MICROPROCESSORS AND INTERFACING
V Semester —CSE

IARE-R16
A.Y: 2019-2020

Institute of Aeronautical Engineering

UNIT-I
OVERVIEW OF 8086
MICROPROCESSOR

I

Introduction to 8085
microprocessor

I

Introduction to processor:

® A processor is the logic circuitry that responds to and
processes the basic instructions that drives a computer.

® The term processor has generally replaced the term central
processing unit . The processor in a personal computer or
embedded in small devices is often called a microprocessor.

® The processor (CPU, for Central Processing Unit) is the
computer's brain. It allows the processing of numeric data,
meaning information entered in binary form, and the
execution of instructions stored in memory.

Evolution of Microprocessor:
® A microprocessor is used as the CPU in a

microcomputer. There are now many different
microprocessors available.

Microprocessor is a program-controlled device, which
fetches the instructions from memory, decodes and
executes the instructions. Most Micro Processor are
single- chip devices.
Microprocessor is a backbone of computer system.
which is called CPU

Microprocessor speed depends on the processing speed
depends on DATA BUS WIDTH.

A common way of categorizing microprocessors is by
the no. of bits that their ALU can Work with at a time

The address bus is unidirectional because the
address information is always given by the Micro
Processor to address a memory location of an input
/ output devices.

The data bus is Bi-directional because the same bus
IS used for transfer of data between Micro Processor
and memory or input / output devices in both the
direction.

It has limitations on the size of data. Most
Microprocessor does not support floating-point
operations.

Microprocessor contain ROM chip because it
contain instructions to execute data.

Storage capacity is limited. It has a volatile memory.
In secondary storage device the storage capacity is
larger. It is a nonvolatile memory.

Primary devices are: RAM (Read / Write memory, High Speed,
Volatile Memory) / ROM (Read only memory, Low Speed, Non
Voliate Memory)

Secondary devices are: Floppy disc / Hard disk

Compiler:
Compiler is used to translate the high-level language
program into machine code at a time. It doesn’t require
special instruction to store in a memory, it stores
automatically. The Execution time is less compared to
Interpreter

RISC and CISC processors

I

RISC (Reduced Instruction Set Computer):

® RISC stands for Reduced Instruction Set Computer. To execute
each instruction, if there is separate

® electronic circuitry in the control unit, which produces all the
necessary signals, this approach of the design of the control
section of the processor is called RISC design. It is also called
hardwired approach.

Examples of RISC processors:
@ IBM RS6000, MC88100

® DEC’s Alpha 21064, 21164 and 21264 processors

Features of RISC Processors:

®

®

The standard features of RISC processors are listed below:
RISC processors use a small and limited number of instructions.
RISC machines mostly uses hardwired control unit.

RISC processors consume less power and are having high
performance.

Each instruction is very simple and consistent.
RISC processors uses simple addressing modes.

RISC instruction is of uniform fixed length

10

CISC (Complex Instruction Set Computer):

® CISC stands for Complex Instruction Set Computer. If the control
unit contains a number of microelectronic circuitry to generate a
set of control signals and each micro circuitry is activated by a
micro code, this design approach is called CISC design.

Examples of CISC processors are:
® Intel 386, 486, Pentium, Pentium Pro, Pentium Il, Pentium lll
® Motorola’s 68000, 68020, 68040, etc.

11

Features of CISC Processors:

® CISC chips have a large amount of different and complex
instructions.

® CISC machines generally make use of complex addressing modes.

® Different machine programs can be executed on CISC machine.

® CISC machines uses micro-program control unit.

® CISC processors are having limited number of registers

12

Architecture of 8086
microprocessor

I

Architecture :

C MEMORY

F—————————— =%

bl
= BIU C-BUS :
i - L |
: : '
s INSTRUCTION |
1 STREAM |
: ! 4 BYTE |
| 3 QUEUE |
i £ i
})] '
i cs (S ORI D Mt S St S S——" S—— . it - e e - e s s i s, g S —
i Ss | '
I DS ' :
| P | 1
: : CONTROL |
NP, . H SYSTEM |
l 1
| — '
| EV ,& A-B :
5 i
|
: I
AH AL :
: 8H BL 1
| CH CL ARITHMETIC |
1 DH DL LOGIC UNIT |
! sp |
I 8P L |
: Si i
: DL OPERANDS :
L |

® 8086 Microprocessor is divided into two functional units, i.e.,
EU(Execution Unit) and BIU (Bus Interface Unit).

EU (Execution Unit):

Execution unit gives instructions to BIU stating from where to
fetch the data and then decode and execute those instructions.
Its function is to control operations on data using the instruction
decoder & ALU. EU has no direct connection with system buses as
shown in the above figure, it performs operations over data
through BIU.

15

Architecture :

C MEMORY

F—————————— =%

bl
= BIU C-BUS :
i - L |
: : '
s INSTRUCTION |
1 STREAM |
: ! 4 BYTE |
| 3 QUEUE |
i £ i
})] '
i cs (S ORI D Mt S St S S——" S—— . it - e e - e s s i s, g S —
i Ss | '
I DS ' :
| P | 1
: : CONTROL |
NP, . H SYSTEM |
l 1
| — '
| EV ,& A-B :
5 i
|
: I
AH AL :
: 8H BL 1
| CH CL ARITHMETIC |
1 DH DL LOGIC UNIT |
! sp |
I 8P L |
: Si i
: DL OPERANDS :
L |

@ BIU(Bus Interface Unit):

BIU takes care of all data and addresses transfers on the buses for
the EU like sending addresses, fetching instructions from the
memory, reading data from the ports and the memory as well as
writing data to the ports and the memory. EU has no direction
connection with System Buses so this is possible with the BIU. EU

and BIU are connected with the Internal Bus.

17

Instruction queue:

BIU contains the instruction queue. BIU gets up to 6
bytes of next instructions and stores them in the
Instruction queue. When EU executes instructions
and is ready for its next instruction, then it simply
reads the instruction from this instruction queue

resulting in increased execution speed.

18

® Segment register:
BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the

addresses of instructions and data in memory, which are
used by the processor to access memory locations. It also

contains 1 pointer register IP, which holds the address of

the next instruction to executed by the EU.

Special functions of general
purpose register

I

AX & DX registers:

® In 8 bit multiplication, one of the operands must be in AL. The
other operand can be a byte in memory location or in another 8
bit register. The resulting 16 bit product is stored in AX, with AH
storing the MS byte.

® In 16 bit multiplication, one of the operands must be in AX. The
other operand can be a word in memory location or in another 16
bit register. The resulting 32 bit product is stored in DX and AX,
with DX storing the MS word and AX storing the LS word.

21

BX register :

In instructions where we need to specify in a general

purpose register the 16 bit effective address of a memory

location, the register BX is used (register indirect).

CXregister :

® In Loop Instructions, CX register will be always used as the
implied counter. In 1/0O instructions, the 8086 receives into or
sends out data from AX or AL depending as a word or byte
operation. In these instructions the port address, if greater than

FFH has to be given as the contents of DX register.

® Ex:INAL, DX
DX register will have 16 bit address of the I/P device

23

® Segment register: BIU has 4 segment buses, i.e. CS, DS, SS& ES. It

holds the addresses of instructions and data in memory, which are
used by the processor to access memory locations. It also contains 1

pointer register IP, which holds the address of the next instruction to

executed by the EU.

24

8086 Flag Register and
Function of 8086 Flags

I

Flag Register
®

Flag Register contains a group of status bits called flags that
indicate the status of the CPU or the result of arithmetic
operations.

There are two types of flags:

The status flags which reflect the result of executing an
instruction. The programmer cannot set/reset these flags directly.

The control flags enable or disable certain CPU operations. The
programmer can set/reset these bits to control the CPU's
operation.

26

® Nine individual bits of the status register are used as control flags (3 of

them) and status flags (6 of them).The remaining 7 are not used.

® A flag can only take on the values 0 and 1. We say a flag is set if it has
the value 1.The status flags are used to record specific characteristics of

arithmetic and of logical instructions.

27

O-Flag LFle sne 1€ Flags Register

N\ [[R R RN

ITLIL T LT

Orverflow Interrupt Sign Aunzilhary Caery

® Control Flags: There are three control flags

® The Direction Flag (D): Affects the direction of moving data blocks
by such instructions as MOVS, CMPS and SCAS. The flag values
are 0 = up and 1 = down and can be set/reset by the STD (set D)
and CLD (clear D) instructions.

® The Interrupt Flag (l): Dictates whether or not system interrupts
can occur. Interrupts are actions initiated by hardware block such
as input devices that will interrupt the normal execution of
programs. The flag values are 0 = disable interrupts or 1 = enable
interrupts and can be manipulated by the CLI (clear 1) and STI (set
I) instructions.

29

® The Trap Flag (T): Determines whether or not the CPU is halted
after the execution of each instruction. When this flag is set (i.e. =
1), the programmer can single step through his program to debug
any errors. When this flag = 0 this feature is off. This flag can be
set by the INT 3 instruction.

® Status Flags: There are six status flags

® The Carry Flag (C): This flag is set when the result of an unsigned
arithmetic operation is too large to fit in the destination register.
This happens when there is an end carry in an addition operation
or there an end borrows in a subtraction operation. A value of 1
=carry and 0 = no carry.

30

@ The Overflow Flag (O): This flag is set when the result of a
signed arithmetic operation is too large to fit in the
destination register (i.e. when an overflow occurs).
Overflow can occur when adding two numbers with the
same sign (i.e. both positive or both negative). A value of 1
= overflow and 0 = no overflow.

@ The Sign Flag (S): This flag is set when the result of an
arithmetic or logic operation is negative. This flag is a copy
of the MSB of the result (i.e. the sign bit). A value of 1
means negative and O = positive.

31

® The Zero Flag (Z): This flag is set when the result of an arithmetic
or logic operation is equal to zero. A value of 1 means the result is
zero and a value of 0 means the result is not zero.

® The Auxiliary Carry Flag (A): This flag is set when an operation
causes a carry from bit 3 to bit 4 (or a borrow from bit 4 to bit 3)
of an operand. A value of 1 = carry and 0 = no carry.

® The Parity Flag (P): This flags reflects the number of 1s in the
result of an operation. If the number of 1s is even its value = 1
and if the number of 1s is odd then its value = 0.

32

Addressing Modes of 8086

I

Addressing Modes

Addressing Modes of 8086:

® Addressing mode indicates a way of locating data or
operands. Depending up on the data type used in the
instruction and the memory addressing modes, any
instruction may belong to one or more addressing modes or
same instruction may not belong to any of the addressing
modes.

® The addressing mode describes the types of operands and
the way they are accessed for executing an instruction.
According to the flow of instruction execution, the
instructions may be categorized as

® Sequential control flow instructions and
® Control transfer instructions.

34

Addressing Modes

® Sequential control flow instructions are the instructions which

O

after execution, transfer control to the next instruction appearing
immediately after it (in the sequence) in the program. For
example the arithmetic, logic, data transfer and processor control
instructions are Sequential control flow instructions.

The control transfer instructions on the other hand transfer
control to some predefined address or the address somehow
specified in the instruction, after their execution. For example
INT, CALL, RET & JUMP instructions fall under this category.

35

Addressing Modes

® The addressing modes for Sequential and control flow
instructions are explained as follows.

® Immediate addressing mode:

@ In this type of addressing, immediate data is a part of instruction,
and appears in the form of successive byte or bytes.

Example: MOV AX, 0005H.

® In the above example, 0005H is the immediate data. The
immediate data may be 8- bit or 16-bit in size.

36

Addressing Modes

Direct addressing mode:

® In the direct addressing mode, a 16-bit memory address (offset)
directly specified in the instruction as a part of it.

Example: MOV AX, [5000H].

Register addressing mode:

® Inthe register addressing mode, the data is stored in a register
and it is referred using the particular register. All the registers,
except IP, may be used in this mode.

Example: MOV BX, AX

37

®

Addressing Modes

Register indirect addressing mode:

Sometimes, the address of the memory location which
contains data or operands is determined in an indirect way,
using the offset registers. The mode of addressing is known
as register indirect mode.

In this addressing mode, the offset address of data is in
either BX or Sl or DI Register. The default segment is either
DS or ES.

Example: MOV AX, [BX].

38

Addressing Modes

® Indexed addressing mode:

@ In this addressing mode, offset of the operand is stored one
of the index registers. DS & ES are the default segments for
index registers SI & DI respectively.

Example: MOV AX, [SI]

® Here, data is available at an offset address stored in Sl in DS.

@ Register relative addressing mode:

@ In this addressing mode, the data is available at an effective
address formed by adding an 8-bit or 16-bit displacement
with the content of any one of the register BX, BP, S| & DI in
the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

39

Addressing Modes

@ Based indexed addressing mode:

® The effective address of data is formed in this addressing
mode, by adding content of a base register (any one of BX or
BP) to the content of an index register (any one of Sl or DI).
The default segment register may be ES or DS.

Example: MOV AX, [BX][SI]

@ Relative based indexed:

® The effective address is formed by adding an 8 or 16-bit
displacement with the sum of contents of any of the base
registers (BX or BP) and any one of the index registers, in a
default segment.

Example: MOV AX, 50H [BX] [SI]

40

Addressing Modes

@ Addressing Modes for control transfer instructions:

@®© Intersegment
* Intersegment direct
* Intersegment indirect

@® Intrasegment
* Intrasegment direct

* Intrasegment indirect

Addressing Modes

® Intersegment direct:

@ In this mode, the address to which the control is to be transferred
is in a different segment. This addressing mode provides a means
of branching from one code segment to another code segment.
Here, the CS and IP of the destination address are specified
directly in the instruction.

Example: JMP 5000H: 2000H;

® Jump to effective address 2000H in segment 5000H.

42

Addressing Modes

® Intersegment indirect:

@ In this mode, the address to which the control is to be transferred
lies in a different segment and it is passed to the instruction
indirectly, i.e. contents of a memory block containing four bytes,
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using any
of the addressing modes, except immediate mode.

Example: JMP [2000H].

Jump to an address in the other segment specified at effective
address 2000H in DS.

43

Addressing Modes

® Intrasegment direct mode:

@ In this mode, the address to which the control is to be transferred
lies in the same segment in which the control transfers instruction
lies and appears directly in the instruction as an immediate
displacement value. In this addressing mode, the displacement is
computed relative to the content of the instruction pointer.

44

Addressing Modes

® The effective address to which the control will be transferred is given
by the sum of 8 or 16 bit displacement and current content of IP. In
case of jump instruction, if the signed displacement (d) is of 8-bits
(i.e. -128<d<+127), it as short jump and if it is of 16 bits (i.e. -
32768<d<+32767), it is termed as long jump.

Example: JMP SHORT LABEL.

45

Addressing Modes

Intrasegment indirect mode:

In this mode, the displacement to which the control is to be
transferred is in the same segment in which the control transfer
instruction lies, but it is passed to the instruction directly. Here,
the branch address is found as the content of a register or a
memory location.

This addressing mode may be used in unconditional branch
instructions.

Example: JMP [BX]; Jump to effective address stored in BX.

46

Instruction set of 8086

I

INSTRUCTION SET OF 8086

® The Instruction set of 8086 microprocessor is classified into 7
Types, they are:-

- Data transfer instructions

- Arithmetic& logical instructions

* Program control transfer instructions
* Machine Control Instructions

- Shift / rotate instructions

- Flag manipulation instructions

+ String instructions

48

Data Transfer instructions

® Data transfer instruction, as the name suggests is for the transfer
of data from memory to internal register, from internal register to
memory, from one register to another register, from input port to
internal register, from internal register to output port etc

MOV instruction

® It is a general purpose instruction to transfer byte or word from
register to register, memory to register, register to memory or
with immediate addressing.

49

O

General Form:

MOV destination, source

Here the source and destination needs to be of the same size,
that is both 8 bit or both 16 bit.

MOV instruction does not affect any flags.

Example:-

MOV BX, 00F2H; load the immediate number 00F2H in BX
register

MOV CL, [2000H] ;Copy the 8 bit content of the memory
location, at a displacement of 2000H
from data segment base to the CL register

50

®MOV [589H], BX;

Copy the 16 bit content of BX register on to the memory location,
which at a displacement of 589H from the data segment base.

® MOV DS, CX; Move the content of CX to DS

PUSH instruction

® The PUSH instruction decrements the stack pointer by two and
copies the word from source to the location where stack pointer
now points. Here the source must of word size data. Source can

be a general purpose register, segment register or a memory
location.

51

The PUSH instruction first pushes the most significant byte to sp-1, then
the least significant to the sp-2. Push instruction does not affect any

flags.

h=mory stack =egment

IO0SS =
CH O 0033
20|30 > 30 30032 <—f
ucx 20 300351
S0050

=F 00354 | |

Saooa
yesy

Example:-

® PUSH CX ; Decrements SP by 2, copy content of CX to the stack
(figure shows execution of this instruction)

® PUSHDS ; Decrement SP by 2 and copy DS to stack
® POP instruction

The POP instruction copies a word from the stack location pointed
by the stack pointer to the destination. The destination can be a
General purpose register, a segment register or a memory
location. Here after the content is copied the stack pointer is
automatically incremented by two.

® The execution pattern is similar to that of the PUSH instruction.

Example: POP CX; Copy a word from the top of the stack to CX and
increment SP by 2.

53

©@ ® ®© ®©® ® @

IN & OUT instructions

The IN instruction will copy data from a port to the
accumulator. If 8 bit is read the data will go to AL and if
16 bit then to AX. Similarly OUT instruction is used to
copy data from accumulator to an output port.

Both IN and OUT instructions can be done using direct
and indirect addressing modes.

Example:

IN AL, OF8H; Copy a byte from the port OF8H to AL
MOV DX, 30F8H;Copy port address in DX

IN AL, DX; Move 8 bit data from 30F8H port

IN AX, DX; Move 16 bit data from 30F8H port

OUT 047H, AL; Copy contents of AL to 8 bit port 047H
MOV DX, 30F8H;Copy port address in DX

54

XCHG instruction

®

The XCHG instruction exchanges contents of the
destination and source. Here destination and source can
be register and register or register and memory location,
but XCHG cannot interchange the value of 2 memory
locations.

General Format

O

®

XCHG Destination, Source

Example:

XCHG BX, CX; exchange word in CX with the word in BX
XCHG AL, CL; exchange byte in CL with the byte in AL

XCHG AX, SUM[BX];here physical address, which is
DS+SUM+[BX]. The content at physical
address and the content of
AX are interchanged.

55

Instruction set of 8086
(Arithmetic Instructions in 8086)

I

Mnemonic

Meaning

Format

Operation

affected

ADD Addition ADDD,S (S)+(D) > (D) ALL
carry > (CF)
ADC Add with ADCD,S (S)+(D)+(CF) => (D) ALL
carry carry = (CF)
INC Increment by INCD D)+1 > (D) ALL but CY
one
AAA ASCII adjust AAA If the sum is >9, AH AFCF
for addition is incremented by 1
DAA Decimal DAA Adjust AL for decimal ALL
adjust for Packed BCD

addition

Arithmetic Instructions—=SUB, SBB, DEC, AAS,

Mnemonic Meaning Format Operation Flags
affected
SUB Subtract | SUBD,S (D)-(S) » (D) All
Borrow =2 (CF)
SBB Subtract | SBBD,S (D)-(S)-(CF) » (D) All
with
borrow
DEC Decrement | DEC D (D)-1 => (D) All but CF
by one
NEG Negate NEGD All
DAS Decimal DAS Convert the result in ALto All
adjust for packed decimal format
subtraction
AAS ASCII AAS (AL) difference CY,AC
adjust for

subtraction

(AH) dec by 1 if borrow

58

Multiplication and Division

Mnemonic Meaning Format Operation Flags Affected
MUL Multiply MUL S (AL) - (SB) — (AX) OF, CF
(unsigned) (AX) - (S16) — (DX),(AX) SF, ZF, AF, PF undefined
DIV Division DIiv S (1) QUAX/(S8)) — (AL) OF, SF, ZF, AF, PF, CF
{(unsigned) - R(AX)/(S8)) — (AH) undefined
(2) QUDX,AX)/(S16)) — (AX)
R(DX,AX)/(S16)) — (DX) -
If Q is FF4e in case (1) or
FFFF,g in case (2), then
type O interrupt occurs
IMUL Integer multiply IMUL S (AL) - (S8) — (AX) OF, CF
(signed) . (AX) - (818) — (DX).(AX) SF, ZF, AF, PF undefined
1DV integer divide IDIV S (1) QUAX)Y/(S8)) — (AL) OF, SF ZF, AF, PF, CF
(signed) R{(AX)/(S8)) — (AH) undefined)
(2) QUDX,AX)/(S16)) — (AX)
R{((DX,AX)/(S16)) — (DX)
If Q is positive and exceeds
7FFF,g or if Q is nagative
and becomes less than
800146, then type O interupt
occurs
AAM Adjust AL for AAM QALY 10) — (AH) SF, ZF, PF
multiplication R{{(AL)Y10) — (AL) OF, AF,CF undefined
AAD Adjust AX for AAD (AH) - 10 + (AL) — (AL) SF, ZF, PF
division 00 — (AH) OF, AF, CF undefined
CcBwW Convert byte to CcBW (MSB of AL) — (All bits of AH) None
word
CcCwD Convert word 1o CwWD (MSB of AX) — (All bits of DX) None

double word

(a)

Source

RegB8
Regi16
MemS
Meml16

(b)

59

Byte*Byte AL Eegister or memory AX

Word*Word AX Register or memory DX :AX
Drword*Dhwo rd EAX Register or memory EAN :EDX
Division Dividend Operand Quotient: Remainder

(DIV or IDIV) (Divisor)

Word/Byte AX Eegister or Memory AL :AH
Dword Word DX:AX Eegister or Memory AN DX
Onword/Dword EDX: EAX Register or Memory EAX :EDX

60

Instruction set of 8086
(Logical Instructions in 8086)

I

AND instruction

@ This instruction logically ANDs each bit of the source
byte/word with the corresponding bit in the destination
and stores the result in destination. The source can be
an Immediate number, register or memory location,

register can be aregister or memory location.

® The CF and OF flags are both made zero, PF, ZF, SF are

affected by the operation and AF is undefined.

62

General Format:
AND Destination, Source

Example:
AND BL, AL ;suppose BL=1000 0110 and AL =1100
1010 then after the operation BL would be BL=
1000 0010.

AND CX, AX :CX <= CX AND AX
AND CL, 08 ;CL<= CL AND (0000 1000)

OR instruction
®

This instruction logically ORs each bit of the source byte/word
with the corresponding bit in the destination and stores the
result in destination. The source can be an immediate number,

register or memory location, register can be a register or memory
location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by
the operation and AF is undefined.

General Format:
OR Destination, Source

64

Example:

® ORBL, AL; suppose BL=1000 0110 and AL = 1100 1010 then after the operation

BL would be BL=1100 1110.
® ORCX, AX;CX <= CX AND AX
® ORCL, 08;CL<= CL AND (0000 1000)
NOT instruction

® The NOT instruction complements (inverts) the contents of an operand register

or a memory location, bit by bit. The examples are as follows:
Example:
® NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX= (0100)2= (4)16).

® NOT [5000H]

65

XOR instruction

@ The XOR operation is again carried out in a similar way to
the AND and OR operation. The constraints on the
operands are also similar. The XOR operation gives a high
output, when the 2 input bits are dissimilar. Otherwise, the
output is zero. The example instructions are as follows:

Example:
XOR AX,0098H
XOR AX,BX
XOR AX,[5000H]

66

® Shift / Rotate Instructions

® Shift instructions move the binary data to the left or right by
shifting them within the register or memory location. They also
can perform multiplication of powers of 2+n and division of

powers of 2-n.

® There are two type of shifts logical shifting and arithmetic
shifting, later is used with signed numbers while former with

unsigned.

67

® SHL/SAL instruction

® Both the instruction shifts each bit to left, and places the MSB in
CF and LSB is made 0. The destination can be of byte size or of
word size, also it can be a register or a memory location. Number
of shifts is indicated by the count.

® All flags are affected.

® General Format:
® SAL/SHL destination, count
Example:
® MOV BL, B7H;
@ BLis made B7HSALBL, 1;
® shift the content of BL register one place to left.
® Before execution,
@ CY B7,86 B5 B4 B3 B2 Bl BO

68

®

SHR instruction

This instruction shifts each bit in the specified destination to the
right and 0 is stored in the MSB position. The LSB is shifted into
the carry flag. The destination can be of byte size or of word size,
also it can be a register or a memory location. Number of shifts is
indicated by the count.

All flags are affected

General Format: SHR destination, count

Example:

MOV BL, B7H;BL is made B7H

SHR BL, 1;shift the content of BL register one place to the right.
Before execution,

B7 B6 B5 B4 B3 B2 Bl BO CY

69

©@ ® ®©® ®

After execution,
B7 B6 B5 B4 B3 B2 B1 BO CcY
ROL instruction

This instruction rotates all the bits in a specified byte or word to the
left some number of bit positions. MSB is placed as a new LSB and a
new CF. The destination can be of byte size or of word size, also it
can be a register or a memory location. Number of shifts is indicated
by the count.

All flags are affected

70

® General Format: ROL destination, count

Example:
® MOV BL, B7H;BL is made B7H
® CY B7B6B5B4B3B2B1B0
® ROLBL, 1;rotates the content of BL register one place to the left.

Before execution,

® CY B7B6B5B4B3B2B1BO0

ROR Iinstruction

This instruction rotates all the bits in a specified byte or word to
the right some number of bit positions. LSB is placed as a new
MSB and a new CF. The destination can be of byte size or of word
size, also it can be a register or a memory location. Number of
shifts is indicated by the count.

General Format: ROR destination, count

Example:
MOV BL, B7H; BL is made B7H

ROR BL, 1;shift the content of BL register one place to the
right.

Before execution,
B7 B6 B5 B4 B3 B2 B1 BO CcY

72

®© @®

©@ ©®©®@®

RCR instruction

This instruction rotates all the bits in a specified byte or word to
the right some number of bit positions along with the carry flag.
LSB is placed in a new CF and previous carry is placed in the new
MSB. The destination can be of byte size or of word size, also it
can be a register or a memory location. Number of shifts is
indicated by the count.

All flags are affected

General Format: RCR destination, count

Example:

MOV BL, B7H;BL is made B7H

RCR BL, 1;shift the content of BL register one place to the right.
Before execution,

B/7 B6 B5 B4 B3 B2 B1 BO CY

73

INSTRUCTION SET OF 8086

I

Classified into 7 categories:

1

2

. Data Transfer

. Arithmetic

. Bit manipulation instructions

. String

. Program execution transfer instructions

. High level language interface instructions

. Processor control instructions

String - a byte or word array located in memory.

Operations that can be performed with string instructions:

®

O

copy a string into another string
search a string for a particular byte or word
store characters in a string

compare strings of characters alphanumerically

76

String Instruction Basics

> Source DS:SI, Destination ES:DI

— You must ensure DS and ES are correct

— You must ensure SI and DI are offsets into DS and ES
respectively

» Direction Flag (0 = Up, 1 = Down)

— CLD - Increment addresses (left to right)
— STD - Decrement addresses (right to

7

String Control Instructions

1) MOVS/ MOVSB/ MOVSW
Dest string name, src string name

This instruction moves data byte or word from location in DS
to location in ES.

2) REP / REPE / REPZ / REPNE / REPNZ
Repeat string instructions until specified conditions exist.
This is prefix a instruction.

78

String Control Instructions

4)SCAS / SCASB / SCASW
Scan a string byte or string word.

Compares byte in AL or word in AX. String address is to be loaded in
DI.

5)STOS / STOSB / STOSW
Store byte or word in a string.

Copies a byte or word in AL or AX to memory location pointed by
DI.

6)LODS / LODSB /LODSW
Load a byte or word in AL or AX

» Copies byte or word from memory location pointed by Sl into AL or
AX register.

79

Classified into 7 categories:

1

2

. Data Transfer

. Arithmetic

. Bit manipulation instructions

. String

. Program execution transfer instructions

. High level language interface instructions

. Processor control instructions

5

. Program Execution Transfer hstructions

instructions are similar to branching or looping instructions. These

instructions include unconditional jump or loop instructions.
Classification:

Unconditional transfer instructions

Conditional transfer instructions

Iteration control instructions

Interrupt instructions

81

Unconditional transfer instructions

» CALL: Call a procedure, save return address on stack
» RET: Return from procedure to the main program.

» JMP: Goto specified address to get next instruction

CALL instruction: The CALL instruction is used to transfer execution

of program to a subprogram or procedure.

82

CALL instruction

> Near call

1.Direct Near CALL: The destination address is specified in the
instruction itself.

2.Indirect Near CALL: The destination address is specified in any 16-

bit register, except IP.

> Far call

1.Direct Far CALL: The destination address is specified in the
instruction itself. It will be in different Code Segment.

2.Indirect Far CALL: The destination address is specified in two word

memory locations pointed by a register.

83

JMP instruction

The processor jumps to the specified location rather than the

instruction after the JMP instruction.
> Intra segment jump

» Inter segment jump

RET

RET instruction will return execution from a procedure to the

next instruction after the CALL instruction in the calling program.

84

Conditional Transfer Instructions

JA/INBE: Jump if above / jump if not below or equal
JAE/INB: Jump if above /jump if not below
JBE/JNA: Jump if below or equal/ Jump if not above
JC: jump if carry flag CF=1

JE/JZ: jump if equal/jump if zero flag ZF=1

JG/INLE: Jump if greater/ jump if not less than or equal.

85

Conditional Transfer Instructions

JGE/JNL: jump if greater than or equal/ jump if not less than
JL/INGE: jump if less than/ jump if not greater than or equal
JLE/ING: jump if less than or equal/ jump if not greater than

JNC: jump if no carry (CF=0).

JNE/INZ: jump if not equal/ jump if not zero(ZF=0)

Conditional Transfer Instructions

JNO: jump if no overflow(OF=0)

JNP/JPO: jump if not parity/ jump if parity odd(PF=0)
JNS: jump if not sign(SF=0)

JO: jump if overflow flag(OF=1)

JP/JPE: jump if parity/jump if parity even(PF=1)

JS: jump if sign(SF=1).

Iteration Control Instructions

> These instructions are used to execute a series of instructions for

certain number of times.
» LOOP: Loop through a sequence of instructions until CX=0.

> LOOPE/LOOPZ : Loop through a sequence of instructions while
ZF=1 and instructions CX = 0.

» LOOPNE/LOOPNZ : Loop through a sequence of instructions while
ZF=0 and CX =0.

» JCXZ : jump to specified

88

Interrupt Instructions

Two types of interrupt instructions:

» Hardware Interrupts (External Interrupts)

» Software Interrupts (Internal Interrupts and Instructions)
Hardware Interrupts:

* INTR is a maskable hardware interrupt.

 NMIlis a non-maskable interrupt.

Software Interrupts

INT :Interrupt program execution, call service procedure

® INTO: Interrupt program execution if OF=1

IRET: Return from interrupt service procedure to main program.

High Level Language Interface Instructions

»ENTER : enter procedure.
» LEAE: Leave procedure.

»BOUND: Check if effective address within specified array

bounds.

Processor Control Instructions

l. Flag set/clear instructions

STC: Set carry flagCFto 1

CLC: Clear carry flagCFto O

CMC: Complement the state of the carry flag CF

STD: Set direction flag DF to 1 (decrement string pointers)

CLD: Clear direction flag DF to 0
STI: Set interrupt enable flag to 1(enable INTR input)

CLI: Clear interrupt enable Flag to 0 (disable INTR input)

92

Il. External Hardware synchronizationinstructions

»HIT: Halt (do nothing) until interrupt or reset.

» WAIT: Wait (Do nothing) until signal on the test pin is low.

> ESC: Escape to external coprocessor such as 8087 or 8089.

»LOCK: An instruction prefix. Prevents another processor from
taking the bus while the adjacent instruction executes.

»NOP: No operation. This instruction simply takes up three clock

cycles and does no processing.

93

Assembler Directives

I

Assembler Directives

» ASSUME
> DB
> DD
> DQ
> DT
> DW

Defined Byte.
Defined Double Word
Defined Quad Word
Define Ten Bytes
Define Word

> ASSUME Directive- The ASSUME directive is used to tell the

assembler that the name of the logical segment should be used for
a specified segment. The 8086 works directly with only 4 physical
segments: a Code segment, a data segment, a stack segment, and
an extra segment.

Example:
ASUME CS:CODE ;This tells the assembler that the logical

segment named CODE contains the instruction statements for the
program and should be treated as a code segment.

ASSUME DS:DATA ;This tells the assembler that for any
instruction which refers to a data in the data segment, data will
found in the logical segment DATA.

96

DB - DB directive is used to declare a byte- type variable or to
store a byte in memory location.

Example:

. PRICE DB 49h, 98h, 29h ;Declare an array of 3 bytes,
named as PRICE and initialize.

. NAME DB ‘ABCDEF’ ;Declare an array of 6
bytes and initialize with ASCII code for letters
. TEMP DB 100 DUP(?) ;Set 100 bytes of storage

in memory and give it the name as TEMP, but leave the 100
bytes uninitialized. Program instructions will load values into
these locations.

97

DW-The DW directive is used to define a variable of type word or
to reserve storage location of type word in memory.

Example:

MULTIPLIER DW 437Ah ; this declares a variable of type word
and named it as MULTIPLIER. This variable is initialized with the
value 437Ah when it is loaded into memory to run.

EXP1 DW 1234h, 3456h, 5678h ; this declares an array of
3 words and initialized with specified values.

STOR1 DW 100 DUP(0); Reserve an array of 100 words
of memory and initialize all words with 0000.Array is named as
STORL1.

98

» END-END directive is placed after the last statement of a
program to tell the assembler that this is the end of the

program module. The assembler will ignore any statement
after an END directive.

» ENDP-ENDP directive is used along with the name of
the procedure to indicate the end of a procedure to the
assembler
Example:

® SQUARE_NUM PROCE ; It start the procedure ;Some
steps to find the square root of a number

® SQUARE_NUM ENDP ;Hear it is the End for the
procedure

99

END End Program

>
» ENDP - End Procedure

» ENDS - End Segment

> EQU Equate

» EVEN - Align on Even Memory Address
» EXTRN -

» ENDS - This ENDS directive is used with name of the segment to
indicate the end of that logic segment.

Example: CODE SEGMENT ;Hear it Start the logic segment
containing code ;

» CODE ENDS ;End of segment named as CODE

> GLOBAL - Can be used in place of a PUBLIC directive or in place of an
EXTRN directive.

101

GROUP-Used to tell the assembler to group the logical
statements named after the directive into one logical group
segment, allowing the contents of all the segments to be
accessed from the same group segment base.

INCLUDE - Used to tell the assembler to insert a block of source
code from the named file into the current source module.

LABEL- Used to give a name to the current value in the location
counter.

NAME- Used to give a specific name to each assembly module
when programs consisting of several modules are written.

E.g.: NAME PC_BOARD

102

OFFSET- Used to determine the offset or displacement of a named
data item or procedure from the start of the segment which contains
it.

E.g.: MOV BX, OFFSET PRICES

ORG- The location counter is set to 0000 when the assembler
starts reading a segment. The ORG directive allows setting a desired
value at any point in the program.

E.g.: ORG 2000H

PROC- Used to identify the start of a procedure.

E.g.: SMART_DIVIDE PROC FAR

PTR- Used to assign a specific type to a variable or to a label.
E.g.: INC BYTE PTR[BX] tells the

103

PUBLIC- Used to tell the assembler that a specified name or label
will be accessed from other modules.

SEGMENT- Used to indicate the start of a logical segment.

E.g.: CODE SEGMENT indicates to the assembler the start of a
logical segment called CODE

SHORT- Used to tell the assembler that only a 1 byte
displacement is needed to code a jump instruction.

E.g.: JMP SHORT NEARBY_LABEL

TYPE - Used to tell the assembler to determine the type of a
specified variable.

E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to
increment BX to point to the next word in an array of
words.

104

Simple Programs of 8086

I

2 000

Write an assembly language program for addition of two 8- S

bit numbers using 8086 microprocessors % IARE &

2
/ \2
0,

¥ Eop W

DATA SEGMENT
Al DB 50H
A2 DB 51H
RES DB ?
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS:DATA
START: MOV AX,DATA
MOV DS,AX
MOV AL,Al
MOV BL,A2
ADD AL,BL
MOV RES,AL
MOV AX,4CO0H
INT 21H
CODE ENDS
END START

number using 8086 microprocessors.

DATA SEGMENT
FIRST DW 03H
SEC DW 01H
DATA ENDS
CODE SEGMENT
ASSUME CS:CODE,DS:DATA
START: MOV AX,DATA
MOV DS,AX
MOV AX,SEC
MOV CX,FIRST
L1: MUL CX
DEC CX
JCXZ L2
JMP L1
L2: INT 3H
CODE ENDS
END START

2 000

Write an assembly language program to find the factorial of given%

m =
S IARE §
s \3

2, Q
7 \2
¥ ror V\°

2 000

Write an assembly language program to find the sum of squares §“é

using 8086 microprocessors.

DATA SEGMENT
NUM DW 5H
RES DW ?
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS: DATA
START: MOV AX,DATA
MOV DS,AX
MOV CX,NUM
MOV BX,00
L1: MOV AX,CX
MUL CX
ADD BX,AX
DEC CX
JNZ L1
MOV RES,BX
INT 3H

CODE ENDS
END START

Procedures and Macros

I

Procedures:

® While writing programs, it may be the case that a particular
sequence of instructions is used several times. To avoid writing
the sequence of instructions again and again in the program, the
same sequence can be written as a separate subprogram called a
procedure.

Defining Procedures:

® Assembler provides PROC and ENDP directives in order to define
procedures. The directive PROC indicates beginning of a
procedure. Its general form is:

Procedure_name PROC [NEAR|FAR]

110

Passing parameters to and from procedures:

The data values or addresses passed between procedures and
main program are called parameters. There are four ways of
passing parameters:

» Passing parameters in registers
» Passing parameters in dedicated memory locations
» Passing parameters with pointers passed in registers

> Passing parameters using the stack

111

MACROS:

> When the repeated group of instruction is too short or not suitable
to be implemented as a procedure, we use a MACRO. A macro is a
group of instructions to which a name is given. Each time a macro is
called in a program, the assembler will replace the macro name with
the group of instructions.

Defining MACROS:

~ Before using macros, we have to define them. MACRO directive
informs the assembler the beginning of a macro. The general form
Is:

» Macro_name MACRO argumentl, argument2, ...

» Arguments are optional. ENDM informs the assembler the end of
the macro. Its general form is : ENDM

112

Procedures Macros

Accessed by CALL and RET
mechanism during program execution

Accessed by name given to macro
when
defined during assembly

Machine code for instructions only put
In memory once

Machine code generated for
Instructions
each time called

Parameters are passed in registers,
memory locations or stack

Parameters passed as part of statement
which calls macro

Procedures uses stack

Macro does not utilize stack

A procedure can be defined anywhere
In program using the directives PROC
and ENDP

A macro can be defined anywhere in
program using the directives MACRO
and ENDM

Procedures takes huge memory for
CALL(3 bytes each time CALL is
used) instruction

Length of code is very huge if macro’s
are called for more number of times

113

UNIT-II
PIN DIAGRAM OF 8086 AND
AEESMBLY LANGUAGE
PROGRAMMING

I

Minimum mode operation In
8086

I

Minimum mode operation in 8086:

—

B o F =L
— RDY 0l:2“ . f
| Reset Clk RDY
Reset Cik Ready 'mwm e
X Mo - . —
e]D DMUX IORD -
Vee WR IOWR
Ag—o] l—» CSe RAM
8086 — CStogic L &So RAM
.............. ——— o CSe ROM
f i ey CSo ROM
ALE -1 sTB 1 Ac—Aw ¥
74373
— ADys. :
v Gl 11 JV U
A9/Sg ? i
| - CS
DT/R DEN s s —— = S
CSo CsSe c CSe IORD | IOWR
} il S 1
= - cs : cs cs : Cs
Transceivers R"-?‘ RQ.' A {
S 742as : - H | ¥
DIR wi WR i oF !

In @ minimum mode 8086 system, the microprocessor 8086 is
operated in minimum mode by strapping its MN/MX pin to logic
1.

In this mode, all the control signals are given out by the
microprocessor chip itself. There is a single microprocessor in the
minimum mode system.

The remaining components in the system are latches,
transceivers, clock generator, memory and 1/O devices. Some
type of chip selection logic may be required for selecting memory
or 1/0 devices, depending upon the address map of the system.

Latches are generally buffered output D-type flip-flops like
74LS373 or 8282. They are used for separating the valid address
from the multiplexed address/data signals and are controlled by
the ALE signal generated by 8086.

117

Transceivers are the bidirectional buffers and sometimes they are
called as data amplifiers. They are required to separate the valid
data from the time multiplexed address/data signals.

They are controlled by two signals namely, DEN and DT/R.

The DEN signal indicates the direction of data, i.e. from or to the
processor. The system contains memory for the monitor and
users program storage.

Usually, EPROM is used for monitor storage, while RAM for users
program storage. A system may contain I/O devices.

118

Maximum mode operation in
8086

I

* In the maximum mode, the 8086 is operated by strapping the

MN/MX pin to ground.

 In this mode, the processor derives the status signal S2, S1, SO.
Another chip called bus controller derives the control sighal using

this status information.

* In the maximum mode, there may be more than one

microprocessor in the system configuration.

120

- The components in the system are same as in the

minimum mode system.

- The basic function of the bus controller chip 1C8288 is to
derive control signals like RD and WR (for memory and 1/O
devices), DEN, DT/R, ALE etc. using the information by the

processor on the status lines.

- The bus controller chip has input lines S2, S1, SO and
CLK. These inputs to 8288 are driven by CPU.

121

Maximum mode

r___IHT.-n.

= ——= MRDGC

S szss = NONTC

E, Bus L~ 1ORC

Her =~

ALE

DEM L TSe RAM
I:ﬂl-Illﬁ CS L CSo RAM
Ap —»{ Logic | T5e ROM

® It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC,
IORC, IOWC and AIOWC. The AEN, I0B and CEN pins are
especially useful for multiprocessor systems.

® AEN and IOB are generally grounded. CEN pin is usually tied to
+5V. The significance of the MCE/PDEN output depends upon the
status of the 10B pin.

@ If 10B is grounded, it acts as master cascade enable to control
cascade 8259A, else it acts as peripheral data enable used in
the multiple bus configurations.

123

INTA pin used to issue two interrupt acknowledge pulses to
the interrupt controller or to an interrupting device.

IORC, IOWC are 1I/O read command and 1I/O write command
signals respectively.

These signals enable an 10 interface to read or write the data
from or to the address port.

The MRDC, MWTC are memory read command and memory
write command signals respectively and may be used as
memory read or write signals.

124

® The MRDC, MWTC are memory read command and memory
write command signals respectively and may be used as
memory read or write signals.

@ All these command signals instructs the memory to accept
or send data from or to the bus.

® For both of these write command signals, the advanced
signals namely AIOWC and AMWTC are available.

125

» Here the only difference between in timing diagram between minimum
mode and maximum mode is the status signals used and the available
control and advanced command signals.

»RO, S1, S2 are set at the beginning of bus cycle.8288 bus controller will
output a pulse as on the ALE and apply a required signal to its DT / R pin
during T1.

»In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it
will activate MRDC or IORC. These signals are activated until T4. For an
output, the AMWC or AIOWC is activated from T2 to T4 and MWTC or
IOWC is activated from T3 to T4.

126

Timing diagram for
minimum mode

I

Write Cycle Timing Diagram for Minimum Mode

' IT, [T, | Ty |1, I, |
Clk
ALE / \
r BHE -8

ADD / STATUS X_ 19— Al 7= 53
ADD /DATA XAIS-AIX Valid dataDys Dy X

WR

\ /

- \ /

® The working of the minimum mode configuration system can be

better described in terms of the timing diagrams rather than

qualitatively describing the operations.

® The opcode fetch and read cycles are similar. Hence the timing
diagram can be categorized in two parts, the first is the timing
diagram for read cycle and the second is the timing diagram for

write cycle.

129

Bus Request and Bus Grant Timings in Minimum Mode System _°

% IARE ¢
» Q~

of 8086

Ck L

HOLD - N

HLDA / _
Bus Request and

Bus Grant Timings in Minimum Mode System

Timing diagram for
maximum mode

I

Memory Read Timing Diagram in Maximum

Mode of 8086

- Omne bus cycle _—
T, i T- | Ts | T, | T, |
Clk
e —d /
S-S Active X Mmactive (' Active
Add/Status } ('FHE Aje — A :l: 5. = 55 }' """"""""""
Add/Data ————————f Az — Ay } { D= — Dy }. ___________
MEINC \ /

DT /K —\ /

< One bus cycle — >

I T, | T, | T, | T, | T |

Clk —
= Aciive N dnacive X aciive
ADD/STATUS X XBHE) S, - S, Fommmm e
ApDDATA < Ai-Ac X Data out Dys— D, p
AMWC or AIOWC \ /
MWTC or IOWC
\ /

DT/K high

DEN

Memory interfacing to 8086
(Static RAM and EPROM)

I

@ Interface two 4Kx8 EPROMS and two 4Kx8 RAM chips
with 8086. select suitable maps.

Table Memory Map for Problem

Ap Ay Ap Aw A Ap Ay Ao Ay Ay Ap Ay Ay

FRFRH 1 1 1 1 1 1 1]

A RN
"y |

0
I

0

A U U I

K x 8
0000 00
-1 1. 180 1

8K x 8

000000

0
1

0

T
00000
i 1iddide

0,0 000

00900009

= [4K = 8 Mgy
—= 1 KRD—
b 2
| @:
e Dp—Dag
B = i
e & &S,
p— T
ram Ao
AK =8 Ay
WRD — &0
MWR — - WR
m@
Ds
o— &8,

Ay~ Mgz i
Ga,
= A
- A1_' SF o= B8
TARD BRD
MR Wit

Fig shows the interfacing diagram for the memory system

Table Memory Chip Selection for Problem
Decoder 1P - TR T Slectio/
Address/ BHE Ay A BHE - Comment
Word transfer on Dy~ Dy 0 0 0 Even and odd addresses in RAM
By masfeton Dy - Dy 0 0 1 - OdyevnsdhessinRAM
Byte transfer on Dy - D, 0 1 0 Only odd address in RAM
Word transfer on D)~ D [RARGE Even and odd addresses in ROM
Byte transfer on D= D, l 0 l Only even address in ROM
Byemsrond-Dy 110 OnyodaldesinOM

137

Memory interfacing to 8086
(Static RAM and EPROM)

I

@ Interface two 4Kx8 EPROMS and two 4Kx8 RAM chips
with 8086. select suitable maps.

Table Memory Map for Problem

Ap Ay Ap Aw A Ap Ay Ao Ay Ay Ap Ay Ay

FRFRH 1 1 1 1 1 1 1]

A RN
"y |

0
I

0

A U U I

K x 8
0000 00
-1 1. 180 1

8K x 8

000000

0
1

0

T
00000
i 1iddide

0,0 000

00900009

= [4K = 8 Mgy
—= 1 KRD—
b 2
| @:
e Dp—Dag
B = i
e & &S,
p— T
ram Ao
AK =8 Ay
WRD — &0
MWR — - WR
m@
Ds
o— &8,

Ay~ Mgz i
Ga,
= A
- A1_' SF o= B8
TARD BRD
MR Wit

Fig shows the interfacing diagram for the memory system

Table Memory Chip Selection for Problem
Decoder 1P - TR T Slectio/
Address/ BHE Ay A BHE - Comment
Word transfer on Dy~ Dy 0 0 0 Even and odd addresses in RAM
By masfeton Dy - Dy 0 0 1 - OdyevnsdhessinRAM
Byte transfer on Dy - D, 0 1 0 Only odd address in RAM
Word transfer on D)~ D [RARGE Even and odd addresses in ROM
Byte transfer on D= D, l 0 l Only even address in ROM
Byemsrond-Dy 110 OnyodaldesinOM

141

Need for DMA,DMA Data transfer
Method

I

Need For DMA

®

Direct memory access (DMA) is a feature of modern computer
systems that allows certain hardware subsystems to read/write
data to/from memory without microprocessor intervention,
allowing the processor to do other work.

Used in disk controllers, video/sound cards etc, or between
memory locations.

Typically, the CPU initiates DMA transfer, does other operations
while the transfer is in progress, and receives an interrupt from
the DMA controller once the operation is complete.

Can create cache coherency problems (the data in the cache may
be different from the data in the external memory after DMA)

143

DMA Data Transfer Method

PROCESSOR

BIU /EI

From
decoder
Memory-.
Select S

Apg — Aqs5 AND Dg — Dy

Do - Dy

DMA
Controller
(DMAC)

RAM

/O Bus

s
DMA Request

T A — Ags
| A
Port
with
one
or
. set of
! Addresses
1
i
DMAC y
Acknowledge
From
Decoder
Port

Select

DEVICE

RECEIVE
FROM
RAM

The 1/0 device asserts the appropriate DRQ signal for the
channel.

The DMA controller will enable appropriate channel, and ask the
CPU to release the bus so that the DMA may use the bus. The
DMA requests the bus by asserting the HOLD signal which goes to
the CPU.

The CPU detects the HOLD signal, and will complete executing the
current instruction. Now all of the signals normally generated by
the CPU are placed in a tri-stated condition (neither high or low)
and then the CPU asserts the HLDA signal which tells the DMA
controller that it is now in charge of the bus.

The CPU may have to wait (hold cycles).

145

DMA activates its -MEMR, -MEMW), -IOR, -IOW output signals,
and the address outputs from the DMA are set to the target
address, which will be used to direct the byte that is about to
transferred to a specific memory location.

The DMA will then let the device that requested the DMA
transfer know that the transfer is commencing by asserting the -
DACK signal.

The peripheral places the byte to be transferred on the bus Data
lines.

Once the data has been transferred, The DMA will de-assert the -
DACK2 signal, so that the FDC knows it must stop placing data on
the bus.

146

® The DMA will now check to see if any of the other DMA channels
have any work to do. If none of the channels have their DRQ lines
asserted, the DMA controller has completed its work and will now
tri-state the -MEMR, -MEMW), -IOR, -IOW and address signals.

® Finally, the DMA will de-assert the HOLD signal. The CPU sees this,
and de-asserts the HOLDA signal. Now the CPU resumes control of
the buses and address lines, and it resumes executing instructions
and accessing main memory and the peripherals.

147

8237-DMA Controller

I

® Pin diagram

Interface with v v
maximum-mode
ool f

DAL o) W
AAy
DB,-DB,
Pt Bt [N
ADSTB

G ——

AEN

: MEMR
control signals from { =

and to memory -——-—o 82C37A
control signals from { '—>o
and to peripherals ~———>d
RESET
o CLK
DBO - DB7 are used for s

1) transfer of data
2) 8237 programming

DMA handshake
signals

DREQ,-DREQy
(DMA requests for the 4 channels)

> DACK,-DACK,

DMA acknowledge

A0 - A3 are used for
1) accessing 8237 internal ports

2) carrying memory address in DMA
read and write operations

Block Diagram

EQOF #—=

DECREMENTOR || IN

C/IDECREMENTOR I

TEMP ADDRESS Ij EUFFER ' E‘

RESET TEMP WORD
TS —e COUNT REG {16} REG (16)
READY —— 16-BIT BUS J
CLK —a] TIMING
AND 16-BIT BUS
AEN =—— coNTROL I I CUTPUT
ADSTE 4 READ BUFFER READ WRITE BUFFER BUFFER A% -AT
MEMR BASE ﬁgsﬂg CURRENT c';'.fDRREE';‘T
MEMW ADDRESS ADDRESS
(16) COUNT (18] COUNT
[OR 4 - (16} {16 w |
IOW | | < COMMAND
© CONTROL
E-4
WRITE READ
E!UFFEF‘. BUFFER Do - D1
E’% PRICRITY COMMAND 7
ENCODER (8} INTERNAL DATA BUS
HLDA —— AND
ROTATING
HRQ *=—— pRIORITY
DACKO - q LOGIC
DACK: *7
] STATUS TEMPORARY
MDDE {8) {8)

REQUEST
(4}

[4:5]

%]
BUFFER

DBO - DBT

150

8237 Internal Registers
® CAR

® The current address register holds a 16-bit memory address used
for the DMA transfer.

@ each channel has its own current address
register for this purpose.

® When a byte of data is transferred during a DMA operation, CAR
is either incremented
or decremented. depending on how it is programmed

® CWCR

The current word count register programs a channel for the
number of bytes to transferred during a DMA action.

®

151

CR(Command Register)

® The command register programs the operation of the 8237 DMA
controller.

® The register uses bit position 0 to select the memory-to-memory
DMA transfer mode.

* Memory-to-memory DMA transfers use DMA channel

e DMA channel 0 to hold the source address
e DMA channel 1 holds the destination address

152

7 6 5 4 3 2 1 0«<—Bit Number

1

|

L[0 Memory-to memory disable
1 Memory-to-memory enable

|' 0 Channel 0 address hold disable

1 Channel O address hold enable
I.X fbit0O=0

__[0 Controller enable
1 Controller disable

|’ 0 Normal timing

1 Compressed timing
|.x fbito =1
[O Fixed priority

L 1 Rotating priority
I' 0 Late write selection

1 Extended write selection
I.X fbit3 =1

[0 DREQ sense active high

L1 DREQ sense active low
[0 DACK sense active low

L 1 DACK sense active high

BA and BWC

® The base address (BA) and base word count (BWC) registers are
used when auto-initialization is selected for a channel.

® In auto-initialization mode, these registers are used to reload the
CAR and CWCR after the DMA action is completed.

MR (Mode Register)
® The mode register programs the mode of operation for a channel.

® Each channel has its own mode register as selected by bit
positions 1 and 0.

* Remaining bits of the mode register select operation, auto-
initialization, increment/decrement, and mode for the channel

154

7 6 5 4 3 2 1 0=<——Bit Number

L J L - J i 2

00 Channel O select
01 Channel 1 select
10 Channel 2 select
11 Channel 3 select

00 Verify transfer

01 Write transfer

10 Read transfer

11 lllegal

XX Ifbits6and 7 = 11

Autoinitialization disable

Autoinitialization enable

0

1

0 Address increment select
1 Address decrement select

Demand mode select

0

1 Single mode select

0 Block mode select

1 Cascade mode select

RR(Request Register)

® The request register is used to request a DMA transfer via software.

® very useful in memory-to-memory transfers, where an external

signal is not available to begin the DMA transfer

765 4 3 2 1 0«<—BitNumber

I_I_I
Don't Care

00 Se
01 Se
10 Se
11 Se

ect channe
ect channe
ect channe
ect channe

N — O

3

0 Reset request bit

1 Set request bit

e

MR(Mask Register)
®
®
®

The mask register set/reset sets or clears the channel mask.

if the mask is set, the channel is disabled.

The RESET signal sets all channel masks
to disable them

7 6 5 4 3 2 1 0<«<—Bit Number

Don't Care

00 Select channel 0 mask bit
01 Select channel 1 mask bit

10 Select channel 2 mask bit
| 11 Select channel 3 mask bit

" 0 Clear mask bit

| 1 Set mask bit

158

MSR

The mask register clears or sets all of

the masks with one command instead of individual channels, as
with the MRSR.

7 6 5 4 3 2 1 0<«<—Bit Number

Don't Care

L.

| 1 Set channel 0 mask bit

0 Clear channel 0 mask bit

" 0 Clear channel 1 mask bit
| 1 Set channel 1 mask bit

" 0 Clear channel 2 mask bit
| 1 Set channel 2 mask bit

" 0 Clear channel 3 mask bit
1 Set channel 3 mask bit

SR(Status Register)

® The status register shows status of each DMA channel. The TC bits
indicate if the channel has reached its terminal count (transferred
all its bytes).

® When the terminal count is reached, the DMA transfer is
terminated for most modes
of operation.

® The request bits indicate whether the DREQ input for a given
channel is active.

160

765432 1 0«—BitNumber

€) € €):€C) €2 €C)EC) C)

nanne
nanne
nanne

nanne

nanne
nanne
nanne

nanne

nas reached TC
has reached TC
nas reached TC
nas reached TC

QWO — O

0 request
1 request
2 request
3 request

DMA Controller-8257

I

©@ ® © ©® ® @

®

®

Features of 8257

Here is a list of some of the prominent features of 8257 -

It has four channels which can be used over four 1/0 devices.
Each channel has 16-bit address and 14-bit counter.

Each channel can transfer data up to 64kb.

Each channel can be programmed independently.

Each channel can perform read transfer, write transfer and verify
transfer operations.

It generates MARK signal to the peripheral device that 128 bytes
have

been transferred.
It requires a single phase clock.
Its frequency ranges from 250Hz to 3MHz.

163

8257 Pin Description
® The following image shows the pin diagram of a 8257 DMA

controller

IOW
MEMR

MEMW

MARK
READY

HLDA
ADSTB
AEN
HRQ

CLK

RESET -
DACK2 °

DACKZ

DRQ3

(T- - BN - T P

S

8257
DMA Controller

> > > P

-~

- &

uo -Uoc R< o> ..> ~>u n-*

#D' uc‘

® Block Diagram of 8257

Intemal Bus

bus
buffer
TOR
oW
CLK
RESET 7o
Aq | c
A, o
As
Ay
cs
A, -
AL -—
A, —
READY —»
HRQO -— mode

ont
and (G

CH O
16-BIT
ADDR
CNTR

¢— DRQ O
—» DACK O

CH1
16-BIT
ADDR
CNTR

«—DRQ 1
—»DACK 1

CH?Z
16-BIT
ADDR
CNTR

«—DRQ 2
—DACK 2

CH3
16-BIT
ADDR
CNTR

§—DRQ 3
—» DACK 2

|

® Terminal Count Reqgister:

0 :'Verify transfer
| = Write transfer
0=Read transfer

l l 14—hit::ount
0
0
1
I 1=Illegal

® Mode Set Reqister:

B B, BB, B B B B | -

ALTCS[EW

RP

EN3

EN2

ENI

ENO

— | = Rotating Priority |
0=Fixed Priority

e) Extendad write saleu;tinn.
(0 = Normal write selection

3 | = Enable auto reload
() = Disable auto reload

——> 1 =Stop DMA on terminal count

> 1= Enable channel - 0
(0 = Disable channe] -

—> | =Enable channel - |

3 ()= Disable channel - |

—» | =Enable channel - 2

» 0 =_Disablr: channel - 2
¥ 1 = Enable channel - 3

») = Disable channel - 3

® Status Reqister:

Bv Bﬁl Bs' B4 Bz Bz'Bt' Bu

0

0

0

Up

TC3

TC2

TCl

TCO

L——3 1= Channel-0 has reached terminal count

» 1 =Channel-! has reached terminal count

» | = Channel-2 has reached terminal count

— | =Channel-3 has reached terminal count

» | =Channel-2 is reloaded from channel -3

| - Address }

Register 1' A T A A n

3 1 -2—"1 .1 0
Channel-0 DMA address register - | 0| 0 0 0
Channel-0 Count register 0 0 o |1

Channel-1 DMA address register 0 o110
Channel-1 Count register 0 0 i 1
Channel-2 DMA address register 0 |1 .0 }oO
Channel-2 Count register 0] 0 |1
Channel-3 DMA address register 0 1 i 0
Channel-3 Count register 0 Y t
Mode set registef (Write only) 1 0 0 0

Status register (Read only) 1 0 0 0

169

Assembly language programs
using logical, branch& call
instructions

I

Assembly language programs

Programs using logical ,Branch and call instructions.
Data segment

Org 2000h Mov [di],ax
N1 dw 5678h Int 03h

N2 dw 2345h Code ends
Data ends End

Code segment

Assume cs:code,ds:dats
Mov ax,data

Mov ds,ax

Mov DI,2040h

Mov ax,N1

AND ax,bx

Assembly language programs

2)Data segment
Org 2000h

N1 dw 5678h
N2 dw 2345h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
MOV bx,N2
OR ax,bx

Mov [di],ax

Int 03h

Code ends
End

OOMONMONONOMONMOMONMOMNOMONOMONOMO,

Assembly language

3)Data segment
Org 2000h

N1 dw 5678h
N2 dw 2345h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
MOV bx,N2
Xor ax,bx

Mov [di],ax

Int 03h

Code ends
End

OOMONMONONOMONMOMONMOMOMONOMONOMO,

Assembly language programs

4)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
SHL ax,04
Mov [di],ax

Int O3h

Code ends
End

© ® ® ®® ® ©®© © © © © ®© o

Assembly language programs

Programs using logical ,Branch and call instructions.
1)Data segment

Org 2000h . Mov [di],ax
N1 dw 5678h . Int O3h
Data ends . Code ends

Code segment . End

Assume cs:.code,ds:dats
Mov ax,data

Mov ds,ax

Mov DI,2040h

Mov ax,N1

SHR ax,04

©@ © ® ® ® ®©® ® ©® ©

Assembly language programs

2)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
ROR ax,02
Mov [di],ax

Int 03h

Code ends
End

O OMONMOMONOMONMOMOMONMOMONOMNO

Assembly language

3)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
RCR ax,03
Mov [di],ax

Int 03h

Code ends
End

O OMONMOMONOMONMOMOMONMOMONMOMNO

Assembly language programs

4)Data segment
Org 2000h

N1 dw 5678h
Data ends
Code segment
Assume cs:code,ds:dats
Mov ax,data
Mov ds,ax
Mov DI,2040h
Mov ax,N1
RCL ax,04
Mov [di],ax
Int 03h

Code ends
End

© ® ®®® ® ©®© © © © © 0 e

Sorting

Assembly language program to sort the given numbers in
Ascending order
ASSUME CS: CODE
CODE SEGMENT
START: MOV AX,0000H
MOV CH, 0004H

DEC CH
UP1: MOVCL, CH
MOV SI, 2000H
UP: MOV AL, [SI]
INC SI

CMP AL, [SI]

DOWN:

CODE ENDS
END START

JCDOWN

XCHG AL, [SI]
DECSI

MOV [SI], AL
INC SI
DECCL

JNZ UP
DEC CH

JNZ UP1
INT 3

Assembly language program to sort the given numbers
In Descending order

ASSUME CS: CODE

CODE SEGMENT

START: MOV AX, 0000H
MOV CH, 0004H
DEC CH

UP1: MOV CL, CH
MOV S, 2000H

UP: MOV AL, [SI]

INC SI

DOWN:

CODE ENDS
END START

JNC DOWN
XCHG AL, [SI]
DEC S

MOV [SI], AL
INC S|

DEC CL

INZ UP

DEC CH

INZ UP1

INT 3

Evaluation of arithmetic expressions

I

An Assembly program for performing the following operation
Z= ((A-B)/10*C)

DATA SEGMENT

A DB 60

B DB 20

CDB5

Z DW?

ENDS

CODE SEGMENT

ASSUME DS: DATA CS: CODE

START: MOV AX, DATA

MOV DS, AX
MOV AH, 0 ; Clear content of AX
MOV AL, A ; Move A to register AL

185

ENDS
END START

SUB AL, B ; Subtract AL and B

MULC ; Multiply C to AL

MOV BL, 10 ; Move 10 to register BL
DIV BL ; Divide AL content by BL
MOV Z, AX ; Move content of AX to Z
MOV AH, 4CH

INT 21H

Evaluation of string manipulation

I

Program For String Transfer

DATA SEGMENT ; start of data segment

STR1 DB 'HOW ARE YOU'

LEN EQU $-STR1

STR2 DB 20 DUP (0)

DATA ENDS ; end of data segment

CODE SEGMENT ; start of code segment

ASSUME CS: CODE, DS: DATA, ES: DATA

START: MOV AX, DATA ; initialize data segment
MOV DS, AX

188

MOV ES, AX ;initialize extra segment for string operations
LEA SI, STR1 ; Sl points to starting address of string at ; STR1

LEA DI, STR2 ; DI points to starting address of where the string
has to be transferred

MOV CX, LEN ;load CX with length of the string

CLD ; clear the direction flag for auto increment Si;
and DI

REP MOVSB ; the source string is moved to destination
address till CX=0(after every move CX is;
decremented)

MOV AH, 4CH ; terminate the process

INT 21H

CODE ENDS ; end of code segment

END START

189

Program To Reverse A String

DATA SEGMENT ; start of data segment
STR1 DB 'HELLO'

LEN EQU S$-STR1

STR2 DB 20 DUP (0)

DATA ENDS ; end of data segment

CODE SEGMENT ; start of code segment

ASSUME CS: CODE, DS: DATA, ES: DATA

START: MOV AX, DATA ; initialize data segment
MOV DS, AX

MOV ES, AX

190

UP:

CODE ENDS
END START

LEA SI, STR1

LEA DI, STR2+LEN-1
MOV CX, LEN

CLD

LODSB

STD

STOSB

LOOP UP

MOV AH, 4CH

INT 21H

UNIT-II
8255 PROGRAMMABLE
PERIPHERAL INTERFACE (PPI)

I

Introduction to 8255 (PIO)

I

8255-PROGRAMMABLE PERIPHERALINTERFACE

» It has 24 input/output lines
» 24 lines divided into 3 ports

* Port A(8bit)
* Port B(8 bit)

e Port C upper(4 bit), Port C Lower (4 bit)

All the above 3 ports can act as input or output ports

POWER
SUPPLIES

BI-DIRECTIONAL
DATA

D7-D0O

RESET

BUS

—_— 5V
— » GND

DATA BUS

GROUP A
CONTROL

GROUP A
PORT A

(8)

BUFFER

=1

INTERNAL
DATA BUS

GROUP B
CONTROL

o
PAT-PAD

GROUP A .
PC7-PC4

o
PC3-PCO

GROUP B o
PORT B PB7-PB0O

(&)

85
195

Data Bus buffer

> It is a 8-bit bidirectional Data bus.

» Used to interface between 8255 data bus with system bus.

» The internal data bus and Outer pins D,-D, pins are connected in

internally.

» The direction of data buffer is decided by Read/Control Logic.

86
196

Read/Write Control Logic
This is getting the input signals from control bus and Address Bus.

> Control signal are RD and WR.

» Address signals are AO, Al, and cS

» 8255 operationis enabledor disabled by CS.

Group A and B get the Control Signal from CPU and send the command to
the individual control blocks.

Group A send the control signal to port A and Port C (Upper) PC7-PC4.
Group B send the control signal to port B and Port C (Lower) PC3-PCO.

87
197

PORT A:
» Thisis a 8-bit buffered I/0O latch.

» It can be programmed by mode 0, mode 1, mode 2.

PORT B:
»This is a 8-bit buffer I/O latch.

» It can be programmed by mode 0 and mode 1.

PORTC:

» This is a 8-bit Unlatched buffer Input and an Output latch.

» ltis spitted into two parts.

» It can be programmed by bit set/reset o

8255-PROGRAMMABLE PERIPHERAL INTERFACE

Pas " aopPad
=¥l i saQpPas
= W e S5 O PAG
PA0C] 4 ST OPAaT
RO O S 36 O vuR
CSOE 35 RESET
SHD O 7 =4 D0
a2 8 crcim iy
A0C]g s2OD2
PCF A0 1O DS
pCcEC]11 82998 soppa
=lat=t m kb 29 DS
SerimE ke 25 O DE
PO 14 27 OD7
Pl 1S 26 O v
PC2O16 25 I PBET
PCSCT 24 O PBEE
FEOC] 1S 23 PBES
FE1 19 22 PB4
PE2 O 20 21 O PBES

90

199

Pin Description of 8255

PA7-PAO:

PC7-PC4:

PC3-PCO:

PBO-PB7:

These are eight port Alines that acts as either latched
output or buffered input lines depending upon the control
word loaded into the control word register.

Upper nibble of port C lines. They may act as either output
latches or input buffers lines. This port also can be used for
generation of handshake lines in mode 1 or mode 2.

These are the lower port C lines, other details are the
same as PC7-PC4 lines.

These are the eight port B lines which are used
as latched output i

91

200

Pin Description of 8255

> RD: This is the input line driven by the microprocessor and should
be low to indicate read operation t08255.

> WR: This is an input line driven by the microprocessor. A low on
this line indicates write operation.

» €S : This is a chip select line. If this line goes low, it enables the
8255 to respond to RD and WR signals, otherwise RD and WR signal
are neglected.

> A1-A0: These are the address input lines and are driven by the
microprocessor.

» RESET: The 8255 is placed into its reset state if this input line is a
logical 1. All peripheral ports are set to the input mode.

201

Various modes of 8255
operation and interfacing to
8086

I

Various modes of 8255:

These are two basic modes of operation of 8255. I/O0 mode and Bit
Set-Reset mode (BSR).

»In 1I/O Mode, the 8255 ports work as programmable 1/O ports,
while in BSR mode only port C (PCO-PC7) can be used to set or reset
its individual port bits.

Under the I/O mode of operation, further there are three modes of

operation of 8255, so as to support different types of applications,
mode 0, mode 1 and mode 2.

203

» Mode 0 (Basic I/O mode): This mode is also called as
basic input/output Mode. This mode provides simple
iInput and output capabilities using each of the three
ports. Data can be simply read from and written to the
Input and output ports respectively, after appropriate
Initialization.

204

»>Mode 1: (Strobed input/output mode) in this mode the
handshaking control the input and output action of the specified
port. Port C lines PC0O-PC2, provide strobe or handshake lines for port
B.

~This group which includes port B and PCO-PC2 is called as group B
for Strobed data input/output. Port C lines PC3-PC5 provides strobe
lines for port A.

»This group including port A and PC3-PC5 from group A. Thus port C
is utilized for generating handshake signals.

205

» Mode 2 (Strobed bidirectional 1/0): This mode of operation of
8255 is also called as strobed bidirectional 1/0. This mode of
operation provides 8255 with additional features for
communicating with a peripheral device on an 8-bit data bus.

Handshaking signals are provided to maintain proper data flow
and synchronization between the data transmitter and receiver.

» The interrupt generation and other functions are similar to mode

1.

206

> BSR Mode:

In this mode any of the 8-bits of port C can be set or reset
depending on DO of the control word. The bit to be set or reset
is selected by bit select flags D3, D2 and D1 of the CWR as given
in table.

8255 interfacing with 8086:

8255 - 8086 Interfacing

8086
uP

M /TO

Sk

N LN 4N

8 Bit Input - Output

control bus

)

Data bus

Address bus

)
)

RD
WR

DO
D7

AO
Al

8255
PPI

EN
Decoder

Interfacing the 8255 PPI to the 8086 microprocessor

Interfacing Keyboard

I

Keyboard Interfacing:
>

In most keyboards, the key switches are connected in a
matrix of Rows and Columns.

Getting meaningful data from a keyboard requires three

major

tasks:

« Detect a key press

e Debounce the key press.

 Encode the key press (produce a standard code for the
pressed
key).

Logic ‘0’ is read by the microprocessor when the key is

Key Debounce:

Whenever a mechanical push-bottom is pressed or released
once, the mechanical components of the key do not change the
position smoothly; rather it generates a transient response.
These may be interpreted as the multiple pressures and
responded accordingly

éﬁ

+5V logic 1

logic O

Key released Key pressed

Fig. 5.23 A Mechanical Key and Its Response

+ 5V
% I

o
HE

Fig. 5.24

1,0 0,1

Hardware Debouncing Circuit

logic O

Key released

To I/P circuit

G G
RE SET ¥ o v ¥
LOWR e = = 3
C
IORD PA, D
N
D,-D, PA 8 9
= :
8255 py | 4 5
Aj | PB,
PB,
%LS———_— - PB,
p— CS
oo S
ﬁ:,(—‘) PB,

Interfacing 4 * 4 Keyboard

10K &

10KQ
10KQ

WK

213

Flow chart of a keyboard-scanning procedure

KEY Calculate
(~ j key code b(Return j
Scan Keys
If key open rheck
Time Delay Keys
for de-bounce
‘L Momentar
Scan Keys Scan Keys elitch? ¥
Time Delay
Check ¥ for de-bounce
ITf key closed Keys f
™ Scan Keys

Wait for Release Wait for Keysiroke

214

Keyboard Interfacing Program:

Assume that base address of 8255 is 8000H. So, addresses
of ports will be as follows.

PORT A = 8000H (ROWS)
PORT B = 8002H (COLUMNS)
CONTROL PORT = 8006H

DATA SEGMENT
CNTLPRT EQU 8006H
PORTA EQU 8000H
PORT B EQU 8002H

DELAY EQU 6666 ; Delay constant
for 20ms.

215

Keyboard Interfacing Program:

TABLE DB 30H, 31H, 32H, 33H, 34H, 35H, 36H, 37H, 38H,
39H, 41H, 42H, 43H, 44H, 45H, 46H

DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS: DATA
START: MOV AX, DATA
MOV DS, AX.
MOV AL, 82H
MOV DX, CNTLPRT
OUT OX, AL

216

XOR AL, AL
MOV DX, PORTA
OUT DX, AL
MOV DX, PORTB
RDCOL: IN AL, DX
AND AL, OFH
CMP AL, OFH
JNE RDCOL
MOV CX, DELAY
SELF: LOOP SELF
IN AL,DX
AND AL, OFH
CMP AL, OFH
JNE RDCOL
RDAGN: IN AL,DX
AND AL, OFH
JE RDAGN
MOV DX, DELAY
SELF1: LOOP SELF1

ENROW:

CCODE:
NXTCOL:

AND AL, OFH

JE RDAGN

MOV AL, OFEH
MOV BL, AL
MOV DX, PORTA
OUT DX, AL
MOV DX, PORTB
IN AL, DX

AND AL, OFH
CMP AL, OFH
JNE CCODE
ROLBL, 1

MOV AL, BL
JMP ENROW
MOV CL, 0
RORAL, 1

JNC CHKROW
INCCL

JMP NXTCOL
CHKROW: MOV DL, 0
NXTROW: RORBL, 1

JNC CALADR
ADD DL, 4
JMP NXTROW
CALADR: ADD DL, CL

MOV AL, DL
LEA BX, TABLE
XLAT
INT 3

CODE ENDS

END START

Displays

Multiplexed Display:

Port A
l’)f
8255 pag
2% |
PA2 . ‘
PA3 | |
PA4 \J
PAS \ :
e gy
1
PA7
R6 R5 R4 R3
R7
Q7 Q6 Qs Q4 Q3 Ll\/‘ Q2
10G Q2
PBO a »J\NV\r—_
b W
1 - YWWA— 1T e > S —
PB1 c I l l l | l ' I
Port B 7447 4 AP AN — e — |_
of 8255 I | l | l I |
PB2 e VYWW— | — — — — —
f M
y M D7 D6 D5 D4 D3
s r— - 100 €2 MSD g | " ’
(Most significant digit) Multiplexed display

Program for Multiplexed Display:
Assume base address of 8255 to be FFF8H

Address of port A = FFF8H

Address of port B = FFFAH

Address of control port = FFFEH
Algorithm:

1. Turn ON QO (Q1 to Q7 OFF) by applying a logical low to base of QO as
transistor.

2. Send seven segment code for DO (LSD) i.e., digit 0'

3. After 1ms turn OFF QO turn on Q1, so Q] will be ON and Q0 and Q2 ~ Q7
Will be OFF.

4. Send seven segment code for D1 i.e., digit 1.

5. After 1ms turn off Q1 and turn on Q2. So Q2 will be ON and Q0 Q1 and
Q3-Q7 will be OFF.

6. Repeat the process for all 8 digits. It completes one cycle.
7. Start the cycle again.

222

Program for multiplexed Display:

DATA SEGMENT
PORT A EQU OFFF8H
PORT B EQU OFFFAH
CNTLPRT EQU OFFFEH
DELAY EQU 012CH
DIGITS DB 1, 2,3,4,6,7,8,9
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS: DATA
START: MOV AX, DATA
MOV DS, AX
MOV DX, CNTL PRT
MOV AL, 80H
OUT DX, AL
REPEAT: MOV BH, 8
LEA SI, DIGITS
MOV BL, OFEH

SELF:

MOV AL, BL
MOV DX, PORT A
OUT DX, AL
MOV AL, [SI]
MOV DX, PORTB
OUT DX, AL
MOV CX, DELAY
LOOP SELF

INC SI

ROLBL, 1

DEC BH

INZ BACK

JMP REPEAT
CODE ENDS
END START

223

8279 Stepper motor and
actuators

I

>

Stepper motor is often used in computer systems. Normally DC and
AC motors move smoothly in a circular fashion.

Stepper motor is a DC motor, specially designed, which moves in
discrete or fixed step and thus complete one rotation of 360
degrees. To rotate the shaft of the motor a sequence of pulses are
applied to the windings in a predefined sequence.

The number of pulses required to complete one rotation depends
on the number of teeth on the rotor. Hence rotation Per pulse
sequence is 360°/NT where NT is the number of teeth on rotor.

If NT is equal to 200 then one step rotation will be of 1.8° The

motors are generally available to move in steps of 0.9° to 30° i.e.
The step size range is 0.9° -36°.

225

Programs for Stepper Motor Rotation:

1. Program to rotate the stepper motor continuously in
clockwise direction for following specification

NT = Number of teeth on rotor = 200
Speed of motor = 12 rotations/minute.
CPU frequency = 10MHz

226

DATA SEGMENT
PORTC EQU 8004H
CNTLPRT EQU 8006H
DELAY EQU 14705
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS: DATA
START: MOV AX, DATA
MOV DS, AX
MOV AL, 80H
MOV DX, CNTLPORT
OUT DX, AL

227

MOV AL, 33H
MOV DX, PORTC
BACK: OUT DX, AL
RORAL 1
MOV CX, DELAY
SELF: LOOP SELF

DELAY LOOP FOR 25Ms
JMP BACK

CODE ENDS

END START

Digital to analog converter
Interfacing

I

DACO0800 8-bit Digital to Analog Converter

®

O

The DAC 0800 is a monolithic 8-bit DAC manufactured by National
Semiconductor.

It has settling time around 100ms and can operate on a range of
power supply voltages i.e. from 4.5V to +18V.

Usually the supply V+is 5V or +12V.
The V-pin can be kept at a minimum of -12V.

@ N @ ot A k-

16
15
14
13
12
1
10

]

— Compensation

15
DACO800

16

14

13

25k
= WW—0 5V

Intersil®s AD 7523 is a 16 pin DIP, multiplying digital to analog
converter, containing R-2R ladder(R=10KQ) for digital to analog
conversion along with single pole double through NMOS
switches to connect the digital inputs to the ladder.

OUT;— 1 16 |— Reg
OUT,— 2 15 = W in
GND—{ 3 14— V+
MSBEB,—{ 4 13 — NC
Bz— 5 0T 1 NC
By—| 6 11 |— BulSB
Bs—1 7 10 — B;
Bs— B 9 |— Bg

232

Pin Diagram of AD7523

> The supply range extends from +5V to +15V , while Vref may
be anywhere between -10V to +10V. The maximum analog
output voltage will be +10V, when all the digital inputs are
at logic high state. Usually a Zener is connected between
OUT1 and OUT2 to save the DAC from negative transients.

> An operational amplifier is used as a current to voltage
converter at the output of AD 7523 to convert the current
output of AD7523 to a proportional output voltage

> It also offers additional drive capability to the DAC output.
An external feedback resistor acts to control the gain. One
may not connect any external feedback resistor, if no gain
control is required.

233

+5V +10V

Vit
L]
15 14
Res
16
MSB 4
o OUT

L8 | 1

Analog to digital converter
Interfacing

I

Block Diagram of ADC 0808/0809

SOC CLOCK

1 !

Control and
Timing unit and
S.AR.

2 BOC

- o/P

1Py —>
e
/Py —
1Py —— 8 Channel
Ved—¥ Mtu\l?i:::?(er
|/Pg —>
|IPg —>
I/P7 —
T
C B A

Address Lines

256 R
Register
ladder and
Switch tree

Latch

i

o/P
Enable

1/Pg —>
IIPgy —>
|IPg —>
I/Pg —>
/Py —>
SOC—
EOC—

o
w
W O N ;A W N -

OE —
CLK—={10
Vee — 11
Viert—12

GND-—{ 13

ADC 0808
ADC 0809

- |/P2
-« |IP1
<— |/Po
< ADD A
< ADD B
<— ADD C
<— ALE
< O;MSB
<— Qg
«— Os
< Oy

«— Og LSB

il Vref 2

Pin Diagram of ADC 0808/0809

VP, - 1P,

ADD A, B,C

07 p Ou
SOC

EOC

OE

CLK

Vee. GND

Vrcl'+ and Vrcl')

Analog inputs

Address lines for selecting analog inputs
Digital 8-bit output with O, MSB and O, LSB
Start of conversion signal pin

End of conversion signal pin

Output latch enable pin, if Eigh enable outpul
Clock input for ADC

Supply pins +5V and GND

Reference voltage positive (+5 Volts maximum)
and Reference voltage negative (OV minimum)

Timing Diagram Of ADC 0808.

CLOCK

START. ———/—_\

Cued
\ i}

C‘f

8255

PA; - PA

PC;
PC,

PBp

PB;
PB,

Vieft Viert
[tk
{5V =
5V
g -«—— (Clock up
{ } 0; 04
~ EOC ADC 0808 Anald
soc Pole— 1
voltage
OE GND
o) 7 ALE A B C
+5 —
i | A A =

Interrupt structure of 8086

I

Interrupt structure of 8086

03FFh
Ayailable _-:
224 Interrupt - -
0080h
D07Fh
Reserved --
27 Interrupt _
0014h
0010h
ooooc
0008h
oo04dh
CS5:IP 0O0Oh

-

Type 255 (Available)

Type 32 (Available)

Type 31 Reserved

Type 5 Reserved

Type 4 Overflow interrupt

Type 3 Break point interrupt

Type 2 Non-Maskable

Type 1 Singe Step

Type 0 Divide by Zero

Vector interrupt table,
Interrupt service routines

I

Vector inferrupt tab

Available imMemupl
poimers (224)

Resarved intamupt 4
pointers (27)

Deadicated interrupt
pontars (5)

NEW CS —

———————

AFF
3FCH

B

$

o84 H

. O80 H
[o7F H

014
-

gi1oH

O0C H

Typea 255 ponter -
(Available)

n

Type 33 pointer :
{Avaitablis)

Type 32 pointer
(Available)

Type 31 pointer
(Resarvad)

{0

Type S pointer -
{Reserved)

Type 4 pointer
Ovarflow

Type 3 pointer

1 -byte INT Instruction

Type 2 pointer
Non — maskable

Type 1 poinier
Single - step

——————

Type O pointar -
Diwvide error

oo H -——— 16 Bits ———»

(!

It

BIOS INTERRUPT

Introduction to DOS and BIOS
interrupts

I

BIOS INTERRUPT

BIOS INTERRUPT
@ INT 10H - Video Screen

* The option is chosen by putting a specific value in register AH

* The video screen is text mode is divided into 80 columns and
25 rows

* A row and column number are associated with each location
on the screen with the top left corner as 00,00 and the bottom
right corner as 24,79. The center of the screen is at 12,39 or
(0C,27 in hex)

» Specific registers has to be set to specific values before
invoking INT 10H

245

BIOS INTERRUPT

® Function 06 — clear the screen

® AH=06 ; function number

® AL=00 ; page number

® BH=07 ; normal attribute

® CH=00 ; row value of start point

® CL=00 ; column value of start point

® DH=24 ;row value of ending point

® DL=79 ; column value of ending point
® Function 02 — setting the cursor to a specific location
® AH=06 ; function number

® DH=row ;cursor

® DL =column ; position

246

BIOS INTERRUPT

Function 03 — get the current cursor position

AH =03 ; function number

BH= 00 ; currently viewed page

The position is returned in DH = row and DL = column

Function OE — output a character to the screen
AH = OE ; function number

AL = Character to be displayed

BH =00 ; currently viewed page

© ® © ®©® ® ® ®©® ® ® @®

BL=00 ; default foreground color

247

DOS INTERRUPT

Function 09 — outputting a string of data to the monitor
AH =09 ; function number

DX = offset address of the ASCII data to be displayed,
data segment is assumed

The ASCII string must end with the dollar sign $

Function 02 — outputting a single character to the
monitor

AH =02 ; function number
DL = ASCII code of the character to be displayed

Function 01 — inputting a single character, with an echo

AH =01 ; function number.After the interrupt AL = ASCII
code of the input and is echoed to the monitor

248

©@ ®@®

©@ ©® © @

OMOMOMONO,

DOS INTERRUPT

Function OA — inputting a string of data from the keyboard
AH = 0A ; function number

DX = offset address at which the string of data is stored (buffer
area), data

segment is assumed and the string must end with <RETURN>
After execution:
DS:DX = buffer in bytes (n characters + 2)

DS:DX+1 = number of entered characters excluding the return
key

DS:DX+2 = first character input
DS:DX+n = last character input

To set a buffer, use the following in the data segment:
Buffer DB 10, ?, 10 DUP(FF)

249

®

©@ ® © ©® ® @

©@ ® ® @®

DOS INTERRUPT

Function 07 — inputting a single character from the keyboard
without an echo

AH = 07 ; function number

Waits for a single character to be entered and provides it in AL
INT16 — Keyboard Programming

Function 01 — check for a key press without waiting for the user
AH =01

Upon execution ZF = 0 if there is a key pressed

Function 00 — keyboard read

AH =00

Upon execution AL = ASCII character of the pressed key
Note this function must follow function 01

250

8259 PIC architecture and
interfacing

I

8259 PIC architecture

8259 intemal block diagram

IMTA INT

I 4 T
M Control logic
T T
E
E 1 ! i
M
A, In-serice Prionty Interrupt
L register |<=> |resolver |<== |requesi

(ISR) register
B (IRR)
U
S

Interrupt mask register (IMR)

DO-D7 ===| Data bus
buffer
FD——= Read/
WhH—03> write
A—— logic
CS T
CASD «<—| Cascade
CAS1 «<—| buffer/
CAS2 «<—|comparator
SPEN——7M—M1*

Internal Structure of 8259A

<— |RO
<— |R1

<— IR7

8259 PIC architecture

Data bus buffer:
@ This 3- state, bidirectional 8-bit buffer is used to interface the 8259A to

the system data bus. Control words and status information from the
microprocessor to PIC and from PIC to microprocessor respectively, are

transferred through the data bus buffer.

Read/Write & Control Logic: The function of this block is to accept
output commands sent from the CPU. It contains the initialization
command word (ICW) registers and operation command word
(OCW) registers which store the various control formats for
device operation. This function block also allows the status of
8259A to be transferred to the data bus.

253

8259 PIC architecture

® Interrupt Request Register (IRR): Interrupt request register (IRR)
stores all the interrupt inputs that are requesting service. It is an
8-bit register — one bit for each interrupt request. Basically, it

keeps track of which interrupt inputs are asking for service.

@ If an interrupt input is unmasked, and has an interrupt signal on
it, then the corresponding bit in the IRR will be set. The content
of this register can be read to know the status of pending

interrupts.

254

8259 PIC architecture

® Interrupt Mask Register (IMR): The IMR is used to disable
(Mask) or enable (Unmask) individual interrupt request

inputs. This is also an 8-bit register.

@ Each bit in this register corresponds to the interrupt input
with the same number. The IMR operates on the IRR.
Masking of higher priority input will not affect the interrupt
request lines of lower priority. To unmask any interrupt the

corresponding bit is set ‘O’.

255

8259 PIC architecture

® In-service Register (ISR): The in-service register keeps track of which
interrupt inputs are currently being serviced. For each input that is
currently being serviced the corresponding bit of in-service register (ISR)

will be set.

® In 8259A, during the service of an interrupt request, if another higher
priority interrupt becomes active, it will be acknowledged and the
control will be transferred from lower priority interrupt service
subroutine (ISS) to higher priority ISS. Thus, more than one bit of ISR

will be set indicating the number of interrupts being serviced.

® Each of these 3-registers can be read as status register.

256

8259 PIC architecture

® Priority Resolver:_This logic block determines the priorities of the
interrupts set in the IRR. It takes the information from IRR, IMR
and ISR to determine whether the new interrupt request is
having highest priority or not. If the new interrupt request is
having the highest priority, it is selected and processed. The
corresponding bit of ISR will be set during interrupt acknowledge

machine cycle.

257

® Cascade Buffer/Comparator: This function block stores and

compares the IDs of all 8259A’s in the system. The associated 3-
/O lines (CAS,-CAS,) are outputs when 8259A is used as a master
and are inputs when 8259A is used as a slave. As a master, the
8259A sends the ID of the interrupting slave device onto the CAS,.
o lines. The slave 8259As compare this ID with their own
programmed ID. Thus selected 8259A will send its pre-
programmed subroutine address on to the data bus during the

next one or two successive INTA pulses.

258

Cascading of interrupt controller

Cascading of interrupt controller
and its importance.

I

Cascading of interrupt controller

AODRESS 85 | ol !
! CONTROL BUS !
INT REC
! DATA BLIS (8} b
[Y S i A S D !
N SUR SRR B N SR A I U o P
1 L I 3
L3 [Ly NS v SN s y 7
€8 sy, Do7 WA ST % A, o7 NEA Wi G§ A, D07 NEA T
CASH = [BN cAS0
B2 SG . B25RA E2654
SLAVE 4 CAST SLAVE B R CAS 1 MASTER
Cag ¥ p cag 2 |- Ca8 7
SRENF & 5 4 3 2 1 @ ERETY £ 5 4 3 7 1 & SEERMT MG M5 ME 33 M2 Mt MD
: ? T ‘ :
GEER GG Y ; .
7 6 5 & 3 2 31 @ ¥ &6 5 4 3 2 1 4 5 4 3 2 t B
!

i
i
INTERARUFT RECHUERTS

231488-24

260

Cascading of interrupt controller

CAS2-CASO (Cascade lines): The CAS2-0 lines form a local 8259A bus
to control multiple 8259As in master-slave configuration, i.e., to
identify a particular slave 8259A to be accessed for transfer of vector
information. These pins are automatically set as output pins for
master 8259A and input pins for a slave 8259A once the chips are

programmed as master or slave

261

Cascading of interrupt controller

Cascade Buffer/Comparator: This function block stores and compares
the IDs of all 8259A’s in the system. The associated 3-1/0 lines (CAS2-
CASOQ) are outputs when 8259A is used as a master and are inputs
when 8259A is used as a slave. As a master, the 8259A sends the ID
of the interrupting slave device onto the CAS2-0 lines. The slave

8259As compare this ID with their own programmed ID.

262

Cascading of interrupt controller

Cascading of interrupt controller importance.

® The 8259A can be easily interconnected in a system of one master with
up to eight slaves to handle up to 64 priority levels. The master controls
the slaves through the 3 line cascade bus. The cascade bus acts like chip

selects to the slaves during the INTA sequence.

® In a cascade configuration, the slave interrupt outputs are connected to
the master interrupt request inputs. When a slave request line is
activated and afterwards acknowledged, the master will enable the
corresponding slave to release the device routine address during bytes 2

and 3 of INTA. (Byte 2 only for 8086/8088).

263

Cascading of interrupt controller .

® The cascade bus lines are normally low and will contain the slave
address code from the trailing edge of the first INTA pulse to the
trailing edge of the third pulse. Each 8259A in the system must
follow a separate initialization sequence and can be programmed to

work in a different mode.

® An EOl command must be issued twice: once for the master and
once for the corresponding slave. An address decoder is required to
activate the Chip Select (CS) input of each 8259A. The cascade lines
of the Master 8259A are activated only for slave inputs, non-slave

inputs leave the cascade line inactive (low).

264

UNIT-IV
SERIAL DATA TRANSFER
SCHEMES

I

Data Transfer Schemes

Asynchronous and synchronous
data transfer schemes

I

Data Transfer Schemes

Source

n=

l

Signal reference

™ |

- 7

Destination

= 3

™ 4

-1

n=8, 16,32

3 Signal reference

Source

S el Reference

Parallel Transmission

Serial Transmission

Destination

®

Data Transfer Schemes

Even in shorter distance communications, serial
computer buses are becoming more common because of
a tipping point where the disadvantages of parallel
busses (clock skew, interconnect density) outweigh their
advantage of simplicity.

The serial port on your PC is a full-duplex device
meaning that it can send and receive data at the same
time. In order to be able to do this, it uses separate lines

for transmitting and receiving data.

268

Data Transfer Schemes

Advantages of serial communications:

@ Requires fewer interconnecting cables and hence

occupies less space.

® "Cross talk" is less of an issue, because there are fewer
conductors compared to that of parallel communication

cables.
@ Many IC s and peripheral devices have serial interfaces.
® Clock skew between different channels is not an issue.

® Cheaper to implement.

269

Data Transfer Schemes

SERIAL DATA TRANSMISSION MODES

When data is transmitted between two pieces of equipment,
three communication modes of operation can be used.

Simplex: In a simple connection, data is transmitted in one
direction only. For example, from a computer to printer that
cannot send status signals back to the computer.

Half-duplex: In a half-duplex connection, two-way transfer of
data is possible, but only in one direction at a time.

Full duplex: In a full-duplex configuration, both ends can send and
receive data simultaneously, which technique is common in
our PCs.

270

Data Transfer Schemes

© SERIAL DATA TRANSFER SCHEMS

® There are two ways to synchronize the two ends of the

communication.

o Synchronous data transmission

o Asynchronous data transmission

Data Transfer Schemes

Synchronous Data Transmission

1) Synchronous Transmdssion: -

Transmitter sends bits on falling edge of the clock
Receiver reads bits on rising edge of the clock

I
y v | I I I I I I I
Clock — T
I I I I I I I I |
| | | | [| | |
Data | I I I
61
(sg: 615D Bit 7 | | [| | | Bit0
: I I I I I I
Bits 0 1 | 1 0 0 0 0 1

Note: - Maty ssmchronous protocols send MSE first

Data Transfer Schemes

® The synchronous signaling methods use two different signals. A
pulse on one signal line indicates when another bit of information is

ready on the other signal line.

® In synchronous transmission, the stream of data to be transferred is
encoded and sent on one line, and a periodic pulse of voltage which
is often called the "clock” is put on another line, that tells the

receiver about the beginning and the ending of each bit

273

Data Transfer Schemes

® Advantages: The only advantage of synchronous data transfer is the

Lower overhead and thus, greater throughput, compared to

asynchronous one.

@ Disadvantages:

¢ Slightly more complex

* Hardware is more expensive

Data Transfer Schemes

2) Asynchronous Transmdssion: -

Data
B1H)

|Start bit

Bits |

clock to read the following bits

BEit 0

Transmitter uses an internal clock when to determine when to send each bit

Receiver detects the falling edge of the start bit and then uses its internal

0 I
I

Note: - Asynchronous protocols send LSB first

0

0

0

stop bit
I
I

Data Transfer Schemes

® The asynchronous signaling methods use only one signal. The
receiver uses transitions on that signal to figure out the transmitter

bit rate (known as auto baud) and timing.

® A pulse from the local clock indicates when another bit is ready. That
means synchronous transmissions use an external clock, while
asynchronous transmissions are use special signals along the

transmission medium.

276

Data Transfer Schemes

Asynchronous communication is the commonly prevailing communication
method in the personal computer industry, due to the reason that it is

easier to implement and has the unique advantage that bytes can be sent

whenever they are ready, no need to wait for blocks of data to accumulate.

Data Transfer Schemes

Advantages:

® Simple and doesn't require much synchronization on both
communication sides.The timing is not as critical as for
synchronous transmission; therefore hardware can be made

cheaper.

® Set-up is very fast, so well suited for applications where messages
are generated at irregular intervals, for example data entry from

the keyboard.

278

Data Transfer Schemes

Disadvantages:

® One of the main disadvantages of asynchronous technique is the
large relative overhead, where a high proportion of the transmitted

bits are uniquely for control purposes and thus carry no useful

information.

Introduction to 8251 (USART)

I

USART

Pin diagram of 8251

© © N O O &b O N =

R . N
A WO N =+ O

8251A

28
27

26
25
24
23
22
21

20

19
18
17
16
15

updygududdudoyd

Vee
RXC
DTR
RTS
DSR
RESET
CLK

TXD
TXEMPTY
CTsS .
SYNDET/BD
TXRDY

Transmit

Data Bus
D7 Do 4 murer fu— ———A Buffer
(P - 5)
RESET
(,.-'1—I‘*-\ .
oyis) Read/Write [~ 1] ransmi
BD Control - ontrol
WR Logic =
S =
i |
oo
=
DSR =2 _
OTER Moderrm = H;;flfeevre
CTS Control e
RTS 1] (S - P}
Reciewve
Control

TXD

THRDY
THE
TXG

R>D

HXED™Y
RXC
SYMNDET/BD

Sections of 8251A
» Data Bus buffer

» Read/Write Control Logic
» Modem Control

» Transmitter

> Receiver
Data Bus Buffer

DO-D7 : 8-bit data bus used to read or write status, command word or data

Read/Write Control logic
» CS - Chip Select
» C/D - Control/Data

» WR: When signal is low, the MPU either writes.
» RD : When signal goes low, the MPU either reads.
» RESET : A high on this signal reset 8252A.

284

Control Register

» 16-bit register for a control word consist of two independent
bytes namely mode word & command word.

» Mode word : Specifies the general characteristics of operation
such as baud, parity, number of bits etc.

» Command word : Enables the data transmission and reception.

» Register can be accessed as an output port when the Control/Data
pin is high.

Status register

» Checks the ready status of the peripheral.

» Status word register provides the information concerning register
status and transmission errors.

285

Dataregister

> Used as an input and output port when the C/D is low.

=i
=

s Jgp RO JwR____ |

TR -
= T = R = T R S

QD O = = 3 X

1
o
o
o
o
o

Data Bus 3-5tate

Data Bus 3-5tate
Status — CPU
Control Word <= CPU
Data — CPU

Data = CPU

8251 USART Architecture

I

Modem Control

» DSR - Data Set Ready : Checks if the Data Set is ready when
communicating with a modem.

» DTR - Data Terminal Ready : Indicates that the device is ready

to accept data when the 8251 is communicating with a modem.

» CTS - Clear to Send : If its low, the 8251A is enabled to transmit the
serial data provided the enable bit in the command byte is set to ‘1.
> RTS - Request to Send Data : Low signal indicates the modem that the

receiver is ready to receive a data byte from the modem.

Transmitter section
» Accepts parallel data from MPU & converts them into serial data.
» Has two registers:

* Buffer register : To hold eight bits
* OQutput register : To convert eight bits into a stream of serial bits.

288

Qutput Register

—— T D

F X

=l Transmitter Buffer

OUTDX,AL I
Transmit control _'_""! -&Ti Ev
TxC
Receiver Section

+«— Receive Buffer

IN DX, AL

Receive control

T
——+ Syndet/BDT

Input Register f¢e—F—

RxDy

RxRDY

RxiC

Mode word & command word for 8251

D7 D& D5 D4 D3 D2 Di

Y

1

\

07 D6 D5 D4 D3 D2 O

00

TAEN

-

TRANSMIT ENABLE
1 ENABLE
0 DISABLE

NUMBER CF STOP BITS

Y

o 1 o 1

0 o 1

1 | 1%

1
BIVALID 2
BTs |airs |evs

(ONLY EFFECTS Tx; Rx
NEVER REQUIRES MORE
THAN ONE STOPBIT)

DATA TERMINAL READY
HIGH WILL FORCE
DTR OUTPUT TO ZERO

RECEIVE ENABLE
1= ENABLE R x HDY
O« DISABLE R x RDY

SEND BREAK CHARACTER
1= FORCEST xDLOW
0 » NORMAL OPERATION

ERROR RESET
1= RESETALL ERROR
FLAGS (PE, OF, FE)

REQUEST TO SEND
MGH WILL FORCE
RTS QUTPUT 70 ZERO

Status word register of 8251
o7

D6 0§ 4 - I, - W T
DSR [SYNDET| FE | OE | PE | TXE |RXRDY | TXRDY
DATA SET READY -J L
TRANSMITTER READY
ﬂ:mmm. | Y
Data SetReady & dat character or command.
RECEIVER READY
Indicates USART has recatved 8
character on 28 seial input and
SYNC DETECT e
When et o tama sync dlc 1 ready 0 transfar it fo the CPU.
indicates that character sync has been
achioved and 8251 Is ready for data TRANSMITTER EMPTY
P Indicates that paraliel to serial
OVER RUN ERROR
The OF fag s st when e CPU dos o
not read & character before th next
F € fla s sot when a vaidstop b s o o € R bl of the Command nstuction PE R is sl When pary eor i
detected at end of every character Il is OE does not inhvbit operation of the detected It s reset by ER bt of
resol by ER bit of Command instruction. 8251; hawewer, the previously overrun Command instruction PE does not
FE doas not inhibit operation of 8251, characiar s et Inhibit operation of 8251,

TTL to RS 232C and RS232C to
TTL conversion

I

RS-232 defines serial, asynchronous communication

 Serial - bits are encoded and transmitted one at a time (as opposed to
parallel transmission)

* Asynchronous - characters can be sent at any time and bits
are not individually synchronized

DTE

2 [

3
;s

<D

ground

DTE - DCE Connection

DCE

2
3
7

DTE - DTE Connaction

DTE

2

3

7

TxD ™D

D&

RxD RxD|

ground

293

Electrical Characteristics

» Single-ended

* One wire per signal, voltage levels are with respect to system
common (i.e. signal ground)

» Mark: -3V to—-15V
represent Logic 1, Idle State (OFF)
» Space: +3 to +15V
* represent Logic O, Active State (ON)
» Usually swing between-12V to +12V

» Recommended maximum cable length is 15m, at 20kbps

Mechanical Characteristics
» 25-pin connector

> Use male connector on DTE and female connector on DCE.

Secondary transmitted data
Transmit clock

Secondary received data

Receiver clock
Unassigned

Secondary request to send
Data terminal ready

Signal quality detector
Ring indicator

Data rate select

External clock

Unassigned

20 R0 Z020°0 =0 ~@0 V0 ~© “O V0 ~0

Protective ground
Transmitted data
Received data
Request to send
Clear to send
Data set ready
Signal ground
Data carrier detect
Reserved

ﬂ
) ©
-

Reserved

R
=)

Signal

Signal

Unassigned

Data Carrier Detect

Data Set Ready

Secondary data carrier detect

Received Data

Request to Send

Secondary clear to send

Transmitted Data

Clear to Send

L) N Pl (A B

Data Terminal Ready

Ring Indicator

25-Pin RS232 Connector

Signal Ground

9-Pin RS232 Connector

295

Function of Signals
» TD: transmitted data

» RD: receiveddata
» DSR: data set ready

* indicate whether DCE is poweredon.
» DTR: data terminal ready

* indicate whether DTR is powered on

e turning off DTR causes modem to hang up theline
» Rl: ring indicator

* ON when modem detects phone call.
» DCD: data carrier detect

* ON when two modems have negotiated successfully
and the carrier signal is established on the phoneline.

296

» RTS: request to send
- ON when DTE wants to send data

* Used to turn on and off modem’s
carrier signal in multi-point (i.e. multi-drop) lines

* Normally constantly ON in point-to-point lines
» CTS: clear to send

* ON when DCE is ready to receive data.

» S@G: signal ground

297

® Voltage levels, slew rate, and short-circuit behavior are typically
controlled by a line driver(MC 1488) that converts from the
USART's logic levels (TTL levels) to RS-232 compatible signal
levels, and a receiver (MC 1489) that converts RS-232 compatible
signal levels to the USART's logic levels (TTL levels).

. TTL
/ _ MC14By

)
'\l) J . ——

/

|

A

ts

iy

l
1
1
|
|
|
RTS8 —+
|
|
|

BTR — %

,L:“‘“{‘Z

F‘lN14 +12V
PIN1=-12V

PIN 7 = GND
(&)

UUU

=

-

L
=

1 —
[-
l

1

{) s
—— e
|

1RG-2020

>

330 pl-

.
=
=
=
=

1\

ralan '[—4
VRV

330 pF

Ay |
11—
i

|

135 232¢

M AAIY \
| I ‘
(- ‘) 3) 18]

> l I l' > Fs0)
|
| |
| |
q 6 1S T0O
>:))’ |>r,w
| |
| |
| ga | .
14 11 10
>1|) '"":"> D5
| |
| |
| 10 | B Ny TO
> > B
| -
PIN 14 +5V
PIN 7 = GND

(h)]

298

Sample program of serial data
transfer

I

Assembly Language Program to transmit 100 bytes of data string
starting at location 2000:5000H.

Asynchronous mode control word for transmitting 100 bytes of data:

D7 D6 D5 D4 D3I D2 DI DO
| | I I | | I (0 = FEH
2 Stop bits ~ Even Parity 8-bit CLK scaled

Enabled format

ASSUME CS: CODE

CODE SEGMENT
START: MOV AX, 2000H
MOV DS,AX ; DS points to byte string segment
MOV SI,5000H ; SI points to byte string
MOV CL,64H ; Length of string in CL (hex)
MOV AL,OFEH ; Mode control word to DO — D7
OUT OFEH,AL
MOV AX,11H ; Load command word
OUT OFE,AL ; to transmit enable and error reset

WAIT : IN AL,OFEH ; Read status

301

AND AL,01H ; Check transmitter enable

JZ WAIT ; bit, if zero wait for the transmitter to be
ready

MOV AL,[SI] ; If ready, first byte of string data

OUT OFCH, AL ; is transmitted

INC SI ; Point to next byte
DEC CL ; Decrement counter

JNZ WAIT ; If CL is not zero, go for next byte
MOV AH,4CH
INT 21H

CODE ENDS
END START

Assembly Language Program to receive 100 bytes of data string and
store it at 3000:4000.

ASSUME CS:CODE

CODE SEGMENT

START : MOV AX,3000H
MOV DS,AX ; Data segment set to 3000H
MOV SI,4000H ; Pointer to destination offset
MOV CL,64H ; Byte count in CL
MOV AL,7EH ; Only one stop bit for
OUT OFEH,AL ; receiver is set

MOV AL,14H ; Load command w

NXTBT :

READY:

OUT OFEH,AL ; the receiver and disable transmitter

IN AL,OFEH ; Read status

AND AL,38H ; Check FE, OE and PE

JZ READY ; If zero, jump to READY

MOV AL,14H ; If not zero, clear them

OUT OFEH,AL

IN AL,OFEH ; Check RXRDY, if receiver is not ready
AND AL,02H

JZ READY ; wait

IN AL,OFCH ; If it is ready,

MOV [SI],AL ; receive the character

INC SI ; Increment pointer to next byte

DEC CL ; Decrement counter

JNZ NXTBT; Repeat, if CL is not zero
MOV AH, 4CH
INT 21H

CODE ENDS
END START

Sample program of serial data
transfer

I

Program To Test 8251 Receiving Part
DSEG SEGMENT
ORG 0000: 3000H
DSEG ENDS
CSEG SEGMENT
ORG 0000: 4000H
ASSUME CS : CSEG, DS : DSEG
START: MOV AX, O0OH
MOV SS, AX
MOV SP, 2000H
MOV DS, AX
CLI
CLD
MOV BX, 0202H
PUSH CS
POP AX

MOV [BX], AX
MOV BX, 200H
LEA AX, CS: SRVC2
MOV [BX], AX
MOV DX, FFD8H ; ICW1
MOV AL, 13H

OUT DX, AL

MOV DX, FFDAH

MOV AL, 80H

OUT DX, AL

MOV AL, OFH

OUT DX, AL

MOV AL, OFEH

OUT DX, AL

MOV BX, EXT_RAM_LC
MOV DX, CTL_8253

MOV AL, 76H

OUT DX, AL

MOV DX, TMR1 8253

MOV AL, <CNT_BAUD 9600 MODE16
OUT DX, AL

MOV AL, >CNT_BAUD 9600 MODE16
OUT DX, AL

STI

MOV DX, CTL 8251

MOV AL, O0H

OUT DX, AL

NOP
NOP
NOP
NOP

OUT DX, AL
NOP

NOP

NOP

NOP

OUT DX, AL

MOV DX, CTL_8251

MOV AL, 40H

OUT DX, AL

NOP

NOP

NOP

NOP

MOV DX, CTL_ 8251

MOV AL, MODE_WORD16
OUT DX, AL

NOP
NOP
NOP
NOP
MOV DX, CTL_8251
MOV AL, 36H
OUT DX, AL
BACK1: NOP
JMP BACK1
SRVC2: MOV DX, DATA_8251
IN AL, DX
IN AL, DX
NOP
NOP
NOP
NOP

AHEAD?2:

TERM:

CSEG ENDS
END

CMP AL, ODH
JNZ AHEAD2
MOV AH, 00
MOV SI, AX
CALL FAR DBDT
MOV BX, EXT_RAM_LC
JMP TERM
MOV [BX], AL
INC BX

STI

IRET

Introduction to high speed
serial communications
standards, USB

I

USB Features:

»Simple Connectivity
»Simple cables

» One interface for many devices
» Automatic configuration

»No user Setting

»Hot pluggable

» Data transfer rates

» Coexistence with IEEE 1394

» Reliability

» Low cost

»Low power consumption
» Flexibility

» Operating system support

USB System:

The Figure shows the basic components of USB system. It consists of
USB host, USB device and USB cable. The USB host is a personal computer
(PC) and devices are scanner, printer etc. There will be only one host in
the USB system; however there can be 127 devices in the USB system.

Cables:

»USB cables are designed to ensure correct connections are always
made. By having different connectors on host and devices, it is possible
to connect, two hosts or two devices together.

»USB requires a shielded cable containing 4 wires. Two of these, D+
and D-, from a twisted pair responsible for carrying a differential data
signal, as well as some single-ended signal states. The signals on these
two wires are referenced to the (third) GND wire.

»The fourth wire is called VBUS, and carries a nominal 5V supply, which
may be used by a device for power.

316

CLASSIFICATION:

Modes of Data Transfer can be broadly divided into two types:
1. PARALLEL TRANSFER

2. SERIAL TRANSFER

Modes of Data Transfer can also be divided into
1. SYNCHRONOUS TRANSMISSION
2. ASYNCHRONOUS TRANSMISSION

317

USB HOST:

The USB host communicates with the devices using a USB host
controller. The host is responsible for detecting and enumerating
devices, managing bus access, performing error checking, providing and
managing power, and exchanging data with the devices.

USB DEVICE :

A USB device implements one or more USB functions where a function
provides one specific capability to the system. Examples of USB
functions are keyboards, webcam, speakers, or a mouse. The
requirements of the USB functions are described in the USB class
specification.

318

CONTROL TRANSFERS:
Control transfers are used to configure and retrieve information about
the device capabilities.

a. BULK TRANSFERS: Bulk transfers are intended for devices that
exchange large amounts of data where the transfer can take all of
the available bus bandwidth.

b. INTERRUPT TRANSFERS: Interrupt transfers are designed to support
devices with latency constrains.

c. ISOCHRONOUS TRANSFERS:: Isochronous transfers are used by
devices that require data delivery at a constant rate with a certain
degree of error-tolerance.

319

UNIT-V
ADVANCED MICROPROCESSORS

I

80286 Microprocessor
architecture

I

Salient features of 80286

®

O

High performance microprocessor with memory
management and protection

80286 is the first member of the family of advanced
microprocessors with built-in/on-chip memory management
and protection abilities primarily designed for multi-
user/multitasking systems

Available in 8 MHz, 10 MHz & 12.5 MHz clock frequencies

80286 is upwardly compatible with 8086 in terms of
instruction set.

80286 have two operating modes namely real address mode
and virtual address mode.

322

Salient features of 80286:

®

O

In real address mode, the 80286 can address up to 1Mb of
physical memory address like 8086.

In virtual address mode, it can address up to 16 Mb of physical
memory address space and 1 GB of virtual memory address
space.

80286 has some extra instructions to support operating system
and memory management.

In protected virtual address mode, it is source code compatible
with 8086.

The performance of 80286 is five times faster than the
standard 8086.

323

Bus and memory sizes

> The 80286 CPU, with its 24-bit address bus is able to address
16MB of physical memory.

» 1GB of virtual memory for each task

Microprocessor Databus Address bus Memory size

width width
8086 16 20 1M
80186 16 20 1M

80286 16 24 16M

324

Operating Modes:
Intel 80286 has 2 operating modes:

Real Address Mode :
» 80286 is just a fast 8086 --- up to 6 times faster

» All memory management and protection mechanisms are
disabled

» 286 is object code compatible with 8086
Protected Virtual Address Mode

» 80286 works with all of its memory management and
protection capabilities with the advanced instruction set.

» itis source code compatible with 8086

325

ALT

Address Latches and
Diavers
:
Pre- Processor —:_|...
fetch Extension |
Interface |op———
1
1
r——1—
Bus Control I——-
1
1
Data Transceivers !
iy

'
1
1
1
'
1
O = Rk ‘+—
: Control 3 Decoded | Instrcti |
: El'_'l:I. NSTHICTION ' -‘—
H Instraection Dacoder !
i ! ! Queue N
! ! i Instraction |
. . ! :
| Breeution Und (B) |11 .. : S - - 1Lt I I
i
MMI p——
BT
INTE
ERROR

lls5“23'-!:15”]:-

2w MW o

FEACE
PE REQ
READY , HOLD

51, 20, CODY 1T
LOCESA HLDA
Dys-Dg

Resat
Clk
Wss
Woe

Cap

326

80286 Microprocessor
Architecture(cont.)

I

80286 Architecture:

Address Latches and Bgs-Byy,
Dirivers -

1
|
1 R
: . BeE M o
1 1
i Fre- Frocessor —:_|'.,
1 Segment fatch Extension | FEACK
i {..lei.r::'t Cimas Interface |@——— PEEEQ
1
! . 4— | ZEDY HOLD
' Bus Control —- P —"
! a a
1
Diata Tratisceisvers ' LOCEA, HLDA
_______________________________ ﬁ, Dis-Dg
1
-- R __ & Byte !
i Pre-fatch :
i Chagaze Bus Unit !
1
! I R Bum___
R [— N s—— [P E T - — Eeset
1 1
: 3 Decoded Instrmection | g Clk
: Instraction Decoder E
' ! ! Chiene _ I Vs
! I | Instruction |
| ErecutlonUndt BN | | | | ! e Unitquy__ o [Ve
‘ ‘ = Cap
MMI I
AT
IMTE
FRROIR

328

Functional Parts:

1.Bus Interface unit
2.Instruction unit

3.Execution unit

2.Address unit

Bus Interface Unit

>

>

Performs all memory and 1/O read and write operations.
Take care of communication between CPU and a coprocessor.
Transmit the physical address over address bus A, — A,;

Prefetcher module in the bus unit performs this task of

prefetching.
Bus controller controls the prefetcher module.

Fetched instructions are arranged in a 6 — byte prefetch queue.

330

Instruction Unit

>

>

Receive arranged instructions from 6 byte prefetch queue.

Instruction decoder decodes up to 3 prefetched instruction and

are latched them onto a decoded instruction queue.

Output of the decoding circuit drives a control circuit in the

Execution unit.

331

Execution unit

» EU executes the instructions received from the decoded

instruction queue sequentially.
» Contains Register Bank.

» contains one additional special register called Machine status

word (MSW) register --- lower 4 bits are only used.
» ALU is the heart of execution unit.

» After execution ALU sends the result either over data bus or back

to the register bank.

332

Address Unit

» Calculate the physical addresses of the instruction and data that

the CPU want to access

» Address lines derived by this unit may be used to address

different peripherals.

» Physical address computed by the address unit is handed over

to the BUS unit.

333

Registers (Real/Protected mode)

REGISTER ORGANIZATION OF 80286:

The 80286 CPU contains almost the same set of registers, as in
8086, namely

» Eight 16-bit general purpose registers (AX, BX, CX, DX)
» Four 16-bit segment registers (CS, SS, DS, ES)

» Status and control registers (SP, BP, Sl, Dl)

» Instruction Pointer (IP)

»Two 16-bit register - FLAGS, MSW

»Two 16-bit register - LDTR and TR

»Two 48-bit register - GDTR and IDTR

335

CS

DS
SS

ES

16-BIT Special
REGISTER Register
NAME 07 0 Functions

BYTE AX | AH AL | MULTIPLY/DIVIDE

ADDRESSABLE py DH DL /0 INSTRUCTON

(16-BIT

REGISTER CX CH CL j» LOOP/SHIFT/REPEAT COUNT

NAMES

SHONYN) B . Bl , BASE REGISTERS
BP .
Sl . INDEX REGISTERS
DI
Sp j» STACK POINTER

15 GENERAL O
15 0 REGISTERS 15 0
CODE SEGMENT SELECTION F STATUS WORD
DATA SEGMENT SELECTION IP INSTRUCTION POINTER
STACK SEGMENT SELECTION » STATUS AND CONTROL
EGISTE
EXTRA SEGMENT SELECTION REe TR
SEGMENT REGISTERS

Flag Register

STATUS FLAGS
CARRY FLAG
PARTY FLAG

AUXILIARY CARRY FLAG
ZERO FLAG

SIGN FLAG
OVERFLOW FLAG —

Dis D14 D13D12 (D11 Dio D¢ Ds [D7 VDG Ds |(Ds D3 (D2 Dy vPo
//A NT |IOPL| OF | DF | IF | TF | SF | ZF /% AF /// PF //// CF
\ b A b CONTROLFLAGS
NESTED TASK L TRAPFLAG
s L INTERRUPT FLAG
PRIVILEGE LEVEL DIRECTION FLAG

Registers (Real/Protected
mode)

I

® The initial protected mode, released with the 286, was not widely
used;

for example, it was used by Microsoft xenix (around
1984),coherent and minix. Several shortcomings such as the
inability to access the BIOS or DOS calls due to inability to switch
back to real mode without resetting the processor prevented
widespread usage.

Acceptance was additionally hampered by the fact that the 286
only allowed memory access in 16 bit segments via each of four
segment registers, meaning only 4*2 bytes, equivalent to
256 kilobytes, could be accessed at a time Because changing a
segment register in protected mode caused a 6-byte segment
descriptor to be loaded into the CPU from memory

339

® The segment register load instruction took many

tens of processor cycles, making it much slower
than on the 8086; therefore, the strategy of
computing segment addresses on-the-fly in order
to access data structures larger than
128 kilobytes (the combined size of the two data
segments) became impractical, even for those few
programmers who had mastered it on the
8086/8088

340

Privilege levels

I

There are four types of privilege levels
®

®
®
®
®

®

00 - kernel level (highest privilege level)
01 - OS services

10 - OS extensions

11 - Applications (lowest privilege level)

Each task assigned a privilege level, which indicates the priority
or privilege of that task.

It can only changed by transferring the control, using gate
descriptors, to a new segment.

A task executing at level 0, the most privileged level, can access
all the data segment defined in GDT and LDT of the task.

A task executing at level 3, the least privileged level, will have the
most limited access to data and other descriptors.

342

Task

Cated call
and returm
Task &
Unrestrcted
local aceess

Task B

Descriptor cache

I

Base Address

® 32 bit starting memory address of the segment Segment
Limit

® 20 bit length of the segment. (More specifically, the address
of the last accessible data, so the length is one more that the
value stored here.) How exactly this should be interpreted
depends on other bits of the segment descriptor.

G=Granularity

@ If clear, the limit is in units of bytes, with a maximum of
220 bytes. If set, the limit is in units of 4096-byte pages, for a
maximum of 232 bytes.

345

Base Address

D=Default operand size

If clear, this is a 16-bit code segment; if set, this is a 32-bit segment
L=Long-mode segment

If set, this is a 64-bit segment (and D must be zero), and code in this segment
uses the 64-bit instruction encoding

AVL=Available

For software use, not used by hardware

D=Default operand size

If clear, this is a 16-bit code segment; if set, this is a 32-bit segment
L=Long-mode segment

If set, this is a 64-bit segment (and D must be zero), and code in this segment
uses the 64-bit instruction encoding

AVL=Available

For software use, not used by hardware

346

P=Present

® If clear, a "segment not present"” exception is generated on any
reference to this segment

DPL=Descriptor privilege level

® Privilege level required to access this descriptor
C=Conforming

® Code in this segment may be called from less-privileged levels
R=Readable

@ If clear, the segment may be executed but not read from
A=Accessed

® This bit is set to 1 by hardware when the segment is accessed,
and cleared by software

347

Memory access in GDT and LDT

I

Memory access in GDT and LDT

® The Global Descriptor Table or GDT is a data structure used by Intel x86-
family processors starting with the 80286 in order to define the
characteristics of the various memory areas used during program execution,

including the base address, the size and access privileges like execute-

ability and write-ability.

349

Memory access in GDT and LDT

® There is also a Local Descriptor Table (LDT). While the LDT contains
memory segments which are private to a specific program, the GDT
contains global segments. The x86 processors have facilities for
automatically switching the current LDT on specific machine events,

but no facilities for automatically switching the GDT.

350

Memory access in GDT and LDT

Base adgress (4-31) | G{CA

Base andress (Bt 0-15)

Lime (16-19

[TTTTTT T T T T T T T[T T T T ITTTTITTT]

Type | Base addess(16-23

Seqment Lmi (Bt 0- 3

351

https://en.wikipedia.org/wiki/File:SegmentDescriptor.svg

Memory access in GDT and LDT

I

Memory access in GDT and LDT

Memory access in GDT and LDT

Memory Accessing In GDT or LDT

- A segment cannot be accessed, if its descriptor does not exist in

either LDT or GDT.

- Set of descriptor (descriptor table) arranged in a proper sequence

describes the complete program.

Memory access in GDT and LDT

- The descriptor is a block of contiguous memory location

containing information of a segment, like
- Segment base address
+ Segment limit
* Segment type
* Privilege level — prevents unauthorized access
- Segment availability in physical memory
- Descriptor type

- Segment use by another task

355

Memory access in GDT and LDT

® The Global Descriptor Table or GDT is a data structure used by
Intel x86-family processors starting with the 80286 in order to
define the characteristics of the various memory areas used
during program execution, including the base address, the size

and access privileges like execute- ability and write-ability.

356

Memory access in GDT and LDT

® Local Descriptor Table (LDT). While the LDT contains memory
segments which are private to a specific program, the GDT contains
global segments. The x86 processors have facilities for automatically
switching the current LDT on specific machine events, but no

facilities for automatically switching the GDT.

357

Memory access in GDT and LD

Differentiate between GDT and LDT.

® LDT is actually defined by a descriptor inside the GDT, while the GDT
is directly defined by a linear address.The lack of symmetry between
both tables is underlined by the fact that the current LDT can be
automatically switched on certain events, notably if TSS-based

multitasking is used, while this is not possible for the GDT.

® The LDT also cannot store certain privileged types of memory

segments.

358

Memory access in GDT and LDT

® The LDT is the sibling of the Global Descriptor Table (GDT) and similarly

defines up to 8191 memory segments accessible to programs.

@ LDT (and GDT) entries which point to identical memory areas are called

aliases.

® Instruction to load GDT is LGDT(Load Global Descriptor Table) and
instruction to load LDT is LLDT(Load Global Descriptor Table). Both are

privileged instructions.

359

Multitasking

I

Multitasking

Multitasking

® multitasking is the concurrent execution of multiple tasks (also
known as processes) over a certain period of time. New tasks can
interrupt already started ones before they finish, instead of
waiting for them to end. As a result, a computer executes
segments of multiple tasks in an interleaved manner, while the
tasks share common processing resources such as central

processing unit (CPUs) and main memory.

361

Multitasking

context switch

® Multitasking automatically interrupts the running program,
saving its state (partial results, memory contents and computer
register contents) and loading the saved state of another program
and transferring control to it. This “context switch"” may be
initiated at fixed time intervals (pre-emptive multitasking), or the
running program may be coded to signal to the supervisory

software when it can be interrupted (cooperative multitasking).

362

Multitasking

Features of Multitasking

® It allows more efficient use of the computer hardware; where a
program is waiting for some external event such as a user input or
an input/output transfer with a peripheral to complete, the central

processor can still be used with another program.

® In a time sharing system, multiple human operators use the same
processor as if it was dedicated to their use, while behind the scenes
the computer is serving many users by multitasking their individual

programs.

363

Multitasking

® In multiprogramming systems, a task runs until it must wait for an

external event or until the operating system's scheduler forcibly

swaps the running task out of the CPU.

Multitasking

Applications :

® Real-time systems such as those designed to control industrial robots,

require timely processing;

® a single processor might be shared between calculations of machine

movement, communications, and user interface.

Multitasking

Advantages

® Often multitasking operating systems include measures to change
the priority of individual tasks, so that important jobs receive

more processor time than those considered less significant.

® Depending on the operating system, a task might be as large as an
entire application program, or might be made up of

smaller threads that carry out portions of the overall program.

366

Addressing modes for 80286

I

Addressing Modes

Multitasking

® multitasking is the concurrent execution of multiple tasks (also known
as processes) over a certain period of time. New tasks can interrupt
already started ones before they finish, instead of waiting for them to
end. As a result, a computer executes segments of multiple tasks in an
interleaved manner, while the tasks share common processing resources

such as central processing unit (CPUs) and main memory.

368

Addressing Modes

context switch

® Multitasking automatically interrupts the running program,
saving its state (partial results, memory contents and computer
register contents) and loading the saved state of another program
and transferring control to it. This “context switch"” may be
initiated at fixed time intervals (pre-emptive multitasking), or the
running program may be coded to signal to the supervisory

software when it can be interrupted (cooperative multitasking).

369

Features of Multitasking

®

It allows more efficient use of the computer hardware; where a
program is waiting for some external event such as a user input or
an input/output transfer with a peripheral to complete, the central

processor can still be used with another program.

In a time sharing system, multiple human operators use the same
processor as if it was dedicated to their use, while behind the scenes
the computer is serving many users by multitasking their individual

programs.

370

® In multiprogramming systems, a task runs until it must wait for an

external event or until the operating system's scheduler forcibly

swaps the running task out of the CPU.

Addressing Modes

Applications :
® Real-time systems such as those designed to control industrial

robots, require timely processing;

® a single processor might be shared between calculations of

machine movement, communications, and user interface.

Advantages

® Often multitasking operating systems include measures to change
the priority of individual tasks, so that important jobs receive

more processor time than those considered less significant.

® Depending on the operating system, a task might be as large as an
entire application program, or might be made up of

smaller threads that carry out portions of the overall program.

373

Addressing Modes

Direct addressing mode:

® In the direct addressing mode, a 16-bit memory address (offset)
directly specified in the instruction as a part of it.

Example: MOV AX, [5000H].

Register addressing mode:

® In the register addressing mode, the data is stored in a register
and it is referred using the particular register. All the registers,
except IP, may be used in this mode.

Example: MOV BX, AX

374

Addressing Modes

Register indirect addressing mode:

® Sometimes, the address of the memory location which contains data or
operands is determined in an indirect way, using the offset registers.

The mode of addressing is known as register indirect mode.

@ In this addressing mode, the offset address of data is in either BX or SI

or DI Register. The default segment is either DS or ES.

Example: MOV AX, [BX].

375

Addressing Modes

Indexed addressing mode:

® In this addressing mode, offset of the operand is stored one of
the index registers. DS & ES are the default segments for index
registers Sl & DI respectively.

Example: MOV AX, [SI]
® Here, data is available at an offset address stored in Sl in DS.

Register relative addressing mode:

@® In this addressing mode, the data is available at an effective
address formed by adding an 8-bit or 16-bit displacement with
the content of any one of the register BX, BP, SI & DI in the
default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

376

Addressing Modes

Based indexed addressing mode:

® The effective address of data is formed in this addressing
mode, by adding content of a base register (any one of BX or
BP) to the content of an index register (any one of Sl or DI).
The default segment register may be ES or DS.

Example: MOV AX, [BX][SI]

Relative based indexed:

® The effective address is formed by adding an 8 or 16-bit
displacement with the sum of contents of any of the base
registers (BX or BP) and any one of the index registers, in a
default segment.

Example: MOV AX, 50H [BX] [SI]

377

Addressing Modes

Addressing Modes for control transfer instructions:

® Intersegment
* Intersegment direct
* Intersegment indirect

® Intrasegment
e Intrasegment direct
e Intrasegment indirect

Addressing Modes

Intersegment direct:

@ In this mode, the address to which the control is to be transferred
is in a different segment. This addressing mode provides a means
of branching from one code segment to another code segment.
Here, the CS and IP of the destination address are specified
directly in the instruction.

Example: JMP 5000H: 2000H;

® Jump to effective address 2000H in segment 5000H.

379

Addressing Modes

Intersegment indirect:

@ In this mode, the address to which the control is to be transferred
lies in a different segment and it is passed to the instruction
indirectly, i.e. contents of a memory block containing four bytes,
i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The
starting address of the memory block may be referred using any
of the addressing modes, except immediate mode.

Example: JMP [2000H].

Jump to an address in the other segment specified at effective
address 2000H in DS.

380

Addressing Modes

Intrasegment direct mode:

@ In this mode, the address to which the control is to be
transferred lies in the same segment in which the control
transfers instruction lies and appears directly in the
Instruction as an immediate displacement value. In this
addressing mode, the displacement is computed relative to
the content of the instruction pointer.

381

Addressing Modes

Intrasegment indirect mode:

®

In this mode, the displacement to which the control is to
be transferred is in the same segment in which the
control transfer instruction lies, but it is passed to the
Instruction directly. Here, the branch address is found as
the content of a register or a memory location.

This addressing mode may be used in unconditional
branch instructions.

Example: JMP [BX]; Jump to effective address stored in
BX.

382

Flag Register of

Flag Register of 80286

I

Flag Register of 80286

STATUS FLAGS
CARRY FLAG
PARTY FLAG

JXILIARY CARRY FLAG
ZERO FLAG

SIGN FLAG
OVERFLOW FLAG

Dis |

////, NT [IOPL| OF | DF | IF | TF | SF ZFV//AF /// PFV/ACF

7

Ds D4 D3 VDz D1

D14 01?\

¢ A A A CONTROL FLAGS

NESTED TASK L TRAP FLAG
/O | INTERRUPT FLAG
PRIVILEGE LEVEL DIRECTION FLAG

Flag Register of 80286

|IOPL - Input Output Privilege Level flags (bit D12 and D13

@ I0OPL is used in protected mode operation to select the privilege
level for 1/O devices. IF the current privilege level is higher or

more trusted than the IOPL, I/0 executed without hindrance.

@ If the IOPL is lover than the current privilege level, an interrupt
occurs, causing execution to suspend.Note that IPOL 00 is the

highest or more trusted; and IOPL 11 is the lowest or least

385

Flag Register of 80286

® NT — Nested task flag (bit D14)

® When set, it indicates that one system task has invoked another

through a CALL instruction as opposed to a JMP.

® For multitasking this can be manipulated to our advantage

Flag Register of 80286

Machine Status Word Register

® Consist of four flags

* PE,

* MP,

* EM and

e TS are for the most part used toindicate whether a processor

extension (co-processor) is present in the system or not

Flag Register of 80286

® Word Machine Status...

Dy Dy Dig Dg Dip Dig
i
N IR gt
T Jl\
Hggggﬁg%ggs PROCESSOR EXTENSIT(?I?EE\(JV&?SR———— }%@E
JONTOR PROCESSOR EX/ENSION WOR2

PROTECTION ENABLE / l

Flag Register of 80286

@ PE - Protection enable

Protection enable flag places the 80286 in protected mode, if set.
this can only be cleared by resetting the CPU.

® MP - Monitor processor extension

flag allows WAIT instruction to generate a processor extension.

® Emulate processor extension flag,

if set , causes a processor extension absent exception and
permits the emulation of processor extension by CPU.

389

Architecture of 80386

I

Architecture of 80386

The Internal Architecture of 80386 is divided into 3 sections.
e Central processing unit

e Memory management unit

e Bus interface unit

e Central processing unit is further divided into Execution unit
and Instruction unit

e Execution unit has 8 General purpose and 8 Special purpose

registers which are either used for handling data or calculating

offset addresses.

391

SEGMENTATION UNIT

PALl

HUS CONTROL.

REQUEST

PFRIODRITIFER S ®HOLD .

] INTH, NN,
AmpPUT ADDER — ERROR,
ADDER T
= A = :
= = g RESET,
DESCRIPTOR . = HLDA
“ FEeTeRr PAGE CACHE o E
- = 5
= LAMIT AND CONTROL AND E =
= ATTRIBUTE | ATTRIBUTE = E
HE J—: : e
E - = V & ADDRESS
= g E DRIVER
5 MO, DVCH,
% = 4 % N R, 1LOCKE,
= T LT - BLS SIEE - ADE, QA.»_\ o
e A '_b_=' 'NTER:"'." A L Ir’f OO RO s, HEADYS
E PROJECTION L =
E TEST LUNIT RN
TRANS -
= -
- = RECIVERS Dol
= '\ et ey
§ PERFECTUHER!
LAMIT
CHECKER
BAREFL INSTRUCTLON
SHIFTEH, $ DECODE AMND DECODER
ADDER PPy SEQUERCING
FLADR
MULTIFLYS CODE 16 BYTE
DIV IDE FUREAM CODE
A-DECODED f‘a—
m:g[ﬁﬂl' INSTRUCTION |,
REGISTER FILE RN
— AL INSTRUCTTIONN
ALL OO RO CONTHROL. IS TRUCTIONN PFREFETCHER

FREDECODE

DEDICATED ALL BUS

BOSEG6 ARCHITECTURE

* The Instruction unit decodes the opcode bytes received from the 16-byte
instruction code queue and arranges them in a 3- instruction decoded
instruction queue.

eAfter decoding them pass it to the control section for deriving the
necessary control signals. The barrel shifter increases the speed of all
shift and rotate operations.

e The multiply / divide logic implements the bit-shift-rotate algorithms to
complete the operations in minimum time.

eEven 32- bit multiplications can be executed within one microsecond by
the multiply / divide logic.

eThe Memory management unit consists of a Segmentation unit and a
Paging unit.

393

O
00
o™
o
00
Y
o
=
©
S
Lol))
S
©
=
al

- o™ W % e -~ ®w & g 9 4 7 =

40804040 40 B0 40 8040404040 20 80
10 408080 40 4080 4040 404040 40 #0
{0 10 3080 40 40 §0 040 80 040 §0 §oO

i0 4040 30 &0 &0
0 4040 080 80
0 8080 20 80 40
£0 4040 : <0 §0 €0
;08080 . $0 30 80
102020 10 20 #0
;0 4040 §02040
i0 4040 503030
40 4040 &omomocom m m O *O$0 KO 3

10 4040 #0 #0 30 £030 E020 #050 §0 80
80 80 2020 §0 80 momo 50 8080 80 §0

394

Pin diagram of 80386

CECETETELETET

=A=1-1=1-1-
RIFGE

BO3.86 DX

: FPYSFYR FYPF

395

Signal Descriptions of 80386

*CLK2 :The input pin provides the basic system clock timing for the
operation of 80386.

D0 — D31:These 32 lines act as bidirectional data bus during different
access cycles.

*A31 - A2: These are upper 30 bit of the 32- bit address bus.

*BEO toBE3 : The 32- bit data bus supported by 80386 and the memory
system of 80386 can be viewed as a 4- byte wide memory access
mechanism.

¢ ADS: The address status output pin indicates that the address bus and
bus cycle definition pins(W/R#, D/C#, M/IO#, BEO# to BE3#) are
carrying the respective valid signals.

396

Signal Descriptions of 80386

*\VCC: These are system power supply lines.

*\/SS: These return lines for the power supply.

*BS16: The bus size — 16 input pin allows the interfacing of 16 bit devices
with the 32 bit wide 80386 data bus.

*HOLD: The bus hold input pin enables the other bus masters to gain
control of the system bus if it is asserted.

*HLDA: The bus hold acknowledge output indicates that a valid bus hold

request has been received and the bus has been relinquished by the CPU.

397

Signal Descriptions of 80386

e ERROR: The error input pin indicates to the CPU that the
coprocessor has encountered an error while executing its
instruction.

 PEREQ: The processor extension request output signal indicates to
the CPU to fetch a data word for the coprocessor.

*INTR: This interrupt pin is a maskable interrupt, that can be
masked using the IF of the flag register.

* NMI: A valid request signal at the non-maskable interrupt request

input pin internally generates a non- maskable interrupt of typeZ2.

398

Signal Descriptions of 80386

® READY: The ready signals indicates to the CPU that the previous
bus cycle has been terminated and the bus is ready for the next
cycle.

® BUSY: The busy input signal indicates to the CPU that the
coprocessor is busy with the allocated task.

® RESET: A high at this input pin suspends the current operation
and restart the execution from the starting location.

® N/ C:No connection pins are expected to be left open.

399

80386 Register Organization

I

80386 Register Organization

®

The 80386 has eight 32 - bit general purpose registers which may
be used as either 8 bit or 16 bit registers.

A 32 - bit register known as an extended register, is represented
by the register name with prefix E.

The six segment registers available in 80386 are CS, SS, DS, ES, FS
and GS.

The CS and SS are the code and the stack segment registers
respectively, while DS, ES, FS, GS are 4 data segment registers.

A 16 bit instruction pointer IP is available along with 32 bit
counterpart EIP.

401

80386 Register Organization

GENMERAL DATA AND ADDRESS
K] | 15

SEGMENT SELECTOR

INSTREUCTION POINTER AND FLAG
K] | la 1=

IF

FLAG

EA
EB
EC
ED
ES

EB
ES

cs

88

DS
ES
F5

G5 —

EI
EFLA

CODE
STACK SEGMENT

— DATA
SEGMENT

402

FLAGS

31 18 17 15 1413 12 11 10 9 8 T i 5 4 1 2 1 0
HWH

RESERVYED

FOR INTEL NT [IOPL OF E IF}T SF zF | 0

W

" b
=
e
=

=l

FLAG REGISTER OF 80386

® The Flag register of 80386 is a 32 bit register. Out of the 32 bits,

Intel has reserved bits D18 to D31, D5 and D3, while D1 is always
set at 1.

® Two extra new flags are added to the 80286 flag to derive the flag
register of 80386. They are VM and RF flags.

403

® VM - Virtual Mode Flag: If this flag is set, the 80386 enters the

virtual 8086 mode within the protection mode.

® RF- Resume Flag: This flag is used with the debug register

breakpoints.

® Segment Descriptor Registers: This registers are not available for
programmers, rather they are internally used to store the
descriptor information, like attributes, limit and base addresses of

segments

404

® Control Registers: The 80386 has three 32 bit control registers

CRO, CR2 and CR3 to hold global machine status

® System Address Registers: Four special registers are defined to

refer to the descriptor tables supported by 80386.

® Debug and Test Registers: Intel has provide a set of 8 debug

registers for hardware debugging.

405

Memory access In protected mode

Protected Mode of 80386:

» All the capabilities of 80386 are available for utilization in its protected
mode of operation.

»The 80386 in protected mode support all the software written for 80286
and 8086 to be executed under the control of memory management and
protection abilities of 80386.

»The protected mode allows the use of additional instruction, addressing
modes and capabilities of 80386.

407

4+ :-FITFOINTER

SELECTOR

OFFSET

471 31

11 f1s

ACCE 5'5 RIGHT

LINTIT
F
BASE
SECGWMENT SCEIFTOR

MEMORY
=

FECMENT EASE ADDRESS

SEGMENT
InIT

UP
4 6B | cpeMENT

Protected Mode Addressmg Without Pagmg Unit

408

Addressing in protected mode

»In this mode, the contents of segment registers are used as
selectors to address descriptors which contain the segment limit, base
address and access rights byte of the segment.

» The effective address (offset) is added with segment base address to
calculate linear address.

»This linear address is further used as physical address, if the paging
unit is disabled, otherwise the paging unit converts the linear address
into physical address.

409

Addressing in protected mode

> The paging unit is a memory management unit enabled only in
protected mode.

» The paging mechanism allows handling of large segments of memory
in terms of pages of 4Kbyte size.

» The paging unit operates under the control of segmentation unit.

» The paging unit if enabled converts linear addresses into physical
address, in protected mode.

410

Paging

Paging Unit:

»The paging unit of 80386 uses a two level table mechanism to convert a
linear address provided by segmentation unit into physical addresses.

»The paging unit converts the complete map of a task into pages, each of
size 4K. The task is further handled in terms of its page, rather than

segments.

»The paging unit handles every task in terms of three components
namely page directory, page tables and page itself.

412

Paging Unit:

» The Paging unit organizes the physical memory in terms of pages
of 4kbytes size each.

»Paging unit works under the control of the segmentation unit,
i.e. each segment is further divided into pages.

»The virtual memory is also organizes in terms of segments and
pages by the memory management unit.

» Paging unit converts linear addresses into physical addresses.

413

Paging Unit

»The control and attribute PLA checks the privileges at the page level.

» Each of the pages maintains the paging information of the task.

»The limit and attribute PLA checks segment limits and attributes at
segment level to avoid invalid accesses to code and data in the
memory segments.

80486: Only the technical
features

I

Introduction:
®

One of the most obvious feature included in a 80486 is a built in
math coprocessor. This coprocessor is essentially the same as the
80387 processor used with a 80386, but being integrated on the
chip allows it to execute math instructions about three times as
fast as a 80386/387 combination.

80486 is an 8Kbyte code and data cache.

To make room for the additional signals, the 80486 is packaged in
a 168 pin, pin grid array package instead of the 132 pin PGA used
for the 80386.

416

Operates on 25MHz, 33 MHz, 50 MHz, 60 MHz, 66 MHz or
100MHz.

It consists of parity generator/checker unit in order to implement
parity detection and generation for memory reads and writes.

Supports burst memory reads and writes to implement fast cache
fills.

Three mode of operation: real, protected and virtual 8086 mode.

The 80486 microprocessor is a highly integrated device,
containing well over 1.2 million transistors.

417

The address bus is unidirectional because the address information is
always given by the Micro Processor to address a memory location of an
input / output devices.

The data bus is Bi-directional because the same bus is used for transfer
of data between Micro Processor and memory or input / output devices
in both the direction.

It has limitations on the size of data. Most Microprocessor does not
support floating-point operations.

Microprocessor contain ROM chip because it contain instructions to
execute data.

Storage capacity is limited. It has a volatile memory. In secondary
storage device the storage capacity is larger. It is a nonvolatile memory.

418

Primary devices are: RAM (Read / Write memory, High Speed,
Volatile Memory) / ROM (Read only memory, Low Speed, Non
Voliate Memory)

Secondary devices are: Floppy disc / Hard disk

Compiler:

Compiler is used to translate the high-level language program into
machine code at a time. It doesn’t require special instruction to
store in a memory, it stores automatically. The Execution time
IS less compared to Interpreter

419

