IARE s

S
Py >
/, \2
04, FOR \'\Q

PPT ON
COMPUTER ORGANIZATION
V SEM (IARE-R16)

UNIT |
INTRODUCTION

CLO’s Course Learning outcomes

CLO1 Describe the various components like input/output units, memory unit,
control unit, arithmetic logic unit connected in the basic organization of a
computer.

CLO2 Understand the concepts associated with the computer organization.

CLO3 Describe various data representations and explain how
arithmetic and logical operations are performed by computers.

CLO4 Understand instruction types, addressing modes
and their formats in the assembly language programs.

and Computers

The word computer is derived from the word compute.
Compute means to calculate. The computer was originally
defined as a super fast calculator. It had the capacity to solve
complex arithmetic and scientific problems at very high speed.

*The information in one form which is presented to the
computer is the input
information or input data.

sInformation in another form is presented by the computer
after performing a process on it. This information is the output
information or output data.

Elements of a computer

S aman T e

Like human beings has ears, nose, eyes Computers have input devices such as

etc. keyboard, scanner, touch screen, mouse
etc to get information.

Like we remember things Computer also stores information

We recollect certain information as The computer also retrieves information

required when times

We express ourselves by speech, writing Computer expresses through screen,

etc Printouts etc which We call as output

When we watch, hear, learn certain things with the help of software, computer also

and analyze can analyze Information and draw
conclusions

The place where we store, analyze The computer brain is known as CPU

conclude information is known as the
brain (Central Processing Unit) where it
analyses information.

Limitations of Computers

e Although the computers of today are highly intelligent and
sophisticated they have their own limitations. The computer
cannot think on its own, since it does not have its own brain.

. It can only do what is has been programmed to do. It can
execute only those jobs that can be expressed as a finite set
of instructions to achieve a specific goal. Each of the steps has
to be clearly defined.

. The computers do not learn from previous experience nor
can they arrive at a conclusion without going through all the
intermediate steps. However the impact of computers on
today’s society in phenomenal and they are today an
important part of the society.

Evolution of computers

First Generation Computers

1. Mark |
2. ENIAC
3. EDVAC
4. UNIVAC

Evolution of computers

Mid-1950s: Transistor Computers (Second Generation)

e The development of transistors led to the replacement of

vacuum tubes, and resulted in significantly smaller
computers.

In the beginning, they were less reliable than the vacuum
tubes they replaced, but they also consumed significantly less
power. IBM 350 RAMAC used disk drives.

These transistors also led to developments in computer
peripherals. The first disk drive, the IBM 350 RAMAC, was the
first of these introduced in 1956.

Evolution of computers

1960s: The Microchip and the Microprocessor (Third
Generation Computers)

e The microchip (or integrated circuit) is one of the most
important advances in computing technology. Many overlaps
in history existed between microchip-based computers and
transistor-based computers throughout the 1960s. Microchips
allowed the manufacturing of smaller computers.

* The microchip spurred the production of minicomputers and
microcomputers, which were small and inexpensive enough
for small businesses and even individuals to own.

* The microchip also led to the microprocessor, another
breakthrough technology that was important in the
development of the personal computer.

Evolution of computers

1970s: Personal Computers (Fourth Generation)

* The first personal computers were built in the early 1970s.

Most of these were runs, and worked based on small-scale
integrated circuits and multi-chip CPUs.

The Commodore PET was a personal computer in the 70s.
The Altair 8800 was the first popular computer using a
single-chip microprocessor. Clones of this machine quickly
cropped up, and soon there was an entire market based on
the design and architecture of the 8800.

It also spawned a club based around hobbyist computer
builders, the Homebrew Computer Club. 1977 saw the rise
of the "Trinity" the Commodore PET, the Apple I, and the
Tandy Corporation’s TRS-80. These three computer models
eventually went on to sell millions.

Evolution of computers

2000s: The Rise of Mobile Computing (Present and Beyond)
Mobile computing

It is one of the most recent major milestones in the history of
computers. Many smart phones today have higher processor
speeds and more memory than desktop PCs had even ten

years ago.
With phones like the iPhone and the Motorola Droid, it’s
becoming possible to perform most of the functions once
reserved for desktop PCs from anywhere. The Droid is a smart
phone capable of basic computing tasks such as emailing and
web browsing.

Design Hierarchy-Structural

* The design hierarchy involves the principle of "Divide and
Conquer." It is nothing but dividing the task into smaller
tasks until it reaches to its simplest level.

* This process is most suitable because the last evolution of

design has become so simple that its manufacturing
becomes easier.

* We can design the given task into the design flow process's
domain (Behavioral, Structural, and Geometrical).

* To understand this, let’s take an example of designing a
16-bit adder, as shown in the figure below.

Design Hierarchy-Structural

~ o 7 @

4 bit 4 bit 4 bit 4 bit
adder adder adder adder

half half half half
adder adder adder adder

System design

System Representation

* We can represent a system using a graph or a block diagram. A
computer system is usually represented by a block diagram.

* A system has its own structure and behavior. The structure and
behavior are the two properties of the system.

 We can define the structure of a system as the abstract graph
consisting of its block diagram with no functional information,
as shown in Fig. below

A = NOT

AND

B NOT

OR | AeB

AND

A block diagram representing EX-NOR logic circuit

System design

* Asshown in figure, the structure gives the components and
their interconnection. A behavioral description, on the
other hand, describes the function of each component and
thus the function of the system.

e The behavior of the system may be represented by
Boolean function or by truth table in case of logic circuit.

-The behavior of logic circuits can also be described by
Hardware description language such as VHDL. They can
provide precise, technology-independent descriptions of
digital circuits at various levels of abstraction, primarily the
gate and register levels.

Design Process

For a given system's structure, the task of determining its
function or behavior is termed analysis. On the other hand,
the problem of determining a system structure that
exhibits a given behavior is design or synthesis.

The design process starts with the construction of initial
design. In this process, with given a desired range of
behavior and set of available components we have to
determine a structure (Design).

The next step is to evaluate its cost and performance. The
cost and performance should be in the acceptable range.
Then we have to confirm that whether the formed
structure achieves the desired behavior. If not we have to
modify the design to meet the design goals. The Fig. below
illustrates the design process.

Design Process

Start

Conglruet an
initial design

f

Evaluate its cosl
and performance

Mo Modify the design
to meet the design goals

the design goals

Design process

Computer-aided Design

e The computer-aided design (CAD) tools provides designers
with a range of programs to support their design goals. They
are used to automate fully or party the more tedious design
and evaluate its steps. They contribute mainly in three
important ways to the overall design process.

« CAD editors or translators convert design data into
forms such as HDL descriptions or schematic diagrams,
which can be efficiently processed by the humans,
computers or both.

* Simulators create the computer model for the design
and can mimic the design's behavior. It helps designer
to determine how well the design meets various
performance and cost goals.

* Synthesizers derive structures that implement all or
part of some design step.

Gate Level Design

Gate level design concerned with processing binary varlables O
and 1. In this level, the design components are logic gates and
flip-flops. Logic gates are memoryless elements; however flip-
flops are bit storage devices. Using these elements gate level
design is used to build the combinational and sequential
circuits.

When logic gates are connected together to produce a specified
output for certain specified combinations of input variables,
with no storage involved, the resulting circuit is called
combinational logic. In combinational logic, the output variables
are at all times dependent on the combination of input
variables.

A combinational circuit consists of input variables, logic gates,
and output variables. The logic gates accept signals from the
input variables and generate output signals. This process
transforms binary information from the given input data to the
required output data. Fig. below shows the block diagram of a
combinational circuit. As shown in figure, the combinational
Circuit accepts n-input binary variables and generates output
variables depending on the logical combination of gates.

Gate Level Design

ninpul

afables

o

Combinational
Logic
Circu

[re——h

|- e——

m oulput
Varables

Block diagram of a combinational circuit

Gate Level Design

The design of combinational circuits starts from the outline of
the problem statement and ends in a logic circuit diagram or a
set of Boolean functions from which the logic diagram can be
easily obtained. The design procedure of the combinational
circuit involves following steps :

1.The problem definition.
2.The determination of number of available input variables
and required output variables.

3.Assigning letter symbols to input and output variables.

4.The derivation of truth table indicating the relationships
between input and output variables.

5.0btain simplified Boolean expression for each output.
6.0btain the logic diagram.

Register Level Design

Type Component Function
Combinational Word gates. Boolean operations.
Multiplexers and Demultiplexers. Data routing; general
combinational functions,
Decoders and encoders. Code checking and conversion.
Adders and subtractors. Addition and subtraction.
Arithmetic logic unils. Numerical and logical operations.
Programmable logic devices. General combinational functions.
Sequential Registers Information storage
Shift register Information storage; serial parallel
conversion.
Counters Control /timing signal generation.
Programmable logic devices. General sequential functions.

Commonly used register level components

Register Level Design

Control
input

linas

Dala input lires

— N

{of -

Select F —<e

Enable ———|

Multifunction
unit

p—= Status 5

L)

Data output lines

Control

lines

Generic block representation of a register level component

Register Level Design

* The Fig. above shows the generic block representation of a
register- level component.

— The "/m" on the input lines indicate it is a m-bit input bus.
— A sslash'/' with number or letter next to it indicates the

multi-bit bus.
— A bubble on the start or end of the line indicates an active
low signal; otherwise it is an active high signal.

— The input and output data lines are shown separately.
— Similarly the input and output control lines are also shown

separately.

— The input control lines associated with a multifunction
block fall into two broad categories: select lines and
enable lines. The select lines specify one of several
possible operations that the unit is to perform and enable
lines specify the time or condition for a selected operation
to be performed.

— The output control signals, if any, indicate when or how
the unit completes its processing.

Register Level Design

Data and Control

Regisler A Regster 8

l |

Register Z

Simple register level system

-
20
v
Q
QO
[
>
Q
—
| -
Q
)
2
(o]0)
Q
o

O —————————————— -

- ——

Control

unit

Multifunction
ALU
ﬂ

RegisterZ fe=========-

Multifunction register level system

Processor-Level Design

- @rmennn - PC
coNTROLUNIT K | JJ
AR DR
| S, ;L O
-
AV4 Address
. Bus
11 I] IF
Bus
75 1] wR <> e
: — Bus
3R I T e
Address Data RO WR n—.lmlmci‘lmm
BR —= Buffer Register
MEMORY Status Register i hot shown
For simphcity - - - -* shows
intarmal Con'rol sigriais

Typical CPU structure

Processor-Level Design

* Prototype Structures

1. The processor-level design using prototype-structures involve
following steps in the design process.

2.First select a prototype design as per the system requirements
and adapt it to satisfy the given performance constraints.

3. Determine the performance of proposed system.

4. If the performance is unsatisfactory, design is to be modified.
Repeat step 1.

5. The above steps are to be continued until the acceptable design
is obtained and the desired performance constraints are
achieved.

Processor-Level Design

LA AL E Ll L L)

Basic computer structure

Processor-Level Design

-Figure above shows the structure of first generation
computers.

-This is the basic and computer structure. The second
subsequent generations of computer involve special-purpose
10 processors and cache memory in addition to basic
components used within the basic system.

CPU ORGANIZATION

CPU Organization

CPU ORGANIZATION

Central processing unit (CPU) is the electronic circuitry within
a computer that carries out the instructions of a computer
program by performing the basic arithmetic, logical, control
and input/output (I/O) operations specified by the
instructions.

In the computer all the all the major components are
connected with the help of the system bus.

Data bus is used to shuffle data between the various
components in a computer system.

To differentiate memory locations and |I/O devices the system
designer assigns a unique memory address to each memory
element and I/O device. When the software wants to access
some particular memory location or I/O device it places the
corresponding address on the address bus

CPU ORGANIZATION

* The control bus is an eclectic collection of signals that
control how the processor communicates with the rest of
the system.

* The read and write control lines control the direction of
data on the data bus. When both contain logic one the
CPU and memory-I/O are not communicates.

* The CPU controls the computer. It fetches instructions from

memory, supply the address and control signals needed by
the memory to access its data.

Instruction Formats

e Layout of bits in an instruction
* Includes opcode
* Includes (implicit or explicit) operand(s)

e Usually more than one instruction format in an
instruction set

Instruction Length

» Affected by and affects:
— Memory size
— Memory organization
— Bus structure
— CPU complexity
— CPU speed

* Trade off between powerful instruction repertoire
and saving space

Allocation of Bits

 Number of addressing modes
* Number of operands

* Register versus memory
 Number of register sets

* Address range

* Address granularity

PDP-8 Instruction Format

hMemory Reference Instructions

| Cipcode | D1 | ZiC [Chsplacement |
a s 3 4 5 LL
Inp ut/Output [nstructions
| L L a | Device | Cipcode |
a 2 3 B a LL

Register Reference Instructio ns
omwup L Mhicrom stiictions

T L L 0 | CLA] CLL | CMA | CML | RAR | RAL | B5w | LAC |
a L =z 3 4 5 8 7 B 9 Lo I'L
Group 2 Whicro nstictions
1L T T I |CLA| GMA] G524 | SML | R558 | OsR | HLT | 0 |
a L 2 3 4+ 5 & 7 & o LO LL
Coup 3 Microlstiictions
[T 1T 1T T JTcaJwmoal o0 [#pL] o [o [d [T]
a L 2 3 4 5 & 7] o L LL
Ol = Dhrectlndicect address 1A = lncrement ACcumulatar
ZAZ = Page 0 or Curment page EMA = Skipon Mime Accumulator
CLA = Clear Accumulator 5ZA = Skipon Zem Accumulator
CLL = Cl=ar Link EML = SkiponMNonzero Link
CMA = Cobplement Accurmulator RS55 = Reverses EL:iJ_:I Serise
CML = Colplement Link D5R = Orwith Swatch Register
RAR = Rotate Accomultator Right HLT = HalLT
RAL = Rntat:&ccumulatarL:{g MDA = Multplier Quotent into Accumulator

BEW

Byte 5Wap WL

Multi pher Quotient Load

PDP-10 Instruction Format

Dpcode Register 1 Lndex Wemory Address
14 L7 L8 35

ca
£ =]
|

(v}

1 = indirect bit

Instruction types

Assembly languages instructions are grouped together based on the
operation they performed.

1.Data transfer instructions
2.Data operational instructions
3.Program control instructions

Data transfer instructions:

Data transfer instructions:

.Load the data from memory into the microprocessor: These
instructions copy data from memory into a microprocessor
register

.Store the data from the microprocessor into the memory: This
is similar to the load data expect data is copied in the opposite

direction from a microprocessor register to memory.

.Move data within the microprocessor: These operations
copies

data from one microprocessor register to another.

JInput the data to the microprocessor: The microprocessor
inputs the data from the input devices ex: keyboard in to one of

its registers.

.Output the data from the microprocessor: The microprocessor
copies the data from one of the registers to an input device
such as digital display of a microwave oven.

Data operational instructions:

Data operational instructions:

. Data operational instructions do modify their data values.
They typically perform some operations using one or two
data values (operands) and store result.

. Arithmetic instructions make up a large part of data
operations instructions. Instructions that add, subtract,
multiply, or divide values fall into this category. An
instruction that increment or decrement also falls in to this
category.

. Logical instructions perform basic logical operations on
data. They AND, OR, or XOR two data values or
complement a single value.

. Shift operations as their name implies shift the bits of a
data values also comes under this category.

Program control instructions:

Program control instructions:

Program control instructions are used to control the flow
of a program. Assembly language instructions may include
subroutines like in high level language program may have
subroutines, procedures, and functions.

. A jump or branch instructions are generally used to go to
another part of the program or subroutine.

. A microprocessor can be designed to accept interrupts. An
interrupt causes the processor to stop what is doing and

start other instructions. Interrupts may be
software or hardware.

One final type of control instructions is halt instruction.
This instruction causes a processor to stop executing
instructions such as end of a program.

Addressing Modes

* Immediate

* Direct

* Indirect

* Register

* Register Indirect

* Displacement (Indexed)
e Stack

Immediate Addressing

* Operand is part of instruction

e Operand = address field

* e.g. ADD5
— Add 5 to contents of accumulator
— 5is operand

* No memory reference to fetch data

* Fast

* Limited range

Direct Addressing

* Address field contains address of operand
e Effective address (EA) = address field (A)
* e.g. ADDA
— Add contents of cell A to accumulator
— Look in memory at address A for operand
* Single memory reference to access data

 No additional calculations to work out effective address
* Limited address space

Direct Addressing Diagram

Instruction

Opcode Address A

Memory

Operand

Indirect Addressing

 Memory cell pointed to by address field contains the address
of (pointer to) the operand

e EA=(A)
— Look in A, find address (A) and look there for operand
 e.g. ADD (A)

— Add contents of cell pointed to by contents of A to
accumulator

Indirect Addressing

e Large address space
 2"where n = word length
 May be nested, multilevel, cascaded
—e.g. EA=(((A)))
* Draw the diagram yourself
* Multiple memory accesses to find operand

* Hence slower

Register Addressing

 Operand is held in register named in address filed
* EA=R
* Limited number of registers
* Very small address field needed
— Shorter instructions

— Faster instruction fetch

Register Addressing

* No memory access

e \Very fast execution

* Very limited address space

* Multiple registers helps performance

— Requires good assembly programming or compiler writing

— N.B. C programming
* registerint a;
e c.f. Direct addressing

Register Addressing Diagram

Instruction

Opcode Register Address R

Registers

Operand

Register Indirect Addressing

e C.f.indirect addressing

e EA=(R)

 Operand is in memory cell pointed to by contents of register R
e Large address space (2")

* One fewer memory access than indirect addressing

Register Indirect Addressing Diagram

Instruction

Opcode Register Address R

Memory

Registers

Pointer to Operand Operand

A 4

Displacement Addressing

e EA=A+(R)
* Address field hold two values
— A = base value
— R =register that holds displacement

— Or vice versa

Displacement Addressing Diagram

Instruction

Opcode

Register R

Address A

Registers

Pointer to Operand

Memory

v

Operand

Base-Register Addressing

* A holds displacement
* R holds pointer to base address
* R may be explicit or implicit

* e.g.segment registers in 80x86

Indexed Addressing

* A=base

* R=displacement

 EA=A+R

* Good for accessing arrays
—EA=A+R

—R++

Combinations

e Postindex
e EA=(A)+ (R)

 Preindex
« EA=(A+(R))

e (Draw the diagrams)

Stack Addressing

 Operand is (implicitly) on top of stack

¢ e.g.

—ADD Pop top two items from stack and
add

Pentium Addressing Mode Calculation

Base Register
55
G5 .
FS Index Register
ES
D selector
—» C %
mcale
1.2.4,0r8
I¥gplacement v
+ (im ms oroction; T N F""EBH“;
0, B, or 32 bits) Address
Effective
Descriptor Registers Address
Linear

Access Kights

Limit

Base Addressi

o Limit ——

PowerPC Addressing Modes

* Load/store architecture

— Indirect

* Instruction includes 16 bit displacement to be added
to base register (may be GP register)

* Canreplace base register content with new address
— Indirect indexed

* Instruction references base register and index register

(both may be GP)
 EA is sum of contents

 Branch address
— Absolute

— Relative
— Indirect

* Arithmetic
— Operands in registers or part of instruction
— Floating point is register only

PowerPC Memory Operand

Basze Register (GPR) Base Register (GPR)
— - = Signed displacernent -_ - - = Index register (GPR)
Y ! Y

- = disp

With update With update
Logical address Logical address
To address translation To address translation

(a) Indirect Adressing i b) Indirect Indexed Addressing

UNIT Il
DATA PATH DESIGN

CLO’s Course Learning outcomes

CLO1

Describe the implementation of fixed point and floating point addition,
subtraction operations.

CLO2

Describe the various major algorithmic techniques (Robertson algorithm,
booth’s algorithm, non-restoring division algorithm).

CLO3

Describe the pipeline processing concept with multiple functional units.

CLO4

Understand the concept of the modified booth’s algorithm.

64

Fixed point arithmetic

Floating point (FP) representations of decimal numbers are
essential to scientific computation using scientific
notation. The standard for floating point representation is
the IEEE 754 Standard.

In a computer, there is a tradeoff between range and
precision - given a fixed number of binary digits (bits),
precision can vary inversely with range. In this section, we
overview decimal to FP conversion, MIPS FP instructions,
and how registers are used for FP computations.

Fixed point arithmetic

* We have seen that an n-bit register can represent unsigned
integers in the range 0 to 2"-1, as well as signed integers in the
range -2"1to -2n1-1. However, there are very large numbers
(e.g., 3.15576 - 1023), very small numbers (e.g., 10-2%), rational
numbers with repeated digits (e.g., 2/3 = 0.666666...),
irrationals such as 21/2, and transcendental numbers such as e =
2.718..., all of which need to be represented in computers for
scientific computation to be supported.

Scientific Notation and FP Representation

Scientific notation has the following configuration:

mantissa - exponent
6.02 x 1022

f

decimal point radix (base)

Figure — Scientific Notation

Mantissa Exponent

-
ey fﬂ“"'“ x 2-1
“binary point” radix (base)
Figure — Binary Scientific Notation

Floating Point

 Zerois represented by a zero significand and a zero exponent
- there is no leading value of one in the significand. The IEEE
754 representation is thus computed as:
FPnumber = (-1)5: (1 + Significand) - 2Exponent
* As a parenthetical note, the significand can be translated into
decimal values via the following expansion:

1.1001 = (1x2%) + (1x2°") + (0x2°2) + (0x27) + (1x2%)

Floating Point

[o] 0110 1000[101 Q103 0100 0011 0100 0010

* Sign: 0 ==p

= Exponent:
— 0110 10
— Bias ad)
« Signifi
— 1+ I’x2-1+ 0%2-2 + 1%2-7 4+ OxX2°% -+ 1Ix25 4.

=14+2-142-3 42-5 4-2-7 429 4-2-14 42-15 4 3-17 4222
= 1.0 + 0.666115

« Represents: 1.666115%22°~ 1. 986%10°7

FPArithmetic:

 The preceding example leads to several implementation issues
in FP arithmetic. Firstly, rounding occurs.

* For example, when multiplying two N-bit numbers, a 2N-bit
product results. Since only the upper N bits of the 2N bit
product are retained, the lower N bits are truncated. This is
also called rounding toward zero.

* Another type of rounding is called rounding to infinity.

A second implementation issue in FP arithmetic is addition
and subtraction of numbers that have nonzero significands
and exponents.

 We will review several approaches to floating point operations
in MIPS in the following section.

FPArithmetic:

There are many different criteria's to check when considering
the "best" scheduling algorithm, they are:

CPU Utilization:

*To make out the best use of CPU and not to waste any CPU
cycle, CPU would be working most of the time(ldeally 100% of
the time). Considering a real system, CPU usage should range
from 40% (lightly loaded) to 90% (heavily loaded.

Throughput:

It is the total number of processes completed per unit time or
rather say total amount of work done in a unit of time. This may
range from 10/second to 1/hour depending on the specific
processes.

Turnaround Time:

It is the amount of time taken to execute a particular process,
i.e. The interval from time of submission of the process to the
time of completion of the process (Wall clock time).

FPArithmetic:
Waiting Time:

*The sum of the periods spent waiting in the ready queue
amount of time a process has been waiting in the ready queue
to acquire get control on the CPU.

Load Average:

|t is the average number of processes residing in the ready
gueue waiting for their turn to get into the CPU.

Response Time:

*Amount of time it takes from when a request was submitted
until the first response is produced. Remember, it is the time till
the first response and not the completion of process execution
(final response).

°In general CPU utilization and Throughput are maximized and
other factors are reduced for proper optimization.

Addition, Subtraction:

 The addition and subtraction algorithm for data represented

in sighed magnitude and again data represented in signed-2‘s
complement.

It is important to realize that the adopted representation for
negative numbers refers to the representation of numbers in

the register before and after the execution of the arithmetic
operations.

Addition and Subtraction with Signed-magnitude Data:
* The representation of numbers in signed-magnitude is familiar

because it is used in everyday arithmetic calculation. The
procedure for adding or subtracting two signed binary
numbers with paper and pencils simple and straight-
forward. A review of this procedure will be helpful for
deriving the hardware algorithm.

Addition, Subtraction:

* We designated the magnitude of the two numbers by A and B.
when the signed numbers are added or subtracted, we find
that there are eight different conditions to consider,
depending on the sign of the numbers and the operation
performed. These conditions are listed in the first column of
the table below. The other column in the table shows the
actual operation to be performed with the magnitude of the
numbers.

* The last column is needed to prevent negative zero. In other
words, when two equal numbers are subtracted, the result
should be +0 not -0.

* The algorithms for addition and subtraction are derived from
the table and can be stated as follows (the words inside
parentheses should be used for the subtraction algorithm).

Addition, Subtraction:

*Addition (subtraction) algorithm: when the signs of A and B are
identical (different), add the two magnitude and attach the sign
of A to the result.

*When the sign of A and B are different (identical), compare the

magnitudes.

Addition, Subtraction:

I

Subtract Magnitudes

Add
Operation Magnitudes When A>B WhenA<B WhenA =B
(+A) + (+B) +(A + B)
(+A) + (-B) +(A - B) =(B - A) +(A — B)
(-A) + (+B) -(A - B) +(B - A) +(A - B)
(-A)+(-B) —(A+ B)
(+A) — (+B) +(A — B) ~{B — A) +(A - B)
(+A) - (-B) +(A + B)
(=A) - (+B) -(A + B)
(=A) - (=B) -(A - B) +(B — A) +(A - B)

Figure: Table for Addition and Subtraction of Signed-Magnitude

Numbers

Addition, Subtraction:

B, 8B regaster
AVF Complementer B T M (Mode control)
E |- Output Paralicl sdd l
e 4 Input carry
N T
A, A register e Load sum

Figure: Hardware for Signed-Magnitude Addition and Subtraction.
* The output carry is transferred to flip-flop E.

* The complementary consists of exclusive-OR gates and the parallel
adder consists of full adder circuit

Addition, Subtraction:

Swubtracr operation Add operation
Minuend in 4 Augend in A
Subtrahend in £ Addend in B

A=Az A, ~O

.
'C(—resull is in A and A,'D

Addition, Subtraction:

* The two sighs A.and B, are compared by an exclusive-OR gate.

e For an add operation, identical signs dictate that the
magnitudes be added, for subtract operation different signs
dictate that the magnitudes be added. The magnitudes are
added with a micro operation E ARA+B.

* Where E A is a register that combines E and A.

* For A O indicates that A<B, for this case it is necessary to take
the 2‘s compliment of the value in A .this operation can be
done with one micro operation ARA+1.

 However, we assume that A register as circuits for micro
operation compliment and increment, so the 2‘s compliment
is obtain from these two micro operations...

* The value in AVF provides an overflow indication.
* The final value of E is immaterial.

Addition, Subtraction:

* Addition and Subtraction with signed2’‘s complement data:

 The left most bit of binary number represents the sign bit; 0
for positive and 1 for negative. If the sign bit is 1, the entire
the entire number is represented in 2‘s compliment form.

* The addition of two numbers in signed-2‘s complement form
consists of adding the number with the sign bits treated the
same as the other bits of the number. A carry out of the sign
bit position is discarded.

 The subtraction consists of first taking the 2‘s compliment of
the subtrahend and then adding it to the minuend

* When two numbers of n digits each are added and the sum
occupies n+1 Digits, we say that an overflow occurred.

 When the two carriers are applied to an exclusive-OR gate, the
overflow is detected when the output of the gate is equal to 1.

Addition, Subtraction:

BR register

Complementer and
parallel adder

Overflow l T

I AC register I

Figure:--Hardware for Signed 2's Compliant Addition and Subtraction

* The left most bit in AC and BR represents the sign bits of the
numbers.

 The over flow flip-flops V is set to 1 if there is an overflow.
* The outputs carry in this case is discarded.

Multiplication and Division

*A flowchart of this algorithm, adapted for multiplication of 32-bit numbers,

is shown in Figure below; together with a schematic representation of a
simple ALU circuit that implements this version of the algorithm.

*Here, the multiplier and the multiplicand are shifted relative to each other,
which is more efficient than shifting the partial products alone. Figure (a)
Below: Start

b}

Rlultipliard = 1 MuMipliart = 0

1la. Add munltaplieend to produact and
place the result in Froduct regucter

r ¥

2 Shift tha Mfulaphcan d resister laft 1 hit

¥

2. Shift tha bfulhphar ==gster ight 1 bit

Mo = BZ rapatitions

Tee: BEE rapatticoms

Multiplication and Division

Muitiplicand

(b)

Figure: Second version of pencil-and-paper multiplication of 32-bit Boolean number
representations: (a) algorithm, and (b) schematic diagram of ALU circuitry.

Multiplication and Division

* Thus, we have the following shift-and-add scheme for multiplication:
 The preceding algorithms and circuitry does not hold for signed
multiplication, since the bits of the multiplier no longer correspond to shifts

of the multiplicand. The following example is illustrative:
Unsigned Signed

1011 11 -5
x 1101 13 -3
~T000TTTT 143 Rt
« Partial solution for negative multiplicands
1001 (9) 1001 (-7)
x 0011 (3) x 0011 (3)
00001001 1001 x 2° LTI11001 (-7yx20= (-7)
00010010 1001 x 2! 1110010 (-Tyx 2'= (-14)
00011011 (27) 11101011 (-21)

» No straightforward solution if multiplier is negative

Multiplication and Division

*A solution to this problem is Booth's Algorithm, whose flowchart
and corresponding schematic hardware diagram are shown in
Figure. Here, the examination of the multiplier is performed with
lookahead toward the next bit. Depending on the bit
configuration, the multiplicand is positively or negatively signed,
and the multiplier is shifted or unshifted.

Multiplication and Division

A solution to this problem is Booth's Algorithm, whose
flowchart and corresponding schematic hardware diagram are
shown in Figure. Here, the examination of the multiplier is
performed with look ahead toward the next bit. Depending on
the bit configuration, the multiplicand is positively or negatively
signed, and the multiplier is shifted or unshifted.

A A0, Q0

STAR M <+ Multiplicand
Q) «— Multiplier

Count +— n

= 01

L
A A -M A A + M

Arithmetic shift right:
e A.0Q.Q,

Count - Count -1

No ﬁt =0 Yes

?

(@)

END

Multiplication and Division

MNiultiplicand

SR.A
— - — = -
Mgy - - - g [Qaa - = Qo L
T
MNultiplicer

(b)

Figure. Booth's procedure for multiplication of 32-bit Boolean number representations:
(a) algorithm, and (b) schematic diagram of ALU circuitry.

Multiplication and Division

*Observe that Booth's algorithm requires only the addition of a
subtraction step and the comparison operations for the two-bit

codes, versus the one-bit comparison in the preceding
algorithms. An example of Booth's algorithm follows:

Initial values

7
X 3

0111)
0011)

A

Q Q,

M

0000

1001
1100

1110

0101
0010

0001

0011

0011
1001

0100

0100
1010

0101

0

0111

0111
0111

0111

0111
0111

0111

A=A-M
Shift

Shift

Shift

Shift

12

A=A|M}3

14

three

Multiplication and Division

*The ALU schematic diagram in given in Figure c. The analysis of

the algorithm and circuit is very similar to the preceding

discussion of Booth's

START Q «— Dividend
Count +— n, A «+— 0

algorithm.

M #—Divisor

I

Shift left: A, Q
A*A-M

No @ Yes

Q

| Q-0
AYA+M

4’{ Count ‘—i(.'nunt -1 |‘7

No Count=0 Yes

END

?

(a)

Quotient in
Remainder in A

Multiplication and Division

Unsigned Division. The unsigned division algorithm that is
similar to Booth's algorithm is shown in Figure a, with an example
shown in Figure b.

A Q M=0011
0000 0111 Initial values

0000 1110 Shift
1101 A=A-M ;|
0000 1110 A=A+M
0001 1100 Shift

1110 A=A-M ;2
0001 1100 A=A+M

0011 1000 Shift
0000 A=A-M b3
0000 1001 Q,=1

0001 0010 Shift
1110 A=A-M ¢ 4
0001 0010 A=A+M

V)

Multiplication and Division

*The ALU schematic diagram in given in Figure c. The analysis of the

algorithm and circuit is very similar to the preceding discussion of
Booth's algorithm.

Divisor

4> Add \ 32-bit
2 Subtract ALU

| 4” write 0

Control } 4 write 1
1 SLL

-)L\-.—___ r

3 A.%I b Ai] Q.?]

=0

s
Dividend

Figure . Division of 32-bit Boolean number representations: (a) algorithm, (b) example using
division of the unsigned integer 7 by the unsigned integer 3, and (c) schematic diagram of
ALU circuitry.

Multiplication and Division
Signed Division. With signed division, we negate the quotient if
the signs of the divisor and dividend disagree. The remainder and

the divident must have the same signs. The governing equation is
as follows:

» Remainder = Divident - (Quotient - Divisor) ,

 and the following four cases apply:

(+N)/(+3): Q=2
(T (3): Q=-2;
(+ND/(3) Q=-2
(-7)/(-3): Q=2

« Wk present the preceding division algorithm, revised for signed numbers. Four examples,
corresponding to each of the four preceding sign permutations, are given in Figure b andc.

Multiplication and Division

*We present the preceding division algorithm, revised for signed
numbers, as shown in Figure a. Four examples, corresponding to

each of the four preceding sign permutations, are given in Figure
b and c.

. A, Q 4+ Dividend
START *
M * Divisor, Count «— n

[

Shift left: A, Q
S q—A_“. Count «+— Count - 1

Restore A

Quotient in
Remainder in A

No Count=10 Yes END

?

@)

Multiplication and Division

We present the preceding division algorithm, revised for signed
numbers, as shown in Figure a. Four examples, corresponding
to each of the four preceding sign permutations, are given in
Figure b and c.

A Q M=0011 A Q M=1101
0000 0111 Initial values 0000 0111 Initial values
0000 1110 Shift | 0000 1110 Shift
1101 Subtract ¢ 1 1101 Add
0000 1110 Restore 0000 1110 Restore
0001 1100 Shift 0001 1100 Shift
1110 Subtract | 2 1110 Add 2
0001 1100 Restore 0001 1100 Restore
0011 1000 Shift 0011 1000 Sshift
0000 Subtract | 3 0000 Add 3
0000 1001 Q=1 0000 1001
0001 0010 Shift 0001 0010 ‘ah]ﬁ
1110 Subtract | 4 1110 Add 4
0001 0010 Restore 0001 Restore
(M1 3) (N /(-3)

(b)

Multiplication and Division

*We present the preceding division algorithm, revised for signed
numbers, as shown in Figure a. Four examples, corresponding to
each of the four preceding sign permutations, are given in

A Q M =0011 A Q M=1101
1111 1001 Initial values 1111 1001 Initial values
1111 0010 Shift - 1111 0010 Shift
0010 Add 0010 Subtract
1111 0010 Restore 1111 0010 Restore

1110 0100 "*h'ﬂ 1110 0100 Shift

0001 } 2 0001 Subtract] 2

1110 0100 Restore 1110 0100 Restore
Figure b and c. Figure. Divisio 1100 1000 :.,h.ﬂ 1100 1000 Shift division of +7 or -7 by the
integer +3 or -3; 1111 }3 1111 Subtract] 3

1111 1001 Qq:-—l 1111 1001 Q,=1

1111 0010 %h:ﬂ 1111 0010 Shifi

0010 } 4 0010 Subtract] 4

1111 Reqtnre 1111 0010 Restore

-1/ (3) -1/ (-3)

©)

Multiplication and Division

Figure : illustrates the MIPS ALU that supports integer arithmetic operations
(+1_1X1/)'

- Registers

— | v] =
- i
-
\ ALU ﬁ Sub I/ C:'M:ﬂl
Operation lk

A— Y ‘

—* Overflow

Memnsv address SLL/SRA

| | N

Hi Lo

Sequential Logic Circuits:

Sequential Logic Circuits:

1.
2.

Made up of combinational circuits and memory elements.
These memory elements are devices capable of storing

ONE-BIT information.

registers.

. Output depends on input and previous state.
Examples of sequential circuits are flip flops, counters, shift

Block Diagram of Sequential Circuits:

Outputs

-

Memory
Elements

Sequential Logic Circuits:

Combinational Circuits Based ALU
Bus

k-Input X | |k-InputY ||Select Circuit

LI - i ‘ o Result

Figure: Sequential Circuits Based ALU

Sequential Logic Circuits:

An ALU using Sequential Circuits:

A-bit Input k-bit Input
Y

-

|

Select
Subunit

Select Path

Flags

Other
arithmetic-
logic operation |-

ADDER/ [
SUBTRACTOR |-

Multiplexer
XOR

NOT

OR

Sequential Logic Circuits:

Counters-

It is essentially a register that goes through a predetermined
seqguence of states.

* Types of Sequential Circuits:

* Sequential circuits are of two types:
1. Synchronous Sequential Circuits

2. Asynchronous Sequential Circuits

Sequential Logic Circuits:

» Logic Diagram for Analysis Example:

A r,
=D =S
g—) >
C
73

Fz'
s— 1 O>— l
B
a= D>—3 > 2
c— >—
C

The circuits has 3 inputs A,B,C and 2 outputs F1, F2:
The Boolean function for outputs are:

e T1=A+B+C

e T2=ABC

o T3=F2‘T1

Outputs functions for gates are :

o F1=T3+T2

e F2=AB+AC+BC

Sequential Logic Circuits:

Substituting and Simplifying, we get:
Fr=Ty+T,=FT\ + ABC = {AB + AC + BC)(A + B + C) + ABC
=(A"+B) A"+ C')B" +C')NA+B+C)+ ABC
=(A"+B'C')AB + AC' + BC' + B'C) + ABC
=A'BC"+ A'B'C + AB'C' + ABC

Sequential Logic Circuits:

* Truth table drawn from the logic diagram:

= Truth table:

A B o T2 ™ =2 =2 ™ F1
o o o L) o o 1 o o
0 [}] 1 (0] 1 1] 1 1 1
o 1 o L] 1 o 1 1 1
(3] 1 1 (0] 1 1) o (1]
1 [}] [#] (] 1 o 1 1 1
1 (b] 1 (b] 1 1 'y o o
1 1 (¥ (B] 1 1 ‘¥) (1]
1 1 1 1 1 1 oy) 1

Boolean functions obtained for output are:
e F2=AB+AC+BC
e FI=A‘BC‘+A‘B‘C+AB‘C‘+ABC

Sequential Logic Circuits:

C +1 Condition

00 1 0 | No Carry
01 0 0 Generate

1 0 0 0 | No Carry
10 1 1 | Propogate

11 0 1 | Carry
1 1 1 1 Generate

Figure: Sequential Circuits Based ALU

Modified Booth Algorithm Encoder

*The figure shows the functional operation of the radix-4 booth
encoder that consists of eight different types of states. The

outcomes or multiplication of multiplicand with 0, -1, and -2 are
consecutively obtained during these eight states.

Booth recoding table for radix-4

Multuplier |Recoded -

Bits Block | 1-bit SRl podin
1i+1 |1 -1 i+1 1 | Multiplier | Partial

Value Product

0 |0 |0 0 0 |0 Mx0
0 0 1 0 1 |1 Mx1
0 1 0 1 -11]1 Mx1
0 1 0 1 0 |2 Mx2
1 0O |0 -1 0 |-2 Mx-2
1 0 1 -1 1 |-1 Mx-1
1 I 0 0 -1]-1 Mx-1
1 1 0 0 0O |0 Mx0

Figure - Booth Recoding Table for Radix-4

Booth’s Algorithm

Booth algorithm gives a procedure for multiplying binary
integers in signed 2‘s complement representation in efficient
way, i.e., less number of additions/subtractions required. It
operates on the fact that strings of 0‘s in the multiplier require
no addition but just shifting and a string of 1‘s in the multiplier
from bit weight 2k to weight 2*m can be treated as 2*(k+1) to
2 'm.

*As in all multiplication schemes, booth algorithm requires

examination of the
multiplier bits and shifting of the partial product. Prior to the

shifting, the multiplicand may be added to the partial product,
subtracted from the partial product, or left unchanged according
to following

Booth’s Algorithm

Rules:

1.The multiplicand is subtracted from the partial product upon
encountering the first least significant 1 in a string of 1’s in the
multiplier

2.The multiplier is added to the partial product upon
encountering the first 0 (provided that there was a previous _1)
in a string of O‘s in the multiplier.

3.The partial product does not change when the multiplier bit is
identical to the previous multiplier bit.

Booth’s Algorithm

Example — A numerical example of booth‘s algorithm is shown
below for n =

4. |1t shows the step by step multiplication of -5 and -7.

e MD=-5=1011, MD =1011, MD'+1 = 0101

e MR=-7=1001

The explanation of first step is as follows: Qn+1
e AC=0000, MR=1001,Qn+1=0,SC=4

* QnQn+1=10

So, we do AC + (MD)'+1, which gives AC= 0101
* On right shifting AC and MR, we get

e AC=0010, MR=1100andQn+1=1

Booth‘s Algorithm Flowchart

Product is calculated as follows:

Product = AC MR
Product = 0010 0011 =35

0000 1001 0 4
AC+MD* +1 0101 1001 0
ASHR 0010 1100 1 3
AC + MD 1101 1100 1
ASHR 1110 1110 0 2
ASHR 1111 0111 0 1
AC+MD* +1 0010 0011 1 0

Figure — Booth‘s Algorithm Flowchart

Division using Non-restoring Algorithm:

e Assume-- that there is an accumulator and MQ register, each
of k —bits.

e MQQO, (Isb of MQ) bit gives the quotient, which is saved after a
subtraction or addition.

e Total number of additions or subtractionsare k-only and
total number of shifts = k plus one
addition for restoring remainder if needed.

e Assume —that X register has (2k — 1) bit for dividend and Y
has the k -bit divisor.
e Assume — a sign-bit S shows the sign.

Division using Non-restoring Algorithm:

A has the remainder and MQ has the quotient

Step S-flag *| First Second | Action Taken Number of
Register for 4 | Register operations
for MQ (instructions)
Start 0 0b0000 0b0000 | Clear S, A, MQ 3 for
clearing C,
Aand M
0 0b0001 0b1110 Load dividend X (lower & bits) in 2 for loading
MQj._ 1 and MOy and dividend Aand MQ
higher k-1 bits in 4
Step 0A | 1110 1110 Subtract Y from S-A4, because S = 0 I
result in S-A
Step OB I |_~1110 - 1110 [MQp=0asS=1 |
Step 0C ! 101 7| 1100 | Shift left S-A-M 2

Floating Point Arithmetic

We will continue to use the decimal number system for our
numerical examples, but the Impact of the computer's use of
the binary number system will be felt as we discuss the way
those numbers are stored in the computer.

Floating Point Formats:

« Over the years, floating point formats in computers have not
exactly been

standardized. While the IEEE (Institute of Electrical and
Electronics Engineers) has developed standards in this area,
they have not been universally adopted.

Floating Point Arithmetic

 This is due in large part to the issue of "backwards
compatibility": when a hardware manufacturer designs a
new computer chip, they usually design it so that
programs which ran on their old chips will continue to
run in the same way on the new one.

 Since there was no standardization in floating point
formats when the first floating point processing chips
(often called "coprocessors" or "FPU"s: "Floating Point
Units") were designed, there was no rush among
computer designers to conform to the IEEE floating point
standards (although the situation has improved with
time).

Floating Point Arithmetic

* From the last example, it is easy to see that a 20 bit significand
provides just over 6 decimal digits of precision.

* In the other examples, there is more precision than we have
indicated.

e For example, a 16 bit significand is certainly sufficient to
represent many decimal numbers with more than 4 digits;
however, not all 5 digit decimal numbers can be represented
in 16 bits, and so the precision of a 16 bit significand is said to
be "> 4" (but less than 5).

 Some texts attempt to more accurately describe the precision
using fractions, but we do not feel the need to do so.

*The

Floating Point Arithmetic

well as those used in common Intel processors:

following table describes the IEEE standard formats as

Precision Sign Exponent Signiﬁcand Total Length Decimal digit_s
(# of bits) (|(# of bits) [|(# of bits) |(in bits) of precision

IEEE / Intel single 1 8 23 32 >6

IEEE single extended |1 >=11 >=32 >=44 >0

IEEE /Intel double |1 11 52 64 > 15

IEEE double extended |1 >=15 >= 04 >= 80 >19

Intel intemal 1 15 64 80 >19

Coprocessor

History Of Co-Processor:

Co-processor for floating point arithmetic first appeared in desktop computers
in 1970s.

The coprocessors become common in 1980s and into the early 1990s.

Early 8 Bit and 16 Bit processor uses software to carry out the floating point
arithmetic

operations.

Math co-processor was popular purchase for users of computer-aided design
(CAD)

software and scientific and engineering calculations.

OPERATION PERFORMED BY COPROCESSOR

e Floating point arithmetic

e Graphic & Signal processing.

e String processing.

e Encryption

e Coprocessors are Unable to fetch the code from the memory so they work
under the control of main processor.

Coprocessor

Architecture of 8087:
INTEL 8087
eNumeric Processor.

ePacked in 40 pin ceramic DIP package.
eAvailable in 5 MHz, 8MHz, 10MHz versions compatible with
8086, 8088, 80186, 80188.

elt adds 68 new instruction to the instruction set of 8086.

Architecture of 8087

: T Mumeric Execution T -
1 Contral Kot . Linit Expirmiant Crhen
. Bun Bus

Expanent L. . L — 1
i POEE | § ProgramiriEiee
4 | R o - / Shiftar

i EribiaeTorce

e | _—

. .
Mew Instructionn | Microcode |
o Corteod |

| k

At lie
RloecTisher

|
i 1 o |
;

it

Crata +"'" BuFer] (K243 i

Oparands iﬂ-_. SRS -)
Chugue ; s — i
; A e Roglisters i
¢ ! i | i
: A1 | i
. 16 | i
|] ! 3 B g
| I T ' (6) ?
i i A o E

i I i =
! ! 8 (43 |

. : i rESSIg B P i .

SrauS _“. p—-: His T;—;_.y;!u;_in“ i I:_rr ‘ S — if; ?
| [Excopton 1 I | e :
Addragn ey Pointers Pl R B E— (0} i

— B0 BiTD

1 qul\a 7 N\ viliILtvuiLlul v VI UVUI1I I_I\'.llul 1ALivi i

Architecture of 8087

Two major sections:
1)Control unit
2)Numeric Execution unit

Control Unit
eFunction:

e[t interfaces the coprocessor to the microprocessor — system data

bus.

eMonitors the instruction stream. If the instruction is an Escape
(coprocessor) instruction, the coprocessor executes it; if not the
microprocessor executes it.

o[t receives, decodes instructions, read and write memory operands

and executes the 8087 instruction

Architecture of 8087

Numeric Execution Unit (NEU)

Functions:
Execute all the numeric processor instructions.
It has 8 register (80 bit) stacks that hold the
operands for arithmetic instructions & the result.

Instruction either address data in specific stack data — register
or uses push and pop mechanism to store or retrieve data.

Micro instructions

*Thus a microinstruction is in primary control-store memory, it
then has the control signals generated for each microinstruction
using a secondary control store memory The output word from

the secondary memory is called Nano instruction.
*The uCM stores micro instructions whereas nCM stores nano

instructions.

°The decoder uses Nano instructions from nCM
to generate control signals.

*Thus Nano programming gives an alternative strategy to
generate control signals. The process of generation of control
signals using nano instructions is shown in Figure

Micro instructions

From Sequencer

L2

Micro program
counter

1

icro control
emory

icro
nstruction
egister

Nano program
CounterinPC)

L |

ano Control
emory(nCM)

1 |

Nano Instructions
Register{niR)

Wl il

Control Signals Figure - Nano Programming.

Micro instructions

Advantages of Nano programming

Reduces total size of required control memory

In two level control design technique, the total control memory size S2can be
calculated as

52=HmxWm+HnxWn

Where H-mn represents the number of words in the high level memory

Wm

represents the size of word in the high level memory

Hn represents the number of words in the low level memory

Whn represents the size of word in the low level memory
Usually, the micro programs are vertically organized so Hm is large and Wm is

small. In Nano programming, we have a highly parallel horizontal organization,
which makes Wn large and Hnis small. This gives the compatible

size for single level control unit as S1=Hmx Wn which is larger than S2. The
reduced size of control memory reduces the total chip area.

Micro instructions

Greater design flexibility
Because of two level memories organization more design
flexibility exists between instructions and hardware.

Disadvantage of Nano programming
1. Increased memory access time:
The main disadvantage of the two level memory approaches is the

loss of speed due to the extra memory access required for Nano
control memory.

Modified Booth Algorithm

*Booth multiplication algorithm consists of three major steps as shown in the
structure of booth algorithm figure that includes generation of partial product
called as recoding, reducing the partial product in two rows, and addition

that gives final product.
*For a better understanding of modified booth algorithm & for multiplication,

we must know about each block of booth algorithm for multiplication

process.

Multlpllcand A

‘ Partial Product Generator l

1

Japooua

Multiplier B —T

‘ Final Product

Product A*B

Figure - Modified Booth Algorithm.

Modified Booth Algorithm Encoder

*This modified booth multiplier is used to perform high-speed

multiplications using modified booth algorithm. This modified booth
multiplier’s computation time and the logarithm of the word length of
operands are proportional to each other.

*We can reduce half the number of partial product. Radix-4 booth
algorithm used here increases the speed of multiplier and reduces the
area of multiplier circuit. In this algorithm, every second column is
taken and multiplied by O or

+1 or +2 or -1 or -2 instead of multiplying with 0 or 1 after shifting and
adding

of every column of the booth multiplier.

*Thus, half of the partial product can be reduced using this booth
algorithm. Based on the multiplier bits, the process of encoding the
multiplicand is performed by radix-4 booth encoder.

Modified Booth Algorithm

*The overlapping is used for comparing three bits at a time. This
grouping is started from least significant bit (LSB), in which only
two bits of the booth multiplier are used by the first block and a
zero is assumed as third bit as shown in the figure.

111000110

Figure - Bit Pairing as per Booth Recoding

Modified Booth Algorithm

*The figure shows the functional operation of the radix-4 booth encoder that
consists of eight different types of states. The outcomes or multiplication of
multiplicand with O, -1, and -2 are consecutively obtained during these eight

states.

Booth recoding table for radix-4

Muluplier |Recoded -
Bits Block | 1-bit pair = boch
i+1]i [ic1 |i+1 [i [Multiplier |Partial
Value Product
o o [0 Jo 0 |o Mx0
o o |1 o 1 |1 Mx1
0o |1 [0 |1 1|1 Mx1
o |1 o |1 0 |2 Mx2
1 o o -1 |o |2 Mx_2
R i Mx-1
& [E [0 b EHE Mx-1
1 |t o o 0 |o Mx0

Figure - Booth Recoding Table for Radix-4

Modified Booth Algorithm

The steps given below represent the radix-4 booth algorithm:
Extend the sign bit 1 position if necessary to ensure that n is even.

Append a 0 to the right of the least significant bit of the booth
multiplier.

According to the value of each vector, each partial product will be 0,
+y, -y, +2y or -2y.

ﬁ Y
q2j-1

qu—J
T

i

q2j+1 Neg

MUX | oy

I [~

Figure - Booth’s Encoder.

Modified Booth Algorithm

Modified booth multiplier’s (Z) digits can be defined with the
following equation:

The figure shows the modified booth algorithm encoder
circuit.Now, the product of any digit of Z with multiplicand Y may
be -2y, -y, 0, y, 2y. But, by performing left shift operation at partial
products generation stage, 2y may be generated. By taking 1‘s
complement to this 2y, negation is done, and then one is added in
appropriate 4-2 compressor. One booth encoder shown in the
figure generates three output signals by taking three consecutive
bit inputs so as to represent all five possibilities -2X, -X, 0, X, 2X.

Y

Y 2¥ Neg
Figure - Partial Product Generator.

Partial
Product

Modified Booth Algorithm

*Hence, to design n-bit parallel multipliers only n2 partial
products are generated by using booth algorithm. Thus, the
propagation delay to run circuit, complexity of the circuit, and
power consumption can be reduced. A simple practical example
to understand modified booth algorithm is shown in the figure

below.
6*2=12
6 =0110
2=0010
Qo Q;
0 0
1 1
1 0
0 1

A Q Q.1 =0010
0000 0010 0
0000 0001 0
1010 0001 0
1101 0000 1
0011 0000 1
0001 1000 0
0000 1100 0

Figure -Practical Multiplication Example using Modified BoothAlgorithm

UNIT Il
CONTROL DESIGN

CLO’s Course Learning outcomes

CLO1 Understand the connections among the circuits and the functionalities in the
hardwired control unit.

CLO2 Describe the design of control unit with address sequencing and
microprogramming Concepts.

CLO3 Describe the concepts CPU control unit, Pipeline control, instruction pipeline.

CLO4 Understand the functionality of super scalar processing and Nano
programming.

133

Hardwired control

There are two major types of control organization:
l.Hardwired control

Il.Micro programmed control

In the hardwired organization, the control logic is implemented
with gates, flip-flops, decoders, and other digital circuits. It has the
advantage that it can be optimized to produce a fast mode of
operation. In the microprogrammed organization, the control
information is stored in a control memory. The control memory is
programmed to initiate the required sequence of
microoperations. A hardwired control, as the name implies,
requires changes in the wiring among the various components if
the design has to be modified or changed. In the
microprogrammed control, any required changes or modifications
can be done by updating the microprogram in control memory.

Hardwired control

* The block diagram of the control unit is shown in Fig. 5-6. It
consists of two decoders, a sequence counter, and a number
of control logic gates. An instruction read from memory is
placed in the instruction register (IR). The position of this
register in the common bus system is indicated . The
instruction register is shown again , where it is divided into
three parts: the | bit, the operation code, and bits O through 1
1. The operation code in bits 12 through 14 are decoded with
a 3 x 8 decoder. The eight outputs of the decoder are
designated by the symbols DO through D7

Hardwired control

® The subscripted decimal number is equivalent to the binary
value of the corresponding operation code. Bit 15 of the
instruction is transferred to a flip-flop designated by the
symbol |. Bits O through 11 are applied to the control logic
gates. The 4-bit sequence counter can count in binary from 0

through 15. The outputs of the counter are decoded into 16
timing signals TO through T15

A 2x2 binary multiplier

The AND gates produce the partial products.

*For a 2-bit by 2-bit multiplier, we can just use two half
adders to sum the partial products

. In general, though, we’ll need full adders.

*Here C3-COare the product, not carries!

I l
c3 Cc2 c1 co

A 2x2 binary multiplier

* Notice that this 4-bit multiplier produces an 8-bit result.
We could just keep all 8 bits.

Or, if we needed a 4-bit result, we could ignore C4-C7, and
consider it an overflow condition if the result is longer than
4bits.

* Multipliers are very complex circuits.

In general, when multiplying an m-bit number by an n-bit
number:

There are n partial products, one for each bit of the multiplier.

This requires n-1 adders, each of which can add m bits (the size
of the multiplicand).

The circuit for 32-bit or 64-bit multiplication would be huge!

A 2x2 binary multiplier

* In decimal, an easy way to multiply by 10 is to shift all the
digits to the left, and
tack a 0 to the right end.

128x 10 =1280
* We can do the same thing in binary. Shifting left is equivalent
to multiplying by 2:
11x 10 = 110(in decimal, 3 x 2 =6)
* Shifting left twice is equivalent to multiplying by 4:

11x 100 = 1100(in decimal, 3 x4 =12)
* As an aside, shifting to the right is equivalent to dividing by
2.

110’10 = 11(in decimal, 6’2 =3)

Multiplication

10 IVLE

= Test Q —

« If1,add B L
= Recall that MUL1
done all at same
time Aohe
= What happens to C? - -
= Test counter zero c-ociala: xclAla

\/

Recall: Multiplier

n—1 IN
n

l Multiplicand

[oenf T

Zero detect

G (Go) Cou Parallel adder

.)
=4 ”& ny |
Control | Qs ¥ Multiplier
unit
0—= C | Shift register A - Shift register Q

41/ &
n
y Product A

trol al v
Control signals ouT

A 2x2 binary multiplier

The AND gates produce the partial products.

*For a 2-bit by 2-bit multiplier, we can just use two half
adders to sum the partial products

In general, though, we’ll need full adders.

*Here C3-COare the product, not carries!

A0 ®

I|3|1 B|0
B, Bo L] L ‘
X |A1 Ao -~ ~
ol , AOB1 AOBO
AoB:r AoBo B1 BO
+ A181 AIBO
Cs C, Ci Co
A1B1| A1BO
L =
¥ % Y X
c S cC s
[l

L]
c3 €2 ct co

A 2x2 binary multiplier

Notice that this 4-bit multiplier produces an 8-bit result.

We could just keep all 8 bits. Or, if we needed a 4-bit result,
we could ignore C4-C7, and consider it an overflow
condition if the result is longer than 4bits.

Multipliers are very complex circuits.

In general, when multiplying an m-bit number by an n-bit
number:

There are n partial products, one for each bit of the
multiplier.

This requires n-1 adders, each of which can add m bits (the
size of the multiplicand).

The circuit for 32-bit or 64-bit multiplication would be huge!

A 2x2 binary multiplier

* In decimal, an easy way to multiply by 10 is to shift all the
digits to the left, and tack a O to the right end.

128x 10 = 1280

 We can do the same thing in binary. Shifting left is equivalent
to multiplying by 2:
11x 10 = 110(in decimal, 3 x 2 = 6)

» Shifting left twice is equivalent to multiplying by 4:
11x 100 = 1100(in decimal, 3 x4 = 12)

* As an aside, shifting to the right is equivalent to dividing by 2.
110+10 =11(in decimal, 6 +2 = 3)

Multiplication

10 IVLE

= Test Q —
« If1,add B |
= Recall that MUL1
done all at same
time Aohe
= What happens to C? - -
= Test counter zero c-ociala: xclAla

\/

Recall: Multiplier

n—-1 IN
n

{ Multiplicand

[rond T

Zero detect
G (Go) Cou Parallel adder
Z
-« n& i .
Control | Qs ¥ Multiplier W
Lnit
00— C = Shift register A = Shift register Q

41/ &
n
y Product A

trol al v
Control signals ouT

Pipeline Controller

The AND gates produce the partial products.

*For a 2-bit by 2-bit multiplier, we can just use two half
adders to sum the partial products

In general, though, we’ll need full adders.

*Here C3-COare the product, not carries'

fB1 BO
| | ’ | ‘
LJ L_/’
—— , AOB1 AORO
B1 BO
B1 Bo
X |A1 AO A1B1] A1BO
AoBi AoBo IS

+ AIBI AIBO Y X Y X

C3 Cz Cl Co C) C S

] [

-
c3 ¢2 1 co

Pipeline Controller

Notice that this 4-bit multiplier produces an 8-bit result.
We could just keep all 8 bits.

Or, if we needed a 4-bit result, we could ignore C4-C7, and
consider it an overflow condition if the result is longer than
4bits.

Multipliers are very complex circuits.

In general, when multiplying an m-bit number by an n-bit
number:

There are n partial products, one for each bit of the multiplier.

This requires n-1 adders, each of which can add m bits (the size
of the multiplicand).

The circuit for 32-bit or 64-bit multiplication would be huge!

Multiplication

10 IVLE

s Test Q, i
« If 1, add B

= Recall that MUL1
done all at same
time (nr)
= What happens to C?

= | est counter zero [e oanno srcllAl,

P P—1

\/

Recall: Multiplier

n—-1 IN
n
i Multiplicand
Counter P Register B
[ear]f T
Zero detect
G (Go) Cout Parallel adder
o "i nt
Control Q, ¥ Multiplier
unit T
0—» C = Shift register A =| Shift register Q

41 &
n
A Product A

t al N
Control signals auT

Pipeline Controller

The AND gates produce the partial products:

*For a 2-bit by 2-bit multiplier, we can just use two half
adders to sum the partial products

In general, though, we’ll need full adders.

*Here C3-COare the product, not carries!

A0 -

B BO
B; Bo E_L‘ J_‘
X |A1 Ao) [_/{
AOBI AoBo Al e AOB1 AOBO
i A181 AIBO
Cs C, Ci Co
A1B1| A1BO
l =
¥ X Y X
C S C S
1 L1

I I |
c3 C2 C1 co

Pipeline Controller

Notice that this 4-bit multiplier produces an 8-bit result.
We could just keep all 8 bits.

Or, if we needed a 4-bit result, we could ignore C4-C7, and
consider it an overflow condition if the result is longer than
4bits.

Multipliers are very complex circuits.

In general, when multiplying an m-bit number by an n-bit
number:

There are n partial products, one for each bit of the multiplier.

This requires n-1 adders, each of which can add m bits (the size
of the multiplicand).

The circuit for 32-bit or 64-bit multiplication would be huge!

Pipeline Controller

* In decimal, an easy way to multiply by 10 is to shift all the
digits to the left, and tack a O to the right end.

128x 10 = 1280

 We can do the same thing in binary. Shifting left is equivalent
to multiplying by 2:
11x 10 = 110(in decimal, 3 x 2 = 6)

» Shifting left twice is equivalent to multiplying by 4:
11x 100 = 1100(in decimal, 3 x4 = 12)

* As an aside, shifting to the right is equivalent to dividing by 2.
110+10 =11(in decimal, 6 +2 = 3)

Multiplication

10 IVLE

= Test Q i

« If 1, add B e
= Recall that MUL1
done all at same
time Aohe
= What happens to C? - -
= Test counter zero c-ociala: xclAla

\/

Recall: Multiplier

n—1 IN
& &
l Multiplicand

[eon g T

Zero detect

G (Go) Cou Parallel adder

.)
-« . i
Control | Qs Multiplier
unit
00— —» Shift register A - Shift register Q

]

Control signals

n&
Product A

ouT

Pipeline Controller

The AND gates produce the partial products.

* For a 2-bit by 2-bit multiplier, we can just use two half
adders tosum the partial products

* In general, though, we’ll need full adders.

* Here C3-COare the product, not carries!

AD <

B BO

s 5, ())

A0B1 AOBO

| .
c3 C2 C1 CO

Pipeline Controller

Notice that this 4-bit multiplier produces an 8-bit result.
We could just keep all 8 bits.

Or, if we needed a 4-bit result, we could ignore C4-C7, and
consider it an overflow condition if the result is longer than
4bits.

Multipliers are very complex circuits.

In general, when multiplying an m-bit number by an n-bit
number:

There are n partial products, one for each bit of the multiplier.

This requires n-1 adders, each of which can add m bits (the size
of the multiplicand).

The circuit for 32-bit or 64-bit multiplication would be huge!

Pipeline Controller

* In decimal, an easy way to multiply by 10 is to shift all the
digits to the left, and tack a O to the right end.

128x 10 = 1280

* We can do the same thing in binary. Shifting left is equivalent
to multiplying by 2:
11x 10 = 110(in decimal, 3 x 2 = 6)

* Shifting left twice is equivalent to multiplying by 4:
11x 100 = 1100(in decimal, 3 x4 = 12)

* As an aside, shifting to the right is equivalent to dividing by 2.
110+10=11(in decimal, 6 +2 = 3)

Multiplication

10 IVLE

= Test Q —
« If 1, add B |
= Recall that MUL1
done all at same
time Aohe
= What happens to C? - -
= Test counter zero c-ociala: xclAla

\/

Recall: Multiplier

Multiplier

n—1 IN
& &
l Multiplicand
Counter P Register B
[orl T
Zero detect
G (Go) Cou Parallel adder
.)
2| &
Control Q,
unit
00— —» Shift register A

]

Control signals

\J

Shift register Q

n&
Product A

ouT

Introduction

* |In conventional micro programmed computers each instruction
fetched from main memory is interpreted by micro program
stored in a single control memory CM.

 The micro instructions do not directly issue the signals that
control the
hardware.

* They are used to access a second control memory termed a
nano control memory nCM, that directly controls the

hardware.

2 LEVELS OF CONTROL MEMORY
* Micro controlled memory- higher level
* Nano control memory(Nano instructions)-lower level

Nano Instructions

* Thus a microinstruction is in primary control-store memory, it
then has the control signals generated for each microinstruction
using a secondary control store memory The output word from

the secondary memory is called Nano instruction.
* The uCM stores micro instructions whereas nCM stores nano

Instructions.

* The decoder uses Nano instructions from nCMto
generate control signals.

* Thus Nano programming gives an alternative strategy to
generate control signals. The process of generation of control
signals using nano instructions is shown in Figure

Micro Controller

CoOoOumMmteT I

LR = o -
FErSEITroicTiomn
el st

Narmno prograrm
CosamTerimETT)

E 3

Samno Comt o8
eryscarwilCRAA)

u

MN=ar»wy I =STtTructionm=s
RegrsTtTerimi =)

l
| N O oyl |

Comirol Sigmails

Figure - Nano Programming.

Micro Controller

* Nano instruction addresses are generated by a nano program
counter and nano instructions are placed in a register nIR.

* The next address of nIR is directly obtained.

e The next address is generated by either incrementing the
nano program counter or loading it from external source
(branch field or address from micro instruction opcode)

Nano Programming

Advantages of Nano programming
Reduces total size of required control memory

In two level control design technique, the total control memory size
S2can be calculated as S2=HmxWm+HnxWn

Where H-mn represents the number of words in the high level
memory Wm represents the size of word in the high level memory
Hn represents the number of words in the low level memoryWn
represents the size of word in the low level memory

Usually, the micro programs are vertically organized so Hm is large
and Wm is small. In Nano programming, we have a highly parallel
horizontal organization, which makes Wn large and Hnis small. This
gives the compatiblesize for single level control unit as S1=Hmx Wn
which is larger than S2. The reduced size of control memory reduces
the total chip area.

Nano Programming

Greater design flexibility
Because of two level memories organization more design
flexibility exists between instructions and hardware.

Disadvantage of Nano programming
1. Increased memory access time:
The main disadvantage of the two level memory approaches is the

loss of speed due to the extra memory access required for Nano
control memory.

UNIT IV
MEMORY ORGANIZATION

CLO’s Course Learning outcomes

CLO1 Understand the concept of memory hierarchy and different typed of memory
chips.

CLO2 Describe the concepts of magnetic surface recording, optical memories

CLO3 Understand the cache and virtual memory concept in memory organization.

CLO4 Describe the hardware organization of associate memory and understand the

read and write operations.

168

RAM ACCESS MEMORIES

Introduction to Memory:

A memory unit is the collection of storage units or devices
together.

The memory unit stores the binary information in the form of
bits.

*Generally, memory/storage is classified into 2 categories:

1.Volatile Memory: This loses its data, when power is switched
off.

2.Non-Volatile Memory: This is a permanent storage and does
not lose any data when power is switched off.

RAM ACCESS MEMORIES

Memory Hierarchy:-

Increasing order of
access time ratio

Register
Memory

Cache
Memory

Main Memory

Magnetic Disks

Magnetic Tapes

Primary Memory

Aucxillary
Memory

RAM ACCESS MEMORIES

 The total memory capacity of a computer can be visualized by
hierarchy of components.

* The memory hierarchy system consists of all storage devices
contained in a computer system from the slow Auxiliary
Memory to fast Main Memory and to smaller Cache memory.

Auxiliary Memory:

Auxiliary memory access time is generally 1000 times that of
the main memory, hence it is at the bottom of the hierarchy.

Main Memory:

The main memory occupies the central position because it is

equipped to communicate directly with the CPU and with
auxiliary memory devices through Input/output processor

(1/0).

RAM ACCESS MEMORIES

Magnetic Tapes

10 Processar

Main Memory

Magnetic disk

CPU

Cache Memary

RAM ACCESS MEMORIES

 Each memory is a collection of numerous memory locations.
To access data from any memory, first it must be located and
then the data is read from the memory location. Following
are the methods to access information from memory
locations:

1. Random Access: Main memories are random access
memories, in which each memory location has a unique
address. Using this unique address any memory location can
be reached in the same amount of time in any order.

2. Sequential Access: This methods allows memory access in a
seqguence or in order.

3. Direct Access: In this mode, information is stored in tracks,
with each track having a separate read/write head.

RAM ACCESS MEMORIES

Main Memory:

*The memory unit that communicates directly
within the CPU,Auxillary memory and Cache memory, is
called main memory.

* [t is the central storage unit of the computer system.
It is a large and fast memory used to store data during

computer
operations.

* Main memory is made up of RAM and ROM, with RAM
integrated circuit chips holing the major share.

MEMORY ACCESS METHODS

RAM: Random Access Memory

a)DRAM: Dynamic RAM, is made of capacitors and transistors, and

must be refreshed every 10~100 ms. It is slower and cheaper than
SRAM.

b)SRAM: Static RAM, has a six transistor circuit
in each cell and retains data, until powered off.

c)NVRAM: Non-Volatile RAM, retains its data, even when turned
off.

Example: Flash memory.

MEMORY ACCESS METHODS

ROM:Read Only Memory, is non-volatile and is more like a
permanent storage for information. It also stores the bootstrap
loader program, to load and start the operating system when
computer is turned on.

Types of ROM

a) PROM(Programmable ROM)

b) EPROM(Erasable PROM) and

c) EEPROM(Electrically Erasable PROM)

MEMORY ACCESS METHODS

Auxiliary Memory

 Devices that provide backup storage are called auxiliary
memory.

 For example: Magnetic disks and tapes are commonly used
auxiliarydevices.

* Other devices used as auxiliary memory are magnetic
drums,magnetic bubble memory and optical disks.

* It is not directly accessible to the CPU, and is accessed using
the Input/Output channels.

MEMORY ACCESS METHODS

Cache Memory

*The data or contents of the main memory that are used again
and again by CPU, are stored in the cache memory so that we
can easily access that data in shorter time.

*Whenever the CPU needs to access memory, it first checks the
cache memory.

*If the data is not found in cache memory then the CPU moves
onto
the main memory.

|t also transfers block of recent data into the cache and keeps on
deleting the old data in cache to accomodate the new one.

MEMORY ACCESS METHODS

Hit Ratio

 The performanceof cache memoryis measuredin terms of
a quantity called hit ratio.

* When the CPU refers to memory and finds the word in cache
it is said to produce a hit.

* If the word is not found in cache, it is in main memory then it
counts as a miss.

e The ratio of the number of hits to the total CPU references
to memory is called hit ratio.

Hit Ratio = Hit/(Hit + Miss)

MEMORY ACCESS METHODS

* In random-access memory(RAM) the memory cells can be
accessed for information transfer from any desired random
location.

 That is, the process of locating a word in memory is the same
and requires an equal amount of time no matter where the
cells are located physically in memory.

e Communication between a memory and its environment is
achieved through data input and output lines, address
selection lines, and control lines that specify the direction of
transfer.

MEMORY ACCESS METHODS

 The n data input lines provide the information to be stored in

memory, and the n data output lines supply the information
coming out of particular word chosen among the 2kavailable
inside the memory.

The two control inputs specify the direction of transfer
desired.

Write and Read Operations:-

The two operations that a random access memory can
perform are the write and read operations.

The write signal specifies a transfer-in operation and the read
signal specifies a transfer-out operation.

MEMORY ACCESS METHODS

* On accepting one of these control signals.

 The internal circuits inside the memory provide the desired
function.

The steps that must be taken for the purpose of transferring a
new word to be stored into memory are as follows:

1. Apply the binary address of the desired word into the address
lines.

2. Apply the data bits that must be stored in memory into the
data input lines.

3. Activate the write input.

MEMORY ACCESS METHODS

* The memory unit will then take the bits presently available in
the input data lines and store them in the specified by the
address lines.

The steps that must be taken for the purpose of transferring a
stored word out of memory are as follows:

1. Apply the binary address of the desired word into the
address lines.

2. Activate the read input.The memory unit will then take the
bits from the word that has been selected by the address and
apply them into the output data lines. The content of the
selected word does not change after reading.

SERIAL ACCESS MEMORIES

Serial Access Memories:-

*Sequential access is a process used for retrieving data from a
storage device.

It is also known as serial access. In sequential access, the
storage device moves through all information up to the point it
is attempting to read or write.

*An example of sequential access drive is a tape drive where the
drive moves the tape forward or backward until the destination
is reached. Sequential access memory can also be called
"storage system."

*The data is stored and read in a sequential fixed order.
Sequential access is the type of memory mostly used for
permanent storage, whereas, random access memory is used
for temporary storage.

SERIAL ACCESS MEMORIES

Serial Access Devices:-

* Old recording media such as CDs, DVDs, and magnetic tapes are
examples of sequential access memory drives.

* Hard drive is also an example of sequential access memory.
Examples of random access memory include memory chips and
flash memory (such as memory sticks or memory cards).

SERIAL ACCESS MEMORIES

Difference between Sequential Access and Random Access:-

* Comparing sequential versus random disk operations helps to
assess systems efficiency.

* Accessing data sequentially is faster than random operations,
because it involves more search functions.

* The search operation is performed by the right disk cylinder. It
occurs when the disk head positions itself to access the data
requested for.

* More ever, random access delivers a lower rate of output.

* If the disk access is random, it is advisable to pay attention and
monitor for the emergence of any bottleneck.

SERIAL ACCESS MEMORIES

* For workloads of either random or sequential input/output, it
is advisable to use drives with faster rotational speeds.

* For workloads that are predominantly random input/output, it
is advisable to use a drive with faster search time.

SERIAL ACCESS MEMORIES

Disadvantages of Sequential Access:-

*The number of records that are affected when updating a file
refers to its hit rate.

°Let us consider a file with 5000 records; if there is a delete or an
update operation affecting only 50 records, then the hit rate is
very low.

*If there are 4500 records that are affected by update or delete
operations, then the hit rate is high.

*Sequential access is found to be slow when the hit rate is low.

It is due to the fact that sequential access has to search all the
records in a particular order.

*Moreover, sequential files are executed in a batched transaction
to overcome the problem of low hit rate.

RAM INTERFACES

The data RAM shown below is organized as 8 ways 256-bit
wide contiguous memories. It supports the followingaccesses:

» 8 word data reads

» n * 8 bits data writes with byte enables controls

» 8 word data writes for linefills.

RAM INTERFACES

Aty waytH256 bits)
Addr1 wayl (256 bits)
Addr2 way0 (256 bits)
Addr{N-1) way((256 bits)
Addid way1 (256 bits)
Addri+1 way1 (256 bits)
Addri+2 way1 (256 bits)
Addr{2"N-1) way1 (256 bits)
AddrT*N wayT (256 bits)
Addrih+1 wayT (256 bits)
AddrT*N+2 wayT (256 bits)
Addr(8*N-1) wayT (256 bits)

128KB

256KEB

512KB
1MB
ZMB

512
1,024
2,048
4,096
8,192

RAM INTERFACES

L2CC

le———DATAERR

HATAADDRUS 0] =p
DATACS ————»

peee DATAEN[31:0] =
pee DATAWD([255:0] =P
==DATARD[255:0] s
DATANRW ———»
e DATAPWD([31:0] =p
1= DATAPRD[31:0] s
o DATAPNRW e
preees DATAPEN[31:0] ==

Data

RAM INTERFACES

*The dirty RAM shown belowis organized as a 16-bit wide
memory, 2 bits per 8-word cache line.

*The dirty RAM address is the same as the tag RAM address
bus.

*|t supports the following accesses:
1. 16 bit dirty reads for write-back eviction on a linefill.
2. 16 bit dirty reads for cache maintenance operations.
3. 1 or 2 bitdirty writes for writes and allocations.

RAM INTERFACES

L2 Cache Size M=
128KB 212
256KB 1,024
212KB 2,048

1MB 4,006
ZMB 8,192

RAM INTERFACES

way7 | way7 | way6 | way6 | way5 | way5 | way4 | way4

word | word | word | word | word | word | word | word

7-4 3-0 7-4 3-0 7-4 3-0 7-4 3-0

Addr0 | idx0 | idx0 | idx0 | idxO0 | idx0 | idx0 | idx0 | idx0
dirty | dirty | dirty | dirty | dirty | dirty | dity | dirty
way3 | way3 | way2 | way2 | way1 | way1 | wayO | way0

word | word | word | word | word | word | word | word

ol -4 3-0 7-4 3-0 7-4 3-0 7-4 3-0

idx0 | idx0 | idx0 | idx0 | idx0 | idx0 | idx0 | idx0

dirty | dirty | dirty | dirty | dirty | dirty | dity | dirty
way7 | way7 | way6 | way6 | way5 | way5 | way4 | way4

word | word | word | word | word | word | word | word

7-4 3-0 7-4 3-0 7-4 3-0 7-4 3-0

Addr1 idx1 | idx1 | idx1 | idx1 | idx1 [idx1 | idx1 | idx1
dirty | dity | dirty | dirty | dirty | dirty | dirty | dirty
way3 | way3 | way2 | way2 | way1 | way1 | wayO | way0

word | word | word | word | word | word | word | word

7-4 3-0 7-4 3-0 7-4 3-0 7-4 3-0

idx1 idx1 idx1 idx1 idx1 idx1 idx1 idx1

dirty | dirty | dirty | dirty | dirty | dirty | dity | dirty

AddrN-1 |

RAM INTERFACES

The tag RAM format:

20 1918 17:0

Tag

NS attribute

Valid

Parity, optional

MAGNETIC SURFACE RECORDING

e A disk is a circular platter constructed of nonmagnetic
material,called the substrate, coated with a magnetizable
material.

* Traditionally, the substrate has been an aluminum or
aluminum alloy material. More recently, glass substrates have
been introduced.

* The glass substrate has a number of benefits, including the

following:

1. Improvement in the uniformity of the magnetic film
surface to increase disk reliability;

2. Asignificant reduction in overall surface defects to
help reduce readwrite errors;

3. Ability to support lower fly heights (described
subsequently);

4. Better stiffness to reduce disk dynamics; and

5. Greater ability to withstand shock and damage.

MAGNETIC SURFACE RECORDING

Magnetic Read and Write Memory:-

* Magnetic disks remain the most important component of
external memory.

* Both removable and fixed, or hard, disks are used in systems
ranging from personal computers to mainframes and
supercomputers.

e Data are recorded on and later retrieved from the disk via a
conducting coil named the head. In many systems, there are two
heads, a read head and a write head.

e During a read or write operation, the head is stationary while
the platter rotates beneath it.

MAGNETIC SURFACE RECORDING

Inductive write/Magetoresistive Read Head

MAGNETIC SURFACE RECORDING

* The write mechanism exploits the fact that electricity flowing
through a coil produces a magnetic field.

* Electric pulses are sent to the write head, and the resulting
magnetic patterns are recorded on the surface below, with
different patterns for positive and negative currents.

* The traditional read mechanism exploits the fact that a
magnetic field moving relative to a coil produces an electrical
current in the coil.

e When the surface of the disk passes under the head, it
generates a current of the same polarity as the one already
recorded.

MAGNETIC SURFACE RECORDING

* The structure of the head for reading is in this case essentially
the same as for writing and therefore the same head can be
used for both. Such single heads are used in floppy disk
systems and in older rigid disk systems.

e The read head consists of a partially shielded magneto
resistive (MR) sensor.

* The MR material has an electrical resistance that depends on
the direction of the magnetization of the medium moving
under it.

OPTICAL MEMORIES

Optical Memories:

* Optical memories are used for large, storage of data.

* These devices provide the option of variety of data storage.

* These can save up to 20 GB of information.

* The data or information is read or written using a laser beam.

* Due to its low cost and high data storage capacity these
memories are being freely used.

e Apart from low cost these memories have long life.But the
problem is that of low access time.

OPTICAL MEMORIES

Advantages of CD ROM:

» Storage capacity is high.
* Data storage cost per bit is reasonable.
* Easy to carry.

* (Can store variety of data.

Disadvantages of CD ROM:-
* CD ROMs are read only.
 Access time is more than hard disk.

OPTICAL MEMORIES

WORM:

* WORM or Write Once Read Many or CD-R or CD-Record able are
a kind of optical device which provides the user the liberty to
write once on the CD R.

* The user can write on the disk using the CD R disk drive unit. But
this data or information cannot be overwritten or changed.

*CD R does not allow re-writing though reading can be done
many times.

OPTICAL MEMORIES

Advantages of WORM:

e Storage capacity is high.
e (Can be recorded once.
* Reliable.

* Runs longer.

e Access time is good.

Disadvantages or limitations of WORM:-
* Can be written only once.

OPTICAL MEMORIES

Erasable Optical Disk:

* Erasable Optical Disks are also called CD RW or CD rewritable.

* It gives the user the liberty of erasing data already written
by burning the microscopic point on the disk surface.

e The disk can be reused.

Advantages of CD RW:

e Storage capacity is very high.
* Reliability is high.

* Runs longer.

* Easytorewrite.

MULTILEVEL MEMORY

Multilevel Memories:-
Memory Hierarchy
Memory System Organization

*No matter how big the main memory, how we can organize
effectively the memory system in order to store more
information than it can hold.

*The traditional solution to storing a great deal of data is a
memory hierarchy.

Major design objective of any memory system:-
*To provide adequate storage capacity.

*An acceptable level of performance.

*At a reasonable cost.

MULTILEVEL MEMORY

Four interrelated ways to meet this goal
1. Use a hierarchy of storage devices.

2. Develop automatic space allocation methods for efficient
use of the memory.

3. Through the use of virtual memory techniques, free the user
from memory management tasks.

4. Design the memory and its related interconnection structure
so that the processes.

MULTILEVEL MEMORY

Multilevel Memories Organization:-

*Three key characteristics increase for a memory hierarchy.
They are the access time, the storage capacity and the cost.
The memory hierarchy is illustrated in figure below.

Rezisters
m the CPU

[\

Maiz memory

/ Disk cache \
/ Magnenc disk \
/ Optical disk Magnetc tape \

MULTILEVEL MEMORY

 We can see the memory hierarchy with six levels. At the top
there are CPU registers, which can be accessed at full CPU
speed.

* Next commes the cache memory, which is currently on order
of 32 KByte to a few Mbyte.

 The main memory is next, with size currently ranging from 16
MB for entry-level systems to tens of Gigabytes.

e After that come magnetic disks, the current work horse
for permanent storage.

MULTILEVEL MEMORY

Finally we have magnetic tape and optical disks for archival
storage. Basis of the memory hierarchy

1.Registers internal to the CPU for temporary data storage (small
in
number but very fast).

2.External storage for data and programs (relatively large and
fast).

3.External permanent storage (much larger and much slower).

MULTILEVEL MEMORY

Characteristics of the memory hierarchy:-
*Consists of distinct “levels” of memory components.

*Each level characterized by its size, access time, and cost per bit.

*Each increasing level in the hierarchy consists of modules of
larger capacity, slower access time, and lower cost/bit.

Memory Performance:-

*Goal of the memory hierarchy. Try to match the processor speed
with the rate of information transfer from the lowest element in
the hierarchy.

*The memory hierarchy speed up the memory performance.
*The memory hierarchy works because of locality of reference.

MULTILEVEL MEMORY

— Memory references made by the processor, for both
instructions and data, tend to cluster together

+ Instruction loops, subroutines
+ Data arrays, tables

*Keep these clusters in high speed memory to reduce the
average delay in accessing data

*Over time, the clusters being referenced will change --
memory management must deal with this

*Performance of a two level memory

CACHE AND VIRTUAL MEMORY

Cache memory:

*A cache memory is a fast random access memory where the
computer hardware stores copies of information currently used
by programs (data and instructions), loaded from the main
memory.

*The cache has a significantly shorter access time than the main
memory due to the applied faster but more expensive
implementation technology.

*The cache has a limited volume that also results from the
properties of the applied technology.

If information fetched to the cache memory is used again, the
access time to it will be much shorter than in the case if this
information were stored in the main memory and the program
will execute faster.

CACHE MEMORY

 Time efficiency of using cache memories results from the
locality of access to data that is observed during program
execution.

We observe here time and space locality:

1. Time locality consists in a tendency to use many times the

same instructions and data in programs during neighbouring
time intervals,

2. Space locality is a tendency to store instructions and data
used in a program in short distances of time under
neighbouring addresses in the main memory.

CACHE MEMORY

Due to these localities, the information loaded to the cache
memory is used several times and the execution time of
programs is much reduced.

Cache can be implemented as a multi-level memory.

Contemporary computers usually have two levels of caches.

In older computer models, a cache memory was installed
outside a processor (in separate integrated circuits than the
processor itself).

The access to it was organized over the processor external
system bus. In today's computers, the first level of the cache
memory is installed in the same integrated circuit as the
processor.

CACHE MEMORY

It significantly speeds up processor's co-operation with the
cache. Some microprocessors have the second level of cache
memory placed also in the processor's integrated circuit.

The volume of the first level cache memory is from several
thousands to several tens of thousands of bytes.

The second level cache memory has volume of several
hundred thousand bytes.

A cache memory is maintained by a special processor
subsystem called cache controller.

If there is a cache memory in a computer system, then at each
access to a main memory address in order to fetch data or
instructions, processor hardware sends the address first to the
cache memory.

VIRTUAL MEMORY

* In early computers, freedom of programming was seriously
restricted by a limited volume of main memory comparing

program sizes.

e Small main memory volume was making large programs
execution very troublesome and did not enable flexible
maintenance of memory space in the case of many co-
existing programs.

* |t was very uncomfortable, since programmers were forced to
spend much time on designing a correct scheme for data and
code distribution among the main memory and auxiliary

store.

VIRTUAL MEMORY

* The solution to this problem was supplied by introduction of
the virtual memory concept.

* This concept was introduced at the beginning of years 1970
under the name of one-level storage in the British computer
called Atlas.

* Only much later, together with application of this idea in
computers of the IBM Series 370, the term virtual memory
was introduced.

* Virtual memory provides a computer programmer with an
addressing space many times larger than the physically
available addressing space of the main memory.

VIRTUAL MEMORY

e Data and instructions are placed in this space with the use of
virtual addresses, which can be treated as artificial in some
way. In the reality, data and instructions are stored both in
the main memory and in the auxiliary memory (usually disk
memory).

* It is done under supervision of the virtual memory control
system that governs real current placement of data
determined by virtual addresses.

 This system automatically (i.e. without any programmer's
actions) fetches to the main memory data and instructions
requested by currently executed programs.

* The general organization scheme of the virtual memory is
shown in the figure below.

VIRTUAL MEMORY

Virtual address translation scheme with two-level page tables:-

virtual address
page # offset Page table Main memory

| & | » !
page table addressfl—\ = s
/,w

v

framel

¥

ster. || i

g

page table base
address

—

control bits \ y ! |
frame n
—
frame address for the page

page descriptor
physical address

[T | ?

VIRTUAL MEMORY

General scheme of the virtual memory:-

*Virtual memory address space is divided into fragments that
have pre-determined sizes and identifiers that are consecutive
numbers of these fragments in the set of fragments of the
virtual memory.

*The sequences of virtual memory locations that correspond to
these fragments are called pages or segments, depending on
the type of the virtual memory applied.

*A virtual memory address is composed of the number of the
respective fragment of the virtual memory address space and
the word or byte number in the given fragment.

VIRTUAL MEMORY

We distinguish the following solutions for contemporary virtual
memory systems:

1. paged (virtual) memory
2. segmented (virtual) memory
3. segmented (virtual) memory with paging.

VIRTUAL MEMORY

* When accessing data stored under a virtual address, the
virtual address has to be converted into a physical memory
address by the use of address translation.

* Before translation, the virtual memory system checks if the
segment or the page, which contains the requested word or
byte, resides in the main memory.

* |tis done by tests of page or segments descriptors in
respective tables residing in the main memory.

* If the test result is negative, a physical address sub-space in
the main memory is assigned to the requested page or
segment and next it is loaded into this address sub-space
from the auxiliary store.

VIRTUAL MEMORY

Next, the virtual memory system up-dates the page or
segment descriptions in the descriptor tables and opens
access to the requested word or byte for the processor
instruction, which has emitted the virtual address.

The virtual memory control system is implemented today as

partially hardware and software system.

Accessing descriptor tables and virtual to physical address

translation is done by computer hardware.

Fetching missing pages or segments and up-dating their
descriptors is done by the operating system, which, however,
is strongly supported by special memory management
hardware.

VIRTUAL MEMORY

e This hardware usually constitutes a special functional unit for
virtual memory management and special functional blocks

designed to perform calculations concerned with virtual
address translation.

MEMORY ALLOCATION

Memory allocation:-

*Memory is the processes by which information is encoded,
stored and retrieved.

*Encoding allow information that is from the outside world to
reach our senses in the forms of chemical and physical stimuli.

*Memory allocation is a process by which computer programs
and services are assigned with physical or virtual memory space.

*Memory allocation is the process of reserving a partial or
complete portion of computer memory for the execution of
programs and processes.

*Memory allocation is achieved through a process known as
memory management.

MEMORY ALLOCATION

* Memory allocation is primarily a computer hardware
operation but is managed through operating system and
software applications.

 Memory allocation process is quite similar in physical and
virtual memory management.

* Programs and services are assigned with a specific memory as
per their requirements when they are executed.

* Once the program has finished its operation or is idle, the
memory is released and allocated to another program or
merged within the primary memory.

MEMORY ALLOCATION

Memory allocation has two core types;
1.Static Memory Allocation: The program is allocated memory at
compile time.

2.Dynamic Memory Allocation: The programs
are allocated with memory at run time.

Static memory allocation:

In static memory allocation, size of the memory may be required
for the calculation that must be define before loading and

executing the program.

MEMORY ALLOCATION

Dynamic memory allocation:-

There are two methods which are used for dynamic memory
allocation:

* Non-Preemptive Allocation

* Preemptive Allocation

Non Preemptive allocation:-

 Consider M1 as a main memory and M2 as secondary
memory and
a block K of n words is to be transferred from M2 to M1.

* For such memory allocation it is necessary to find or create an
available reason of n or more words to accommodateK.

* This process is known as nonpreemptive allocation.

MEMORY ALLOCATION

First Fit

*In this algorithm, searching is started either at the
beginning of the memory or where the previous first
search ended.

Best fit

*In this algorithm, all free memory blocks are searched
and smallest free memory block which is large enough
to accommodate desired block K is used to allocate K.

MEMORY ALLOCATION

Initial Memory Best Fit Worst Fit First Fit
P3
P3 '
P2 P2 P2 P2
" |
P1 P1 P1 P1
s | | [P

MEMORY ALLOCATION

Preemptive allocation:-

*Non preemptive allocation can’t make efficient use of memory
in all situation.

*Due scattered memory blocks larger free memory blocks may
not be available.

*Much more efficient us of the available memory space is

possible if the occupied space can be re allocated to make room
for incoming blocks by a method called as Compaction.

FOR W

HARDWARE ORGANIZATION OF ASSOCIATIVE MEMORY &%

Figure Block diagram of associarive memory.

Argument register (A)

l

Key register (K)

Match
register

Input e
Associative memory
array and logic
Sl v
Read s m words
Write — 7 bits per word

1

Output

HARDWARE ORGANISATION

Associative Memory is organized in such a way.

1.Argument register(A): It contains the word to be searched. It
has n bits(one for each bit of the word).

2.Key Register(K): This specifies which part of the argument
word needs to be compared with words in memory. If all bits in
register are 1, The entire word should be compared. Otherwise,
only the bits having k bit set to 1 will be compared.

3.Associative memory array: It contains the words which are to
be compared with the argument word.

4.Match Register(M): It has m bits, one bit corresponding to
each word in the memory array. After the matching process, the
bits corresponding to matching words in match register are set
to 1.

MATCH LOGIC

Z anjkﬂ t

Match
logic

—.-TOM’

Output

MATCH LOGIC

* Let usinclude key register. If Kj=0 then there is no need to
compare Aj and Fij.

1. Only when Kj=1, comparison is needed.

2. This achieved by ORing each term with K.

M; = (x1 + Ki)(x2 + K3)(x3 + K3) - - - (x, + K})

READ OPERATION

When a word is to be read from an associative memory, the
contents of the word, or a prt of the word is specified.

Figure March logic for one word of associative memory.

WRITE OPERATION

1.

2.

If the entire memory is loaded with new information at once
prior to search operation then writing can be done by
addressing each location in sequence.

Tag register contain as many bits as there are words in
memory. It contain 1 for active word and O for inactive word.

If the word is to be inserted, tag register is scanned until O is
found and word is written at that position and bit is change
to 1.

ADVANTAGES

This is suitable for parallel searches. It is also used where search
time needs to be short.

1.Associative memory is often used to speed up databases, in
neural networks and in the page tables used by the virtual
memory of modern computers.

2.CAM-design challenge is to reduce power consumption
associated with the large amount of parallel active circuitry,
without sacrificing speed or memory density.

DISADVANTAGES

1. An associative memory is more expensive than a random
access memory because each cell must have an extra storage

capability as well as logic circuits for matching its content
with an external argument.

2. Usually associative memories are used in applications where
the search time is very critical and must be very short.

IARE s

S
Py >
/, \2
0” FOR \'\Q

UNIT V
SYSTEM ORGANIZATION

UNIT-V

CLO’s Course Learning outcomes

CLO1 Understand the various bus control interfaces and system control interfaces.

CLO2 Describe the various interrupts (Vectored Interrupts, PCl interrupts, Pipeline
interrupts).

CLO3 Understand the functionally of RISC and CISC processors.

CLO4 Describe the concepts of superscalar and vector processor.

243

IO ORGANZATION

Input/Output Processor:-

*An input-output processor (IOP) is a processor with direct
memory access capability.

*In this, the computer system is divided into a memory unit and
number of processors. Each IOP controls and manage the input-
output tasks.

*The IOP is similar to CPU except that it handles only the details
of I/O processing.

*The IOP can fetch and execute its own instructions. These IOP
instructions are designed to manage |I/O transfers only.

IO ORGANZATION

Block Diagram of IOP

*Belowis a block diagram of a computer along with various
|/O Processors.

*The memory unit occupies the central
position and can communicate with each processor.

*The CPU processes the data required for solving the
computational tasks.

*The IOP provides a path for transfer of data between
peripherals and memory.

*The CPU assigns the task of initiating the |/O program.

*The IOP operates independent from CPU and transfer data
between peripherals and memory.

IO ORGANZATION

Block Diagram of IOP

Memaory unit +

CPU

»| Memaory bus

IoF

Peripheral devices

IO ORGANZATION

e The communication between the IOP and the devices is
similar to the program control method of transfer.

 And the communication with the memory is similar to the
direct memory access method.

* Inlarge scale computers, each processor is independent of
other processors and any processor can initiate the operation.

 The CPU can act as master and the IOP act as slave processor.

 The CPU assigns the task of initiating operations but it is the
|IOP, who executes the instructions, and not the CPU.

e CPU instructions provide operations to start an 1/O transfer.
The IOP asks for CPU through interrupt.

IO ORGANZATION

Instructions that are read from memory by an IOP are also
called commands to distinguish them from instructions that

are read by CPU
Commands are prepared by programmers and are stored in

memory. Command words make the program for
|OP.

CPU informs the IOP where to find the data.

MULTIPROCESSOR

Multiprocessors:

*A multiprocessor system is an interconnection of two or more
CPU’s with memory and input- output equipment.

*Multiprocessors system are classified as multiple instruction
stream, multiple data stream systems(MIMD).

*There exists a distinction between multiprocessor and
multicomputers that though both support concurrent
operations.

°In multicomputers several autonomous computers are
connected through a network and they may or may not
communicate but in a multiprocessor system there is a single OS
Control that provides interaction between processors and all the
components of the system to cooperate in the solution of the
problem.

MULTIPROCESSOR

e VLSI circuit technology has reduced the cost of the computers
to such a low Level that the concept of applying multiple

processors to meet system performance requirements has
become an attractive design possibility.

MULTIPROCESSOR

Benefits of Multiprocessing:

1.Multiprocessing increases the reliability of the system so that a
failure or error in one part has limited effect on the rest of the
system. If a fault causes one processor to fail, a second processor
can be assigned to perform the functions of the disabled one.

2.Improved System performance. System derives high
performance from the fact that computations can proceed in
parallel in one of the two ways:

a) Multiple independent jobs can be made to operate in
parallel.

b) A single job can be partitioned into multiple parallel
tasks. This can be achieved in two ways:

MULTIPROCESSOR

 The user explicitly declares that the tasks of the program be
executed in parallel.

* The compiler provided with multiprocessor s/w that can

automatically detect parallelism in program. Actually it checks
for Data dependency.

FAULT TOLERANCE

e Such systems automatically detect a failure of the computer
processor unit, 1/O subsystem, memory cards, motherboard,
power supply or network components.

 The failure point is identified, and a backup component or
procedure immediately takes its place with no loss of service.

* To ensure fault tolerance, enterprises need to purchase an
inventory of formatted computer equipment and a secondary
uninterruptible power supply device.

 The goal is to prevent the crash of key systems and networks,
focusing on issues related to uptime and downtime.

* Fault tolerance can be provided with software embedded in
hardware, or by some combination of the two.

FAULT TOLERANCE

 In a software implementation, the operating system (OS)
provides an interface that allows a programmer to checkpoint
critical data at predetermined points within a transaction.

* In a hardware implementation (for example, with Stratus and
its Virtual Operating System), the programmer does not need
to be aware of the fault-tolerant capabilities of the machine.

At a hardware level, fault tolerance is achieved by duplexing
each hardware component.

 Disks are mirrored. Multiple processors are lockstepped
together and their outputs are compared for correctness.

* When an anomaly occurs, the faulty component is determined
and taken out of service, but the machine continues to
function as usual.

FAULT TOLERANCE

Fault tolerance vs. high availability:-

*Fault tolerance is closely associated with maintaining business
continuity via highly available computer systems and networks.

*Fault-tolerant environments are defined as those that restore
service instantaneously following a service outage, whereas a
high- availability environment strives for five nines of
operational service.

*In a high-availability cluster, sets of independent servers are
coupled loosely together to guarantee system-wide sharing of
critical data and resources.

*The clusters monitor each other's health and provide fault
recovery to ensure applications remain available.

FAULT TOLERANCE

 Conversely, a fault-tolerant cluster consists of multiple
physical systems that share a single copy of a computer's OS.

* Software commands issued by one system are also executed
on the other system. The tradeoff between fault tolerance
and high availability is cost.

e Systems with integrated fault tolerance incur a higher cost due
to the inclusion of additional hardware.

RISC PROCESSORS

e RISC (Reduced Instruction Set Computer) is used in portable
devices due to its power efficiency.

 For Example, Apple iPod and Nintendo DS. RISC is a type of
microprocessor architecture that uses highly-optimized set of
instructions.

* RISC does the opposite, reducing the cycles per instruction at
the cost of the number of instructions per program Pipelining
is one of the unique feature of RISC.

It is performed by overlapping the execution of several
instructions in a pipeline fashion.

* It has a high performance advantage over CISC.

RISC PROCESSORS

(Instruction) (Data)

Main memory

RISC ARHITECTURE

RISC processors take simple instructions and are executed withina
clock cycle

RISC PROCESSORS

RISC ARCHITECTURE CHARACTERISTICS:-

1.Simple Instructions are used in RISC architecture.

2.RISC helps and supports few simple data types
and synthesize complex data types.

3.RISC utilizes simple addressing modes and fixed length
instructions for pipelining.

4.RISC permits any register to use in any context.

5.0ne Cycle Execution Time.

6.The amount of work that a computer can perform is reduced
by separating “LOAD” and “STORE” instructions.

7.RISC contains Large Number of Registers in
order to prevent various number of interactions with memory.

RISC PROCESSORS

10.

11.

12.

RISC contains Large Number of Registersin order to prevent
various number of interactions with memory.

In RISC, Pipelining is easy as the execution of all instructions
will be done in a uniform interval of time i.e. one click.

In RISC, more RAM is required to store assembly level
instructions.

Reduced instructions need a less number of transistors in
RISC.

RISC uses Harvard memory model means it
is Harvard Architecture.

A compiler is used to perform the conversion operation
means to convert a high-level language statement into the
code of its form.

RISC PROCESSORS

Comparison between CISC & RISC

CISC

RISC

It is prominent on Hardware

It is prominent on the Software

It has high cycles per second

It has low cycles per second

It has transistors used for storing

Instructions which are complex

More transistors are used for storing

memory

LOAD and STORE memory-to-memory is

induced in instructions

LOAD and STORE register-register are

independent

It has multi-clock

It has a single - clock

RISC PROCESSORS

MUL instruction is divided into three instructions

1. “LOAD” — moves data from the memory bank to a
register.

2. “PROD” - finds product of two
operands located within the registers.

3. “STORE” — moves data from a register to the
memory banks.

CISC PROCESSORS

* The CISC approach attempts to minimize the number of
instructions per program, sacrificing the number of cycles per
instruction.

e Computers based on the CISC architecture are designed to
decrease the memory cost.

e Because, the large programs need more storage, thus
increasing the memory cost and large memory becomes more
expensive.

* To solve these problems, the number of instructions per
program can be reduced by embedding the number of
operations in a single instruction, thereby making the
instructions more complex.

CISC PROCESSORS

Main memory

CISC ARCHITECTURE

CISC processors take simple instructions and are executed withina
clock cycle

CISC PROCESSORS

MUL loads two values from the memory into separate
registers in CISC.

CISC uses minimum possible instructions by implementing
hardware and executes operations.

Instruction Set Architecture is a medium to permit
communication between the programmer and the hardware.
Data execution part, copying of data, deleting or editing is the
user commands used in the microprocessor and with this
microprocessor the Instruction set architecture is operated.

CISC PROCESSORS

The main keywords used in the above Instruction Set
Architecture are as below

Instruction Set:

*Group of instructions given to execute the program and they
direct the computer by manipulating the data.

*Instructions are in the form - Opcode
(operational code) and Operand.

*Where, opcode is the instruction applied to load and store data,
etc.

*The operand is a memory register where instruction applied.

CISC PROCESSORS

Addressing Modes:
*Addressing modes are the manner in the data is accessed.

*Depending upon the type of instruction applied, addressing
modes are of various types such as direct mode where straight
data is accessed or indirect mode where the location of the data
is accessed.

*Processors having identical ISA may be very different in
organization.

*Processors with identical ISA and nearly identical organization is
still not nearly identical.

CISC PROCESSORS

CPU performance is given by the fundamental law

. Seconds Instructions Cvcles Seconds
CPU Time = = X : X

Program Program Instructions Cyvcle

Thus, CPU performance is dependent upon Instruction Count,
CPI (Cycles per instruction) and Clock cycle time. And all three
are affected by the instruction set architecture.

Instruction Count of the CPU

Instruction Count

Program X

Compiler X X

Instruction Set Architecture | X X X
Microarchitecture X X
Physical Design X

CISC PROCESSORS

 This underlines the importance of the instruction set
architecture.
There are two prevalent instruction set architectures

Examples of CISC PROCESSORS

 IBM 370/168 — It was introduced in the year 1970. CISC
designis a

32 bit processor and four 64-bit floating point registers.

 VAX 11/780 — CISC design is a 32-bit processor and it supports

many numbers of addressing modes and machine instructions
which is from Digital Equipment Corporation.

* Intel 80486 — It was launched in the year 1989 and it is a CISC
processor, which has instructions varying lengths from 1 to 11
and it will have 235 instructions.

CISC PROCESSORS

CHARACTERISTICS OF CISC ARCHITECTURE:-

* Instruction-decoding logic will be Complex.

* Oneinstruction is required to support multiple addressing
modes.

* Less chip space is enough for general purpose registers for
the instructions that are Ooperated directly on memory.

* Various CISC designs are set up two special registers for the
stack pointer, handling interrupts, etc.

* MUL is referred to as a “complexinstruction”and requires
the programmer for storing functions.

SUPERSCALAR AND VECTOR PROCESSOR

Superscalar and vector processor:

*A Scalar processor is a normal processor, which works on simple
instruction at a time, which operates on single data items.

*But in today's world, this technique will prove to be highly
inefficient, as the overall processing of instructions will be very
slow.

Vector(Array) Processing

*There is a class of computational problems that are beyond the
capabilities of a conventional computer.

*These problems require vast number of computations on
multiple data items, that will take a conventional computer(with
scalar processor) days or even weeks to complete.

SUPERSCALAR AND VECTOR PROCESSOR

* Such complex instructions, which operates on multiple data at
the same time, requires a better way of instruction execution,
which was achieved by Vector processors.

e Scalar CPUs can manipulate one or two data items at a time,
which is not very efficient.

e Also, simple instructions like ADD A to B, and store into C are
not practically efficient.

 Addresses are used to point to the memory location where
the data to be operated will be found, which leads to added
overhead of data lookup.

* So until the data is found, the CPU would be sitting ideal,
which is a big performance issue.

SUPERSCALAR AND VECTOR PROCESSOR

* Hence, the concept of Instruction Pipeline comes into picture,
in which the instruction passes through several sub-units in
turn.

 These sub-units perform various independent functions, for
example: the first one decodes the instruction, the second
sub-unit fetches the data and the third sub-unit performs the
math itself.

 Therefore, while the data is fetched for one instruction, CPU
does not sit idle, it rather works on decoding the next
instruction set, ending up working like an assembly line.

* Vector processor, not only use Instruction pipeline, but it also
pipelines the data, working on multiple data at the same time.

SUPERSCALAR AND VECTOR PROCESSOR

A normal scalar processor instruction would be ADD A, B,
which leads to addition of two operands, but what if we can
instruct the processor to ADD a group of numbers(from 0 to n
memory location) to another group of numbers(lets say, n to k
memory location).

* This can be achieved by vector processors.

In vector processor a single instruction, can ask for multiple
data operations, which saves time, as instruction is decoded
once, and then it keeps on operating on different data items.

SUPERSCALAR AND VECTOR PROCESSOR

Applications of Vector Processors:-

*Computer with vector processing capabilities are in demand in
specialized applications. The following are some areas where
vector processing is used:

*Petroleum exploration.

*Medical diagnosis.

*Data analysis.

*Weather forecasting.

*Aerodynamics and space flight simulations.
*Image processing.

*Artificial intelligence.

SUPERSCALAR AND VECTOR PROCESSOR

Superscalar Processors:-

|t was first invented in 1987. It is a machine which is designed to
improve the performance of the scalar processor.

*In most applications, most of the operations are
on scalar

guantities.

*Superscalar approach produces the high

performance general purpose processors.

*The main principle of superscalar approach is
that it executes instructions independently in different
pipelines.

*As we already know, that Instruction pipelining leads to parallel
processing thereby speeding up the processing of instructions.

SUPERSCALAR AND VECTOR PROCESSOR

* In Superscalar processor, multiple such pipelines are
introduced for different operations, which further improves

parallel processing.
* There are multiple functional units each of which is
implemented as a pipeline.

* Itincreases the throughput because the CPU can execute
multiple instructions per clock cycle.

 Thus,superscalar processors are much faster than
scalar processors.

SUPERSCALAR AND VECTOR PROCESSOR

* A scalar processor works on one or two data items, while the
vector processor works with multiple data items.

A superscalar processor is a combination of both. Each
instruction processes one data item, but there are multiple
execution units within each CPU thus multiple instructions
can be processing separate data items concurrently.

e While a superscalar CPU is also pipelined, there are two
different performance enhancement techniques.

* It is possible to have a non-pipelined superscalar CPU or
pipelined non-superscalar CPU.

SUPERSCALAR AND VECTOR PROCESSOR

The superscalartechniqueis associated with some
characteristics, these are:

1.Instructions are issued from a sequential instruction stream.
2.CPU must dynamically check for data dependencies.
3.Should accept multiple instructions per clock cycle.

VECTOR PROCESSOR

Vector(Array) Processor and its Types:-

* Array processors are also known as multiprocessorsor
vector

Processors.

* They perform computations on large arrays of data. Thus,
they are

used to improve the performance of the computer.

Types of Array Processors:-

* There are basically two types of array processors:
e Attached Array Processors

* SIMD Array Processors

VECTOR PROCESSOR

Attached Array Processors:-

*An attached array processor is a processor which is attached to
a general purpose computer and its purpose is to enhance and
improve the performance of that computer in numerical
computational tasks.

It achieves high performance by means of parallel processing
with multiple functional units.

VECTOR PROCESSOR

general purpose .) . .) attached array
computer 0 interface processors

high speed lacal memaory

main memaory [« >

memary to memaory bus

VECTOR PROCESSOR

SIMD Array Processors:-
*SIMD is the organization of a single computer containing
multiple processors operating in parallel.

*The processing units are made to operate under the control of a
common control unit, thus providing a single instruction stream
and multiple data streams.

*A general block diagram of an array processor is shown below. It
contains a set of identical processing elements (PE's), each of
which is having a local memory M.

*Each processor element includes an ALU and registers.

*The master control unit controls all the operations of the
processor elements.

*|t also decodes the instructions and determines how the
instruction is to be executed.

VECTOR PROCESSOR

* The main memory is used for storing the program. The control
unit is responsible for fetching the instructions.

* Vector instructions are send to all PE's simultaneously and
results are returned to the memory.

* The best known SIMD array processor is the ILLIAC IV
computer developed by the Burroughs corps.

* SIMD processors are highly specialized computers.

 They are only suitable for numerical problems that can be
expressed in vector or matrix form and they are not suitable
for other types of computations.

VECTOR PROCESSOR

master cantrol unit

main memaory

FE1

1M1

FEZ

M2

FEn

[n

VECTOR PROCESSOR

Why use the Array Processor:-

* Array processors increases the overall instruction processing
speed.

* As most of the Array processors operates asynchronously
from the

host CPU, hence it improves the overall capacity of the system.

* Array Processors has its own local memory, hence providing
extra

memory for systems with low memory.

O System

Accessing I/O Devices 1/0O interface
Input/output mechanism
—Memory-mapped I/0O
—Programmed 1/0O

—Interrupts

—Direct Memory Access

Buses

—Synchronous Bus

—Asynchronous Bus

|0 in Computer Organization and Operating
System:

1.Programmed |/O
2.Interrupts
3.DMA (Direct memory Access

1O in Computer Organization and Operating System:

ora et (/209

Keyboard human 0.0001
Mouse hput human 0.0038
Voice Input input human 0.2640
Sound input input machine 3.0000
Scanner input human 3.2000
Voice output output human 0.2640
Sound output output human 2.0000
Laser printer output human 3.2000
Graphics display output human 800.0000-8000.0000
Modem input or output machine 0.0160-0.0640
Network/LAN input or output machine 100.0000-1000.0000
Network/wireless LAN input or output machine 11.0000-54.0000
Optical disk storage machine 80.0000
Magnetic tape storage machine 32.0000
Magnetic disk storage machine 240.0000-2560.0000

O System

* An 10 interface consists of the circuitry required to
connect output device to a computer system.

{ Processor Memory

Bus

l I/0O device 1 l ol I/O device n

Figure — Bus Connection 10 devices to Processor and memory.

O System

A bus is a shared communication link, which uses one set of
wires to connect multiple subsystems.

The two major advantages of the bus organization are
versatility and low cost.

Accessing |/O Devices:

Most modern computers use single bus arrangement for
connecting I/0O devices to CPU & Memory.

The bus enables all the devices connected to it to exchange
information.

Bus consists of 3 set of lines: Address, Data, and Control.

Processor places a particular address (unique for an |/O Dev.)
on address lines.

Device which recognizes this address responds to the
Commands issued on the Control lines.

Processor requests for either Read / Write.

The data will be placed on Data lines.

O System

 Hardware to connect I/O devices to bus:

* Interface Circuit

e Address Decoder

e Control Circuits

e Data registers

e Status registers

e The Registers in I/O Interface — buffer and control.
* Flags in Status Registers, like SIN, SOUT

* Data Registers, like Data-IN, Data-OUT

|O System

Address

Processor Data
Y Control

/0
Interface

Input device (s)

Figure — 10 interface for an input device:

|O System

Input Output mechanism:

Memory mapped 1/0
Programmed 1/O

Interrupts

DMA (Direct memory Access)

O System

* |/O devices and the memory share the same address space,
the arrangement is called Memory-mapped 1/0.

* In Memory-mapped |/O portions of address space are
assigned to I/O devices and reads and writes to those
addresses are interpreted as commands to the |/O device.

« —DATAIN|| is the address of the input buffer associated with
the keyboard.

* - Move DATAIN, RO

 Reads the data from DATAIN and stores them into processor
register RO;

- Move RO, DATAOUT
* Sends the contents of register RO to location DATAOUT.

e Option of special I/O address space or incorporate as a part of
memory address space (address bus is same always).

O System

Accessing I/O Devices 1/0O interface
Input/output mechanism
—Memory-mapped I/0O
—Programmed 1/0O

—Interrupts

—Direct Memory Access

Buses

—Synchronous Bus

—Asynchronous Bus

|0 in Computer Organization and Operating
System:

1.Programmed |/O
2.Interrupts
3.DMA (Direct memory Access

O System

Keyboard human 0.0001
Mouse hput human 0.0038
Voice Input input human 0.2640
Sound input input machine 3.0000
Scanner input human 3.2000
Voice output output human 0.2640
Sound output output human 2.0000
Laser printer output human 3.2000
Graphics display output human 800.0000-8000.0000
Modem input or output machine 0.0160-0.0640
Network/LAN input or output machine 100.0000-1000.0000
Network/wireless LAN input or output machine 11.0000-54.0000
Optical disk storage machine 80.0000
Magnetic tape storage machine 32.0000
Magnetic disk storage machine 240.0000-2560.0000

|O System

* An 10 interface consists of the circuitry required to
connect output device to a computer system.

{ Processor Memory

Bus

l I/0O device 1 l ol I/O device n

Figure — Bus Connection 10 devices to Processor and memory.

O System

Address

Processor Data
Y Control

/0
Interface

Input device (s)

Figure — 10 interface for an input device:

Interface Circuits

4.6 INTERFACE CIROUITS

Address

7 |
Processor RIW -]

b
Mﬂﬂﬂ"l‘ﬂﬂl}f 1 {-.1
-

switches

Slave-ready |

|

I

Figure 4.28 Keyboard to processor connection.

Serialport

s w e

It transmits and receives data one bit at a time.
For long distance, it is convenient and cost effective.
It is used to transmit/ receive data serially. i.e one at a time.

A key feature of an interface circuit in serial port is that it is
capable of communicating in a bit-serial on the device side
and in a bit-parallel on the bus side.

Interface Circuits

*An 1/0 interface consists of the circuitry required to connect an
input/ output device to a computer system.

*On one side of the interface have bus signals for address, data
and control.

*On the other hand data path with itsassociated
controls to transfer data between the interface and the input/
output device.

*This side is called a port. It can be classified as
—Serial port
—Parallel port

Source Initiated Transfer using Handshaking

The sequence of events shows four possible states that the system
can be at any given time. The source unit initiates the transfer by
placing the data on the bus and enabling its data valid signal. The
data accepted signal is activated by the destination unit after it
accepts the data from the bus. The source unit then disables its

data accepted signal and the system goes into its initial state.

Data Bus

Lource Unit

Data Valid

Data accepted

Destination Unit

'

(@)

Source unit

Block Diagram

\ Place the data on bus.
Enable data Valid.

Destination Unit

Accept data frombus.
Enable data accepted.

Disable data valid.

Invalidate data on bus.

=

Disable data accepted.
Ready to accept data.

(b) Sequence of events

Destination Initiated Transfer Using Handshaking

The name of the signal generated by the destination unit has been
changed to ready for data to reflects its new meaning. The source
unit in this case does not place data on the bus until after it
receives the ready for data signal from the destination unit. From

there on, the handshaking procedure follows the same pattern as

in the source initiated case.

The only difference betweenthe Source Initiated and the

Destination Initiated transfer is in their choice of

Initial sate.

Destination Initiated Transfer Using Handshaking

Lource Unit

Source unit

©)

Place the data on bus.

Enable data Valid.

Disable data valid.

Invalidate data on bus.

Data Bus .l
Destination
< Data \Aalid Unit
Ready for data

Block Diagram

/
\

Destination Unit

Ready to accept data.
Enable ready for data.

e

Accept data from bus.
Disable ready for data.

(b) Sequence of events

. | or Us shaki

Advantage of the Handshaking method

The Handshaking scheme provides degree of flexibility and
reliability because the successful completion of data transfer

relies on active participation by both units.

If any of one unit is faulty, the data transfer will not be
completed. Such an error can be detected by means of a
Timeout mechanism which provides an alarm if the data is

not completed within time.

Advantage of the Handshaking method

4.6 INTERFACE CIROUITS

Address

=]
Processor RIW -]

b
Mﬂﬂﬂ"l‘ﬂﬂl}f 1 {-.1
-

switches

Slave-ready |

i
:

Figure 4.28 Keyboard to processor connection.

Parallel port

* [t transfers data simultaneously to (or) from the device.

* It uses multiple pin connector.

e Circuitis simple.

e Parallel port is used to send (or) receive data having group
of bits(8 bits or 16 bits) simultaneously.

* Parallel ports are classified as input port and output port.
Input port — used to receive the data

e Qutput port- used to send the data.

Serialport

s w e

It transmits and receives data one bit at a time.
For long distance, it is convenient and cost effective.
It is used to transmit/ receive data serially. i.e one at a time.

A key feature of an interface circuit in serial port is that it is
capable of communicating in a bit-serial on the device side
and in a bit-parallel on the bus side.

/O Interface

It provides a storage buffer for atleast one word of data.

2. Contains status flags that can be accessed by the processor
to determine whether the buffer is full (or) empty.

3. Address decoding circuitry to determine when it is being
addressed by the processor.

4. Performs any format conversion that may be necessary to
transfer data between the bus and the input/ output device
such as parallel — serial conversion in the case of a serial
port.

OutputPort

I Input shift register in.p;ll
l DATALIMN
o¥r
0 -
¥ ¥
I DATAOQUT I
My-address
RS1 l 1
_ . Serial
- register Output shift register outpat
R/W select I =
Ready
Accept
I Receiving clock
and

