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COs Course Outcomes

€Ol Classify the types and configurations of control systems and

describe the mathematical models of dynamic systems

Co2 Apply various techniques to obtain transfer functions and
examine the time response of control systems using standard

test signals

co3
Analyze the system response and stability in time domain

S Examine the characteristics and stability of control systems in
frequency domain.

co5

Obtain the models of control systems in state space form and
design compensators to meet the desired specifications.
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MODULE-I
INTRODUCTION AND MODELING OF PHYSICAL SYSTEMS



CLOs Course Learning Outcome

CLO1
Differentiate between open loop, closed loop system
and their importance in real time applications.

CLO2  predict the transfer function of translational and
rotational mechanical, electrical system using
differential equation method.

CLO3
Differentiate between open loop, closed loop system
and their importance in real time applications.




What is Control System?

» A system Controlling the operation of another system.

» A system that can regulate itself and another system.

» A control System is a device, or set of devices to manage,

command, direct or regulate the behaviour of other device(s)

or system(s).




Definitions

»System — An interconnection of elements and devices for a desired
purpose.

» Control System — An interconnection of components forming a system
configuration that will provide a desired response.

»Process — The device, plant, or system under control. The input and

output relationship represents the cause-and-effect relationship of the

process.

Input — | Process ——— Output




Definitions (Contd..)

» Controlled Variable— It is the quantity or condition that is measured
and Controlled. Normally controlled variable is the output of the
control system.

» Manipulated Variable— It is the quantity of the condition that is
varied by the controller so as to affect the value of controlled
variable.

» Control — Control means measuring the value of controlled variable
of the system and applying the manipulated variable to the system
to correct or limit the deviation of the measured value from a

desired value.



Definitions (Contd..)

Input

or
Set point— | Controller

or

Manipulated Variable

]

reference

Output
Process ——

Controlled Variable

» Disturbances— A disturbance is a signal that tends to adversely

affect the value of the system. It is an unwanted input of the system.

» If a disturbance is generated within the system, it is called internal

disturbance. While an external disturbance is generated outside the

system.



Types of Control System

» Open-Loop Control Systems utilize a controller or control actuator
to obtain the desired response.
» Output has no effect on the control action. No feedback — no

correction of disturbance

———| Controller +— Process ———

Open-loop control system (without feedback).

Examples:- Washing Machine, Toaster, Electric Fan
» In other words output is neither measured nor fed back.



Types of Control System (Contd..)

» Since in open loop control systems reference input is not
compared with measured output, for each reference input there
is fixed operating condition.

» Therefore, the accuracy of the system depends on calibration.

» The performance of open loop system is severely affected by the
presence of disturbances, or variation in operating/

environmental conditions.



Types of Control System (Contd..)

» Closed-Loop Control Systems utilizes feedback to compare the

actual output to the desired output response.

Input Output
———> Comparator | —>| Controller Process

T Measurement |

Closed-loop feedback control system (with feedback).




Types of Control System (Contd..)

» Simple control is often open-loop

- user has a goal and selects an input to a system to try to

achieve this

Forward
path

(a) An open-loop system




Types of Control System (Contd..)

More sophisticated arrangements are closed-loop

- user inputs the goal to the system
Error

signal

Comparator
+ Forward
. path

Feedback path

(b) A closed-loop system




Types of Control System (Contd..)

relationship between the output

Feedback Control System: A system that maintains a prescribed

and some reference input by

comparing them and using the difference (i.e. error) as a means of

control is called a feedback control system.

Input

error
—>

Controller

Process

Feedback

» Feedback can be positive or negative.

Output



Examples of Control Systems

» Room temperature control

Heat Loss/Gain
from Qutside

Desired
Temp Heater/
+ < Air-con




Examples of Modern Control Systems

» Aero plane landing system

y Pitch angle

Aileron

s i
> deflection up
=
s Aileron
deflection down

_
Y

Z

Roll angle
A

X
Yaw angle ¥




Thermostat Example

» Set thermostat to desired room temperature
» Thermostat measures room temperature
» Furnace or AC turn on if measured <> desired

» Air from furnace or AC changes room air temperature

air

S actual

lexternal
desired )m > thermo- — furnace > room air
temp. stat orAcC
thermo-

Stat

temp.




Toilet Flush Example

» Float height determines desired water level
» Flush empties tank, float is lowered and valve opens
» Open valve allows water to enter tank

> Float returns to desired level and valve closes

desired water actual
)m > float —> valve P—> >
level tank level




Mathematical Model

» A mathematical model is a set of equations (usually differential

equations) that represents the dynamics of systems.

» In practice, the complexity of the system requires some

assumptions in the determination model.
» How do we obtain the equations?
» Physical law of the process [ Differential Equation
» Examples:
— Mechanical system (Newton’s laws)

— Electrical system (Kirchhoff’s laws)

19



] Translational

[ Linear Motion

] Rotational
] Rotational Motion



Elements of Translational Mechanical Systems

» These systems mainly consist of three basic elements. Those are
mass, spring and dashpot or damper.

k
(e
UEM ’F

Translational Spring

F—wo— M (5 _
1-'2 1

constant

Translational Mass

Translational Damper

b

a




Elements of Translational Mechanical Systems

» A translational spring is a mechanical element that can be deformed
by an external force such that the deformation is directly

proportional to the force applied to it.

Translational Spring

k

Circuit Symbols Translation



»Spring is an element, which
stores potential energy.

Fa x => Fk=K.’,‘C

.

= F=F,=Kx
»Where,
*F is the applied force

*F, is the opposing force due to elasticity of spring

*K is spring constant

X is displacement



Elements of Translational Mechanical Systems

> Translational Mass is an inertia Translational Mass

element.
> A mechanical system without
mass does not exist. F—wo—{M 2 _
ta
> If a force F is applied to a mass and constant
it is displaced to x meters then the
relation b/w force and (1)
displacements is given by Newton’s
law. F(t)

F,aa => Ihn=Ma

d*x
=> F:Fm:Mm




Elements of Translational Mechanical Systems

»Where,

*F is the applied force

*F . is the opposing force due to mass

*M is mass

*a is acceleration

*x is displacement
»Dash Pot: If a force is applied on dashpot B, then it is opposed by an
opposing force due to friction of the dashpot. This opposing force is

proportional to the velocity of the body. Assume mass and elasticity

are negligible.



Elements of Translational Mechanical Systems

dx -
Fbav => szBv=BE >4 B
4 —> F
> FeF =% /
b dt 7
»Where,

* F, is the opposing force due to friction of dashpot

e B is the frictional coefficient

* v is velocity

* X is displacement




Transfer function of Translational Mechanical Systems

» The mechanical system requires just one differential equation,
called the equation of motion, to describe it.

» Assume a positive direction of motion, for example, to the right.

» This assumed positive direction of motion is similar to assuming a
current direction in an electrical loop.

» First, draw a free-body diagram, placing on the body all forces that
»act on the body either in the direction of motion or opposite to it.

» Second, use Newton'’s law to form a differential equation of motion
by summing the forces and setting the sum equal to zero.

» Finally, assuming zero initial conditions, we take the Laplace
transform of the differential equation, separate the variables, and
arrive at the transfer function.



Elements of Rotational Mechanical Systems

»These systems mainly consist of three basic elements. Those

are moment of inertia, torsional spring and dashpot.
» Moment of Inertia

In translational mechanical system, mass stores kinetic energy.

Similarly, in rotational mechanical system, moment of inertia

stores kinetic energy.

<) )2
T 6




Elements of Rotational Mechanical Systems

»Where,
* Tis the applied torque
* T; is the opposing torque due to moment of inertia
* Jis moment of inertia

e o is angular acceleration

* 0 is angular displacement



Elements of Rotational Mechanical Systems

» Torsional Spring:

In translational mechanical system, spring stores potential energy.

Similarly, in rotational mechanical system, torsional spring

stores potential energy. 7 "
Tea® => T, = K0 ;—NY\ >
=> T =T, =K60 7 *

»Where,
* T is the applied torque

* T, is the opposing torque due to elasticity of torsional spring
* K is the torsional spring constant

* O is angular displacement



Elements of Rotational Mechanical Systems

»Dashpot

If a torque is applied on dashpot B, then it is opposed by an opposing

torque due to the rotational friction of the dashpot.

T,aw = T,=Bw=B% P
dt B
T / UV
>Where, P S
* T, is the opposing torque due to the rotational friction of the
dashpot

* B is the rotational friction coefficient
* w is the angular velocity
* 0 is the angular displacement



Example#l on MTS

» Consider the following system

» Free Body Diagram




Example#2 on MTS

» Find the transfer function of the mechanicaltranslational system
given in Figure.
Free Body Diagram

X (s) 1
F(s)

Ms2



Example#3 on MTS

» Find the transfer function X,(s)/F(s) of the following system.

Free Body Diagram
P fo T T fg
M“ 1 1 2 1

T L 11 L




Mathematical Model of Electrical System

» The mathematical model of electrical systems can be obtained by

using resistor, capacitor and inductor

——Element Voltage across the element | Current through the elemen
i 0
b v(t) = Ri(Y) | i0=—2"
V()
- Tdl TR Py
t)=L—I(t = — t
3 71 v‘ (z’f) = 2 =L i) i(t) ==
i(t,) Cr | v(t) = < [i(t) dt i(t)=C i
+ l_—_— T S




Mathematical Model of Electrical Systems:

The following mathematical models are mostly used.

» Differential equation model

i R L
» Transfer function model — MAN—EN——
+ +
» State space model - e 2EE
Example: RLC Circuit — —

Mesh equation for this circuitis Vi =& +L—+w

Where 1=¢—

jd%u R d@u 1 1
T Yo=177 1%
di? L/ dt Lo Lo

The above equation is a second order differential equation.




Transfer Function Model

»The Transfer function of a Linear Time Invariant (LTI) system is
defined as the ratio of Laplace transform of output and Laplace

transform of input by assuming all the initial conditions are zero.

»>If x(t) and y(t) are the input and output of an LTI system, then the

corresponding Laplace transforms are X(s) and Y(s).

Yis
ioe., Transfer Function = ﬁ
(5]
»The transfer function model
X(s) Y(s) Y(s)
sy B )

of an LTI system is shown in the e

following figure.



Transfer Function of Linear System

1)
V{s)= |[R+ —]I(s) B
. Cs) v (8) (CS)'(S)

1
V,(s)  (Cs ) 1

V., (s) (R+ 1 J_1+SRC
\ Cs

Transfer function




Transfer Function of Linear System

» The differential equation of an RLC network is

d%o_l_ﬁ do, (1N /LY
dt? L} d L) \NLC)

» Apply Laplace transform on both sides.

2V, (s) + (%{) Vi(s)+ (;—G) Vi(s) = (;—C) Vils)




Transfer Function of Linear System

The transfer function model of RLC system is shown below.

Vi(s) 1/LC Vo (s)
— " R\ 1 e

Sz+(I)S+'L—C

Transfer Function of Armature Controlled DC Motor:

J L, ' l
L2 W + F sl oy
& ‘
I
1
|
x

v.=Constant

(Output)




Transfer Function of Linear System

Let R, = Armature resistance,
L, = Armature inductance

|, = Armature current

V, = Armature voltage

e, = Back emf

K, = Torque constant

T = Torque developed by motor

0 = Angular displacement of shaft

J = Moment of inertia of motor and load

B = Frictional coefficient of motor and load

K,= Back emf constant

» The equivalent circuit of armature is shown in the below figure.



Transfer Function of Linear System

di,
> By kirchoff’s voltage law =t oy T = Ve

»>The torque is T'ait, 3 AR ot {!_- .
T=K,i

»The mechanical system of dc motor is shown in fi

=
»
I
TROLCSS




Transfer Function of Linear System

2 " dﬂ_
Levnfayin  ar=gl &

J
dt” dt ’

By solving the above equations

B(s) K,

T V(8) (R, +sk,)(Js? +Bs)+ K,K,s

K, & cna bl
R,Js* + R, Bs+ L Js' +L,Bs" +K,K;s

K,
s|JL,s* + UR, +BL,)s+(BR, + K,K,)]

K ik

] JR, +BL BR, +K,K,
sle? 4| =20 e oy T2 B
IL, IL,




Transfer Function of Linear System

0“).- - | K( K( e
Vils) R, +sL,) (0 +Bs)+K,K s N e 2
2 ApBy Ra(-—H)BS 1+-é— + KK, s

S
a ;

K, /R,B

s[(l+sTa)(1+sTm)+Ei<l
. R.B

»Where L,/R, =T =electrical time constant

»And J/B =T_= Mechanical time constant




Transfer Function of Field Controlled DC Motor

»The speed of a DC motor is directly proportional to armature
voltage and inversely proportional to flux. In field controlled DC

motor the armature voltage is kept constant and the speed is varied

by varying the flux of the machine.



http://www.electricalengineeringinfo.com/2014/03/speed-control-of-dc-motors.html
http://www.electricalengineeringinfo.com/2014/03/speed-control-of-dc-motors.html
http://www.electricalengineeringinfo.com/2014/03/speed-control-of-dc-motors.html

Transfer Function of Field Controlled DC Motor

»The equivalent circuit of field is shown in the below figure.

o A
»>By Kirchoff 's voltage law, we can write R ¢ + [; dt = Vi

»The torque is
Ta:if

»The mechanical system of dc motor is shown i



https://1.bp.blogspot.com/-cQI75gpl8j8/WRnrZRh3RQI/AAAAAAAAM40/TtKuIeCFVgkSPW2JSAXsE-PNNso5JbDqACLcB/s1600/New+Doc+2017-05-15_6.jpg
https://1.bp.blogspot.com/-cQI75gpl8j8/WRnrZRh3RQI/AAAAAAAAM40/TtKuIeCFVgkSPW2JSAXsE-PNNso5JbDqACLcB/s1600/New+Doc+2017-05-15_6.jpg

Transfer Function of Field Controlled DC Motor

Let Rf = Field resistance
Lf = Field inductance
if = Field current
Vf= Field voltage
T = Torque developed by motor
Kt = Torque constant

J = Moment of inertia of rotor and load

B = Frictional coefficient of rotor and load




» The differential equation for the above is

40  pdo

dt? dt

»>transfer function of field controlled dc motor.

6(5) 3 Kzf
Ve(s) s(R;+sLy) (-B.+ sJ)

K . K,
)- sl +sl,.)(1+sTy)

A

If




Transfer Function of Field Controlled DC Motor

where K., = K/R:B = Motor gain constant
T; = L/R; = Field time constant

T.=J/B =Mechanical time constant

Electrical Analogous of mechanical Translational System:

» As the electrical systems has two types of inputs either voltage or
current source. There are two types of analogies .
*Force- Voltage analogy

*Force- Current analogy



Force- Voltage Analogy:

L ADLE - .
[tem Mechanical system Electrical system
(mesh basis system)
Independent variable Force, Voltage, €
(input)
Dependent variable Velocity, v Current, i
(output) Displacement, x Charge, q
Dissipative element Frictional coefficient Resistance, R
of dashpot, B
Storage element . Mass, M Inductance, L
Stiffness of spring, K Inverse of capacitance, 1/(
Physical law Newton's second law Kirchoff’s voltage law
2F=0 V=0
Changing the level of lever Transformer
independent variable i 5 e & _N, |
b b € N,




Force- Voltage Analogy:

Mechanical system

Input : Force
Output : Velocity

Klectrical system

Input : Voltage source

Output : Current through the element




Force- Current Analogy:

Mechanical system Flectrical system

Input : Force Input : Current source
Qutput : Velocity Output : Voltage across the element




Force- Current Analogy:

——————n
Item

\_,,_

Indcpcndcnl variable

(input)
L\\

Dependent variable

(output)

Dissipative element

Mechanical system

Force, |

Velocity, v

Displacement, x

Frictional coefhicient
of dashpot, B

Storage element

Mass, M

o —
o ——

| g lectrical system
(node bhasis system)

Current, )

Voltage, v

GRS W

———

(onductance G=1/R

-

—
e —————
I

Capacitance, C

L ——

1 ’ . {
Inverse of inductance. 1/]

Stiffness of spring, K

Physical law Newton's second law Kirchoff’s current law
' TF=0 =0
- Changing the level of lever Transformer
independent variable B o ip _ Ny
: o h . B




Conversion from Electrical to Mechanical:

Procedure for Conversion from Electrical to Mechanical:

»Start with an electrical circuit. Label all node voltages.

»Draw over circuit, replacing electrical elements with their analogs;
current sources replaced by force generators, voltage sources by
input velocities, resistors with friction elements, inductors with
springs, and capacitors (which must be grounded) by masses. Each
node becomes a position (or velocity)

»Label currents, positions, and mechanical elements as they were in

the original electrical circuits.



Conversion from Electrical to Mechanical:

Example:
Stepl:

Step 2:

Step 3: B2




Conversion from mechanical to Electrical:

Procedure for Conversion from Electrical to Mechanical:

»Start with the mechanical system. Label all positions.

»Draw over circuit, replacing mechanical elements with their
analogs; force generators by current sources, input velocities by
voltage sources, friction elements by resistors, springs by inductors,
and masses by capacitors (which are grounded). Each position
becomes a node.

»Label nodes and electrical elements as they were in the original

mechanical system.



Conversion from mechanical to Electrical:

Example: ;1 e

Step 1: M1

Step 2: ‘? Step 3: gm
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MODULE-II
BLOCK DIAGRAM REDUCTION AND TIME RESPONSE
ANALYSIS



CLOs Course Learning Outcome

CLO4

Apply the block diagram and signal flow graph technique

to determine transfer function of an control systems.

CLOS

Demonstrate the response of first order and second order

systems with various standard test signals.

CLO6

Estimate the steady state error and its effect on the

performance of control systems and gives the importance

of PID controllers.




Block Diagram Algebra

» We often represent control systems using block diagrams. A block
diagram consists of blocks that represent transfer functions of the
different variables of interest.

» If a block diagram has many blocks, not all of which are in cascade,

then it is useful to have rules for rearranging the diagram such that

you end up with only one block.




Reduction techniques

1. Combining blocks in cascade

G1

\ 4

2. Combining blocks in parallel

\ 4

_I_
j-l_

G, — >

\ 4

G,G, ——

\ 4




Reduction techniques

3. Moving a summing point behind a block

1 +
’{T? i G g <) G ’{? g
G —

4. Moving a summing point ahead of a block

1 . +
G ? > <) @g,: s —

@




Reduction techniques

4. Moving a pickoff point behind a block

"G " > G ”
5. Moving a pickoff point ahead of a block
— G s “ J » G —>

T
@




Reduction techniques

6. Eliminating a feedback loop

_I_
—> G —> “ > G —>
i 1F GH
H |

™ R G
o G > <{mm)> - -
T 17 G

H =1

7. Swap with two neighboring summing points




Signal flow graphs

» Alternative method to block diagram representation, developed

by Samuel Jefferson Mason.
» Advantage: the availability of a flow graph gain formula, also

called Mason’s gain formula.

» A signal-flow graph consists of a network in which nodes are
connected by directed branches.

» It depicts the flow of signals from one point of a system to another

and gives the relationships among the signals.



Fundamentals of Sighal Flow Graphs

» Consider a simple equation below and draw its signal flow graph:
»Y = ax

» The signal flow graph of the equation is shown below;

a
X e oV

» Every variable in a signal flow graph is designed by a Node.

» Every transmission function in a signal flow graph is designed by a
Branch.

» Branches are always unidirectional.

» The arrow in the branch denotes the direction of the signal flow.



Terminologies

» An input node or source contain only the outgoing branches. i.e., X

» An output node or sink contain only the incoming branches. i.e., X,

» A path is a continuous, unidirectional succession of branches along

which no node is passed more than ones. i.e.,

X, to X,t0 X, XytoXzto X,

» A forward path is a path from the input node to the output node.




Terminologies

» A feedback path or feedback loop is a path which originates and
terminates on the same node i.e.:

X2 to X3 and back to X2 is a feedback path.




Terminologies

» A self-loop is a feedback loop consisting of a single branch. i.e.; A;;

is a self loop.
» The gain of a branch is the transmission function of that branch.

» The path gain is the product of branch gains encountered in

traversing a path. i.e. the gain of forwards path X, to X, to X; to

Xyis Ay A3A 3




Terminologies

» The loop gain is the product of the branch gains of the loop. i.e.,
the loop gain of the feedback loop from X,to X;and back to X,is
Asz:Az3

» Two loops, paths, or loop and a path are said to be non-touching if

they have no nodes in common.




Block Diagram Reduction-Example-1

» For the system represented by the following block diagram
determine:

1.

N o U A W

Open loop transfer function

Feed Forward Transfer function

control ratio

feedback ratio

error ratio

closed loop transfer function

characteristic equation

s+1

0.1 f




Block Diagram Reduction-Example-1 (Contd..)

» First we will reduce the given block diagram to canonical form

R+ + 1 c
—O—C‘) K s +1 ] ¥t i







Block Diagram Reduction-Example-1 (Contd..)

1. Open loop transfer function [5¢s) =l_,;mﬂml PN 7 g

E(s) A i+Ks+1
2. Feed Forward Transfer function <%’ _. | T

E(s) 01
3. Control ratio ¢ 60 H (s)
Ris) 1+ G(s)H(s)
4. Feedback Ratio 2= __6# (o)
Risg) 1+ G(s)H (5)
5.Error ratio 2. . !
Ris}) 1+ G(s)H (5)
C(s) G(s)

6. Closed loop transfer function .
Ris) 1+ Gis)H (5)

—=il

7. Characteristic equation 1+ G (s)H (s) = 0




Block Diagram: Reduction Example-2













(D
RO e







Block Diagram: Reduction Example-2 (Contd..)

GlG;G3 ¢
1-GG H +G G H
1 2 1 2 3 2




Block Diagram: Reduction Example-2 (Contd..)

R G,G,G, C
1-G,G,H +G G H +GG,G,




Mason’s Rule

» The block diagram reduction technique requires successive
application of fundamental relationships in order to arrive at the
system transfer function.

» On the other hand, Mason’s rule for reducing a signal-flow graph to
a single transfer function requires the application of one formula.

» The formula was derived by S. J. Mason when he related the signal-
flow graph to the simultaneous equations that can be written from

the graph.



Mason’s Rule

» The transfer function, C(s)/R(s), of a system represented
by asignal-flow graph is; n
C(s) El hifs
R(s) i A
» Where

* n=number of forward paths.

P;=the it forward-path gain.

A = Determinant of the system

A;= Determinant of the ith forward path

A is called the signal flow graph determinant or characteristic

function. Since A=0 is the system characteristic equation.



Mason’s Rule

C(S) ) - | |
R(s) A

»A = 1- (sum of all individual loop gains) + (sum of the products of
the gains of all possible two loops that do not touch each other) —
(sum of the products of the gains of all possible three loops that do
not touch each other) + ... and so forth with sums of higher number
of non-touching loop gains

» .= value of A for the part of the block diagram that does not touch
the i-th forward path (A, = 1 if there are no non-touching loops to the
i-th path.)



Systematic approach

>
>
>
>
>
>

Calculate forward path gain P;for each forward path 1.
Calculate all loop transfer functions

Consider non-touching loops 2 at a time

Consider non-touching loops 3 at a time etc

Calculate A from steps 2,3,4 and 5

Calculate A, as portion of A not touching forward path i




» Apply Mason’s Rule to calculate the transfer function of the system

represented by following Signal Flow Graph

C(s) i PLA, + P,A, + P,A,

R(s) A A



Example: Forward Paths

PS = A 42 A54 A65 A76

P,= Az2 A 43As54 A 65 Azg P, = Ap




Example: Loop Gains of the Feedback Loops

L, = A ;3A4 Lo = AnAsiAsAgAs
Le = A77

Ls = AsiAus Lig = AAg7 Ase A 45 Ags A g
L7 = A42A34A23

L, = AgAsg

I-8 = A65 A76 A67




Example: two non-touching loops




Example: Three non-touching loops




Signal Flow Graph:Example#l

» Apply Mason’s Rule to calculate the transfer function of the system

represented by following Signal Flow Graph

» There are two forward paths:

P-=GGG, P =GGG
1 1 2 4 2 1 3 4
» Therefore, C PA + P,A,

R A

» There are three feedback loops

|—1:G1G4H17 |—2 :_616264H2a




Signal Flow Graph:Example#1 (Contd..)

» There are no non-touching loops, therefore

A = 1- (sum of all individual loop gains)

A=1-(L,+L,+Ly)

A=1-(G,G,H,-G,G6,G6,H,-G,G,G,H,)




Signal Flow Graph:Example#l (Contd..)

» Eliminate forward path-1
» N, = 1- (sum of all individual loop gains)+...
>A, =1

» Eliminate forward path-2

» N, =1- (sum of all individual loop gains)+...

>N, =1

+ G G G
1 3 4

4

C PA +PA GG G
L 1 1 22 12
R

A 1-6G6,H, +6G6,G,H,+GG.,G,H,




Signal Flow Graph:Example#2

1. Calculate forward path gains for each forward path.

P1 = 61626364 (path 1) and P2 = G5GGG7GS (path  2)

2. Calculate all loop gains.
L, = G,H,, L, =H3;G3, L; =GgHyg, L,=G;H

3. Consider two non-touching loops. L;L; LiL, L



Signal Flow Graph:Example#2 (Contd..)

4. Consider three non-touching loops.

None.
5. Calculate A from steps2,3,4.

A=1-(Ly+ Lo+ Ly+ L)+ (LiLg+ LiL,+ LyLy+ L,yLy,)

(G,H,Gg4Hg + G,H,G,H, +H,G,G H  +H,G,G,H,)




Signal Flow Graph:Example#2 (Contd..)

» Eliminate forward path-1

Ay =1-(Ly+Ly)

A, =1- (GGHG +G7H7)

» Eliminate forward path-2

A =1—(L1+ L2)

2

Ay, =1- (Gsz +GsH3)



Signal Flow Graph:Example#2 (Contd..)

Y(s) PA,+ P,A,
R(s) A

Y (s) _ GG ,G 3G, [1-(GeH+ G H; )]+ GGG ;G[1-(G,H,+G4H, )]

R(s) 1-(G,H,+ H;G3+GeH+G,H,)+ (G,H,G Hy+G,H,G,H,+ H,;G,G Hy+H,G,G,H,)




Block Diagram to SFG:Example#3

|




Block Diagram to SFG:Example#3 (Contd..)

A=1+(GG,GG,H,+G,G,H,+G,G,H)
P1:GleGsG4; Alzl

C(s) G,G,G,G,

R(s) 1+GG,6,G,H,+G,G,H,+G,G

G




Block Diagram to SFG:Example#3 (Contd..)

» Example-1: Convert the block diagram into a signal flow graph:

+
Gyls) YA ¢ Vs(s) = Gals) Va(s) ;{ % :_ij{s} G3(s) Cl(s) -
V(s) Hil5) |- @ Ha(s)

| Hl{..i'} |-

R(s) + Vils)

R(s) O O O O O O O Cs)




Block Diagram to SFG:Example#3 (Contd..)

» If desired, simplify the signal-flow graph to the one shown in Figure
(c) by eliminating signals that have a single flow in and a single flow

out, such as V2(s), V6(s), V7(s), and V8(s).




Signal Flow Graph:Example

a) Input node.
b) Output node.

c) Forward paths.

d) Feedback paths.

e) Self loop.

f) Determine the loop gains of the feedback loops.
g) Determine the path gains of the forward paths.



Signal Flow Graph:Example

» Example-2: Answers

(a)
(&)

(¢) to X; to X to X; to X; to X, to X; to X

X

X

X

X, to X; to X; to X;

X, t0 X, to X, o X, to X, to X, to X

X, to X5 t0 X;; X;t0X,100X;; X;t0X,1t0X,; X, to X, 10X, 10X,

X, to X;to X to X, to X; to X;; X to Xg to X;; X to X; to X,;

X; to X, to X5 to X5; X; to X5 X; to X5 to X to X to X, to X; to X,

(e) X; to X,

(f) ApAyy ApAyy AsAas, AgsAses ArgAgrs AgsArgAsyy Agyt Ay Aja Ay,
Ay AsqAys A3y Ayys Aqy AgrAsqAygs A3 Ass

(8) AzAayAssAgs Azl Aqyy Ay AsaAgs A

(d)



Signal Flow Graph:Example

» Example-3: Consider the signal flow graph below and identify the
following; ' o Ge(s)
(r4(s)

Gy(s5)

Gols) G4ls)

R(s) O

» There are four loop gains:

1. Ga(s)H(s)
2. Ga(s)Ha(s) Hy(s)
3. Gu(s5)Gs(s)Hs(s)
4. G4(5)Gg(s)Hx(s)
» There are two forward path » Nontouching loop gains;
gl G1(s5)G2(s)Gs(s) Ga(s)Gs(s) Gr(s) L [G,(5)H (5)][G4(5)H(s)]
2. G1(5)Ga(s)Gs(5) Ga(s)Gs(s) G (s) 2. [Ga(s)Hy(5)][Ga(s)Gs (s) Hs(s)]

3. [Go(s)H:(5)][Ga(5)Ge (s) Ha(s)]
» Nontouching loops;
1Ga(s)H(s)




Signal Flow Graph:Example

»Example-5: Determine the control ratio C/R and the canonical block
diagram of the feedback control system.




Example-5: Continue.

There are two forward paths: g 1 l1 ¢
Pl = G]_G:G" Pz = GIGJGq,

There are three feedback loops:

P, = G\G, H, Py = -GGG, H, Py = — 665G, H,

the signal flow graph determinant or characteristic function,
A=1-=(Py+Py+P)

There are no nontouching loops, and all loops touch both forward paths; then
A =1 A, =1

Therefore the control ratio 1s

. C PA + PA, G,G,G, + G,G;G,
R A 1~ GG H, + GGG H,y + GGG H,
G,G,(G, + Gy)

" 1- G,G H, + G,G,G,H, + G,GsG, H,



Example-5:Continue

The direct transfer function is G = Y PA,
G= P:dl + P,A,
G=G,G,( G, + Gy)
The loop transfer function is GH=A —1
GH=1-(P,+P,+P,;)—1
GH = G,G,(G;H, + G, H, — H,)

GH (Gz'l‘Gj)Hz_Hl

G, + G,y
The canonical block diagram is

Therefore H=

4Q

8 4| GGGy + Gy F

(Gy+ GoH, — H,
G+ Gy




Introduction

» In time-domain analysis the response of a dynamic system to an
input is expressed as a function of time.

> It is possible to compute the time response of a system if the nature
of input and the mathematical model of the system are known.

» Usually, the input signals to control systems are not known fully
ahead of time.

> It is therefore difficult to express the actual input signals

mathematically by simple equations.



Standard Test Signals

» The characteristics of actual input signals are a sudden shock, a
sudden change, a constant velocity, and constant acceleration.

» The dynamic behavior of a system is therefore judged and
compared under application of standard test signals — an impulse,
a step, a constant velocity, and constant acceleration.

» The other standard signal of great importance is a sinusoidal signal.



Standard Test Signals

» Impulse signal

The impulse signal imitate the sudden shock characteristic of
actual input signal.

(A t = 0 ()
s(t) =4
10 t=0
A A

» If A=1, the impulse signal is called unit

impulse signal. >t




Standard Test Signals

» Step signal
The step signal imitate the
sudden change characteristic u
of actual input signal.
(A t>0 A
u(t) = 4
10 t<O
. . >t
» If A=1, the step signal is called 0

unit step signal




Standard Test Signals

» Ramp signal: The ramp signal imitate the

constant velocity characteristic of actual

input signal.
[ At t >0
r(t)= 1 0
10 t<O

» If A=1, the ramp signal is called

unit ramp signal

>1



Standard Test Signals

.. t
» Parabolic signal P
The parabolic signal imitate the
constant acceleration characteristic of
actual input signal
(At ° 0
- t >0 p(t) &
p(t) = T 2 i
ko t<0 parabolic signal with slope 4,

p() 4

45

» If A=1, theparabolic signal is

called unit parabolic signal. g

pesmssnsnne

> 1




Relation between standard Test Signals

» Impulse

> Step

» Ramp

> Parabolic

A t=20
5(t) =/ d
10 t+0 —
dt
[A t> 0
u(t) =4
LO t< O d_
dt
[ At t> 0
r(t) =
|10 t< 0 d
dt
[ At 2 >
t>0




Laplace Transform of Test Signals

» Impulse
A t=0
5(t) =/
10 t=0
L{io(t) =5(s) = A
» Step
[A t> 0
u(t) =4
|10 t< 0

L{iu(t)} =U(s)= —



Laplace Transform of Test Signals

> Ramp [ At t> 0
r(t) =
|10 t< 0
A
L{r(t)} = R(s)= —
g2
» Parabolic (a2
: t>0

p(t) =4 2
\O t<0

A

L{p (1)} = P(s) =



Time response

»Time response of a dynamic system response to an

input expressed as a function of time.

i

» The time response of any system has two components

* Transient response

 Steady-state response



Time response (Contd..)

»When the response of the system is changed from equilibrium it
takes some time to settle down.

» This is called transient response.

6

»The response of the Step Input

5

system after the transient |
Response

response is called steady s}

state response. 2[
1t Transient Response

ady State Response




Time response (Contd..)

» Transient response depend upon the system poles only and not on
the type of input.

» It is therefore sufficient to analyze the transient response using
a step input.

»The steady-state response depends on system dynamics and
the input quantity.

»It is then examined using different test signals by final value

theorem.




Time response (Contd..)

c©S) K
R(S) TS +1

» The first order system has.only one pole.

» Where K is the D.C gain and T is the time constant of the system.

» Time constant is a measure of how quickly a 1st order system
responds to a unit step input.

» D.C Gain of the system is ratio between the input signal and the

steady state value of output.




Time response (Contd..)

» The first order system given below. G(S) =357

» D.C gainis 10 and time constant is 3 seconds.

» For the following system

3 3/5

S+95 1/5s+1

» D.C Gain of the system is 3/5 and time constant is

1/5 seconds.



Impulse Response of 15t Order System

» Consider the following 1st order system

o(t)
A

C(s)

R(s)=06(s)=1




Impulse Response of 1stOrder System

K
C(s)=

Ts +1
» Re-arrange following equation as

K /T

C(s)=
s +1/T

»In order to compute the response of the system in time domain

we need to compute inverse Laplace transform of the above

equation.




Impulse Response of 1stOrder System

_ _ K —t;
»If K=3 and T=2s then ¢(¢t) = —e
K/T*exp(-t/T)

1.5




Step Response of 1st Order System

» Consider the following 1st order system

R(s) C(s)

» In order to find out the inverse Laplace of the above equation,
we need to break it into partial fraction expansion

K KT
C(s) = —
S

T



Step Response of 1st Order System

C(s)=K(1—— ! )
\'s Ts +1)

» Taking Inverse Laplace of above equation

c() = K(Wt)-e V)

» Where u(t)=1
c(t) = K(l—e‘”T)

» When t=T (time constant)

c(t) = K(1- e )= 0.632 K



Step Response of 1st Order System

» If K=10 and T=1.5s then

11

10

c(t) = K(e VT)

_K*(1-exp(-t/T))

63 %

D.C

G

Step Response

steady

state  output

10

Input

Unit Step Input




Step Response of 1st Order System

» System takes five time constants to reach its final value.

() | Slope = L
. ( ) T o(f)=1—e D
|

0.632

- 86.5%
—— QR 2%
——— Q0 3%,

e
™
e
W

T

]
h-.!
lad
l-]
e
~
L
h-.!
-




Step Response of 1st Order System

> IfK=10and T=1,3,5,7 c(t) = K{t-e ''"

1 . K*( 1 -pxp( -t/T))

[HEN
o

T=1s

T=3s

T=5

c(t)

O r N W b~ O O N 00 O

T=7s




Step Response of 15t Order System

> IfK=1,3,5,10and T=1  c(t) = K (e V")
1 . K*(1-exp(-tT)

=
o

K=10

O r N W »~ 01 O N 00 ©




Steady State Error

» If the output of a control system at steady state does not exactly
match with the input, the system is said to have steady state error

» Any physical control system inherently suffers steady-state error in
response to certain types of inputs.

» A system may have no steady-state error to a step input, but the
same system may exhibit nonzero steady-state error to a ramp

input.



Classification of Control Systems

» Control systems may be classified according to their ability to
follow step inputs, ramp inputs, parabolic inputs, and so on.

» The magnitudes of the steady-state errors due to these

individual inputs are indicative of the goodness of the system.




Classification of Control Systems

» Consider the unity-feedback control system with the following

open- loop transfer function

~ K(T,s + 1)(Tys + 1)-+(T,s + 1)
G0) = N rs + 1)Tos + 1) (Ts + 1)

» It involves the term sNin the denominator, representing N poles
at the origin.

» A system is called type O, type 1, type 2, ..., if N=0, N=1,
N=2, ... ,respectively.




Classification of Control Systems

» As the type number is increased, accuracy is improved.
» However, increasing the type number aggravates the stability
problem.

» A compromise between steady-state accuracy and relative stability

is always necessary.




Steady-state error analysis

C(s)

v

Unity feedback
H(s)=1

C(s)

v

Non-unity feedback
H(s)#1




Steady-state error analysis

For unity feedback system:

E(s)=R(s)-C(s) —  Systemerror

For a non-unity feedback system:

E(s)=R(s)—H(s)C(s) —  Actuating error




Steady State Error of Unity Feedback Systems

» Consider the system shown in following figure.

R(s) E(s) C(s)

» The closed-loop transfer function is

C(s)  G(s) K(T,s + 1)(Tps +1)---(T,,s + 1)

G = s + \)Tos + 1) (Ts + 1)

R(s) 1+ G(s)




Steady State Error of Unity Feedback Systems

» Steady state error is defined as the error between the input signal
and the output signal when t-> infinity

» The transfer function between the error signal E(s) and the input

signal R(s) is EQS) __ 1
R(5) 1+G(5)

» The final-value theorem provides a convenient way to find the

steady-state performance of a stable system. Since E(s) is

) = 1 +1G(s) Ris)

» The steady state error is

1 lim sE(s) = lim — R()
e, l‘Lme(t) = lim s (s) = hm - ¥ G(s)




Second Order System

» We have already discussed the affect of location of poles and
zeros of the transient response of 1storder systems.

» Compared to the simplicity of a first-order system, a second-order
system exhibits a wide range of responses that must be analyzed
and described.

» Varying a first-order system's parameter (T, K) simply changes the
speed and offset of the response

» Whereas, changes in the parameters of a second-ordersystem can
change the form of the response.

» A second-order system can display characteristics much like a first-
order system or, depending on component values, display damped
or pure oscillations for its transient response.



Introduction

» A general second-order system is characterized by the following

transfer function.

R(s) E(s) Cl(s)

C(s) N

R(s) - g2 +2§a)ns+ a)r21

un-damped natural frequency of the second order system,
v, ——s Which is the frequency of oscillation of the system without
damping.

damping ratio of the second order system, which.is a
¢ —— measure of the degree of resistance to.change in the
system output.



» Determine the un-damped natural frequency and damping ratio of
c(s) 4

the following second order system.

R(5) 5%+25+4

» Compare the numerator and denominator of the given transfer

function with the general 2ndorder transfer function.

2

C(s) o,
R(Gs) s2+ 2w s+ o
n n
2
n

= 2¢w .S = 28

/+2§a)ns+a%l:§/+28+d/ = o0, =1




Introduction

C(s) o

R(s) - g2 + 2§a)ns + a)r21

» Two poles of the system are

_wn§+wn ¢ -1

_a)né/_a)n ¢ -1




Introduction

According the value of £, a second-order system can be set into
one of the four categories

1.0verdamped - when the system has two real distind poles (
>1).




Introduction

According the value of {, a second-order system can be set
Into one of the four categories

2. Underdamped - when the system has two complex conjugate poles (0
<S— 0, €<1) jw




Introduction

According the value of ¢, a second-order system can be set
Into one of the four categories
—®

3. Undamped - when the system has two imaginary poles —
o, =0

jw




Introduction

According the value of ¢, a second-order system can be set

into one of the four categories

®nG

4. Critically damped - when t_hg sgystem has two real but equal poles
(= 1). " Tw




Static Error Constants

» The static error constants are figures of merit of control systems.
The higher the constants, the smaller the steady-state error.

» In a given system, the output may be the position, velocity,
pressure, temperature, or the like.

» Therefore, in what follows, we shall call the output “position,” the
rate of change of the output “velocity,” and so on.

» This means that in a temperature control system “position”
represents the output temperature, “velocity” represents the rate

of change of the output temperature, and so on.



Static Position Error Constant (K,)

» The steady-state error of the svstem for alunit-step input is
. 8
e.. = lim —
P01 4+ G(s) s

B 1
1+ G(0)

» The static position error constant K is defined by

K, = limG(s) = G(0)

» Thus, the steady-state error in terms of the static position error
constant K is given by




Static Position Error Constant (K,)

» For a Type 0 system

Ki(T,s + 1)(Ips + 1)+ <

K, = li
PR (Tys + 1)(Tos + 1)---

» For Type 1 or higher order systems
- KETs+ 1Byt 1)
K, = lim —
=0 VTS + LT85 + 1)

» For a unit step input the steady state error e is

= 00, for N =1

= ) for type 0 systems
€ss 1+ K° yp Y

0, for type 1 or higher systems

N
%
|




Static Velocity Error Constant (K,)

» The steady-state error of the system for a unit-ramp input is

— lim —— 1
s = 0 1 + G(s) s?
= lim 1
s—0 SG(S)

» The static velocity error constant K is defined by

K, = }1_1)1% sG(s)

» Thus, the steady-state error in terms of the static velocity error
constant K, is given by




Static Velocity Error Constant (K,)

» For a Type 0 system

 sK(T,s + 1)(Tps + 1) ==

= lim =0
s—0 (Tys + 1) (Tps + 1)---

» For Type 1 systems

AT, = 1 Tps & L)een -

K,= 5
v T s(Tys + 1) (Tzs + 1)---

» For type 2 or higher order systems

sK(T,s + 1)(Tps + 1)+

K, = lim for N = 2

>0 s¥(Tys + 1)(Tys + 1)+




Static Velocity Error Constant (K,)

» For a ramp input the steady state error e is

1
e = =% for type 0 systems
= i - l f t 1 t
ey = K K or type 1 systems
1 .
€ = 2 0, for type 2 or higher systems




Static Acceleration Error Constant (K,)

» The steady-state error of the system for parabolic input is

lim > !
e —
¥ =01 4+ G(s) §°
B 1
}i_I)I(l)SzG(S)

» The static acceleration error constant K, is defined by

K, = lim s°G(s)

» Thus, the steady-state error in terms of the static acceleration error
constant K, is given by




Static Acceleration Error Constant (K,)

» For a Type 0 system
o S’K(T,s + 1)(Tys + 1)+
K, = lim =0
s=>0 (Tys + 1)(Tys + 1)--

» For Type 1 systems

s?’K(T,s + 1)(Tps + 1)---
K, = lim =0
s—=0  §(Tys + 1)(Tos + 1)---

» For type 2 systems

s?K(T,s + 1)(T,s + 1)
K, = lim = K
s—0 sX(Tys + 1)(Tps + 1) -

» For type 3 or higher order systems
¥ = i s*K(T,s + 1)(Tps + 1)+
550 sM(Tys + 1)(Tys + 1)

= 00, for N =3




Static Acceleration Error Constant (K,)

» For a parabolic input the steady state error e is

e, = 00, fortype 0 and type 1 systems

1

= —, for type 2 syst
€ = % or type 2 systems

e, = 0,  for type 3 or higher systems




Summary

Step Input Ramp Input Acceleration Input
r(t) =1 r(t) =t r(t) =5t
Type 0 system ! 00 00
1+ K
T 1
ype 1 system 0 I 00
1
Type 2 system 0 0 —




» For the system shown in figure below evaluate the static error

constants and find the expected steady state errors for the standard

step, ramp and parabolic inputs.

R(S) 100 (s+2)(s+5) . C(S)
A s?(s+8)(s+12)




100 (s+2)(s+5)

G(s)=

. 5 (o) s?(s+8)(s+12)
p =11m S

50 K, = lim sG(s)
s—>0
K, = lim (100(s+2)(s+5) ) (1005 (s+2)(s+5) )
s>0ls®(s+8)(s+12)) K, = lim | > |
s>ol s°(s +8)(s +12) )
Kp = ©
K, = ©
K. =lim $2G(s) (100s2(s+2)(s+5)
s—>0 Ka :hm| 2
s>01{ S (s+8)(s+12)
(100(0+2)(0+5)\
K. = |=10.4

" (0+8)(0+12)






Step Response of underdamped System

C(s - Step Response C(s) o o,
R (s) Sz+2§a)ns+a)§ VT

3(52 +24“a)ns+a)§)

» The partial fraction expansion of above equation is given as

1 S+ 2w

C(s)= —- o >

S 32+24’a) S +w
n n

0l ¢?)

C(s)— B s+24w v/
wrin ¥ e G T deioc T

S+2%w

Y + o’

C(s)=——
S (S+§a) I




Step Response of underdamped System

C(s):i— S+24w |,

S (s+§a)n)2+a)§(1—§2)

» Above equation can be written as

C(s):i— S+24w |

S (s+¢w n)2 + 0’

»Where o, -0 J1-¢? ,isthefrequency of transient oscillations

and is called damped natural frequency.
»The inverse Laplace transform of above equation can be obtained

easily if C(s) is written in the following form:
C ( S ) _ i . S + Ca) n

S (s+§a) n)2+a)d2

@ n




Step Response of underdamped System

1 S+ lw w
C(s)= —- ’/2” - o "2
S (s+¢w n) +0  (s+ ¢ n) + 0,
6 @ 1—{2
2
1 S+ w 1-¢
C(s)= —- 2” = ”
S (s+ ¢w n) + 0, (s+ ¢w n) + o’
1 S+ ¢ ¢ @ 4
C(S)Z;— ; 5 — 5 5 )
(s+ o ) + 2 1-¢c? +dw ) +of
C(t)=1—e_§w”tcos w4t - J e ““lgin w




Step Response of underdamped System

g é/ -fo t

c(t)=1-¢e “ cos w4 t- e sin o 4t
1-¢°
| ]
c(t)=1-¢e | cos o, t+ sin a)dt||
2
i 1-¢ ]

» When¢ =0

c(t) = 1- cos w,t




Step Response of underdamped System




Step Response of underdamped System




Step Response of underdamped System




Step Response of underdamped System

1.2t .
1 B N ———r
//

0.8 7
wn=0.5

06k wn=1 i
wn=1.5
wn=2

04r wn=2.5 -




Underdamped System

»For 0<{ <1 and w,> 0, the 2" order system’s response due to

a unit step input is as follows. Important timing characteristics: delay

time, rise time, peak time, maximum overshoot, and settling time.

c(1) 4

Allowable tolerance




Delay Time

»The delay (t,) time is the time required for the response to reach
half the final value the very first time.

c(r) |

Allowable tolerance




Rise Time

» The rise time is the time required for the response to rise
from10% to 90%, 5% to 95%, or 0% to 100% of its final value.

»For underdamped second order systems, the 0% to 100% rise time
is normally used. For overdamped systems, the 10% to 90% rise
time is commonly used.

(1)
Allowable tolerance

0.5




Peak Time

» The peak time is the time required for the response to
reach the first peak of the overshoot.

() k

Allowable tolerance




Time Domain Specifications (Rise Time)

C(t)=1—e_§w”t|cos w, t+
i 1-¢ ]
Put t =1 In above equation

F

:
c(t,)=1-e éV”'|cosa)t + sin ot I
]

\/7 s

Where cit,)=1

F

.
0 = —e_gw"tr|COS @ t + sin o ,t I
|

\/7 X




Time Domain Specifications (Rise Time)

[ |

| cos @4t + sin wg4t, =0

I 1-¢ |

Above equation can be re-written as




Time Domain Specifications (Rise Time)

o, t. = tan |_ |

{e)emapuadag




Time Domain Specifications (Peak Time)

| ; ]
c(t)=1- e | cos ot sin a)dt||
2

] 1-¢ |

» In order to find peak time let us differentiate above equation w.rit t.

dC(t) _é’(onti_ é/ . —|| —é,wnt||_ s dJ é/a) —||
o = ¢w € cos @ t+ : sin @ dt|— e | ¢ Smo t+ : CoS a)dt|
I 1-¢ ‘ ] Vi-¢ ]
[ 2 |
- @ : , @
0=ce ‘*’Vw“tig“a)ncos a)dt+mg snw  t+ @, sin a)dt—m < cosS a)dt||
2 2
L e Vi-¢ J
[ 2
no @ o

sin a)dt+ @ 4 SN a)dt—




Time Domain Specifications (Peak Time)




Time Domain Specifications (Peak Time)

+ o, ||¢O sin w,t=20

.o—1
w4t = sin 0

0. 7.27x.__
t =

T

» Since for underdamped stable systerfibdfirst peak is maximum peak

therefore, P




Maximum Overshoot

»The maximum overshoot is the maximum peak value of the
response curve measured from unity. If the final steady-state value of
the response differs from unity, then it is common to use the
maximum percent overshoot. It is defined by

C(tp) — ¢(00)
c(00)

Maximum percent overshoot = X 100%

» The amount of the maximum (percent) overshoot directly

indicates the relative stability of the system.



Settling Time

» The settling time is the time required for the response curve to
reach and stay within a range about the final value of size specified

by absolute percentage of the final value (usually 2% or 5%).

c(1)
4 Allowable tolerance




Settling Time

r ( ¢ |
M :|%—e§w”tp|cos a)dt + sin a)dt x 100
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Settling Time

e o nd, e d T
M =l —e wd|cos d(/ + sin dj |><1OO
2
|— K d 1 — é’ d
Put @, =, y1-C? in above equation
|_ —g’a%
| N 1=
M = | —e | COoS T +
2
i L 1-¢ )]
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|

sin 7 ||X100
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Time Domain Specifications (Settling Time)

Exponential decay generated by
real part of complex pole pair

-o ¢ fo, (2—1

Real Part Imaginary Part

Sinusoidal oscillation generated by
imaginary part of complex pole pair

—- |




Time Domain Specifications (Settling Time)

» Settling time (2%) criterion Time consumed in exponential decay up
to 98% of the input.

c()

Exponential decay generated by
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

» Settling time (5%) criterionTime consumed in exponential decay up=r
to 95% of the input.




Summary of Time Domain Specifications

Rise Time Peak Time
T — 0 T — 0 . % 4
t, = = p — ~
10, 2
@ 2 d 0, \/1— 4
d C()n\/l— ; n

4
t, = 4T = Maximum Overshoot
co
5
3 1-¢ 2
t, = 3T = —— °
co

Settling Time (4%)



» Consider the system shown in following figure, where damping ratio

is 0.6 and natural undamped frequency is 5 rad/sec. Obtain the rise
time t, peak time t,, maximum overshoot M, and settling time 2%
and 4% criterion t, when the system is subjected to a unit-step

input.

R(s) E(s) > C(s)

Wy

s(s + 2{w,)




Rise Time Peak Time

T — 0 ]

@ 4

Settling Time (2%)
Maximum Overshoot

4
t, = 4T = —— z

EO _1_42

3 Mp:e x 100
t, = 3T = ——

G0 n

Settling Time (4%)



Rise Time

-1 C()n 1_4 i
0 = tan " ( )=0. 93 rad (W, |=<—
o

3.141 -0.93
t, = =0.55s

. 5\/1—0.62




Peak Time




Maximum Overshoot




Amplitude

1.2

0.8

0.6

0.4

0.2

Rise Time

0.2 0.4 0.6 0.8 1 1.2
Time (sec)




» The Laplace Transform of Impulse response of a system is actually the

transfer function of the system.

» Therefore taking Laplace Transform of the impulse response given by

following equation.  c(t) = 3¢ %!
3 3
C(s)= x 1= x 5(s)
S +0.5 S +0.5
C(s) C(s) 3

5(s)  R(s) S +0.5

C(s) 6
R(s) 25 41




» Impulse response of a 1storder system is given below.

c(t) = 3¢ 2t
> Find out
e Time constant T=2
e D.CGain K=6
C(s) 6
* Transfer Function =
R(s) 2S+1

Step Response




» For step response integrate impulse response

c(t) = 3¢ 9"
[c(t)dt = 3[e  >tdt

c (1) = -6e " 4 ¢
» We can find out C if initial condition is known e.g. c.(0)=0

0:—66 —|—C

-0.5t
c,(t)=6-6¢



» If initial conditions are not known then partial fraction expansion is a

better choice C(s) 6
R(s) 25+1
: _ _ 1
SINCE R (s)is a step input , R(s)= —
S
6
C(s)=
s(25+1)
6 A B

s(25 +1) s s+0.5

c(t) = 6 — e 2°!



Ramp Response of 15t Order System

» Consider the following 1st order system

R(s) C(s)

R(s) :
S e
.
K
C(s)=
SZ(TS +1)

» The ramp response is given as

cW=KE-T+T V")



Parabolic Response of 15t Order System

» Consider the following 1st order system

R(s) C(s)

1 K
R(s)= — Therefore,C (s) =

s s°(Ts +1)




e 00O

Practical Determination of Transfer Function of 1stOrd g%

Systems

» Often it is not possible or practical to obtain a system's transfer
function analytically.

» Perhaps the system is closed, and the component parts are not easily
identifiable.

» The system's step response can lead to a representation even though the
inner construction is not known.

» With a step input, we can measure the time constant and the steady-

state value, from which the transfer function can be calculated.




e 00O

Practical Determination of Transfer Function of 1stOrd §%

Systems 3 1ARE ¢
)’o,, e R

» If we can identify T and K empiricallywe can obtain the transfer
function of the system.

C(s) K

R(s) Ts +1




Practical Determination of Transfer Function of 1st

Order Systems

» For example, assume the unit
step response given in figure.

» From the response, we can
measure the time constant, that
is, the time for the amplitude to
reach 63% of its final value.

» Since the final value is about
0.72 the time constant is
evaluated where the curve
reaches 0.63 x 0.72 = 0.45, or
about 0.13 second.

» Kis simply steady state value.

dT7=0.13s

1 1

I 1 1 [ —
01 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (seconds)

Thus transfer function s
obtained as:

C (s) 0.72 5.5

R(s) ~0.13s+1 s+7.7



First Order System with a Zero

C(s) K(@+as)
R (s) Ts +1
» Zero of the system lie at -1/ and pole at -1/T.

» Step response of the system would be:

K1+ as)
C(s)=

s(Ts +1)
c(s)- K Kle-T)

s (Ts +1)

K _
ct) = K + —(a T)e
T

—t/T



First Order System With Delays

» Following transfer function is the generic representation of 1storder

system with time lag.
C(s) K s,
= e

R(s) Ts +1

» Where t,is the delay time.




First Order System With Delays

C(s) K s,
= e

R(s) Ts +1

.......... Unit Step
—— Step Response




First Order System With Delays

Step Response

C(s) 10 ”s
= e
R(s) 3s+1 10 ==
C(5)= ———e " K =10
3s+1
s(3s+1) gt i
L' [e"™F (s)] = f(t-0)u(t-2)
L e
—+ e =
S s+1/3 o6 .
[10(t—2)-10e " Du(t-2)
4 » -
2 - -
t =28
d 3s




Extra Poles

R(S)  a,s" +a,s" 4 va sta n>m for a real system
1 2 oay L b s+ o)t o4 1-¢,

c(s)==+3% > , 5 (@+2r=n)
S 1SR s +2§ka)ks +o

i.e. combination of first and second order systems

1 1

; ; = ; s® +as®+bs+c=(s+ f)(52+ds+e)<:>
s®+as“+bs +cC (s+f)s( +ds+e)

o % vasiebs+c=si+(d+f)s?+(e+fd)s+ fe




Extra Poles

c(s)= Loy Ity Bler o) adilo g,

2
. ) + 2 @ S+
S GaS+tP | S (k ) )

q r r
-pit - -
c(t)=1+ 3 aje ") +Y be K cos «Qk w/l—g“kzt)hL > ce” % sin Q;kw/l—g“kzt)
k=1 k=1

=1

»The response of a higher order system is the sum of exponential and

damped sinusoidal curves.
»Assuming that all poles are at the left hand side then the final value

of the output is “1” since all exponential terms will converge to 0.
Let’s assume that some poles have real parts that are far away from

the imaginary axis=>
c(t)=1- o-font A=<’

sin | @ 4t+ tan
2 |

| e ' 0
1-¢ L g )




Extra Poles

»Overall performance is characterized by the isolated (far away from
zeros) poles that are close to the imaginary axis.

> If we have only one pole (or a pair for complex roots) that is closed to
the real axis then we say that this pole (or pair of poles) is (are) the
DOMINANT pole(s) for the system.

» A simple rule is that the dominant poles must be at least five to ten
times closer to the imaginary axis than the other ones.

C(s):£+£ +Zr:bk(s+§ka)k)+cka)k /1_§k

2 2
. ) + 2 @ S+ w
S S+ DP | 1 s ka ) )

a;

The values of b (numerator
coefficients) determine the

C(t):“zqaje ~ojt +zrbke-¢kwkt cos (o, 1 - 2,2t ) amplitude of the oscillations
of the system but not its

+Zrcke-4kwkt sin @y - ¢, 1) stability properties.

j-1
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MODULE -lli
CONCEPT OF STABILITY AND ROOT LOCUS TECHNIQUE



CLOs Course Learning Outcome

CLO7  summarize the procedure of Routh — Hurwirtz criteria to
study the stability of physical systems

CLO 8 : : _
List the steps required to draw the root — locus of any
control system and predict the stability.

CLO9 : . .
Explain the effect on stability by adding zeros and poles to
the transfer function of control system.




Concept of Stability

»In order to know the location of the poles, we need to find the roots
of the closed-loop characteristic equation.

» It turned out, however, that in order to judge a system's stability we
don't need to know the actual location of the poles, just their sign.
that is whether the poles are in the right-half or left-half plane.

» The Hurwitz criterion can be used to indicate that a characteristic
polynomial with negative or missing coefficients is unstable.

» The Routh-Hurwitz Criterion is called a necessary and sufficient test
of stability because a polynomial that satisfies the criterion is
guaranteed to stable. The criterion can also tell us how many poles
are in the right-half plane or on the imaginary axis.



Routh-Hurwitz Stability Criterion

» All the coefficients must be positive if all the roots are in the left
half plane. Also it is necessary that all the coefficients for a stable
system be nonzero.

» These requirements are necessary but not sufficient. That is we
know the system is unstable if they are not satisfied; yet if they are
satisfied, we must proceed further to ascertain the stability of the
system.

» For example,
g(s)=s’+5° +25+8=(5s+2)(s° —s+4)

The system is unstable yet all coefficients are positive

» The Routh-Hurwitz is a necessary and sufficient criterion for the
stability of linear systems.



Routh-Hurwitz Stability Criterion (Contd..)

» The Routh-Hurwitz criterion applies to a polynomial (characteristic equation) of the
form:

...... 1+ aos + a
assume a,#0
» The Routh-Hurwitz array:
S a, a, , a,_, a,_s
s" ! a, . a. . a, s a,_;
5" b, b, b, b,
s"° c, c, c




Routh-Hurwitz Stability Criterion (Contd..)

» Columns of s are only for accounting.

» The b row is calculated from the two rows above it.

» The crow is calculated from the two rows directly above it. Etc...
» The equations for the coefficients of the array are:

1 an an—2 1 an an—4
b, = - — b, =———| " |, ...
a'n—1 an—l an—3 an—1 an—1 an—5
1 an—1 an—3 l an—l an—5
C1 = - — C2 =—-— 1 ...
b,| b, b, b,| b, b,

» Note: the determinant in the expression for the ith coefficient in
a row is formed from the first column and the (i+1)th column of
the two preceding rows.



Routh-Hurwitz Stability Criterion

» The number of polynomial roots in the right half plane is equal to
the number of sign changes in the first column of the array.
» Example: P(s)=s>+s?+2s+8=(s+2)(s’—s+ 4)
The Routh array is:

s 12
s> 1 8
s .6
s’ 8

» Since there are two sign changes on the first column, there are two
roots of the polynomial in the right half plane: system is unstable.

» Note: The Routh-Hurwitz criterion shows only the stability of the
system, it does not give the locations of the roots, therefore .no
information about the transient response of a stable system is
derived from the R-H criterion.



Routh-Hurwitz Stability Criterion (Contd..)

» From the equations, the array cannot be completed if the first
element in a row is zero. Because the calculations require divisions
by zero. We have 3 cases:

» Case 1: none of the elements in the first column of the array is zero.
This is the simplest case. Follow the algorithm as shown in the
previous slides.

» Case 2: The first element in a row is zero, with at least one nonzero
element in the same row. In this case, replace the first element
which is zero by a small number €. All the elements that follow will
be functions of €. After all the elements are calculated, the signs of
the elements in the first column are determined by letting €
approach zero.



Routh-Hurwitz Stability Criterion (Contd..)

» Example:  P(s) =s® + 25" + 25 + 45° +115 +10

S 1 2 11
s* 2 4 10
s° & 6

12
s -— 10

&
st 6
s 10

» When we calculate the elements: b1=0, b2=6, therefore we put
bl=e and calculate the other coefficients.

» There are 2 sign changes regardless of € is positive or ne
Therefore the system is unstable.




Routh-Hurwitz Stability Criterion (Contd..)

» Case 3: All elements In a row are zero.

» Example: P(s) = s°+1
s* 1 1
st 0

» Here the array cannot be completed because of the zero element in the
first column.

» Another example: P(s)=5°+5%+25+2

The array is:




Routh-Hurwitz Stability Criterion (Contd..)

» Case 3 polynomial contains an even polynomial as a factor. It is called the

auxiliazry polynomial. In the first example, the auxiliary polynomial
IS s° +1

» And in the second example, auxiliary polynomial is g2 + 2

» Case 3 polynomial may be analyzed as follows:

» Suppose  that the row of zeros is the S,
row, then the auxiliary polynomial is differentiated with respect to
s, and the coefficients of the resulting polynomial used toi replace the
zeros in the S row. The calculation of the array then continues as in the

case 1.



Routh-Hurwitz Stability Criterion (Contd..)

P(s) =s*+5s°+3s° +2s5+2

» Example:
The Routh array is :
s 1 3 2
s 1 2
s° 1 2
s 0

» Since the S1 row contains zeros, the auxiliary polynomial is obtained

from the s2 row: ,
P (s)=s"+2

aux

» The derivative is 2s, therefore 2 replaces 0 in the s1 row, and the routh
array is then completed.




Routh-Hurwitz Stability Criterion (Contd..)

P(s) =s"+5s>+3s° +25+2
» Example: (s)

The Routh array now becomes :

S 1 3 2
s? 1 2
ST

st E

s 2

» Hence there are no roots in the right half plane.

»Note: When there is a row of zeros in the routh array, the systems is not

stable. That is it will have roots either on the imaginary axis (as i

example), or it has roots on the right half plane.



0 Example P(s) =" +55"+(9-K)s+K
: The Routh array is:
s° 1 9-K

2 5 K
gt 9-1.2K
s? K

» For the system to be stable there should not be any sign changes in the
elements of 1st column

» Hence choose the value of K so that 1st column elements are positive
» From sO row, system to be stable K>0
» From sl row 9-1.2K >0

9>1.2K

K<7.5
» Hence the range of K is 0<K<7.5



Stability of Control System

» There are several meanings of stability, in general there are two
kinds of stability definitions in control system study.

» Absolute Stability

» Relative Stability




Stability Margins and Sensitivity Peaks

»In control system design, one often needs to go beyond the issue of closed
loop stability. In particular, it is usually desirable to obtain some quantitative
measures of how far from instability the nominal loop is, i.e. to quantify
relative stability. This is achieved by introducing measures which describe the
distance from the nominal open loop frequency response to the critical

stability point (-1,0).

(b)

Gain and Phase Margins Peak Sensitivity



Relative Stability of Feedback Control Systems

»The verification of stability using the Routh-Hurwitz criterion

provides only a partial answer to the question of stability----whether

the system is absolutely stable.

» In practice, it is desired to determine the relative stability.

» The relative stability of a system can be defined as the property
that is

»measured by the relative real part of each root or pair of roots.
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Relative Stability of Feedback Control Systems

»Because the relative stability of a system is dictated by location of
the roots of the characteristic equation, we can extend the Routh-
Hurwitz criterion to ascertain relative stability.

»This can be accomplished by utilizing a change of variable, which
shifts the s-plane vertical axis in order to utilize the Routh-Hurwitz

criterion.

»The correct magnitude of shift the vertical axis must be obtained on
a trial-and-error basis.

»0ne may determine the real part of the dominant roots without
solving the high order polynomial g(s).



Problems on RH Criterion

P(s) =s>+10s°+31s+1030
» Example-1:

The Routh array is:

3

S 1 31

S 1 103 (by dividing with 10)
5 -72

S 103

» 1stColumn of routh array has two sign changes (from 1 to -72 and

from - 72 to 103). Hence the system is unstable with two poles in

the right-half plane.




Problems on RH Criterion (Contd..)

» Example 2:
» Construct a Routh table and determinethe number of roots
with positive real parts for the equation;

2s° +4s° +4s+12 = 0

» Solution: Since there are two changes of sign in the first column of Routh
table, the equation above have two roots at right side (positive real
parts).




Problems on RH Criterion (Contd..)

» Example 3:
» The characteristjlc equation of a given system is:
S" +6s° +11s° +6s+ K =0
What restrictionsmust be placed upon the parameterK in order to
ensure that the system is stable?

» Solution:
For the system to be stable, 60 — 6K <0, or k< 10, and K> 0.
Thus0<K< 10




INTRODUCTION

Root Locus Technique:
» Root Locus mmm) the locusof a single root (pole) of a closed loop

system
> Root Loci mmm) the locus of multiple roots (poles) of a closed
system loop

» Itis a graphical method for determining the location of the poles of
a given closed loop system for some parameter values of the

system. The parameter can be the system gain or time constant.

» Time constant being the design value of an open loop system is

normally not varied; the only variable being the system gain.

> ltis atime domain method.



INTRODUCTION (Contd)..

» We know that for a unity feedback system the characteristic
equation is given by 1 + G(S) =0, and

»  For a non-unity feedback system the characteristic  equation
is given byl + G(S) H(S)=0

>  where,

G(S) : open loop transfer function of the system that is to
be controlled for desired time domain specifications, and

H(S) : feedback element (normally a transducer)



INTRODUCTION (Contd)..

» We know that for a closed loop system to be stable, its closed loop
poles (roots of characteristic equation) should lie in the left half of

the S-plane.
» We also know that a closed loop system is limitedly stable (on the

verge of instability) if any of its roots lie on the imaginary axis of
the S-plane and it is unstable if its poles lie in the right half of the

S-plane.

» Using this method, we can exactly position the location of closed
loop poles for a given value of system gain ‘K" whereas Routh’s
method does not facilitate this.

» Using Routh’s method we cannot determine relative stability of a
system whereas this method allows us to do that.



lllustration by Example

» We know that for a second order closed loop system the general
form is given by

M(S)=w 2 /(S?+ 28w S+ w 2)=N(S)/D(S)
> Let
G(S) = K/S(S+1) ; M(S) = G(S)/1+G(S) = K/(S2+ S + K)
M(S) = N(S)/D(S)

» For a unity feedback system, the characteristics equation is:
Q(S) = 1+G(S) = 0 mmm)1 + K/S(S+1) =0

) S2+S+K=0
» For K =0; the roots of Q(S) are at S=0 & S=-1; which are the
poles of the system.
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Illustration by Example (Contd).. o
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» Looking at Q(S) =S2+ S + K = 0 we conclude that,

» As we vary K from ‘0’ to any higher value, the location of the
roots of Q(S) will change (shift) in the S-plane.
» Thus the roots will chalk out a locus in the S-plane for a given

range ofK’. This is called Root Locus.

S-plane




Why Requirement of Root Locus Method ?

» We know that we are interested in finding the roots of a
characteristic equation for a range of a parameter of the system
which generally is system gain ‘K. Generally speaking we may be
interested in determining the location of closed loop poles for a
range of ‘K’

O0LK<goo

> Now it is easy to factorize a second and third order characteristic

equation for various values of ‘K’, but for higher order polynomials

it is very difficult (near impossible) to factorize for determining
their roots.

» Therefore we need a method to do so & that method is Root
Locus.



The Method

> Though we are interested in determining the roots of the
polynomial (characteristic equation), 1 + G(S) H(S) = O; we do not
start with this equation.

» Instead, we start with only G(S)H(S) or G(S) depending upon
whether the closed loop system is non-unity or unity feedback.
» So, we rearrange the characteristic equation as:
G(S)H(S) = -1 (non-unity feedback), or
G(S) = -1 (unity feedback)
» The above rearrangement implies that
|G(S)H(S) =1 & arg {G(S)H(S)} = n



The Method (Contd)..

» The equations,
|G(S)H(S)|=1 & arg {G(S)H(S)} = n, imply that

» Forany point S =S, to be a root of the characteristic equation,
|G(S1)H(S;)|=1 & arg {G(S;)H(S;)} = n radians or 180 deg.

» Or, for a unity feedback system,
|G(S;)|=1 & arg {G(S,)} = n radians or 180 deg.

» The root locus is drawn on a graph sheet and every point on the
locus is obtained by satisfying the angle condition. The value of ‘K’
for that point is then obtained graphically.




The Method (Contd)..

» Before going ahead with the method, it is necessary to define what is called
‘rational transfer function’.

» A rational transfer function is the one which has equal number of poles
and zeros; that is Np = Nz

Np: number of poles Nz: number of zeros

» Consider the following transfer functions:
G4(S) Hy(S) or G4(S) = K (S+1)/(S+2) - 1

G,(S) = K (S+1)(S+2)/(S+3)(S+4) --—-- 2
G5(S) = K (S+1)/(S+2)(S+3) ------- 3
G,(S) = K (S+1)/(S+2)(S+3)(S+4) - 4




The Method (Contd)..

» For, G,(S) = K (S+1)/(S+2), there is a finite pole at S = -2 & a finite
zeroat S=-1; Np= Nz =1; hence it is a rational function

» G,(S) also has equal number of poles and zeros; Np = Nz = 2;
»  G5(S) has 2 finite poles & 1 finite zero; Np # Nz
»  G4(S) has 3 finite poles and 1 finite zero; Np # Nz

» Does it mean that G;(S) & G,4(S) are not rational functions!!

» They both are, indeed, rational functions; the need is to find out
the location of remaining zeros so that Np = Nz.




The Method (Contd)..

» In order to resolve the issue of ‘how many zeros’ a transfer function
has, we need to understand what is zero of a transfer function.

» Let G(S) = K (S+1)/(S+2)(S+3)

» We all understand ‘G(S)’ as ‘frequency dependent gain’ offered by
the system.

» Now, if we substitute S = -1 in G(S), its value = ‘0’; it means that gain
offered at S= -1 equals ‘0". Therefore S = -1 is a zero of the transfer
function, G(S)

» Pole of a transfer function is a singularity because gain offered by
G(S) at its pole = oo, For example, S = -2 & -3 causes gain of
G(S): oo



The Method (Contd)..

» Theretore, we say It the number of zeros are not equal to the number o
finite poles of G(S), then number of zeros = Np — Nz shall lie at o~.

>  Let
G(S) = K (S+1)/(5+2)(5+3)

» Lt. S7oo G(S) = It. S—== K/S = 0 ; the power of S is ‘1’ therefore there is
one zero at o=. Thus we have one finite zero and another zero at oe.
Hence Np = Nz

» For, G(S) = K (S+1)/(S+2)(S+3)(S+4)
» we have one finite zero at S = -1 and two zeros at o<

» Therefore both are rational functions




The Method (Contd)..

> Let m

G(S) H(S) =K

i=n
S"TT (S + Pi)
i=1
» where, K:gainin the system
r: number of poles at the origin of S-plane

n & m: number of poles and zeros in the S-plane




The Method (Contd)..

IG(S)H(S)| = K =1.0
i=n
| STTT (S +Pi)|
=1
j:m | =n
KTT | (S+2Zj)| =S| TT |(S+ Pi); for K=0 we get poles
ji=1 i=1 of G(S)H(S)




The Method (Contd)..

j=m i=n
MM S+Zj)| =[S TT [(S+Pi)/K;
=1 i=1

» For K— oo; we get zeros of G(S)H(S)
» We draw root locus for 0 < K< oo
Therefore,
» Starting points of root locus are poles of G(S)H(S), K=0

» End points of root locus are zeros of G(S)H(S), K = oo




The Method (Contd)..The Angle Criteria

» The Angle Criteria:

m
T (S +1j)
=1
G(S)H(S) = K
n
TT(S + Pi)
i=1
The angle criteria is in degrees given by:
m n

Sarg(S+7Zj) - arg(S+Pj)= +/-(2qg+1)180;
j: 1 =1 q=0,1,2,....




Implement Angle Criteria

Since root locus is drawn satisfying angle criteria, now we explain
how it is done.
Plot location of poles & zeros of G(S)H(S) in the S-plane

Choose any point S = SO in the S-plane.
From each pole & zero draw vectors to the chosen point, SO

Measure the angle subtended by each pole & zero at S0, in the
CCW direction.

Remember that angle subtended by a pole is negative & that by a
zero is positive

Algebraically add all the angles. If they sum up to 180 degrees,
then S = SO is a point on the root locus.



Graphical Implementation of Angle Criteria

 Graphical lllustration for Angle Criteria:

P,

\%

arg(S0+22) + arg(S0 + Z1) — arg(S0 + P3) — arg(S0 + P2) — arg(SO0 + P1) = +/_
180 °.

0Z2 + 6Z1 - 6P3 — 6P2 - =180 °

O If the above angle condition is satisfied then SO is on the locus.




Magnitude Criteria

» From the magnitude criteria, we calculate the value of gain ‘K’ at the
point S =S50 which lies on the root locus ( that is S=SO  satisfies
angle criteria).

m n
TT1(So+2j)]| TT [(So+ Pi)]|
j=1 i=1

K =1 or K =
n m
TT[(So+Pi)] TT [ (So+ Zj)]
i=1 j=1

»K = product of vector lengths from poles of G(S
S0/product of vector lengths from zeros of G(S)H(S



» Graphical method for determination of ‘K’:

Ea Ca Da : vectors from poles of G(S)H(S) to point ‘a’: S = S0

o d
O
E A B C D
Aa Ba : vectors from zeros of G(S)H(S) to‘a’

Gain K=(Ea)(Ca)(Da)/(Aa)(Ba)

We measure vector lengths, as per scale, and



Construction Rules for Root Locus

> Rule 1:

Root Locus is symmetrical about real axis of S-plane, because
roots are either real or complex conjugate.

> Rule 2;

As ‘K’ increases from ‘0’ to ‘e<’, the open loop poles of G(S)H(S)
move (branch out) towards the zeros of G(S)H(S); some of the
zeros may be at ‘oo’

The number of branches terminating on ‘eo” equals Np — Nz; that

is the difference between number of finite poles & zeros of
G(S)H(S).



Construction Rules for Root Locus

> Rule 3:

A point S = SO on the real axis shall lie on the root locus iff the total
number of open loop poles & zeros of G(S)H(S) to the right of SO is odd.
(Loci lie in the region 2, 4 & 6)

1 x 2 x 5 o 4 o> X p 0O

The number of poles + zeros to the right of region ‘6’ = 1(odd)
The number of poles + zeros to the right of region ‘5’ = 2(even)
The number of poles + zeros to the right of region ‘4’ = 3(odd)
The number of poles + zeros to the right of region ‘3’ = 4(even)
The number of poles + zeros to the right of region ‘2’ = 5(odd)

VV V V VY

The number of poles + zeros to the right of region ‘1’ = 6(even)



Construction Rules for Root Locus

> Rule 3 (contd)..

» The poles are K= 0 points & the zeros are K = oo points. As we are
interested in the range of K, 0<K<eo, therefore the poles will start
moving towards their respective zeros, in the region on the real
axis, and terminate at zeros (K = oo)

» Therefore, we can say that the loci of closed loop poles start at K =
O (the location of the poles of G(S)H(S)) and terminate at K =oo
(the location of the zeros of G(S)H(S))



Construction Rules for Root Locus

» Rule 3 (contd): Example for implementation
Let G(S)H(S) = K(S+1)(S+2)/s(5+3)(S+4)
1. Draw pole zero locations in the S-plane

2. Use angle criteria to mark the regions on the real axis of the S-
plane where the root loci shall lie

k=0 k=0 k=co k=co k=0 S_pla ne
X X S —0 X—
4 3 2 10

» The regions where the loci shall lie are highlighted in yellow
where the total angle subtended by poles & zeros = 180°



Construction rules for Root Locus

> Rule 3 (contd): Example for implementation

In the considered example:

1.

No. of open loop poles = 3; root loci branches = 3 because each
pole is a starting point.

Root Loci will start from S =0, -3 & -4 (K = 0 points)

As K increases, the loci moves from the poles to respective zeros
(K =oo points)

The arrows show the direction of movement of poles

Np = 3 Nz = 2; no. of poles for which the loci shall terminate at oo
= Np—Nz=1

We observe that pole at S = -4 terminates at oo



Construction rules for Root Locus

> Rule 4: (Angle of Asymptotes)

The (Np — Nz) branches of the root locus asymptotically tend to oo.
The

angles of asymptotes are given by:
dq = (2g+1) 180°/(Np —Nz); q=0,1,2, ...., (Np-Nz-1)

1. G(S) = K (S+1)(S+2)/S(S+3)(S+4)

Np = no. of poles = 3; Nz =no. of zeros=2; Np-Nz =1

qg=0; $=180°

2. G(S) = K(S+2)/(S+1)(S+3)(S+5)(S+6)

Np = no. of poles = 4; Nz = no. of zeros = 1, Np-Nz =

39=0,1,2;,$0=60° ¢1=180°, $2 =300°




Construction rules for Root Locus

> Rule 5: (Centroid)

If no. of asymptotes are more than 1, they cross the real axis of
the S- plane. Their point of intersection on the real axis is known
as Centroid. Centroid oA is given by:

n m
SPi - X7 (Sum of real parts of poles -
i=1 =1 Sum of real parts of zeros)

oA =

(Np — Nz) (No. of poles — No. of zeros)




Construction rules for Root Locus An Example

» Example:Determine 1) no. ot loci on the real axis and their regions,

2) no. of asymptotes, 3) angle of asymptotes, 4) Centroid for a unity
feedback

system whose open-loop transfer function is given as: G(S) =
K/S(S+1)(S+2)

» Solution Steps:

Draw pole zero locations in the S-plane

Determine no. of finite poles, Np, and zeros, Nz & Np-Nz
Mark regions on the real axis where loci lie

Find no. of asymptotes = Np — Nz & their respective angles
If (Np-Nz) > 1 determine value of centroid

Sketch root loci (free hand)
Continued in next slide
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Y \"4 \"4
7\

X X T (poles are K=0 pts.)
S=-2 S=-1 S=0
Np =3 Nz = 0 (no finite zero ; therefore all zeros at oo)
Np-Nz =3
Loci on the real axis will lie between S=0 & S=-1; it will also lie in the

region after S = -2 because total no. of poles & zeros to the right of the
regions = odd.

No. of asymptotes = Np-Nz = 3 & angles of asymptotes are given by ¢q
=(29+1) 180°/(Np —Nz); q=0,1,2; $0=60°, $1 = 180°, $2 = 300°

Since (Np-Nz)>1 = 3 we will determine Centroid



Construction rules for Root Locus An Example

» Centroid is given by:

(sum of real parts of poles — sum of real parts of zeros)

oA = (no. of finite poles — no. of finite zeros)

oA = {(0-1-2)-(0)}/(3-0) =-1.0 180°

C X

<€
red loci is the loci in complex plane  S=-2 S=-

in yellow regions loci lie on the real axis 300°




» Breakaway Points:

Multiple roots of the characteristic equation occur at these points.
These are obtained using the formula dK / dS = 0. These points
also satisfy the angle criteria.

Examples: K=0
X, X_TH K0 = X(pl)
Breakaway ﬁoint breakaway point ( {)
A B
« X7 X(p2)
X X oo k=0

=<Breakaway points




» Example: Calculation for Breakaway points
G(S) = K/S(S+1)(S+2)
1+G(S)H(S) =0 mmmh K/S(S+1)(S+2) = -1
mm) K =-(S3+ 3 52+25)
N dK/dS =-(3 S2+ 6S + 2)=0
We find the roots of the polynomial
352+65+2=0

We get S1=-0.423&S2=-1.577

We know that for the given G(S), the loci on the real axis will lie
between ‘0’ & -1’;  therefore the breakaway point is =-0.423. S2
= -1.577 is not a breakaway point because between S=-1 & -2 no loci
exists on the real axis of the S-plane.



» Example:
»G(S)H(S) = K/S(S+4)(S2+ 4S + 20)= K/S(S+4)(S+2+j4)(S+2-j4)

»To determine the breakaway points: dK/dS =0. Substitute in
1+G(S)H(S) = 0 to get K =-S(S+4)(S2+ 4S + 20)

dK/dS=S3+6S2+185+20=0
Factorize dK/dS=0, we getS =-2; S =-2 +/-j 2.45

» Now we find out that out of the roots of dK/dS = 0 which qualify
to be breakaway points. To do this, we first draw the pole — zero
locations of G(S)H(S) in the S-plane

(next
slide)



» Example (contd): [ j4-

o
(ﬁ@w%ﬁrﬂ%:m

(k=0)xT --44
» Having plotted the location of poles, we know that the root locus
on the real axis will lie between S = 0 (K=0) & S=-4(K=0).
» Now, one root of dK/dS =0 lies at S = -2; therefore S=-2 is a breakaway

point. Smce -2 is also real part of the complex pole (-2 +/- j4), theref
=-2 +/-j2.45 ( root of dK/dS =0) is also a breakawa




» Angle of Departure/Arrival:

For poles on the real axis: ( either 0° or 180° )

(K=o points) i 0 =180° 0=0°

Therefore, the angle of departure and/or arrival need be calculated
only for complex poles & zeros.

Method:
1. choose a point SO very close to the pole ‘p’

2.Graphically determine the angle contributions due to other poles
& zeros at the point SO.

3. determine angle of departure Op from the pole p’.



Construction Rules for Root Locus ( Angle of

Departure/ Arrival)

» Draw the pole-zero locations of G(S)H(S)

» Draw a point SO in the S-plane very close to the pole/zero for which
departure angle is to be determined.

Draw vectors to SO from each pole & zero of G(S)H(S).
Calculate total angle, ¢, subtended at SO.
Angle of departure/arrival is given by ¢ — 8p/ ¢ + 8z = (2q + 1) 180°, or
we have Op=+/-(2q+1) 180° + ¢;

0z = +/- (29+1)180° - ®
» 0Bp/6z :the angle of departure/arrival for the pole/zero; 6p is subtracted
from ¢ because it is angle subtended by a pole.

YV V V



» Op: angle of departure SO

Op

- : N ,
X\ 0 . X X
Os 04 0:

SO is placed very close to the pole X

for which angle of departure is to be calculated. For the sake of clarity,
here, it is shown some distance from the pole.

» Angle subtended by other poles & zeros at SO, ¢, is given by:
b=064-(01+62 + 63 +065)
b—06p=+/-(29+1)180°;,9=0, 1,2, ...; 0p =+/-(29+1)180° +
» Angle of arrival at a zero is calculated in a similar way.



> Example: Calculation of angle of departure 1 /e

45°  K=0)
Polesare at-1 +/-j1 S=-2 (K = o)

Zero at S= -2 o)

The K =0 points are also points on the root

locus; therefore at open loop pole (K=0) (\\ ______
location too, the angle criterion should be satisfied. 90°\

The angle ¢ = (45°—90°); Op = (29+1)180° + ¢;

Op = 180° + (45° -90°) = 135° s the angle of departure




(J Example: Angle of Arrival (at zero located at -1+j1)
tan01=%=0.5
01= 26.56°
tan 03 =2.414/1
03 =67.49°
02 =90°
tan 64 = -0.414/1
04 =-22.49° 0’4 =360-22.49=337.5°

The total angle,®, subtended at the zero=02 - 63 — 01 + 64 = 18.44°,
Therefore angle of arrival 6z = 180° - ¢ = 161.6°




Graphical determination of ‘K’ for specified damping

ratio

» Example: 6\ 4\ ]\T

G(S) = K (5+6)/(S+1)(5+4)
1. K=0 points: S =-1 & S=-4 are poles of G(S)
K = oo points: S = -6 are zeros of G(S)
3. Locion the real axis lies between S =-1 & S= -4; and between S
= 6 &oo
4. Since one zero is at oo, therefore one closed loop pole will
approach this zero asymptotically
5. Angle of asymptote: ¢ = 180°(2g+1)/Np-Nz=180°;q=0
6. Since thereis only one asymptote, there is no centroid




Graphical determination of ‘K’ for specified damping

ratio (contd)..

» Breakaway points: 1 + G(S) =0; 1 + K (S+6)/(S+1)(S+4) = 0; therefore, K
= - (S+1)(S+4)/(5+6)

> dK/dS=0;M)S2 +12S+26=0 m) S1=-9.16,52=-2.84

> Both S1 & S2 are breakaway points because the root loci on the real
axis lies between S =-1 & -4; and between S =-6 & oo

K>0 K= e point K=0 points




Graphical determination of ‘K’ for specified damping

ratio (contd)..

» Let us fix the location of closed poles at S1 & S2. Now we want to find K

which yields S1 & S2. Let
S1

S1=-2+j1.5

¢ = Cos(0)
» Draw vectors from each pole & zero of G(S) to S1 or S2 as shown.
» Then K = product of the length of vectors from poles/ product of length of

vectors from zeros K= |S1+4||S1+1]|/|S1+6]| = |-2+j1.5+4] |-

2+j1.5+1|/|-2+j1.5+6| = 1.05 § = Cos(45°) = 0.707




Effect of adding Zeros on Stability of a Closed loop

system
» G(S) =K /(S+1)(S+2)(S+3) K=K
The root loci is obtained as: As the root loci cross K>0
in to RH of S-plane, i k>0 x X
» The closed loop system becomes unstable for a value K>0 Fig.1
of K>Ki. Let us now add a zero. o=-2 (géloid)

» Let us now add a zero at S= -4 the loci will be (asymptotes)
» We observe that addition of a zero has stabilized

the closed loop system for all values of K; 0<

G(S) = K (S+4)/(S+1)(S+2)(S=3)




Effect of adding Zeros on Stability of a Closed loop sys

(contd)..

»Let us now add a zero at S =-2.5 G(S) = K (S+2.5)/(S+1)(S+2)(S+3)

o=-1.75 asymptotes

» Looking at Figs. 1, 2 & 3 we see that addition of zero h

1. Reduced no. of asymptotes X O ESS\\

thereby preventing the locus from o=-1.75 Figl3

moving in to RH of the S-plane.
2. Therefore the CL system has become stable for all values o

3. The location of zero also affects the locus.
4. Shifting zero location from S=-4 to -2.5 has moved centroid from -1 to -1.75

thereby shifting the starting point of asymptotes to further away from the

Imaginary axis of the S-plane. In Fig.2 the breakaway point is to the left of
o; in Fig.3 it is to the right of o.

5. Thus the system has become relatively more stable




Effect of adding Poles on Stability of a Closed loop

system

»Adding a pole:

G(S) = K/(S=1)(S+2) A
X >1€ X >
Fig. 1
G(S) = K/(S+1)(S+2)(S+3) v g

»We observe that addition of a pole
affects stability of a CL system, as is seen
from Fig.1 & 2




Root Locus Problems

> Problem1:

For G(S) = K(S + b)/S(S + a) & H(S) = 1 show that the loci of the complex
roots are part of a circle with

center at (-b,0) ,and
radius = V (b2—ab)
» Solution:
The angle criterion: arg{(S + b)/S(S + a)} = +/- 180°
At,S=0+jwwe have:arg{(c+jw+b)/(o+jw)(o+jw+a)}
o, tanl{w/o+Db)-tanl(w/o)-tant(w/oc+a)=-
tan'l( w/o) + tan}( w/o +a) =1 + tan’}( w/o + b)
Take tan on both sides & simplify, to get
(0 +b)(20+a)=0 (0 +a) - w2
02+ w2+ 2bo+ab=0



Root Locus Problems (contd)..

» Add & subtract b2 term to get
(02 + 2bo + b2) — b2+w?2 + ab =0
(o + b)2 + w2 =b2-ab is the equation of the circle with
center at (-b,0) & radius =V (b2- ab)
Forb=1&a=-1
center = (-1,0) & radius = V2
» Problem 2:
H(S)=1 G(S)=1/S(S+ a)
Draw root locus as a varies between 0< qa<eo
Solution:

‘a’ appears in the denominator polynomial of G(S). ‘K’ always appeared in
the numerator of G(S). Therefore we manipulate to get ‘a’ in the
numerator.

The Characteristic equation Q(S) =1 + G(S)H(S) =0



Root Locus Problems (contd)..

» Q(S)=S2+aS+1=0
From Q(S), we rewrite G(S) in a way that ‘a’ appears in the numerator
Therefore, we write

G(S)=aS/S%2+1 X j1
The root locus for parameter ‘a’: (0
a=0 points: S1 =+j1 & S2=-j1; Np=2 (—j1
a = oo points: S=0; (another zeroat o); Nz=1
Np —Nz =1; No. of loci =2
Locus on the real axis covers entire axis in the LH of S-plane

N

No. of asymptotes = 1
No Centroid ( because only one asymptote)

N o U sE WwheE

Angle of asymptote ( for g = 0) = 180°



Root Locus Problems (contd)..

» Breakaway point:
aS/S2+1=-1; a=-(S2+1)/S;da/dS=0==S2-1=0;S=+/-1
The breakaway point is S = -1 because it is a point on the loci
» Angle of Departure: (from poleatS=jl1)
Angle subtended at S=j1 by zero at S=0 is 90°
Angle subtended at S = j1 by pole at S=-j1 = 90°
Total angle subtended,  =90-90 =0°
Angle of departure Bp = 180° + ¢ = 180°
» The Root Loci: breakaway point
Xjl o

< 3@
» It is a circle with radius = 1 & center (0,0). (Contd. next slide)




Root Locus Problems (contd)..

> Let us fix the location of closed loop poles for damping ratio ¢ = 0.5 &
determine time domain parameters. We redraw the locus.

¢ = Cos(B) =0.5; 6 =60°. Draw a line at 60° from —ive real axis

as shown.
The intersections A & B on the locus define the
location of the closed loop system.

Dreakaway point

Since the locus is a circle with unity radius, the
vector OA = 1 & therefore wn =1 rads/sec.
-€wn =-0.5 ; wd = wn V(1-&?) =0.866 rads/sec
» The CL poles are — &wn +/- j wd =-0.5+/-j0.866
» The Characteristic equation is (S+ 0.5 +j 0.866)(S+ 0.5 - j 0.866)= S? + S+1=0
The derived Ch. Eq. is : S* + aS +1 =0 On comparing we get a = 1.



Root Locus Problems (contd)..

» Problem 3:
Suppose that the Characteristic equation is given as:
Q(S)=S*+KS? +25+1=0
You are asked to draw root locus for 0<K<eo. How to draw?
Solution:
Collect all the terms containing ‘K.
Divide terms containing ‘K’ by the balance terms
Write Q(S) = 1 + N’(S)/D’(S)=0
Write G(S) = N’(s)/D’(S)
Plot root locus
In the present case: Q(S)=1+KS7/S*+2S+1=0
G(S) = K S¥S3 + 2S + 1; Factorize denominator polynomial

N o ks wbNh e



PROBLEM: Construction of Root Locus

»Draw the root locus for the open loop transfer function G(s) and settling
time ts=4sec given, find the range of values of k and show that the loci of
the complex roots are part of a circle with (-1,0) as centre and radius =/

where K(s+1)
G(s)=

s(s—-1)
Step-1: The first step in constructing a root-locus plot is to locate the
open-loop poles and zeros in s-plane.

» The k=0 points:
s=0, s=1
no. of poles (n)= 2
» The k=o° points:
s=-1
no. of zeros (m)=1



The poles and zeros in
s-plane after step-1.




PROBLEM: Construction of Root Locus (contd)..

» Step-2: Determine the root loci on the real

axis. 3 | | | | ’ |

» To determine the root loci on
real axis we select some test
points.

> e.g: p,(on positive real axis).

» No. of real poles and zeros on
the right of test point is zero (
which is even)

» Hence, there is no root locus
on the positive real axis.

i
—
1
|




Step-2: Determine the root loci on the real axis.

» Next, select a test point on
the positive real axis between
1 and 0.

» No. of real poles and zeros on
the right of test point is one (
which is odd)

» Therefore, from 1 to O is part
of the root locus.

3




PROBLEM: Construction of Root Locus (contd)..

Step-2: Determine the root loci on the real axis.

» Next, select a test point on
the negative real axis
between 0 and -1.

» No. of real poles and zeros on
the right of test point is two (
which is even)

» Therefore, from 0 to -1 is not
part of the root locus.

3




PROBLEM: Construction of Root Locus (contd)..

Step-2: Determine the root loci on the real axis.
3 T T T I | I

» Next, select a test point on
the negative real axis
between -1 and - o=,

» No. of real poles and zeros on
the right of test point is three :
( which is odd) L @--goooe Komaooes Xomooooes 7

» Therefore, from -1 to - o= is
part of the root locus.







PROBLEM: Construction of Root Locus (contd)..

Step-3: Determine the asymptotes of the root loci and angles.
+180°(2q+ 1)

Where Angle of asymptotes = ¢ =

n-----> number of poles (2) n—m

m-----> number of zeros (1) +180°(2q+1)

2-1

¢ =+180° when q =0

¢

» No. of asymptotes = n-m =1
» The angle of asymptote is 180°.
» No centroid for this system




PROBLEM: Construction of Root Locus (contd)..

»Step-4: Determine the breakaway/break-in point.

»The breakaway/break-in point is the point from which the root locus
branches leaves/arrives real axis.

» The breakaway or break-in points can be determined from the roots of
dK/ds=0

> It should be noted that not all the solutions of dK/ds=0 correspond to
actual breakaway points.

> If a point at which dK/ds=0 is on a root locus, it is an actual breakaway
or break-in point.

» The characteristic equation of the system is

K(s +1)
1+G(s)H(s) =1+ =0
s(s-1)

K - _ s(s-1)

s+1



PROBLEM: Construction of Root Locus (contd)..

dK d [s(s-1) |

ds __dsL s+1 J
dK  (s+1)(2s-1)-(s’—=s)(1)

ds (s+1)°
» Set dK/ds=0 in order to determine breakaway point.

(s+1(2s-1)-(s"-s)Q) _ s +25-1=0
(s+1)°
» By solving the equation roots are at
s= +0.414
=—2.414

» By substituting these s values in k equation, the value of k is positive re
for s=0.414 (k=0.17), s=-2.414 (k=5.828). so these points
breakaway points.




Step-4: Determine the breakaway/break-in point.

: | ' | ' |
2F -
1F -
_._.
ﬂ'""""'"""'""'""""B’ré.ailéév&éj'*E" """" Armmmmmees " Breakaway
point point




PROBLEM: Construction of Root Locus (contd)..

» Step-5: Determine the points where root locicross the
imaginary axis and range of K for stable operation

» The characteristic equation of closed loop system:

s(s—-1)+k(s+1)=0
s* +(k-1)s+k=0 — S° 1 K
s' k-1 0
k >0 .
S K
k >1 -

» The root loci cuts the imaginary axis at S==|



PROBLEM: Construction of Root Locus (contd)..

» Step-5:Determine the points where root loci cross the
imaginary axis and range of K for stable operation

» The characteristic equation of closed loop system: 4
s(s—1)+k(s+1)=0 B
o =k &o

s° +(k-1)s+k=0 — (_, Em)

k-1
s°+ 26w s+w. =0 co = ( 5 ) ‘fwn:l:(?—




PROBLEM: Construction of Root Locus (contd)..

» Toshow that the loci of the complex rc\)/gts are part of a circle

with (-1,0) as centre and radius = sqrt(2)
» Apply the angle criterion:

(s+1
£ZG (s)=Z2k =+ 7(2q+1)
s(s-1)
S=0+ jo
Zk +Zo + jo+1-Z o + jo-ZLo + jo-1=-7x
7+ tan _1( “ ):tan _1(2)+tan _1( - )
\o +1) \o ) \o -1)
> Apply the tan on both sides tan( A+B)= tan A+ tan B
10, ) (o 1- tan Atan B
_+( ) tan () + | W
o \o-1) Lo +1)
w )

1 -

o o -

1 —
v ) 1 — tan (ﬂ)(l
1)

TN




PROBLEM: Construction of Root Locus (contd)..

» By cross multiply and simplify:

@ @ o | 0] |

o’ +w*+20 -1=0

» By add and subtract ‘1’ and rearrange

(c’+20+1)-1+w°-1=0

(c +1)*+w’ =2
> This is the equation of the circle with center at (-1,0) and radius /2




k(s+1)

G(s)=
s(s—1)

Imaginary Axis

1.5

0.5

i ke=1)




PROBLEM: Construction of Root Locus

» The characteristic equation of a feedback control system is

s* +3s+12s?+ (k —-16)s+ k =0

» Sketch the root locus plot for O<k<ee and show that the system is
conditionally stable (stable only for a range of gain k). Determine the
range of gain for which the system is stable.

» Solution:
To sketch the root locus, we require the open-loop transfer function

G(s)H(s)

1+G(s)H(s)=s"+3s°+125s°~165+ks+k= 0
1+G(s)H (s) =s(s’®+3s°+12s-16)+ k(s +1) =0
kK(s+1 k(s+1
( ) 1. (s+1) 0
s(s®+3s” +125-16) s(s—1)(s°+4s5+16)

1+



PROBLEM: Construction of Root Locus (contd)..

K(s+1) K(s+1)
» G(s)H(s)= =
s(s°+3s°+12s-16) s(s—1)(s+2+ j3.42)(s +2 - j3.42)

» The k=0 points: s=0, s=1, s=-2+j3.42, s=-2-j3.42

no. of poles (n)=4
» The k=c° points: s=-1

no. of zeros (m)=1
» No. of root locus branches (n)=4
» Root locus exists on the real axis from s=1 to s=0 and to the left of s=-1
» No asymptotes (n-m)=3
» Angles of asymptotess-+60°, +1s0 °
» Centroide-=-o .66
» The breakaway points are given by dk/ds=0.

s(s—1)(s*+4s+16)
where k=

s+1



PROBLEM: Construction of Root Locus (contd)..

dk d d
— =(s+1) —(s* +3s° +12s5% —16s)— (s* +3s° +12s5° —165) —(s+1)=0
ds ds ds

(s+1)(4s°+9s°+24s-16)-s*-3s°-125*+165=0
3s* +10s® + 21s® + 245 —-16 =0

» By solving the above equation out of four roots only, s=0.45 and s=-2.26 are
actual break points.

» Out of these s=0.45 is the breakaway point and s=-2.26 is the break-in point.

» Corresponding to these points k values are 2.64 and 77.66

» The angle departure of the root locus from the complex pole is 8, =+5.27




PROBLEM: Construction of Root Locus (contd)..

Determine the points where root loci cross the imaginary axis and range of K
for stable operation

» The characteristic equation of closed loop system:
s* +3s°+12s? +(k -16)s +k =0

s * 1 12 k kK >0
. : C - 16 ) 52 ko
32 36 — k +16 K k<52
3
52 — k 2
(k —16) -3k 52k+16 k — k “° =832 — 9k >0

1 3
> 52 _ K k2 - 59k +832 <0

0 3 k > 23 .3andk <35.7
S K

» The range of values of k for stability is 23.3<k<35.7. The cor
oscillation frequencies are 1.68 rad/sec and 2.
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Why Controllers!

»If a closed loop system’s response is not as desired then we make use of
controllers.

» Controllers are also needed because to improve the closed loop system’s
response we cannot alter / change /replace the system(plant) which is
designed for certain steady state design specifications.

» System response has two components:

»transient response ,&

»steady state response
» There may be a requirement to either improve transient response or steady
state response; or, both the responses may have to be improved.

» Different controllers are used for improving transient & steady state
responses; a combination of controllers is used to improve both transient &
steady state responses of a system.



P: The Proportional Controller

» Proportional Controller:
) clt)clt) = KP r(t)

» P controller is a pure gain element. Generally put in cascade with the

plant(system to be controlled)
R(S) C(S)

9

» M(S) = C(S)/R(S) = Kp G(S)/1+ Kp G(S)
» Thus Kp provides additional gain to the loop; Kp can be <1 or >1

» The value of Kp determines the location of closed loop pole(s). It affec
impulse response of the closed loop system.




» Example 1:

G(S)=1/(S+1);Q(S)=1+G(S) =0 mPS+2 =0 mE)S=-2
G1(S) = Kp G(S) = Kp/(S+1); Q(S) =1 + G(S)=0 =S +(Kp+1)=0
=S = -(Kp +1)
» Thus we observe that the location of CL pole varies with Kp. If Kp is

increased then the pole moves farther away from the Imaginary Axis of
the S plane.

» The Impulse response without Kp = e™ ,and
with Kp = exp{ -(Kp +1)t}
» Thus we see that as Kp increases, impulse response decays faster to zero

thus reducing settling time. We cannot increase Kp beyond a value as it
may make higher order systems unstable.



» Example 2:
G(S)=1/52+2S+2;Q(S)=1+G(S)=0 mPS*+25+3=0
m)S=-1+/-j1
mm) implies pole locations are fixed
G+(S) =Kp/S?+25+2;Q(S)=5*+2S + (2+Kp)

» We see that as Kp is increased the imaginary part of the roots increases
thereby increasing wn for the system, while maintaining intersection on
the real axis = -1. Therefore it does not affect settling time.

» Thus we see that increasing Kp introduces high frequency oscillations in
the system & it may not be appropriate to fix a high value for Kp as it
reduces damping in the system.



I: The Integral Controller

ntegral Controlier:

R(S) C(S)
C(S)/R(S) = Ge(S) = Ki/S

R(S) C(S)
+

C(S)/R(S) = Ki G(S)/(S + Ki G(S)); G(S) = K/(S+1)
C(S)/R(S) = Ki K /(S*> + S + Ki K) Therefore Integral control:
1. Increases the order of a system
2. Cc;nverts over-damped system in to an under damped one ( governed by
Ki
3. As the integral gain Ki is varied, it varies wn of the system.
4. Reduces steady state error of a system & improves ste




I: The Integral Controller: Frequency Response

» Magnitude Response:
G(S)=Ki/S;S = jw G(jw) = Ki/jw
|G(Jw) | = G(w)= Ki/w ; arg(G(jw))=- /1/2 rads =¢

G(w) ¢

-NJ/2
0 w (rads/sec)

» Atvery low frequencies the integrator provides very high gain and very
high attenuation at high frequencies. It is a low pass filter.

» The phase lag : & =—/1/2 rads (constant for all frequencies)




D: The Derivative Controller

> Derivative Controller:

- -
CI)
» Explanation:

» Take Inverse Laplace transform of (1); c(t) = Kd r°(t) = Kd dr/dt
»Thus we observe that derivative controller differentiates the input. It
implies that if input is constant then the output of derivative block is

equal to zero. Thus its output exists only if input is varying with time.
Therefore, if this controller is in forward path, then we use a term like (1
+ Kd S) so that input to the plant does not become zero if the error

signal has attained a constant value.
»This is depicted in next slide.

C(S)
C(S) = (Kd S) R(S) ....1




D: The Derivative Controller

> The Derivative Controller:
R(S)

r(t)

» If e(t), the error, attains a constant value then the output , y(t) =0 and
the plant (system) will have zero input which is not acceptable.

» Therefore in the forward path, we use a term (1+ Kd S) so that under

steady state y(t) = e(t). Therefore the derivative block is replaced by the
block in the forward path.

> In the feedback we retain it as Kd S




Gc(S) =Kd S ; Ge(jw) =) Kd w; | Ge(jw) | = Ge(w) = Kd w;
arg(Ge(jw)) =N/2=¢

rads
Ge(w) Kd /ﬂﬂ

4] W

» We see from the above plots that derivative controller offer higher gain
at higher frequencies , therefore it is a high pass filter.

» Phase introduced by it is positive.




Proportional plus Integral Control

» P+l Controller: |G(jw) |= G(w) = V(Ki* + (Kp w)* )/w

R(S) E(S)

(P+l) Controller
E(S)/R(S) = Kp + Ki/S; G(S) = Kp + Ki/S
G(jw) = Kp + Ki/jw = (Ki + j Kp w)/jw
| G(jw) | = G(w) = V(Ki* + (Kp w)? )/w
arg(G(jw)) = tan (Kp w/Ki)—N/2




P+D Controller

> P+D Controller:

R(S) C(s)

R(S) C(S)

+

Kd S

(P+D Controller)
C(S)/R(S) = G(S)=Kp +Kd S

G(jw) =Kp +j Kd w

| G(jw) | = G(w) = V,(Kp? + (Kd w)?}

arg {G(jw)- = tan™ (Kd w/Kp)




P+1+D Controller

> P+I+D Controller:
c(t) = {Kp + Kd d/dt + ki [ dt- r(t)

R(S)
nP+I+D) Controller

C(S)/R(S) =G(S) =Kp + Kd S + Ki/S = (Kd S + Kp S + Ki)/S
G(jw) = {(Ki—Kd w) +j Kp w}/jw

|G(jw) |= G(w) =V, (Ki — Kd w)* + (Kp w)*}

arg{G(jw) - =tan™, Kp w /(Ki — Kd w)}

C(S)

) E(S) IR Y(S)




P+1+D Controller

» Observation:
Kp = 0; 1+D controller
Ki = 0; P+D controller
Kd = 0; P+I controller
» Thus we can choose a combination depending on the requirement.
y(t) = {Kp + Kd d/dt + ki [ dt- e(t); e(t) is system error;
y(t) is P+I+D output
» From the above equation, we observe that,
If e(t) >0 & is constant, then
Output of ‘D’ block =0
Output of ‘P’ block = Kp * e(t)
Output of ‘I’ block = Ki [ e(t) dt

» Thus the ‘I’ block output will keep increasing & can destabilize the CL
system.



P+1+D Controller

Y VYV

Y

Therefore, if the closed loop system is to be stable then the error, e(t),
should equal ‘0" under steady state.

Zero steady state error implies,

Kp =00, Kv=100 & Ka = o0
It means that all error constants should have a very high value.
the forward path transfer function in the block diagram is equal to
H(S)= Ge(S) G(S) = {(Kd S? + Kp S + Ki)/S} G(S)
If G(S) is type ‘0’: H(S) is type ‘1’; e(t) = O for step input
If G(S) is type ‘1”: H(S) is type ‘2’; e(t) = O for step & ramp inputs

If G(S) is type ‘2’: H(S) is type ‘3’; e(t) = O for step, ramp & parabolic
inputs.

The above observations are also valid for P+| controller & depend upon
the location of zeros in G(S) . For an all pole G(S), order>2, the CL

system may cease to be stable unless there are zeros associated with
G(S). H(S) has 1 pair of CC zeros & pole at S=0.



P+1+D Controller

» The obvious concern is:
If error, e(t) becomes’0’ then will the controller output, y(t), become ‘0’ !
If y(t) attains a ‘0’ value will the system, G(S), output also become ‘0’!

» The system output, c(t), will not become ‘0’ because of the property of
the I- controller, Ki/S.

> The | controller retains its output at its previous value, if input to it
becomes ‘0’ at t = t;; that is the value y(t) attained at time t = t; - At.

> The | controller is known as pure integrator because of its linear
(constant) slope.



P+1+D Controller

» The pure Integrator:
Y(S)/X(S) = 1/S
y°(t) = x(t) = dy(t); x(t) = U(t)=1.0
dy(t) = 1.0
» Rectangular Rule:
y(t) = y(t-1) + dy(t) * At; y(t) = 0 at t=0; At : time increment let At =
0.05

t=1; y(1)=0+1* 0.05=0.05

t=2;y(2)=y(1)+1*0.05=.05+.05=0.1

t=3;y(3)=y(2)+1*0.05=0.1+0.05=0.15
» Let us now make x(t) = 0; therefore dy(t) =0 t =4;

y(4)=vy(3)+0 * 0.05=0.15

t=5; y(5)=y(4)+0=0.15

Thus we see that even after input x(t) = 0; the output is retained.



¢

MODULE-IV
FREQUENCY DOMAIN ANALYSIS



CLOs Course Learning Outcome

CLO10  piscuss the method of Bode plot and Polar plot to calculate
gain margin and phase margin of control system.

CLO11  pescribe the characteristics of control system and its
stability by plotting Nyquist plot.

CLO12 Compare the behavior of control system in terms of time
domain and frequency domain response.




Frequency Domain Specifications

Q We have studied about time domain specifications like, rise time ,tr;
peak time, tp; settling time, ts; peak overshoot, Mp.

1 Now, we define frequency domain specifications for a given system and
determine their correlation with the time domain specifications.

[ This correlation between time & frequency domain is necessary as it
enables us to derive time domain specifications from frequency domain
ones & vice-versa.

O Further, we may like to analyze a given system either in time domain or
frequency domain & hence we need to have a set of specification in
each domain for evaluating a given system’s response.

O Like in time domain, here too we consider a second order system for
deriving frequency domain specifications.



Frequency Domain Specifications

(contd)..

T(S) = C(S)/R(S) =wn?/(S2+2€ wn S + wn?)

1 For determining frequency response, we let S =jw in T(S) because we
are interested in real frequencies which lie on the Imaginary axis of the
S-plane.

T(jw) = wn?/ (-w? + j2€ wn w + wn?)
T(jw) = wn? / wn? { (1-(w/ wn))*> +j2¢ W/ wn }
O Let u = w/ wn; u: normalized frequency
wn: natural frequency of oscillation of the system
w : input signal frequency
O Thus, T(jw) = 1/{ (1-u2) +j2EU- e (1)
| T(jw) |= M(u) = 1/V, (1-u?)* + 4& u*- ..... (2)
arg{T(jw)} = d) =-tan™',2& u/(1-u?)- ........... (3)




Frequency Domain Specifications

(contd)..

Jd The magnitude & phase response are part of frequency response.

Equations(2) & (3) corresponding to magnitude & phase response tell
us that,

O if we feed an input signal r(t) = A Sin(wt) to the system, the output
signal will have

magnitude = A/ V, (1-u?)? + 4€? u?}, and the
phase introduced = - tan™ {2¢€ u/(1-u?)}
 Thus the output signal, under steady state, will be
c(t) = A/*V, (1-u?)? + 4€% u?}] Sin (wt - tan™ {2€ u/(1-u?)})

d We observe that the output amplitude is dependent on the input
frequency, and so is the phase lag introduced in the output signal.




Frequency Domain Specifications

(contd)..
M(u) = 1/V, (1-u?)? + 482 u>- ... (2)
¢ =-tan™,2€ u/(1-u?)- ........... (3)

PlottingM & p vs.u, u=w/wn

u M 0)
0.0 1.0 0 (w=0)
1.0 [1/(2¢) |-N/2 (w= wn)
oo 0 -1 (wn  ©o0)
.
[ Observation:

At w= wn, the value of ‘M’ is inversely proportional to €.

The lower the € higher the ‘M’ implies higher peak in the magnitude
response.




Frequency Domain Specifications

(contd)..

(] Resonant Frequency:

The frequency where ‘M’ has a peak value is called resonant
frequency. At this frequency, the slope of the magnitude curve,
M, is zero. Differentiate ‘M’ w.rt ‘u’ in equation (1)

Therefore, dM/du=0 == yr2=1-2¢> mmpur=V(1-28?)
U= ur =) Wr=wnV(1-2&%)

Resonant frequency : wr= wnV(1-2¢&%) ...(4)

(] Resonant Peak, Mr:
The maximum value of magnitude is known as ‘Resonant peak’
M(u) = 1/V, (1-u?)? + 4€? u?}; at resonant frequency u=ur, we get Mr.
Substitute for u= ur in M(u), to get Mr = 1/{2€ V(1- €*)} ..... (5)



Frequency Domain Specifications

(contd)..
1 Phase angle, ¢r at Resonant Frequency:
Phase angle: ¢ =-tan™,2€& u/(1-u®)}
Substitute for u = ur in ¢, to get
¢ér=-tan™,v(1-2 €)/¢- ...... (6)
From equations (4) & (5), as reproduced below
wr= wnv(1-2¢&) ...(4)
Mr = 1/{2& V(1- €)- ..... (5)
It is seen that as ¢ approaches ‘0’

wr approaches wn, and
Mr approaches oo
At¢E=0.707; Mr=1& wr=0
Therefore there is no resonant peak & hence no resonant frequen




Frequency Domain Specifications

(J The magnitude & phase plot:

Forarange of & 0<€&<0.707 we sketch the plots.
T M (&< 0.707)

M 1.0

Magnitude m 707) -11/2

~—

0 Llr — o /oon

A= | WII\illl

Normalized Frequency

(d We observe that for & 0.707, the magnitude plot decreases
monotonically from M=1 at u=0. Thus there is no resonant pea
0.707 & the greatest value of M =1.0




Frequency Domain Specifications

(contd)..
1 Bandwidth, wb:

The frequency at which M = 0.707 (1/v2) is called cut off frequency,
wC.

d The range of frequencies for which M> 1/v2 is defined as bandwidth,
wb of a system. Since control systems are low pass filters, wb = wc .

O Atu =ub = wb / wn; (the normalized bandwidth), the expression for M
IS

M(ub) = 1/V, (1- ub 2)? + 4€2 ub 2- = 1/V2
Solving the above equation, we get
ub®-2(1-2&%)ub?-1 =0 Let ub? = x; solve for x & then for ub. Ub = Vx
[ Solving for ub we get: ub =V *1-28 + V(2-4€2+4¢&%)]




Frequency Domain Specifications

(contd)..
1 Bandwidth:

The denormalized bandwidth is given by,
wb = wn V *1-28 + V(2-4£2+4£%)]
Thus, we observe that bandwidth is a function of damping, € only.

¢ wb

0.2 1.51 wn
0.5 1.272 wn
0.707 | 0.999 wn

Thus we observe that as damping increases the bandwidth reduces.




Frequency Domain Specifications

(c_:or!tgl). ;

Time Domain:

Mp = exp(- 1§/V(1-§%))
tp=/1/wnVv(1-€%); wd=wnV(1-&)
Frequency Domain:
Mr=1/{2§V(1- ), wr= wnv(1-2§?)
1 From the above equations we understand that no matter in which
domain ( frequency or time) we are analyzing a system performance,

the other domain (time or frequency) parameters can be easily
estimated using the above set of relationships.

O For example, working in time domain from the root locus we can fix §,
wn, for a desired location of closed loop poles and then we can
determine frequency domain parameters using above equations.




Frequency Domain Specifications

(contd)..

 Correlation between time & frequency domain parameters:
wr/ wd = V(1-2 €2)/V(1-&?)

q wr/ wd
0.707| 00
0.5 |0.8165
03 |0.9493 T
0.2 |0.9789 orfod |
00 | 1.0

0.6

0.4

0.2




POLAR PLOT

Magnitude and phase of G(jw) is plotted in X-Y plane (graph sheet)

G(jw) = Re[G(jw)]+ Img [G(jw)]

G(jw) = |G(jw)| arg,G(jw)} = M exp(-jd)
As w is varied from ‘0’ to ‘eo’; the ‘M(w= w1)’ value is marked on the
graph sheet at an angle of p(w= w1)

J Example 1:
G(S)=1/(1 +TS) = G(jw) =1/(1+ wT)
m) M(w) =11+ (wT));  d(w)=-tan™(wT)
w—0;M=1 ¢$=0°
(0= ooﬂo 1(w = 0)

w——>00:M=0 ¢ =-N/2
w=1TM=1/N2 ¢=-1/4




POLAR PLOT

(Contd..)

The w =0 & w = o= are important points in a polar plot.

The angle subtended by G(jw) or G(jw) H(jw) at these frequencies
indicate the number of quadrants the polar plot is going to traverse in
the G(jw) or G(jw) H(jw) plane.

As we shall see later the intersection of the polar plot with the
negative real axis of the G(jw) or G(jw) H(jw) plane is a very important
information because it allows us to determine the stability of a CL
system, as also its relative stability.

Polar plot need not be drawn for all the frequencies from 0 to o<; the
necessary points are w = 0 & w = o= and those values of w at which the
polar plot intersects with the negative real axis of the G(jw) or G(jw)
H(jw) plane.



POLAR PLOT

G(S) or G(S)H(S) = 1/S(1+TS)
G(jw)=1/jw (1+jTw); M(w) =1/w V(1 + T*w?);
d(w) =-1/2 - tan(Tw)
w=0; M=eco; ¢ =-11/2 Angle measured in CW direction: -
w=o;, M=0; b =-/ Angle measured in CCW direction: +
w=1/T, M=TN2 ¢=-31/4

(J Note: we observe that between w =0 & w == the angle changes by /1/2;
therefore the polar plot will traverse only in one quadrant.

The polar plot is shown in the next slide

_—




POLAR PLOT

(Contd..)

[ Polar plot:

at w=cc M(w)=0, ¢p=-/1

Q Atw =1/T; M =T/2—¢=-3A/4
In order to plot this point, we draw
an angle & = -3/1/4 and then mark
the point M = T/V2
At point A,

M=T/N2, d=-311/4,




POLAR PLOT

(Contd..)

J Example 3:
G(S) = 1/(14T: S)(1+T2 S); G(jw) =1/(1 +j wTy) (1 +j wT>)
M(w) = 1/V(1+ w?T+2) V(1+ w?T,?)
d(w) = - tan™(Tw) - tan™(T,w)
w=0; M=1; b=0 Angle measured in CW direction: -
w=o0; M=0; b =-/ Angle measured in CCW direction: +
(J We observe that ¢ changes from 0 to —/1 as w changes from 0 to ee.
[ Therefore, the polar plot will traverse two quadrants in the G(jw) or
G(jw) H(jw) plane.
 Since the polar plot traverses two quadrants, we need to determine

point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jw) plane.




POLAR PLOT
(Contd..)

] Procedure:

1.
2.
3.

Rationalize G(jw) or G(jw) H(jw)
Separate in to real & imaginary parts of G(jw) or G(jw) H(jw)

For intersection on real axis; imaginary part = 0. Make imaginary part =
O by making its numerator = 0. We get value of w at point of
intersection. Calculate the value of real part at this value of w. Draw a
vector of this length from the origin to get intersection on the real axis.

For intersection on imaginary axis; real part = 0. Make real part = 0 by
making its numerator = 0. We get value of w at point of intersection.
Calculate the value of imaginary part at this value of w. Draw a vector
of this length from the origin to get intersection on the real axis.



POLAR PLOT

O G(jw) can be written as, G(jw) = 1/[(1-w?TiT2) +j w(Ty + T+

Rationalize: multiply & divide G(jw) by [(1-w?T:T,) - j w(T; + To)+; that is
conjugate of the denominator.

We get,
G(jw) = [(1-w*TiT2) +j w(Ty + To)+/[(1-w?TiT2)* + w?(Ty + To)*+
Real part = (1-w?TiT2)/*(1-w?TiT2)? + w?(Tq + To)*+
Imaginary part = w(Tq1 + T2)/*(1-w?TiT2)? + w(Tq + T)*+
L We see from the above that
Imag. Part cannot be zero, &
Real part = 0 for 1-w?T T, =0; w? =1/ T4T;
at intersection on imaginary axis, the frequency w = 1/V TiT;



POLAR PLOT

(Contd..)
Gfjw) plane
(W= M=0¢ =-/1) (w=0M =1 ¢=0)
Vv T4 TZ/(-1|-1 + Tz) wWAO w>0




POLAR PLOT

G(S) = 1/(1+T, S)(1+T, S) (1+T5 S);

G(jw) =1/(1+j wTy) (1 +j wTy) (1 +j wTs)

M(w) = 1/V(1+ w?T+?) V(1+ w?T;?) V(1+ w?T3?)

d(w) = - tan™(Thw) - tan™(T,w) - tan™(Tsw)

w=0;, M=1, ¢$=0 Angle measured in CW direction: -
w=eo; M=0; ¢$=-3//2 Angle measured in CCW direction: +

(d We observe that ¢ changes from 0 to —3/1/2 as w changes from 0 to ee.

[ Therefore, the polar plot will traverse three quadrantsin the G(jw) or
G(jw) H(jw) plane.

 Since the polar plot traverses three quadrants, we need to determine

point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jw) plane.

_—




POLAR PLOT
(Contd..)

Following the procedure as explained earlier, we have:

J For intersection on Imaginary Axis:

wW=1/V(T1 T2 + T3 Ty + T2Ta)
 For intersection on real Axis:

W=V *T+T, + T3/T1 T2 T3 ]

For the above values of w, determine the magnitude of the points with
imaginary intersection.
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(Contd..)
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>
™

(w =eo M=0 ¢ = -3/1/2) (wEO0M =1 ¢=0)

w1 = V (T1 +T2+T3)/(T1 T, T3) w>0

OA: magnitude of G(jw) at w = w;
OB : magnitude of G(jw) at

\%

w>0




POLAR PLOT (Relative

Stabi Ilty)

1. Itis defined for systems that are open loop stable.

2. We have the Characteristic equation Q(S) = 1 + G(S)H(S) =

3. Forreal frequencies ( frequency response) S = jw

4. Therefore, Q(jw) =1 + G(jw) H(jw) =

5. Or,G(jw ) H(j w) =

6. therefore, |G(jw ) H(j w)|=1 & arg(G(jw ) H(j w)) = =+/- N

7. When loop gain = |G(jw ) H(j w)|=1 & arg(G(jw ) H(j w)) =+/- N
8. Phase introduced due to error detector = 180°

9. Therefore, total phase in the loop =360° & |G(jw ) H(j w)|=1
10. The CL system response is oscillatory & it is on the verge of

instability



POLAR PLOT (Relative Stability

Contd..)

11. loop gain = |G(jw ) H(j w)|=1 & arg(G(jw ) H(j w)) =+/- N: thisis a
point (-1, jO) in the G(jw ) H(j w) plane.
12. Stability of a closed loop system is determined by

(-1,]0)

non-encirclement of (-1,j0) point. As the polar plot gets closer to (-
1,j0) point, the CL system tends towards instability.

Polar plot & Location of closed loop poles:
% plane X S plane

X

A

L9y X

We observe that

N

7

N

> X
S N
(-1,j0) / G

N
e

(jw) H(jw) plane

polar plot closer to (-1,j0

closer to the Imaginary axis of the S-plane

) point implies CL po



POLAR PLOT (Relative Stability

Contd..)

1 As the CL poles move closer to the Imaginary axis of the S plane, the
system takes more time to settle down (reach steady state) & is
therefore relatively less stable than the one which has CL poles far
removed from the Imaginary axis of the S plane.

O In frequency domain it implies that as the polar plot moves closer to the
(-1,jO) in the G(jw ) H(jw ) plane, the CL system becomes relatively less
& less stable.

1 Therefore proximity of the polar plot to the (-1,j0) point determines CL
system’s relative stability.

O If the polar plot encircles the (-1,j0) point then the CL system is
unstable.




POLAR PLOT (Relative Stability

Contd..)

J Example of Relative stability:

G(jw )H(jw) plane
Plot 1: (-1,j0)a |
Intersects negative real axis at ‘b’ d
Plot 2: \ S

Intersects negative real axis at ‘c’

)le)

Plot 3:

Passes through (-1,j0) point 1 (More Stak
Plot 4: 2 (Stable)
Encircles (-1,j0) point & 3 (limitedly stable)
intersects negative real axis 4 (unstable)

at d’




Relative Stability Index: Gain & Phase Margise
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1. The margin between actual gain ‘K’ (of the system) and the critical

gain causing oscillations (in the system output) is called Gain
Margin (GM)

2. Critical gain: the value of ‘K’ at which the Polar plot- { G(jw)H(] w)}
plot - passes through (-1,j0) point.

3. Definition of GM: It is the factor by which the system gain can be

increased to drive it to the verge of instability. GH plane

4. At w = w,, the magnitude of (-1,j0) (w=w,) A
intersection with the negative real axis is \\( >
‘a’; the phase angle = J1 a

5. For the plot to pass through (-1,j0) point, the facjor by which the

gain is to be increased = 1/a. GM = 1/a
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Relative Stability Index: Gain & Phase Margise
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|G(jw)H(jw) | =a, at w = w;

arg {G(jw)H(jw)} = d=N, at w = w;

w = w1 is the frequency at which ¢ = 180°.
w = w is called ‘Phase Crossover Frequency’

Phase crossover frequency: is defined as the frequency at which the
phase offered by the system is /1

Gain Margin is now defined in terms of phase crossover frequency as

‘reciprocal of the gain at the frequency at which phase angle
becomes 180’

Thus GM value is obtained at phase crossover frequency.
GM = 1/a; In decibels: GM = 20 Log(1/a) = - 20 Log(a)
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Relative Stability Index: Gain & Phase Margise
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(1 Phase Margin:

1.
2.

o vk w

It is calculated at ‘Gain Crossover Frequency’

The frequency at which |G(jw)H(jw)| = 1 is called ‘Gain Crossover
frequency’ G(jw)H(jw) [plane

Draw a unit circle as shown.
The point of intersection of unit circle X(w=4h1) /7~ N0 .

with polar plot is X, say, the frequency is w;.
The |G(jw)H(jw) | (at w=w4) = length of vector OX=

PM=¢
Therefore w=w; is the gain cross over frequency.

The angle made by OX with the negative real axis of the G(jw)H(j
plane is Phase Margin (PM), ¢, of the system.




Relative Stability Index: Gain & Phase Margise
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1. Itis defined as the amount of additional phase lag at the gain cross
over frequency required to bring the system to the verge of
instability.

2. Itis measured in the CCW direction from the negative real axis of
the G(jw) H(jw) plane.

3. If w=wisthe gain cross over frequency, then phase margin (PM) is
computed as:

4. PM=¢ =arg{G(jwq) H(jw:)} + 180°

5. Since systems introduce phase lag, arg{G(jw1) H(jw1)} is always
negative.

6. If PM is positive, the CL system is stable
7. If PMis negative the CL system is unstable
8. If PM =0 the CL system is on the verge of instability
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GM is calculated as the inverse of the |G(jw)H(jw)|= ‘@’ at the point of
its intersection with negative real axis of the GH plane.

GM =1/a; or, GM = - 20 Log (a) in dB.
1. If GMis positive, CL system is stable
2. If GM is negative, CL system is unstable
3. If GM =0/, CL system is on the verge of instability

dInterpretation of Relative Stability from GM & PM Values:

1. Large GM or large PM imply sluggish CL system

2. GMclose to ‘1’ or PM close to ‘0°” imply highly oscillatory system

3. GM of about 6 dB or PM of 30-35° imply reasonably good degree of
relative stability

4. Generally a good GM automatically guarantees a good PM & vice-
versa.
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Relative Stability Index: Gain & Phase Margise
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 Special Cases:

We have said that generally a good GM vyields good PM & vice versa. In
certain cases, it may not hold. G(jw)H(jw) ptane

d Case 1: (-1,j0) point
Plot 1: gain K; ;PM = ¢p1; GM = oo
Plot 2: gain K3; PM = ¢,; GM = oo

Cl)z CI)1 rad=1

Kz >Ky>Ki; dz<Pa< s
O We see that as we increase gain in the system #

e

the Phase Margin reduces whereas the 2 2 1 4

[ Gain Margin does not change. Therefore in such cases we need to focus
only on PM because GM is not adjustable.




] Case 2:

Plot 1: gain K; ;PM = ¢;; GM = 1/a rad=1
Plot 2: gain Ky; PM = ¢,; GM = 1/b

Ks >Ky>Ky; b3 < <Py
(_11j0 ) pOI

(d We see that as we increase gain
the GM reduces appreciably , but
the PM does not vary much.

d Therefore, we need to monitor GM in this case.

\%
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Let G(S) = wn%S(S + 2éwn); for a unity feedback system
L At the gain cross over frequency, w = w;
|G(j w)H(jw)| =1.0
o, wny wV(w?+4& wn?)=1.0

or, w?(we? + 4 € wn?) = wn?
of, (wy/ wn)*+4¢& (w/ wn)>1=0;let (wi/wn)?=x
or, x2+4&x-1=0

or, x=-2&8+/-V(1+4¢%
or, (wy/ wn)?>=V(1+4¢%)-2¢
o, wi=wnVv(V(1+4E¢*)-2¢&)
(d The above equation relates € with gain cross over frequency,
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Polar Plot: Correlation between PM & § Sie
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arg{G(j w)H(jw)} =-90° - tan (w/2 € wn)
at w = w;, b1=-90° - tan™' (w1 /2 € wn)
PM=d = 180° + ¢, =180°-90° - tan (w1 /2 € wn)
b =90° - tan (w1 /2 € wn)
 Substitute for w; to get,
b=90°-tan*V(V(1+4 &%) -2¢&)/2¢]

or, WV(A+4E€%)-2¢%)/2¢&]=tan(90° - d) = cot P
or, tand=2¢/ *V(V(1+4¢€*) -2 &)
or, d=tan"{2&/*V(V(1+4 &%) -2 &)}

d The above equation gives a relationship between £ & ¢ for an under
damped system.

O In the range € < 0.707, a reasonably good approximation is given by
¢=0.01¢
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Polar plot Examples: Computation of GM & Bl
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G(j w) = K/jw (14j 0.2w)(1+j 0.05 w)
O ForK=1: a=-0.04
PM=¢=76°;
[ Intersection on negative real axis, a = -0.04
GM=20Log |1/a|=28 dB
1 Suppose we desire a GM =20 dB, &
PM =40°
Q Fora GM =20 dB, the polar plot should intersect
the negative real axis at : 20 Log |1/b|=20 dB

therefore, b=0.1

O This is achieved if K is increased by 0.1/0.04 = 2.5; K = 2.5.




[ Toachieve PM = 40°, we have:
Draw an angle of 40° in CCW direction from the

negative real axis of GH plane, as shown 40°
d We see that for PM = 40°, gain ‘K’
is to be increased by the ratio OA/OB

e 00O

Polar plot Examples: Computation of GM & Bl
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OA/OB=1/0.191=5.24
K=5.24
[ Thus we note that GM & PM are two different

[ Specifications not achievable for a single value of gain ‘K.
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O G(S) = K/S(1+0.25)(1+.055) ==b G(jw) = K/jw(1+j0.2w )(1+j0.05w)

d We know that for determining GM, we need to find intersection on
negative real axis (Imaginary part=0).

(d Determine value of w for which Imaginary part = 0.

Simplify G(jw) to get G(jw) = K/[-0.25 w? + jw (1- 0.01 w?)]
Rationalize G(jw) to get,

G(jw) = -0.25K w¥Den -j w(1-0.01 w?)/Den
Where, Den = [(-0.25 w?)? + (w(1-0.01 w?))?]
For Imaginary part = 0,==) 1-0.01 w?=0; == v = 10= w;,
w1: phase cross over frequency. Magnitude of G(jw) at w = w;
| G(jw) | = K/0.25(wq)* = K/25 = a (Contd.)
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20 Log (1/a)=20,0r,a=1/10=0.1
K/25=a; K=2.5
 Calculation of PM:
Let w = w; be the gain crossover frequency;
PM =180° + arg{G(jw)}; Desired PM = 40°
arg{G(jw)} =-90° - tan™"(0.2 w,) - tan™'(0.05 w3)
PM =-90° - tan (0.2 w>) - tan™"(0.05 w,) +180° = 40°
tan™1(0.2 w,) - tan™'(0.05 w,) = 50°; Apply tan on
0.25 w»/[1-0.01 w,?] = tan 50° = 1.2 rads; w, = 4 rads/sec
|G(jw) |at w = w; is = K/[wz V,14(0.2 w3)?- V,1+(0.05 w,)?*} =1
Forw,=4,K=5.2




BODE PLOT

Q From the frequency response of open loop transfer function G(S) or
G(S)H(S), closed loop system stability & relative stability is determined;
as in polar plots & root locus methods.

1. We draw two plots for each transfer function
Magnitude plot in dB

Phase plot

Both the plots are drawn on semi log paper

ok W

Magnitude in dB is given by 20 Log |G(jw )|
or 20 Log |G(jw )H(j w)|
Angle ¢(w) is plotted in degrees




BODE PLOT

(Contd..)

(J Note on Log Scale:

The advantage of Log scale is that we can handle a very large data size
1 Linear Scale:

M In linear scale each segment is incremented equally.
1 Log Scale:
O In log scale, we decide the multiplication factor ‘x’. Let x = 10

2 -1 lp ]Ir 2 3 (linear scale) w

| | | |
0.01 0.1 1 10 100 1000 (Log scale)log w




BODE PLOT

(Contd..)

1 Conversion to Log scale:
Log 10 w =0 (on linearscale) == w=1 (onlogscale)

Log 10 w = 1 (on linear scale) g w =10 (on logscale)

Log 10 w = 2 (on linear scale) == w =100 (on log scale)

Log 10 w = -1 (on linear scale) == w =0.1 (on log scale)

Log 10 w =-2 (on linear scale) g w=0.01(on log scale)
J We observe from the above that

1. on the positive side increment by ‘1’ on linear scale corresponds to
multiplication by ‘10’ on the Log scale ,and

2. on the negative side increment by -1’ on linear scale corresponds
to division by ‘10" on the Log scale

3. We also observe that on the Log scale we cannot start with a value
of w =0, but it can assume a very small value




BODE PLOT

(Contd..)

1 Thus, we observe that increment by ‘1" on linear scale causes
multiplication by ‘10" on Log scale and hence enabling data
compression and thus facilitating usage of large chunks of data.

 Further observations on Log scale:

1. Between w =1 & w =10 on the log scale, if we want to mark w =2
then we write: Log 10 2 = 0.301 ( which is 30.1% of the segment
length between ‘1’ & ‘10’ on the Log scale

2. Between w =1 & w =10 on the log scale, if we want to mark w = 3
then we write: Log 10 3 = 0.477 ( which is 47.7% of the segment
length between ‘1’ & ‘10’ on the Log scale

3. Between w =1 & w =10 on the log scale, if we want to mark w =5
then we write: Log 10 > = 0.699 ( which is 69.9% of the segment
length between ‘1’ & ‘10" on the Log scale

Thus we see that the marking is not linear.




BODE PLOT

(Contd..)

1 Representation of Transter Functions:
(1 We have two ways of representing a transfer function:
1 Pole-Zero Form:

m n
G(S)= K*TT(S+Z)I/*TI(S+Pi)] ;m<n
i=1 i=1
O Time — Constant Form: m n
G(S) = {KTTZ/TTPi} {*TT(1+S/ Zj)]/ *T1(1+S/Pi)]}
ji=1 i=1
d Let Ky =K T[Zj/TTPi ; Tzj = 1/Zj ; Tpi = 1/Pi; Tzj & Tpi are time constants
m n

G(S) = Ky *TT(1+ Tzj S)] / *TT(1+ Tpi S)]
ji=1 i=1




BODE PLOT

(Contd..)

Given, G(S) =10 (S + 2) (S+4)/(S +5) (S + 10) in pole- zero form
Convert in to time constant form
 Solution:
G(S) = (10)(2)(4)(1 + S/2)(1+S/4) / (5)(10)(1 + S/5)(1 + S/10)
Ki=(10)(2)(4)/(5)(10) = 8/5
G(S) = (8/5) (1+0.5 S)(1+0.25S)/(1+0.2S)(1+0.1S)
d Where, Tz1 =0.5; Tz2 = 0.25; Tp1 = 0.2; Tp2 = 0.1 are time constants
O Convert Time constant form in to Pole-Zero form:
G(S) = (8/5)(.5)(.25)(S + 1/.5)(S + 1/.25)/[(.2)(.1)(S+1/.2) (S+1/.1)]
G(S) =K (S+2)(S+4)/(S+5)S+ 10)
K =(8/5)(.5)(.25)/(.2)(.1) = 10
 In Bode & Polar plots we use Time Constant form




BODE PLOT (Method for Drawing)

- 18l o)L=k
G(S) =1/(2+4TS) = G(jw)=1/(1+]Tw)
= |G(jw)| =1/NV(1+(Tw)?); arg[G(jw)] = -tan™(wT)
U The Log — magnitude in dB is given by:
20 Log 10 |G(jw) |= M(w)=20 Log 10 [1/V(1 + (Tw)?)]
M(w)=-10 Log 10 (1 + (Tw)?) ---------- 1
[ Two cases are considered:

1. For Tw <<< 1 (low frequency asymptote); M(w) = 0.0 because (Tw)? can
be neglected as compared to ‘1’

2. For Tw >>> 1 (high frequency asymptote); M(w) =-20 Log 10 (Tw)....... 2;
‘1’ can be neglected

wT (rads) | M(w)indB wT (rads) | M(w) in dB
1 U 100 -40
10 -20
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1. For a decade change in frequency ( 1 to 10, 10 to 100, & so on) the
magnitude changes by -20 dB.

2. Therefore the slope of the magnitude plot is -20 dB/decade change
in frequency.
d We have two plots: for wT<<<1 & wT >>>1
O For wT<<<1; M(w) =0 & for wT >>>1; M(w) has slope of -20 dB/decade

O At wT=1; M(w) in equation (2) = 0 dB & M(w) in equation (1) =0
therefore the two meet at wT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

1 This meeting point is called ‘Corner Frequency’ & is derived from wT=1;
or, w = 1/T is the corner frequency.
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1 The Log-magnitude in dB is plotted as:
mag. in dB T 1/10T  1/T 10/T 107T 1097

/ / | Log

- slope = -20dB/decade
~ \(

( Lo% mag.|Plot — semi log graph paper)

 The Angle Plot: for (L)T<<<1, $=0 , for wT =1, ¢ =-45°; for wT>>>1, p =-90°
N
-457

-902

d(w)




Bode Plots: Different types of Transfer

Functions
|| X O (] _

G(S) = (1+TS) Gljw) =1 +]Tw)
| G(jw)| =V(1 + (Tw)?);  arg[G(jw)] = tan "(wT)
1 The Log — magnitude in dB is given by:
20 Log 10 | G(jw) | = M(w)= 20 Log 10 [N(1 + (Tw)?)]
M(w)=10 Log 10 (1 + (Tw)?) --------
-1
] Two cases are considered:

1.For Tw <<< 1 (low frequency asymptote); M(w) = 0.0 because
(Tw)? can be neglected as compared to ‘1’

2. For Tw >>> 1 (high frequency asymptote); M(w) = 20 Log 10
(Tw)... 2; "1’ can be neglected

wT (rads) M(w) indB

wT (rads)

in dB
1




Bode Plots: Different types of Transfer

Functions

d We observe from the table in the previous slide that,

Q For a decade change in frequency ( 1 to 10, 10 to 100, & so on) the
magnitude changes by 20 dB.

O Therefore the slope of the magnitude plot is 20 dB/decade change
in frequency.

d We have two plots: for wT<<<1 & wT >>>1

Q For wT<<<1; M(w) =0 & for wT >>>1; M(w) has slope of 20
dB/decade

Q At wT=1; M(w) in equation (2) = 0 dB & M(w) in equation (1) =0
therefore the two meet at wT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

O This meeting point is called ‘Corner Frequency’ & is derived from
wT=1; or, w = 1/T is the corner frequency.




Bode Plots: Different types of Transfer

Functions
1 The Log-magnitude in dB is plotted as:

slope = 20dB/decade

mag. In dB % 40
N |

20 |

]

w

1/10T | 1/T 10/T 10T 10T
( LoJ mag. Plot — semi log graph paper)

d The Angle Plot: for wT<<<1, =0, for wT =1, ¢ = 45° for wT>>>1, p = 90°

90°

d(w) ] /




Bode Plots: Different types of Transfer

Functions

d Example:
Consider 1) G1(S)=1/S & 2)G2(S)=S
1) Gl(jw) = 1/jw; |G1l(jw)|= 1/w & G2(jw) = jw; |G2(jw)|= w
2) The Log — magnitude in dB is given by:
20 Log 10 |G1(jw)|= M1(w)= 20 Log 10 [1/w] = -20 Log 10 (w)
20 Log 10 |G2(jw)|= M2(w)= 20 Log 10 [w] = 20 Log 10 (w)

Angle : d1(w) =-90° Angle: p2(w) = 90°
-20 dB/decade (slope) M1(w)

20 dB/decade (slope) M2(w) ¢2(w) = 90°

ng w

w $1(w) =-90°

Log-magnitude plot
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- Ve nave drawn bBode pPIC Of TIrSt orader transter Tur ODNS NaVINg
simple (order 1) pole or a simple (order 1)zero. We now generalize it to
multiple order poles & zeros which may be present in a given transfer

function.
G1(S) =1/(1 + TS} (pole of order ‘m’), &
G2(S) = (1 + TS} (zero of order ‘m’)

G1l(jw) = 1/(1 +j Tw)"™; | G1(jw) | = 1/*V(1+(wT)>+
Log-magnitude ( in dB) = 20 Log10 {1/*V(1+(wT)?+"-

=-10 m Log10 {(1+(wT)*+ ........ 1
Angle =-m tan™(wT)

G2(jw) =(1+jTw)"; | G2(jw) | = *V(1+wT)*+
Log-magnitude ( in dB) = 20 Log10 *V(1+(wT)*+
=10 m Log10 {(1+(wT)?*+ ..........

Angle = m tan™(wT)




Bode Plots: Different types of Transfer
Functions
Log-magn'itude (in dB) = -10 m Log10 {(1+(wT)?]

1 For G2(S) :
Log-magnitude (in dB) = 10 m Log10 {(1+(wT)?]

[ Thus we observe that, for wT>>>1, the
slope of log-mag. plot for pole of order ‘m’ =-20 m dB/decade
slope of log-mag. plot for zero of order ‘m’ = 20 m dB/decade

(1 While the respective angles are given by
-/+ m tan™(wT)

wherem =1,2,3 ... is the order of the pole & zero. So as ‘m’ increases the
slopes and the angle increase.




Bode Plots: Different types of Transfer

Functlons

Consider 1) G1(S)=1/S" & 2)G2(S)=
1) Gl(jw) = 1/(jw)"; |G1(jw)|= 1/w" & G2(jw) = (jw)"; | G2(jw) | = w
2) The Log — magnitude in dB is given by:
20 Log 10 |G1(jw)|=M1(w)=20Log 10 [1/w"+=-20 m Log 10 (w)
20 Log 10 |G2(jw) |= M2(w)= 20 Log 10 [w"+=20 m Log 10 (w)
Angle : d1(w) =-m90° Angle: $2(w) = m90°

(J Here again we observe that the slope for log-magnitude plot of

G1(S) is -20m dB/decade & angle is—m 90°, &
G2(S)is 20m dB/decade & angleis m 90°
1 where, m=1,2,3.... Is the order of the pole and zero
As ‘m’ increases, slopes & angle increase




Bode Plots: Different types of Transfer

Functions
O G(S) = K (1+T; S)(1+T, S)/S™L+ T5S)(L + T, S)

We have a combination of poles & zeros. There can be any
number of poles & zeros in a transfer function. We need to plot
Log-magnitude plot in dB & Angle plot in degrees

d Log-magnitude plot:
G(w) =K (@1 +]Tiw)(1+]Tw)(jw) ™1 +]Tsw)(1 +jT,w)
20 log | G(jw )| =20 log | K (1+j Tiw)(1+] Tow)/(jw) "1+ Tsw)(1+
T4w)|
20 log K + 20 log V(1+ (T,w)? + 20 log V(1 + (T,w)?
-20 m log w -20 log V(1 + (Tzw)? - 20 log V(1+(Tiw)? ..... 1
O From equation (1) we make out that log-magnitude plot in dB, for
a given G(S), is obtained by algebraically adding asymptotic plot
of each pole & zero including the constant gain term ‘K’



Bode Plots: Different types of Transfer
Functions

G(S) =10 (1+S)(1+10S)/S(1 + 5S)(1+20S)
J Bode Plot:

G(jw) =10(1+j 1w)(1+4j 10w)/jw(1+ j 5w)(1 +j 20w)

1. K=10; magnitude in dB=20log 10=20 dB

2. (14jlw); corner frequency wT = 1; w= 1/T; w =1; up to w= 1,
magnitude = 0; for w21, magnitude plot has a slope of 20
dB/decade

3. (14j 10 w); corner frequency wT =1; w=1/10; w =0.1; up to w= 0.1,
magnitude = 0; for w=>0.1, magnitude plot has a slope of 20
dB/decade

4. w; corresponds to pole at origin; magnitude plot has a slope of -20
dB /decade



Bode Plots: Different types of Transfer
Functions

1+j5w); corner frequency wl = 1; w= 1/5; w =0.2; up to w= 0.2,
magnitude = 0; for w>0.2, magnitude plot has a slope of -20
dB/decade

J (1+j 20 w); corner frequency wT = 1; w=1/20; w =0.05; up to w= 0.05,
magnitude = 0; for w>0.05, magnitude plot has a slope of -20
dB/decade.

d The lowest corner frequency is 0.05; therefore we take lowest
frequency in log w scale as 0.005

The complete log- magnitude plot is shown in the next slide




Bode Plots: Different types of Transfer

Functions

J Complete log-magnitude plot: —— complete log-magnitude plot
dB 607

407

20

|
0p0s  0.05 0.1 OIN 5 10 50 500 o
-207 \Qj 5w)

407

-60T We have drawn asymptotic plots for each term in G(S)

(J Now, we algebraically add all the plots keeping in mind that slope
change occurs at corner frequency only; corner frequencies are
0.05, 0.1; slope change begins at these frequencies.




Bode Plots: Different types of Transfer

Functions
1 Complete Angle plot: __

complete Angle plot

135°

90° arg(1+10S)

-90°L arg(1+ 5S)
-135°.
 Constant term introduces ‘0’ phase. At corner frequency angle is +/- 45°. At

ten times the corner frequency angle can be taken as +/- 90°. These are
asymptotic plots for angle of each term in G(S).

d Complete Angle plot is obtained by algebraically addi
plots.




Under damped systems have complex conjugate poles. Let us consider
normalized form of a second order system, given by

Gy = 1/(L+i280-107);
|G(j u) |= 1/v*(1-u?)? +(2&u)*
[ The log-magnitude plotis given Gy
20 log |G(ju) =NI'L) =-20"u1-u?)? +(28u)?]
For u <<<1; higher order terms in u are neglected to obtain
M(u) =0 dB
Foru>>>1; M(u)=-10log u*=-40log u; (2€u)? << u* because €< 1
[ Therefore, log magnitude plot consists of 2 straight line asymptotes
- one horizontal line at ‘0’ dB for u<<<1
- the other, a line with a slope of -40 dB/decade for u>>>1

[ These 2 asymptotes meet on ‘O’'dB lineatu=1;i.e.atw=w



e asymptotic plot for 2"d order system is:
J Asymptotic plots are approx.

p'ofs: croratu - 7.

>nrnz freszuency (w=wn)

doT
20 |
oo4§éfii§g\ 10 100 5 w

-0 J( "N -46 dB/decade (slope)
 Exact Plot: 40 | \\L\@ymptotic plot)
| |

M(u) = -10 log[(1-u?)? +(2€u)?]; Actual plots are drawn around Asymptotic plot.

The log-magnitude plot is given by

We directly substitute for u = 1 & determine M(u) for different ¢ values.
M(u), u=1, is function of €.

u=1 | M(u)

£€=0.1 | 14dB




 The Phase Plot:
The phase angl2 i< given by: dlu) = -tap™2€u/1 1?);

We observe that ¢(u) is a function of u & &. However, at u=1, for any

value of &, d(u) =-<C°.

foru=0; d(u)=0& torm=0o>, hlp) =-180°

L For O<u<1 & 1<u<ee, ¢p(u) is dependent on € value.

0.

1

1

0

10

-90°

180°

N

Incre

P
pasing €




[ Given a transfer function, we know how to draw Bode plot.
J Now we will have the reverse problem:

Given the Bode (log-magnitude) plot how to determine the transfer
function. This is the process of system identification from a given
frequency response. dar A

0

Solution:
Slope of plot ‘1’ = -20 dB/decade

Slope of plot ‘2’ = -40 dB/decade
Corner frequency (wT = 1) corresponding to

plot ‘1’ = 1 rad/sec & plot ‘2’ = 0.1 rads/sec
d The gain up to 1stcorner frequency (= 1 rad/sec) = 0 dB; therefore K= 1
The transfer function, G(S) = 1/(1 + S)(1 + 0.1S)




d Determine G(S) magnitudeT

| N\ ;A0 dB.darade (c<lone)

20
| N

1 |
0.1 1.0 11 i 100.0 ' w
20— — —— — = |
-40 L — -20 dB/decade Slope)

1 Corner frequencies are at w =1 & w = 10 rads/sec

Up to w = 1 rads/sec, the gain(magnitude) = 20 dB. We determine ‘K’
from it. 20 Log 10 K = 20 dB; therefore K = 10.

d At w = 1 rads/sec, magnitude plot falls with a slope of -40 dB/decade.
This corresponds to a double pole term like,1/(1+S)? in G(S). From w =

10 rads/sec, the slope changes to -20 dB/decade, therefore there is a
zero term like (1 + 0.1S) in G(S).

1 Therefore G(S) =K (1 + 0.1S)/(1 + S)?




 Determine G(S): magnitude dBi\
A0t~z — -20 AB/decade (slnpe)
261 - TS~ ---a0ad :
i '\ /trolo /d'ecade-tT o}pe)

c J2 10 £10!0 100.0 w

20k - - _
>

-40- — —-20dB/decade (stopeT

-0 — — - - - = —

d There is a ramp with a slope: -20 dB/decade, starting at w = 0.1 r/s. It
implies a term 1/S in G(S). At w = 1 r/s; its magnitude should be ‘0’ dB,
but it is 20 dB. It implies ‘K’ = 10 in G(S). From w =1 r/s to w= 10 r/s,
the slope is -40 dB/decade. It implies a term 1/(1 + S) in G(S). From w =
10 r/s to w= 100 r/s, the slope is -20 dB/decade. It implies a term (1
+0.15)in G(S).

d Therefore, the transfer function is: G(S) = 10 (1+ 0.1 S)/S(S
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 Determine G(S): magnitude dBJv

4
2)43cecade scp2) 20 0.(B/1fcaje s o)

\“~- — g w
-808)?;3“/_ T >\

-40 -20 dB/decade@oZ;e)

-60

d Starting, there is a ramp slope= 20_dB/decade; it implies a S term in
G(S); its magnitude should = 0 at w = 1 r/s, but it is not so. It implies a
gain term ‘K’ in G(S). To determine ‘K’ we write

J 20 LogK+20logw=-8atw=1r/s;or,20 log K=-8; K= 0.3981
J Fromw =11to 10 r/s; slopeis ‘0’; implies a term 1/(S +1) in G(S). From w
= 10 to 100 r/s ; slope is -20 dB/decade; implies a term 1/(1+ 0.1S) in

G(S). From w=1000 r/s onwards, the slope is ‘0’; implies aterm (1 + O
S) in G(S).

J Therefore, G(S) =0.3981 (1 +0.01S)/(S+1)(1 +




response.
d Nyquist Stability Criterion:
1 The characteristic equation: Q(S) =1 + G(S)H(S) = 0
G(S)H(S) = K (S+Z1)(S+Z2) ......(S + Zm)/(S+P;)(S+P5)... (S+ Pn); m < n
Q(S) = 1+ K (S+Z4)(S+Z3) ......(S + Zm)/(S+P1)(S+P3)... (S + Pn)
On simplification, we write:
Q(S) = (S+Z7)(S+Z2)) ......(S + Zn’)/(S+P1)(S+P5)... (S + Pn)
L We observe that

1 Zeros of Q(S) at S=-Z/,S=-Z,,.....S =-Zn’ are the roots of the
characteristic equation

d Poles of Q(S) at S =-P;, S=-P;,, ... S =- Pn are the same as open loop
poles of the system

d For stable system, zeros of Q(S), roots of characteristic

equation, must be in the LH of the S-plane.




Q(S), poles of CL system, must lie in the LH of the S plane. It means
trat an unstahl? open Iloco system zZan be made <table with an
approp.iate aesign or CL system.

(d The Nyquist Contour:

Since we interested in finding out whether there are any zeros of Q(S) in
the RH of the S plane, we choose a contour that completely encloses RH

of the S plane. This is called Nyquist Contour.

O In CW direction, starting from the origin

of the S plane, we traverse Nyquist Contour.
along the paths C; C; and Cs.
Since R—> oo, entire RH is enclosed



1 From the Nyquist Contour we observe
that for S = jw, along path C,; frequency, w,
vasienuirom ‘') to e
along path Csz frequency, w, varies ir2ny
o0 t0 0. CST

-j==— Nyquist Contour

1 The path C; is a circle of infinite radius ( ® ). Any point on C, can be
represented in polar form as: S = R exp(+/- je). Along C,, while traversing
in the direction of arrows, the angle © varies from 90° to - 90°.

d The Nyquist Contour as defined in the aforesaid lines, encloses all the
right half S plane zeros & poles of 1 + G(S)H(S).




Let,

Z: be the number of zero< of Q’S) in RH of the S plane

P: be the number of poles of Q(S) in RH ur the S plane
1 Nyquist Theorem:

As point S = Sp moves along the Nyquist contour in the S plane, in the

Q(S) plane a closed contour 'q is traversed which encloses the origin ‘N’
times in CCW direction; where N = P-Z.

1 For every point S = Sp on the Nyquist contour, Q(S) has a value. If we plot
the values of Q(S) in the plane called ‘Q(S) plane’, then, according to
Nyquist theorem, we will obtain a closed path, I'q, which will enclose
the origin of ‘Q(S) plane’ ‘N’ times.

1 Stability Criterion:
We know that zeros of Q(S), Z, are the closed loop system
therefore should lie in the LH of the S plan




Therefore, Z = 0 ( for stable CL system).

d Sc “or 2 stehl2 CL system, we Have tyip citations:
for P £ 0:
mm) N=P-Z=P
that the CCW encirclements of the origin of ‘Q(S) plane’ should be equal

to the number of poles, P, of Q(S) (open loop poles of G(S)H(S)) in the
RH of the S plane.

 The above assertion implies that even if the open loop system is
unstable, the CL system can be stable.

J For P = 0: ( no poles of G(S)H(S) in RH of the S plane) the number of
encirclements N = 0 for a stable CL system



J Modified Stability Criterion:
We know that, Q(S) = 1 + G(S)H(S)
= G(S)H(S)=Q(s) -1
 Therefore, we say that while,

['q encircles the origin in Q(S) plane
'GH will encircle (-1,j0) point in the GH plane
O In G(S)H(S) plane, we state the Nyquist Stability Criterion as:
For P #0:

If the contour TGH of the open loop transfer function  G(S)H(S),
corresponding to the Nyquist contour in the S plane, encircles the point (-
1,j0) in the CCW direction as many times as the number of right of S-
plane poles of G(S)H(S), the CL system is stable.

For P = 0: The CL system is stable if no encircleme



Mapping of Nyquist contour in tofGH contour:  j==_ o Splane

Following steps are followed: C1TR -\ 0
| C.
CsT
1. Convert G(S)H(S) in to G(jw) H(jw) <= Nyquist Contour
2.For S = jw; 0 £ w £ o= (segment C;) draw polar (Nyquist) plot in GH
plane

3.For contour C;:S =R exp(j©); R —— oo, Substitute S = R exp(jO©) in
G(S)H(S) and let R —~ oo for =< S < -0, The entire segment maps to
‘0" in the GH plane

4.For -oo< w < 0 (segment C3) draw polar plot for negative frequencies;
which is mirror image of plot for C,.




Ch ~je= Nyquist Contour
O G(S)H(S) = K/(1+T:S) (1+T,S);  C’3is mirror image of C’;

1. Corresponding to C; in I's plane we have the Nyquist plot in TGH
plane as C’;.

2. Corresponding to C, in I's plane we have; S = R exp(j©) in G(S)H(S);
R—— o0
G(S)H(S) = K/(T: R ele+ 1)(T, R ele+ 1) as R ——=o= therefore
G(S)H(S) =0 e 128; |G(S)H(S) |= 0 ; arg{ G(S)H(S)} =-26
On C; ; © varies from +90° to -90° as we move from +joe to -joo
arg {G(S)H(S)} varies from -180° to + 180° . Thisis C’, in
3. C3in TS plane is mapped as C’s ( Nyquist i




Nyquist Method: Examples (Contd..)

1 For the example in previous slide:

We have drawn the Nyquist plot for a given G(S)H(S). Now we need to
determine the stability of its closed loop system.

1 The number of encirclements, N, of (-1,j0) point is given by:
N =P-Z
1 For closed loop system to be stable, Z=0

In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

1 Therefore N should be equal to ‘0, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.
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C’3 T'en plane je= v, S plane
“Tox| ¢ ok A o T
w=0 3 2 1 ' 5
\'j -Llio) / o A 32
N\ \
A | w==={(arg=-90% CgT
c -je= — Nyquist Contour

O G(S)H(S) = (S+2)/(S+ 1)) (S-1); C’3is mirror image of C’;
1.Corresponding to C; in I's plane we have the Nyquist plot in TGH plane
as C's.
2. Corresponding to C; in I's plane we have; S = R exp(j©) in G(S)H(S);
R — oo
G(S)H(S) = (2+ Rei®)/(1+ R e i®)(R ei®-1)as, R—= oo therefore
G(S)H(S) =0e19; | G(S)H(S)|=0; arg{ G(S)H(S)} =-6
on C, ; © varies from +90° to -90° as we move from +joo to -joo
arg{G(S)H(S)} varies from -90° to +90° . Thisis C’, in [
3.C3in TS plane is mapped as C’3 ( Nyqui
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determine the stability

1 Having drawn the Nyquist
of related CL system.

J Observation:
G(S) H(S) has a pole in the RH of the S plane; therefore P = 1
N=P-Z
Z = 0 for stable CL system
Therefore, N=P=1

mm) that the Nyquist plot should encircle (-1,j0)
point once in the CCW direction for the CL
system to be stable.

diagram, we neeo

[ From the Nyquist diagram we that it is encircling (-1,jO) point once in
CCW direction. Therefore, the CL system is stable




Nyquist Method: Examples (Contd..) 35
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1 Case: G(S)H(S) has a pole at the origin of the S plane:
Since there is a pole at the origin

in the S plane, while drawing the

Nyquist contour we bypass the origin
because pole is a singularity.

Bypassing is done by drawing a circle of

very small radius r’; as r — 0. A point on the semi circle, Cq4, is
represented by

S=rei®
(d The Nyquist contour is traversed starting 1) s = j0, to jee (C)
2)S = jooto—joo (C3),3) S= —jeot0 jO- (C3) and 4) S = jO-to jO, (Ca)




Nyquist Method: Examples (Contd..)  35&
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B [6H plane Gy Ti
C's pole at5=0 jo.

o X o
radius Cg —(
C’y C’4 Pathis traversedin the direction of arrows

starting A-O-B-A

d A:w=j0,; |G(jw) H(jw) | =o; arg =-90° B: w = j0.; | G(jw) H(jw) | = o=;
arg =-90°
0: W =joo to-joo; |G(jw) H(jw)| =0; arg =-180° to 180°
C:is mapped in to C’; & C3 is mapped in to C’'3 (Nyquist/polar plot)
(Contd

C, is mapped in to C’;(origin); C4 is mapped in to C',.




Al A

© 00 N O

Ci: mappingin to gy plane: polar plot, C';

C,: mapping in to g, plane: point C’, for S=R ei®
G(S)H(S) = K/ R ei® (14T R €i®) as R —e°
G(S)H(S) = | G(S)H(S) | ei®; O e-i28; arg(G(S)H(S)) = -28
Since © changes from +90 to -90 ; arg(G(S)H(S)) changes from -180°
to + 180°. So we get point ‘O’ in gy plane.
Cs mappinginto C’'4inTgyplaneforS=rei® as s 0
G(S)H(S) = K/ r ei® (1+T r ei®) asr—0
G(S)H(S) = |G(S)H(S)| ei®; oo e-i®; arg(G(S)H(S)) = -¢
Since ¢ changes from -90 to +90 ; arg(G(S)H(S)) changes from 90° to
-90°. So we get C’4 gy plane.



Nyquist Method: Examples

1 For the example in previous Lecture:
We have drawn the Nyquist plot for a given G(S)H(S). Now we need to
determine the stability of its closed loop system.
 The number of encirclements, N, of (-1,j0) point is given by:
N=P-Z
1 For closed loop system to be stable, Z=0
In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

1 Therefore N should be equal to ‘0, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.
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C’s I'eu plane jeo
w=0 s C’3 R',A C'z G 1‘R 2

N <-1ie) e > :
«/\*, P \w= = (arg = -90°) cst
&5 £ —je= Nyquist Contour
G(S)H(S) =K/(S -1); C’sis mirrorimage of C’;
1. Corresponding to C; in I's plane we have the Nyquist plot in TGH plane
as C’s.

2. Corresponding to C, in I's plane we have; S = R exp(j©) in G(S)H(S);

R__. oo
G(S)H(S) = K/ (Rei®-1)as,R oo therefore
G(S)H(S) =0 e -®; |G(S)H(S)[=0; arg, G(S)H(S)- =-6
On C; ; © varies from +90° to -90° as we move from +joo to -joo
arg{G(S)H(S)} varies from -90° to +90° . This is C’; in TGH plane.
3.C3in TS plane is mapped as C’s ( Nyquist plot) in TG
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diagram, we need to determine the stability

1 Having drawn the Nyquist
of related CL system.

(d Observation:
G(S) H(S) has a pole in the RH of the S plane; therefore P = 1

N=P-Z7
Z = 0 for stable CL system
Therefore, N=P=1

mm) that the Nyquist plot should encircle (-1,j0) point once
in the CCW direction for the CL system to be stable.

[ From the Nyquist diagram we that it is encircling (-1,jO) point once in
CCW direction. Therefore, the CL system is stable
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C [en plane jo= . S plane
e 1 |
m=\§ RN / G R A o I
{-1150) Z ] @ : Cs
/N \
0o | ¥ 7 w=0(arg=-90 Cs T
C’5 je= ™ Nyquist Contour
G(SJH(S) = K/(1-S); C’3is mirror image of C';
1.Corresponding to C; in I's plane we have the Nyquist plot in TGH
plane as C’s.

2. Corresponding to C; in I's plane we have; S = R exp(j©) in G(S)H(S);
R.> oo
G(S)H(S) = K/ (Rei®-1)as, R=> oo therefore
G(S)H(S) =0 e ®; |G(S)H(S)|=0; arg, G(S)H(S)- =-6
On C; ; © varies from +90° to -90° as we move from +joo to -joo
arg{G(S)H(S)} varies from -90° to +90° . Thisis C’; in TGH
3.C3in TS plane is mapped as C’s ( Nyquist '




e 00O

Nyquist Method: Examples (Contd..) 35

3

2 IARE §
2

e &
¥ ror W

J Having drawn the Nyquist diagram, we nheed to determine the
stability of related CL system.

(d Observation:
G(S) H(S) has a pole in the RH of the S plane; therefore P = 1

N=P-Z7
Z = 0 for stable CL system
Therefore, N=P=1

that the Nyquist plot should encircle (-1,j0) point
m) once in the CCW direction for the CL system to be
stable.

[ From the Nyquist diagram we that it is not encircling (-1,j0) point
once in CCW direction. Therefore, the CL system is unstable.




¢

MODULE-V
STATE SPACE ANALYSIS AND COMPENSATORS



CLOs Course Learning Outcome

CLO13  pefine the state model of control system using its block
diagram and give the role of diagonalization in state space
analysis.

CLO14  Eormulate the state transmission matrix and explain the
concept of controllability and observability.

CLO 15 Design of lag, lead, lag — lead compensator to improve
stability of control system.




State-Space Modeling

[ Alternative method of modeling a system than
[ Differential / difference equations
 Transfer functions

d Uses matrices and vectors to represent the system parameters and
variables

O In control engineering, a state space representation is a mathematical

model of a physical system as a set of input, output and state variables
related by first-order differential equations.

 To abstract from the number of inputs, outputs and states, the variables
are expressed as vectors.

480
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Motivation for State-Space Modeling | B&
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 Easier for computers to perform matrix algebra

d e.g. MATLAB does all computations as matrix math
[ Handles multiple inputs and outputs
O Provides more information about the system

1 Provides knowledge of internal variables (states)




Definitions

dale

 The state of a dynamic system is the smallest set of variables (called

state variables) such that knowledge of these variables at t=tO
, together with knowledge of the input for t > t0O , completely

determines the behavior of the system for any time t to tO .
State Variables

 The state variables of a dynamic system are the variables making up
the smallest set of variables that determine the state of the dynamic
system.

dIf at least n variables x1, x2, ...... , Xn are needed to completely
describe the behavior of a dynamic system (so that once the input is
given for t > t0 and the initial state at t=tO is specified, the future
state of the system is completely determined), then such n variables
are a set of state variables.



Definitions

(Contd..)

(A state vector is thus a vector that determines uniquely the system
state x(t) for any time t> t0, once the state at t=tO is given and the
input u(t) for t > t0 is specified.

State Space

[ The n-dimensional space whose coordinate axes consist of the x1 axis,
X2 axis, ....., Xn axis, where x1, x2,...... , Xn are state variables, is called
a state space.

O "State space" refers to the space whose axes are the state variables.
The state of the system can be represented as a vector within that
space.



Definitions

(Contd..)

In state-space analysis we are concerned with three types of variables
that are involved in the modeling of dynamic systems: input variables,
output variables, and state variables.

The number of state variables to completely define the dynamics of
the system is equal to the number of integrators involved in the
system.

Assume that a multiple-input, multiple-output system involves n
integrators. Assume also that there are m inputs u,(t), u,(t),....... u.,(t)

and p outputs y4(t), y,(t), -....... Yo(t).



u(m) R Linear >
System
x(n)
v

I_u(t)-|| }_Xﬁt)-|| I_yl(t)—||
et X0 vy = 1Y
um |u(t)| x(n) |x(t)| Iy'(t)||
0] X, (0] s (]

Input vector State vector Output vector




UThe state of a system is described by the set of first-order
differential equations written in terms of the state variables [x; X,
.. X,]. These first-order differential equations can be written In

general fer.[n:a; < +a x

+...a X +b u +--b u
2

11 1 12 1n n 11 1 1m m
X, =a X +a_ X +..a X +b u +--b wu

21 1 22 2 2n n 21 1 2m m
¥ =a X +a X +...a X +b u +--b u




X gy a ay, |_X1—| _ -
b11 b1m |_U1—|
d | X, _ P a 5, a2n||X2|+| : : | : |
dt o
bnl bnm J|_um |
_Xn_ _anl an2 annJ LXnJ

n: number of state variables, m: number of

Inputs. , . . . .
d The colum%umatrlx consisting of the state variables is called the

state vector and is written as
[ X, ]
|

X

|
x = |
|
|
L

2 |




State Model of LTI System (Contd..)

be represented by the compact notation of the state differential
equation as Y=AX+B U
dThis differential equation is also commonly called the state
equation. The matrix A is an nxn square matrix, and B is an nxm
matrix. The state differential equation relates the rate of change of
the state of the system to the state of the system and the input
signals. In general, the outputs of a linear system can be related to
the state variables and the input signals by the output equation

y=CXx+Du

d Where vy Is the set of output signals expressed in column vector
form. The state-space representation (or state-variable
representation) is comprised of the state variable differential
equation and the output equation.



Block diagram representation of a LTI
svstem

X = AX + Bu y = Cx + Du

A= System Matrix(n,n)
B= Input Matrix (n,m)

x= State Vector (n,1)
u= Input Vector (m,1)

C= Output Matrix (p,n)
D= Direct Transmission M
y= Output Vect




Q RLC circuit: modelling I(®

R L
u(t) C —— V()
O Writing differential equations

di
u(t)=L—+Ri(t)+v(t)

dt

dv
i(t)=C —

dt

d2v dv Constant coefficient

u(t) = LC —+ RC —+ v(t) Second order
o’ o DiferentaleqUilion




State Space Representation Example

v(t)

u@® R L

C

u(t)=L % + Ri +v=LC dV+RCﬂ+V

t dt

Can be written




JArmature
controlled DC

motor




U Selecting the - 7

: R - K
armature current i(t) _ —= © 0
and angular| i 7 L, L, i
displacement of the| ° K  _B :
shaft ©(t), and the|@, =] — v 0o
angular velocity of the G I I P
shaft w(t) as the stateL ™ - 0 1 O L-m.
variables.

O The state equations
are as shown in thely, (t)] [é&, ()] [0 0 1]

previous slide. Lyz(t)J [wm(t)J {O 1 OJ

The state  matrix
form as shown beside




State Model Example-1

4 Transfer function of the system s(s) = -
U() S° +6s°+10s+5

4 The differential equation will be obtained by taking inverse Laplace tran
YV+6Yy+10y+5y =u
UThe derivatives of the inputs are not present in the differential

equation,
phase variables can be selected as the state variables

X1 =Y Yy = X1
X, =Y =X X, = X2
X3 = y = X2 X2 = X3

Y= —6y-10y-5y+u X, =—5x1—10x - 6Xx +u

2 3




State Model Example-1 (Contd..)

JState Model in matrix
form




t t
'y'+7y'+5y+6jydt :u'+3u+2judt

0 0

O By differentiating the system equation will be obtained as follows

Y+7Y+5y+6y=u+3u+2u

O Comparing the above equation with standard 3™ order differential
equation y'+a,y+a,y+a,y=b,u+b, u+b,u+b,u

a1:7,a2 :5’a3 :6

U Therefore, b, =0,b, =1,b, = 3,b, =2
B, =b, =0

0

B, =b —ap =1-7x0=1
B, ,=b -ap -ap =3-5x0-7x0=-14

2 2

B,=b -ap -ap -af =2-6x0-5x1-7x(-4

3 3




Xy = X, — ﬁzu

= —a X —a X —a X + u
X3 3 1 2 2 13’83

 The state and output equations are as follows

y = x1+,80u
X, = x2+,81u
X, = x3+,82u

X, = —-6X —-5x —7x +25u
1 2 3




State Model Example-2 (Contd..)

] State Model In vector matrix form

X, | | O 1 0 |[x,] | 1




State Transition matrix

UAssuming that the system is continuous and
linear that A and B are time-invariant and using X = AX + Bu
Laplace transform

sX(s)-x(0)=AX (s)+ BU (s)

(sl —A)X(s) = x(0)+ BU (s)

X(s)=(sl—=A) [x(0)+ BU (s)]

O Taking the inverse Laplace transform of resolvent matrix

O State Transition matrix|o (t) = L™ '[(sl - A ) ']




State Transition matrix (Contd..)

x(t) = e ™x(0) + jeA“-”Bu (r)d 7
0
O The matrix exponential function is defined as

A?t? A K tX
+... +
21 k!

O Which converges for all finite t and any A.

e™ =1+ At + 4 e

O Then the solutionof the state differential equation is found to
be :
X (t) = eAtx(0)+jeA“‘”B u(t)dr

0

X (s)=[sl —AT ' x(0)+[s1 —AT B U(s)



State Transition matrix (Contd..)

(I)(t):eAt_

dwhere we note that [sI-A]-1=¢(

s), which is the Laplace transform of

dThe matrix exponential function ¢(t) describes the unforced
response of the system and is called the fundamental or state

transition matrix.

t

x(t) = @ (t)x(0) + jcp (t—7)Bu (r)dz

0

U Properties of the transition matrix

®(t)y=L "[(sl-A) "]

®(t)=(e™)" =e™

®(0)=1

- @ (kt)

O (t)=D(-t)
O(t,-t)D(t,-t)=D(t, -t,)

O(t, +t,) =0 (t,)D(t,) =D (t,)D(t,)




1 Obtain the STM for the state model

A (1 1]
_|L0 1J
4 Solution:
(s 0] [1 11 [s-1 -1
[S|—A]=|O S|—|0 1|:| |
L 1L | |0 s—1]
fs-=1 071 T[s-1 1]
. ~ | ) |
s(s)=[s —a] - LA L osal o sl
sl— A (s-1)° (s_1)°
[ 1 1]
i ) B *1|S—1 (s—l)2| [fe' te'l
STM = 4(t) =L [g(s)]=L"[sl - A]" =L

| 1
|

L s-1 |




Controllability

Full-state feedback design commonly relies on pole-placement
techniques. It is important to note that a system must be
completely controllable and completely observable to allow the
flexibility to place all the closed-loop system poles arbitrarily. The
concepts of controllability and observability were introduced by
Kalman in the 1960s.

1 Controllability:

A system is completely controllable if there exists an
unconstrained control u(t) that can transfer any initial state x(ty)
to any other desired location x(t) in a finite time, ty<t<T.

Linear SysiengyaVieiling CHEN 503



k+n

k+n

Proof of controllability matrix

— AX k+1+ BU k+1

= A(AX +Bu )+Bu = Azxk+ABu + Bu

+1 k k+1
. n n-1 n-2
= A'X +A Bu + A “Bu +--- + ABuU + Bu
k k k+1 k+(n-2) k+(n-1)
n n-1 n-2
—A'xX =A" "Bu + A" “Bu + -+ + ABuU + Bu
k k k+1 k+(n=-2) k+(n-1)
[ou
~A"x, =[A"'B ... AB Bl
| uk+(n-2)

Luk+(n—1)|

Initial condition




X = AX + Bu

d We can determine whether the system is controllable by
examining the algebraic condition

rank [B AB  A?B . A"!B]=n
dThe matrix A is an nxn matrix an B Is an nx1 matrix. For multi
Input systems, B can be nxm, where m is the number of inputs.

dFor a single-input, single-output system, the controllability
matrix P.is described in terms of A and Bas

p.=[8 AB A2B .. A"'B]

dWhich is nxn matrix. Therefore, if the determinant of Pg IS
nonzero, the system is controllable.



Controllability with Example

dThe determinant of P.=1 and #0 , hence this



equ)gltignsz X U, X =-3x +dx

2 2 1

The output of the system is y=x,. Determine the condition of
controllability.

-2 0] 1]

X = x+| |u , y=[0 1]x+[0]u
o 3] o)
1 (-2 o0 1] [-2]

B = and AB:L | | =] |
o] d =30 L
(1 2]

PCZLO dJ

UdThe determinant of pc is equal to d, which is
when d is nonzero.




Observability

All the poles of the closed-loop system can be placed arbitrarily
In the complex plane if and only if the system is observable.
Observability refers to the ability to estimate a state variable.

 Observabillity:

A system is completely observable if and only if there exists a
finite time T such that the initial state x(0) can be determined
from the observation history y(t) given the control u(t).



Y =Cx,+Du - (1)

Veii = ka + Du

+1 k+1
y = C(Ax + Bu )+ Du = CAx +CBu + Du - (2)
k+1 k k k+1 k k k+1
yk+(n—1)=CA n_1)(|< +CA "Bu . ¥ CA "Bu ap T CBu k+(n-2) + bu K(n-1) (n)
[ C ]
o
(1), (2),--- (n) = | |Xk
| n_1|
[cA ")
- [yk - bu kyk+1 - CBu C Du ket CABuU k+(n-3) - CBu k+(n—2)_Duk+(n—1_)l

T

Inputs & outputs




Observability (Contd..)

U Consider the single-input, single-output system

X = AX + Bu and y = Cx + Du

UWhere C is a 1xn row vector, and x is an nx1 column vector.
This system is completely observable when the determinant of the
observability matrix Pyis nonzero.

C

CA
p, =

0]

[ Rank of Pois n CA




Observability (Contd..)

d Example 1: [ x.] -2 1790x 1 1]

Lo alb [of®

[ X, |
y=[1 0

1
[c 1 [ 1 0]

Po =L J:| | rank [Po]= 2| observable
CA| '|-2 1]

UdThe rank of a matrix is defined by the number of linearly
iIndependent rows and/or the number of linearly independent
columns




Observability (Contd..)

Q Example2: [xil T-2 01lx7 [3]
e T g J' J+L1J1(t)
%] L -1]x,

[ X, |

y=[1 0
L]
c 1 [ 1 0]

Po =\ J:| | rank [Po]=1 | unobservabl
CA| '|-2 0] o




response from a closed loop system.

 Desired response is measured in terms of time domain parameters
(specifications) like, rise time, peak time, settling time and peak
overshoot.

O In terms of frequency response, desired response is measured in terms
of frequency domain specifications like, resonant peak, resonant
frequency and phase at resonant frequency.

 We have studied the relationship between frequency & time domain
parameters and know that one set can be derived from the other.

O If the closed loop system does not meet with the time domain and/or
frequency domain specifications; a compensator is used to achieve the
same.



L It introduces phase lag between its input and output.

It basically is an integrator ( Low Pass Filter)

L It can be of any order, having ‘n’ number of time constants, but it
should yield phase lag between its input & output.

O It is designed using simple RC networks. Operational Amplifiers are
also used to design it.

[ Its attenuated output can be appropriately amplified

] Different Types of Lag Compensators:
L G(S) =K/S; phase =-90°
L G(S) = K/(14TS); phase =-tan' (wT)
Qd G(S)=K (14T, S)/(1+T, S) = tan "(wTy) - tan "(wT,); Tq <
T> Negative angle implies phase lag



Realization of Basic Compensators: La B

G(S) = (S+2)/(S+P) = (2/P) [1+(1/2) S]/[1+(1/P)S]
let,p=Z/P®p P=7/B; Lett=1/Z;T>0mp P=1/(B)
Therefore, G(S)=(S+ 1/t)/[S + 1/(BT)]

m) G(S)=B(1+TS)/(1+BtS);B=2/P>1 ...1

 Equation 1 gives the transfer function of a lead compensator. Since
B>1, it will introduce phase lead between its output & input.

1 Pole-Zero Location: 1/t -1/Bt T

X

 Lead Network: Eo(S)/Ei(S) = (R2 /R:+ R3) [S+1/R2C]/[S|+ 1/R,C(R:+ R2)/R3]
R1 On simplification, we get

ei(t) C I Rz eo(t) Eo(S)/Ei(S) = (1/B) (S
i\




. :(C.oq_td.. .)

Realization Lag Compensators

G(S) = Eo(S)/Ei(S) = (1/B )(S + 1/)/[S + 1/(B1)]
For drawing Bode plot we convert G(S) in to time constant form as:
G(S) = (1 +1S)/(1 + BtS); T : time constant & a is attenuation

T=R2C1

J Bode plot:
From the magnitude plot we 0

|G(jw|in d

BT,

7

&B=(R1+R2)/ Rz

-20 dB/decade

-
\%

observe that gain at higher -20
frequencies is less than at low | 1/B 1/t/"
frequencies. Phase, d° \ ‘ g
(Contd. Next slide) T
wm = 1/vt(Bt)= 1/tVvpB 1)

—




Realization Lag Compensators

(C_ont_d. .)

better than at its input.
Typically B is normally chosen to be 10.0
(d Phase Response:
The phase lead is given by ¢ =tan' (wt) - tan' (Bwt)
tan d = wt (1-B)/[1 + B w? t?]

[ To determine the frequency at which maximum phase lead occurs, we
have dd/dw =0

do/dw =1t/[1 + w2 ?] - Bt/[1 +R?w??] =0
O On simplification, we get w = wm = 1/tVp = V(1/1)(1/BT)

which is geometric mean of two corner frequencies. So at w=wm, we
get maximum phase lag, dm




Realization Lag Compensators

(Contd..)

¢ = tan' (wt) - tan' (Bwt); Substitute for w = wm = 1/tVP

ém = tan' (1/VB) - tai’ (VB)

tan dm = (1-B)/2VPB

Sin ¢m = (1-B)/(1+B)

B =(1- Sin dm)/(1+ Sin dm) ..... 3

From (3) B can be determined for maximum phase lead desired.

Q For phase lead > 60° the network attenuation increases sharply,

therefore for phase lead > 60° it is advisable to use 2 cascaded

lead networks.




L It introduces phase lead between its input and output.

[ It basically is a differentiator ( High Pass Filter)

[ It can be of any order, having ‘n’ number of time constants, but it
should yield phase lead between its input & output.

L It is designed using simple RC networks. Operational Amplifiers are
also used to design it.

[ Its attenuated output can be appropriately amplified

] Different Types of Lead Compensators:

L G(S)=KS; phase= 90°

L G(S) = K(1+TS); phase = tan' (wT)
Q G(S) =K (1+T;: S)/(1+T, S) = tan '(wTy) - tan Y(wT>); T1 > Ta
Positive angle implies phase lead



Realization of Basic Compensators:

Lead

G(S) = (S+2)/(S+P) = (Z/P) [1+(1/2) S])/[1+(1/P)S]
let, a =Z/Pmp P=7Z/a; Lett=1/Z;t>0 mp P =1/(ax)
Therefore, G(S)=(S+ 1/t)/[S + 1/(aT)]

B G(S)=a(l+tS)/(1+atS);a=2/P<1...1

d Equation 1 gives the transfer function of a lead compensator. Since
a<1, it will introduce phase lead between its output & input.

(] Pole-Zero Location:

Lead Network:
Ri
AL

6:1—'% R, eo(t)  Eo(S)/Ei(S) = (S + 1/1)/[S

-1/ax -1/t N
%( \‘o >
Eo(S)/Ei(S) = Rz /*Rz +R1 /(1 + CiR:S)]
On simplification, we get




Realization Lead Compensators

(Contd.)

G(S) = Eo(S)/Ei(S) = (S + 1/7)/[S + 1/(aT)]

For drawing Bode plot we convert G(S) in to time constant form as:

G(S) = a (1 +1S)/(1 + atS); t: time constant & a is attenuation
T=RiC & a=Ry/(Ri+Ry)

U Bode plot: |G(jw| infﬁ 20 dB/decade

From the magnitude plot we 0 \
observe that gain at higher 0 /
frequencies is much higher than 1/t 1/at/"

at low frequencies. Phase,|d°

(Contd. Next slide) T
wm = 1/vVt(at)=1/tVa y

—

\%




Realization Lead Compensators

(Contd..)

B c(JUC - U dllVy U copPOINAU LU VISC, C - Ellc O INOISCE

(S/N) ratio at the output of the lead compensator is poorer than its
input.

Toimprove S/N ratio a is normally chosen to be > 0.1
(1 Phase Response:

The phase lead is given by ¢ = tan' (wt) - tan' (awt)

tan d = wt (1-0)/[1 + a w? 7]

[ To determine the frequency at which maximum phase lead occurs, we

have dd/dw =0

do/dw = t/[1 + w? T?] — at/[1 +a*w? ?] =0

On simplification, we get w = wm = 1/ta = V(1/1)(1/aT)

which is geometric mean of two corner frequencies. So at w=wm, we
get maximum phase lead, dm




Realization Lead Compensators

(Contd..)

¢ = tan' (wt) - tan' (awt); Substitute for w = wm = 1/Wa
ém = tan' (1/Va) - tan' (Va)
tan m = (1-a)/2Va
Sin dm = (1-a)/(1+a)
a = (1- Sin dm)/(1+ Sin dém) ..... 2
d From (2) a can be determined for maximum phase lead desired.

For phase lead > 60° the network attenuation increases sharply,
therefore for phase lead > 60° it is advisable to use 2 cascaded

N

lead networks. .

121 (1/a)




Realization of Basic Compensators: Lag-

Lead

1 Lag Lead Compensator:

Ge(S) = {(S + 1/m)/[S + 1/(Bu)l}| {(S + 1/w)/IS + 1/(at2)]}; B>1; o<l

O Lag & Lead networks are in cascade.

Ge(S) = (S+1/m) (S+ 1/w)/[S + (1/Bti + 1/at2) S + 1/aftTy]
Network:

1 When forward path transfer
_E.Té g Rz function has complex poles close
C2

eo to jw axis, phase lead or lag

ei
NN .
networks are not effective.

(Bridged T Network) In such cases Bridged T networ




Realization of Basic Compensators: Lag-

Lead

1 The transfer function of Bridged T network is given by:

EO(S)/Ei(S) =[ (S+1/R1C1 )(S+1/RzCz )/{S +(1/R1 c1+1/Rz C1+1/Rz Cz)S+1/R1
Rz CiC2}]

d Comparing with G(S), we get
R1 C1=T1} R2C2=T2,' e 1

R1 Rz Cz C1 = (IBT1 T ... 2
1/R: C+1/Ry Ci+1/R; Co = 1/Bt + 1/at,
d From1&2,weget: aBf=1...... 3

From 3 we see that a single lag lead network does not permit us an
independent choice of a & B. Therefore we write G¢(S) as:

Ge(S) = (S + 1/t) (S + 1/T)/[S + 1/Bul[S + B/tz]; for a =1/
and, 1/R1 C1+1/R2 C1+1/R2 Cz = 1/BT1 + B/Tz




Realization of Basic Compensators: Lag-

Lead

] Bode Plot:
mag. dB

-45°

T’

A
-20 dB/decade 20 dB/decade

S

\%

\/

N
e

N
e




Diagonalization

, [0 o770 o] Tf10? o0 ]
\o —1J [o -1 |0 -1%]

1 So Ais diagonalizable if there exists an invertible matrix P such that
P-1AP = D where D is a diagonal matrix.
 Consider a state equatioy'n— aAx + Bu

4 It's characteristic equation Is ‘M N A‘ =0

d The roots of thecharacteristie"equation.aie called eigenvalues of
the matrixA



model matrix will be special matrix called Vander Monde matrix

|_ 1 1 1 —|
| |
|/11 ﬂ'z /1n |
RS
| f -
Lln_l inz—l i:—lj




characteristic  equati;on ;1

|/1I—A|= /1||o 1 o||—

o o 1]

[0
0
|- 6

-11

O Eigen values of the system matrix A are the roots of the

1
0
- 11

0 |
1||

—GU

[ 2
|

0
16

A
11

[Ar- Al=2°+64°+114+6=(A+1)(4+2)(A+3)=0
U The eigen values are AM1=-1, A2=-2, A3=-3

dThe matrix A has distinct eigen values, hence the modal matrix can

be written directly in vander monde form as

[ 1 1 1] |1

y |

2

1,
PRI HEF

1

Ay Ay =-1 -2

4

1]
_3||

9 ||

0
-1 |
/1+6|J




Diagonalization (Contd..)

-6 6 -2 [ 6 5 1]

g2V 1l g T
A o Y |

-1 2 -1 2 3 1]

O The diagonal matrix is given by
1{6 5 1”0 1 011 1 17 [-1 0 0




