

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	MICRO	MICROPROCESSORS AND INTERFACING					
Course Code	AEC021						
Programme	B.Tech						
Semester	V	CSE					
Course Type	Core	Core					
Regulation	IARE - R16						
		Theory		Practio	cal		
Course Structure	Lecture	Tutorials	Credits	Laboratory	Credits		
	3	3 1 4 3 2					
	Mr.V R Seshagiri Rao, Assistant Professor						
Chief Coordinator	Mr.V R S	eshagiri Rao, Assis	stant Professor				

I. COURSE OVERVIEW:

The course will make them learn the basic theory of microprocessor and their applications in detail. Subsequently the course covers important concepts like how to write an assembly language programming. They will learn to write an assembly language programming for interfacing various I/O modules. They will learn to design different advance architectures to design a new communication interfaces.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACS004	III	Computer Organization and Architecture	4
UG	AEC020	III	Digital Logic Design	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Microprocessors and Interfacing	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	>	Quiz	'	Assignments	×	MOOCs
~	LCD / PPT	/	Seminars	×	Mini Project	~	Videos
×	Open Ended Experi	ments					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Quiz/ Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component	Theory		Total Marks	
Type of Assessment	CIE Exam	Quiz/AAT	Total Warks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration consisting of two parts. Part—A shall have five compulsory questions of one mark each. In part—B, four out of five questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz / Alternative Assessment Tool (AAT):

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are be answered by choosing the correct answer from a given set of choices (commonly four). Marks shall be awarded considering the average of two quizzes for every course. The AAT may include seminars, assignments, term paper, open ended experiments, five minutes video and MOOCs.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Quiz
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of		
	complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Assignments
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and		
	engineering sciences		
PO 4	Conduct investigations of complex problems: Use	2	Seminars
	research-based knowledge and research methods including		
	design of experiments, analysis and interpretation of data,		
	and synthesis of the information		
	to provide valid conclusions.		

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency
			assessed by
PSO 1	Professional Skills: The ability to understand, analyze	2	Seminars and
	and develop computer programs in the areas related to		Assignments
	algorithms, system software, multimedia, web design, big		
	data analytics, and networking for efficient design of		
	computer-based system of varying complexity.		
PSO 2	Problem-Solving Skills: The ability to apply standard	1	Quiz and
	practices and strategies in software project development		Assignments
	using open-ended programming environments to deliver a		
	quality product for business success.		
PSO 3	Successful Career and Entrepreneurship: The ability to	-	-
	employ modern computer languages, environments, and		
	platforms in creating innovative career paths to be an		
	entrepreneur, and a zest for higher studies.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The cou	rse should enable the students to:
I	Understand the basic concepts of microprocessors and develop the architectures of 8085 and 8086.
II	Analyze and develop assembly language programming for 8086 microprocessor.
III	Develop various interfacing modules by using assembly language programming.
IV	Understand and know the basic concepts of advance micro processor architectures like 80386 and 80486.

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome		
CO 1	Describe the concepts of	CLO 1	Differentiate between 8085 and 8086		
	Architectures of 8085 and 8086		microprocessors architectures and its		
	with its functionalities and		functionalities. Distinguish between RISC and		
	understand the addressing modes		CISC architecture based microprocessors		
	and instructions sets of 8086.	CLO 2	Describe the internal Architecture of 8086		
			microprocessor and explain its functionalities.		
		CLO 3	Describe in detail about functions of general		
			purpose register and 8086 flag register with its		
			functions.		
		CLO 4	Explain various addressing modes and		
			instruction set present in 8086 microprocessors		
			and Describe in detail about the concept of		
			interrupt, types of interrupts 8086		
			microprocessor.		
		CLO 5	Understand and apply the fundamentals and		
			procedures and assembler directives of assembly		
			level programming of microprocessors.		
		CLO 6	Develop low level languages like ALP in 8086		
			Microprocessor systems for real time		
			applications		
CO 2	Describe Minimum mode and	CLO 7	Describe Minimum mode and maximum mode		
	maximum mode of operation of		of operation and timing diagram of 8086		
	8086 and Analyze the Assembly		Microprocessor		
	language programs involving in	CLO 8	Explain various Assembly language programs		
	various arithmetic and logical		involving logical, branch and call instructions.		
	operations.	CLO 9	Evaluation of arithmetic expressions, string		
			manipulation, sorting using various Assembly		
			language programs.		
CO 3	Discuss the importance of 8251,	CLO 10	Identify the importance of Various modes of		
	8255 and explain interfacing of		8255 operation and interfacing to 8086.		

COs	Course Outcome	CLOs	Course Learning Outcome
	I/O device with different	CLO 11	Discuss the interfacing diagram of I/O devices
	modules.		with keyboard, stepper motor, 7-segment
			display, LCD and digital to analog and analog to
			digital converter.
		CLO 12	Explain in detail about the importance of
			interrupt and interrupt sub routines in 8086
			microprocessor
		CLO 13	Explain the advance architectures of PIC and
			also the importance of interfacing a interrupt
			controller in PIC.
CO 4	Analyze the various synchronous	CLO 14	Analyze and understand various synchronous
	and asynchronous serial data		and asynchronous serial data transfer schemes in
	transfer schemes in 8086		8086.
		CLO 15	Develop and design the interfacing circuit
			diagram of 8251USART with 8086 processor.
		CLO 16	Understand the high- speed serial
			communications standards, USB.
CO 5	Understand the advanced 16 and	CLO 17	Understand basic architecture of 16 bit and 32
	32 bit microprocessors		bit Microprocessors with the help of GDT, LDT
	architectures and its features.		and multitasking and addressing modes.
		CLO 18	Flag register 80386: Architecture, register
			organization, memory access in protected mode
		CLO 19	Analyze the various advanced microprocessors
			internal architectures for 80X86 by paging and
			technical features.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEC021.01	CLO 1	Differentiate between 8085 and 8086	PO 1	3
		Microprocessors architectures and its		
		functionalities. Distinguish between RISC and		
		CISC architecture based microprocessors		
AEC021.02	CLO 2	Describe the internal Architecture of 8086	PO 1	3
		microprocessor and explain its functionalities.		
AEC021.03	CLO 3	Describe in detail about functions of general	PO 1	3
		purpose register and 8086 flag register with its		
		functions.		
AEC021.04	CLO 4	Explain various addressing modes and	PO 1	3
		instruction set present in 8086		

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		microprocessors and Describe in detail about		
		the concept of interrupt, types of interrupts		
		8086 microprocessor.		
AEC021.05	CLO 5	Understand and apply the fundamentals and	PO 2	2
		procedures and assembler directives of		
		assembly level programming of		
		microprocessors.		
AEC021.06	CLO 6	Develop low level languages like ALP in 8086	PO 2	2
		microprocessor systems for real time		
		applications		
AEC021.07	CLO 7	Describe Minimum mode and maximum mode	PO 1	3
		of operation and timing diagram of 8086		
		microprocessor		
AEC021.08	CLO 8	Explain various Assembly language programs	PO 2	2
		involving logical, branch and call instructions.		
AEC021.09	CLO 9	Evaluation of arithmetic expressions, string	PO 2	2
		manipulation, sorting using various Assembly		
		language programs.		
AEC021.10	CLO 10	Identify the importance of Various modes of	PO 1	3
1120021.10	02010	8255 operation and interfacing to 8086.	101	
AEC021.11	CLO 11	Discuss the interfacing diagram of I/O devices	PO 4,	2
		with keyboard, stepper motor, 7-segment	PO2	
		display, LCD and digital to analog and analog		
		to digital converter.		
AEC021.12	CLO 12	Explain in detail about the importance of	PO 1	3
		interrupt and interrupt sub routines in 8086		
		microprocessor		
AEC021.13	CLO 13	Explain the advance architectures of PIC and	PO 1	3
		also the importance of interfacing a interrupt		
		controller in PIC.		
AEC021.14	CLO 14	Analyze and understand various synchronous	PO 4,	2
		and asynchronous serial data transfer schemes	PO1	_
		in 8086.	101	
AEC021.15	CLO 15	Develop and design the interfacing circuit	PO 1,	3
111.0021.13	CLO 13	diagram of 8251USART with 8086 processor.	PO1,	
AEC021.16	CLO 16	Understand the high- speed serial	PO 1	3
AECU21.10	CLU 10	communications standards, USB.	rui	3
AEC021 17	CI O 17	·	PO 4	2
AEC021.17	CLO 17	Understand basic architecture of 16 bit and 32	PO 4	2
		bit microprocessors with the help of GDT,		
		LDT and multitasking and addressing modes.		

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEC021.18	CLO 18	Flag register 80386: Architecture, register	PO 1	3
		organization, memory access in protected mode.		
AEC021.19	CLO 19	Analyze the various advanced microprocessors internal architectures for 80X86 by paging and Technical features.	PO 1	3

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes	Prog	ram Outcomes (Program Specific Outcomes (PSOs)		
(COs)	PO 1	PO 2	PO 4	PSO1	PSO2
CO 1	3	2		2	1
CO 2		2		2	1
CO 3	3		2	2	
CO 4	3		2		1
CO 5	3		2		1

3 = High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3														
CLO 2	3												2		
CLO 3	3												2		
CLO 4	3												2		
CLO 5		2													
CLO 6		2													
CLO 7	3												2		
CLO 8		2													
CLO 9		2											2		
CLO 10	3												2		

Course Learning	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 11		2		2											
CLO 12	3												2		
CLO 13	3												2		
CLO 14	3			2										1	
CLO 15	3	2												1	
CLO 16	3														
CLO 17				2										1	
CLO 18	3														
CLO 19	3													1	

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1,PO2, PO4,PSO1, PSO2	SEE Exams	PO1, PO2, PO4,PSO1, PSO2	Assignments	PO1,PO2, PO4,PSO1, PSO2	Seminars	PO1, PO2, PO4,PSO1, PSO2
Laboratory Practices	PO1, PO2, PO4,PSO1, PSO2	Student Viva	1	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO4,PSO1						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	'	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

Unit-I OVERVIEW OF 8086 MICROPROCESSOR

Introduction to 8085 microprocessor. RISC and CISC processors, architecture of 8086 microprocessor, special functions of general purpose register, 8086 flag register and function of 8086 flags, addressing modes of 8086, instruction set of 8086, assembler directives, simple programs, procedures, and macros.

Unit-II PIN DIAGRAM OF 8086 AND AEESMBLY LANGUAGE PROGRAMMING

Minimum mode and maximum mode of operation, timing diagram, Assembly language programs: Assembly language programs involving logical, branch and call instructions, sorting, evaluation of arithmetic expressions, string manipulation.

Unit-III 8255 PROGRAMMABLE PERIPHERAL INTERFACE (PPI)

Various modes of 8255 operation and interfacing to 8086; Interfacing keyboard, displays, 8279 Stepper motor and actuators, digital to analog and analog to digital converter interfacing. Interrupt structure of 8086: Interrupt structure of 8086, Vector interrupt table, interrupt service routines;

Introduction to DOS and BIOS interrupts, 8259 PIC architecture and interfacing cascading of interrupt controller and its importance.

Unit-IV | SERIAL DATA TRANSFER SCHEMES

Asynchronous and synchronous data transfer schemes, 8251 USART architecture and interfacing; TTL to RS 232C and RS232C to TTL conversion; Sample program of serial data transfer; Introduction to high speed serial communications standards, USB.

Unit-V ADVANCED MICROPROCESSORS

80286 microprocessor: Architecture, registers (Real/Protected mode), privilege levels, descriptor cache, memory access in GDT and LDT, multitasking, addressing modes; Flag register 80386: Architecture, register organization, memory access in protected mode, paging; 80486: Only the technical features.

Text Books:

- 1. D. V. Hall, "Microprocessors and Interfacing", Tata McGraw-Hill Education, 3rd Edition 2013.
- 2. A.K Ray, K. M. Bhurchandani, "Advanced Microprocessors and Peripherals" Tata McGraw-Hill Education, 2nd Edition, 2006.
- 3. Savaliya M. T, "8086 Programming and Advance Processor Architecture", Wiley India Pvt.,1st Edition, 2012.

Reference Books:

- 1. N. Senthil Kumar, M. Saravanan, S. Jeevanathan, S. K. Shah, "Microprocessors and Interfacing", Oxford University, 1st Edition, 2012.
- 2. Lyla B. Das, "The x86 Microprocessors", Pearson India, 2nd Edition, 2014.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Topics to be covered	Course Learning	Reference
No		Outcomes (CLOs)	
1-2	Introduction to 8085 microprocessor. RISC and CISC	CLO 1	T1:Chapter 1.1,1.2
	processors, architecture of 8086 microprocessor		
3-5	Architecture of 8086 microprocessor, special functions of	CLO 2	T2: Chapter 1.2
	general purpose register.		R1: Chapter 1.2
6-7	8086 flag register and function of 8086 flags.	CLO 3	T2: Chapter 1.1
	oooo mag register and runction or oooo mags.		R1: Chapter 1.2
8-9	Instruction set of the processor which is used for	CLO 4	T2: Chapter 2.2,
	programming, addressing modes of 8086, and instruction		T1:Chapter 5.1
	set of 8086.		
10-11	Assembler directives, simple programs, procedures, and	CLO 5	T1: Chapter 5.6,
	macros.		5.7,5.8
			T2: Chapter 2.4
12-13	Develop low level languages like ALP in 8086	CLO6	T1: Chapter 5.6,
	Microprocessor systems		5.7,5.8
	•		T2:Chapter 3.4

Lecture	Topics to be covered	Course Learning	Reference
No	Topics to be covered	Outcomes (CLOs)	Reference
14-15	Minimum mode and maximum mode of operation, timing diagram, memory interfacing to 8086 (Static RAM and EPROM).	CLO 7	T2:Chapter1.8, 1.9 R1:Chapter 3.4
16-17	Assembly language programs: Assembly language programs involving logical, branch and call instructions.	CLO 8	T1: Chapter 5.7,5.6 T2:Chapter 3.4
18-20	Sorting, evaluation of arithmetic expressions, string manipulation, Develop low level languages like ALP in 8086 Microprocessor systems.	CLO 9	T1: Chapter 5.7,5.6 R2:Chapter 3.4,4.7
21-22	Various modes of 8255 operation and interfacing to 8086;	CLO 10	T1: Chapter 1.1,1.2.2 T2: Chapter 5.5
23-26	Interfacing keyboard, displays, 8279 Stepper motor and actuators, digital to analog and analog to digital converter interfacing	CLO11	T2: Chapter 6.3,5.6,5.7,5.8 R1:Chapter 4.4
27-29	Interrupt structure of 8086: Interrupt structure of 8086, Vector interrupt table, interrupt service routines;	CLO 12	T2:Chapter 4.3 R1:Chapter 6.4
30-32	Introduction to DOS and BIOS interrupts 8259 PIC architecture and interfacing cascading of interrupt controller and its importance.	CLO13	T2:Chapter 6.2,6.4 R2: Chapter 5.2
33-34	Asynchronous and synchronous data transfer schemes,	CLO 14	R2:Chapter 5.1
35-38	8251 USART architecture and interfacing; TTL to RS 232C and RS232C to TTL conversion; Sample program of serial data transfer;	CLO15	R2:Chapter 5.1 T2:Chapter 6.4
39-41	Introduction to high-speed serial communications standards, USB.	CLO 16	R2:Chapter 5.1
42-46	80286 microprocessor: Architecture, registers (Real/Protected mode), privilege levels, descriptor cache, memory access in GDT and LDT, multitasking, addressing modes.	CLO 17	R2:Chapter 5.2 T2: Chapter 9.2, 9.3,9.9,9.10
47-50	Flag register 80386: Architecture, register organization, memory access in protected mode, paging;	CLO 18	R2:Chapter 5.3 T2:Chapter 10.2,10.3,10.9
51-53	Memory access in protected mode, paging; 80486: Only the technical features.	CLO 19	R2:Chapter 5.3 T2:Chapter 10.13

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs	Relevance with PSOs
1	ALP for Microprocessors like 8086	Seminars / NPTEL	PO 1, PO 2,	PSO 1,PSO2
	and 80x86		PO 4	
2	Interfacing IO devices to various	Seminars / Guest	PO 2, PO 4	PSO 1
	types of Microprocessors	Lectures / NPTEL		
3	Programming of all microprocessors	Laboratory Practices	PO 1, PO 2,	PSO 2
	by using ALP		PO 4	

Prepared by:

Mr. V R Seshagiri Rao, Assistant Professor