

between virtual memory to machine memory (MM) using page tables, which is a one-stage

mapping from virtual memory to MM.

Virtual memory is a feature of an operating system (OS) that allows a computer to compensate

for shortages of physical memory by temporarily transferring pages of data from random

access memory (RAM) to disk storage.

Machine Memory [6] is the upper bound (threshold) of the physical memory that a host can

allocate to the VM. All modern x86 processors contain memory management unit (MMU) and a

translation look-aside buffer (TLB) to optimize (use in the best way) the virtual memory

performance.

In a virtual execution environment, virtual memory VZ involves sharing the physical system

memory in RAM and dynamically allocating it to the physical memory of the VMs.

Stages:

 Virtual memory to physical memory

 Physical memory to machine memory.

Other Points: MMU should be supported, guest OS controls to monitor mapping of virtual

addresses to physical memory address of the VMs. All this is depicted in Figure 3.12 [1].

41

VA-Virtual Address; PA-Physical Address; MA-Machine Address

Each page table of a guest OS has a page table allocated for it in the VMM. The page table in the

VMM which handles all these is called a shadow page table. As it can be seen all this process is

nested and inter-connected at different levels through the concerned address. If any change occurs

in the virtual memory page table or TLB, the shadow page table in the VMM is updated

accordingly.

5.8.5 I/O Virtualization: This involves managing of the routing of I/O requests between

virtual devices and shared physical hardware. The there are three ways to implement this are full

device emulation, para-VZ and direct I/O.

 Full Device Emulation: This process emulates well-known and real-world devices. All

the functions of a device or bus infrastructure such as device enumeration, identification,

interrupts etc. are replicated in the software, which itself is located in the VMM and acts as a

virtual device. The I/O requests are trapped in the VMM accordingly. The emulation approach

can be seen in Figure 3.14 [1].

 Para-VZ: This method of I/O VZ is taken up since software emulation runs slower

than the hardware it emulates. In para-VZ, the frontend driver runs in Domain-U; it manages

the requests of the guest OS. The backend driver runs in Domain-0 and is responsible for

42

managing the real I/O devices. This methodology (para) gives more performance but has a

higher CPU overhead.

 Direct I/O VZ: This lets the VM access devices directly; achieves high performance

with lower costs. Currently, it is used only for the mainframes.

Ex: VMware Workstation for I/O VZ: NIC=> Network Interface Controller

5.9 Virtualization in Multi-Core Processors: Virtualizing a multi-core processor is more

complicated than that of a uni-core processor. Multi-core processors have high performance by

integrating multiple cores in a chip, but their virtualization poses a new challenge. The main

difficulties are that apps must be utilized in a parallelized way to use all the cores and this task must

be accomplished by software, which is a much higher problem.

To reach these goals, new programming models, algorithms, languages and libraries are needed to

increase the parallelism.

5.10 Physical versus Virtual Processor Cores: A multi-core virtualization method was proposed to

allow hardware designers to obtain an abstraction of the lowest level details of all the cores. This

technique alleviates (lessens) the burden of managing the hardware resources by software. It is

located under the ISA (Instruction Set Architecture) and is unmodified by the OS or hypervisor.

This can be seen in Figure 3.16 [1].

43

5.11 Virtual Hierarchy: The emerging concept of many-core chip multiprocessors (CMPs) is a new

computing landscape (background). Instead of supporting time-sharing jobs on one or few cores,

abundant cores can be used in a space-sharing – here single or multi-threaded jobs are

simultaneously assigned to the cores. Thus, the cores are separated from each other and no

interferences take place. Jobs go on in parallel, for long time intervals. To optimize (use

effectively) the workloads, a virtual hierarchy has been proposed to overlay (place on top) a

coherence (consistency) and caching hierarchy onto a physical processor. A virtual hierarchy can

adapt by itself to fit how to carry out the works and share the workspace depending upon the

workload and the availability of the cores.

The CMPs use a physical hierarchy of two or more cache levels that statically determine the cache

(memory) allocation and mapping. A virtual hierarchy is a cache hierarchy that can adapt to fit

the workloads. First level in the hierarchy locates data blocks close to the cores to increase the

access speed; it then establishes a shared-cache domain, establishes a point of coherence, thus

increasing communication speed between the levels. This idea can be seen in Figure 3.17(a) [1].

44

Space sharing is applied to assign three workloads to three clusters of virtual cores: VM0 and VM3

for DB workload, VM1 and VM2 for web server workload, and VM4-VM7 for middleware

workload. Basic assumption here is that a workload runs in its own VM. But in a single OS, space

sharing applies equally. To encounter this problem, Marty and Hill suggested a two-level virtual

coherence and caching hierarchy. This can be seen in Figure 3.17(b) [1]. Each VM operates in its

own virtual cluster in the first level which minimises both access time and performance

interference. The second level maintains a globally shared memory.

A virtual hierarchy adapts to space-shared workloads like multiprogramming and server

consolidation.

45

UNIT – 3

Cloud Platform Architecture

6. Cloud Computing and Service Models: In recent days, the IT industry has moved from manufacturing

to offering more services (service-oriented). As of now, 80% of the industry is ‘service-industry’. It

should be realized that services are not manufactured/invented from time-to-time; they are only rented

and improved as per the requirements.

Clouds aim to utilize the resources of data centers virtually over automated hardware, databases, user

interfaces and apps [1].

7. Public, Private and Hybrid Clouds: Cloud computing has evolved from the concepts of clusters, grids

and distributed computing. Different resources (hardware, finance, time) are leveraged (use to

maximum advantage) to bring out the maximum HTC. A CC model enables the users to share resources

from anywhere at any time through their connected devices.

Advantages of CC: Recall that in CC, the programming is sent to data rather than the reverse, to avoid

large data movement, and maximize the bandwidth utilization. CC also reduces the costs incurred by

the data centers, and increases the app flexibility.

CC consists of a virtual platform with elastic resources [2] and puts together the hardware, data and

software as per demand. Furthermore, the apps utilized and offered are heterogeneous.

7.1 The Basic Architecture of the types of clouds can be seen in Figure 4.1 [1] below.

7.2 Public Clouds: A public cloud is owned by a service provider, built over the Internet and offered to a

user on payment. Ex: Google App Engine (GAE), AWS, MS-Azure, IBM Blie Cloud and Salesforce-

46

Force.com. All these offer their services for creating and managing VM instances to the users within

their own infrastructure.

Private Clouds: A private cloud is built within the domain of an intranet owned by a single

organization. It is client-owned and managed; its access is granted to a limited number of clients only.

Private clouds offer a flexible and agile private infrastructure to run workloads within their own

domains. Though private cloud offers more control, it has limited resources only.

Hybrid Clouds: A hybrid cloud is built with both public and private clouds. Private clouds can also

support a hybrid cloud model by enhancing the local infrastructure with computing capacity of a public

external cloud.

Summary: Public clouds provide standardization, preserve the investment and offer flexibility. Private

clouds attempt to achieve customization (modify to suit the current situation), higher efficiency,

resilience (capacity to recover quickly from difficulties), security and privacy. Hybrid clouds work in

the middle with many compromises in resource sharing.

7.3 Data Center Networking Architecture: The core of a cloud is the server cluster and the cluster nodes

are used as compute nodes. The scheduling of user jobs requires that virtual clusters are to be created

for the users and should be granted control over the required resources. Gateway nodes are used to

provide the access points of the concerned service from the outside world. They can also be used for

security control of the entire cloud platform. It is to be noted that in physical clusters/grids, the

workload is static; in clouds, the workload is dynamic and the cloud should be able to handle any level

of workload on demand.

Differences between Data Centers and Super Computers: In data centers, scalability is a

fundamental requirement. Note that data centers have multiple servers. Ex: MS-Chicago Data Center

has 100,000 eight-core servers housed in 50 containers (2000 in each). In supercomputers, a separate

data farm [3] is used; a data center uses disks on server nodes plus memory cache and DBs.

Data Centers and Supercomputers also possess different networking requirements. (bandwidth, routers

used etc.)

NOTE: Data Farm => Data farming is the process of using computational experiments to ‘grow’ or

increase data which can be utilized for statistical analyzing.

7.4 Cloud Development Trends: There is a good chance that private clouds will grow in the future since

private clouds are more secure, and adjustable within an organization. Once they are matured and more

scalable, they might be converted into public clouds. In another angle, hybrid clouds might also grow in

the future.

7.5 Cloud Ecosystem and Enabling Technologies: The differences between classical computing and

cloud computing can be seen in the table [1] below. In traditional computing, a user has to buy the

hardware, acquire the software, install the system, test the configuration and execute the app code. The

management of the available resources is also a part of this. Finally, all this process has to be revised

for every 1.5 or 2 years since the used methodologies will become obsolete.

47

On the other hand, CC follows a pay-as-you-go model [1]. Hence the cost is reduced significantly – a

user doesn’t buy any resources but rents them as per his requirements. All S/W and H/W resources are

leased by the user from the cloud resource providers. This is advantageous for small and middle

business firms which require limited amount of resources only. Finally, CC also saves power.

7.6 Cloud Design Objectives:

 Shifting computing from desktops to data centers

 Service provisioning and cloud economics

 Scalability in performance (as the no. of users increases)

 Data Privacy Protection

 High quality of cloud services (QoS must be standardized to achieve this)

 New standards and interfaces

7.7 Cost Model:

The above Figure 4.3a [1] shows the additional costs on top of fixed capital investments in traditional

computing. In CC, only pay-as-per-use is applied, and user-jobs are outsourced to data centers. To use a

cloud, one has no need to buy hardware resources; he can utilize them as per the demands of the work

and release the same after the job is completed.

7.8 Cloud Ecosystems: With the emergence of Internet clouds, an ‘ecosystem’ (a complex inter-connected

systems network) has evolved. This consists of users, providers and technologies. All this is based

mainly on the open source CC tools that let organizations build their own IaaS. Private and hybrid

clouds are also used. Ex: Amazon EC2.

48

An ecosystem for private clouds was suggested by scientists as depicted in Figure 4.4 [1].

In the above suggested 4 levels, at the user end, a flexible platform is required by the customers. At the

cloud management level, the VZ resources are provided by the concerned cloud manager to offer the

IaaS. At the VI management level, the manager allocates the VMs to the available multiple clusters.

Finally, at the VM management level, the VM managers handle VMs installed on the individual host

machines.

7.9 Increase of Private Clouds: Private clouds influence the infrastructure and services that are utilized by

an organization. Private and public clouds handle the workloads dynamically but public clouds handle

them without communication dependency. On the other hand, private clouds can balance workloads to

exploit the infrastructure effectively to obtain HP. The major advantage of private clouds is less security

problems and public clouds need less investment.

7.10 Infrastructure-as-a-Service (IaaS): A model for different services is shown in Figure 4.5 [1], as

shown below. The required service is performed by the rented cloud infrastructure. On this

environment, the user can deploy and run his apps. Note that user doesn’t have any control over the

cloud infrastructure but can choose his OS, storage, apps and network components.

Ex: Amazon EC2.

49

7.11 Platform-as-a-Service (PaaS): To develop, deploy and manage apps with provisioned resources, an

able platform is needed by the users. Such a platform includes OS and runtime library support.

Different PaaS offered in the current market and other details are highlighted in the Table 4.2 [1] below:

It should be noted that platform cloud is an integrated system consisting of both S/W and H/W. The

user doesn’t manage the cloud infrastructure but chooses the platform that is best suited to his choice of

apps. The model also encourages third parties to provide software management, integration and service

monitoring solutions.

7.12 Software as a Service (SaaS): This is about a browser-initiated app s/w over thousands of cloud

customers. Services & tools offered by PaaS are utilized in construction and deployment of apps and

management of their resources. The customer needs no investment and the provider can keep the costs

50

low. Customer data is also stored in a cloud and is accessible through different other services. Ex:

Gmail, Google docs, Salesforce.com etc.

7.13 Mixing of Cloud Services: Public clouds are more used these days but private clouds are not far

behind. To utilize the resources up to the maximum level and deploy/remove the apps as per

requirement, we may need to mix-up the different parts of each service to bring out a chain of

connected activities. Ex: Google Maps, Twitter, Amazon ecommerce, YouTube etc.

8. Architectural Design of Compute and Storage Clouds: An Internet cloud [4] (CC) is envisaged

(imagined) as a public cluster of servers allocated on demand to perform collective web services or

distributed apps using the resources of a data center.

8.1 Cloud Platform Design Goals: The major goals of a cloud computing platform are scalability,

efficiency, VZ, and reliability. A cloud platform manager receives the user requests, finds the resources,

and calls the provisioning services to allocate the appropriate amount of resources for the job. Note that

a manager supports both physical and virtual machines.

The platform also needs to establish an infrastructure that can obtain HPC. Scalability can be obtained

by adding more data centers or servers, which leads to more efficient data distribution and, usage of less

power and bandwidth.

8.2 Enabling Technologies for Clouds: The important motives behind the growth of CC are the ubiquity

(present everywhere) of broadband and wireless networking, falling costs of storage, remove unneeded

storage. Service-providers like Amazon and Google can make the utilization of available resources more

efficient through multiplexing [5] (incorporate into an existing system), VZ, and dynamic resource

provisioning. In Table 4.3 [1], the enabling of clouds is summarized.

8.3 Cloud Architecture: A generic cloud architecture can be seen Figure 4.14 [1]. The Internet Cloud is

imagined as a massive cluster of servers. The different resources (space, data, and speed) of the

concerned servers are allocated as per demand dynamically.

51

NOTE: Data colouring [6] (like watermarking) protects shared data objects and ensures the security

level in the cloud. These techniques safeguard multi-way authentications, enable single sign-on in the

cloud, and strengthen the security for accessing confidential data in both public and private clouds.

The cloud platform demands distributed storage and different services (PaaS, IaaS and SaaS). Though the

resources and services do exist and work in parallel, the user need not know about the real-work behind

the screen. Any software in the cloud is a service and any service demands high amount of trust on the

data retrieved from the data. Other cloud resources include storage area networks (SANs), firewalls, and

security devices.

The usage and performance of granted resources are monitored and metered by special units. The

software infrastructure of a cloud platform must automatically handle all the resource grants and

management and note the status of each node system/server when it joins/leaves the cluster. The physical

location of the data center, type of power used (general/solar/hydroelectric) and cooling required are also

important points.

Typically, private clouds are easier to manage and public clouds are easier to access. In future the

clouds which utilize the best resources from both the types (hybrid) are expected to grow. Finally,

security becomes a critical issue in CC to grant the success of all the services.

8.4 Cloud Architecture in Layers: Cloud architecture is developed at three layers: infrastructure, platform

and app. This can be noticed in Figure 4.15 [1].

52

Different VZ standards are framed and utilized in all these layers to provision the resources allocated for

a cloud. The services offered to public, private and hybrid through different networking supports over

the Internet and intranets.

 Infrastructure layer is deployed first to support the IaaS layer. It also serves as a foundation for the

PaaS layer services.

 Platform layer itself is a foundation for the SaaS services.

The layers demand resource allocation as per demand and are granted.

 The infrastructure layer is built with virtualized compute, storage, and network resources. Proper

utilization of these resources provides the flexibility demanded by the users. Note that VZ demands

automated provisioning of the resources and minimum management time.

 The platform layer is for general purpose and repeated usage of the service resources. Proper

environment is provided for the development, testing, deployment and monitoring the usage of apps.

Indirectly, a virtualized cloud platform acts as a ‘system middleware’ between the infrastructure and

application layers of a cloud.

 The application layer is formed with the collection of different modules of all software that are

needed for the SaaS apps. The general service apps include those of information retrieval, doc

processing, and authentication services. This layer also used in large-scale by the CRMs, financial

transactions, and supply chain management.

Note that all the layers are built from the scratch (bottom-up) with dependence relations in between.

8.5 NOTE: In general, SaaS demands most work from the provider, PaaS in the middle, and IaaS demands

the least. Ex: Amazon EC2. Services at app layer demand more work from the providers. Ex:

Salesforce.com CRM service.

8.6 Market-Oriented Cloud Architecture: This can be seen in the Figure 4.16 below.

53

(SLA=> Service Level Agreements)

A high level architecture can be seen in the figure for supporting market oriented resource allocation in

a CC environment. The entities here are users, brokers (acting on behalf of a set of similar users), and

resource allocators. When a request is made, the service request examiner comes into picture and acts as

an interface between the user and the data center resources.

8.7 QoS factors: In CC, different services being offered as commercial options in the market should take

into account diverse factors for every service request: time, cost, reliability, and security. The QoS

requirements can’t be static and might from time to time on demand. Importance must be given to the

customer, his requests and requirements – he is paying for all these. For achieving all these

accomplishments in the CC market, the CRM steps into picture and plays a crucial role to satisfy each

and every customer.

8.8 VZ Support and Disaster Recovery: System VZ is a much used feature in CC to improve

provisioning of the resources to various services or customers. The provisioning tools, through the VMs

(containers of services), try to find the best physical location wherein they plug the nodes into the data

centers.

In CC, VZ also means the resources and fundamental infrastructures are virtualized. The user need not

care about the computing resources, where and how they are deployed and used. The user only uses the

service offers as current situation demands.

8.9 Hardware VZ: System VZ is a special kind of technique that simulates the hardware execution,

utilization and provisioning methods before they can be applied in the real world of CC. VZ software is

used for simulations, platform-developing for clouds, and use any kind of OS that is preferred by a

developer/user. The infrastructure needed by the servers to VZ the whole data center and utilize it for

CC is given below in Figure 4.17 [1].

54

8.10 Using VMs in CC ensures maximum flexibility for the users. A proper methodology is required for

correct provisioning of the resources, distribute the burdens of space and time evenly and bring out HP.

Traditional sharing of cluster resources doesn’t confirm the above stated goals and an appropriate usage

of all the hardware resources in all angles can be brought out by VZ of the same resources.

8.11 VZ Support in Public Clouds: Public clouds like AWS, MS-Azure, GAE are the famous products in

the market. AWS provides extreme flexibility through VMs for the users to execute their own

applications. GAE provides limited app level VZ for users since it supports only Google’s services.MS

provides programming level VZ for users to build their own apps.

Continuing, the VMware tools apply to workstations, servers and virtual infrastructure. The MS tools

are mainly used on PCs and some servers. The entire IT industry is changing its look and becoming

more embedded in the cloud. VZ leads to HA (high availability), disaster recovery, dynamic load

levelling, and commendable provisioning support. Both CC and utility computing leverage (use to the

maximum advantage) the benefits of VZ to increase scalability and provide an autonomous computing

environment.

8.12 VZ for IaaS: VM technology is ubiquitous (present everywhere) enabling the users to create

customised environments atop physical infrastructure. Advantages are: The under-utilized servers can

be removed and the workload can be evenly distributed among the existing servers, VMs can run their

55

code without conflicting with other APIs, VMs can also be used to improve security through sandbox

methodology (tightly controlled set of resources) and VZ cloud platforms can isolate their performance

also, increasing the QoS.

8.13 VM Cloning for Disaster Recovery: [Cloning => Make an identical copy] There exist two methods to

recover from any disaster. In the first scheme, a physical machine is recovered by another physical

machine. Apparently, this takes more time, energy and is more expensive. The needed hardware is to be

setup, the OS is to be installed and the data recovery process has to be adjusted to other requirements

too. In the other methodology, to recover a VM platform, no installation, configuration, OS setup etc.

are needed – the time utilized becomes 40% less than the previous scheme.

8.14 Architectural Design Challenges:

(a) Service Availability and Data Lock-in Problem: If all the cloud services are functioning under a

single company, that itself may be the reason of failure of the cloud. To achieve HA, it is advisable

to use different services from multiple companies. Another obstacle for availability is DDoS

attacks and ransomware.

Software storage and usage in a distributed manner is being done systematically, but the APIs are

still vulnerable to attacks. The solution to this challenge is to standardize the APIs that are used in

SaaS; all this enables the usage of a new model in public and private clouds. All this leads to

‘surge computing’ where extra tasks are performed by public clouds, which can’t be done in the

case of private clouds.

(b) Data Privacy and Security: Present cloud offerings are public, but this makes them more exposed

and prone to attacks. The steps that are to be taken are encrypted storage, virtual LANs, firewalls,

and packet filters. The attacks that might try to intrude the cloud are malware, spyware, hijacking,

DDoS, man in the middle (while migrating) and others.

(c) Unpredictable Performance and Bottlenecks: Multiple VMs can share CPUs and main memory

in CC, but I/O sharing is difficult and cumbersome. As a solution one might try to improve the I/O

architectures and operating systems to virtualize the interrupts and I/O channels. Finally, in the

clouds, the data bottlenecks must be removed or widened to obtain the efficient HP.

(d) Distributed Storage and Widespread Bugs: DB usage is growing in CC and all of it can’t be

stored at a single place. Distributed storage thus comes into picture, buts also brings new problems

like requirement of efficient SANs (Storage Area Network), and data durability. Simulator is a nice

way to understand the problem and propose a satisfactory solution.

(e) Cloud Scalability, Interoperability and Standardization
(f) Software Licensing: Since distributed computing is widely used, any single customer’s

unsatisfactory usage of the concerned service may collapse the whole cloud

8.15 Public Cloud Platforms: Cloud services are provided as per demand by different companies. It can be

seen in Figure 4.19 [1] that there are 5 levels of cloud players.

56

The app providers at the SaaS level are used mainly by the individual users. Most business

organisations are serviced by IaaS and PaaS providers. IaaS provides compute, storage, and

communication resources to both app providers and organisational users. The cloud environment is

defined by PaaS providers. Note that PaaS provides support both IaaS services and organisational users

directly.

Cloud services depend upon machine VZ, SOA, grid infrastructure management and power efficiency.

The provider service charges are much lower than the cost incurred by the users when replacing

damaged servers. The Table 4.5 shows a summary of the profiles of the major service providers.

PKI=> Public Key Infrastructure; VPN=> Virtual Private Network

8.16 Google App Engine (GAE): The Google platform is based on its search engine expertise and is

applicable to many other areas (Ex: MapReduce). The Google Cloud Infrastructure consists of several

apps like Gmail, Google Docs, and Google Earth and can support multiple no. of users simultaneously

57

to raise the bar for HA (high availability). Other technology achievements of Google include Google

File System (GFS) [like HDFS], MapReduce, BigTable, and Chubby (A Distributed Lock Service).

GAE enables users to run their apps on a large number of data centers associated with Google’s search

engine operations. The GAE architecture can be seen in Figure 4.20 [1] below:

The building blocks of Google’s CC app include GFS for storing large amounts of data, the MapReduce

programming framework for developers, Chubby for distributed lock services and BigTable as a storage

service for accessing structural data.

GAE runs the user program on Google’s infrastructure where the user need not worry about storage or

maintenance of data in the servers. It is a combination of several software components but the frontend

is same as ASP (Active Server Pages), J2EE and JSP.

8.17 Functional Modules of GAE:

(a) Datastore offers OO, distributed and structured data storage services based on BigTable

techniques. This secures data management operations.

(b) Application Runtime Environment: It is a platform for scalable web programming and execution.

(Supports the languages of Java and Python)

(c) Software Development Kit: It is used for local app development and test runs of the new apps.

(d) Administration Console: Used for easy management of user app development cycles instead of

physical resource management.

(e) Web Service Infrastructure provides special interfaces to guarantee flexible use and management

of storage and network resources.

The well-known GAE apps are the search engine, docs, earth and Gmail. Users linked with one app can

interact and interface with other apps through the resources of GAE (synchronise and one login for all

services).

8.18 Amazon Web Services (AWS): Amazon applies the IaaS model in providing its services. The Figure

4.21 [1] below shows the architecture of AWS:

58

EC2 provides the virtualized platforms to host the VMs where the cloud app can run.

S3 (Simple Storage Service) provides the OO storage service for the users.

EBS (Elastic Block Service) provides the block storage interface which can be used to support

traditional apps.

SQS (Simple Queue Service) ensures a reliable message service between two processes.

Amazon offers a RDS (relational database service) with a messaging interface. The AWS offerings are

given below in Table 4.6 [1].

8.19 MS-Azure: The overall architecture of MS cloud platform, built on its own data centers, is shown in

Figure 4.22 [1]. It is divided into 3 major component platforms as it can be seen. Apps are installed on

VMs and Azure platform itself is built on Windows OS.

59

 Live Service: Through this, the users can apply MS live apps and data across multiple machines

concurrently.

 .NET Service: This package supports app development on local hosts and execution on cloud

machines.

 SQL Azure: Users can visit and utilized the relational database associated with a SQL server in the

cloud.

 SharePoint Service: A scalable platform to develop special business apps.

 Dynamic CRM Service: This provides a business platform for the developers to manage the CRM

apps in financing, marketing, sales and promotions.

60

UNIT – 4

Inter-Cloud Resource Management

4. Inter-Cloud Resource Management

4.1 Extended CC Services: This can be viewed in Figure 4.23 [1]:

The top three service layers are SaaS, PaaS and IaaS. The bottom three layers are related to physical

requirements and are as Hardware as a Service (HaaS), Network as a Service (NaaS), Location

as a Service (LaaS), and Security as a Service (SaaS).

Table 4.7 [1] shows that cloud players are into three classes.

4.2 Software Stack for CC: A software stack [7] is a group of programs that work in tandem (in order) to

produce a common goal. It may also refer to any set of apps that works in a specific order toward a

common goal. Ex: Like a set in maths or a cluster in DM. The system has to be designed to meet goals

like HT, HA, and fault tolerance. Physical or virtual servers can be used making the platform more

flexible and be able to store and utilize large amount of data.

4.3 Resource Provisioning and Platform Deployment:

1. Provisioning of Compute Resources (VMs): The provisioning of resources like CPU, memory, and

bandwidth are distributed among the users as per the service level agreements (SLAs) signed before the

start of the work. The problem here is the ever-changing levels of requests from the user, power

management and conflicts in the SLAs.

61

Efficient VM provisioning depends on the cloud architecture and management of cloud infrastructures.

Resource provisioning also demands fast discovery of services and data in the provided infrastructure.

Ex: Efficient installation of VMs, live VM migration, and fast recovery from failures. Providers like

Amazon, IBM and MS-Azure use VM templates, automation of provisioning and power-efficient

schemes.

2. Resource Provisioning Methods:

(a) Demand-Driven Resource Provisioning: This method adds or removes computing instances based

on the current utilization level for the allocated resources. This method automatically allocates two

processors for the user app, if the user utilizes more than 60% of time for an extended period. That

is, if the resource utilization has crossed a threshold of the concerned resource, extra resources

will be allocated. This methodology is implemented by Amazon in EC2.

(b) Event-Driven Resource Provisioning: This scheme adds or removes machine instances based on

an event like festival season. At this time, the no. of users peaks and so does the traffic. This

anticipation results in good QoS and customer satisfaction.

(c) Popularity-Driven Resource Provisioning: In this method, The Internet searches for popularity of

certain apps and creates extra instances if the popularity has risen.

(d) Dynamic Resource Deployment: This can be implemented to achieve scalability in performance

through efficient allocation of resources at every place in the grid as the situation demands. To

achieve this, we need an inter-grid gateway (IGG) between different grids that allocates the

resources from a local cluster to deploy apps by requesting the VMs, enacting (endorse) the

leases, and deploying the VMs as per requests.

The Inter-Grid provides and allocates a distributed virtual environment (DVE). It is a virtual

cluster of VMs that runs in isolation from other virtual clusters. This process is carried out by a

component called DVE manager. Received massages are handled in parallel in a thread pool. All

these methodologies are depicted in Figure 4.26.

3. Provisioning of Storage Resources: The data in CC is stored in the clusters of the cloud provider and

can be accessed anywhere in the world. Ex: email. For data storage, distributed file system, tree

structure file system, and others can be used. Ex: GFS, HDFS, MS-Cosmos. This method provides a

62

convenient coding platform for the developers. The storage methodologies and their features can be

found in Table 4.8 [1].

POSIX => Portable OS Interface

EBS => Elastic Block Storage

EC2 => Elastic Compute Cloud

S3 => Amazon Simple Storage Service

4.4 Virtual Machine Creation & Management: Figure 4.27 [1] shows the interactions among VM

managers for cloud creation and management.

(a) Independent Service Management: By using independent service providers, the cloud apps can run

different services at the same time. Some other services are used for providing data other than the

compute or storage services.

(b) Running Third Party Apps: IN this case, the cloud platforms have to provide support for apps

constructed by third-party app providers. The concerned APIs are in the form of services provided by

another company. (Ex: Dropbox + Gmail + User).

63

(c) VM Manager: It is a link between the gateway and resources. The physical resources aren’t shared

directly, but in a virtualized method. The VMs themselves become the actual resources. Ex:

OpenNebula (an OS). Users submit VMs on physical machines using hypervisors, which enables the

running of several operating systems on the same host concurrently.

(d) VM Templates: A VM template is analogous (similar) to the configuration of a computer and

contains the description for a VM. Information provided is:

 The no. of processors allocated to the VM

 Memory required by a VM

 The kernel used by the VM’s OS

 The disk image containing the VM’s file system

 The price per hour

The gateway administrator provides the VM template information and can add, update and delete the

templates at any time. Before starting an instance, scheduler gives the network configuration and

address of the host. The MAC and IP addresses are also allocated. It also contains the path to the disk

image storage.

(e) Distributed VM Management: A distributed VM manager requests for VMs and gets their status

and obtains a list containing the IP addresses of the VMs with secure shell (SSH) tunnels. The

managers also obtains the template to be used by the VM, schedules the task for the VM, sets up the

tunnel, and executes the tasks for each of the VM.

5. Cloud Security and Trust Management: Lacking of trust between service providers and clients has

been a major problem in the field and much more since the advent of ecommerce. Cloud platforms are a

concern for some users for lack of privacy protection, security assurance, and so on. All these can be

solved with a technical approach.

5.1 Cloud Security Defence Strategies:

5.2 Basic Cloud Security: The basic cloud security enforcements are: security measures in data centers (like

biometric readers, CCTV, man-traps etc.), fault-tolerant firewalls, IDS Intrusion Detection System),

data encryption, strict password policies, and so on. The Figure 4.31 [1] shows the security measures at

various levels:

64

5.3 Cloud Defence Methods: Virtualization enhances cloud security, but VMs add an additional layer of

software that might lead to a single point of failure. So the VMs should be isolated in their deployment

and work – the failure of one VM will not affect another. The Table 4.9 [1] below lists the protection

schemes to secure public clouds and data centers.

65

5.4 Defence against DDoS Flooding attacks: A DDoS defence system must be designed to cover multiple

network domains in a cloud platform. The DDoS causes an abnormal surge in the network traffic by a

hidden attacker which leads of the crash of the service/website or disk exhaustion or connection

saturation.

5.5 Data and Software Protection Techniques:

(a) Data Integrity and Privacy Protection

(b) Data Colouring and Cloud Watermarking

(c) Data Lock-in Problems and Solutions: Once the data is moved into the cloud, users cannot

easily extract their data and programs from the cloud servers to run on another platform. This is

known as data lock-in. The solution possible here is to build platform-independent APIs where

migration from one platform to another is easier.

6. Service-Oriented Architecture: SOA is concerned about how to design a software system that makes

use of services or apps through their interfaces. These apps are distributed over the networks. The World

Wide Web Consortium (W3C) defines SOA as a form of distributed architecture characterized by:

 Logical View: The SOA is an abstracted, logical view of actual programs, DBs etc. defined in

terms of the operations it carries out. The service is formally defined in terms of messages

exchanged between providers and requests.

 Message Orientation

 Description Orientation

7. Services and Web Services: In an SOA concept, the s/w capabilities are delivered & consumed through

loosely coupled and reusable services using messages. ‘Web Service’ is a self-contained modular

application designed to be used by other apps across the web. This can be seen in Figure 5.2 [1].

66

WSDL => Web Services Description Language

UDDI => Universal Description, Discovery and Integration

SOAP => Simple Object Access Protocol

7.1 SOAP: This provides a standard packaging structure for transmission of XML documents over various

IPs. (HTTP, SMTP, FTP). A SOAP message consists of an envelope (root element), which itself

contains a header. It also had a body that carries the payload of the message.

7.2 WSDL: It describes the interface and a set of operations supported by a web service in a standard format.

7.3 UDDI: This provides a global registry for advertising and discovery of web services by searching for

names, identifiers, categories.

7.4 Since SOAP can combine the strengths of XML and HTTP, it is useful for heterogeneous distributed

computing environments like grids and clouds

8. Enterprise Multitier Architecture: This is a kind of client/server architecture application processing and

data management are logically separate processes. As seen below in Figure 5.4 [1], it is a three-tier

information system where each layer has its own important responsibilities.

67

Presentation Layer: Presents information to external entities and allows them to interact with the

system by submitting operations and getting responses.

Application Logic (Middleware): These consist of programs that implement actual operations

requested by the client. The middle tier can also be used for user authentication and granting of

resources, thus removing some load from the servers.

Resource Management Layer (Data Layer): It deals with the data sources of an information system.

9. OGSA Grid: Open Grid Services Architecture is intended to

 Facilitate the usage of resources across heterogeneous environments

 Deliver best QoS

 Define open interfaces between diverse resources

 Develop inter-operable standards

10. OGSA architecture falls into seven broad areas, as shown in Figure 5.5 [1].

Infrastructure Services, Execution Management Services, Data Management Services, Resource

Management Services, Security Services, Security Services, Information Services and Self-management

Services (automation).

68

11. Message-Oriented Middleware:

11.1 Enterprise Bus: Figure 5.6 [1]

Enterprise Service Bus (ESB) refers to the case where the bus supports the integration of many

components in different styles as shown above. No source and destination channel is opened but only

messages are induced from different services. A message bus is shown linking the services by receiving

and sending messages but this methodology can work with any software or hardware.

11.2 Queuing and Message Systems: The best known standard in this field is the Java Message Service

(JMS) which specifies a set of interfaces utilized in communication queuing systems. Advanced

Message Queuing Protocol (AMQP) specifies a set of wire formats for communications.

References

69

 Kai Hwang et al, Distributed and Cloud Computing – From Parallel Processing to the Internet

of Things, Morgan Kaufmann, Elsevier, 2012.

 https://www.techopedia.com/definition/26598/elastic-computing-ec

 https://en.wikipedia.org/wiki/Data_farming

 http://www.webopedia.com/TERM/C/cloud_computing.html

 http://searchnetworking.techtarget.com/definition/multiplexing

 https://www.researchgate.net/post/What_is_data_coloring

 https://www.techopedia.com/definition/27268/software-stack

https://www.techopedia.com/definition/26598/elastic-computing-ec
https://en.wikipedia.org/wiki/Data_farming
http://www.webopedia.com/TERM/C/cloud_computing.html
http://searchnetworking.techtarget.com/definition/multiplexing
https://www.researchgate.net/post/What_is_data_coloring
https://www.techopedia.com/definition/27268/software-stack

70

UNIT – 5

Virtual clusters and resource management

10. Virtual Clusters and Resource Management: A physical cluster is a collection of

physical servers that are interconnected. The issues that are to be dealt with here are: live

migration of VMs, memory and file migrations and dynamic deployment of virtual clusters.

When a general VM is initialized, the administrator has to manually write configuration

information; this increases his workload, particularly when more and more VMs join the

clusters. As a solution to this, a service is needed that takes care of the configuration

information (capacity, speed etc.) of the VMs. The best example is Amazon’s Elastic

Compute Cloud (EC2), which provides elastic computing power in a cloud.

Most VZ platforms like VMware ESX Server, and XenServer support a bridging mode

which allows all domains to appear on the network as individual hosts. Through this mode,

VMs can communicate with each other freely through the virtual network and configure

automatically.

10.1 Physical versus Virtual Clusters: Virtual Clusters are built with VMs installed at one or

more physical clusters. The VMs in a virtual cluster are interconnected by a virtual network

across several physical networks. The concept can be observed in Figure 3.18 [1].

10.2 The provisioning of VMs to a virtual cluster is done dynamically to have the following

properties:

 The virtual cluster nodes can be either physical or virtual (VMs) with different operating

systems.

 A VM runs with a guest OS that manages the resources in the physical machine.

71

 The purpose of using VMs is to consolidate multiple functionalities on the same server.

 VMs can be replicated in multiple servers to promote parallelism, fault tolerance and

disaster discovery.

 The no. of nodes in a virtual cluster can grow or shrink dynamically.

 The failure of some physical nodes will slow the work but the failure of VMs will cause

no harm (fault tolerance is high).

10.3 NOTE: Since system virtualization is widely used, the VMs on virtual clusters have to be

effectively managed. The virtual computing environment should provide high performance

in virtual cluster deployment, monitoring large clusters, scheduling of the resources, fault

tolerance and so on.

10.4 Figure 3.19 [1] shows the concept of a virtual cluster based on app partitioning. The

different colours represent nodes in different virtual clusters. The storage images (SSI) from

different VMs from different clusters is the most important concept here. Software packages

can be pre-installed as templates and the users can build their own software stacks. Note

that the boundary of the virtual cluster might change since VM nodes are added, removed,

or migrated dynamically.

10.5 Fast Deployment and Effective Scheduling: The concerned system should be able to

 Construct and distribute software stacks (OS, libraries, apps) to a physical node

inside the cluster as fast as possible

 Quickly switch runtime environments from one virtual cluster to another.

NOTE: Green Computing: It is a methodology that is environmentally responsible and an

eco-friendly usage of computers and their resources. It is also defined as the study of

designing, manufacturing, using and disposing of computing devices in a way that reduces

their environmental impact.

72

10.6 Engineers must concentrate upon the point the available resources are utilized in a cost

and energy-reducing manner to optimize the performance and throughput. Parallelism must

be put in place wherever needed and virtual machines/clusters should be used for attaining

this goal. Through this, we can reduce the overhead, attain load balancing and achieve

scale-up and scale-down mechanisms on the virtual clusters. Finally, the virtual clusters

must be clustered among themselves again by mapping methods in a dynamical manner.

10.7 High Performance Virtual Storage: A template must be prepared for the VM

construction and usage and distributed to the physical hosts. Software packages that reduce

the time for customization (getting used to) and switching of environment. Users should be

identified by their profiles that are stored in data blocks. All these methods increase the

performance in virtual storage. Ex: Dropbox

Steps to deploy (arrange/install) a group of VMs onto a target cluster:

 Preparing the disk image (SSI)

 Configuring the virtual machines

 Choosing the destination nodes

 Executing the VM deployment commands at every host

10.8 NOTE: A template is a disk image/SSI that hides the distributed environment from the

user. It may consist of an OS and some apps. Templates are chosen by the users as per their

requirements and can implement COW (Copy on Write) format. A new COW backup file is

small and easy to create and transfer, thus reducing space consumption.

It should be noted that every VM is configured with a name, disk image, network settings,

and is allocated a CPU and memory. But this might be cumbersome if the VMs are many in

number. The process can be simplified by configuring similar VMs with pre-edited profiles.

Finally, the deployment principle should be able to fulfil the VM requirement to balance the

workloads.

10.9 Live VM Migration Steps: Normally in a cluster built with mixed modes of host and

guest systems, the procedure is to run everything on the physical machine. When a VM

fails, it can be replaced by another VM on a different node, as long as they both run the

same guest OS. This is called a failover (a procedure by which a system automatically

transfers control to a duplicate system when it detects a fault or failure) of a physical system

to a VM. Compared to a physical-physical failover, this methodology has more flexibility. It

also has a drawback – a VM must stop working if its host node fails. This can be lessened

by migrating from one node to another for a similar VM. The live migration process is

depicted in Figure 3.20 [1].

10.10 Managing a Virtual Cluster: There exist four ways.

(a) We can use a guest-based manager, by which the cluster manager resides inside a

guest OS. Ex: A Linux cluster can run different guest operating systems on top of the

Xen hypervisor.

73

(b) We can bring out a host-based manager which itself is a cluster manager on the host

systems. Ex: VMware HA (High Availability) system that can restart a guest system

after failure.

(c) An independent cluster manager, which can be used on both the host and the guest –

making the infrastructure complex.

(d) Finally, we might also use an integrated cluster (manager), on the guest and host

operating systems; here the manager must clearly distinguish between physical and

virtual resources.

NOTE: The virtual cluster management schemes are greatly enhanced if the VM life

migration is enabled with minimum overhead.

10.11 Virtual clusters are generally used where fault tolerance of VMs on the host plays an

important role in the total cluster strategy. These clusters can be applied in grids, clouds and

HPC platforms. The HPC is obtained by dynamical finding and usage of resources as per

requirement, and less migration time & bandwidth that is used.

10.12 A VM can be in one of the following states:

(a) Inactive State: This is defined by the VZ platform, under which the VM is not enabled.

74

(b) Active State: This refers to a VM that has been instantiated at the VZ platform to

perform a task.

(c) Paused State: A VM has been instantiated but disabled temporarily to process a task or

is in a waiting state itself.

(d) Suspended State: A VM enters this state if its machine file and virtual resources are

stored back to the disk.

10.13 Live Migration Steps: This consists of 6 steps.

(a) Steps 0 and 1: Start migration automatically and checkout load balances and server

consolidation.

(b) Step 2: Transfer memory (transfer the memory data + recopy any data that is changed

during the process). This goes on iteratively till changed memory is small enough to be

handled directly.

(c) Step 3: Suspend the VM and copy the last portion of the data.

(d) Steps 4 and 5: Commit and activate the new host. Here, all the data is recovered, and

the VM is started from exactly the place where it was suspended, but on the new host.

10.14 Virtual Clusters are being widely used to use the computing resources effectively, generate

HP, overcome the burden of interaction between different OSs and make different

configurations to coexist.

10.15 Memory Migration: This is done between the physical host and any other physical/virtual

machine. The techniques used here depend upon the guest OS. MM can be in a range of

megabytes to gigabytes. The Internet Suspend-Resume (ISR) technique exploits temporal

locality since the memory states are may have overlaps in the suspended/resumed instances

of a VM. Temporal locality (TL) refers to the fact that the memory states differ only by the

amount of work done since a VM was last suspended.

To utilize the TL, each file is represented as a tree of small sub-files. A copy of this tree

exists in both the running and suspended instances of the VM. The advantage here is usage

of tree representation of a file and caching ensures that the changed files are only utilized

for transmission.

10.16 File System Migration: To support VM migration from one cluster to another, a

consistent and location-dependent view of the file system is available on all hosts. Each VM

is provided with its own virtual disk to which the file system is mapped to. The contents of

the VM can be transmitted across the cluster by inter-connections (mapping) between the

hosts. But migration of an entire host (if required) is not advisable due to cost and security

problems. We can also provide a global file system across all host machines where a VM

can be located. This methodology removes the need of copying files from one machine to

another – all files on all machines can be accessed through network.

It should be noted here that the actual files are not mapped or copied. The VMM accesses

only the local file system of a machine and the original/modified files are stored at their

75

respective systems only. This decoupling improves security and performance but increases

the overhead of the VMM – every file has to be stored in virtual disks in its local files.

10.17 Smart Copying ensures that after being resumed from suspension state, a VM doesn’t get

a whole file as a backup. It receives only the changes that were made. This technique

reduces the amount of data that has to be moved between two locations.

10.18 Network Migration: A migrating should maintain open network connections. It should

not depend upon forwarding mechanisms (mediators) or mobile mechanisms. Each VM

should be assigned a unique IP or MAC (Media Access Control) [7] addresses which is

different from that of the host machine. The mapping of the IP and MAC addresses to their

respective VMs is done by the VMM.

If the destination of the VM is also on the same LAN, special messages are sent using MAC

address that the IP address of the VM has moved to a new location. If the destination is on

another network, the migrating OS can keep its original Ethernet MAC address and depend

on the network switch [9] to detect its move to a new port [8].

10.19 Note that live migration means moving a VM from one physical node to another while

keeping its OS environment and apps intact. All this process is carried out by a program

called migration daemon. This capability provides efficient online system maintenance,

reconfiguration, load balancing, and improved fault tolerance. The recently improved

mechanisms are able to migrate without suspending the concerned VM.

10.20 There are two approaches in live migration: pre copy and post copy.

(a) In pre copy, which is manly used in live migration, all memory pages are first

transferred; it then copies the modified pages in the last round iteratively. Here,

performance ‘degradation’ will occur because migration will be encountering dirty

pages (pages that change during networking) [10] all around in the network before

getting to the right destination. The iterations could also increase, causing another

problem. To encounter these problems, check-pointing/recovery process is used at

different positions to take care of the above problems and increase the performance.

(b) In post-copy, all memory pages are transferred only once during the migration process.

The threshold time allocated for migration is reduced. But the downtime is higher than

that in pre-copy.

NOTE: Downtime means the time in which a system is out of action or can’t handle

other works.

Ex: Live migration between two Xen-enabled hosts: Figure 3.22 [1]

CBC Compression=> Context Based Compression

RDMA=> Remote Direct memory Access

76

11. VZ for Data Centre Automation: Data Centres have been built and automated recently by

different companies like Google, MS, IBM, Apple etc. By utilizing the data centres and the

data in the same, VZ is moving towards mobility, reduced maintenance time, and increasing

the number of virtual clients. Other factors that influence the deployment and usage of data

centres are high availability (HA), backup services, and workload balancing.

11.1 Server Consolidation in Data Centres: In data centers, heterogeneous workloads may run at

different times. The two types here are

(a) Chatty (Interactive) Workloads: These types may reach the peak at a particular time

and may be silent at some other time. Ex: WhatsApp in the evening and the same at

midday.

(b) Non-Interactive Workloads: These don’t require any users’ efforts to make progress

after they have been submitted. Ex: HPC

The data center should be able to handle the workload with satisfactory performance both at

the peak and normal levels.

It is common that much of the resources of data centers like hardware, space, power and cost

are under-utilized at various levels and times. To come out of this disadvantage, one approach

is to use the methodology of server consolidation. This improves the server utility ratio of

hardware devices by reducing the number of physical servers. There exist two types of server

consolidation: (a) Centralised and Physical Consolidation (b) VZ based server

consolidation. The second method is widely used these days, and it has some advantages.

 Consolidation increases hardware utilization

 It enables more agile provisioning of the available resources

 The total cost of owning and using data center is reduced (low maintenance, low cooling,

low cabling etc.)

 It enables availability and business continuity – the crash of a guest OS has no effect upon

a host OS.

77

11.2 NOTE: To automate (VZ) data centers one must consider several factors like resource

scheduling, power management, performance of analytical models and so on. This improves

the utilization in data centers and gives high performance. Scheduling and reallocation can be

done at different levels at VM level, server level and data center level, but generally any one

(or two) level is used at a time.

The schemes that can be considered are:

(a) Dynamic CPU allocation: This is based on VM utilization and app level QoS [11]

(Quality of Service) metrics. The CPU should adjust automatically according to the

demands and workloads to deliver the best performance possible.

(b) Another scheme uses two-level resource management system to handle the complexity

of the requests and allocations. The resources are allocated automatically and

autonomously to bring down the workload on each server of a data center.

Finally, we should efficiently balance the power saving and data center performance to

achieve the HP and HT also at different situations as they demand.

11.3 Virtual Storage Management: VZ is mainly lagging behind the modernisation of data

centers and is the bottleneck of VM deployment. The CPUs are rarely updates, the chips are

not replaced and the host/guest operating systems are not adjusted as per the demands of

situation.

Also, the storage methodologies used by the VMs are not as fast as they are expected to be

(nimble). Thousands of such VMs may flood the data center and their lakhs of images (SSI)

may lead to data center collapse. Research has been conducted for this purpose to bring out

an efficient storage and reduce the size of images by storing parts of them at different

locations. The solution here is Content Addressable Storage (CAS). Ex: Parallax system

architecture (A distributed storage system). This can be viewed at Figure 3.26 [1], P25.

11.4 Note that Parallax itself runs as a user-level application in the VM storage, providing Virtual

Disk Images (VDIs). A VDI can accessed in a transparent manner from any host machine in

the Parallax cluster. It is a core abstraction of the storage methodology used by Parallax.

78

11.5 Cloud OS for VZ Data Centers: VI => Virtual Infrastructure managers Types can be seen

in Table 3.6 [1].

11.6 EC2 => Amazon Elastic Compute Cloud

WS => Web Service

CLI => Command Line Interface

WSRF => Web Services Resource Framework

KVM => Kernel-based VM

VMFS => VM File System

HA => High Availability

79

11.7 Example of Eucalyptus for Virtual Networking of Private Cloud: It is an open-source

software system intended for IaaS clouds. This is seen in Figure 3.27 [1].

11.8 Instance Manager (IM): It controls execution, inspection and terminating of VM instances

on the host machines where it runs.

Group Manager (GM): It gathers information about VM execution and schedules them on

specific IMs; it also manages virtual instance network.

Cloud Manager (CM): It is an entry-point into the cloud for both users and administrators. It

gathers information about the resources, allocates them by proper scheduling, and

implements them through the GMs.

11.9 Trust Management in VZ Data Centers: As a recollect, a VMM (hypervisor) is a layer

between the host OS and the hardware to create 1 or more VMs on a single platform. A VM

encapsulates the guest OS and its current state and can transport it through the network as a

SSI. At this juncture, in the network transportation, any intruders may get into the image or

the concerned hypervisor itself and pose danger to both the image and the host system. Ex: A

subtle problem lies in reusing a random number for cryptography.

11.10 VM-based Intrusion Detection: Intrusions are unauthorized access to a computer from

other network users. An intrusion detection system (IDS), which is built on the host OS

can be divided into two types: host-based IDS (HIDS) and a network-based IDS (NIDS).

VZ based IDS can isolate each VM on the VMM and work upon the concerned systems

without having contacts with the other. Any problem with a VM will not pose problems for

other VMs. Also, a VMM audits the hardware allocation and usage for the VMs regularly so

as to notice any abnormal changes. Still yet, the host and guest OS are fully isolated from

each other. A methodology on these bases can be noticed in Figure 3.29 [1].

80

The above figure proposes the concept of granting IDS runs only on a highly-privileged VM.

Notice that policies play an important role here. A policy framework can monitor the events

in different guest operating systems of different VMs by using an OS interface library to

determine which grant is secure and which is not.

It is difficult to determine which access is intrusion and which is not without some time

delay. Systems also may use access ‘logs’ to analyze which is an intrusion and which is

secure. The IDS log service is based on the OS kernel and the UNIX kernel is hard to break;

so even if a host machine is taken over by the hackers, the IDS log book remains unaffected.

The security problems of the cloud mainly arise in the transport of the images through the

network from one location to another. The VMM must be used more effectively and

efficiently to deny any chances for the hackers.

81

References

 Kai Hwang et al, Distributed and Cloud Computing – From Parallel Processing to the

Internet of Things, Morgan Kaufmann, Elsevier, 2012.

 https://en.wikipedia.org/wiki/Multiplexing

 http://cloudacademy.com/blog/container-virtualization/

 https://en.wikipedia.org/wiki/Library_(computing)#Shared_libraries

 https://en.wikipedia.org/wiki/Binary_translation

 https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.resmgmt.doc/GUID-

C25A8823-F595-4322-BD0D-4FD5B081F877.html

 http://searchnetworking.techtarget.com/definition/MAC-address

 http://searchnetworking.techtarget.com/definition/port

 https://en.wikipedia.org/wiki/Network_switch

 https://en.wikipedia.org/wiki/Live_migration

 http://searchunifiedcommunications.techtarget.com/definition/QoS-Quality-of-Service

https://en.wikipedia.org/wiki/Multiplexing
http://cloudacademy.com/blog/container-virtualization/
https://en.wikipedia.org/wiki/Library_(computing)#Shared_libraries
https://en.wikipedia.org/wiki/Binary_translation
https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.resmgmt.doc/GUID-C25A8823-F595-4322-BD0D-4FD5B081F877.html
https://pubs.vmware.com/vsphere-51/topic/com.vmware.vsphere.resmgmt.doc/GUID-C25A8823-F595-4322-BD0D-4FD5B081F877.html
http://searchnetworking.techtarget.com/definition/MAC-address
http://searchnetworking.techtarget.com/definition/port
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/Live_migration
http://searchunifiedcommunications.techtarget.com/definition/QoS-Quality-of-Service

