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COs Course Outcomes 

CO1 Classify the types and configurations of control systems and
describe the mathematical models of dynamic systems

CO2 Apply various techniques to obtain transfer functions and 
examine the time response of control systems using standard 
test signals

CO3

Analyze the system response and stability in time domain

CO4 Examine the characteristics and stability of control systems in 
frequency domain.

CO5 Obtain the models of control systems in state space form and 
design compensators to meet the desired specifications.



MODULE-I
INTRODUCTION AND MODELING OF PHYSICAL SYSTEMS
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CLOs Course Learning Outcome

CLO1
Differentiate between open loop, closed loop system
and their importance in real time applications.

CLO2 Predict the transfer function of translational and
rotational mechanical, electrical system using
differential equation method.

CLO3
Differentiate between open loop, closed loop system
and their importance in real time applications.
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What is Control System?
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 A system Controlling the operation of another system.

 A system that can regulate itself and another system.

 A control System is a device, or set of devices to manage,

command, direct or regulate the behaviour of other device(s)

or system(s).



Definitions
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System – An interconnection of elements and devices for a desired

purpose.

 Control System – An interconnection of components forming a system

configuration that will provide a desired response.

Process – The device, plant, or system under control. The input and

output relationship represents the cause-and-effect relationship of the

process.

Process OutputInput



 Controlled Variable– It is the quantity or condition that is measured

and Controlled. Normally controlled variable is the output of the

control system.

 Manipulated Variable– It is the quantity of the condition that is

varied by the controller so as to affect the value of controlled

variable.

 Control – Control means measuring the value of controlled variable

of the system and applying the manipulated variable to the system

to correct or limit the deviation of the measured value from a

desired value.

Definitions (Contd..)
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 Disturbances– A disturbance is a signal that tends to adversely

affect the value of the system. It is an unwanted input of the system.

 If a disturbance is generated within the system, it is called internal

disturbance. While an external disturbance is generated outside the

system.

Output  
Or
Controlled Variable

Input
or
Set point  
or  
reference

Controller Process

Manipulated Variable

Definitions (Contd..)
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 Open-Loop Control Systems utilize a controller or control actuator

to obtain the desired response.

 Output has no effect on the control action. No feedback – no

correction of disturbance

 In other words output is neither measured nor fed back.

OutputInput Controller Process

Examples:- Washing Machine, Toaster, Electric Fan

Types of Control System
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 Since in open loop control systems reference input is not

compared with measured output, for each reference input there

is fixed operating condition.

 Therefore, the accuracy of the system depends on calibration.

 The performance of open loop system is severely affected by the

presence of disturbances, or variation in operating/

environmental conditions.

Types of Control System (Contd..)
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 Closed-Loop Control Systems utilizes feedback to compare the 

actual  output to the desired output response.

Examples:- Refrigerator, Iron

Controller
OutputInput

ProcessComparator

Measurement

Types of Control System (Contd..)

11



Types of Control System (Contd..)
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 Simple control is often open-loop

- user has a goal and selects an input to a system to try to

achieve this



More sophisticated arrangements are closed-loop

- user inputs the goal to the system

Types of Control System (Contd..)
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 Feedback Control System: A system that maintains a prescribed

relationship between the output and some reference input by

comparing them and using the difference (i.e. error) as a means of

control is called a feedback control system.

 Feedback can be positive or negative.

Controller OutputInput Process

Feedback

+-
error

Types of Control System (Contd..)
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Examples of Control Systems
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 Room temperature control



Examples of Modern Control Systems
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 Aero plane landing system



Thermostat Example
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furnace  

orAC

thermo-

stat

desired  

temp.

actual  

temp.

thermo-

stat
room air

 Set thermostat to desired room temperature

 Thermostat measures room temperature

 Furnace or AC turn on if measured <> desired

 Air from furnace or AC changes room air temperature

external  air



Toilet Flush Example
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valve

float

desired  

level

actual  

level
float

water  

tank

 Float height determines desired water level

 Flush empties tank, float is lowered and valve opens

 Open valve allows water to enter tank

 Float returns to desired level and valve closes

flush



Mathematical Model
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 A mathematical model is a set of equations (usually differential

equations) that represents the dynamics of systems.

 In practice, the complexity of the system requires some

assumptions in the determination model.

 How do we obtain the equations?

 Physical law of the process Differential Equation

 Examples:

– Mechanical system (Newton’s laws)

– Electrical system (Kirchhoff’s laws)



Basic Types of Mechanical Systems
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 Translational

 Linear Motion

 Rotational

Rotational Motion



Elements of Translational Mechanical Systems
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Translational  Spring Translational Mass

Translational  Damper

These systems mainly consist of three basic elements. Those are 
mass, spring and dashpot or damper.



Translational Spring

Circuit Symbols

Elements of Translational Mechanical Systems
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 A translational spring is a mechanical element that can be deformed

by an external force such that the deformation is directly

proportional to the force applied to it.

Translational Spring



Elements of Translational Mechanical Systems
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Fα x =>

=>

Spring is an element, which
stores potential energy.

Where,

•F is the applied force

•Fk is the opposing force due to elasticity of spring

•K is spring constant

•x is displacement



Elements of Translational Mechanical Systems
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Translational MassTranslational Mass is an  inertia
element.

A mechanical system  without 
mass does not exist.

 If a force F is applied to a mass and
it is displaced to x meters then the
relation b/w force and
displacements is given by Newton’s
law.

M
F ( t )

x ( t )

=>

=>



Elements of Translational Mechanical Systems
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Where,

•F is the applied force

•Fm is the opposing force due to mass

•M is mass

•a is acceleration

•x is displacement

Dash Pot: If a force is applied on dashpot B, then it is opposed by an

opposing force due to friction of the dashpot. This opposing force is

proportional to the velocity of the body. Assume mass and elasticity

are negligible.



Elements of Translational Mechanical Systems

=>

=>

Where,

• Fb is the opposing force due to friction of dashpot

• B is the frictional coefficient

• v is velocity

• x is displacement



Transfer function of Translational Mechanical Systems
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 The mechanical system requires just one differential equation,
called the equation of motion, to describe it.

Assume a positive direction of motion, for example, to the right.
This assumed positive direction of motion is similar to assuming a

current direction in an electrical loop.
 First, draw a free-body diagram, placing on the body all forces that
act on the body either in the direction of motion or opposite to it.

 Second, use Newton’s law to form a differential equation of motion
by summing the forces and setting the sum equal to zero.

 Finally, assuming zero initial conditions, we take the Laplace
transform of the differential equation, separate the variables, and
arrive at the transfer function.



Elements of Rotational Mechanical Systems
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These systems mainly consist of three basic elements. Those

are moment of inertia, torsional spring and dashpot.

Moment of Inertia

In translational mechanical system, mass stores kinetic energy.

Similarly, in rotational mechanical system, moment of inertia

stores kinetic energy.



Elements of Rotational Mechanical Systems
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=>

=>

Where,

• T is the applied torque

• Tj is the opposing torque due to moment of inertia

• J is moment of inertia

• α is angular acceleration

• θ is angular displacement



Elements of Rotational Mechanical Systems
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Torsional Spring:

In translational mechanical system, spring stores potential energy.

Similarly, in rotational mechanical system, torsional spring

stores potential energy.

=>

=>

Where,
• T is the applied torque
• Tk is the opposing torque due to elasticity of torsional spring
• K is the torsional spring constant
• θ is angular displacement



Elements of Rotational Mechanical Systems
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Dashpot

If a torque is applied on dashpot B, then it is opposed by an opposing 

torque due to the rotational friction of the dashpot.

=>

=>

Where,
• Tb is the opposing torque due to the rotational friction of the 
dashpot
• B is the rotational friction coefficient
• ω is the angular velocity
• θ is the angular displacement



Example#1 on MTS
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 Consider the following system

 Free Body Diagram

M
F

f k

M
f

f B

F  f k  f M  f B

2

1

Ms  Bs  k

X ( s )


F ( s )



M

f  (  t ) f M

 Find the transfer function of the mechanicaltranslationalsystem  
given in Figure.

Free Body Diagram

f k f B

BMk
f ( t )  f  f  f

2

1

Ms  Bs  k

X ( s )


F ( s )

Example#2 on MTS
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Find the transfer function X2(s)/F(s) of the following system.

Free Body Diagram

M1

f k
1

f M
1

f B

M2

F ( t )

f k
1

f M
2

f Bf k
2

k 2

F ( t )  f k  f k  f M  f B
1 2 2

0  f k  f M  f B
1 1

Example#3 on MTS
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Mathematical Model of Electrical System
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The mathematical model of electrical systems can be obtained by 

using resistor, capacitor and inductor



The following mathematical models are mostly used.

Differential equation model

Transfer function model

State space model

Example: RLC Circuit 

Mesh equation for this circuit is

Where

The above equation is a second order differential equation.

Mathematical Model of Electrical Systems:

36



Transfer Function Model
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The Transfer function of a Linear Time Invariant (LTI) system is

defined as the ratio of Laplace transform of output and Laplace

transform of input by assuming all the initial conditions are zero.

If x(t) and y(t) are the input and output of an LTI system, then the

corresponding Laplace transforms are X(s) and Y(s).

The transfer function model

of an LTI system is shown in the

following figure.



Transfer Function of Linear System
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1

1

Cs





I ( s)



V ( s )  R  1

2

 Cs

 
V ( s )    I ( s )






Cs 






 
 Cs 

 

1  sRC

1

1

1

V 
1 
(s ) 

R 

V 
2 
( s )

Transfer  function



Transfer Function of Linear System
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The differential equation of an RLC network is

Apply Laplace transform on both sides.



Transfer Function of Linear System

The transfer function model of RLC system is shown below.

Transfer Function of Armature Controlled DC Motor:

40



Transfer Function of Linear System

Let Ra = Armature resistance,
La = Armature inductance
Ia = Armature current
Va = Armature voltage
eb = Back emf
Kt = Torque constant
T = Torque developed by motor
θ = Angular displacement of shaft
J = Moment of inertia of motor and load
B = Frictional coefficient of motor and load
Kb= Back emf constant

The equivalent circuit of armature is shown in the below figure.

41



Transfer Function of Linear System
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By kirchoff’s voltage law

The torque is

The mechanical system of dc motor is shown in figure.    



Transfer Function of Linear System

43

By solving the above equations



Transfer Function of Linear System

44

Where La/Ra =Ta=electrical time constant

And J/B = Tm= Mechanical time constant



Transfer Function of Field Controlled DC Motor
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The speed of a DC motor is directly proportional to armature

voltage and inversely proportional to flux. In field controlled DC

motor the armature voltage is kept constant and the speed is varied

by varying the flux of the machine.

http://www.electricalengineeringinfo.com/2014/03/speed-control-of-dc-motors.html


Transfer Function of Field Controlled DC Motor

The equivalent circuit of field is shown in the below figure.

By Kirchoff 's voltage law, we can write

The torque is 

The mechanical system of dc motor is shown in figure

46
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Transfer Function of Field Controlled DC Motor

Let Rf = Field resistance

Lf = Field inductance

if = Field current

Vf= Field voltage

T = Torque developed by motor

Kt = Torque constant

J = Moment of inertia of rotor and load

B = Frictional coefficient of rotor and load

47



Transfer Function of Field Controlled DC Motor
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The mechanical system of the motor is shown in the below figure.

The differential equation for the above is

transfer function of field controlled dc motor.



Transfer Function of Field Controlled DC Motor
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where Km = Ktf/RfB = Motor gain constant

Tf = Lf/Rf = Field time constant

Tm = J/B = Mechanical time constant

Electrical Analogous of mechanical Translational System:

 As the electrical systems has two types of inputs either voltage or 

current source. There are two types of analogies .

•Force- Voltage analogy

•Force- Current analogy



Force- Voltage Analogy:
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Force- Voltage Analogy:
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Force- Current Analogy:

52



Force- Current Analogy:
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Conversion from Electrical to Mechanical:
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Procedure for Conversion from Electrical to Mechanical:

Start with an electrical circuit. Label all node voltages.

Draw over circuit, replacing electrical elements with their analogs; 

current sources replaced by force generators, voltage sources by 

input velocities, resistors with friction elements, inductors with 

springs, and capacitors (which must be grounded) by masses. Each 

node becomes a position (or velocity)

Label currents, positions, and mechanical elements as they were in 

the original electrical circuits.



Conversion from Electrical to Mechanical:
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Example:
Step1:

Step 2:

Step 3:



Conversion from mechanical to Electrical:
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Procedure for Conversion from Electrical to Mechanical:

Start with the mechanical system. Label all positions.

Draw over circuit, replacing mechanical elements with their

analogs; force generators by current sources, input velocities by

voltage sources, friction elements by resistors, springs by inductors,

and masses by capacitors (which are grounded). Each position

becomes a node.

Label nodes and electrical elements as they were in the original

mechanical system.



Conversion from mechanical to Electrical:
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Example:
Step 1:

Step 2:                                  Step 3: 



MODULE-II
BLOCK DIAGRAM REDUCTION AND  TIME RESPONSE

ANALYSIS

58



CLOs Course Learning Outcome

CLO4 Apply the block diagram and signal flow graph technique

to determine transfer function of an control systems.

CLO5 Demonstrate the response of first order and second order

systems with various standard test signals.

CLO6 Estimate the steady state error and its effect on the

performance of control systems and gives the importance

of PID controllers.
59



 We often represent control systems using block diagrams. A block

diagram consists of blocks that represent transfer functions of the

different variables of interest.

 If a block diagram has many blocks, not all of which are in cascade,

then it is useful to have rules for rearranging the diagram such that

you end up with only one block.

Block Diagram Algebra

60



Reduction techniques

61

G 2G 1 G
1 
G 

2

1. Combining blocks in cascade

G 1

G 2

21
G  G

2. Combining blocks in parallel



3. Moving a summing point behind a block

G G

G

Reduction techniques

62

4. Moving a summing point ahead of a block

G

1

G

G
-



5. Moving a pickoff point ahead of a block

G G

G G

1

G

G

4. Moving a pickoff point behind a block

Reduction techniques

63



6. Eliminating a feedback loop

G

H

G

1  GH

A B B A

G

H  1

7. Swap with two neighboring summing points

G

1  G

Reduction techniques

64



Signal flow graphs

65

 Alternative method to block diagram representation, developed

by Samuel Jefferson Mason.

 Advantage: the availability of a flow graph gain formula, also

called  Mason’s gain formula.

 A signal-flow graph consists of a network in which nodes are 

connected  by directed branches.

 It depicts the flow of signals from one point of a system to another 

and  gives the relationships among the signals.



Fundamentals of Signal Flow Graphs
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 Every variable in a signal flow graph is designed by a Node.

 Every transmission function in a signal flow graph is designed by a

Branch.

Branches are always unidirectional.

The arrow in the branch denotes the direction of the signal flow.

Consider a simple equation below and draw its signal flow graph:

Y = ax

The signal flow graph of the equation is shown below;

x y
a



Terminologies
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An input node or source contain only the outgoing branches. i.e.,X1

An output node or sink contain only the incoming branches. i.e., X4

A path is a continuous, unidirectional succession of branches along 

which  no node is passed more than ones. i.e.,

X1  to X2 to X4 X2 to X3 to X4

A forward path is a path from the input node to the output node.



Terminologies
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 A feedback path or feedback loop is a path which originates and

terminates on the same node i.e.:

X2 to X3 and back to X2 is a feedback path.



A self-loop is a feedback loop consisting of a single branch. i.e.; A33 

is a self loop.

 The gain of a branch is the transmission function of that branch.

 The path gain is the product of branch gains encountered in

traversing a path. i.e. the gain of forwards path X1 to X2 to X3 to 

X4 is A21A32A43

Terminologies

69



Terminologies
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The loop gain is the product of the branch gains of the loop. i.e.,

the loop gain of the feedback loop from X2 to X3 and back to X2 is

A32A23.

 Two loops, paths, or loop and a path are said to be non-touching if

they have no nodes in common.



Block Diagram Reduction-Example-1
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 For the system represented by the following block diagram
determine:

1. Open loop transfer function

2. Feed Forward Transfer function

3. control ratio

4. feedback ratio

5. error ratio

6. closed loop transfer function

7. characteristic equation



 First we will reduce the given block diagram to canonical form

K

s   1

Block Diagram Reduction-Example-1 (Contd..)

72



K

s   1

s
K

K

G

s  1
1 

s  1


1  GH

Block Diagram Reduction-Example-1 (Contd..)

73



1. Open loop transfer function 

2. Feed Forward Transfer function

3. Control ratio 

4. Feedback Ratio 

5.Error ratio

6. Closed loop transfer function 

7. Characteristic equation 

G (s )

H ( s)

Block Diagram Reduction-Example-1 (Contd..)

74

1  G ( s ) H ( s )  0



Block Diagram: Reduction Example-2
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R

+ _

_

+G 1 G
2

G
3

H
1

H
2

+
+

C



R

+ _

_

+ G 1 G
2

G
3

H
1

2

G
1

H

+
+

C

Block Diagram: Reduction Example-2 (Contd..)
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R

+ _

_

+ G
1 
G 

2
G

3

H
1

2

G
1

H

+
+

C

Block Diagram: Reduction Example-2 (Contd..)
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R

+ _

_

+ G
1 
G 

2
G

3

H
1

2

G
1

H

+
+

C

Block Diagram: Reduction Example-2 (Contd..)
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R

_+

_

+
11 2

G
1
G

2

1  G G H
G

3

2

G
1

H

C

Block Diagram: Reduction Example-2 (Contd..)
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R

+ _

_

+
11 2

G
1
G

2
G

3

1  G G H

2

G
1

H

C

Block Diagram: Reduction Example-2 (Contd..)
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R

+ _
2

G
1
G

2
G

3

1  G G H  G G H
1 2 1 2 3

C

Block Diagram: Reduction Example-2 (Contd..)
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R

1 2 321 2
 G G G

G
1
G

2
G

3

H  G G H
1 2 3

1  G G

C

Block Diagram: Reduction Example-2 (Contd..)

82



Mason’s Rule

83

The block diagram reduction technique requires successive

application of fundamental relationships in order to arrive at the

system transfer function.

On the other hand, Mason’s rule for reducing a signal-flow graph to

a single transfer function requires the application of one formula.

The formula was derived by S. J. Mason when he related the signal-

flow graph to the simultaneous equations that can be written from

the graph.



The transfer function, C(s)/R(s), of a system represented
by a signal-flow graph is;

Where

• n= number of forward paths.

• Pi = the i th forward-path gain.

• ∆ = Determinant of the system

• ∆i = Determinant of the ith forwardpath

• ∆ is called the signal flow graph determinant or characteristic

function. Since ∆=0 is the system characteristic equation.



n

 Pi  i

i1

R (s )

C ( s )

Mason’s Rule

84



∆ = 1- (sum of all individual loop gains) + (sum of the products of
the gains of all possible two loops that do not touch each other) –
(sum of the products of the gains of all possible three loops that do
not touch each other) + … and so forth with sums of higher number
of non-touching loop gains

∆i = value of Δ for the part of the block diagram that does not touch
the i-th forward path (Δi = 1 if there are no non-touching loops to the
i-th path.)



n

 Pi  i

i1

R (s )

C ( s )

Mason’s Rule

85



 Calculate forward path gain Pi for each forward path i.

 Calculate all loop transfer functions

 Consider non-touching loops 2 at a time

 Consider non-touching loops 3 at a time etc

 Calculate Δ from steps 2,3,4 and 5

 Calculate Δi as portion of Δ not touching forward path i

Systematic approach

86



 Apply Mason’s Rule to calculate the transfer function of the system

represented by following Signal Flow Graph



3

P   P   P 
 Pi  i

i 1  1 1 2 2 3 3

 R ( s )

C ( s )

There are three forward paths, therefore n=3.

Example

87



Example: Forward Paths
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P2  A72
A32 A 43 A54 A 65 A76P1 

P3  A 42 A54 A65 A76



Example: Loop Gains of the Feedback Loops
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A32 A23
L1 

L 2  A 43 A34

L 3  A54 A 45

A 65 A56L 4 

76 675
L  A A

776
L  A

7 42 A34 A23L  A

L8  A65 A76 A67

9 72 A57 A 45 A34 A 23
L  A

10 72 A67 A56 A 45 A34 A 23L  A



Example: two non-touching loops
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L1 L3

L1 L4

L1 L5

L1 L 6

L1 L8

L 2 L4

L 2 L5

L 2 L6

L 2 L8

L 3 L 5

L 3 L 6

L 4 L6

L 4 L7

L 5 L 7 L 7 L8



Example: Three non-touching loops
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L1 L3

L1 L4

L1 L5

L1 L 6

L1 L8

L 2 L4

L 2 L5

L 2 L6

L 2 L8

L 3 L 5

L 3 L 6

L 4 L6

L 4 L7

L 5 L 7 L 7 L8



Apply Mason’s Rule to calculate the transfer function of the system  

represented by following Signal Flow Graph




2 21 1
C P   P 

R

 Therefore,

L1   G 1G 4 H 1 , L 2   G1G 2 G 4 H 2 , L 3  G 1G 3 G 4 H 2

 There are three feedback loops

Signal Flow Graph:Example#1

92

 There are two forward paths:

P  G G G , P  G G G
1 1 2 4 2 1 3 4



There are no non-touching loops, therefore

∆ = 1- (sum of all individual loop gains)

  1  L1  L 2  L 3 

  1  G1G 4 H 1  G 1G 2 G 4 H 2  G 1G 3 G 4 H 2 

Signal Flow Graph:Example#1 (Contd..)

93



 Eliminate forward path-1

∆1 = 1- (sum of all individual loop gains)+...
∆1 = 1

 Eliminate forward path-2

∆2 = 1- (sum of all individual loop gains)+...

∆2 = 1

Signal Flow Graph:Example#1 (Contd..)
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21 3 41 2 4 211 4

1 1 2 2 1 2 4 1 3 4

G H  G G G HH  G G1  G G

C P   P  G G G  G G G 

R
 



L1   G 2 H 2 , L 2    H 3 G 3 , L 3    G 6 H 6 , L 4  G 7 H 7

3. Consider two non-touching loops. L1L3 L1L4 L2L4 L2L3

1. Calculate forward path gains for each forward path.

P  G  G G G (path 1) and P  G  G G G (path 2)
1 1 2 3 4 2 5 6 7 8

2. Calculate all loop gains.

P1

P2

Signal Flow Graph:Example#2
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4. Consider three non-touching loops. 

None.

5. Calculate Δ from steps2,3,4.

  1  L1  L 2  L 3  L 4  L1 L 3  L1 L 4  L 2 L 3  L 2 L 4 

G 2 H 2 G 6 H 6  G 2 H 2 G 7 H 7  H 3 G 3 G 6 H 6  H 3 G 3 G 7 H 7 

 G 7 H 7  1  G 2 H 2  H 3 G 3    G 6 H 6 

Signal Flow Graph:Example#2 (Contd..)
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 Eliminate forward path-1

 1  1  L3  L 4 

 1  1  G 6 H 6  G 7 H 7

 Eliminate forward path-2

  1  L  L 
2 1 2

 2  1  G 2 H 2  G 3 H 3 

Signal Flow Graph:Example#2 (Contd..)
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


2 21 1
P   P Y (s )

R ( s )

G 1 G 2 G 3 G 4 1  G 6 H 6  G 7 H 7  G 5 G 6 G 7 G 8 1  G 2 H 2  G 3 H 3 


R ( s ) 1  G 2 H 2  H 3 G 3  G 6 H 6  G 7 H 7  G 2 H 2 G 6 H 6  G 2 H 2 G 7 H 7  H 3 G 3 G 6 H 6  H 3 G 3 G 7 H 7 

Y ( s)

Signal Flow Graph:Example#2 (Contd..)
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G4G3

Block Diagram to SFG:Example#3

99

－

－

－

C(s)R(s)
1 G2

H2

H1

G4G3

H3

E(s)
G

X1

X2

X3

R(s) C(s)

－H1

－H2

－H3

X1 X3E(s) G1
1 G2 X2



1

3 4 12 3 21 2 3 4 3

  1P   G G G G ;
1 1 2 3 4

 G  G  H ) G  G H  1  ( G G G G H

3 4 11 2 3 4 3 2 3 2

G
1
G

2
G

3
G

4

 G  G HR ( s ) 1  G G G G H  G G H

C ( s )
G  

R(s) G4G3G21

－H1

－H2

－H3

X1 X2 X3 1 C(s)E(s) G1

Block Diagram to SFG:Example#3 (Contd..)
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 Example-1: Convert the block diagram into a signal flow graph:

101

Block Diagram to SFG:Example#3 (Contd..)



 If desired, simplify the signal-flow graph to the one shown in  Figure 

(c) by eliminating signals that have a single flow in and a  single flow 

out, such as V2(s), V6(s), V7(s), and V8(s).

102

Block Diagram to SFG:Example#3 (Contd..)



Exaple-2: Consider the signal flow graph below and identify the following

10

3

a) Input node.

b) Output node.

c) Forward paths.

d) Feedback paths.

e) Self loop.

f) Determine the loop gains of the feedback loops.

g) Determine the path gains of the forward paths.

Signal Flow Graph:Example



 Example-2: Answers

104

Signal Flow Graph:Example



Example-3: Consider the signal flow graph below and identify the  
following;

There are four loop gains;

There are two forward path
gains;

Nontouching loops;
1.

Nontouching loop gains;

105

Signal Flow Graph:Example



Example-5: Determine the control ratio C/R and the canonical block  
diagram of the feedback control system.

106

Signal Flow Graph:Example



Example-5: Continue.

107



Example-5:Continue 

108



Introduction

10

9

 In time-domain analysis the response of a dynamic system to an

input is expressed as a function of time.

 It is possible to compute the time response of a system if the nature

of input and the mathematical model of the system are known.

 Usually, the input signals to control systems are not known fully

ahead of time.

 It is therefore difficult to express the actual input signals

mathematically by simple equations.



Standard Test Signals

11

0

 The characteristics of actual input signals are a sudden shock, a

sudden change, a constant velocity, and constant acceleration.

 The dynamic behavior of a system is therefore judged and

compared under application of standard test signals – an impulse,

a step, a constant velocity, and constant acceleration.

 The other standard signal of great importance is a sinusoidal signal.



Standard Test Signals

11

1

 Impulse signal

The impulse signal imitate the sudden shock characteristic of
actual input signal.

 If A=1, the impulse signal is called unit  

impulse signal.
0

t

δ(t)

A
0

t  0

t  0

 A
 ( t )  



Standard Test Signals
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 Step signal

The step signal imitate the

sudden change characteristic

of actual input signal.

 If A=1, the step signal is called  

unit step signal

t  0

t  0

 A  
u ( t )  

0

0
t

u(t)

A



Standard Test Signals

11

3

 Ramp signal: The ramp signal imitate the

constant velocity characteristic of actual

input signal.

 If A=1, the ramp signal is called  

unit ramp signal



0

t  0

t  0

 At
r ( t )  0

t

r(t)

r(t)

unit ramp signal

r(t)

ramp signal with slope A



Standard Test Signals

11

4

 Parabolic signal

The parabolic signal imitate the
constant acceleration characteristic of
actual input signal

 If A=1, theparabolic signal is

called unit parabolic signal.





0

2

2

t  0

t  0
 At

p ( t )  

0
t

p(t)

parabolic signal with slope A

p(t)

Unit parabolic signal

p(t)



Relation between standard Test Signals

11

5

 Impulse

 Step

 Ramp

 Parabolic

0

t  0

t  0

 A
 ( t )  



t  0

t  0

 A
u ( t )  

0

t  0

t  0

 At  
r ( t )  

0





0

2

2

t  0

t  0
 At

p ( t ) 







dt

d

dt

d

dt

d



Laplace Transform of Test Signals

11

6

 Impulse

 Step

0

t  0

t  0

 A
 ( t )  

L { ( t )}   ( s )  A

t  0

t  0

 A  
u ( t )  

0

A
L { u ( t )}  U ( s )

S



Laplace Transform of Test Signals

11

7

 Ramp

 Parabolic

s
2

A
L { r ( t )}  R ( s ) 

S
3

A
L{ p ( t )}  P ( s ) 

t  0

t  0

 At  
r ( t )  

0





0

2

2

t  0

t  0
 At

p ( t )  



Time response

118

System

The time response of any system has two components

• Transient response

• Steady-state response

Time response of a dynamic system response to an

input  expressed as a function of time.



When the response of the system is changed from equilibrium it  

takes some time to settle down.

This is called transient response.

2 4 6 8 14 16 18 20
0

0

1

3

2

4

5

6

10 12

Time (sec)

Response

Step Input

Transient Response

S
te

a
d

y
 S

ta
te

R
e
s
p

o
n

s
e

The response of the

system after the transient

response is called steady

state response.

Time response (Contd..)

11

9



Transient response depend upon the system poles only and not  on 

the type of input.

It is therefore sufficient to analyze the transient response using

a step input.

The steady-state response depends on system dynamics and  

the input quantity.

It is then examined using different test signals by final value  

theorem.

Time response (Contd..)

120



 The first order system has only one pole.

 Where K is the D.C gain and T is the time constant of the system.

 Time constant is a measure of how quickly a 1st order system

responds to a unit step input.

 D.C Gain of the system is ratio between the input signal and the

steady state value of output.

Time response (Contd..)

121



3

s  5
G ( s )  

1 / 5 s  1

3 / 5

 D.C Gain of the system is 3/5 and time constant is

1/5  seconds.

Time response (Contd..)

12

2

 The first order system given below. 

 D.C gain is 10 and time constant is 3 seconds.

 For the following system



Impulse Response of 1st Order System

12

3

 Consider the following 1st ordersystem

K

Ts  1
C ( s )R ( s )

0
t

δ(t)

1

R ( s )   ( s )  1

K
C ( s ) 

Ts  1



T

K
e 
 t /T

c ( t ) 

K
C ( s ) 

Ts  1

 Re-arrange following equation as

K / T
C ( s ) 

s   1 /T

In order to compute the response of the system in time domain

we need to compute inverse Laplace transform of the above

equation.

C
L

 at
 Ce








 s  a

1 

Impulse Response of 1st Order System
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If K=3 and T=2s then

2 4 6 8 10
0

0

0.5

1

1.5

Time

c
(t

)
K/T*exp(-t/T)

Impulse Response of 1st Order System
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 Consider the following 1st ordersystem

K

Ts  1
C ( s )R ( s )

1

s
R ( s )  U ( s ) 

K

s Ts  1
C ( s ) 

In order to find out the inverse Laplace of the above equation,
we need to break it into partial fraction expansion

K KT
C ( s)  

s Ts  1

Step Response of 1st OrderSystem

126




 1 T

 s Ts  1 

 Taking Inverse Laplace of above equation

C ( s )  K  

c ( t )  K u ( t )  e 
 t / T 

 Where u(t)=1

c ( t )  K 1  e 
 t / T 

 When t=T (time constant)

c ( t )  K 1            e 
 1 0 .632 K

Step Response of 1st OrderSystem
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 If K=10 and T=1.5s then

1 2 3 4 6 7 8 9 10
0

0

1

4

3

2

5

6

7

8

9

11

10

5

Time

c
(t

)
c ( t )  K 1  e 

 t / T 
K*(1-exp(-t/T))

Unit Step Input

Step Response

1

10


Input

outputstatesteady
D .C Gain  K 

63 %

Step Response of 1st OrderSystem
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 System takes five time constants to reach its final value.

Step Response of 1st OrderSystem

129



 If K=10 and T=1, 3, 5, 7

5 10 15
0

0

11

10

9

8

7

6

5

4

3

2

1

Time

c
(t

)
c ( t )  K 1  e 

 t / T 
K*(1-exp(-t/T))

T=3s

T=5s

T=7s

T=1s

Step Response of 1st OrderSystem
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 If K=1, 3, 5, 10 and T=1

5 10 15
0

0

8

7

6

5

4

3

2

1

11

10

9

Time

c
(t

)
c ( t )  K 1  e 

 t / T 
K*(1-exp(-t/T))

K=1

K=3

K=5

K=10

Step Response of 1st Order System
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Steady State Error

132

 If the output of a control system at steady state does not exactly  

match with the input, the system is said to have steady state error

 Any physical control system inherently suffers steady-state error in  

response to certain types of inputs.

 A system may have no steady-state error to a step input, but the  

same system may exhibit nonzero steady-state error to a ramp

input.



Classification of Control Systems

13

3

 Control systems may be classified according to their ability to

follow step inputs, ramp inputs, parabolic inputs, and so on.

 The magnitudes of the steady-state errors due to these

individual inputs are indicative of the goodness of the system.



Classification of Control Systems

13

4

 Consider the unity-feedback control system with the following 

open- loop transfer function

 It involves the term sN in the denominator, representing N poles 
at  the origin.

 A system is called type 0, type 1, type 2, ... , if N=0, N=1,
N=2, ... ,respectively.



Classification of Control Systems

13

5

 As the type number is increased, accuracy is improved.

 However, increasing the type number aggravates the stability

problem.

 A compromise between steady-state accuracy and relative stability

is always necessary.



Steady-state error analysis

13

6

G(s)

H(s)

R(s)
+

-

C(s)

G(s)

R(s)
+

-

C(s)

Unity feedback  
H(s)=1

Non-unity feedback
H(s)≠1

E(s)

E(s)



Steady-state error analysis

13

7

For unity feedback system:

E ( s )  R ( s )  C ( s ) System error

For a non-unity feedback system:

E ( s )  R ( s )  H ( s )C ( s ) Actuating error



Steady State Error of Unity Feedback Systems

13

8

 Consider the system shown in following figure.

 The closed-loop transfer function is



 The final-value theorem provides a convenient way to find the  

steady-state performance of a stable system. Since E(s) is

 The steady state error is

Steady State Error of Unity Feedback Systems

139

 Steady state error is defined as the error between the input signal  

and the output signal when t-> infinity

 The transfer function between the error signal E(s) and the input

signal R(s) is



Second Order System

140

 We have already discussed the affect of location of poles and 
zeros of  the transient response of 1st order systems.

 Compared to the simplicity of a first-order system, a second-order
system exhibits a wide range of responses that must be analyzed
and described.

 Varying a first-order system's parameter (T, K) simply changes the
speed and offset of the response

 Whereas, changes in the parameters of a second-ordersystem can
change the form of the response.

 A second-order system can display characteristics much like a first-
order system or, depending on component values, display damped
or pure oscillations for its transient response.



Introduction

14

1

 A general second-order system is characterized by the following

transfer function.

n

s
2

 2

 2 s    2

n n


R (s )

C ( s )

 n

un-damped natural frequency of the second order system,
which is the frequency of oscillation of the system without
damping.

damping ratio of the second order system, which is a
measure of the degree of resistance to change in the
system output.





Example
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

Determine the un-damped natural frequency and damping ratio  of 

the following second order system.

 4
n

 2

n

s
2

 2

 2 s   
2

n n


R (s )

C ( s )

Compare the numerator and denominator of the given transfer  

function with the general 2nd order transfer function.

n
   2

n
 2 s  2 s

22
 s  2 s  4

2

nn
s  2 s  

n
   1

   0 .5
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n

s
2

 2

 2 s    2

n n


R (s )

C ( s )

Two poles of the system are

2

2
  n   n   1

  n   n   1



Introduction
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According the value of , a second-order system can be set into 

one of the four categories

1. Overdamped - when the system has two real distinct poles (
>1).

-a-b-c
δ

jω
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  n 
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According the value of , a second-order system can be set

2

2
  n   1

  n   1

<  n <1)

into one of the four categories

2. Underdamped - when the system has two complex conjugate poles (0

-a-b-c
δ

jω



Introduction

  n 

14

6

According the value of  , a second-order system can be set
into one of the four categories

2

2
  n   1

  n   1

3. Undamped - when the system has two imaginary poles 

 n 0

-a-b-c
δ

jω
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  n 

  n 

14

7

According the value of , a second-order system can be set

2

2
  n   1

  n   1

= 1).

into one of the four categories

4. Critically damped - when the system has two real but equalpoles
(

-a-b-c
δ

jω



Static Error Constants

148

 The static error constants are figures of merit of control systems.

The higher the constants, the smaller the steady-state error.

 In a given system, the output may be the position, velocity,

pressure, temperature, or the like.

 Therefore, in what follows, we shall call the output “position,” the

rate of change of the output “velocity,” and so on.

 This means that in a temperature control system “position”

represents the output temperature, “velocity” represents the rate

of change of the output temperature, and so on.



Static Position Error Constant (Kp)

149

 The steady-state error of the system for a unit-step input is

 The static position error constant Kp is defined by

 Thus, the steady-state error in terms of the static position error  
constant Kp is given by



Static Position Error Constant (Kp)

150

 For a Type 0 system

 For Type 1 or higher order systems

 For a unit step input the steady state error ess is



Static Velocity Error Constant (Kv)

151

 The steady-state error of the system for a unit-ramp input is

 The static velocity error constant Kv is defined by

 Thus, the steady-state error in terms of the static velocity error
constant Kv is given by



Static Velocity Error Constant (Kv)

152

 For a Type 0 system

 For Type 1 systems

 For type 2 or higher order systems



Static Velocity Error Constant (Kv)

153

 For a ramp input the steady state error ess is



Static Acceleration Error Constant (Ka)

154

 The steady-state error of the system for parabolic input is

 The static acceleration error constant Ka is defined by

 Thus, the steady-state error in terms of the static acceleration error
constant Ka is given by



Static Acceleration Error Constant (Ka)
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 For a Type 0 system

 For Type 1 systems

 For type 2 systems

 For type 3 or higher order systems



Static Acceleration Error Constant (Ka)
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 For a parabolic input the steady state error ess is



Summary
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Example
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 For the system shown in figure below evaluate the static error

constants and find the expected steady state errors for the standard

step, ramp and parabolic inputs.

C(S)R(S)
-

s 
2 

( s  8 )( s  12 )

100 ( s  2 )( s  5 )



Example
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100 ( s  2 )( s  5 )
G ( s ) 

s 
2 

( s  8 )( s  12 )
G ( s )K p  lim

s  0

 lim
2

( s  8 )( s  12 ) 

 100 ( s  2 )( s  5 ) 
K p

p

s  0  s

K  

sG ( s )K v  lim
s  0

  lim
2

s ( s   8 )( s  12 ) 

 100 s ( s  2 )( s  5 ) 

s  0 

K v

K v  

K
a

s
2

G ( s ) lim
s  0 



 



 lim
s 

2 
( s  8 )( s  12 )

 100 s 
2 
( s  2 )( s  5 ) 

s  0


K a

  10 . 4

( 0  8 )( 0  12 )

 100 ( 0  2 )( 0  5 ) 
K a  


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K v   K a  10 .4

 0

 0

 0 .09



Step Response of underdamped System
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nnnn

n

s
2

1

s
2  22  2

 
2
  2 s  

s  2 
C ( s ) 

 The partial fraction expansion of above equation is given as

n

s
2

1

s  2 s   
2

n n

s  2 
C ( s ) 

2
n

s  2 

2  1  
2

n

2 22   1  


nn

n

s  

s  2 1

s
C ( s ) 

n
 2

s 
2   
 2 s   

2

n n


R (s )

C ( s )

2

nn

n
 2

s s  2   
 2 s   

C ( s ) 
Step Response



Above equation can be written as

2 2 1   


2

nn

n

s  

s  2 1

s
C ( s ) 

2

n d

n
1

s  
2s  

s  2 
C ( s ) 

2
   1  

d n
Where , is the frequency of transient oscillations

and is called damped natural frequency.

The inverse Laplace transform of above equation can be obtained  

easily if C(s) is written in the following form:

22
dd nn

n n
1

s  
2



 
2 s  s  

s   
C ( s ) 
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22

dn

n

dn

n
1

s



 
2s  



 
2s  

s  
C ( s ) 

2

2

2

2

dn

n

n d

n
1

s



 
2s  

 1  

1  


 
2s  

s  
C ( s ) 

2
22

dndn

n
1

s

 d

 
2s  1  



 
2s  

s  
C ( s ) 

e
dd

nn


sin  t
  t  t

cos  t 
2

1  

c ( t )  1  e

Step Response of underdamped System
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e
dd

nn


sin  t
  t  t

cos  t 
2

1  

c ( t )  1  e



t 




dd


sin 

2
1  



c ( t )  1  e n t  cos  t 



2
 d   n 1  

  n

 0 When

c ( t )  1  cos  n t

Step Response of underdamped System
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

t 




dd


sin 

2
1  



c ( t )  1  e n t  cos  t 



n

2 4 6 8 10
0

0

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

if   0 .1 and   3
1.8
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

t 




dd


sin 

2
1  



c ( t )  1  e n t  cos  t 



n
and   3

2 4 6 8 10
0

0

1.2

1

0.8

0.6

0.4

0.2

if   0.5
1.4

Step Response of underdamped System
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

t 




dd


sin 

2
1  



c ( t )  1  e n t  cos  t 



2 4 6 8 10
0

0

if   0 .9 and   3
n

1.4

1.2

1

0.8

0.6

0.4

0.2
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Step Response of underdamped System
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Underdamped System
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For 0< <1 and ωn > 0, the 2nd order system’s response due to  

a unit step input is as follows. Important timing characteristics: delay 

time, rise time, peak time, maximum overshoot, and settling time.



Delay Time
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The delay (td) time is the time required for the response to reach
half the final value the very first time.



Rise Time

171

 The rise time is the time required for the response to rise
from10% to 90%, 5% to 95%, or 0% to 100% of its final value.

For underdamped second order systems, the 0% to 100% rise time
is normally used. For overdamped systems, the 10% to 90% rise
time is commonly used.



Peak Time

172

 The peak time is the time required for the response to
reach the first peak of the overshoot.

220



Time Domain Specifications (Rise Time)
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

t 




dd


sin 

2
1  



c ( t )  1  e n t  cos  t 



equationPut t  t in above
r








d rd rr
n t r


sin  t



 cos  t 



2
1  

c ( t )  1  e

c(t r )  1Where








d rd r
n t r


sin  t



 cos  t 



2
1  

0   e

 0


e 
 n t r












sin  d t r


2
1  

0   cos   d t r 



Above equation can be re-written as

2 









1  


sin  d t r

  0 cos   d t r 


cos  d t r

2
1  

sin  d t r  

2
1  

tan  d t r  



















2

 1 


1  
d r

 t  tan
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















2

 1 


1  
d r

 t  tan











 
nd

r
t 

2

 1

n 



 1  1
tan



d

r



  
t  a  

b

1
  tan
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

t 




dd


sin 

2
1  



c ( t )  1  e n t  cos  t 



 In order to find peak time let us differentiate above equation w.r.t t.







  

t 



dt
dddddn


  e t   e 

  n t 




t 

d cos sin 


n t  cos  t  sin 



dc ( t )

22
1  1  



t 




dddddn


t d cos t   sin 

22

2

1  1  



0  e n t  cos  t n sin





t 




dddddn


t 

n
cos t   sin t n sin 

2

2

2

2

1  

 1  

1  



0   e 
  n t  cos 



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

t 




dddddn


t 

n
cos t   sin t n sin

2

2

2

2

1  

 1  

1  



0   e 
  n t  cos 




2 







ddd

1  

 2
t   sin  t   0e n t n sin

 0e 
  n t

2 









ddd

1  

2
t   sin  t   0n sin

2 





dd
t n



    0

1  

 2
sin 
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2 





dd
t n



    0

1  

 2
sin 

2






d



n
    0

1  

 2

d
sin  t  0

 1
0

d
 t  sin

0 ,  , 2 ,3


 d

t 

Since for underdamped stable systems first peak is maximum peak

therefore, 
t p 

 d
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Maximum Overshoot

179

The maximum overshoot is the maximum peak value of the

response curve measured from unity. If the final steady-state value of

the response differs from unity, then it is common to use the

maximum percent overshoot. It is defined by

 The amount of the maximum (percent) overshoot directly

indicates the relative stability of the system.



Settling Time
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The settling time is the time required for the response curve to

reach and stay within a range about the final value of size specified

by absolute percentage of the final value (usually 2% or 5%).



Time Domain Specifications  

(Maximum Overshoot)
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






d pd pp

n p
  t

sin  t



 cos  t 



2
1  

c ( t )  1  e

c (  )  1

2 



 







d p 



d pp
t


 1  100

1  


sin M  1  e n t p    cos  t 





in above equationPut
 d


t p 

2


   100




 









d

d

d

dp
M    e








1  





 d


  n

sin 


cos 

Settling Time



2


   100




 









d

d

d

dp
M    e






1  

   d


  n

sin 


cos 

2

 100
















 
 1  

2 








sin cos  n

n

 eM 
p

1  



  1  0   100







1  
2



M 

 e




p

2

 100




1
M  e

p

equationPut 1-ζ
2
in aboveω d  ωn
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

t 




dd


sin 

2
1  



c ( t )  1  e n t  cos  t 



2
 1     

nn

n

1
T 

Real Part Imaginary Part



n

1
T 

Settling time (2%) criterion Time consumed in exponential decay up 
to 98% of the input.

n


4
t s  4T 

n


Settling time (5%) criterionTime consumed in exponential decay up 
to 95% of the input.

3
t s  3T 

Time Domain Specifications (Settling Time)
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Summary of Time Domain Specifications
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n


t s  4T 

n


3
t s  3T 

2

 100




1
M  e

p

2



 1  



n



 d

t p 

2
 1  

  


n

  

 d

t r 

Rise Time Peak Time

Settling Time (2%)

4

Settling Time (4%)

Maximum Overshoot



Example
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 Consider the system shown in following figure, where damping ratio

is 0.6 and natural undamped frequency is 5 rad/sec. Obtain the rise

time tr, peak time tp, maximum overshoot Mp, and settling time 2%

and 4% criterion ts when the system is subjected to a unit-step

input.



n
2

 100




1
M  e

p

Peak Time


t p 

 d

Maximum Overshoot

n

Rise Time

  
t r 

 d

Settling Time (2%)

4
t s  4T 



3
t s  3T 



Settling Time (4%)
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
2

 1  
n

t r 

Rise Time

  
t r 

 d

3 .141  

2

n


 1 
  tan

1
(

n
) 0 . 93 rad

 0 .55 s

5 1  0 . 6
2

3 .141  0 . 93
t r 

Example
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n


4
t s 


t p 

 d

Peak Time
Settling Time (2%)

n


3
t s 

Settling Time (4%)4

3 .141
 0 . 785 st p 

4
 1 .33 s

0 .6  5
t s 

3
 1st s 

0 .6  5

Example
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2

 100




1
M  e

p

Maximum Overshoot

 100



1 0 .6
2

3 .141  0 .6

M  e
p

 0 .095  100
p

M

p
M  9 .5 %

Example
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Step Response
A

m
p
lit

u
d

e

0.2 0.4 0.6 0.8

Time (sec)

1 1.2 1.4 1.6
0

0

1.2

1.4

Mp

1

0.8

0.6

0.4

Rise Time

0.2
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Example
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 The Laplace Transform of Impulse response of a system is actually the  

transfer function of the system.

 Therefore taking Laplace Transform of the impulse response given by  

following equation. c ( t )  3 e
 0 .5 t

  ( s )C ( s ) 
S  0 .5

3
 1 

S  0 .5

3

3


S  0 .5R ( s )

C ( s )C ( s )

 ( s )

6


2 S  1R ( s )

C ( s )



Example
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 Find out

• Time constant T=2

• D.C Gain K=6

• Transfer Function

• Step Response

 Impulse response of a 1st order system is given below.

c ( t )  3 e
 0 .5 t

6

2 S  1R ( s )

C ( s )




Example
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 For step response integrate impulse response

c ( t )  3 e
 0 .5 t

 3  e
 0 .5 t

dt c ( t )dt

 6 e
 0 .5 t

c s ( t )   C

We can find out C if initial condition is known e.g. cs(0)=0

 C0   6 e
 0 .5 0

C  6

 0 .5 t

c s (t )  6  6 e



Example
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

 If initial conditions are not known then partial fraction expansion is a  
better choice C ( s ) 6

s 2 S 1
C ( s ) 

6


2 s 1

BA

s 2 S   1


s

R (s ) 2 S  1

1

s

6

since R ( s ) is a step input , R ( s ) 

66


s  0 . 5

6

s 2 S   1


s

c ( t )  6  6 e
 0 .5 t



Ramp Response of 1st OrderSystem
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 Consider the following 1st ordersystem

K

Ts  1
C ( s )R ( s )

1
R ( s ) 

s
2

K
C ( s ) 

s
2 Ts  1

 The ramp response is given as

 t / T
c ( t )  K t  T  Te 



Parabolic Response of 1st Order System
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 Consider the following 1st ordersystem

K

Ts  1
C ( s )R ( s )

1

s
3

R ( s )

s
3 Ts  1

K
Therefore,C ( s ) 



Practical Determination of Transfer Function of  1st Order
Systems
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 Often it is not possible or practical to obtain a system's transfer  

function analytically.

 Perhaps the system is closed, and the component parts are not easily  

identifiable.

 The system's step response can lead to a representation even though  the 

inner construction is not known.

 With a step input, we can measure the time constant and the steady-

state value, from which the transfer function can be calculated.



 If we can identify T and K empiricallywe can obtain the transfer  
function of the system.


Ts  1

K

R ( s )

C ( s )

Practical Determination of Transfer Function of  1st Order
Systems
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K=0.72

 For example, assume the unit
step response given in figure.

 From the response, we can
measure the time constant, that
is, the time for the amplitude to
reach 63% of its final value.

 Since the final value is about
0.72 the time constant is
evaluated where the curve
reaches 0.63 x 0.72 = 0.45, or
about 0.13 second.

 K is simply steady state value.

T=0.13s

 Thus transfer function is
obtained as:

5 .5


s  7 .7

C ( s ) 0 .72


R (s ) 0 .13 s  1

Practical Determination of Transfer Function of  1st 

Order Systems
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First Order System with a Zero
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
R (s ) Ts  1

 Zero of the system lie at -1/α and pole at -1/T.

C ( s ) K (1   s )

C ( s ) 
K (1   s )

s Ts  1

 Step response of the system would be:


s

C ( s ) 
K K (  T )

Ts  1

T


T ) e 

 t / T
K

c ( t )  K  (



First Order System With Delays
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 Following transfer function is the generic representation of 1st order  
system with time lag.

d
 st

 e
Ts  1R ( s )

 Where td is the delay time.

C ( s ) K



de
K  st


Ts  1R ( s )

C ( s )

1

Unit Step

Step Response

t
td

First Order System With Delays
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10

10  10

s s  1 /3
L  [(  )e ] 

f ( t   ) u ( t  )

s (3 s  1)
C ( s ) 

R ( s ) 3 s  1

C ( s ) 10


[10 ( t  2 )  10 e 
 1 / 3 ( t  2 ) 

]u ( t  2 )

1  2 s

L
1

[e
  s

F ( s )] 

e 
 2s

e 
 2s

0 5 10 15

0

4

2

6

8

10

Step Response

Time (sec)

t d 2s
T  3s

K 10

First Order System With Delays
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s
n

a

s
m

 a
n 1 n

s 
n 1

0 1


0 m 1 m

 ...  a s  a

b  ...  b s  b

R ( s )

C ( s)

n>m for a real system

r



k k k k k k

q

j
s  p

a j

s
C  s    

k  1
s

2

j 1

1

 2  s    2

k k k

b    s     c  1  
q  2 r  n 

i.e. combination of first and second order systems

  ds  e 


 c  s  f s
2

s 
3 
 as 

2 
 bs

11
f s 2 

 ds  e  as 
2 
 bs  c   s s

3

  as 
2 
 bs  c  s 

3 
 d  f s 

2 
 e  fd s  fes

3








 

c  fe

 f

 b   e  fd 




a  d

1  1

Extra Poles
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r



k k k k k k

q

j
s  p

a j

s
C  s    

k  1
s

2

j 1

1

 2  s    2

k k k

b    s     c  1  

The response of a higher order system is the sum of exponential and
damped sinusoidal curves.
Assuming that all poles are at the left hand side then the final value
of the output is “1” since all exponential terms will converge to 0.

Let’s assume that some poles have real parts that are far away from

rq
 p j t

k 1j1

r

c t   1   a j e   bk e

k 1

 t   c k e sin  1   k t 1   k  kcos  k

2   k  k t 2  k  k t







 



2

1 

2

1  

1  

sin  t  tan

the imaginary axis=>
c t  1 

d

e 
  n t

 0e 
  n t

Extra Poles
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Overall performance is characterized by the isolated (far away from
zeros) poles that are close to the imaginary axis.

If we have only one pole (or a pair for complex roots) that is closed to
the real axis then we say that this pole (or pair of poles) is (are) the
DOMINANT pole(s) for the system.

A simple rule is that the dominant poles must be at least five to ten
times closer to the imaginary axis than the other ones.

q
 p j t

r

  c k e

k  1

2

r

  bk e

k  1

2

j 1

sin 

cos c t  1  a je

 k 1   k t

 k 1   k t 

  k  k t

  k  k t

The values of b  (numerator 
coefficients)  determine the 
amplitude  of the oscillations 
of the  system but not its  
stability properties.

r



k k k k k k

q

j
s  p

a j

s
C  s    

k  1
s

2

j 1

1

 2  s    2

k k k

b    s     c  1  
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MODULE -III
CONCEPT OF STABILITY AND ROOT LOCUS TECHNIQUE
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CLOs Course Learning Outcome

CLO 7 Summarize the procedure of Routh – Hurwirtz criteria to

study the stability of physical systems

CLO 8 List the steps required to draw the root – locus of any

control system and predict the stability.

CLO 9 Explain the effect on stability by adding zeros and poles to

the transfer function of control system.

209



Concept of Stability
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In order to know the location of the poles, we need to find the roots
of the closed-loop characteristic equation.

It turned out, however, that in order to judge a system's stability we
don't need to know the actual location of the poles, just their sign.
that is whether the poles are in the right-half or left-half plane.

 The Hurwitz criterion can be used to indicate that a characteristic
polynomial with negative or missing coefficients is unstable.

The Routh-Hurwitz Criterion is called a necessary and sufficient test
of stability because a polynomial that satisfies the criterion is
guaranteed to stable. The criterion can also tell us how many poles
are in the right-half plane or on the imaginary axis.



Routh-Hurwitz Stability Criterion
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 All the coefficients must be positive if all the roots are in the left
half plane. Also it is necessary that all the coefficients for a stable
system be nonzero.

 These requirements are necessary but not sufficient. That is we
know the system is unstable if they are not satisfied; yet if they are
satisfied, we must proceed further to ascertain the stability of the
system.

 For example,

q ( s )  s
3
 s

2
 2 s  8  (s  2)(s

2
 s  4)

The system is unstable yet all coefficients are positive

 The Routh-Hurwitz is a necessary and sufficient criterion for the
stability of linear systems.



 The Routh-Hurwitz criterion applies to a polynomial (characteristic  equation) of the
form:

P ( s )   a  s
n
 a s

n1
 .......  a s  a

n n1 1 0

assume a
0  
 0

 The Routh-Hurwitz array:

1

1

21

4321

4321

.

.

. . . .

. . . .

. . . .

. . . .

m

l

kk

ccc

.

.

c

bbbb

s
n

a
n

a
n  1

s
n  1

s
n  2

s
n  3

.

.

s
2

s
1   

s
0

a
n  6

a
n  7

a
n  4

a
n  5

a
n  2

a
n  3

Routh-Hurwitz Stability Criterion (Contd..)

212



 Columns of s are only for accounting.

 The b row is calculated from the two rows above it.

 The c row is calculated from the two rows directly above it. Etc…

 The equations for the coefficients of the array are:

 Note: the determinant in the expression for the ith coefficient in 
a row  is formed from the first column and the (i+1)th column of 
the two  preceding rows.

, . . . . ..

, . . . . . . .
11

21

21

1 a n  1 a n  5

b1
b1 b 3

1 a n  1 a n  3

b1
b1 b 2

a n a n  4

a n  1 a n  5a n  1

a n a n  2

a n  1 a n  3a n  1

c  c  

b  b  

Routh-Hurwitz Stability Criterion (Contd..)
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Routh-Hurwitz Stability Criterion
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 The number of polynomial roots in the right half plane is equal to 
the  number of sign changes in the first column of the array.

 Example:

 Since there are two sign changes on the first column, there are two
roots of the polynomial in the right half plane: system is unstable.

 Note: The Routh-Hurwitz criterion shows only the stability of the
system, it does not give the locations of the roots, therefore no
information about the transient response of a stable system is
derived from the R-H criterion.

8

1 2

1 8

- 6

s
3

s
2

s
1   

s
0

P ( s )  s
3
 s

2
 2 s  8  ( s  2 ) ( s

2
 s  4 )

T h e  R o u t h  a r r a y  is :



Routh-Hurwitz Stability Criterion (Contd..)
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 From the equations, the array cannot be completed if the first
element in a row is zero. Because the calculations require divisions
by zero. We have 3 cases:

 Case 1: none of the elements in the first column of the array is zero.
This is the simplest case. Follow the algorithm as shown in the
previous slides.

 Case 2: The first element in a row is zero, with at least one nonzero
element in the same row. In this case, replace the first element
which is zero by a small number ε. All the elements that follow will
be functions of ε. After all the elements are calculated, the signs of
the elements in the first column are determined by letting ε
approach zero.



 Example:

 When we calculate the elements:  b1=0, b2=6, therefore we put
b1=ε and calculate the other coefficients.

 There are 2 sign changes regardless of ε is positive or negative.  
Therefore the system is unstable.

1 0

1 0-

4 1 0

6

1 2 1 1

s
1

s
0

s
2

s
5

s
4

s
3



6

2



1 2

Routh-Hurwitz Stability Criterion (Contd..)
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P ( s )  s
5
 2 s

4
 2 s

3
 4 s

2
11 s  1 0



 Case 3: All elements in a row are zero.
 Example:

 Another example:

1 1

0

s
0

 Here the array cannot be completed because of the zero element in the  
first column.

s
2

s
1

P ( s )   s
2
 1

1 2

1 2

0

s
3

s
2

s
1   

s
0

P ( s )  s
3
 s

2
 2 s  2

The array  is :

Routh-Hurwitz Stability Criterion (Contd..)
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 Case 3 polynomial contains an even polynomial as a factor. It is called  the
auxiliary polynomial. In the first example, the auxiliary polynomial

is

 And in the second example, auxiliary polynomial is

 1s
2

 2s
2

 Case 3 polynomial may be analyzed as follows:

 Suppose that the row of zeros is the si

row, then the auxiliary polynomial is differentiated with respect to
s, and the coefficients of the resulting polynomial used to replace the
zeros in the s row. The calculation of the array then continues as in the
case 1.

i

Routh-Hurwitz Stability Criterion (Contd..)
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Routh-Hurwitz Stability Criterion (Contd..)
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 Example:

from the s2 row:

 The derivative is 2s, therefore 2 replaces 0 in the s1 row, and the routh
array is then completed.

1 3 2

1 2

1 2

0

s
0

 Since the S1 row contains zeros, the auxiliary polynomial is obtained

P ( s )  s
4
 s

3
 3 s

2
 2 s  2

The Rou t h  a r ray is :

s
4

s
3

s
2

s
1

( s )  s 
2 
2P

aux



Routh-Hurwitz Stability Criterion (Contd..)

220

 Example:

 Hence there are no roots in the right half plane.

Note: When there is a row of zeros in the routh array, the systems is not

stable. That is it will have roots either on the imaginary axis (as in this

example), or it has roots on the right half plane.

1 3 2

1 2

1

 2

2

2

P ( s )  s
4
 s

3
 3 s

2
 2 s  2

T h e  R o u t h  a r ray  n o w  b e c o m e s :

s
4

s
3

s
2

s
1

s
0



Determination of range of gain K using  

RH Criterion
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 Example
:

 For the system to be stable there should not be any sign changes in the  
elements of 1st column

 Hence choose the value of K so that 1st column elements are positive

 From s0 row, system to be stable K>0

 From s1 row

 Hence the range of K is 0<K<7.5

K

1 9 - K

5 K   

9 - 1 . 2 K

s
3

s
2

s
1   

s
0

P ( s )  s
3
 5 s

2
 ( 9  K ) s  K

T h e  R o u t h  a r r a y  is :

9  1 . 2 K  0

9  1 . 2 K

K  7 . 5



Stability of Control System
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 There are several meanings of stability, in general there are two 
kinds of  stability definitions in control system study.

Absolute Stability

Relative Stability



Stability Margins and Sensitivity Peaks
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In control system design, one often needs to go beyond the issue of closed
loop stability. In particular, it is usually desirable to obtain some quantitative
measures of how far from instability the nominal loop is, i.e. to quantify
relative stability. This is achieved by introducing measures which describe the
distance from the nominal open loop frequency response to the critical
stability point (-1,0).

Gain and Phase Margins Peak Sensitivity



Relative Stability of Feedback Control Systems
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The verification of stability using the Routh-Hurwitz criterion
provides only a partial answer to the question of stability----whether
the system is absolutely stable.
 In practice, it is desired to determine the relative stability.
 The relative stability of a system can be defined as the property

that is
measured by the relative real part of each root or pair of roots.



Because the relative stability of a system is dictated by location of
the roots of the characteristic equation, we can extend the Routh-
Hurwitz criterion to ascertain relative stability.

This can be accomplished by utilizing a change of variable, which
shifts the s-plane vertical axis in order to utilize the Routh-Hurwitz
criterion.

The correct magnitude of shift the vertical axis must be obtained on
a trial-and-error basis.

One may determine the real part of the dominant roots without
solving the high order polynomial q(s).

Relative Stability of Feedback Control Systems
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Problems on RH Criterion
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 Example-1:

 1st Column of routh array has two sign changes (from 1 to -72 and

from - 72 to 103). Hence the system is unstable with two poles in

the right-half plane.

1 0 3

w i t h 1 0 )

1 3 1

1 1 0 3 ( b y d iv id in g

- 7 2

s
3

s
2

s
1   

s
0

P ( s )  s
3
 1 0 s

2
 3 1 s  1 0 3 0

T h e  R o u t h  a r r a y  is :



 Example 2:
Construct a Routh table and determine the number of roots

with  positive real parts for the equation;

2 s
3
 4 s

2
 4  s  12  0

 Solution: Since there are two changes of sign in the first column of Routh 
table, the  equation above have two roots at right side (positive real
parts).

Problems on RH Criterion (Contd..)
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 Example 3:
 The characteristic equation of a given system is:

What restrictionsmust be placed upon the parameterK in order to
ensure that the system is stable?

 Solution:
For the system to be stable, 60 – 6K < 0, or k < 10, and K > 0.
Thus 0 < K < 10

 6 s
3
 11 s

2
 6 s  K  0s

4

Problems on RH Criterion (Contd..)
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INTRODUCTION
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Root Locus Technique:

the locus of a single root (pole) of a closed loop

the locus of multiple roots (poles) of a closed
loop

 Root Locus  
system

 Root Loci  
system

 It is a graphical method for determining the location of the poles of

a given closed loop system for some parameter values of the

system. The parameter can be the system gain or time constant.

 Time constant being the design value of an open loop system is

normally not varied; the only variable being the system gain.

 It is a time domain method.



 We know that for a unity feedback system the characteristic

equation is given by 1 + G(S) = 0, and

 For a non-unity feedback system the characteristic equation

is given by1 + G(S) H(S) = 0

 where,

G(S) : open loop transfer function of the system that is to

be controlled for desired time domain specifications, and

H(S) : feedback element (normally a transducer)

INTRODUCTION (Contd)..
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 We know that for a closed loop system to be stable, its closed loop
poles (roots of characteristic equation) should lie in the left half of
the S-plane.

 We also know that a closed loop system is limitedly stable (on the
verge of instability) if any of its roots lie on the imaginary axis of
the S-plane and it is unstable if its poles lie in the right half of the
S-plane.

 Using this method, we can exactly position the location of closed
loop poles for a given value of system gain ‘K’ whereas Routh’s
method does not facilitate this.

 Using Routh’s method we cannot determine relative stability of a
system whereas this method allows us to do that.



Illustration by Example
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 We know that for a second order closed loop system the general 
form  is given by

M(S) = ω  2 / (S2+ 2ξω S + ω 2) = N(S)/D(S)
n n n

 Let

G(S) = K/S(S+1) ; M(S) = G(S)/1+G(S) = K/(S2 + S + K)

M(S) = N(S)/D(S)

 For a unity feedback system, the characteristics equation is:
Q(S) = 1+G(S) = 0 1 + K/S(S+1) = 0  

S2 + S + K = 0

 For K = 0; the roots of Q(S) are at S=0 & S=-1; which are the 
poles of the system.



Illustration by Example (Contd)..
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 Looking at Q(S) = S2 + S + K = 0 we conclude that,
 As we vary K from ‘0’ to any higher value, the location of the 

roots of  Q(S) will change (shift) in the S-plane.
 Thus the roots will chalk out a locus in the S-plane for a given 

range of‘K’. This is called Root Locus.

S-plane

x

-1

K = 0

-0.5 0

J 0.866

-j 0.866

K = 1x

K = 1x

x
K = 0

x



 We know that we are interested in finding the roots of a
characteristic equation for a range of a parameter of the system
which generally is system gain ‘K’. Generally speaking we may be
interested in determining the location of closed loop poles for a
range of ‘K’

0 ≤ K ≤ ∞

 Now it is easy to factorize a second and third order characteristic
equation for various values of ‘K’, but for higher order polynomials
it is very difficult (near impossible) to factorize for determining
their roots.

 Therefore we need a method to do so & that method is Root
Locus.

Why Requirement of Root Locus Method ?

234



The Method
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 Though we are interested in determining the roots of the
polynomial (characteristic equation), 1 + G(S) H(S) = 0; we do not
start with this equation.

 Instead, we start with only G(S)H(S) or G(S) depending upon
whether the closed loop system is non-unity or unity feedback.

 So, we rearrange the characteristic equation as:

G(S)H(S) = -1 (non-unity feedback), or

G(S) = -1 (unity feedback)

 The above rearrangement implies that

│G(S)H(S)│= 1 & arg {G(S)H(S)} = ᴫ



The Method (Contd)..
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 The equations,

│G(S)H(S)│= 1 & arg {G(S)H(S)} = ᴫ, imply that

 For any point S = S1 to be a root of the characteristic equation,

│G(S1)H(S1)│= 1 & arg {G(S1)H(S1)} = ᴫ radians or 180 deg.

 Or, for a unity feedback system,

│G(S1)│= 1 & arg {G(S1)} = ᴫ radians or 180 deg.

 The root locus is drawn on a graph sheet and every point on the
locus is obtained by satisfying the angle condition. The value of ‘K’
for that point is then obtained graphically.
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 Before going ahead with the method, it is necessary to define what is  called 
‘rational transfer function’.

 A rational transfer function is the one which has equal number of poles
and zeros; that is Np = Nz

Np: number of poles Nz: number of zeros

 Consider the following transfer functions:

G1(S) H1(S) or G1(S) = K (S+1)/(S+2) -------- 1

G2(S) = K (S+1)(S+2)/(S+3)(S+4) ---- 2

G3(S) = K (S+1)/(S+2)(S+3) ------- 3

G4(S) = K (S+1)/(S+2)(S+3)(S+4) ---- 4
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 For, G1(S) = K (S+1)/(S+2), there is a finite pole at S = -2 & a finite 
zero at  S = -1; Np= Nz = 1; hence it is a rational function

 G2(S) also has equal number of poles and zeros; Np = Nz = 2;

 G3(S) has 2 finite poles & 1 finite zero; Np ≠ Nz

 G4(S) has 3 finite poles and 1 finite zero; Np ≠ Nz

 Does it mean that G3(S) & G4(S) are not rational functions!!

 They both are, indeed, rational functions; the need is to find out 
the  location of remaining zeros so that Np = Nz.
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 In order to resolve the issue of ‘how many zeros’ a transfer function
has, we need to understand what is zero of a transfer function.

 Let G(S) = K (S+1)/(S+2)(S+3)

 We all understand ‘G(S)’ as ‘frequency dependent gain’ offered by
the system.

 Now, if we substitute S = -1 in G(S), its value = ‘0’; it means that gain
offered at S= -1 equals ‘0’. Therefore S = -1 is a zero of the transfer
function, G(S)

 Pole of a transfer function is a singularity because gain offeredby 
G(S) at its pole = ∞. For example, S = -2 & -3 causes gain of 
G(S)= ∞
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 Therefore, we say If the number of zeros are not equal to the number of
finite poles of G(S), then number of zeros = Np – Nz shall lie at ∞.

 Let

G(S) = K (S+1)/(S+2)(S+3)

 Lt. S ∞ G(S) ≡ lt. S ∞ K/S = 0 ; the power of S is ‘1’ therefore there is
one zero at ∞. Thus we have one finite zero and another zero at ∞.
Hence Np = Nz

 For, G(S) = K (S+1)/(S+2)(S+3)(S+4)

 we have one finite zero at S = -1 and two zeros at ∞

 Therefore both are rational functions
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 Let m

∏ (S + Zj)

j=1

G(S) H(S) = K

 where,

i = n

Sr ∏ (S + Pi)

i = 1

K: gain in the system

r: number of poles at the origin of S-plane

n & m: number of poles and zeros in the S-plane
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│G(S)H(S)│ =

j=m

m

∏ │ (S + Zj)│  

j=1

K = 1.0

i = n

│ Sr │∏ │(S + Pi)│  

i = 1

I = n

K  ∏ │ (S + Zj)│ = │Sr│ ∏ │(S + Pi); for K =0 we get poles  

j=1 i = 1 of G(S)H(S)
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j=m i = n

∏ │(S + Zj)│ = │Sr│ ∏ │(S + Pi)/K;

j=1 i = 1

 For K ∞; we get zeros of G(S)H(S)

 We draw root locus for 0 ≤ K ≤ ∞  

Therefore,

 Starting points of root locus are poles of G(S)H(S), K=0

 End points of root locus are zeros of G(S)H(S), K = ∞
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 The Angle Criteria:
m

∏ (S + Zj)

j=1

G(S)H(S) = K

n

∏(S + Pi)

i = 1

The angle criteria is in degrees given by:
n

- Σ arg(S + Pj) = +/- (2 q + 1)180;

m

Σ arg(S + Zj)

j = 1 i = 1 q = 0,1,2,….
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 Since root locus is drawn satisfying angle criteria, now we explain 
how  it is done.

1. Plot location of poles & zeros of G(S)H(S) in the S-plane

2. Choose any point S = S0 in the S-plane.

3. From each pole & zero draw vectors to the chosen point, S0

4. Measure the angle subtended by each pole & zero at S0, in the 
CCW  direction.

5. Remember that angle subtended by a pole is negative & that by a 
zero  is positive

6. Algebraically add all the angles. If they sum up to 180 degrees, 
then S =  S0 is a point on the root locus.



Graphical Implementation of Angle Criteria
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Graphical Illustration for Angle Criteria:

S= S0 ο S- plane

θZ2 θP3 θP1

ο
-Z2

x
-P3

θP2 θZ1  

x
-P2

ο
-Z1

x
-P1

arg(S0+Z2) + arg(S0 + Z1) – arg(S0 + P3) – arg(S0 + P2) – arg(S0 + P1) = +/_
180 °.

θZ2 + θZ1 – θP3 – θP2 – θP1 = 180 °
 If the above angle condition is satisfied then S0 is on the locus.
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 From the magnitude criteria, we calculate the value of gain ‘K’ at the
point S = S0 which lies on the root locus ( that is S=S0 satisfies
angle criteria).

n

∏ │(S0 + Pi)│

i = 1

or, K =

m

∏│(S0 +Zj)│

j=1

K = 1

n

∏│(S0 +Pi)│

i = 1

m

∏ │(S0 + Zj)│

j = 1

K = product of vector lengths from poles of G(S)H(S) to
S0/product of vector lengths from zeros of G(S)H(S) to S0.



Graphical Implementation of Magnitude  

Criteria
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 Graphical method for determination of ‘K’:

Ea Ca Da : vectors from poles of G(S)H(S) to point ‘a’: S = S0

ο a

x

E

ο

A

ο x

B C

x

D

Aa Ba : vectors from zeros of G(S)H(S) to‘a’

Gain K=(Ea)(Ca)(Da)/(Aa)(Ba)

We measure vector lengths, as per scale, and then calculate K
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 Rule 1:
Root Locus is symmetrical about real axis of S-plane, because
roots are either real or complex conjugate.

 Rule 2:
As ‘K’ increases from ‘0’ to ‘∞’, the open loop poles of G(S)H(S)

move (branch out) towards the zeros of G(S)H(S); some of the
zeros may be at ‘∞’.
The number of branches terminating on ‘∞’ equals Np – Nz; that
is the difference between number of finite poles & zeros of
G(S)H(S).



Construction Rules for Root Locus
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 Rule 3:

A point S = S0 on the real axis shall lie on the root locus iff the total

number of open loop poles & zeros of G(S)H(S) to the right of S0 is odd.

(Loci lie in the region 2, 4 & 6)

1 x 2 x 3 ο 4 ο 5 x 6 ο
 The number of poles + zeros to the right of region ‘6’ = 1(odd)

 The number of poles + zeros to the right of region ‘5’ = 2(even)

 The number of poles + zeros to the right of region ‘4’ = 3(odd)

 The number of poles + zeros to the right of region ‘3’ = 4(even)

 The number of poles + zeros to the right of region ‘2’ = 5(odd)

 The number of poles + zeros to the right of region ‘1’ = 6(even)
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 Rule 3 (contd)..
 The poles are K= 0 points & the zeros are K = ∞ points. As we are

interested in the range of K, 0≤K≤∞, therefore the poles will start
moving towards their respective zeros, in the region on the real
axis, and terminate at zeros (K = ∞)

 Therefore, we can say that the loci of closed loop poles start at K =
0 (the location of the poles of G(S)H(S)) and terminate at K =∞
(the location of the zeros of G(S)H(S))



Construction Rules for Root Locus
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 Rule 3 (contd): Example for implementation
Let G(S)H(S) = K(S+1)(S+2)/s(S+3)(S+4)

1. Draw pole zero locations in the S-plane

2. Use angle criteria to mark the regions on the real axis of the S-
plane  where the root loci shall lie

S-planek=0  

x

-4

k=0  

x

-3

k=∞ k=∞ k=0  

ο ο x

-2 -1 0

 The regions where the loci shall lie are highlighted in yellow 
where the  total angle subtended by poles & zeros = 180°
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 Rule 3 (contd): Example for implementation

In the considered example:

1. No. of open loop poles = 3; root loci branches = 3 because each
pole is  a starting point.

2. Root Loci will start from S =0, -3 & -4 (K = 0 points)

3. As K increases, the loci moves from the poles to respective zeros 
(K =∞ points)

4. The arrows show the direction of movement of poles

5. Np = 3 Nz = 2; no. of poles for which the loci shall terminate at ∞ 
= Np– Nz = 1

6. We observe that pole at S = -4 terminates at ∞



 Rule 4: (Angle of Asymptotes)

The (Np – Nz) branches of the root locus asymptotically tend to ∞.
The

angles of asymptotes are given by:

φq = (2q+1) 180°/(Np – Nz); q = 0,1,2, …., (Np-Nz-1)

1. G(S) = K (S+1)(S+2)/S(S+3)(S+4)

Np = no. of poles = 3; Nz = no. of zeros = 2; Np-Nz = 1

q = 0; φ = 180°

2. G(S) = K(S+2)/(S+1)(S+3)(S+5)(S+6)

Np = no. of poles = 4; Nz = no. of zeros = 1; Np-Nz =

3 q = 0,1,2; φ0 = 60°, φ1 = 180° , φ2 = 300°

Construction rules for Root Locus

25
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 Rule 5: (Centroid)

If no. of asymptotes are more than 1, they cross the real axis of 
the S- plane. Their point of intersection on the real axis is known 
as Centroid. Centroid σA is given by:

n m

Σ Pi - Σ Zj

i=1 j=1

(Sum of real parts of poles -

Sum of real parts of zeros)
σA = =

(Np – Nz) (No. of poles – No. of zeros)

Construction rules for Root Locus

25
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 Example:Determine 1) no. of loci on the real axis and their regions, 
2) no. of  asymptotes, 3) angle of asymptotes, 4) Centroid for a unity
feedback

open-loop transfer function is given as: G(S) =system whose
K/S(S+1)(S+2)

 Solution Steps:

• Draw pole zero locations in the S-plane

• Determine no. of finite poles, Np, and zeros, Nz & Np-Nz

• Mark regions on the real axis where loci lie

• Find no. of asymptotes = Np – Nz & their respective angles

• If (Np-Nz) > 1 determine value of centroid

• Sketch root loci (free hand)

Continued in next slide

Construction rules for Root Locus An Example
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1. X

S=-2

X X (poles are K=0 pts.)

S=-1 S=0

 Np = 3 Nz = 0 (no finite zero ; therefore all zeros at ∞)

 Np-Nz = 3

 Loci on the real axis will lie between S= 0 & S= -1; it will also lie in the  
region after S = -2 because total no. of poles & zeros to the right of the  
regions = odd.

 No. of asymptotes = Np-Nz = 3 & angles of asymptotes are given by φq
= (2q+1) 180°/(Np – Nz); q = 0,1,2; φ0 = 60°, φ1 = 180° , φ2 = 300°

 Since (Np-Nz)>1 = 3 we will determine Centroid

Construction rules for Root Locus An Example

25
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 Centroid is given by:

(sum of real parts of poles – sum of real parts of zeros)

σA = (no. of finite poles – no. of finite zeros)

A

Σa 60°

x

S=-1 S=0

σA =  {(0-1-2) – (0)}/(3-0) = -1.0 180°

C x x  

red loci is the loci in complex plane S=-2

in yellow regions loci lie on the real axis 300° B

Construction rules for Root Locus An Example

25
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Construction Rules for Root Locus  

(Breakaway points)

25
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 Breakaway Points:

Multiple roots of the characteristic equation occur at these points.
These are obtained using the formula dK / dS = 0. These points
also satisfy the angle criteria.

Examples: K=0

X X K>0 X(p1)

Breakaway point breakaway point (B)
A B

X

X X K>0

X(p2)  

K=0

x Breakaway points



 Example: Calculation for Breakaway points  
G(S) = K/S(S+1)(S+2)

1 + G(S)H(S) = 0 K/S(S+1)(S+2) = -1
K = -(S3 + 3 S2 +2S)
dK/dS = -(3 S2 + 6S + 2) =0

We find the roots of the polynomial
3 S2 + 6S + 2 = 0

We get S1 = -0.423 & S2 = -1.577

We know that for the given G(S), the loci on the real axis will lie
between ‘0’ & ‘-1’; therefore the breakaway point is = -0.423. S2
= -1.577 is not a breakaway point because between S=-1 & -2 no loci
exists on the real axis of the S-plane.

26
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 Example:

G(S)H(S) = K/S(S+4)(S2 + 4S + 20)= K/S(S+4)(S+2+j4)(S+2-j4)

To determine the breakaway points: dK/dS =0. Substitute in 
1+G(S)H(S) =  0 to get K = -S(S+4)(S2 + 4S + 20)

dK/dS = S3 + 6 S2 + 18S + 20 = 0

Factorize dK/dS=0, we get S = -2; S = -2 +/-j 2.45

 Now we find out that out of the roots of dK/dS = 0 which qualify 
to be  breakaway points. To do this, we first draw the pole – zero 
locations of  G(S)H(S) in the S-plane

(next
slide)
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 Example (contd): x j4-
S-plane

(K=0) x -2 x (k=0)

(k=0)x - -j4

 Having plotted the location of poles, we know that the root locus  

on the real axis will lie between S = 0 (K=0) & S=-4(K=0).

 Now, one root of dK/dS = 0 lies at S = -2; therefore S=-2 is a breakaway  
point. Since, -2 is also real part of the complex pole (-2 +/- j4),  therefore

S= -2 +/- j2.45 ( root of dK/dS =0) is also a breakaway point.

26
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 Angle of Departure/Arrival:

For poles on the real axis: ( either 0° or 180° )

(K=∞ points)

ο x x ο

(K=0 points) θ = 180° θ=0°

Therefore, the angle of departure and/or arrival need be calculated
only for complex poles & zeros.

Method:

1. choose a point S0 very close to the pole ‘p’

2.Graphically determine the angle contributions due to other poles
& zeros at the point S0.

3. determine angle of departure θp from the pole ‘p’.
26
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 Draw the pole-zero locations of G(S)H(S)

 Draw a point S0 in the S-plane very close to the pole/zero for which  
departure angle is to be determined.

 Draw vectors to S0 from each pole & zero of G(S)H(S).

 Calculate total angle, φ, subtended at S0.

 Angle of departure/arrival is given by φ – θp/ φ + θz = (2q + 1) 180° , or

we have θp = +/- (2q + 1) 180° + φ;  

θz = +/- (2q+1)180° - φ

 θp/θz :the angle of departure/arrival for the pole/zero; θp is subtracted  
from φ because it is angle subtended by a pole.

Construction Rules for Root Locus  ( Angle of 
Departure/ Arrival)

26

4



 θp: angle of departure S0 x

° θp

x ο
θ1

x
θ5

x
θ4 θ3 θ2

S0 is placed very close to the pole x
for which angle of departure is to be calculated. For the sake of clarity,  
here, it is shown some distance from the pole.

 Angle subtended by other poles & zeros at S0, φ, is given by:
φ = θ4 – (θ1 + θ2 + θ3 + θ5)

φ – θp = +/- (2q+1)180°; q = 0, 1 ,2, …; θp = +/-(2q+1)180° + φ
 Angle of arrival at a zero is calculated in a similar way.

26
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Construction Rules for Root Locus  

(Example: Angle of Departure)
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 Example: Calculation of angle of departure

45° K=0)

θp= 135°

.x-------------j1

Poles are at -1 +/- j1 S= -2 (K = ∞)

Zero at S= -2 ο -1

The K = 0 points are also points on the root  

locus; therefore at open loop pole (K=0) x--------------j1

location too, the angle criterion should be satisfied. 90°

The angle φ = (45° – 90°); θp = (2q+1)180° + φ;

θp = 180° + (45° - 90°) = 135° is the angle of departure



 Example: Angle of Arrival (at zero located at -1+j1)
tan θ1 = ½ = 0.5  

θ1= 26.56°

tan θ3 = 2.414/1  

θ3 = 67.49°

θ2 = 90°

tan θ4 = -0.414/1

θ4 = -22.49° θ’4 = 360-22.49= 337.5°

The total angle,φ, subtended at the zero= θ2 – θ3 – θ1 + θ4 = 18.44°.
Therefore angle of arrival θz = 180° - φ = 161.6°

26
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 Example: -6 -4 -1

G(S) = K (S+6)/(S+1)(S+4) ο x x

1. K=0 points: S = -1 & S= -4 are poles of G(S)

2. K = ∞ points: S = -6 are zeros of G(S)

3. Loci on the real axis lies between S = -1 & S= -4; and between S 
= -6 &∞

4. Since one zero is at ∞, therefore one closed loop pole will 
approach  this zero asymptotically

5. Angle of asymptote: φ = 180°(2q+1)/Np-Nz = 180° ; q = 0

6. Since there is only one asymptote, there is no centroid

Graphical determination of ‘K’ for specified damping
ratio

26
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 Breakaway points: 1 + G(S) = 0; 1 + K (S+6)/(S+1)(S+4) = 0; therefore, K
= - (S+1)(S+4)/(S+6)

 dK/dS = 0; S2  + 12 S + 26 = 0 S1 = -9.16, S2 = -2.84

 Both S1 & S2 are breakaway points because the root loci on the real  
axis lies between S = -1 & -4; and between S = -6 & ∞

Graphical determination of ‘K’ for specified  damping 
ratio (contd)..
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 Let us fix the location of closed poles at S1 & S2. Now we want to find K  
which yields S1 & S2. Let

θ = 45°

S1 = -2 + j 1.5

ξ = Cos(θ)

 Draw vectors from each pole & zero of G(S) to S1 or S2 as shown.

 Then K = product of the length of vectors from poles/ product of length of  
vectors from zeros K = │S1 + 4││S1 + 1│/│S1 + 6│ = │-2+j1.5+4││-
2+j1.5+1│/│-2+j1.5+6│ = 1.05 ξ = Cos(45°) = 0.707

Graphical determination of ‘K’ for specified  damping 
ratio (contd)..
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Effect of adding Zeros on Stability of a Closed  loop
system

27

1

x

 G(S) = K /(S+1)(S+2)(S+3) K=K1

The root loci is obtained as: As the root loci cross

in to RH of S-plane, k>0 x
 The closed loop system becomes unstable for a value

K>0

x

K>0 Fig. 1

of K>K1. Let us now add a zero. σ = -2 (centroid)

 Let us now add a zero at S= -4 the loci will be (asymptotes)

 We observe that addition of a zero has stabilized  

the closed loop system for all values of K; 0≤K≤∞

ο x x x

σ=-1 (centroid)

G(S) = K (S+4)/(S+1)(S+2)(S=3) Fig. 2



Let us now add a zero at S = -2.5 G(S) = K (S+2.5)/(S+1)(S+2)(S+3)  

σ = -1.75 asymptotes

Looking at Figs. 1, 2 & 3 we see that addition of zero has

x ο x x

σ= -1.75 Fig.3

1. Reduced no. of asymptotes  

thereby preventing the locus from  

moving in to RH of the S-plane.

2. Therefore the CL system has become stable for all values of ‘K’

3. The location of zero also affects the locus.

4. Shifting zero location from S= -4 to -2.5 has moved centroid from -1 to -1.75  

thereby shifting the starting point of asymptotes to further away from the

Imaginary axis of the S-plane. In Fig.2 the breakaway point is to the left of
σ; in Fig.3 it is to the right of σ.

5. Thus the system has become relatively more stable

Effect of adding Zeros on Stability of a Closed  loop system
(contd)..
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Adding a pole:  

G(S) = K/(S=1)(S+2)

x x

Fig. 1

G(S) = K/(S+1)(S+2)(S+3)
We observe that addition of a pole  

affects stability of a CL system, as is seen  

from Fig.1 & 2

x x x

Fig. 2

Effect of adding Poles on Stability of a Closed  loop
system

27
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Root Locus Problems

27
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 Problem1:

For G(S) = K(S + b)/S(S + a) & H(S) = 1 show that the loci of the complex
roots are part of a circle with

center at (-b,0) ,and  

radius = √ (b2 – ab)

 Solution:

The angle criterion: arg{(S + b)/S(S + a)} = +/- 180°

At, S = σ + j ω we have : arg{(σ + j ω + b)/(σ + j ω)(σ + j ω +a)}  

or, tan-1( ω/σ + b) - tan-1( ω/σ) - tan-1( ω/σ + a) = - Л

tan-1( ω/σ) + tan-1( ω/σ + a) = Л + tan-1( ω/σ + b)

Take tan on both sides & simplify, to get

(σ + b)(2σ + a) = σ (σ + a) - ω2  

σ 2 + ω2 + 2bσ + ab=0



 Add & subtract  b2   term to get
(σ2  + 2bσ + b2) – b2 +ω2  + ab =0
(σ + b)2  + ω2  = b2 – ab is the equation of the circle with  

center at (-b,0) & radius = √ (b2- ab)
For b = 1 & a = -1

center = (-1,0) & radius = √2
 Problem 2:

H(S) =1 G(S) = 1/S(S + α)
Draw root locus as α varies between 0≤ α≤∞  
Solution:

‘α’ appears in the denominator polynomial of G(S). ‘K’ always appeared in  
the numerator of G(S). Therefore we manipulate to get ‘α’ in the  
numerator.
The Characteristic equation Q(S) = 1 + G(S)H(S) = 0

Root Locus Problems (contd)..
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 Q(S) = S2 + α S + 1=0

From Q(S), we rewrite G(S) in a way that ‘α’ appears in the numerator

Therefore, we write

G(S) = α S/ S2 + 1

The root locus for parameter ‘α’:

x j1  

ο

x –j11. α = 0 points: S1 = +j1 & S2= -j1 ; Np = 2

2. α = ∞ points: S = 0 ; (another zero at ∞); Nz = 1

3. Np – Nz = 1; No. of loci = 2

4. Locus on the real axis covers entire axis in the LH of S-plane

5. No. of asymptotes = 1

6. No Centroid ( because only one asymptote)

7. Angle of asymptote ( for q = 0) = 180°

Root Locus Problems (contd)..
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 Breakaway point:

α S/ S2  + 1 = -1; α = -(S2  + 1)/S; dα/dS = 0 S2 - 1 =0; S = +/- 1

The breakaway point is S = -1 because it is a point on the loci

Angle of Departure: (from pole at S = j1)  

Angle subtended at S= j1 by zero at S=0 is 90°

Angle subtended at S = j1 by pole at S= -j1 = 90°

Total angle subtended, φ = 90 – 90 = 0°

Angle of departure θp = 180° + φ = 180°

 The Root Loci: breakaway point

x j1  ο

x-j1

 It is a circle with radius = 1 & center (0,0). (Contd. next slide)

Root Locus Problems (contd)..
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 Let us fix the location of closed loop poles for damping ratio ξ = 0.5 &  
determine time domain parameters. We redraw the locus.

ξ = Cos(θ) = 0.5; θ = 60°. Draw a line at 60° from –ive real axis

as shown.

The intersections A & B on the locus define the  

location of the closed loop system.

Since the locus is a circle with unity radius, the

vector OA = 1 & therefore ωn = 1 rads/sec.

-ξωn = -0.5 ;  ωd = ωn √(1-ξ²) = 0.866 rads/sec

 The CL poles are – ξωn +/- j ωd = -0.5 +/- j 0.866

 The Characteristic equation is (S+ 0.5 + j 0.866)(S+ 0.5 - j 0.866)= S² + S+1=0

The derived Ch. Eq. is : S² + αS +1 =0 On comparing we get α = 1.

Root Locus Problems (contd)..
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 Problem 3:
Suppose that the Characteristic equation is given as:  

Q(S) = S³ + K S² + 2S + 1 = 0

You are asked to draw root locus for 0≤K≤∞. How to draw?  

Solution:

1. Collect all the terms containing ‘K’.

2. Divide terms containing ‘K’ by the balance terms

3. Write Q(S) = 1 + N’(S)/D’(S)=0

4. Write G(S) = N’(s)/D’(S)

5. Plot root locus

6. In the present case: Q(S) = 1 + K S²/ S³ + 2S +1 = 0

7. G(S) = K S²/S³ + 2S + 1; Factorize denominator polynomial

Root Locus Problems (contd)..
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PROBLEM: Construction of Root Locus

28

0

k ( s  1)
G ( s ) 

s ( s  1)

Step-1: The first step in constructing a root-locus plot is to locate the  

open-loop poles and zeros in s-plane.

 The k=0 points:
s=0, s= 1
no. of poles (n)= 2

 The k=∞ points:

s= -1

no. of zeros (m)= 1

where

Draw the root locus for the open loop transfer function G(s) and settling
time ts=4sec given, find the range of values of k and show that the loci of
the complex roots are part of a circle with (-1,0) as centre and radius = 2



PROBLEM: Construction of Root Locus (contd)..
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The poles and zeros in  
s-plane after step-1.

k  0k   k  0



Step-2: Determine the root loci on the real
axis.
 To determine the root loci on

real axis we select some test
points.

 e.g: p1 (on positive realaxis).

 No. of real poles and zeros on
the right of test point is zero (
which is even)

 Hence, there is no root locus
on the positive real axis.

PROBLEM: Construction of Root Locus (contd)..
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p1



PROBLEM: Construction of Root Locus (contd)..
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p2

Step-2: Determine the root loci on the real axis.

 Next, select a test point on
the positive real axis between
1 and 0.

 No. of real poles and zeros on
the right of test point is one (
which is odd)

 Therefore, from 1 to 0 is part  
of the root locus.



p3

Step-2: Determine the root loci on the real axis.

 Next, select a test point on
the negative real axis
between 0 and -1.

 No. of real poles and zeros on
the right of test point is two (
which is even)

 Therefore, from 0 to -1 is not
part of the root locus.

PROBLEM: Construction of Root Locus (contd)..
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p4

Step-2: Determine the root loci on the real axis.

 Next, select a test point on
the negative real axis
between -1 and - ∞.

 No. of real poles and zeros on
the right of test point is three
( which is odd)

 Therefore, from -1 to - ∞ is
part of the root locus.

PROBLEM: Construction of Root Locus (contd)..
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Step-2: Determine the root loci on the real axis.

PROBLEM: Construction of Root Locus

(contd)..
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Step-3: Determine the asymptotes of the root loci and angles.

Where

n-----> number of poles (2)

m-----> number of zeros (1)

n  m

 180 ( 2 q  1)
Angle of asymptotes   

when q  0   180 

 
 180 ( 2 q  1)

2  1

 No. of asymptotes = n-m = 1
 The angle of asymptote is 180°.
 No centroid for this system

PROBLEM: Construction of Root Locus (contd)..
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Step-4: Determine the breakaway/break-in point.

The breakaway/break-in point is the point from which the root locus  
branches leaves/arrives real axis.
The breakaway or break-in points can be determined from the roots of

dK/ds=0

 It should be noted that not all the solutions of dK/ds=0 correspond to  
actual breakaway points.

 If a point at which dK/ds=0 is on a root locus, it is an actual breakaway
or break-in point.

The characteristic equation of the system is

K ( s   1)
1  G ( s ) H ( s )   1   0

s ( s  1)

s  1

s ( s  1)
K  

PROBLEM: Construction of Root Locus (contd)..
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dK ( s  1)( 2 s  1)  ( s 
2 
 s )(1)


ds ( s  1)

2

 Set dK/ds=0 in order to determine breakaway point.


 

 
s  1ds ds 

 The breakaway point can now be determined as

dK d  s ( s  1) 

 0
( s  1)

2

 By solving the equation roots are at
s   0 .414

  2 .414

 By substituting these s values in k equation, the value of k is positive real
for s=0.414 (k=0.17), s=-2.414 (k=5.828). so these points are actual
breakaway points.

( s  1)( 2 s  1)  ( s 
2 
 s )(1)  2 s  1  0s

2

PROBLEM: Construction of Root Locus (contd)..
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Step-4: Determine the breakaway/break-in point.

Breakaway  

point

Breakaway  

point

PROBLEM: Construction of Root Locus (contd)..

29

0



s
2

s   j1

 1  0

 ( k  1) s  k  0s
2

s
2

s
1

s
0

1 k

k  1 0

k
k  0

k  1

 Step-5: Determine the points where root loci cross the
imaginary axis and range of K for stable operation

The characteristic equation of closed loop system:

s ( s  1)  k ( s  1)  0

The root loci cuts the imaginary axis at s  j1

PROBLEM: Construction of Root Locus (contd)..
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s
2

s   1  j 2

 2 s  3  0

2

2

nn

s  ( k  1) s  k  0

2

s ( s  1)  k ( s  1)  0

s  2 s    0 )
2

n

n
  k

k  1
  (

Step-5:Determine the points where root loci cross the
imaginary axis and range of K for stable operation

The characteristic equation of closed loop system:

2

4

k  3

n

n

  1  ( 
k  1

)

t s  4 



The location of closed loop poles  for k=3, ts=4 sec

PROBLEM: Construction of Root Locus (contd)..
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   ( 2 q  1)
s ( s  1)

s    j

( s  1)
 Apply the angle criterion:

 G ( s )   k




 
 

  tan

 tan

 1 1 1 

   1      1 

  tan

 j     j  1   

 

 k      j  1   



 To show that the loci of the complex roots are part of a  circle

with (-1,0) as centre and radius = sqrt(2)

 Apply the tan on both sides
1  tan A tan B

tan A  tan B



















 

   1 


1   tan  



   1 

tan( A  B ) 


tan    

    1 

  
1 

 

    1 

PROBLEM: Construction of Root Locus (contd)..
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 By cross multiply and simplify:
2



 

 2    
  2

 2  1  0

  
  1  

   1   1  (  1)

2
(  1) 

2  
   2

 By add and subtract ‘1’ and rearrange

( 2 
 2  1)  1   2 

 1  0

 This is the equation of the circle with center at (-1,0) and radius 2

PROBLEM: Construction of Root Locus (contd)..
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 Complete root locus for the given system

k ( s 1)
G ( s )

s ( s  1)

 j1( k  1)

Breakaway  

point

Breakaway  

point

 j1( k  1)

 1  j1 .414 ( k  3 )

 1  j1 .414 ( k  3 )

PROBLEM: Construction of Root Locus (contd)..
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The characteristic equation of a feedback control system is

Sketch the root locus plot for 0<k<∞ and show that the system is
conditionally stable (stable only for a range of gain k). Determine the
range of gain for which the system is stable.
Solution:
To sketch the root locus, we require the open-loop transfer function  
G(s)H(s)

1  G ( s ) H ( s )  s 
4 
 3 s 

3 
 12 s 

2 
 16 s  ks  k  0

1  G ( s ) H ( s )  s ( s
3
 3 s

2
 12 s  16 )  k ( s  1)  0

 01   1
s ( s 

3   
 3 s 

2    
 12  s   16 ) s ( s  1)( s 

2 
 4 s  16 )

k ( s  1) k ( s 1)

 3 s 
3   
 12  s 

2   
 ( k   16  ) s  k  0s

4

PROBLEM: Construction of Root Locus
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 The k=0 points:  s=0, s= 1, s=-2+j3.42, s=-2-j3.42
no. of poles (n)= 4

 The k=∞ points: s=-1
no. of zeros (m)=1

 No. of root locus branches (n)=4
 Root locus exists on the real axis from s=1 to s=0 and to the left of s=-1
 No asymptotes (n-m)=3

s ( s   1)( s   2  j 3 .42  )( s   2  j 3 .42)

k ( s 1)


s ( s 
3 
 3 s 

2 
 12 s  16)

k ( s 1)
 G ( s ) H ( s ) 

o

s  1

 Angles of asymptotes  60 
o 
,  180

 Centroid   0 .66

 The breakaway points are given by dk/ds=0.

s ( s  1)( s 
2 
 4 s  16 )

where k 

PROBLEM: Construction of Root Locus (contd)..
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o
55 .27 The angle departure of the root locus from the complex pole is d

( s  1)( 4 s 
3 
 9 s 

2 
 24 s  16 )  s 

4 
 3 s 

3 
 12 s 

2 
 16 s 0

3 s 
4    
 10 s 

3  
 21 s 

2    
 24 s  16  0

By solving the above equation out of four roots only, s=0.45 and s= -2.26 are  
actual break points.

 Out of these s=0.45 is the breakaway point and s=-2.26 is the break-in point.

 Corresponding to these points k values are 2.64 and 77.66

d d
 ( s  1) ( s 

4    
 3 s 

3    
 12 s 

2    
 16 s )  ( s 

4    
 3 s 

3    
 12 s 

2    
 16 s ) ( s  1)  0

ds ds ds

dk

PROBLEM: Construction of Root Locus (contd)..
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k

k

s
0

3

k

3

s
1 3

5 2  k

( k  1 6  )  3 k
5 2  k

3 6  k  1 6

k  0

52  k  0

k  52

Determine the points where root loci cross the imaginary axis  and range of K 
for stable operation

The characteristic equation of closed loop system:
 ( k   16 ) s  k  0

1 1 2

3 k  1 6

 3 s 
3 
 12 s

2s
4

s
4

s
3

s
2

2
k  59 k  832  0

k  23 .3 andk  35 .7

 k  
2  
 832  9 k  052 k  16 k

 The range of values of k for stability is 23.3<k<35.7. The corresponding  
oscillation frequencies are 1.68 rad/sec and 2.6 rad/sec

PROBLEM: Construction of Root Locus (contd)..
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 Complete root locus of the given system is

 j1 .68 ( k  23 .3 )

 j 2 .6 ( k  35 .7 )o 55 .27
d

o 55 .27
d

BA   2 .32 ( k  77 .66 ) BA  0 .45 ( k  2 .64 )

PROBLEM: Construction of Root Locus (contd)..
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Why Controllers!

30

1

If a closed loop system’s response is not as desired then we make use of
controllers.

Controllers are also needed because to improve the closed loop system’s
response we cannot alter / change /replace the system(plant) which is
designed for certain steady state design specifications.

 System response has two components:
transient response ,&
steady state response

There may be a requirement to either improve transient response or steady
state response; or, both the responses may have to be improved.

Different controllers are used for improving transient & steady state
responses; a combination of controllers is used to improve both transient &
steady state responses of a system.



P: The Proportional Controller

30

2

 Proportional Controller:

r(t) c(t) c(t) = KP r(t)

 P controller is a pure gain element. Generally put in cascade with the
plant(system to be controlled)

R(S) C(S)

 M(S) = C(S)/R(S) = Kp G(S)/1+ Kp G(S)

 Thus Kp provides additional gain to the loop; Kp can be <1 or >1

 The value of Kp determines the location of closed loop pole(s). It affects  
impulse response of the closed loop system.

Kp

PLANT
G(S)Kp∑



 Example 1:

G(S) = 1 /(S + 1) ; Q(S) = 1 + G(S) = 0 S+2 = 0

G1(S) = Kp G(S) = Kp/(S+1); Q(S) = 1 + G(S)=0

S= -2

S +(Kp+1)=0

S = -(Kp +1)

 Thus we observe that the location of CL pole varies with Kp. If Kp is
increased then the pole moves farther away from the Imaginary Axis of
the S plane.

 The Impulse response without Kp = e⁻ᵗ ,and

with Kp = exp{ -(Kp +1)t}

 Thus we see that as Kp increases, impulse response decays faster to zero
thus reducing settling time. We cannot increase Kp beyond a value as it
may make higher order systems unstable.

30
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 Example 2:
G(S) = 1/S² + 2 S + 2; Q(S) = 1 + G(S) = 0 S² + 2S + 3 = 0  

S = -1 +/- j1

implies pole locations are fixed

G₁(S) = Kp/S² + 2S + 2 ; Q(S) = S² + 2 S + (2+Kp)

 We see that as Kp is increased the imaginary part of the roots increases
thereby increasing ωn for the system, while maintaining intersection on
the real axis = -1. Therefore it does not affect settling time.

 Thus we see that increasing Kp introduces high frequency oscillations in
the system & it may not be appropriate to fix a high value for Kp as it
reduces damping in the system.

30
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 Integral Controller:
R(S) C(S)

C(S)/R(S) = Gc(S) = Ki/S  
R(S) C(S)

+

C(S)/R(S) = Ki G(S)/(S + Ki G(S)); G(S) = K/(S+1)
C(S)/R(S) = Ki K /(S² + S + Ki K) Therefore Integral control:

1. Increases the order of a system
2. Converts over-damped system in to an under damped one ( governed by  

Ki)
3. As the integral gain Ki is varied, it varies ωn of the system.
4. Reduces steady state error of a system & improves steady state response.

I: The Integral Controller

30
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Ki/s

PLANT  
G(S)Ki/s-∑



 Magnitude Response:

G(S) = Ki/S ; S = jω G(jω) = Ki/jω

│G(Jω)│= G(ω)= Ki/ω ; arg(G(jω))= - Л/2 rads =φ

G(ω) φ

ω

0

-Л/2

ω (rads/sec)

 At very low frequencies the integrator provides very high gain and very  
high attenuation at high frequencies. It is a low pass filter.

 The phase lag : φ = –Л/2 rads (constant for all frequencies)

I: The Integral Controller: Frequency Response
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 Derivative Controller:

R(S) C(S)

C(S) = (Kd S) R(S) …. 1

 Explanation:

Take Inverse Laplace transform of (1); c(t) = Kd r°(t) = Kd dr/dt

Thus we observe that derivative controller differentiates the input. It
implies that if input is constant then the output of derivative block is
equal to zero. Thus its output exists only if input is varying with time.
Therefore, if this controller is in forward path, then we use a term like (1
+ Kd S) so that input to the plant does not become zero if the error
signal has attained a constant value.

This is depicted in next slide.

D: The Derivative Controller

30
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 The Derivative Controller:
E(S) Y(S)

e(t) y(t)

C(S)

c(t)

 If e(t), the error, attains a constant value then the output , y(t) =0 and
the plant (system) will have zero input which is not acceptable.

 Therefore in the forward path, we use a term (1+ Kd S) so that under
steady state y(t) = e(t). Therefore the derivative block is replaced by the
block in the forward path.

 In the feedback we retain it as Kd S

R(S) +
∑

r(t) -

D: The Derivative Controller

30
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G(S)

1+Kd s



Gc(S) = Kd S ; Gc(jω) = j Kd ω; │Gc(jω)│= Gc(ω) = Kd ω;

arg(Gc(jω)) = Л/2 = φ

Л/2 rads

Gc(ω) Kd φ

ω ω

 We see from the above plots that derivative controller offer higher gain  
at higher frequencies , therefore it is a high pass filter.

 Phase introduced by it is positive.

30
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Proportional plus Integral Control

31
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 P+I Controller: │G(jω)│= G(ω) = √(Ki² + (Kp ω)² )/ω

R(S) E(S)

+

(P+I) Controller

E(S)/R(S) = Kp + Ki/S; G(S) = Kp + Ki/S

G(jω) = Kp + Ki/jω = (Ki + j Kp ω)/jω
│G(jω)│= G(ω) = √(Ki² + (Kp ω)² )/ω  

arg(G(jω)) = tan ⁻¹(Kp ω/Ki) – Л/2

 Kp

Ki/s

∑

-∑ P+I PLANT  
G(S)



P+D Controller

31
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 P+D Controller:

R(S) C(S)

+

R(S) C(S)

(P+D Controller)

C(S)/R(S) = G(S) = Kp + Kd S

G(jω) = Kp + j Kd ω

│G(jω)│= G(ω) = √,(Kp² + (Kd ω)²}  

arg {G(jω)- = tan⁻¹ (Kd ω/Kp)

∑

+
Kd s

Kp ∑ P+D PLANT
G(S)



 P+I+D Controller:

c(t) = {Kp + Kd d/dt + ki ∫ dt- r(t)

R(S) + C(S) C(S)

E(S) Y(S)

(P+I+D) Controller

C(S)/R(S) = G(S) = Kp + Kd S + Ki/S = (Kd S² + Kp S + Ki)/S

G(jω) = {(Ki – Kd ω) + j Kp ω}/jω

│G(jω)│= G(ω) = √,(Ki – Kd ω)² + (Kp ω)²}  

arg{G(jω) - = tan⁻¹, Kp ω /(Ki – Kd ω)}

P+I+D Controller

31
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Kp

Kd s

Ki/s

+

∑

+ R(S) ∑ P+I+D
PLANT  

G(S)



 Observation:
Kp = 0; I+D controller  

Ki = 0; P+D controller

Kd = 0; P+I controller

 Thus we can choose a combination depending on the requirement. 

y(t) = {Kp + Kd d/dt + ki ∫ dt- e(t); e(t) is system error;

y(t) is P+I+D output
 From the above equation, we observe that,  

If e(t) >0 & is constant, then

Output of ‘D’ block = 0  

Output of ‘P’ block = Kp * e(t)

Output of ‘I’ block = Ki ∫ e(t) dt

 Thus the ‘I’ block output will keep increasing & can destabilize the CL  
system.

P+I+D Controller
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 Therefore, if the closed loop system is to be stable then the error, e(t),  
should equal ‘0’ under steady state.

 Zero steady state error implies,

Kp = ∞, Kv = ∞ & Ka = ∞

It means that all error constants should have a very high value.

 the forward path transfer function in the block diagram is equal to  

H(S)= Gc(S) G(S) = {(Kd S² + Kp S + Ki)/S} G(S)

 If G(S) is type ‘0’: H(S) is type ‘1’; e(t) = 0 for step input

 If G(S) is type ‘1’: H(S) is type ‘2’; e(t) = 0 for step & ramp inputs

 If G(S) is type ‘2’: H(S) is type ‘3’; e(t) = 0 for step, ramp & parabolic
inputs.

 The above observations are also valid for P+I controller & depend upon
the location of zeros in G(S) . For an all pole G(S), order>2, the CL
system may cease to be stable unless there are zeros associated with
G(S). H(S) has 1 pair of CC zeros & pole at S=0.

P+I+D Controller
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 The obvious concern is:

If error, e(t) becomes’0’ then will the controller output, y(t), become ‘0’ !  

If y(t) attains a ‘0’ value will the system, G(S), output also become ‘0’!

 The system output, c(t), will not become ‘0’ because of the property of  
the I- controller , Ki/S.

 The I controller retains its output at its previous value, if input to it  
becomes ‘0’ at t = t₁; that is the value y(t) attained at time t = t₁ - ∆t.

 The I controller is known as pure integrator because of its linear  
(constant) slope.

P+I+D Controller
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 The pure Integrator:

Y(S)/X(S) = 1/S

y°(t) = x(t) = dy(t); x(t) = U(t)=1.0

dy(t) = 1.0

 Rectangular Rule:

y(t) = y(t-1) + dy(t) * ∆t; y(t) = 0 at t=0; ∆t : time increment  let ∆t =

0.05

t = 1; y(1) = 0 + 1 * 0.05 = 0.05

t = 2; y(2) = y(1) + 1* 0.05= .05 + .05 = 0.1

t = 3 ; y(3) = y(2) + 1 * 0.05 = 0.1 + 0.05 = 0.15

 Let us now make x(t) = 0; therefore dy(t) = 0  t = 4; 

y(4) = y(3) + 0 * 0.05 = 0.15

t = 5; y(5) = y(4) + 0 = 0.15

Thus we see that even after input x(t) = 0; the output is retained.

P+I+D Controller
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CLOs Course Learning Outcome

CLO 10 Discuss the method of Bode plot and Polar plot to calculate

gain margin and phase margin of control system.

CLO 11 Describe the characteristics of control system and its

stability by plotting Nyquist plot.

CLO 12 Compare the behavior of control system in terms of time

domain and frequency domain response.
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Frequency Domain Specifications

31

9

 We have studied about time domain specifications like, rise time ,tr;
peak time, tp; settling time, ts; peak overshoot, Mp.

 Now, we define frequency domain specifications for a given system and
determine their correlation with the time domain specifications.

 This correlation between time & frequency domain is necessary as it
enables us to derive time domain specifications from frequency domain
ones & vice-versa.

 Further, we may like to analyze a given system either in time domain or
frequency domain & hence we need to have a set of specification in
each domain for evaluating a given system’s response.

 Like in time domain, here too we consider a second order system for
deriving frequency domain specifications.



 Given, a closed loop transfer function, T(S) = C(S)/R(S), as  

T(S) = C(S)/R(S) = ωn² / (S² + 2ξ ωn S + ωn² )

 For determining frequency response, we let S = jω in T(S) because we  
are interested in real frequencies which lie on the Imaginary axis of the  
S-plane.

T(jω) = ωn² / (-ω² + j2ξ ωn ω + ωn² )

T(jω) = ωn² / ωn² { (1-(ω/ ωn))² + j2ξ ω/ ωn }

 Let u = ω/ ωn; u: normalized frequency

ωn: natural frequency of oscillation of the system  

ω : input signal frequency

 Thus, T(jω) = 1/{ (1-u²) + j 2ξ u- ………… (1)

│T(jω)│= M(u) = 1/√, (1-u²)² + 4ξ² u²- ….. (2)

arg{T(jω)} = φ = - tan⁻¹ ,2ξ u/(1-u²)- ………..(3)

Frequency Domain Specifications

(contd)..
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 The magnitude & phase response are part of frequency response.
Equations(2) & (3) corresponding to magnitude & phase response tell
us that,

 if we feed an input signal r(t) = A Sin(ωt) to the system, the output
signal will have

magnitude = A/ √, (1-u²)² + 4ξ² u²} , and the

phase introduced = - tan⁻¹ {2ξ u/(1-u²)}

 Thus the output signal, under steady state, will be

c(t) = A/*√, (1-u²)² + 4ξ² u²}] Sin (ωt - tan⁻¹ {2ξ u/(1-u²)})

 We observe that the output amplitude is dependent on the input
frequency, and so is the phase lag introduced in the output signal.

Frequency Domain Specifications
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 Reproducing equations (2) & (3), we have 

M(u) = 1/√, (1-u²)² + 4ξ² u²- ….. (2)

φ = - tan⁻¹ ,2ξ u/(1-u²)- ………..(3)

Plotting M & φ vs. u, u = ω/ωn

u M φ

0.0 1.0 0 (ω=0)

1.0 1/(2ξ) -Л/2 (ω= ωn)

∞ 0 - Л (ωn ∞)

 Observation:

At ω= ωn, the value of ‘M’ is inversely proportional to ξ.

The lower the ξ higher the ‘M’ implies higher peak in the magnitude  
response.

Frequency Domain Specifications

(contd)..

32

2



Resonant Frequency:

The frequency where ‘M’ has a peak value is called resonant  
frequency. At this frequency, the slope of the magnitude curve,  
M, is zero. Differentiate ‘M’ w.r.t ‘u’ in equation (1)

Therefore, dM /du = 0 ur² = 1 – 2 ξ²

u = ur

ur = √(1-2ξ²)

ωr = ωn √(1-2ξ²)

Resonant frequency : ωr = ωn √(1-2 ξ²) …. (4)

Resonant Peak, Mr:

The maximum value of magnitude is known as ‘Resonant peak’

M(u) = 1/√, (1-u²)² + 4ξ² u²}; at resonant frequency u=ur, we get Mr.  

Substitute for u= ur in M(u), to get Mr = 1/{2ξ √(1- ξ²)} ….. (5)

Frequency Domain Specifications

(contd)..

32

3



 Phase angle, φr at Resonant Frequency:

Phase angle: φ = - tan⁻¹ ,2ξ u/(1-u²)}

Substitute for u = ur in φ, to get

φr = - tan⁻¹ ,√(1-2 ξ²)/ξ- …… (6)

From equations (4) & (5), as reproduced below  

ωr = ωn √(1-2 ξ²) …. (4)

Mr = 1/{2ξ √(1- ξ²)- ….. (5)  

It is seen that as ξ approaches ‘0’

ωr approaches ωn, and  

Mr approaches ∞

At ξ = 0.707 ; Mr = 1 & ωr = 0

Therefore there is no resonant peak & hence no resonant frequency.

Frequency Domain Specifications
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 The magnitude & phase plot:

For a range of ξ:

1.0M

Magnitude

0.2

0

0<ξ<0.707 we sketch the plots.

M (ξ < 0.707)

Mr φ

M (ξ = 0.707) - Л/2

-Л

Ur = ωr/ωn Normalized Frequency

Normalized Frequency

 We observe that for ξ≥ 0.707, the magnitude plot decreases
monotonically from M=1 at u=0. Thus there is no resonant peak for ξ≥
0.707 & the greatest value of M = 1.0

Frequency Domain Specifications
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Bandwidth, ωb:

The frequency at which M = 0.707 (1/√2) is called cut off frequency,  
ωc.

 The range of frequencies for which M≥ 1/√2 is defined as bandwidth,  
ωb of a system. Since control systems are low pass filters, ωb = ωc .

 At u = ub = ωb / ωn; (the normalized bandwidth), the expression for M  
is

M(ub) = 1/√, (1- ub ²)² + 4ξ² ub ²- = 1/√2  

Solving the above equation, we get

ub⁴ - 2(1-2ξ²)ub² -1 = 0 Let ub² = x; solve for x & then for ub. Ub = √x

 Solving for ub we get: ub = √ *1-2ξ² + √(2-4ξ²+4ξ⁴)]

Frequency Domain Specifications
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Bandwidth:

The denormalized bandwidth is given by,  

ωb = ωn √ *1-2ξ² + √(2-4ξ²+4ξ⁴)]

Thus, we observe that bandwidth is a function of damping, ξ only.  

ξ ωb

0.2 1.51 ωn

0.5 1.272 ωn

0.707 0.999 ωn

Thus we observe that as damping increases the bandwidth reduces.

Frequency Domain Specifications
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 Correlation between time and frequency domain parameters: 

Time Domain:

Mp = exp(- Лξ/√(1-ξ²))

tp = Л/ωn √(1-ξ²);

Frequency Domain:

Mr = 1/{2ξ √(1- ξ²)};

ωd = ωn √(1-ξ²)

ωr = ωn √(1-2 ξ²)

 From the above equations we understand that no matter in which
domain ( frequency or time) we are analyzing a system performance,
the other domain (time or frequency) parameters can be easily
estimated using the above set of relationships.

 For example, working in time domain from the root locus we can fix ξ,
ωn, for a desired location of closed loop poles and then we can
determine frequency domain parameters using above equations.

Frequency Domain Specifications
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 Correlation between time & frequency domain parameters:

ωr/ ωd = √(1-2 ξ²)/√(1-ξ²)

ξ ωr/ ωd

0.707 0.0

0.5 0.8165

0.3 0.9493

0.2
0.0

0.9789
1.0

ωr/ωd

ξ

0

0.8165

0.94930.97891

0

0.6

0.4

0.2

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Frequency Domain Specifications

(contd)..

32

9



POLAR PLOT

33

0

 Polar Plot:
Magnitude and phase of G(jω) is plotted in X-Y plane (graph sheet)  

G(jω) = Re[G(jω)]+ Img [G(jω)]

G(jω) = │G(jω)│ arg,G(jω)} = M exp(-jφ)

As ω is varied from ‘0’ to ‘∞’; the ‘M(ω= ω1)’ value is marked on the  
graph sheet at an angle of φ(ω= ω1)

 Example 1:

G(S) = 1/(1 + TS) G(jω) = 1/(1+ j ωT)

φ(ω)= - tan⁻¹(ωT)

1(ω = 0)

ω 0; M = 1

ω ∞; M = 0

ω = 1/T; M = 1/√2

M(ω) = 1/√(1+ (ωT)²);  

φ = 0°

(ω = ∞) 0

φ = -Л/2  

φ = -Л/4 1/√2 ( ω= 1/T)



Observations:

1. The ω = 0 & ω = ∞ are important points in a polar plot.

2. The angle subtended by G(jω) or G(jω) H(jω) at these frequencies
indicate the number of quadrants the polar plot is going to traverse in
the G(jω) or G(jω) H(jω) plane.

3. As we shall see later the intersection of the polar plot with the
negative real axis of the G(jω) or G(jω) H(jω) plane is a very important
information because it allows us to determine the stability of a CL
system, as also its relative stability.

4. Polar plot need not be drawn for all the frequencies from 0 to ∞; the
necessary points are ω = 0 & ω = ∞ and those values of ω at which the
polar plot intersects with the negative real axis of the G(jω) or G(jω)
H(jω) plane.

POLAR PLOT
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 Example 2:

G(S) or G(S)H(S) = 1/S(1+TS)

G(jω) = 1/jω (1 + j Tω); M(ω) = 1/ω √(1 + T²ω²);

φ(ω) = -Л/2 - tan⁻¹(Tω)

ω =0;

ω =∞;  

ω =1/T;

M = ∞;  

M = 0;

M = T/√2

φ = -Л/2 Angle measured in CW direction: -

φ = -Л Angle measured in CCW direction: +  

φ = -3Л/4

 Note: we observe that between ω =0 & ω =∞ the angle changes by Л/2;  
therefore the polar plot will traverse only in one quadrant.

The polar plot is shown in the next slide

POLAR PLOT
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 Polar plot:
Img. G(jω)

G(jω) plane

at ω=∞ M(ω)=0, φ=-Л

Re. G(jω)

φ = -3 Л/4

T/√2

 At ω =1/T; M = T/√2 φ = -3Л/4  

In order to plot this point, we draw  

an angle φ = -3Л/4 and then mark  

the point M = T/√2

At point A,

M = T/√2, φ = -3Л/4, ω = 1/T

ω >0 A

ω = 1/T

at ω=0 φ = -Л/2 M = ∞

POLAR PLOT
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 Example 3:

G(S) = 1/(1+T₁ S)(1+T₂ S); G(jω) = 1/(1 + j ωT₁) (1 + j ωT₂)

M(ω) = 1/√(1+ ω²T₁²) √(1+ ω²T₂²)  

φ(ω) = - tan⁻¹(T₁ω) - tan⁻¹(T₂ω)

ω =0;

ω =∞;

M = 1;

M = 0;

φ = 0  

φ = -Л

Angle measured in CW direction: -

Angle measured in CCW direction: +

 We observe that φ changes from 0 to –Л as ω changes from 0 to ∞.

 Therefore, the polar plot will traverse two quadrants in the G(jω) or

G(jω) H(jω) plane.

 Since the polar plot traverses two quadrants, we need to determine
point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jω) plane.

POLAR PLOT
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 Intersection with real & imaginary axis of the G(jω) plane:

 Procedure:

1. Rationalize G(jω) or G(jω) H(jω)

2. Separate in to real & imaginary parts of G(jω) or G(jω) H(jω)

3. For intersection on real axis; imaginary part = 0. Make imaginary part =
0 by making its numerator = 0. We get value of ω at point of
intersection. Calculate the value of real part at this value of ω. Draw a
vector of this length from the origin to get intersection on the real axis.

4. For intersection on imaginary axis; real part = 0. Make real part = 0 by
making its numerator = 0. We get value of ω at point of intersection.
Calculate the value of imaginary part at this value of ω. Draw a vector
of this length from the origin to get intersection on the real axis.

POLAR PLOT
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 Determination of Intersection point(s):

 G(jω) can be written as, G(jω) = 1/[(1-ω²T₁T₂) + j ω(T₁ + T₂)+

Rationalize: multiply & divide G(jω) by [(1-ω²T₁T₂) - j ω(T₁ + T₂)+; that is
conjugate of the denominator.

We get,

G(jω) = [(1-ω²T₁T₂) + j ω(T₁ + T₂)+/[(1-ω²T₁T₂)² + ω²(T₁ + T₂)²+  

Real part = (1-ω²T₁T₂)/*(1-ω²T₁T₂)² + ω²(T₁ + T₂)²+  

Imaginary part = ω(T₁ + T₂)/*(1-ω²T₁T₂)² + ω²(T₁ + T₂)²+

 We see from the above that

Imag. Part cannot be zero, &

Real part = 0 for 1-ω²T₁T₂ =0; ω² = 1/ T₁T₂

at intersection on imaginary axis, the frequency ω = 1/√ T₁T₂

POLAR PLOT
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G(jω) plane

(ω =∞ M=0 φ = -Л) (ω = 0 M = 1 φ=0)

√ T₁ T₂/(T₁ + T₂) ω> 0 ω> 0

ω = 1/ √ T₁ T₂

POLAR PLOT

(Contd..)

33

7



ω =0; M = 1; φ = 0 Angle measured in CW direction: -

ω =∞; M = 0; φ = -3Л/2 Angle measured in CCW direction: +

 Example 4:
G(S) = 1/(1+T₁ S)(1+T₂ S) (1+T₃ S);

G(jω) = 1/(1 + j ωT₁) (1 + j ωT₂) (1 + j ωT₃)

M(ω) = 1/√(1+ ω²T₁²) √(1+ ω²T₂²) √(1+ ω²T₃²)

φ(ω) = - tan⁻¹(T₁ω) - tan⁻¹(T₂ω) - tan⁻¹(T₃ω)

 We observe that φ changes from 0 to –3Л/2 as ω changes from 0 to ∞.
traverse three quadrants in the G(jω) or Therefore, the polar plot will

G(jω) H(jω) plane.

 Since the polar plot traverses three quadrants, we need to determine
point(s) of intersection between polar plot & the Imaginary & negative
real axis of the G(jω) plane.

POLAR PLOT
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 Intersection on the Real & Imaginary axis of G(j ω) plane: 

Following the procedure as explained earlier, we have:

 For intersection on Imaginary Axis:

ω = 1/√(T₁ T₂ + T₃ T₁ + T₂T₃)

 For intersection on real Axis:

ω = √ *T₁ +T₂ + T₃/T₁ T₂ T₃ ]

For the above values of ω, determine the magnitude of the points with  
imaginary intersection.



G(jω) plane

(ω =∞ M=0 φ = -3Л/2) (ω = 0 M = 1 φ=0)

A O

ω₁ = √ (T₁ +T₂+T₃)/(T₁ T₂ T₃) ω> 0

B ω> 0

ω₂ = 1/ √ (T₁ T₂ + T₂ T₃ + T₃ T₁ )

OA: magnitude of G(jω) at ω = ω₁  

OB : magnitude of G(jω) at ω = ω₂

POLAR PLOT

(Contd..)
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Relative Stability:

1. It is defined for systems that are open loop stable.

2. We have the Characteristic equation Q(S) = 1 + G(S)H(S) = 0

3. For real frequencies ( frequency response) S = jω

4. Therefore, Q(jω) = 1 + G(jω) H(jω) = 0

5. Or, G(jω ) H(j ω) = -1

6. therefore, │G(jω ) H(j ω)│= 1 & arg(G(jω ) H(j ω)) = φ = +/- Л

7. When loop gain = │G(jω ) H(j ω)│= 1 & arg(G(jω ) H(j ω)) = +/- Л

8. Phase introduced due to error detector = 180°

9. Therefore, total phase in the loop = 360° & │G(jω ) H(j ω)│= 1

10. The CL system response is oscillatory & it is on the verge of
instability

POLAR PLOT (Relative

Stability)

34
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11. loop gain = │G(jω ) H(j ω)│= 1 & arg(G(jω ) H(j ω)) = +/- Л: this is a 
point (-1, j0) in the G(jω ) H(j ω) plane. x

12. Stability of a closed loop system is determined by

(-1,j0)

non-encirclement of (-1,j0) point. As the polar plot gets closer to (-
1,j0) point, the CL system tends towards instability.

Polar plot & Location of closed loop poles:

x S plane

x

x S plane

x

X X

(-1,j0) (-1,j0) G(jω) H(jω) plane

We observe that polar plot closer to (-1,j0) point implies CL poles are  
closer to the Imaginary axis of the S-plane

POLAR PLOT (Relative Stability 
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 As the CL poles move closer to the Imaginary axis of the S plane, the
system takes more time to settle down (reach steady state) & is
therefore relatively less stable than the one which has CL poles far
removed from the Imaginary axis of the S plane.

 In frequency domain it implies that as the polar plot moves closer to the
(-1,j0) in the G(jω ) H(jω ) plane, the CL system becomes relatively less
& less stable.

 Therefore proximity of the polar plot to the (-1,j0) point determines CL
system’s relative stability.

 If the polar plot passes through (-1,j0) point then the CL system is on
the verge of instability

 If the polar plot encircles the (-1,j0) point then the CL system is
unstable.

POLAR PLOT (Relative Stability 
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 Example of Relative stability:

G(jω )H(jω) plane

(-1,j0)a

X

Plot 1:

Intersects negative real axis at ‘b’ d  

Plot 2:

Intersects negative real axis at ‘c’

b

Plot 3:

Passes through (-1,j0) point  

Plot 4:

Encircles (-1,j0) point &  

intersects negative real axis  

at ‘d’

c

1 (More Stable)

2  (Stable)

3 (limitedly stable)

4 (unstable)

│b│<│c│<│a│<│d│

POLAR PLOT (Relative Stability 

Contd..)
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Gain Margin:

1. The margin between actual gain ‘K’ (of the system) and the critical
gain causing oscillations (in the system output) is called Gain
Margin (GM)

2. Critical gain: the value of ‘K’ at which the Polar plot- { G(jω)H(j ω)}
plot - passes through (-1,j0) point.

3. Definition of GM: It is the factor by which the system gain can be
increased to drive it to the verge of instability.

4. At ω = ω₁ , the magnitude of (-1,j0)

GH plane

(ω=ω₁)

intersection with the negative real axis is X

‘a’; the phase angle = Л a

5. For the plot to pass through (-1,j0) point, the factor by which the
gain is to be increased = 1/a. GM = 1/a

Relative Stability Index: Gain & Phase Margin
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1. │G(jω)H(jω)│ = a, at ω = ω₁

2. arg {G(jω)H(jω)} = φ = Л, at ω = ω₁

3. ω = ω₁ is the frequency at which φ = 180°.

4. ω = ω₁ is called ‘Phase Crossover Frequency’

5. Phase crossover frequency: is defined as the frequency at which the  
phase offered by the system is Л

6. Gain Margin is now defined in terms of phase crossover frequency as

7. ‘reciprocal of the gain at the frequency at which phase angle  
becomes 180’

8. Thus GM value is obtained at phase crossover frequency.

9. GM = 1/a; In decibels: GM = 20 Log(1/a) = - 20 Log(a)

Relative Stability Index: Gain & Phase Margin
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Phase Margin:

1. It is calculated at ‘Gain Crossover Frequency’

2. The frequency at which │G(jω)H(jω)│ = 1 is called ‘Gain Crossover
G(jω)H(jω) plane

X(ω=ω₁) O

rad r= 1

frequency’

3. Draw a unit circle as shown.

4. The point of intersection of unit circle

5. with polar plot is X , say, the frequency is ω₁.

6. The │G(jω)H(jω)│(at ω=ω₁) = length of vector OX=1

PM = φ

7. Therefore ω=ω₁ is the gain cross over frequency.

8. The angle made by OX with the negative real axis of the G(jω)H(jω)  
plane is Phase Margin (PM), φ, of the system.

Relative Stability Index: Gain & Phase Margin
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Phase Margin & Stability of CL system:
1. It is defined as the amount of additional phase lag at the gain cross  

over frequency required to bring the system to the verge of  
instability.

2. It is measured in the CCW direction from the negative real axis of  
the G(jω) H(jω) plane.

3. If ω = ω₁ is the gain cross over frequency, then phase margin (PM) is  
computed as:

4. PM = φ = arg{G(jω₁) H(jω₁)} + 180°
5. Since systems introduce phase lag , arg{G(jω₁) H(jω₁)} is always  

negative.
6. If PM is positive, the CL system is stable
7. If PM is negative the CL system is unstable
8. If PM = 0 the CL system is on the verge of instability

Relative Stability Index: Gain & Phase Margin
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GM & Stability of CL system:
GM is calculated as the inverse of the │G(jω)H(jω)│= ‘a’ at the point of  
its intersection with negative real axis of the GH plane.

GM = 1/a ; or, GM = - 20 Log (a) in dB.

1. If GM is positive, CL system is stable

2. If GM is negative, CL system is unstable

3. If GM = ‘0’, CL system is on the verge of instability

Interpretation of Relative Stability from GM & PM Values:
1. Large GM or large PM imply sluggish CL system

2. GM close to ‘1’ or PM close to ‘0°’ imply highly oscillatory system

3. GM of about 6 dB or PM of 30-35° imply reasonably good degree of
relative stability

4. Generally a good GM automatically guarantees a good PM & vice-
versa.

Relative Stability Index: Gain & Phase Margin
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 Special Cases:

We have said that generally a good GM yields good PM & vice versa. In  
certain cases, it may not hold. G(jω)H(jω) plane

 Case 1: (-1,j0) point

φ₃ φ₂ φ₁ rad=1Plot 1: gain K₁ ;PM = φ₁; GM = ∞

Plot 2: gain K₂; PM = φ₂; GM = ∞

Plot 3: gain K₃; PM = φ₃; GM = ∞

K₃ > K₂ > K₁ ; φ₃ < φ₂ < φ₁

 We see that as we increase gain in the system

the Phase Margin reduces whereas the 3 2 1

 Gain Margin does not change. Therefore in such cases we need to focus
only on PM because GM is not adjustable.

Relative Stability Index: Gain & Phase Margin
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 Case 2:

φ₁

φ₂

Plot 1: gain K₁ ;PM = φ₁; GM = 1/a rad=1  

Plot 2: gain K₂; PM = φ₂; GM = 1/b

Plot 3: gain K₃; PM = φ₃; GM = 1/c

K₃ > K₂ > K₁ ; φ₃ < φ₂ < φ₁ c

(-1,j0 ) point

b a
 We see that as we increase gain

the GM reduces appreciably , but 1

the PM does not vary much. 2 φ₃

 Therefore, we need to monitor GM in this case. 3

Relative Stability Index: Gain & Phase Margin
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Polar Plot: Correlation between PM & ξ
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 Correlation between Phase Margin & Damping ξ:

Let G(S) = ωn²/S(S + 2ξωn); for a unity feedback system

 At the gain cross over frequency, ω = ω₁

│G(j ω)H(jω)│ = 1.0

or, ωn²/ ω₁√(ω₁² + 4 ξ² ωn²) = 1.0  

or, ω₁²(ω₁² + 4 ξ² ωn²) = ωn⁴

or, (ω₁/ ωn)⁴ + 4 ξ² (ω₁/ ωn )²-1 = 0; let (ω₁/ωn )² = x  

or, x² + 4 ξ² x – 1 = 0

or, x = -2 ξ² +/- √(1 + 4 ξ⁴)

or, (ω₁/ ωn )² = √(1 + 4 ξ⁴) - 2 ξ²  

or, ω₁ = ωn √(√(1 + 4 ξ⁴) - 2 ξ²)

 The above equation relates ξ with gain cross over frequency, ω₁



arg{G(j ω)H(jω)} = - 90° - tan¯¹(ω/2 ξ ωn)  
at ω = ω₁, φ₁ = - 90° - tan¯¹(ω₁ /2 ξ ωn)

PM = φ = 180° + φ₁ = 180° - 90° - tan¯¹(ω₁ /2 ξ ωn)
φ = 90° - tan¯¹(ω₁ /2 ξ ωn)

 Substitute for ω₁ to get,
φ = 90° - tan¯¹*√(√(1 + 4 ξ⁴) - 2 ξ²) /2 ξ ]

or,
or,
or,

*√(√(1 + 4 ξ⁴) - 2 ξ²) /2 ξ ] = tan(90° - φ) = cot φ
tan φ = 2 ξ / *√(√(1 + 4 ξ⁴) - 2 ξ²)]

φ = tan¯¹ {2 ξ / *√(√(1 + 4 ξ⁴) - 2 ξ²)]}
 The above equation gives a relationship between ξ & φ for an under  

damped system.
 In the range ξ ≤ 0.707, a reasonably good approximation is given by

ξ = 0.01 φ

Polar Plot: Correlation between PM & ξ
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G(j ω) = K/jω (1+j 0.2ω)(1+j 0.05 ω)

 For K = 1:

PM = φ = 76° ;

a= -0.04

b = 0.1 φ = 76°= PM

2

 Intersection on negative real axis, a = -0.04 

GM = 20 Log │1/a│= 28 dB

 Suppose we desire a GM = 20 dB, &

PM = 40°

 For a GM = 20 dB, the polar plot should intersect 1  

the negative real axis at : 20 Log │1/b│= 20 dB

therefore, b = 0.1

 This is achieved if K is increased by 0.1/0.04 = 2.5; K = 2.5. Plot 2

Polar plot Examples: Computation of GM & PM
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40°

O

 To achieve PM = 40°, we have:

Draw an angle of 40° in CCW direction from the  

negative real axis of GH plane, as shown

 We see that for PM = 40° , gain ‘K’

is to be increased by the ratio OA/OB

OA/OB = 1/0.191 = 5.24 B

K = 5.24 A

 Thus we note that GM & PM are two different

 Specifications not achievable for a single value of gain ‘K’.

Polar plot Examples: Computation of GM & PM
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Analytical Method: Gain & Phase Margin

35

6

 Example:

 G(S) = K/S(1+0.2S)(1+.05S) G(jω) = K/jω(1+j0.2ω )(1+j0.05ω)

 We know that for determining GM, we need to find intersection on
negative real axis (Imaginary part = 0).

 Determine value of ω for which Imaginary part = 0. 

Simplify G(jω) to get G(jω) = K/[-0.25 ω² + jω (1- 0.01 ω²)] 

Rationalize G(jω) to get,

G(jω) = -0.25K ω²/Den - j ω(1-0.01 ω²)/Den

Where, Den = [(-0.25 ω²)² + (ω(1-0.01 ω²))²]

For Imaginary part = 0, 1-0.01 ω² = 0; ω = 10= ω₁

ω₁: phase cross over frequency. Magnitude of G(jω) at ω = ω₁

│G(jω)│= K/0.25(ω₁)² = K/25 = a (Contd.)



 For a desired GM = 20 dB, we have

20 Log (1/a) = 20 , or, a = 1/10 = 0.1  

K/25 = a; K = 2.5

 Calculation of PM:

Let ω = ω₂ be the gain crossover frequency;  

PM = 180° + arg{G(jω)}; Desired PM = 40°

arg{G(jω)} = -90° - tan¯¹(0.2 ω₂) - tan¯¹(0.05 ω₂)

PM = -90° - tan¯¹(0.2 ω₂) - tan¯¹(0.05 ω₂) +180° = 40°

tan¯¹(0.2 ω₂) - tan¯¹(0.05 ω₂) = 50°; Apply tan on

0.25 ω₂/[1-0.01 ω₂²] = tan 50° = 1.2 rads; ω₂ = 4 rads/sec

│G(jω)│at ω = ω₂ is = K/[ω₂ √,1+(0.2 ω₂)²- √ ,1+(0.05 ω₂)²} = 1  

For ω₂ = 4, K = 5.2

Analytical Method: Gain & Phase Margin

35
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BODE PLOT

35

8

 From the frequency response of open loop transfer function G(S) or
G(S)H(S), closed loop system stability & relative stability is determined;
as in polar plots & root locus methods.

1. We draw two plots for each transfer function

2. Magnitude plot in dB

3. Phase plot

4. Both the plots are drawn on semi log paper

5. Magnitude in dB is given by 20 Log │G(jω )│

or 20 Log │G(jω )H(j ω)│  

Angle φ(ω) is plotted in degrees



 Note on Log Scale:

The advantage of Log scale is that we can handle a very large data size

 Linear Scale:

-30 -20 -10 0 10 20

 In linear scale each segment is incremented equally.

 Log Scale:

 In log scale, we decide the multiplication factor ‘x’. Let x = 10

-2 -1

0.01 0.1

0

1

1 2 3 (linear scale) ω

10 100 1000 (Log scale) Log ω

BODE PLOT

(Contd..)
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ω = 1 (on log scale)  

ω = 10 (on log scale)  

ω = 100 (on log scale)  

ω = 0.1 (on log scale)

ω = 0.01 (on log scale)

 Conversion to Log scale:

Log 10 ω = 0 (on linear scale)  

Log 10 ω = 1 (on linear scale)

Log 10 ω = 2 (on linear scale)  

Log 10 ω = -1 (on linear scale)  

Log 10 ω = -2 (on linear scale)

 We observe from the above that

1. on the positive side increment by ‘1’ on linear scale corresponds to  
multiplication by ‘10’ on the Log scale ,and

2. on the negative side increment by ‘-1’ on linear scale corresponds  
to division by ‘10’ on the Log scale

3. We also observe that on the Log scale we cannot start with a value  
of ω = 0, but it can assume a very small value

BODE PLOT

(Contd..)

36
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 Thus, we observe that increment by causes‘1’ on linear scale  
multiplication by ‘10’ on Log scale and hence enabling data
compression and thus facilitating usage of large chunks of data.

 Further observations on Log scale:

1. Between ω = 1 & ω = 10 on the log scale, if we want to mark ω = 2
then we write: Log 10 ² = 0.301 ( which is 30.1% of the segment
length between ‘1’ & ‘10’ on the Log scale

2. Between ω = 1 & ω = 10 on the log scale, if we want to mark ω = 3
then we write: Log 10 ³ = 0.477 ( which is 47.7% of the segment
length between ‘1’ & ‘10’ on the Log scale

3. Between ω = 1 & ω = 10 on the log scale, if we want to mark ω = 5
then we write: Log 10 ⁵ = 0.699 ( which is 69.9% of the segment
length between ‘1’ & ‘10’ on the Log scale

Thus we see that the marking is not linear.

BODE PLOT

(Contd..)
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 Representation of Transfer Functions:

 We have two ways of representing a transfer function:

 Pole-Zero Form:

m n

G(S) = K *∏  (S + Zj)] / *∏(S + Pi)] ; m ≤ n

 Time – Constant Form:

j = 1 i = 1

m n

G(S) = {K ∏Zj/∏Pi} {*∏ (1+S/ Zj)] / *∏(1+S/Pi)]}

j=1 i = 1

 Let K₁ = K ∏Zj/∏Pi ; Tzj = 1/Zj ; Tpi = 1/Pi; Tzj & Tpi are time constants

m n

G(S) = K₁ *∏ (1+ Tzj S)] / *∏(1+ Tpi S)]  

j=1 i = 1

BODE PLOT

(Contd..)

36
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 Example:

Given, G(S) = 10 (S + 2) (S+4)/(S + 5) (S + 10) in pole- zero form  

Convert in to time constant form

 Solution:

G(S) = (10)(2)(4)(1 + S/2)(1+ S/4) / (5)(10)(1 + S/5)(1 + S/10)  

K₁ = (10)(2)(4)/(5)(10) = 8/5

G(S) = (8/5) (1+0.5 S)(1+0.25S)/(1+0.2S)(1+0.1S)

 Where, Tz1 = 0.5; Tz2 = 0.25; Tp1 = 0.2; Tp2 = 0.1 are time constants

 Convert Time constant form in to Pole-Zero form:

G(S) = (8/5)(.5)(.25)(S + 1/.5)(S + 1/.25)/[(.2)(.1)(S+1/.2) (S+1/.1)]  

G(S) = K (S + 2)(S + 4)/(S + 5)(S + 10)

K = (8/5)(.5)(.25)/(.2)(.1) = 10

 In Bode & Polar plots we use Time Constant form

BODE PLOT

(Contd..)
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 Example:

G(S) = 1/(1+TS) G(jω) = 1/(1 + j Tω)

│G(jω)│ = 1/√(1 + (Tω)²) ; arg[G(jω)] = -tan¯¹(ωT)

 The Log – magnitude in dB is given by:

20 Log 10 │G(jω)│= M(ω)= 20 Log 10 [1/√(1 + (Tω)²)]

M(ω)= -10 Log 10 (1 + (Tω)²) ---------- 1

 Two cases are considered:

1. For Tω <<< 1 (low frequency asymptote); M(ω) = 0.0 because (Tω)² can  
be neglected as compared to ‘1’

2. For Tω >>> 1 (high frequency asymptote); M(ω) = -20 Log 10 (Tω)……. 2; 
‘1’ can be neglected

ωT (rads)  

1

M(ω) in dB  

0

ωT (rads)

100

M(ω) in dB

-40

10 -20 1000 -60 (cont)

BODE PLOT (Method for Drawing)

36
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 We observe from the table in the previous slide that,

1. For a decade change in frequency ( 1 to 10, 10 to 100, & so on) the
magnitude changes by -20 dB.

2. Therefore the slope of the magnitude plot is -20 dB/decade change
in frequency.

 We have two plots: for ωT<<<1 & ωT >>>1

 For ωT<<<1; M(ω) =0 & for ωT >>>1; M(ω) has slope of -20 dB/decade

 At ωT=1; M(ω) in equation (2) = 0 dB & M(ω) in equation (1) =0
therefore the two meet at ωT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

 This meeting point is called ‘Corner Frequency’ & is derived from ωT=1;
or, ω = 1/T is the corner frequency.

BODE PLOT (Method for Drawing) Contd..
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 The Log-magnitude in dB is plotted as:

mag. in dB 10³/T1/10T 1/T 10/T 10²/T

0 Log ω

-20

-40 slope = -20dB/decade

-60

( Log mag. Plot – semi log graph paper)

 The Angle Plot: for ωT<<<1, φ = 0 ; for ωT = 1, φ = -45°; for ωT>>>1, φ = -90°

0

φ(ω) -45°

-90°

BODE PLOT (Method for Drawing) Contd..
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 Example: First order ‘zero’

G(S) = (1+TS) G(jω) = (1 + j Tω)

│G(jω)│ = √(1 + (Tω)²) ; arg[G(jω)] = tan¯ ¹(ωT)

 The Log – magnitude in dB is given by:

20 Log 10 │G(jω)│= M(ω)= 20 Log 10 [√(1 + (Tω)²)]

M(ω)= 10 Log 10 (1 + (Tω)²) --------

-- 1

 Two cases are considered:

1.For Tω <<< 1 (low frequency asymptote); M(ω) = 0.0 because 

(Tω)² can be neglected as compared to ‘1’

2. For Tω >>> 1 (high frequency asymptote); M(ω) = 20 Log 10

(Tω)… 2; ‘1’ can be neglected

ωT (rads) M(ω) in dB ωT (rads) M(ω)

in dB

1 0 100 40

Bode Plots: Different types of Transfer

Functions

36
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 We observe from the table in the previous slide that,

 For a decade change in frequency ( 1 to 10, 10 to 100, & so on) the  
magnitude changes by 20 dB.

 Therefore the slope of the magnitude plot is 20 dB/decade change  
in frequency.

 We have two plots: for ωT<<<1 & ωT >>>1

 For ωT<<<1; M(ω) =0 & for ωT >>>1; M(ω) has slope of 20  
dB/decade

 At ωT=1; M(ω) in equation (2) = 0 dB & M(ω) in equation (1) =0
therefore the two meet at ωT=1, if we extend the low frequency
asymptote; ( as they are both = 0)

 This meeting point is called ‘Corner Frequency’ & is derived from
ωT=1; or, ω = 1/T is the corner frequency.

Bode Plots: Different types of Transfer

Functions

36
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 The Log-magnitude in dB is plotted as:

slope = 20dB/decademag. In dB 40

20

0

ω
1/10T

 The Angle Plot:

1/T 10/T 10²/T 10³/T
( Log mag. Plot – semi log graph paper)

for ωT<<<1, φ = 0 ; for ωT = 1, φ = 45°; for ωT>>>1, φ = 90°

90°

φ(ω)

45°

0°

Bode Plots: Different types of Transfer

Functions

36
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 Example:

Consider 1) G1(S) = 1/S & 2) G2(S) = S

1) G1(jω) = 1/jω; │G1(jω)│= 1/ω & G2(jω) = jω; │G2(jω)│= ω

2) The Log – magnitude in dB is given by:

20 Log 10 │G1(jω)│= M1(ω)= 20 Log 10 [1/ω] = -20 Log 10 (ω)

20 Log 10 │G2(jω)│= M2(ω)= 20 Log 10 [ω] = 20 Log 10 (ω)

Angle : φ1(ω) = - 90° Angle : φ2(ω) = 90°

-20 dB/decade (slope) M1(ω)

20 dB 20 dB/decade (slope) M2(ω) φ2(ω) = 90°

0dB Log ω

ω φ1(ω) = -90°

-20 dB

0.1 1.0 10.0

Log-magnitude plot Phase Plot

Bode Plots: Different types of Transfer

Functions

37
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 We have drawn Bode plots for first order transfer functions having a
simple (order 1) pole or a simple (order 1)zero. We now generalize it to
multiple order poles & zeros which may be present in a given transfer
function.
G1(S) = 1/(1 + TS) ͫ (pole of order ‘m’), &
G2(S) = (1 + TS) ͫ (zero of order ‘m’)

G1(jω) = 1/(1 + j Tω) ͫ; │G1(jω)│= 1/*√(1+(ωT)²+  
Log-magnitude ( in dB) = 20 Log10 {1/*√(1+(ωT)²+ ͫ-

= -10 m Log10 {(1+(ωT)²+ …….. 1
Angle = - m tan¯¹(ωT)

G2(jω) = (1 + j Tω) ͫ; │G2(jω)│= *√(1+(ωT)²+
Log-magnitude ( in dB) = 20 Log10 *√(1+(ωT)²+

= 10 m Log10 {(1+(ωT)²+ ………. 2
Angle = m tan¯¹(ωT)

Bode Plots: Different types of Transfer

Functions

37
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 For G1(S) :
Log-magnitude ( in dB) = -10 m Log10 {(1+(ωT)²]

 For G2(S) :
Log-magnitude ( in dB) = 10 m Log10 {(1+(ωT)²]

 Thus we observe that, for ωT>>>1, the
slope of log-mag. plot for pole of order ‘m’ = -20 m dB/decade
slope of log-mag. plot for zero of order ‘m’ = 20 m dB/decade

 While the respective angles are given by
-/+ m tan¯¹(ωT)

where m = 1,2,3 … is the order of the pole & zero. So as ‘m’ increases the  
slopes and the angle increase.

Bode Plots: Different types of Transfer

Functions

37
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 Multiple Poles & Zeros at the Origin of the S plane: 

Consider 1)  G1(S) = 1/S ͫ & 2) G2(S) = S

1) G1(jω) = 1/(jω) ͫ; │G1(jω)│= 1/ω ͫ & G2(jω) = (jω) ͫ; │G2(jω)│= ω

2) The Log – magnitude in dB is given by:

20 Log 10 │G1(jω)│= M1(ω)= 20 Log 10 [1/ω ͫ+ = -20 m Log 10 (ω)

20 Log 10 │G2(jω)│= M2(ω)= 20 Log 10 [ω ͫ+ = 20 m Log 10 (ω)  

Angle : φ1(ω) = - m 90° Angle : φ2(ω) = m 90°

 Here again we observe that the slope for log-magnitude plot of  

G1(S) is -20m dB/decade & angle is –m 90°, &

G2(S) is 20m dB/decade & angle is m 90°

 where, m = 1,2,3 …. Is the order of the pole and zero

As ‘m’ increases, slopes & angle increase

Bode Plots: Different types of Transfer

Functions

37
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Bode Plots: Different types of Transfer

Functions

37

4

 G(S) = K (1+T₁ S)(1+T₂ S)/S ͫ(1 + T₃ S)(1 + T₄ S)

We have a combination of poles & zeros. There can be any

number of poles & zeros in a transfer function. We need to plot

Log-magnitude plot in dB & Angle plot in degrees

 Log-magnitude plot:

G(jω ) = K (1 + j T₁ω)(1 + j T₂ω)/(jω) ͫ (1 + j T₃ω)(1 + j T₄ω)

20 log │G(jω )│= 20 log │K (1+j T₁ω)(1+j T₂ω)/(jω) ͫ(1+j T₃ω)(1+j

T₄ω)│

20 log K + 20 log √(1+ (T₁ω)² + 20 log √(1 + (T₂ω)²

-20 m log ω -20 log √(1 + (T₃ω)² - 20 log √(1+(T₄ω)² ….. 1

 From equation (1) we make out that log-magnitude plot in dB, for

a given G(S), is obtained by algebraically adding asymptotic plot

of each pole & zero including the constant gain term ‘K’



Bode Plots: Different types of Transfer

Functions
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 Example:

G(S) = 10 (1+S)(1+10S)/S(1 + 5S)(1+20S)

 Bode Plot:

G(jω) = 10(1+j 1ω)(1+j 10ω)/jω(1+ j 5ω)(1 + j 20ω)

1. K = 10; magnitude in dB = 20 log 10 = 20 dB

2. (1+j1ω); corner frequency ωT = 1; ω= 1/T; ω =1; up to ω= 1,
magnitude = 0; for ω≥1, magnitude plot has a slope of 20
dB/decade

3. (1+j 10 ω); corner frequency ωT = 1; ω= 1/10; ω =0.1; up to ω= 0.1,
magnitude = 0; for ω≥0.1, magnitude plot has a slope of 20
dB/decade

4. ω; corresponds to pole at origin; magnitude plot has a slope of -20
dB /decade



Bode Plots: Different types of Transfer

Functions

37
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 (1+j5ω); corner frequency ωT = 1; ω= 1/5; ω =0.2; up to ω= 0.2,
magnitude = 0; for ω≥0.2, magnitude plot has a slope of -20
dB/decade

 (1+j 20 ω); corner frequency ωT = 1; ω= 1/20; ω =0.05; up to ω= 0.05,
magnitude = 0; for ω≥0.05, magnitude plot has a slope of -20
dB/decade.

 The lowest corner frequency is 0.05; therefore we take lowest
frequency in log ω scale as 0.005

The complete log- magnitude plot is shown in the next slide



 Complete log-magnitude plot: complete log-magnitude plot

(1+jω)

(1+ j 10ω)

dB 60

40

20

0.005 500 ω0.05 0.1 0.2  0.5 1.0 2 5 10 50

(1+j 5ω)

(1+j 20ω)

-20

-40

-60 We have drawn asymptotic plots for each term in G(S)

 Now, we algebraically add all the plots keeping in mind that slope  
change occurs at corner frequency only; corner frequencies are  
0.05, 0.1; slope change begins at these frequencies.

Bode Plots: Different types of Transfer

Functions
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 Complete Angle plot: complete Angle plot

135°

90° arg(1+ 10S) arg(1+S)

45°

0.005 0.05  0.1  0.2 0.5 1 2.0 5.0 10 50.0 500.0 ω

arg(1+ 5S)

-45°

-90°

-135°
 Constant term introduces ‘0’ phase. At corner frequency angle is +/- 45°. At

ten times the corner frequency angle can be taken as +/- 90°. These are
asymptotic plots for angle of each term in G(S).

 Complete Angle plot is obtained by algebraically adding all the individual
plots.

Bode Plots: Different types of Transfer

Functions

37
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 Under damped systems have complex conjugate poles. Let us consider  
normalized form of a second order system, given by

G(j u) = 1/(1 + j2ξu- u²);

│G(j u)│= 1/√*(1-u²)² +(2ξu)²]

 The log-magnitude plot is given by

20 log │G(j u)│= M(u) = -10 log[(1-u²)² +(2ξu)²]

For u <<<1; higher order terms in u are neglected to obtain  
M(u) = 0 dB

For u >>>1; M(u) = -10 log u⁴ = -40 log u; (2ξu)² << u⁴ because ξ < 1

 Therefore, log magnitude plot consists of 2 straight line asymptotes

- one horizontal line at ‘0’ dB for u<<<1

- the other, a line with a slope of -40 dB/decade for u>>>1

 These 2 asymptotes meet on ‘0’dB line at u = 1; i.e. at ω = ωn.

BODE PLOT: For 2nd order Under 

damped  Transfer

Functions

37
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 The asymptotic plot for 2nd order system is:

 Asymptotic plots are approx. dB40  

plots; error at u = 1. 20

0 0.1 1

corner frequency (ω=ωn)

10 100 ω

-20 -6 db -40 dB/decade (slope)

 Exact Plot: -40 (Asymptotic plot)

The log-magnitude plot is given by

M(u) = -10 log[(1-u²)² +(2ξu)²]; Actual plots are drawn around Asymptotic plot.

We directly substitute for u = 1 & determine M(u) for different ξ values.  
M(u), u=1, is function of ξ.

u=1

ξ = 0.05

M(u)

20 dB

ξ = 0.1

ξ = 1.0

14 dB

-6 dB

BODE PLOT: For 2nd order Under 

damped  Transfer

Functions

38
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 The Phase Plot:

The phase angle is given by: φ(u) = -tan¯¹(2ξu/1-u²);

We observe that φ(u) is a function of u & ξ. However, at u=1, for any
value of ξ, φ(u) = -90°.

for u = 0; φ(u) = 0 & for u = ∞, φ(u) = - 180°

 For 0<u<1 & 1<u<∞, φ(u) is dependent on ξ value.

0.1 1.0 10 u

-90°

180°

Increasing ξ ξ = 0.05

ξ=0.1

ξ>1

BODE PLOT: For 2nd order Under 

damped  Transfer

Functions

38
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Determination of Transfer Function from  

Bode Plot

38

2

 The problem of Synthesis:

 Given a transfer function, we know how to draw Bode plot.

 Now we will have the reverse problem:

Given  the  Bode  (log-magnitude)  plot  how  to  determine  the transfer
function. This is the process of system identification from a given

dB

0.1 1.0 10.0 100.0 ω

frequency response.
Solution:

Slope of plot ‘1’ = -20 dB/decade

2 Slope of plot ‘2’ = -40 dB/decade

Corner frequency (ωT = 1) correspondingto

-20 1

-40

-60

plot ‘1’ = 1 rad/sec & plot ‘2’ = 0.1 rads/sec

 The gain up to 1st corner frequency (= 1 rad/sec) = 0 dB; therefore K = 1 

The transfer function, G(S) = 1/(1 + S)(1 + 0.1S)



 Determine G(S) magnitude dB

20 -40 dB/decade (slope)

1.0 10.0 100.0 ω0.1

-20

-40 -20 dB/decade (slope)

 Corner frequencies are at ω = 1 & ω = 10 rads/sec

Up to ω = 1 rads/sec, the gain(magnitude) = 20 dB. We determine ‘K’
from it. 20 Log 10 K = 20 dB; therefore K = 10.

 At ω = 1 rads/sec, magnitude plot falls with a slope of -40 dB/decade.
This corresponds to a double pole term like,1/(1+S)² in G(S). From ω =
10 rads/sec, the slope changes to -20 dB/decade, therefore there is a
zero term like (1 + 0.1S) in G(S).

 Therefore G(S) = K (1 + 0.1S)/(1 + S)²

Determination of Transfer Function from  

Bode Plot

38
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 Determine G(S):

ω

-20 dB/decade (slope)

- 40 dB/decade (slope)

1.0 10.0 100.0

-20 dB/decade (slope)

magnitude dB

40

20

0 0.1

-20

-40

-60

 There is a ramp with a slope: -20 dB/decade, starting at ω = 0.1 r/s. It
implies a term 1/S in G(S). At ω = 1 r/s; its magnitude should be ‘0’ dB,
but it is 20 dB. It implies ‘K’ = 10 in G(S). From ω = 1 r/s to ω= 10 r/s,
the slope is -40 dB/decade. It implies a term 1/(1 + S) in G(S). From ω =
10 r/s to ω= 100 r/s, the slope is -20 dB/decade. It implies a term (1
+ 0.1 S) in G(S).

 Therefore, the transfer function is: G(S) = 10 (1+ 0.1 S)/S(S + 1)

Determination of Transfer Function from  

Bode Plot

38
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 Determine G(S): magnitude dB

40

20 dB/decade (slope) 20 0 dB/decade (slope)

ω

- 8 dB

1.0 10.0 100.0

-20 dB/decade (slope)

0 0.1

-20

-40

-60

 Starting, there is a ramp slope= 20 dB/decade; it implies a S term in
G(S); its magnitude should = 0 at ω = 1 r/s, but it is not so. It implies a
gain term ‘K’ in G(S). To determine ‘K’ we write

 20 Log K + 20 log ω = -8 at ω = 1 r/s; or, 20 log K = -8; K = 0.3981

 From ω = 1 to 10 r/s ; slope is ‘0’; implies a term 1/(S +1) in G(S). From ω
= 10 to 100 r/s ; slope is -20 dB/decade; implies a term 1/(1+ 0.1S) in
G(S). From ω=1000 r/s onwards, the slope is ‘0’; implies a term (1 + 0.01
S) in G(S).

 Therefore, G(S) = 0.3981 (1 + 0.01 S)/(S + 1)(1 + 0.01 S)

Determination of Transfer Function from  

Bode Plot

38
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Nyquist Method for finding Stability of  

CL System

38

6

 Stability study is carried out graphically from the open loop frequency  
response.

 Nyquist Stability Criterion:
 The characteristic equation: Q(S) = 1 + G(S)H(S) = 0

G(S)H(S) = K (S+Z₁)(S+Z₂) ……(S + Zm)/(S+P₁)(S+P₂)… (S + Pn); m ≤ n  
Q(S) = 1+ K (S+Z₁)(S+Z₂) ……(S + Zm)/(S+P₁)(S+P₂)… (S + Pn)
On simplification, we write:
Q(S) = (S+Z₁’)(S+Z₂’) ……(S + Zn’)/(S+P₁)(S+P₂)… (S + Pn)

 We observe that
Zeros  of Q(S) at S =-Z₁’, S = -Z₂’, ……S = - Zn’ are the roots of the  

characteristic equation
Poles of Q(S) at S = -P₁, S = -P₂ , … S = - Pn are the same as open loop  

poles of the system
For stable system, zeros of Q(S), roots of characteristic

equation, must be in the LH of the S-plane.



 Even if some open loop poles lie in the RH of the S plane, all the zeros  of
Q(S), poles of CL system, must lie in the LH of the S plane. It means

can be made stable with anthat an unstable open loop system
appropriate design of CL system.

 The Nyquist Contour:

Since we interested in finding out whether there are any zeros of Q(S) in
the RH of the S plane, we choose a contour that completely encloses RH
of the S plane. This is called Nyquist Contour.

 In CW direction, starting from the origin

of the S plane, we traverse Nyquist Contour.

along the paths C₁ C₂ and C₃.

Since R ∞, entire RH is enclosed

Nyquist Method for finding Stability of  

CL System

38
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 From the Nyquist Contour we observe  

that for S = jω, along path C₁ frequency, ω,  

varies from ‘0’ to ∞

along path C₃ frequency, ω, varies from

-∞ to ‘0’.

 The path C₂ is a circle of infinite radius ( R ∞). Any point on C₂ can be
represented in polar form as: S = R exp(+/- jѳ). Along C₂, while traversing
in the direction of arrows, the angle Ѳ varies from 90° to - 90°.

 The Nyquist Contour as defined in the aforesaid lines, encloses all the
right half S plane zeros & poles of 1 + G(S)H(S).

Nyquist Method for finding Stability of  

CL System

38
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 The Stability Criterion & Nyquist Theorem:

Let,

Z: be the number of zeros of Q(S) in RH of the S plane

P: be the number of poles of Q(S) in RH of the S plane

 Nyquist Theorem:

As point S = S₀ moves along the Nyquist contour in the S plane, in the
Q(S) plane a closed contour Гq is traversed which encloses the origin ‘N’
times in CCW direction; where N = P-Z.

 For every point S = S₀ on the Nyquist contour, Q(S) has a value. If we plot
the values of Q(S) in the plane called ‘Q(S) plane’, then, according to
Nyquist theorem, we will obtain a closed path, Гq, which will enclose
the origin of ‘Q(S) plane’ ‘N’ times.

 Stability Criterion:

We know that zeros of Q(S), Z, are the closed loop system poles &

therefore should lie in the LH of the S plane for system stability.

Nyquist Method for finding Stability of  

CL System

38
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 Stability Criterion (contd.):

Therefore, Z = 0 ( for stable CL system).

 So for a stable CL system, we have two situations:

for P ≠ 0:

N = P-Z = P

that the CCW encirclements of the origin of ‘Q(S) plane’ should be equal
to the number of poles, P, of Q(S) (open loop poles of G(S)H(S)) in the
RH of the S plane.

 The above assertion implies that even if the open loop system is
unstable, the CL system can be stable.

 For P = 0: ( no poles of G(S)H(S) in RH of the S plane) the number of
encirclements N = 0 for a stable CL system

Nyquist Method for finding Stability of  

CL System

39
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 Modified Stability Criterion:

We know that, Q(S) = 1 + G(S)H(S)

G(S)H(S) = Q(S) – 1

 Therefore, we say that while,

Гq encircles the origin in Q(S) plane

ГGH will encircle (-1,j0) point in the GH plane

 In G(S)H(S) plane, we state the Nyquist Stability Criterion as:

For P ≠0:

If the contour ГGH of the open loop transfer function G(S)H(S),
corresponding to the Nyquist contour in the S plane, encircles the point (-
1,j0) in the CCW direction as many times as the number of right of S-
plane poles of G(S)H(S), the CL system is stable.

For P = 0: The CL system is stable if no encirclements of (-1,j0) point.

39
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 Mapping of Nyquist contour in toГGH contour:

Following steps are followed:

1. Convert G(S)H(S) in to G(jω) H(jω)

2. For S = jω; 0 ≤ ω ≤ ∞ (segment C₁) draw polar (Nyquist) plot in GH
plane

3.For contour C₂: S = R exp(jѲ); R ∞. Substitute S = R exp(jѲ) in
G(S)H(S) and let R ∞ for ∞≤ S ≤ -∞. The entire segment maps to
‘0’ in the GH plane

4.For -∞≤ ω ≤ 0 (segment C₃) draw polar plot for negative frequencies;
which is mirror image of plot for C₁.

Nyquist Method for finding Stability of  

CL System

39
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 G(S)H(S) = K/(1+T₁ S) (1+T₂ S); C’₃ is mirror image of C’₁

1. Corresponding to C₁ in Гs plane we have the Nyquist plot in ГGH  
plane as C’₁.

2. Corresponding to C₂ in Гs plane we have;  S = R exp(jѲ) in G(S)H(S);

R ∞

G(S)H(S) = K/(T₁ R ejѳ + 1)(T₂ R ejѳ + 1) as R ∞ therefore  

G(S)H(S) = 0 e –j2Ѳ ; │G(S)H(S)│= 0 ; arg{ G(S)H(S)} = -2Ѳ

On C₂ ; Ѳ varies from +90° to -90° as we move from +j∞ to -j∞

arg {G(S)H(S)} varies from -180° to + 180° . This is C’₂ in ГGH plane.

3. C₃ in ГS plane is mapped as C’₃ ( Nyquist plot) in ГGH plane. (Contd.)

Nyquist Method: Examples

39
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 For the example in previous slide:

We have drawn the Nyquist plot for a given G(S)H(S). Now we need to  
determine the stability of its closed loop system.

 The number of encirclements, N, of (-1,j0) point is given by:

N = P-Z

 For closed loop system to be stable, Z = 0

In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

 Therefore N should be equal to ‘0’, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.

Nyquist Method: Examples (Contd..)
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 G(S)H(S) = (S+2)/(S + 1)) (S -1); C’₃ is mirror image of C’₁

1.Corresponding to C₁ in Гs plane we have the Nyquist plot in ГGH plane  
as C’₁.

2. Corresponding to C₂ in Гs plane we have;  S = R exp(jѲ) in G(S)H(S);  

R ∞

G(S)H(S) = (2+ R e jѲ )/(1+ R e jѲ)(R e jѲ -1) as, R ∞ therefore  

G(S)H(S) = 0 e –jѲ ; │G(S)H(S)│= 0 ; arg{ G(S)H(S)} = -Ѳ

on C₂ ; Ѳ varies from +90° to -90° as we move from +j∞ to -j∞

arg{G(S)H(S)} varies from -90° to +90° . This is C’₂ in ГGH plane.

3. C₃ in ГS plane is mapped as C’₃ ( Nyquist plot) in ГGH plane. (Contd. .)

Nyquist Method: Examples (Contd..)
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 Having drawn the Nyquist diagram, we need to determine the stability  
of related CL system.

 Observation:

G(S) H(S) has a pole in the RH of the S plane; therefore P = 1

N = P – Z

Z = 0 for stable CL system

Therefore, N = P = 1

that the Nyquist plot should encircle (-1,j0)  
point once in the CCW direction for the CL  
system to be stable.

 From the Nyquist diagram we that it is encircling (-1,j0) point once in  
CCW direction. Therefore, the CL system is stable

Nyquist Method: Examples (Contd..)
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 Case: G(S)H(S) has a pole at the origin of the S plane:

Since there is a pole at the origin  

in the S plane, while drawing the

Nyquist contour we bypass the origin

because pole is a singularity.

Bypassing is done by drawing a circle of

0. A point on the semi circle, C₄, isvery small radius ‘r’; as r  
represented by

S = r ejφ

 The Nyquist contour is traversed starting 1) s = j0₊ to j∞ (C₁)

2) S = j∞ to –j∞ (C₂), 3) S = –j∞ to j0₋ (C₃) and 4) S = j0₋ to j0₊ (C₄)

Nyquist Method: Examples (Contd..)
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 Example: G(S)H(S) = K/S(1+TS)

 A : ω = j0₊ ; │G(jω) H(jω)│ = ∞; arg = -90° B: ω = j0₊;│G(jω) H(jω)│ = ∞;  
arg = -90°

o: ω = j∞ to -j∞ ; │G(jω) H(jω)│ = 0; arg = -180° to 180°

C₁ is mapped in to C’₁ & C₃ is mapped in to C’₃ (Nyquist/polar plot)  

C₂ is mapped in to C’₂(origin); C₄ is mapped in to C’₄. (Contd.)

Nyquist Method: Examples (Contd..)
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 G(jω)H(jω) = K/jω(1+jωT)

1. C₁: mapping in to ГGH plane: polar plot, C’₁

2. C₂: mapping in to ГGH plane: point C’₂ for S = R ejѲ

3. G(S)H(S) = K/ R ejѲ  (1+T R ejѲ) as R ∞

4. G(S)H(S) = │G(S)H(S)│ ejѲ; 0 e-j2Ѳ; arg(G(S)H(S)) = -2Ѳ

5. Since Ѳ changes from +90 to -90 ; arg(G(S)H(S)) changes from -180°
to + 180°. So we get point ‘O’ in ГGH plane.

6. C₄ mapping in to C’₄ in ГGH plane for S = r ejφ as r 0

7. G(S)H(S) = K/ r ejφ  (1+T r ejφ) as r 0

8. G(S)H(S) = │G(S)H(S)│ ejφ; ∞ e-jφ ; arg(G(S)H(S)) = -φ

9. Since φ changes from -90 to +90 ; arg(G(S)H(S)) changes from 90° to
-90°. So we get C’₄ ГGH plane.

Nyquist Method: Examples (Contd..)
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 For the example in previous Lecture:

We have drawn the Nyquist plot for a given G(S)H(S). Now we need to  
determine the stability of its closed loop system.

 The number of encirclements, N, of (-1,j0) point is given by:

N = P-Z

 For closed loop system to be stable, Z = 0

In this example, P = 0 because no poles of G(S)H(S) are in the RH of S
plane.

 Therefore N should be equal to ‘0’, i.e. that there should be no
encirclement of (-1,j0) point. We see from the Nyquist diagram that it
does not encircle (-1,j0) point & hence the closed loop system is stable.

Nyquist Method: Examples

40
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1. Corresponding to C₁ in Гs plane we have the Nyquist plot in ГGH plane  
as C’₁.

2. Corresponding to C₂ in Гs plane we have;  S = R exp(jѲ) in G(S)H(S);  

R ∞

G(S)H(S) = K/ (R e jѲ -1) as, R ∞ therefore  

G(S)H(S) = 0 e –jѲ ; │G(S)H(S)│= 0 ; arg, G(S)H(S)- = -Ѳ

On C₂ ; Ѳ varies from +90° to -90° as we move from +j∞ to -j∞

arg{G(S)H(S)} varies from -90° to +90° . This is C’₂ in ГGH plane.

3. C₃ in ГS plane is mapped as C’₃ ( Nyquist plot) in ГGH plane. (Contd. .)

Nyquist Method: Examples (Contd..)

40
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 Having drawn the Nyquist diagram, we need to determine the stability  
of related CL system.

 Observation:

G(S) H(S) has a pole in the RH of the S plane; therefore P = 1

N = P – Z

Z = 0 for stable CL system

Therefore, N = P = 1

that the Nyquist plot should encircle (-1,j0) point once  
in the CCW direction for the CL system to be stable.

 From the Nyquist diagram we that it is encircling (-1,j0) point once in  
CCW direction. Therefore, the CL system is stable

Nyquist Method: Examples (Contd..)

40
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1.Corresponding to C₁ in Гs plane we have the Nyquist plot in ГGH  
plane as C’₁.

2. Corresponding to C₂ in Гs plane we have;  S = R exp(jѲ) in G(S)H(S);

R ∞

G(S)H(S) = K/ (R e jѲ -1) as, R ∞ therefore  

G(S)H(S) = 0 e –jѲ ; │G(S)H(S)│= 0 ; arg, G(S)H(S)- = -Ѳ

On C₂ ; Ѳ varies from +90° to -90° as we move from +j∞ to -j∞  

arg{G(S)H(S)} varies from -90° to +90° . This is C’₂ in ГGH plane.

3. C₃ in ГS plane is mapped as C’₃ ( Nyquist plot) in ГGH plane. (Contd. )

Nyquist Method: Examples (Contd..)

40
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 Having drawn the Nyquist diagram, we need to determine the  
stability of related CL system.

 Observation:

G(S) H(S) has a pole in the RH of the S plane; therefore P = 1

N = P – Z

Z = 0 for stable CL system

Therefore, N = P = 1

that the Nyquist plot should encircle (-1,j0) point
once in the CCW direction for the CL system to be
stable.

 From the Nyquist diagram we that it is not encircling (-1,j0) point
once in CCW direction. Therefore, the CL system is unstable.

Nyquist Method: Examples (Contd..)
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MODULE-V
STATE SPACE ANALYSIS AND COMPENSATORS

405



CLOs Course Learning Outcome

CLO 13 Define the state model of control system using its block

diagram and give the role of diagonalization in state space

analysis.

CLO 14 Formulate the state transmission matrix and explain the

concept of controllability and observability.

CLO 15 Design of lag, lead, lag – lead compensator to improve

stability of control system.

406
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State-Space Modeling

40

7

 Alternative method of modeling a system than

Differential / difference equations

Transfer functions

 Uses matrices and vectors to represent the system parameters and
variables

 In control engineering, a state space representation is a mathematical
model of a physical system as a set of input, output and state variables
related by first-order differential equations.

 To abstract from the number of inputs, outputs and states, the variables
are expressed as vectors.



481

Motivation for State-Space Modeling

40
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 Easier for computers to perform matrix algebra

e.g. MATLAB does all computations as matrix math

 Handles multiple inputs and outputs

 Provides more information about the system

Provides knowledge of internal variables (states)



Definitions
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State

The state of a dynamic system is the smallest set of variables (called  
state variables) such that knowledge of these variables at t=t0
, together with knowledge of the input for t ≥ t0 , completely
determines the behavior of the system for any time t to t0 .

State Variables

The state variables of a dynamic system are the variables making up
the smallest set of variables that determine the state of the dynamic
system.

 If at least n variables x1, x2, …… , xn are needed to completely
describe the behavior of a dynamic system (so that once the input is
given for t ≥ t0 and the initial state at t=t0 is specified, the future
state of the system is completely determined), then such n variables
are a set of state variables.



State Vector

A state vector is thus a vector that determines uniquely the system
state x(t) for any time t≥ t0, once the state at t=t0 is given and the
input u(t) for t ≥ t0 is specified.

State Space

The n-dimensional space whose coordinate axes consist of the x1 axis,
x2 axis, ….., xn axis, where x1, x2,…… , xn are state variables, is called
a state space.

 "State space" refers to the space whose axes are the state variables.
The state of the system can be represented as a vector within that
space.

Definitions

(Contd..)

41
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State-Space Equations

In state-space analysis we are concerned with three types of variables
that are involved in the modeling of dynamic systems: input variables,
output variables, and state variables.

The number of state variables to completely define the dynamics of
the system is equal to the number of integrators involved in the
system.

Assume that a multiple-input, multiple-output system involves n
integrators. Assume also that there are m inputs u1(t), u2(t),……. um(t)
and p outputs y1(t), y2(t), …….. yp(t).

Definitions

(Contd..)
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State variable technique

41
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Linear  

System

u ( m )
y ( p )

x ( n )

 

 

x ( t )

 x ( t ) 

 x ( t ) 

x ( n ) 

 n 

i


x

2
( t )



1

State vector

 

 

u ( t )

 u ( t ) 

 u ( t ) 

u ( m ) 

 m 

i


u 

2 
( t )



1

Input vector

 

 

 y ( t )

y p
( t ) 

i

 y
1
( t ) 

y ( p )  
y

2
( t )



Output vector



State Differential Equation

The state of a system is described by the set of first-order

differential equations written in terms of the state variables [x1 x2

... xn]. These first-order differential equations can be written in

general form as

 a x  a x   a x  b u   b u
n 1 1 n 2 2 nn n n 1 1 nm m

 a x  a x   a x  b u   b u
11 1 12 2 1 n n 11 1 1 m m

 a x  a x   a x  b u   b u
21 1 22 2 2 n n 21 1 2 m m

x
1

x
2



x
n

State Model of LTI System

41
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 Thus, this set of simultaneous differential equations can be written

in matrix form as follows:



  

     u 
1 

  

  

 b
n 1

u 
m


    b
11

  x 
1 

  
a 

nn    x 
n 

a 
2 n  

x 
2  



a
1 n a

11

 x
n   a

n 1


x 

2   
a

21

 x 
1 

d


 b1 m

  

 b
nm

   

a
12



a
22



 

a
n 2



dt    

inputs.

 

 x 
n 


x



n: number of state variables, m: number of

 The column matrix consisting of the state variables is called the

state vector and is written as
 x 1 

x   2 

 

Dorf and Bishop, Modern ControlSystems

State Model of LTI System (Contd..)
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The vector of input signals is defined as u. Then the system can
be represented by the compact notation of the state differential

equation as
x A x  B u

This differential equation is also commonly called the state

equation. The matrix A is an nxn square matrix, and B is an nxm

matrix. The state differential equation relates the rate of change of

the state of the system to the state of the system and the input

signals. In general, the outputs of a linear system can be related to

the state variables and the input signals by the output equation

y  C x  D u

 Where y is the set of output signals expressed in column vector

form. The state-space representation  

representation) is comprised of the state

(or state-variable  

variable differential

equation and the output equation.

State Model of LTI System (Contd..)
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Block diagram representation of a LTI  

system

41
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D



A

B

x
u



x



x  Ax  Bu

C 

y

y  Cx  Du

A= System Matrix(n,n)  

B= Input Matrix (n,m)  

x= State Vector (n,1)  

u= Input Vector (m,1)

C= Output Matrix (p,n)

D= Direct Transmission Matrix (p,m)  

y= Output Vector (p,1)



State Space Representation Example
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dt  

dv

 Writing differential equations
di

i ( t )  C

dt

u ( t )  L  Ri ( t )  v ( t )

2
dt

dv
 v ( t )

dt

d 
2

v
u ( t )  LC  RC

Constant coefficient  

Second order  

Differential equation

 RLC circuit: modelling
R L

u(t)

i(t)

v(t)
C



dv 

dtdt

di 

dt
 v RC Ri  v  LC

d 
2

v
u ( t )  L

Can be written

i

dt

Ri v u

dt  

dv

di

 v 
c

 i    
L L L





LL
 u   

i
 

v 



  

0   v   0

 1 
L

 1

 C

  R  1   i 

L

C

u(t)
v(t)

R

i(t)

State Space Representation Example
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(Contd..)



a
i





e t 
a

R f

L f





e b  t 


m

J m

Armature circuit Field circuit
T M





e t 
f

dt

di a

ab
 e  Le ( t )  R i

a a a

e  k 
b b m

a

a

m

a

a

a
LL

k
b

Ldt

di
a

1 R
a

 i    e

T
mmM

i aM

d
 J

T  k i

m  B m

dt
2

dt

d
2

m

m

a

m
J dt

i
k

i

dt J

d

d
m

m  
dt

B d
 m m



Armature  

controlled DC  

motor

State Space Representation Example

41
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(CoR antd.L.a )









 




 

 
 























m

m 
 m 

m

 a 

 

  
m

m

m

i

m

a

 i
a


y


L

a
 i

J

 B

J

K

a b

L
a

L
a

R  K






  

0 


0(t )


(t )


  0  e a

 0 

 1 

0  





10

0  
m


0 

 2 

State Space Representation Example  

(Contd..)

42

0

 Selecting the

armature current i(t)

and angular  i
displacement of the 
shaft θ(t), and the 


m  



angular velocity of the 
shaft ω(t) as the state 

variables.

 The state equations
the  y

1 
( t )


 m 

(t ) 

0 0 1  


1

are as shown in  

previous slide.

The state matrix  

form as shown beside
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1

s
3

U  (s )  6 s 
2 
 10 s  5

 Transfer function of the system iTs  ( s ) 
Y ( s )



 The differential equation will be obtained by taking inverse Laplace tran

y 6 y 10 y  5 y   u

The derivatives of the inputs are not present in the differential  

equation,

phase variables can be selected as the state variables

x 3

 6 y 10 y 5 y  uy

 y  x
2

x 1   y

x 2  y  x1

y  x
1

 x
2

 x
3

  5 x  10 x  6 x  u
1 2 3

x
1

x
2

x
3



   

1 

 
x





0


u

0

1

1


0

 5  10

 0

 6 x 
3


2 

  x
1  0 

2 

x3 


x





0

 x
1 

State Model Example-1 (Contd..)
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State Model in matrix  

form




2 

x 
3


0 0 x

 x 
1 

y  1



State Model Example-2
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equation

 The system in integral-differential form

  b  0
0 0

  b  a   1  7 x 0  1
1 1 1 0

  b  a   a   3  5 x 0  7 x 0   4
2 2 2 0 1 1

  b  a   a   a   2  6 x 0  5 x1  7 x (  4 )  25
3 3 3 0 2 1 1 2

0 0

 By differentiating the system equation will be obtained as follows

y 7 y 5 y 6 y  u 3u 2 u

 Comparing the above equation with standard 3rd order differential

t

 u 3 u  2 udt

t

y 7 y 5 y  6  ydt

y a 1 
y a 2 y a 3 y  b 0 

u b1 u b 2 u b 3 u

a 
1   
 7 , a

2
 5 , a

3
 6

b
0
 0 , b

1   
 1, b

2
 3, b

3
 2 Therefore,



State Model Example-2 (Contd..)
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  a x  a x  a x   u
3 1 2 2 1 3 3

x
3

 The state variables are defined as

x 1   y    0u

x 2  x1     1u

x 3  x2      2 u

x
1

x
2

x
3

 x   u
2 1

 x   u
3 2

  6 x  5 x  7 x  25 u
1 2 3

 The state and output equations are as follows

y  x   u
1 0





 
  4 u

 10

1

1

0

  x 
1 

 
x


x





0

 2     2   

x3   6  5  7 x 3
  25 

 0 x
1 

State Model Example-2 (Contd..)
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 State Model in vector matrix form




2 

x 
3


0 0 x

 x 
1 

y  1



State Transition matrix
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x  Ax  Bu

Assuming that the system is continuous and

linear that A and B are time-invariant and using

Laplace transform

sX (s )  x ( 0 )  AX (s ) BU (s )

(sI  A ) X (s )  x (0 )  BU (s )

X ( s )  ( sI  A ) 
 1 

[ x ( 0)  BU (s )]

 Taking the inverse Laplace transform of resolvent matrix

 ( t )  L
 1 

[( sI  A ) 
 1

] State Transition matrix



State Transition matrix (Contd..)
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 I  At      
2! k!

 The state vector will take the following form (convolution)

t

x ( t )  e
At

x ( 0 )   e
A ( t   )

Bu ( ) d 

0

 The matrix exponential function is defined as

A 
2

t
2

A 
k  

t
k

e
At

 Which converges for all finite t and any A.

 Then  the  solutionof the state differential equation is found to

be t

x ( t)  e 
At 

x ( 0 )   e 
A ( t   ) 

B u (  ) d 

0

X ( s )  sI  A 1
x ( 0 )  sI  A 1

B U ( s )



t

where we note that [sI-A]-1=ϕ(s), which is the Laplace transform of  

ϕ(t)=eAt.

The matrix exponential function ϕ(t) describes the unforced  

response of the system and is called the fundamental or state

transition matrix.

State Transition matrix (Contd..)

42
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x ( t )   ( t ) x (0 )    ( t   ) Bu ( ) d 

0

 Properties of the transition matrix

n

 e
Akt

 ( 0 )  I

  ( kt )
k 
( t )  ( e 

At 
)

k

 ( t)  L
 1 

[( sI  A ) 
 1

]

2 11 21 2

022 1 1 0

 t )   ( t ) ( t )   ( t ) ( t )

 ( t  t ) ( t  t )   ( t  t )

 ( t


 1 

( t )   (  t)



State Transition matrix (Contd..)
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 Obtain the STM for the state model

 Solution:





  0

0  1

s  1


1   s  1  1 


0 s
 

0 1
 



sI  A  
 s



 


 


 

( s  1)
2

 s  1 1

( s  1)
2

1 s  1


0 s 1


 s  1 0

sI  A

adj sI  A 
 A 1



T



 ( s )  sI

1

1 1

0
A  

  













 e
t

te 
t 

e 
t 

 0

s 1
0

11

2 
 A 1

 L
1


s  1 ( s  1)

 1
STM   ( t )  L

1  ( s )  L
1 sI
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Controllability
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Full-state feedback design commonly relies on pole-placement

techniques. It is important to note that a system must be

completely controllable and completely observable to allow the

flexibility to place all the closed-loop system poles arbitrarily. The

concepts of controllability and observability were introduced by

Kalman in the 1960s.

 Controllability:

A system is completely controllable if there exists an

unconstrained control u(t) that can transfer any initial state x(t0)

to any other desired location x(t) in a finite time, t0≤t≤T.
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Proof of controllability matrix
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











k  ( n  2 )

kk  n

k  ( n  2 )

 
u 

k  ( n  1 ) 

u
x  A

n
x  A 

n  1
B

k  ( n  2 ) 
 Bu 

k  ( n  1)

 Bu 
k  ( n  1)

 A
n

x  A 
n 1 

Bu
k k

 A
n

x  A 
n 1 

Bu
k k

 A ( Ax  Bu )  Bu  A
2

x  ABu  Bu
k k k 1 k k k  1

 Ax  Bu
k k

 Ax k  1  Bu k  1

x
k  1

x 
k 2

x 
k 2

x 
k n

x 
k n

u k


 AB B 

 A 
n  2

Bu    ABu
k  1

 A 
n  2

Bu    ABu
k  1

Initial condition



 For the system

x  Ax  Bu

 We can determine whether the system is controllable by

examining the algebraic condition

rank B AB A 
2
B  A

n  1
B  n

The matrix A is an nxn matrix an B is an nx1 matrix. For multi  

input systems, B can be nxm, where m is the number of inputs.

For a single-input, single-output system, the controllability  

matrix Pc is described in terms of A and Bas

A
n 1

B Pc  B AB A 
2 
B 

Which is nxn matrix. Therefore, if the determinant of Pc is  

nonzero, the system is controllable.

Controllability (Contd..)

43
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 Example-1: Consider the system

0

1

1

0

10


0


u , y  1 0 0  x  0 u

1  






x 

 

2 

  0 







 a  a  a

0

x 


0












 












 















1 
2

 2

2

 2 2 10

1 0 0

1

1

0

a  a

0

1


,  A 
2 
B 


 a

  a


0 


, AB

1 

, B 


  a  a  a

0

A 


0









2

 2 2 1 

2c

 a a  a1

 a

10 0

AB A 
2 
B  

0 1P  B

The determinant of Pc =1 and ≠0 , hence this system is  

controllable.

Controllability with Example

43
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 Example-2: Consider a system represented by the two state

equations  2 x  u , x   3 x  d x
1 2 2 1

x
1

The output of the system is y=x2. Determine the condition of  

controllability.

 0 
 x    u , y  0 1 x  0 u
 1 

x  

 



d
P 

and AB  B  

c 
0

  2   1 

 3 
 

0
  

d


    

  2 0

 d 0 

 1  2 



  2 0

 d  3 

 1 

The determinant of pc is equal to d, which is nonzero only  

when d is nonzero.

Controllability with Example

43
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Observability
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All the poles of the closed-loop system can be placed arbitrarily

in the complex plane if and only if the system is observable.

Observability refers to the ability to estimate a state variable.

 Observability:

A system is completely observable if and only if there exists a

finite time T such that the initial state x(0) can be determined

from the observation history y(t) given the control u(t).
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





k  ( n  3 )



n  1

k  ( n  2 )

k

k  ( n  2 )  Du k  ( n  1 )
 CBu y  Du y  CBu  Du

k k k 1 k k 1

 x
k

CA

C

CA

n  3
Bu

k 1
 CA

n  2
Bu

k





 CA
n  1

x
k





y k  n  1 CA

 C ( Ax  Bu )  Du  CAx  CBu
k k k 1 k

 Cx  Du
k 1 k 1

y k  1

y k  1

 Ax  Bu
k k

x k  1

  CABu


(1), ( 2 ), ( n )  

 Du  ( n )
k  ( n 1 )

  CBu

 Du  ( 2 )
k  1

y k  Cx k  Du k  (1)

Inputs & outputs



 Consider the single-input, single-output system

x  Ax  Bu and y  Cx  Du

Where C is a 1xn row vector, and x is an nx1 column vector.

This system is completely observable when the determinant of the

observability matrix P0 is nonzero.

 Rank of Po is n

Observability (Contd..)
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













 



n  1



O

C A

C

C A
P





 2 

  2    2  
 

0



x


0 

 x1 
y  1

 1
 

x

1   x
1 


 1 

u (t )
x

 
0

 Example 1:  x
1 

 2

 1 0 

  


rank [ Po ]  2

CA    2 1 

 C
Po   observable

The rank of a matrix is defined by the number of linearly

independent rows and/or the number of linearly independent

columns

Observability (Contd..)
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 Example 2:

 2 

  2   
 

1



x


0 

 x1 
y  1

 1
 

x

0   x
1 


 3 

u ( t )
x

 
0

 2  

 x1 

  2

 1 0 

  


rank [ Po ]  1

CA    2 0 

 C
Po   unobservabl

e

Observability (Contd..)

43
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Role of Compensators
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0

 Compensators are used in cascade or feedback to achieve desired
response from a closed loop system.

 Desired response is measured in terms of time domain parameters
(specifications) like, rise time, peak time, settling time and peak
overshoot.

 In terms of frequency response, desired response is measured in terms
of frequency domain specifications like, resonant peak, resonant
frequency and phase at resonant frequency.

 We have studied the relationship between frequency & time domain
parameters and know that one set can be derived from the other.

 If the closed loop system does not meet with the time domain and/or
frequency domain specifications; a compensator is used to achieve the
same.
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 Lag Compensator:

 It introduces phase lag between its input and output.

 It basically is an integrator ( Low Pass Filter)

 It can be of any order, having ‘n’ number of time constants, but it
should yield phase lag between its input & output.

 It is designed using simple RC networks. Operational Amplifiers are  
also used to design it.

 Its attenuated output can be appropriately amplified

 Different Types of Lag Compensators:

G(S) = K/S; phase = - 90°

G(S) = K/(1+TS); phase = - tan ̄¹ (ωT)

 G(S) = K (1+T₁ S)/(1+T₂ S) = tan ̄¹ (ωT₁) - tan ̄¹ (ωT₂); T₁ < 

T₂ Negative angle implies phase lag
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 Lag Compensator:

G(S) = (S+Z)/(S+P) = (Z/P) [1+(1/Z) S]/[1+(1/P)S]

Let,β = Z/P

Therefore,

P = Z/β; Let τ = 1/Z; τ > 0 P = 1/(βτ)

G(S) = (S + 1/τ)/[S + 1/(βτ)]

G(S) = β ( 1 + τ S)/(1 + βτ S); β = Z/P > 1 …. 1

 Equation 1 gives the transfer function of a lead compensator. Since  
β>1, it will introduce phase lead between its output & input.

 Pole-Zero Location: -1/τ

O

-1/βτ

X

 Lead Network: Eo(S)/Ei(S) = (R₂ /R₁+ R₂) [S+1/R₂C]/[S + 1/R₂C(R₁+ R₂)/R₂]

R₁ On simplification, we get

ei(t) C₁ R₂ eo(t) Eo(S)/Ei(S) = (1/β) (S + 1/τ)/[S + 1/(βτ)]



 Lag Compensator (Contd.):

G(S) = Eo(S)/Ei(S) = (1/β )(S + 1/τ)/[S + 1/(βτ)]

For drawing Bode plot we convert G(S) in to time constant form as:

G(S) = (1 + τS)/(1 + βτS); τ : time constant & α is attenuation

τ = R₂ C₁

 Bode plot:

& β = (R₁ + R₂)/ R₂

│G(jω│in dB -20 dB/decade

0

-20

From the magnitude plot we  

observe that gain at higher  

frequencies is less than at low 1/βτ 1/τ

Phase, φ°frequencies.

(Contd. Next slide)

ωm = 1/√τ(βτ)= 1/τ√β

Realization Lag Compensators

(Contd..)
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 Hence Signal to Noise (S/N) ratio at the output of the lag compensator  is 
better than at its input.

Typically β is normally chosen to be 10.0

 Phase Response:

The phase lead is given by φ = tan̄¹ (ωτ) - tan̄¹ (βωτ)  

tan φ = ωτ (1-β)/[1 + β ω² τ²]

 To determine the frequency at which maximum phase lead occurs, we
have dφ/dω = 0

dφ/dω = τ/[1 + ω² τ²] – βτ/[1 +β²ω² τ²] = 0

 On simplification, we get ω = ωm = 1/τ√β = √(1/τ)(1/βτ)

which is geometric mean of two corner frequencies. So at ω=ωm, we  
get maximum phase lag, φm

Realization Lag Compensators

(Contd..)
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 Maximum Phase Lead, φm:

φ = tan̄¹ (ωτ) - tan̄¹ (βωτ); Substitute for ω = ωm = 1/τ√β  

φm = tan̄¹ (1/√β) - tan̄¹ (√β)

tan φm = (1-β)/2√β

Sin φm = (1-β)/(1+β)

β = (1- Sin φm)/(1+ Sin φm) ….. 3

From (3) β can be determined for maximum phase lead desired.

 For phase lead > 60° the network attenuation increases sharply,  

therefore for phase lead ≥ 60° it is advisable to use 2 cascaded  

lead networks.

Realization Lag Compensators

(Contd..)
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 Lead Compensator:

 It introduces phase lead between its input and output.

 It basically is a differentiator ( High Pass Filter)

 It can be of any order, having ‘n’ number of time constants, but it
should yield phase lead between its input & output.

 It is designed using simple RC networks. Operational Amplifiers are  
also used to design it.

 Its attenuated output can be appropriately amplified

 Different Types of Lead Compensators:

G(S) = K S; phase = 90°

G(S) = K(1+TS); phase = tan ̄¹ (ωT)

 G(S) = K (1+T₁ S)/(1+T₂ S) = tan ̄¹ (ωT₁) - tan ̄¹ (ωT₂); T₁ > T₂ 

Positive angle implies phase lead
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 Lead Compensator:

G(S) = (S+Z)/(S+P) = (Z/P) [1+(1/Z) S]/[1+(1/P)S]

Let, α = Z/P

Therefore,

P = Z/α;  Let τ = 1/Z; τ > 0 P = 1/(ατ)

G(S) = (S + 1/τ)/[S + 1/(ατ)]

G(S) = α ( 1 + τ S)/(1 + ατ S); α = Z/P < 1 …. 1

 Equation 1 gives the transfer function of a lead compensator. Since 
α<1, it will introduce phase lead between its output & input.

 Pole-Zero Location: -1/ατ

X

-1/τ

O

Lead Network:

R₁

Eo(S)/Ei(S) = R₂ /*R₂ + R₁ /(1 + C₁ R₁ S)]  

On simplification, we get

ei(t) C₁ R₂ eo(t) Eo(S)/Ei(S) = (S + 1/τ)/[S + 1/(ατ)]
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 Lead Compensator (Contd.):

G(S) = Eo(S)/Ei(S) = (S + 1/τ)/[S + 1/(ατ)]

For drawing Bode plot we convert G(S) in to time constant form as:

G(S) = α (1 + τS)/(1 + ατS); τ : time constant & α is attenuation

τ = R₁ C₁

 Bode plot:

& α = R₂/(R₁ + R₂)

│G(jω│in dB 20 dB/decade

20

0

From the magnitude plot we  

observe that gain at higher  

frequencies is much higher than 1/τ 1/ατ

Phase, φ°at low frequencies.

(Contd. Next slide)

ωm = 1/√τ(ατ)= 1/τ√α
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 Higher frequencies normally correspond to noise, hence Signal to Noise
(S/N) ratio at the output of the lead compensator is poorer than its
input.

To improve S/N ratio α is normally chosen to be ≥ 0.1

 Phase Response:

The phase lead is given by φ = tan̄¹ (ωτ) - tan̄¹ (αωτ)

tan φ = ωτ (1-α)/[1 + α ω² τ²]

 To determine the frequency at which maximum phase lead occurs, we
have dφ/dω = 0

dφ/dω = τ/[1 + ω² τ²] – ατ/[1 +α²ω² τ²] = 0

On simplification, we get ω = ωm = 1/τ√α = √(1/τ)(1/ατ)

which is geometric mean of two corner frequencies. So at ω=ωm, we
get maximum phase lead, φm
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 Maximum Phase Lead, φm:

φ = tan̄¹ (ωτ) - tan̄¹ (αωτ); Substitute for ω = ωm = 1/τ√α  

φm = tan̄¹ (1/√α) - tan̄¹ (√α)

tan φm = (1-α)/2√α

Sin φm = (1-α)/(1+α)

α = (1- Sin φm)/(1+ Sin φm) ….. 2

 From (2) α can be determined for maximum phase lead desired.

For phase lead > 60° the network attenuation increases sharply,  

therefore for phase lead ≥ 60° it is advisable to use 2 cascaded  

lead networks.

60°

φm

14 (1/α)



 Lag Lead Compensator:

Gc(S) = {(S + 1/τ₁)/[S + 1/(βτ₁)]} {(S + 1/τ₂)/[S + 1/(ατ₂)]}; β>1; α<1

…………. LAG…………… .. ………………LEAD…………..

 Lag & Lead networks are in cascade.

Gc(S) = (S + 1/τ₁) (S + 1/τ₂)/[S + (1/βτ₁ + 1/ατ₂) S + 1/αβτ₁τ₂]

Network:

R₁

C₁ R₂

ei c₂

(Bridged T Network)

When forward path transfer

function has complex poles close

eo to jω axis, phase lead or lag  

networks are not effective.

In such cases Bridged T network  

is used.

Realization of Basic Compensators: Lag-

Lead
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 The transfer function of Bridged T network is given by:

Eo(S)/Ei(S) =[ (S+1/R₁C₁ )(S+1/R₂C₂ )/{S +(1/R₁ C₁+1/R₂ C₁+1/R₂ C₂)S+1/R₁  
R₂ C₁C₂}]

 Comparing with G(S), we get

R₁ C₁ = τ₁ ; R₂ C₂ = τ₂ ; …. 1  

R₁ R₂ C₂ C₁ = αβτ₁ τ₂ ….. 2

1/R₁ C₁+1/R₂ C₁+1/R₂ C₂ = 1/βτ₁ + 1/ατ₂

 From 1 & 2, we get: αβ = 1 ………. 3

From 3 we see that a single lag lead network does not permit us an  
independent choice of α & β. Therefore we write Gc(S) as:

Gc(S) = (S + 1/τ₁) (S + 1/τ₂)/[S + 1/βτ₁][S + β/τ₂]; for α = 1/β  

and, 1/R₁ C₁+1/R₂ C₁+1/R₂ C₂ = 1/βτ₁ + β/τ₂

Realization of Basic Compensators: Lag-

Lead

45
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 Bode Plot:

mag. dB ω

1/βτ₁ 1/τ₁ 1/τ₂

-20 dB/decade 20 dB/decade

-45°
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 Multiplying the diagonal matrices are easy comparing to normal

matrices

 So A is diagonalizable if there exists an invertible matrix P such that

P−1AP = D where D is a diagonal matrix.

 It’s characteristic equation is

the matrixA







   
0  1 

2



010
2

 1  0  1

10 0  10 0 

 0

 1

10 0  

 0


 x 
D

2

D  

 Bu Consider a state equatioxn Ax

 I  A  0

1 2 n
 The roots of thnechaaran c1teriasticn e 2qua..t..i.o. naare ca0lled eigenvalues of
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For the system matrix A all its n eigenvalues are distinct then the  

model matrix will be special matrix called Vander Monde matrix





















2 1

21

21

n 

n

n

 n  1n  1 n 1

 2 2
V    2

 





1 1  1

  


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 Diagonalize the system matrix

 Eigen values of the system matrix A are the roots of the

 The eigen values are λ1=-1, λ2=-2, λ3=-3

The matrix A has distinct eigen values, hence the modal matrix can  

be written directly in vander monde form as







 6 

 0 1 0

A  


0 0 1


 6  11









0

 10 




0    1

1 


0 
     

0 0 1   6  11  6  6 11   6 

 1

0

0

0

characteristic equ1 ati0on 0 

 I  A   
0 1

 I   A   3
 6  2

 11   6    1  2   3   0









9  1

1 1 1 1   1

 

3  2 1

3 21


2  2


2

1

   1  2  3


4

V 

 
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 The inverse of the modal matrix

 The diagonal matrix is given by







1

1

 1

  6 6  2   6 5


 5 8  3




1  
 6  8  2



 2 

2  1   2 3
  2 

T

 1 


adj  (V ) 


1
V





 



 

 3 

 
 1

1 1   1 0 0

 2  3 




0  2 0

4 9   0 0

  1

 6 1

0

1

  0

 

1  6

1 6 5 1
1   

  6  8  2 0 0

2 

 2 3  11

 1
AVV


