
FUNDAMENTALS OF DATABASE MANAGEMENT SYSTEMS

EEE ​  | MECH
VII  SEM 

​

Prepared by: K Radhika
Assistant Professor
CSE



Introduction to file and database systems: Database system
structure, data models, introduction to network and hierarchical
models, ER model, relational model.

UNIT– I



Data: 
• Raw facts; building blocks of information
• Unprocessed information

Information:
• Data processed to reveal meaning

Database—shared, integrated computer structure that stores:
• End user data (raw facts)
• Metadata (data about data)

Database
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Database management system

DBMS (Database management system):
• Collection of programs that manages database structure and 

controls access to data
• Possible to share data among multiple applications or users
• Makes data management more efficient and effective
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Advantages of the DBMS

End users have better access to more and better-managed 
data

• Promotes integrated view of organization’s operations
• Probability of data inconsistency is greatly reduced
• Possible to produce quick answers to ad hoc queries
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Database Applications

Database Applications:
• Banking: transactions
• Airlines: reservations, schedules
• Universities:  registration, grades
• Sales: customers, products, purchases
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Database Applications(contd.)

—Online retailers: order tracking, customized recommendations

—Manufacturing: production, inventory, orders, supply chain

—Human resources:  employee records, salaries, tax deductions

• Databases can be very large.
• Databases touch all aspects of our lives
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University Database Example

Application program examples
• Add new students, instructors, and courses
• Register students for courses, and generate class rosters
• Assign grades to students, compute grade point averages

In the early days, database applications were built directly on top of 
file systems
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Various Databases

Single-user:
• Supports only one user at a time

Desktop:
• Single-user database running on a personal computer

Multi-user:
• Supports multiple users at the same time
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Various Databases(contd.)

Workgroup:
• Multi-user database that supports a small group of users or 
a single department

Enterprise:
• Multi-user database that supports a large group of users or 
an entire organization
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Various Databases(contd.)

• Can be classified by location:
• Centralized:

• Supports data located at a single site
• Distributed:

• Supports data distributed across several sites
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Levels of Abstraction

• Physical level: describes how a record (e.g., instructor) is 
stored.

• Logical level: describes data stored in database, and the 
relationships among the data.

type instructor = record
ID : string; 
name : string;
dept_name : string;
salary : integer;

• end;
• View level: application programs hide details of data types.  

Views can also hide information (such as an employee’s salary) 
for security purposes. 
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View of Data

An architecture for a database system 
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Instances and Schemas

Similar to types and variables in programming languages

• Logical Schema – the overall logical structure of the database

Example: The database consists of information about a set of customers

and accounts in a bank and the relationship between them

• Analogous to type information of a variable in a program

• Physical schema– the overall physical structure of the database

• Instance – the actual content of the database at a particular point in time

• Analogous to the value of a variable
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Instances and Schemas(contd.)

Physical Data Independence – the ability to modify the physical 
schema without changing the logical schema
• Applications depend on the logical schema
• In general, the interfaces between the various levels and 

components should be well defined so that changes in some parts 
do not seriously influence others.
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Data Models

•A collection of tools for describing 
• Data 
• Data relationships
• Data semantics
• Data constraints

• Relational model
• Entity-Relationship data model (mainly for database design) 
• Object-based data models (Object-oriented and Object-

relational)
• Semi structured data model  (XML)
• Other older models:

•Network model  
•Hierarchical model
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Relational Model

All the data is stored in various tables.
Example of tabular data in the relational model

Columns

Rows
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A Sample Relational Database
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Hierarchical model

Hierarchical Database Model
Assumes data relationships are hierarchical

• One-to-Many (1:M) relationships
• Each parent can have many children
• Each child has only one parent
• Logically represented by an upside down tree
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Network model

Network Database Model
Similar to Hierarchical Model

• Records linked by pointers
• Composed of sets
• Each set consists of owner (parent) and member (child)
• Many-to-Many (M:N) relationships representation
• Each owner can have multiple members (1:M) 
• A member may have several owners
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Entity Relationship Model
Entity Relationship (ER) Model
Based on Entity, Attributes & Relationships

• Entity is a thing about which data are to be collected and stored
e.g. EMPLOYEE

• Attributes are characteristics of the entity
e.g. SSN, last name, first name

• Relationships describe an associations between entities
i.e. 1:M, M:N, 1:1

Represented in an Entity Relationship Diagram (ERD)
Formalizes a way to describe relationships between groups of data
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E-R Diagram: 

• Entity
– represented by a rectangle with its name 

in capital letters.

• Relationships
– represented by an active or passive verb 

inside the diamond that connects the 
related entities.

• Connectivities
– i.e., types of relationship

– written next to each entity box.
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Data Definition Language (DDL)

Specification notation for defining the database schema
Example: create table instructor (

ID                char(5),
name           varchar(20),
dept_name varchar(20),
salary           numeric(8,2))

DDL compiler generates a set of table templates stored in a data 
Dictionary
• Data dictionary contains metadata (i.e., data about data)
• Database schema 
• Integrity constraints
• Primary key (ID uniquely identifies instructors)
• Authorization
• Who can access what
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Data Manipulation Language (DML)

Language for accessing and manipulating the data organized by the 
appropriate data model

DML also known as query language

Two classes of languages 

• Pure – used for proving properties about computational power 
and for optimization

Relational Algebra - Tuple relational calculus & Domain relational 
calculus

• Commercial – used in commercial systems

SQL is the most widely used commercial language
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Database Users and Administrators:

• Database Users:
Users are differentiated by the way they expect to interact with the 
system

• Application programmers – interact with system through DML calls

• Sophisticated users – Interact with the system without writing programs. 

25



Database Administrator

Having central control over the system is called a ‘database 
administrator (DBA)’.
The functions of DBA includes:

• Schema Definition: Creates the original database schema by 
executing a set of DDL statements a good understanding of the 
enterprise’s information resources and needs.
• Storage structure and access method definition
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Database Administrator(contd.)

―Schema and physical organization modification
―Granting users authority to access the database
―Backing up data
―Monitoring performance and responding to changes
―Database tuning.
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Database Users and Administrators

Database
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Storage Manager

Storage manager is a program module that provides the interface 
between the low-level data stored in the database and the 
application programs and queries submitted to the system.

The storage manager is responsible to the following tasks: 
• Interaction with the OS file manager 
• Efficient storing, retrieving and updating of data Issues:

• Storage access
• File organization
• Indexing and hashing
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Query Processing

• Parsing and translation
• Optimization
• Evaluation
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Query Processing (Cont.)

Alternative ways of evaluating a given query
• Equivalent expressions
• Different algorithms for each operation
• Cost difference between a good and a bad way of evaluating a query 

can be enormous
• Need to estimate the cost of operations
• Depends critically on statistical information about relations which 

the database must maintain
• Need to estimate statistics for intermediate results to compute cost 

of complex expressions
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Database System Internals
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Database Application Architectures:
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Storage Management

Storage manager is a program module that provides the interface 
between the low-level data stored in the database and the 
application programs and queries submitted to the system
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Entity Sets

• A database can be modeled as:

– a collection of entities,

– relationship among entities.

• An entity is an object that exists and is distinguishable from 
other objects.

– Example:  specific person, company, event, plant

• Entities have attributes

– Example: people have names and addresses

• An entity set is a set of entities of the same type that share the 
same properties.

– Example: set of all persons, companies, trees, holidays
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Entity Sets customer and loan

customer-id   customer- customer- customer- loan- amount
name     street         city                    number
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Attributes

• An entity is represented by a set of attributes, that is descriptive 
properties possessed by all members of an entity set.

• Domain – the set of permitted values for each attribute 

• Attribute types:

– Simple and composite attributes.

– Single-valued and multi-valued attributes

• E.g. multivalued attribute: phone-numbers

– Derived attributes

• Can be computed from other attributes

• E.g.  age, given date of birth

Example: 

customer = (customer-id, customer-name, customer-street,customer-city)
loan = (loan-number, amount)
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Composite Attributes
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Relationship Sets

• A relationship is an association among several entities

Example:
Hayes depositor A-102

customer entity relationship set account entity

• A relationship set is a mathematical relation among n  2 entities, 
each taken from entity sets

{(e1, e2, … en) | e1  E1, e2  E2, …, en  En}

where (e1, e2, …, en) is a relationship

Example: 

(Hayes, A-102)  depositor
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Relationship Set borrower
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Relationship Sets (Cont.)
• An attribute can also be property of a 

relationship set.

• For instance, the depositor relationship set 
between entity sets customer and account 
may have the attribute access-date
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Degree of a Relationship Set
• Refers to number of entity sets that participate in a relationship set.

• Relationship sets that involve two entity sets are binary (or degree two).  
Generally, most relationship sets in a database system are binary.

• Relationship sets may involve more than two entity sets. 

E.g. Suppose employees of a bank may have jobs
(responsibilities) at multiple branches, with different jobs at
different branches. Then there is a ternary relationship set
between entity sets employee, job and branch
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Mapping Cardinalities

• Express the number of entities to which another entity can 
be associated via a relationship set.

• Most useful in describing binary relationship sets.

• For a binary relationship set the mapping cardinality must be 
one of the following types:

– One to one

– One to many

– Many to one

– Many to many 
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Mapping Cardinalities

One to one One to many

Note: Some elements in A and B may not be mapped to any 
elements in the other set
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Mapping Cardinalities 

Many to one Many to many

Note: Some elements in A and B may not be mapped to any 
elements in the other set
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Mapping Cardinalities affect ER Design
 Can make access-date an attribute of account, instead of a relationship 

attribute, if each account can have only one customer 

 I.e., the relationship from account to customer is many to one, or 
equivalently, customer to account is one to many
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E-R Diagrams

 Rectangles represent entity sets.

 Diamonds represent relationship sets.

 Lines link attributes to entity sets and entity sets to relationship sets.

 Ellipses represent attributes

 Double ellipses represent multivalued attributes.

 Dashed ellipses denote derived attributes.

 Underline indicates primary key attributes (will study later)
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Composite, Multivalued,  Derived
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Roles
• Entity sets of a relationship need not be 

distinct
• The labels “manager” and “worker” are called roles; they specify how 

employee entities interact via the works-for relationship set.

• Roles are indicated in E-R diagrams by labeling the lines that connect 
diamonds to rectangles.

• Role labels are optional, and are used to clarify semantics of the relationship
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Entity Set in a Relationship 

 Total participation (indicated by double line):  every entity in the entity set 
participates in at least one relationship in the relationship set

 E.g. participation of loan in borrower is total

 every loan must have a customer associated to it via borrower

 Partial participation:  some entities may not participate in any relationship 
in the relationship set

 E.g. participation of customer in borrower is partial
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Design Issues

• Use of entity sets vs. attributes
Choice mainly depends on the structure of the enterprise being 
modeled, and on the semantics associated with the attribute in 
question.

• Use of entity sets vs. relationship sets
Possible guideline is to designate a relationship set to describe an 
action that occurs between entities

• Binary versus n-ary relationship sets
Although it is possible to replace any non binary (n-ary, for n > 2) 
relationship set by a number of distinct binary relationship sets, a 
n-ary relationship set shows more clearly that several entities 
participate in a single relationship.

• Placement of relationship attributes
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Symbols Used in E-R Notation
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Summary of Symbols (Cont.)
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Weak Entity Sets

• An entity set that does not have a primary key is referred to as a 
weak entity set.

• The existence of a weak entity set depends on the existence of a 
identifying entity set

– it must relate to the identifying entity set via a total, one-to-
many relationship set from the identifying to the weak entity 
set

– Identifying relationship depicted using a double diamond

• The discriminator (or partial key) of a weak entity set is the set 
of attributes that distinguishes among all the entities of a weak 
entity set.

• The primary key of a weak entity set is formed by the primary 
key of the strong entity set on which the weak entity set is 
existence dependent, plus the weak entity set’s discriminator.
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Weak Entity Sets (Cont.)

• We depict a weak entity set by double rectangles.

• We underline the discriminator of a weak entity set  with a 
dashed line.

• payment-number – discriminator of the payment entity set 

• Primary key for payment – (loan-number, payment-number) 
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Specialization

• Top-down design process; we designate subgroupings within an 
entity set that are distinctive from other entities in the set.

• These subgroupings become lower-level entity sets that have 
attributes or participate in relationships that do not apply to the 
higher-level entity set.

• Depicted by a triangle component labeled ISA (E.g. customer “is 
a” person).

• Attribute inheritance – a lower-level entity set inherits all the 
attributes and relationship participation of the higher-level entity 
set to which it is linked.
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Specialization Example
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Generalization

• A bottom-up design process – combine a number of entity sets 
that share the same features into a higher-level entity set.

• Specialization and generalization are simple inversions of each 
other; they are represented in an E-R diagram in the same way.

• The terms specialization and generalization are used 
interchangeably.
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Specialization and Generalization

• Can have multiple specializations of an entity set based on 
different features.  

• E.g. permanent-employee vs. temporary-employee, in addition to 
officer vs. secretary vs. teller

• Each particular employee would be 

– a member of one of permanent-employee or temporary-
employee, 

– and also a member of one of officer, secretary, or teller

• The ISA relationship also referred to as superclass - subclass 
relationship

59



Aggregation
 Consider the ternary relationship works-on, which we saw earlier

 Suppose we want to record managers for tasks performed by an   
employee at a branch
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E-R Diagram With Aggregation
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Ternary Relationship
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UNIT - II

Relational Database Approach
Relational algebra and calculus: Relational algebra, selection and
projection, set operations, renaming, joins, division, examples of algebra
queries, relational calculus, tuple relational calculus
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Example of a Relation
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Basic Structure

• Formally, given sets D1, D2, …. Dn a relation r is a subset of 
D1 x  D2 x … x Dn

Thus a relation is a set of n-tuples (a1, a2, …, an) where 
each ai  Di

• Example:  if

customer-name = {Jones, Smith, Curry, Lindsay}
customer-street = {Main, North, Park}
customer-city = {Harrison, Rye, Pittsfield}

Then r = {   (Jones, Main, Harrison), 
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield)}

is a relation over customer-name x customer-street x customer-city
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Attribute Types

• Each attribute of a relation has a name

• The set of allowed values for each attribute is called the domain
of the attribute

• Attribute values are (normally) required to be atomic, that is, 
indivisible

– E.g. multivalued attribute values are not atomic

– E.g. composite attribute values are not atomic

• The special value null is a member of every domain

• The null value causes complications in the definition of many 
operations

– we shall ignore the effect of null values in our main 
presentation and consider their effect later
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Relation Schema

• A1, A2, …, An are attributes

• R = (A1, A2, …, An ) is a relation schema

E.g.   Customer-schema =
(customer-name, customer-street, customer-city)

• r(R) is a relation on the relation schema R

E.g. customer (Customer-schema)
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Relation Instance
• The current values (relation instance) of a relation are specified by a 

table

• An element t of r is a tuple, represented by a row in a table

Jones
Smith
Curry

Lindsay

customer-name

Main
North
North
Park

customer-street

Harrison
Rye
Rye

Pittsfield

customer-city

customer

attributes
(or columns)

tuples
(or rows)
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Relations are Unordered

 Order of tuples is irrelevant (tuples may be stored in an arbitrary 
order)

 E.g. account relation with unordered tuples
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Database

• A database consists of multiple relations

• Information about an enterprise is broken up into parts, with each 
relation storing one part of the information

E.g.:   account :    stores information about accounts
depositor : stores information about which customer

owns which account 
customer : stores information about customers

• Storing all information as a single relation such as 
bank(account-number, balance, customer-name, ..)

results in

– repetition of information (e.g. two customers own an account)

– the need for null values  (e.g. represent a customer without an 
account)

• Normalization theory deals with how to design relational schemas
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Relational Model

• Relational model
• First commercial implementations available in  early 1980s
• Has been implemented in a large number of  commercial 

system

• Hierarchical and network models
• Preceded the relational model

• Represents data as a collection of relations

• Table of values
• Row

• Represents a collection of related data values

• Fact that typically corresponds to a real-world entity  or relationship

• Tuple

Table name and column names
• Interpret the meaning of the values in each row attribute
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Relational Model
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Domains, Attributes, Tuples Relations
Domain D

Set of atomic values

Atomic

Each value indivisible

 Specifying a domain

Data type specified for each domain
Relation schema R

Denoted by R(A1, A2, ...,An)

Made up of a relation name R and a list of  attributes, A1, A2, .., An

Attribute Ai

Name of a role played by some domain D in  the relation schema R

Degree (or arity) of a relation

Number of attributes n of its relation schema

73



Domains, Attributes, Tuples Relations

Relation (or relation state)

Set of n-tuples r = {t1, t2, ..., tm}

Each n-tuple t

Ordered list of n values t =<v1, v2, ..., vn

Each value vi, 1 ≤ i ≤ n, is an element of dom(Ai) or  is a special 
NULL value(cont’d.)

Relation (or relation state) r(R)

Mathematical relation of degree n on the  domains dom(A1), 
dom(A2), ..., dom(An)

Subset of the Cartesian product of the domains  that define R:

•r(R)(dom(A1) ×dom(A2) ×... ×dom(An))
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Relational Model Notation

 Interpretation (meaning) of a relation
Assertion

Each tuple in the relation is a fact or a particular  instance of the
assertion

Predicate
Values in each tuple interpreted as values that  satisfy predicate

 Relation schema R of degree n
Denoted by R(A1, A2, ..., An)

 Uppercase letters Q, R, S
Denote relation names

 Lowercase letters q, r, s
Denote relation states

 Letters t, u, v
Denote tuples

75



Relational Model Notation
 Name of a relation schema: STUDENT
 Indicates the current set of tuples in that  relation

 Notation: STUDENT(Name, Ssn, ...)
Refers only to relation schema

 Attribute A can be qualified with the relation  name R to which it belongs
Using the dot notation R.A

 n-tuple t in a relation r(R)
Denoted by t = <v1, v2, ..., vn>
vi is the value corresponding to attribute Ai

 Component values of tuples:
t[Ai] and t.Ai refer to the value vi in t for attribute

Ai

t[Au, Aw, ..., Az] and t.(Au, Aw, ..., Az) refer to the  subtuple of values <vu, 
vw, ..., vz> from t  corresponding to the attributes specified in the  list
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Query languages

• Query Languages are categorized as Pure Query languages and 
Commercial Query languages

• Languages which are defined theoretically and mathematically  are 
known as Pure query languages 
Example:  Relational Algebra

Commercial Query languages are developed based on Pure query                                                      
languages for implementation purpose 
Example : SQL
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Query Languages

• Language in which user requests information from the database.

• Categories of languages

– procedural

– non-procedural

• “Pure” languages:

– Relational Algebra

– Tuple Relational Calculus

– Domain Relational Calculus

• Pure languages form underlying basis of query languages that 

people use.
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Relational Algebra

• Procedural language

• Six basic operators

– select

– project

– union

– set difference

– Cartesian product

– rename

• The operators take one or more relations as inputs and give a 
new relation as a result.
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Select Operation

• Notation:   p(r)

• p is called the selection predicate

• Defined as:

p(r) = {t | t  r and p(t)}

Where p is a formula in propositional calculus consisting 
of terms connected by :  (and),  (or),  (not)
Each term is one of:

<attribute> op <attribute> or <constant>

where op is one of:  =, , >, . <. 

• Example of selection:
 branch-name=“Perryridge”(account)
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Project Operation

• Notation:

A1, A2, …, Ak (r)

where A1, A2 are attribute names and r is a relation name.

• The result is defined as the relation of k columns obtained by 
erasing the columns that are not listed

• Duplicate rows removed from result, since relations are sets

• E.g. To eliminate the branch-name attribute of account
account-number, balance (account) 

81



Union Operation

• Notation:  r  s

• Defined as: 

r  s = {t | t  r or t  s}

• For r  s to be valid.

1.  r, s must have the same arity (same number of attributes)

2.  The attribute domains must be compatible (e.g., 2nd column 
of r deals with the same type of values as does the 2nd 
column of s)

• E.g. to find all customers with either an account or a loan
customer-name (depositor)   customer-name (borrower)
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Set Difference Operation

• Notation r – s

• Defined as:

r – s = {t | t  r and t  s}

• Set differences must be taken between compatible relations.

– r and s must have the same arity

– attribute domains of r and s must be compatible
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RA - Operations Examples

Banking :

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, 
customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)
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Find all loans of over $1200

Find the loan number for each loan of an amount greater 

than $1200

amount > 1200 (loan)

loan_number (amount > 1200

(loan))
Find the names of all customers who have a loan, an account, 

or both, from the bank

customer_name (borrower) customer_name (depositor)

RA - Operations Examples
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Example Queries
Find the names of all customers who have a loan at the Perryridge branch.

 Find the names of all customers who have a loan at the Perryridge branch but do 
not have an account at any branch of  the bank.

customer_name (branch_name = 

“Perryridge”

(borrower.loan_number = 

loan.loan_number(borrower x loan)))  –

customer_name(depositor)

customer_name (branch_name=“Perryridge”

(borrower.loan_number = 

loan.loan_number(borrower x loan)))
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Outer Join – Example
Relation loan

 Relation borrower

customername loan_number

Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loannumber amount

L-170
L-230
L-260

branch_name

Downtown
Redwood
Perryridge
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Outer Join – Example

Join
loan      borrower

loan_number amount

L-170
L-230

3000
4000

customername

Jones
Smith

branch_name

Downtown
Redwood

Jones
Smith
null

loan_number amount

L-170
L-230
L-260

3000
4000
1700

customernamebranch_name

Downtown
Redwood
Perryridge

 Left Outer Join

loan          borrower
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Outer Join – Example

loan_number amount

L-170
L-230
L-155

3000
4000
null

customername

Jones
Smith
Hayes

branch_name

Downtown
Redwood
null

loan_number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customername

Jones
Smith
null
Hayes

branch_name

Downtown
Redwood
Perryridge
null

 Full Outer Join

loan        borrower

 Right Outer Join

loan        borrower

 Question: can outerjoins be expressed using basic 
relational 

algebra operations
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Division Operation (Cont.)

Property
Let q = r  s
Then q is the largest relation satisfying q x s  r

Definition in terms of the basic algebra operation

Let r(R) and s(S) be relations, and let S  R

r  s = R-S (r ) – R-S ( ( R-S (r ) x s ) – R-S,S(r ))

To see why

R-S,S (r) simply reorders attributes of r

R-S (R-S (r ) x s ) – R-S,S(r) ) gives those tuples t in 

R-S (r ) such that for some tuple u  s, tu  r.

90



RA - Advanced Operations

Advanced Operations

• Set intersection

• Natural join
• Aggregation
• Outer Join
• Division

All above, other than aggregation, can be expressed using basic 
operations we have seen earlier
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Set-Intersection Operation – Example

Relation r, s:

r  s

A       B







1
2
1

A       B




2
3

r s

A       B

 2
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Natural Join Operation – Example
Relations r, s:

A B











1
2
4
1
2

C D











a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E











r

A B











1
1
1
1
2

C D











a
a
a
a
b

E











s

 r     s
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Aggregate Operation – Example

A B

















C

7

7

3

10

 g sum(c) (r) sum(c )

27

 Question: Which aggregate operations cannot be 
expressed using basic relational operations?
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Aggregate Operation – Example
Relation account grouped by branch-name:

branch_name g sum(balance) (account)

branch_nameaccount_number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch_namesum(balance)

Perryridge
Brighton
Redwood

1300
1500
700
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Outer Join

• An extension of the join operation that avoids loss of information.
• Computes the join and then adds tuples form one relation that does not 

match tuples in the other relation to the result of the join. 
• Uses null values:

• null signifies that the value is unknown or does not exist 
• All comparisons involving null are (roughly speaking) false by 

definition.
• We shall study precise meaning of comparisons with nulls later
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Outer Join – Example

Relation loan

 Relation borrower

customer_nameloan_number

Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan_number amount

L-170
L-230
L-260

branch_name

Downtown
Redwood
Perryridge
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Outer Join – Example

Join 

loan      borrower

loan_number amount

L-170
L-230

3000
4000

customer_name

Jones
Smith

branch_name

Downtown
Redwood

Jones
Smith
null

loan_number amount

L-170
L-230
L-260

3000
4000
1700

customer_namebranch_name

Downtown
Redwood
Perryridge

 Left Outer Join

loan          borrower
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Outer Join – Example

loan_number amount

L-170
L-230
L-155

3000
4000
null

customername

Jones
Smith
Hayes

branch_name

Downtown
Redwood
null

loan_number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customername

Jones
Smith
null
Hayes

branch_name

Downtown
Redwood
Perryridge
null

 Full Outer Join

loan        borrower

 Right Outer Join

loan        borrower

Question: can outerjoins be expressed using basic 

relational algebra operations
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Null Values

• It is possible for tuples to have a null value, denoted by null

• null signifies an unknown value or that a value does not exist.

• The result of any arithmetic expression involving null is null.

• Aggregate functions simply ignore null values (as in SQL)
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Null Values

• Comparisons with null values return the special truth value: unknown

• If false was used instead of unknown, then    not (A < 5)
would not be equivalent to               A >= 5

• Three-valued logic using the truth value unknown:
OR: (unknown or true)         = true, 

(unknown or false)        = unknown
(unknown or unknown) = unknown

AND: (true and unknown) = unknown,   
(false and unknown) = false,
(unknown and unknown) = unknown

NOT:  (not unknown) = unknown
In SQL “P is unknown” evaluates to true if predicate P
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Division Operation

Notation: 
Suited to queries that include the phrase “for all”.

Let r and s be relations on schemas R and S respectively where

R = (A1, …, Am , B1, …, Bn )

S = (B1, …, Bn)

The result of  r  s is a relation on schema

R – S = (A1, …, Am)

r  s = { t |  t  R-S (r)   u  s ( tu  r ) } 

Where tu means the concatenation of tuples t and u to 

produce a single tuple

r 

s
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Division Operation (Cont.)
Property 

Let q = r  s
Then q is the largest relation satisfying q x s  r

Definition in terms of the basic algebra operation

Let r(R) and s(S) be relations, and let S  R

r  s = R-S (r ) – R-S ( ( R-S (r ) x s ) – R-S,S(r ))

To see why

R-S,S (r) simply reorders attributes of r

R-S (R-S (r ) x s ) – R-S,S(r) ) gives those tuples t in 

R-S (r ) such that for some tuple u  s, tu  r.
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RA - Advanced Operations

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, 
customer_city)

account (account_number, branch_name, balance)

loan (loan_number, branch_name, amount)

depositor (customer_name, account_number)

borrower (customer_name, loan_number)
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Example Queries

Find all loans of over $1200

Find the loan number for each loan of an amount greater 

than $1200

amount > 1200 (loan)

loan_number (amount > 1200

(loan))

Find the names of all customers who have a loan, an account, or both, from 

the bank
customer_name (borrower) customer_name (depositor)
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Tuple Relational Calculus

• A nonprocedural query language, where each query is of the form
{t | P (t ) }

• It is the set of all tuples t such that predicate P is true for t

• t is a tuple variable, t [A ] denotes the value of tuple t on attribute A
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Predicate Calculus Formula

1. Set of attributes and constants

2. Set of comparison operators:  (e.g., , , , , , )

3. Set of connectives:  and (), or (v)‚ not ()

4. Implication (): x  y, if x if true, then y is true

x  y x v y
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Examples of TRC Queries

branch (branch_name, branch_city, assets )
customer (customer_name, customer_street, 
customer_city )
account (account_number, branch_name, balance )
loan (loan_number, branch_name, amount )
depositor (customer_name, account_number )
borrower (customer_name, loan_number )
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Example Queries

Find the loan_number, branch_name, and amount for loans of 
over $1200

 Find the loan number for each loan of an amount greater than 
$1200

{t |  s loan (t [loan_number ] = s [loan_number ] 
s [amount ]  1200)}

Notice that a relation on schema [loan_number ] is implicitly 
defined by         

the query

{t | t  loan  t [amount ]  1200}
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Example Queries

Find the names of all customers having a loan, an account, or both at the 
bank

{t | s  borrower ( t [customer_name ] = s 
[customer_name ])

 u  depositor ( t [customer_name ] = u [customer_name ])

Find the names of all customers who have a loan and an account 
at the bank

{t | s  borrower ( t [customer_name ] = s 
[customer_name ])

 u  depositor ( t [customer_name ] = u [customer_name] )
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Example Queries
Find the names of all customers having a loan at the Perryridge branch

{t | s  borrower (t [customer_name ] = s [customer_name ] 
 u  loan (u [branch_name ] = “Perryridge”

 u [loan_number ] = s [loan_number ]))}

Find the names of all customers who have a loan at the 
Perryridge branch, but no account at any branch of the bank

{t | s  borrower (t [customer_name ] = s [customer_name ]
 u  loan (u [branch_name ] = “Perryridge”

 u [loan_number ] = s [loan_number ]))
 not v  depositor (v [customer_name ] = 

t [customer_name ])}
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Example Queries

Find the names of all customers having a loan from the Perryridge
branch, and the cities in which they live

t | s  loan (s [branch_name ] = “Perryridge”
 u  borrower (u [loan_number ] = s [loan_number ]

 t [customer_name ] = u [customer_name ])
  v  customer (u [customer_name ] = v [customer_name

] t [customer_city ] = v [customer_city ])))}
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Example Queries

Find the names of all customers who have an account at all branches 
located in Brooklyn:

t |  r  customer (t [customer_name ] = r [customer_name ]) 

(  u  branch (u [branch_city ] = “Brooklyn” 

 s  depositor (t [customer_name ] = s [customer_name ]

  w  account ( w[account_number ] = s [account_number ]

 ( w [branch_name ] = u [branch_name ]))))}
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Find the names of all employees who work for First Bank 
Corporation:-

i. {t | ∃ s ∈ works (t[person-name] = s[person-name] ∧ s[company-
name] = “First Bank Corporation”)}

ii. { < p > | ∃ c, s (< p, c, s > ∈ works ∧ c = “First Bank Corporation”)}

Cont…
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Find the names and cities of residence of all employees who 
work for First Bank Corporation:-

i. {t | ∃ r ∈ employee ∃ s ∈ works ( t[person-name] = r[person-
name]
∧ t[city] = r[city] ∧ r[person-name] = s[person-name]
∧ s[company-name] = “First Bank Corporation”)}

ii. {< p, c > | ∃ co, sa, st (< p, co, sa > ∈ works
∧ < p, st, c > ∈ employee ∧ co = “First Bank Corporation”)}

Example Queries
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Find the names, street address, and cities of residence of all employees 
who work for First Bank Corporation and earn more than $10,000 per 
annum:-

i. {t | t ∈ employee ∧ (∃ s ∈ works ( s[person-name] = t[person-name]
∧ s[company-name] = “First Bank Corporation” ∧ s[salary] >
10000))}
ii. {< p, s, c > | < p, s, c > ∈ employee ∧ ∃ co, sa (< p, co, sa > ∈ works
∧ co = “First Bank Corporation” ∧ sa > 10000)}

Cont…
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Find the names of all employees in this database who live in the same 
city as the company for which they work:-

i. {t | ∃ e ∈ employee ∃ w ∈ works ∃ c ∈ company
(t[person-name] = e[person-name]
∧ e[person-name] = w[person-name]
∧ w[company-name] = c[company-name] ∧ e[city] = c[city])}

Cont…
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Domain Relational calculus- Queries

A nonprocedural query language equivalent in power to the tuple 
relational calculus
Each query is an expression of the form:

{  x1, x2, …, xn  | P (x1, x2, …, xn)}

x1, x2, …, xn represent domain variables
P represents a formula similar to that of the predicate calculus
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UNIT - III

BASIC SQL QUERY
SQL data definition; Queries in SQL: updates, views, integrity and 
security, relational database design. 

Normal Forms: 1NF, 2NF, 3NF and BCNF
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An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),
...,
(integrity-constraintk))

r is the name of the relation
each Ai is an attribute name in the schema of relation r
Di is the data type of values in the domain of attribute Ai

Example:
create table branch
(branch_namechar(15) not null,
branch_city char(30),
assets integer)

Create Table Construct
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CREATE TABLE

• In SQL2, can use the CREATE TABLE command for specifying the primary key 
attributes, secondary keys, and referential integrity constraints (foreign keys).

• Key attributes can be specified via the PRIMARY KEY and UNIQUE phrases 

( Dname Varchar(10) NOT NULL,

Dnumber Integer NOT NULL,

Mgrssn Char(9),

Mgrstartdate Char(9),

Primary key (Dnumber),

create table dept unique (dname),foreign key(mgrssn) references emp );
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DROP TABLE

Used to remove a relation (base table) and its definition
The relation can no longer be used in queries, updates, or any other 
commands since its description no longer exists
Example:

DROP TABLE DEPENDENT;

• The drop table command deletes all information about the dropped relation     
from the database.

• The alter table command is used to add attributes to an existing relation:
alter table r add A D

• where A is the name of the attribute to be added to relation r and D is the 
domain of A.

• All tuples in the relation are assigned null as the value for the new attribute.
• The alter table command can also be used to drop attributes of a relation:

alter table r drop A
• where A is the name of an attribute of relation r Dropping of attributes not 
supported by many databases 122



Referential Integrity

■ Ensures that a value that appears in one relation for a given set of
attributes also appears for a set of attributes in another                     
relation.
Example:If “Perryridge” is a branch name appearing in one of the 
tuples in the account relation, then there exists a tuple in the 
branch relation for branch “Perryridge”.

■ Primary and candidate keys and foreign keys can be specified as 
part  of the SQL create table statement:
■ The primary key clause lists primary key (PK) attributes.
■ The unique key clause lists candidate key attributes
■ The foreign key clause lists foreign key (FK) attributes and the  

name of the relation referenced by the FK. By default, a FK 
references PK attributes of the referenced table.
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The SQL DROP TABLE Statement

• The DROP TABLE statement is used to drop an existing table in a 
database.
Syntax
DROP TABLE table_name;

• Be careful before dropping a table. Deleting a table will result in loss 
of complete information stored in the table!

124



INSERT Into With Select Example

The Bigfoot Brewery supplier is also a customer.

Add a customer record with values from the supplier table

INSERT INTO Customer (FirstName, LastName, City, Country, Phone)
SELECT LEFT(ContactName, CHARINDEX(' ',ContactName) -1), 
SUBSTRING(ContactName, CHARINDEX(' ',ContactName) + 1, 100), 
City, Country, Phone FROM Supplier WHERE CompanyName = 'Bigfoot    
Breweries‘;
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UPDATE Statement

• The UPDATE statement updates data values in a database.
• UPDATE can update one or more records in a table.
• Use the WHERE clause to UPDATE only specific records.

The general syntax is:
UPDATE table-name SET column-name = value, column-name = value, ...

• To limit the number of records to UPDATE append a WHERE clause: 
UPDATE table-name SET column-name = value, column-name = value, ...    
WHERE condition
UPDATE Examples

• Problem: discontinue all products in the database UPDATE Product SET Is   
Discontinued = 1 

UPDATE Product SET IsDiscontinued = 1 WHERE UnitPrice > 50
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Integrity and Security

• Domain Constraints
• Referential Integrity
• Assertions
• Triggers
• Security
• Authorization
• Authorization in SQL
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Database Modification (Cont.)

Update. There are two cases:
 If a tuple t2 is updated in relation r2 and the update modifies values 

for  foreign key α, then a test similar to the insert case is made:Let t2’ 
denote the new value of tuple t2. The system must ensure that  t2’[α] 
∈ ΠK(r1)

 If a tuple t1 is updated in r1, and the update modifies values for the
primary key (K), then a test similar to the delete case is made:

1. The system must compute  σα = t1[K] (r2)
using the old value of t1 (the value before the update is applied).

2. If this set is not empty
1. the update may be rejected as an error, or
2. the update may be cascaded to the tuples in the set, or
3. the tuples in the set may be deleted.
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Referential Integrity in SQL

Primary and candidate keys and foreign keys can be specified as part of
the SQL create table statement:

 The primary key clause lists attributes that comprise the primary key.
 The unique key clause lists attributes that comprise a candidate key.
 The foreign key clause lists the attributes that comprise the foreign key 

and the name of the relation referenced by the foreign key.
 By default, a foreign key references the primary key attributes of the

referenced table foreign key (account-number) references account
 Short form for specifying a single column as foreign key

account-number char (10) references account
 Reference columns in the referenced table can be explicitly specified

but must be declared as primary/candidate keys
foreign key (account-number) references account(account-number)
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Cascading Actions in SQL

create table account
. . .
foreign key(branch-name) references branch

on delete cascade
on update cascade
. . . )

Due to the on delete cascade clauses, if a delete of a tuple in
branch results in referential-integrity constraint violation, the
delete “cascades” to the account relation, deleting the tuple that
refers to the branch that was deleted

 Cascading updates are similar.
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Cascading Actions in SQL (Cont.)

• If there is a chain of foreign-key dependencies across multiple relations,
with on delete cascade specified for each dependency, a deletion or
update at one end of the chain can propagate across the entire chain.

• If a cascading update to delete causes a constraint violation that cannot
be handled by a further cascading operation, the system aborts the
transaction. As a result, all the changes caused by the transaction and
its cascading actions are undone.
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View Example (Cont.)
The clerk is authorized to see the result of the query:

select *from cust-loan
When the query processor translates the result into a query on the

actual relations in the database, we obtain a query on borrower    
and loan.

 Authorization must be checked on the clerk’s query before query 
processing replaces a view by the definition of the view.

Authorization on Views
Creation of view does not require resources authorization since

no real relation is being created
 The creator of a view gets only those privileges that provide no

additional authorization beyond that he already had.
 E.g. if creator of view cust-loan had only read authorization on

borrower and loan, he gets only read authorization on cust-loan
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Joined Relations

• Join operations take two relations and return as a result another relation.
• These additional operations are typically used as subquery expressions in the from 

clause
• Join condition – defines which tuples in the two relations match, and what 

attributes are present in the result of the join.
• Join type – defines how tuples in each relation that do not match any tuple in the 

other relation (based on the join condition) are treated.

Join Types

inner join

left outer join

right outer join

full outer join

Join Conditions

natural

on <predicate>

using (A1, A2, ..., An)
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Join - Examples

Relation loan

customer-name loan-number 

Jones

Smith

Hayes

L-170

L-230

L-155

amount

3000

4000

1700

branch-name

Downtown

Redwood

Perryridge

loan-number

L-170 

L-230

L-260

 Relation borrower

 Note: borrower information missing for L-260 and loan information missing for 

L-155
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Joined Relations – Examples 

• loan inner join borrower on
loan.loan-number = borrower.loan-number

• loan left outer join borrower on

loan.loan-number = borrower.loan-number

branch-name amount

Downtown

Redwood

3000

4000

customer-name loan-number 

Jones

Smith

L-170

L-230

loan-number 

L-170

L-230

branch-name amount

Downtown

Redwood

Perryridge

3000

4000

1700

customer-name loan-number 

Jones

Smith

null

L-170

L-230

null

loan-number 

L-170

L-230

L-260
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branch-name amount

Downtown

Redwood

3000

4000

customer-name

Jones

Smith

loan-number 

L-170

L-230

branch-name amount

Downtown

Redwood

null 

3000

4000

null

customer-name

Jones

Smith

Hayes

loan-number 

L-170

L-230

L-155

loan natural inner join borrower

loan natural right outer join borrower

Joined Relations – Examples
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Joined Relations – Examples

loan full outer join borrower using (loan-number)

branch-name amount

Downtown

Redwood

Perryridge

null

3000

4000

1700

null

customer-name

Jones

Smith

null

Hayes

loan-number 

L-170

L-230

L-260

L-155

Find all customers who have either an account or a loan (but not both) at the bank.

select customer-name

from (depositor natural full outer join borrower)

where account-number is null or loan-number is null
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Views

Provide a mechanism to hide certain data from the view of certain users.  
To create a view we use the command:

create view v as <query expression>

where:

<query expression> is any legal expression

The view name is represented by v
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Update of a View

Create a view of all loan data in loan relation, hiding the amount attribute
create view branch-loan as
select branch-name, loan-number  from loan

Add a new tuple to branch-loan
insert into branch-loan
values (‘Perryridge’, ‘L-307’)

This insertion must be represented by the insertion of the tuple
(‘L-307’, ‘Perryridge’, null)

into the loan relation

Updates on more complex views are difficult or impossible to translate, 
and hence are disallowed. 
Most SQL implementations allow updates only on simple views (without 
aggregates) defined on a single relation
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Integrity Constraints

Integrity constraints guard against accidental damage to the 
database, by ensuring that authorized changes to the database do 
not result in a loss of data consistency. 

Various Integrity Constraints In RDB :
• Domain Integrity Constraints
• Referential Integrity Constraints
• Assertions
• Triggers
• Functional Dependencies
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Functional Dependencies

 Constraints on the set of legal relations.

 Require that the value for a certain set of attributes 
determines  uniquely the value for another set of attributes.

 A functional dependency is a generalization of the notion of a
key.
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Functional Dependencies (Contd.)
• Let R be a relation schema

  R and    R

• The functional dependency

  

holds on R if and only if for any legal relations r(R), whenever any  two 
tuples t1 and t2 of r agree on the attributes , they also agree  on the 
attributes . That is,

t1[] = t2 []  t1[ ] = t2 [ ]

• Example: Consider r(A,B) with the following instance of r.

1 4

1 5

3 7

• On this instance, A  B does NOT hold, but B  A does hold.
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Functional Dependencies (Cont.)

• K is a superkey for relation schema R if and only if K  R

• K is a candidate key for R if and only if

 K  R, and

 for no   K,   R

• Functional dependencies allow us to express constraints that  
cannot be expressed using superkeys.

Consider the schema:

Loan-info-schema = (customer-name, loan-number, branch-name,
amount)

We expect this set of functional dependencies to hold:

• loan-number  amount

• loan-number  branch-name

but would not expect the following to hold:

loan-number  customer-name
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Introduction to schema refinement

Problems caused by redundancy
 Redundant storage
 Update Anomalies
 Insert Anomalies
 Delete Anomalies

Example:
Project ( Project-id, Name, Status, Budget, Dept-Id, Dept-name, 
Location)
• How To address Above Problems?
• NULL values can not address completelt
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Pitfalls in Relational Database Design

Relational database design requires that we find a  “good” collection 
relation schemas. A bad design  may lead to

 Repetition of Information.

 Inability to represent certain information.

Design Goals:

 Avoid redundant data

Ensure that relationships among attributes are  represented

Facilitate the checking of updates for violation of  database 
integrity constraints.
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Example
Consider the relation schema:   Lending-schema = (branch-name, 
branch-city, assets , customer-name)

• Redundancy:

 Data for branch-name, branch-city, assets are repeated for each loan that a  
branch makes

Wastes space

 Complicates updating, introducing possibility of inconsistency of assets value

• Null values

 Cannot store information about a branch if no loans exist

 Can use null values, but they are difficult to handle.
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Design Guidelines - RDB

What is relational database design?
• The grouping of attributes to form "good" relation schemas

Two levels of relation schemas
• The logical "user view" level
• The storage "base relation" level

Design is concerned mainly with base relations

What are the criteria for "good" base relations?
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Semantics of the  Attributes

GUIDELINE 1: Informally, each tuple in a relation should represent one 
entity or relationship instance. (Applies to individual 
relations and their attributes).

• Attributes of different entities (EMPLOYEEs, DEPARTMENTs, 
PROJECTs) should not be mixed in the same relation

• Only foreign keys should be used to refer to other entities
• Entity and relationship attributes should be kept apart as much 

as possible.
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Redundancy - Update Anomalies

Information is stored redundantly 
• Wastes storage
• Causes problems with update anomalies

• Insertion anomalies
• Deletion anomalies
• Modification anomalies 
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Insert Anomaly - Example

Consider the relation:
EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

Insert  Anomaly:
Cannot insert a project unless an employee is assigned to it.

Conversely
Cannot insert an employee unless an he/she is assigned to a project. 
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Delete Anomaly- Example  

Consider the relation:
EMP_PROJ(Emp#, Proj#, Ename, Pname, No_hours)

Delete Anomaly:
• When a project is deleted, it will result in deleting all the 

employees who work on that project.
• Alternately, if an employee is the sole employee on a project, 

deleting that employee would result in deleting the 
corresponding project.
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Redundancy - Update Anomalies

GUIDELINE 2: 
• Design a schema that does not suffer from the insertion, 

deletion and update anomalies.

• If there are any anomalies present, then note them so that 
applications can be made to take them into account. 
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Null Values in Tuples
GUIDELINE 3:

• Relations should be designed such that their tuples will have as 
few NULL values as possible

• Attributes that are NULL frequently could be placed in 
separate relations (with the primary key)

Reasons for nulls:

• Attribute not applicable or invalid
• Attribute value unknown  (may exist)
• Value known to exist, but unavailable 
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Spurious Tuples – avoid at any cost

• Bad designs for a relational database may result in erroneous results for 
certain JOIN operations

• The "lossless join" property is used to guarantee meaningful results for join 
operations 

GUIDELINE 4:
• The relations should be designed to satisfy the lossless join condition.
• No spurious tuples should be generated by doing a natural-join of any 
relations.
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Spurious Tuples

There are two important properties of decompositions: 
a) Non-additive or losslessness of the corresponding join
b) Preservation of the functional dependencies. 

Note that:
Property (a) is extremely important and cannot be sacrificed.
Property (b) is less stringent and may be sacrificed. 
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Overall Database Design Process

We have assumed schema R is given

R could have been generated when converting E-R diagram     to 
a set of  tables.

R could have been a single relation containing all attributes 
that are of  interest (called universal relation).

Normalization breaks R into smaller relations.

R could have been the result of some ad hoc design of relations, 
which  we then test/convert to normal form.
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Functional Dependencies

• Constraints on the set of legal relations.

• Require that the value for a certain set of attributes determines  
uniquely the value for another set of attributes.

• A functional dependency is a generalization of the notion of a 
key.
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Functional Dependencies (Contd.)
Let R be a relation schema

  R and    R

The functional dependency

   holds on R if and only if for any legal relations r(R),
whenever any two tuples t1 and t2 of r agree on the attributes ,
they also agree on the attributes . That is,

t1[] = t2 []  t1[ ] = t2 [ ]

• Example: Consider r(A,B) with the following instance of r.

1 4

1 5

3 7

• On this instance, A  B does NOT hold, but B  A does hold.
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Functional Dependencies (Cont.)

K is a superkey for relation schema R if and only if K  R

K is a candidate key for R if and only if

 K  R, and

 for no   K,   R

Functional dependencies allow us to express constraints that  cannot 
be expressed using superkeys.

Consider the schema:

Loan-info-schema = (customer-name, loan-number, branch-name,
amount)

We expect this set of functional dependencies to hold:

loan-number  amount
loan-number  branch-name

but would not expect the following to hold:

loan-number  customer-name
159



Decomposition - Problems

To Avoid Redundancy the given relations must be Decomposed into 
Sub Relations.

Problems related to Decomposition
• Lossy /Superfluous information  
• Dependency Preservation

Solution:   Lossless Join Decomposition
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Decomposition
Decompose the relation schema Lending-schema into:     Branch-

schema = (branch-name, branch-city , assets)

Loan-info-schema = (customer-name, loan-number, branch-name, amount)

All attributes of an original schema (R) must appear in  the 
decomposition (R1, R2):

R = R1  R2

Lossless-join decomposition.

For all possible relations r on schema R

r = R1 (r)       R2 (r) 
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Testing for Dependency Preservation

To check if a dependency  is preserved in a decomposition of  R 
into R1, R2, …, Rn we apply the following simplified test (with  
attribute closure done w.r.t. F)

 result = 
while (changes to result) do

for each Ri in the decomposition
t = (result  Ri)+  Ri
result = result  t

 If result contains all attributes in , then the functional

dependency    is preserved.

We apply the test on all dependencies in F to check if a  
decomposition is dependency preserving

This procedure takes polynomial time, instead of the exponential  
time required to compute F+ and (F1  F2 …  Fn)+

162



Normalization Using Functional Dependencies

When we decompose a relation schema R with a set of  functional 

dependencies F into R1, R2,.., Rn we want

 Lossless-join decomposition: Otherwise decomposition would 
result in  information loss.

 No redundancy: The relations Ri preferably should be in either 
Boyce- Codd Normal Form or Third Normal Form.

 Dependency preservation: Let Fi be the set of dependencies F+ 

that  include only attributes in Ri.Preferably the decomposition 
should be dependency preserving, that is

(F1 F2 … Fn)
+ = F+

Otherwise, checking updates for violation of functional  dependencies 
may require computing joins, which is expensive.
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Example

R = (A, B, C)

F = {A  B, B  C)

Can be decomposed in two different ways

R1 = (A, B), R2 = (B, C)

Lossless-join decomposition:

R1  R2 = {B} and B  BC

Dependency preserving

R1 = (A, B), R2 = (A, C)

Lossless-join decomposition:

R1  R2 = {A} and A  AB

Not dependency preserving
(cannot check B  C without computing R1 R2)
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Normalization of Relations

Normalization:
The process of decomposing unsatisfactory "bad" relations by 
breaking up their attributes into smaller relations

Normal form:
Condition using keys and FDs of a relation to certify whether a 
relation schema is in a particular normal form 
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Normalization of Relations (2)

2NF, 3NF, BCNF 
based on keys and FDs of a relation schema

4NF
based on keys, multi-valued dependencies : MVDs; 

5NF
based on keys, join dependencies : JDs

Additional properties may be needed to ensure a good relational design 
(lossless join, dependency preservation; see Chapter 15)
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Practical Use of Normal Forms

Normalization is carried out in practice so that the resulting 
designs are of high quality and meet the desirable properties 

• The practical utility of these normal forms becomes questionable 
when the constraints on which they are based are hard to 
understand or to detect

• The database designers need not normalize to the highest 
possible normal form
(usually up to 3NF and BCNF. 4NF rarely used in practice.)

Denormalization:

The process of storing the join of higher normal form relations as 
a base relation—which is in a lower normal form    
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Keys and Attributes 

• A superkey of a relation schema R = {A1, A2, ...., An} is a set of 
attributes S subset-of R with the property that no two tuples t1 
and t2 in any legal relation state r of R will have t1[S] = t2[S] 

• A key K is a superkey with the additional property that removal 
of any attribute from K will cause K not to be a superkey any 
more. 
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Keys and Attributes 
• If a relation schema has more than one key, each is called a candidate

key.
• One of the candidate keys is arbitrarily designated to be the primary 

key, and the others are called secondary keys.
• A Prime attribute must be a member of some candidate key
• A Nonprime attribute is not a prime attribute—that is, it is not a 

member of any candidate key. 
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First Normal Form

Disallows
• Composite Attributes
• Multivalued Attributes
• Nested Relations; attributes whose values for an individual    

tuple are non-atomic
• Considered to be part of the definition of a relation 
• Most RDBMSs allow only those relations to be defined that are in 

First Normal Form
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Normalization into 1NF
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Second Normal Form (1)

• Uses the concepts of FDs, primary key
• Definitions

Prime attribute: An attribute that is member of the primary key K
Full functional dependency: a FD  Y -> Z where removal of any attribute from 
Y means the FD does not hold any more

Examples:
{SSN, PNUMBER} -> HOURS is a full FD since neither SSN -> HOURS nor 
PNUMBER -> HOURS hold 
{SSN, PNUMBER} -> ENAME is not  a full FD (it is called a partial dependency ) 
since SSN -> ENAME also holds 
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Second Normal Form (2)

• A relation schema R is in second normal form (2NF) if every non-
prime attribute A in R is fully functionally dependent on the primary 
key

• R can be decomposed into 2NF relations via the process of 2NF 
normalization or “second normalization”
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Normalizing into 2NF and 3NF
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Third Normal Form (1)

Definition:
Transitive functional dependency: a FD  X -> Z that can be derived from 
two FDs   X -> Y and Y -> Z 

Examples:
SSN -> DMGRSSN is a transitive FD 

Since SSN -> DNUMBER and DNUMBER -> DMGRSSN hold 
SSN -> ENAME is non-transitive

Since there is no set of attributes X where SSN -> X and X -> ENAME 
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Third Normal Form (2)

A relation schema R is in third normal form (3NF) if it is in 2NF and no non-
prime attribute A in R is transitively dependent on the primary key
R can be decomposed into 3NF relations via the process of 3NF normalization
NOTE:

• In X -> Y and Y -> Z, with X as the primary key, we consider this a
problem only if Y is not a candidate key.

• When Y is a candidate key, there is no problem with the transitive
dependency .

E.g., Consider EMP (SSN, Emp#, Salary ).
Here, SSN -> Emp# -> Salary and Emp# is a candidate key
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Normal Forms 
Defined 
Informally

• 1st normal form
All attributes depend on the key

• 2nd normal form
All attributes depend on the whole key

• 3rd normal form
All attributes depend on nothing but the key
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General Definition of 2NF

A relation schema R is in second normal form (2NF) if every non-prime 
attribute A in R is fully functionally dependent on every key  of R 

FD 
County_name → Tax_rate violates 2NF.

So second normalization converts LOTS into 
LOTS1 (Property_id#, County_name, Lot#, Area, Price)
LOTS2 ( County_name, Tax_rate)
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Third  Normal Form

DEFINITION of 3NF:
• A relation schema R is in third normal form (3NF) if every non-prime 

attribute in R meets both of these conditions:
• It is fully functionally dependent on every key of R
• It is non-transitively dependent on every key of R

Note that stated this way, a relation in 3NF also meets the requirements for 
2NF.
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BCNF (Boyce-Codd Normal Form) 

• A relation schema R is in Boyce-Codd Normal Form (BCNF) if 
whenever an FD X → A holds in R, then X is a superkey of R

• Each normal form is strictly stronger than the previous one
• Every 2NF relation is in 1NF
• Every 3NF relation is in 2NF
• Every BCNF relation is in 3NF

• There exist relations that are in 3NF but not in BCNF
• Hence BCNF is considered a stronger form of 3NF
• The goal is to have each relation in BCNF (or 3NF) 
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BCNF - Example
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BCNF by Decomposition (1)

• Two FDs exist in the relation TEACH:
• fd1: { student, course} -> instructor
• fd2: instructor -> course 

{student, course} is a candidate key for this relation and that the 
dependencies shown follow the pattern in Figure 14.13 (b).

So this relation is in 3NF but not in BCNF 

• A relation NOT in BCNF should be decomposed so as to meet this 
property, while possibly forgoing the preservation of all functional 
dependencies in the decomposed relations.
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Multi valued Dependencies

 There are database schemas in BCNF that do not seem to be  
sufficiently normalized

 Consider a database

classes(course, teacher, book)
• such that (c,t,b)  classes means that t is qualified to teach c,

• and b is a required textbook for c

 The database is supposed to list for each course the set of  teachers 
any one of which can be the course’s instructor, and the  set of 
books, all of which are required for the course (no matter  who 
teaches it).
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Multi valued Dependencies (Contd.)

 There are no non-trivial functional dependencies and 
therefore  the relation is in BCNF

 Insertion anomalies – i.e., if Sara is a new teacher that can teach
classes

 Insertion anomalies – i.e., if Sara is a new teacher that can teach
the following two tuples need to be inserted

(Physics101, Sara, Mechanics) 

(database, Sara, Optics)
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Multi_valued Dependencies (MVDs)

 Let R be a relation schema and let   R and   R.

The multivalued dependency

  

holds on R if in any legal relation r(R), for all pairs for  tuples t1 

and t2 in r such that t1[] = t2 [], there exist  tuples t3 and t4 in r 

such that:

t1[] = t2 [] = t3 [] t4 []

t3[] = t1 []

t3[R– ] = t2[R – ]

t4 [] = t2[] 

t4[R– ] = t1[R– ]
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Use of Multivalued Dependencies

We use multivalued dependencies in two ways:

1. To test relations to determine whether they are legal under a  
given set of functional and multivalued dependencies

2. To specify constraints on the set of legal relations. We 
shall  thus concern ourselves only with relations that satisfy a 
given  set of functional and multivalued dependencies.

If a relation r fails to satisfy a given multivalued dependency, we 
can construct a relations r that does  satisfy the 
multivalued dependency by adding tuples to r
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Theory of MVDs
• From the definition of multi_valued dependency, we can derive the  

following rule:

If   , then   

That is, every functional dependency is also a multi_valued

dependency

• The closure D+ of D is the set of all functional and multi_valued

dependencies logically implied by D.

We can compute D+ from D, using the formal definitions of 
functional  dependencies and multi_valued dependencies.

We can manage with such reasoning for very simple multi-
valued  dependencies, which seem to be most common in
practice

For complex dependencies, it is better to reason about sets of  

dependencies using a system of inference rules .
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Fourth Normal Form

 A relation schema R is in 4NF with respect to a set D of  functional 

and multivalued dependencies if for all multivalued dependencies in 

D+ of the form   , where   R and   R,  at least one of the 

following hold:

   is trivial (i.e.,    or    = R)

 is a superkey for schema R

 If a relation is in 4NF it is in BCNF
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Join Dependencies and 5NF

Definition:
• A join dependency (JD), denoted by JD(R1, R2, ..., Rn), specified on

relation schema R, specifies a constraint on the states r of R.
• The constraint states that every legal state r of R should have a

non-additive join decomposition into R1, R2, ..., Rn; that is, for every
such r we have

* (R1(r), R2(r), ..., Rn(r)) = r
Note: an MVD is a special case of a JD where n = 2.

• A join dependency JD(R1, R2, ..., Rn), specified on relation schema R,
is a trivial JD if one of the relation schemas Ri in JD(R1, R2, ..., Rn) is
equal to R.
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Join Dependencies & 5NF Contd..
Definition:
• A relation schema R is in fifth normal form (5NF) (or Project-Join Normal

Form (PJNF)) with respect to a set F of functional, multivalued, and join
dependencies if, for every nontrivial join dependency JD(R1, R2, ..., Rn) in
F+ (that is, implied by F), every Ri is a superkey of R.

• Discovering join dependencies in practical databases with hundreds o
relations is next to impossible. Therefore, 5NF is rarely used in practice.
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UNIT - IV

Transaction processing:
Introduction, need for concurrency control, desirable properties
of transaction, schedule and recoverability, serializability and
schedules
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Transaction:
A transaction is a unit of program execution that accesses and  possibly 
updates various data items.

E.g., transaction to transfer $50 from account A to account B:
1. read(A)
2. A := A – 50
3. write(A)
4. read(B)
5. B := B + 50
6. write(B)

Transaction
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ACID Properties

• A  transaction is a unit of program execution that accesses and 
possibly updates various data items. To preserve the integrity of 
data the database system must ensure:

• Atomicity. Either all operations of the transaction are properly 
reflected in the database or none are.

• Consistency. Execution of a transaction in isolation preserves the 
consistency of the database.
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ACID Properties(cont.)

• Isolation. Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions. Intermediate
transaction results must be hidden from other concurrently
executed transactions.

• That is, for every pair of transactions Ti and Tj, it appears to Ti

that either Tj, finished execution before Ti started, or Tj

started execution after Ti finished.

• Durability. After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.
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Transaction State
• Active – the initial state; the transaction stays in this state while it 

is executing

• Partially committed – after the final statement has been 
executed.

• Failed -- after the discovery that normal execution can no longer 
proceed.
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Transaction State(cont.)

• Aborted – after the transaction has been rolled back and the 
database restored to its state prior to the start of the transaction.  
Two options after it has been aborted:

• Restart the transaction
• can be done only if no internal logical error
• Kill the transaction

• Committed – after successful completion.
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Transaction State (Cont.)
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Example of transaction
Transfer £50 from account A to account B

Read(A)
A = A - 50
Write(A)
Read(B)
B = B+50
Write(B)

• Atomicity - shouldn’t take money from A without giving it to B
• Consistency - money isn’t lost or gained
• Isolation - other queries shouldn’t see A or B change until completion
• Durability - the money does not go back to A
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Concurrent Executions

Multiple transactions are allowed to run concurrently in the system.  
Advantages are:

• Increased processor and disk utilization, leading to better 
transaction throughput
E.g. one transaction can be using the CPU while another is reading 
from or writing to the disk

• Reduced average response time for transactions: short transactions 
need not wait behind long ones.
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Concurrent Executions(cont.)

Concurrency control schemes – mechanisms  to achieve 

isolation
That is, to control the interaction among the concurrent 
transactions in order to prevent them from destroying the 
consistency of the database
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Recoverability

A schedule is said to be recoverable if a failed transaction is undone.

If a transaction Ti fails we need to undo the effect of this transaction 
to ensure the atomicity property.

In a concurrent execution it is necessary to ensure that transaction Ti

that is dependent on Ti is also aborted.
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Recoverable Schedules

Recoverable schedule — if a transaction Tj reads a data item previously written 
by a transaction Ti , then the commit operation of Ti must appear before the 
commit operation of Tj.

The following schedule is not recoverable if T9 commits immediately after the 
read(A) operation.

If T8 should abort, T9 would have read (and possibly shown to the user) an 
inconsistent database state.  Hence, database must ensure that schedules 

are recoverable.
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Cascading Rollbacks

Cascading rollback – a single transaction failure leads to a series of 

transaction rollbacks.  Consider the following schedule where none of 
the transactions has yet committed (so the schedule is recoverable)

If T10 fails, T11 and T12 must also be rolled back.
Can lead to the undoing of a significant amount of work
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Concurrency Control

A database must provide a mechanism that will ensure that all possible
schedules are both:

• Conflict serializable.
• Recoverable and preferably cascadeless

Concurrency-control schemes tradeoff between the amount of
concurrency they allow and the amount of overhead that they incur
Testing a schedule for serializability after it has executed is a little too
late!

• Tests for serializability help us understand why a concurrency
control protocol is correct

Goal – to develop concurrency control protocols that will assure
serializability.
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Conflict Serializability (Cont.)

Schedule 3 can be transformed into Schedule 6 -- a serial schedule
where T2 follows T1, by a series of swaps of non-conflicting
instructions. Therefore, Schedule 3 is conflict serializable.

Schedule 3
Schedule 6
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Conflict Serializability (Cont.)

Example of a schedule that is not conflict serializable:

We are unable to swap instructions in the above schedule to 
obtain either the serial schedule < T3, T4 >, or the serial schedule 
< T4, T3 >.
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View Serializability

Let S and S’ be two schedules with the same set of transactions .  And S’ 
are View equivalent if the following three conditions are met:
1. Initial Read
2. Write-read
3. Final write

View equivalence is purely based on reads and writes alone.
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View Serializability(cont.)

A schedule S is view serializable it is equivalent to a serial schedule.
Every conflict  serializable schedule  is also a view serializable .
Every view  serializable schedule  is not  conflict  serializable  has blind 
writes.

Above example is a view serializable but not conflict serializable.
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Testing for Conflict Serializability

In order to determine a conflict serializable we need to construct a 
directed graph called precedence graph .

It is represented as G=(V,E)
V-consists of transactions 
E-consists of set of edges Ti->Tj for which one of the three conditions.

1. Ti executes Write(Q) before  Tj executes Read(Q).
2. Ti executes Read(Q) before  Tj executes Write(Q)
3. Ti executes Write(Q) before  Tj executes Write(Q)
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Conflict Serializability

For example, a serializability order for 
the schedule (a)  would be one of 
either (b) or (c)
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UNIT -V

Concurrency control
Types of locks: Two phases locking, deadlock, timestamp based 
concurrency control, recovery techniques, concepts, immediate 
update, deferred update, shadow paging.
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Concurrency Control

• A database must provide a mechanism that will ensure that all possible 
schedules are both:

• Conflict serializable. 
• Recoverable and preferably cascadeless

• A policy in which only one transaction can execute at a time generates serial 
schedules, but provides a poor degree of concurrency

• Concurrency-control schemes tradeoff between the amount of concurrency 
they allow and the amount of overhead that they incur.

• Testing a schedule for serializability after it has executed is a little too late! 
• Tests for serializability help us understand why a concurrency control 
protocol is correct

• Goal – to develop concurrency control protocols that will assure 
serializability.
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Weak Levels of Consistency

• Some applications are willing to live with weak levels of consistency, 
allowing schedules that are not serializable

E.g., a read-only transaction that wants to get an approximate total 
balance of all accounts 
E.g., database statistics computed for query optimization can be 
approximate (why?)

Such transactions need not be serializable with respect to other 
transactions tradeoff accuracy for performance
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Levels of Consistency in SQL-92

• Serializable — default
• Repeatable read — only committed records to be read, repeated reads of

same record must return same value. However, a transaction may not be
serializable – it may find some records inserted by a transaction but not find
others.

• Read committed — only committed records can be read, but successive
reads of record may return different (but committed) values.

• Read uncommitted — even uncommitted records may be read.
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Transaction Definition in SQL

• Data manipulation language must include a construct for specifying the set 
of actions that comprise a transaction.

• In SQL, a transaction begins implicitly.
• A transaction in SQL ends by:
• Commit work commits current transaction and begins a new one.
• Rollback work causes current transaction to abort.
• In almost all database systems, by default, every SQL statement also 

commits implicitly if it executes successfully
• Implicit commit can be turned off by a database directive

E.g. in JDBC, connection.setAutoCommit(false);
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Introduction:
Locking is necessary in a concurrent environment to assure that 

one process should not retrieve or update a record which another 
process is updating. Failure to this would result in inconsistent and 
corrupted data.

Introduction to Locks 

216



There are various modes to lock data items. They are: 

• Shared(S): If a transaction Ti has shared mode lock on data item Q 

then Ti can read but not write Q. lock-S(Q) instruction is used in 

shared mode.

• Exclusive(X): If a transaction has obtained an exclusive mode lock 
on data item Q, then Ti can perform both read and write. lock-X(Q)
instruction is used to lock in exclusive mode.

Types of Locks
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A lock is a mechanism to control concurrent access to a data item. Lock 
requests are made to concurrency-control manager. Transaction can 
proceed only after request is granted.

Lock-compatibility matrix

Lock-compatibility matrix
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Locking as above is not sufficient to guarantee serializability — if A and

B get updated in-between the read of A and B, the displayed sum would

be wrong.

Transaction Performing Locking:
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Two-Phase Locking  (2PL)

• A protocol that guarantees serializability but does not prevent
deadlocks.

• A transaction obeying the two-phase locking protocol (2PL) if
before operating on any object, the transaction first acquires a lock

on that object (Growing Phase/locking phase) after releasing a lock,
the transaction never acquires any more locks (Shrinking
Phase/unlocking phase ).

• 2PL can be shown to be conflict serializable in the order of ‘lock
point’
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Strict 2PL

• Strict-2PL: Transaction holds X-locks till it commit/aborts. After 
commit/aborted it releases the lock.

• Another variants of Two-Phase locking  is Rigorous and 
conservative 2PL.

221



Variants of Two-Phase locking

• Rigorous 2PL: T holds  S|X locks till it commit |Aborts transactions 
can be serialized in the order in which they commit.

• Conservative 2PL:Transaction gets all locks in an atomic manner i.e. 
no deadlocks.
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Timestamp Ordering

Timestamp:
• a number generate by system.

• ticks of the computer's internal clock.

• no two transactions can have the same timestamp.
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Timestamp-ordering Protocol

Case 1: Suppose that transaction Ti issues read(Q).

• If TS(Ti) ≤ W-timestamp(Q), then Ti needs to read a value of Q that 
was already overwritten. Hence, Ti should read value before W-
timestamp. Therefore read operation is rejected, and Ti is rolled 
back.

• If TS(Ti) W-timestamp(Q), then the read operation is executed, 
and R-timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).Suppose 
that transaction Ti issues write(Q).
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Timestamp-ordering

Case: 2 Suppose Ti issues write(Q).

• If TS(Ti) < R-timestamp(Q), since it has read-write conflict the write
operation is rejected, and Ti is rolled back.

• If TS(Ti) < W-timestamp(Q), since it has write-write conflict the write
operation is rejected, and Ti is rolled back. Otherwise, the write
operation is executed, and W-timestamp(Q) is set to TS(Ti).

• If TS(Ti) > R-timestamp(Q) and TS(Ti) > W-timestamp(Q), since all 
read and write operations done before timestamp write operation 
is granted. Therefore w-timestamp need tobe updated with max of 
w-TS & TS(Ti).
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Thomas’s write rule:
This rule states that if TS(Ti) < W-timestamp(Q) then the operation is
rejected & Ti is rolled back. Timestamp ordering rules can be modified to
make the schedule view serializable. Instead of making Ti rolled back,
the write operation itself is ignored.

Thomas’s write rule
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Thomas’s write rule(contd.)

Consider the given transactions

• For the condition TS(Ti) < W-timestamp(Q) write of T2 is having largest
W-timestamp.

• In case of T1 and T2 write operation is updated by W-timestamp(Q) to
TS(T1).

• Under the thomas’s write rule, write(Q) on T1 would be ignored.
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Validation based protocol

Validation based protocol:
• No checking is done while the transaction is executing. 
• Each transaction executes in three phases in its lifetime.

Read phase:
During this phase, the system executes transaction Ti It    reads the 
values of various data items and writes on temporary local variables 
without updating the actual database.
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Validation phases

• Validation phase: Transaction Ti performs a validation test to determine the 
operation of read phase without violating the serializability.

• Write phase: If Transaction Ti succeeds in validation then actual updates 
are applied to the database otherwise the system rolls back Ti.
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Validation based protocol(contd.)

To perform the validation test, we need to know when the various 
phases of transaction Ti took place. Therefore associate three different 
timestamps with transaction Ti . The validation scheme is called as optimistic 
concurrency-control.

Three timestamps of validation are: 
Start (T): start of execution (Ti)
Validation (T): Ti finished its read phase & started it validation phase.
Finish (T): Time when Ti finished its write phase.

Serializability order by the timestamp-ordering technique is determined by 
using the value  TS (Ti) = validation (Ti).
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Validation Test

Validation Test: 
• For transaction TS(Ti) < TS(Ti), one of the following condition must hold

• Finish (Ti) < Start(Tj) : Since Ti completes its execution before Tj started 
the serializability order is maintained.

• Start(Ti)<  Finish (Ti) <Validation(Tj)  :The validation phase of Tj should 
occur after T i finishes. 

• It ensures that writes of Ti & Tj do not overlap. Write (Ti) do not effect 
read(Tj) hence serializability order is maintained.
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Recovery System

Recovery system is an integral part of database management system
that can restore the database to the consistent state before failure. The
failures are categorized as failure that does not result in loss of
information and effects with loss of information.
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Failures

Failures are classified as:
1. Transaction failure
The transaction may fail due to two errors. They are:

Logical error: The transaction further cannot continue with normal 
execution because of internal conditions as data not found, invalid input 
data, overflow or exceeded resource limits.

System error: The transaction further cannot continue with 
undesirable state like deadlock conditions.

2. System crash: System crash causes loss of the content of volatile storage. 
The reasons for this are: hardware problem; bug in the software or database 
software.
3. Disk failure: Disk crash leads to loss of information, which is due to failure 
due to data transfer or head crash. To recover from this failure backup on other 
disks, tapes.
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Recovery From Failure

• Two approaches for recovery:
• Log-based recovery
• Shadow-paging
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Recovery Algorithms
• Recovery algorithms are techniques to ensure database consistency 

and transaction atomicity and durability even with failures. 
Recovery algorithms have two parts:

• Actions taken during normal transaction processing to ensure 
enough information exists to recover from failures

• Actions taken after a failure to recover the database contents to a 
state that ensures atomicity, consistency and durability.

Two approaches using logs
• Deferred database modification
• Immediate database modification
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Log-Based Recovery

• A log is kept on stable storage. 
• The log is a sequence of log records, and maintains a record of update 

activities on the database

Log record has 3 fields:
• Transaction Identifier: Unique identifier of the transaction that performed 

write operation.
• Data item identifier: Unique identification of the data item written
• Old value: Value of the item prior to the write
• New value: Value of the item after write transaction
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Deferred Database Modification
The deferred database modification scheme records all modifications to the log, 

but defers all the writes to after partial commit.
• Assume that transactions execute serially.

<Ti start>transaction Ti started. 
• write(X) operation results in a log record  :

<Ti, X, V> where V is the new value for X
Note: old value is not needed for this scheme

• The write is not performed on X at this time, but is deferred.
When Ti partially commits, 
<Ti commit> is written to the log 
Finally, the log records are read and used to actually execute the previously 

deferred writes. During recovery after a crash, a transaction needs to be redo if 
and only if both 

<Ti start> and<Ti commit> are there in the log.
• Redoing a transaction Ti

< redoTi> sets the value of all data items updated by the transaction to the 
new values.
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Example

Crashes can occur while the transaction is executing
the original updates, or while recovery action is being
taken example transactions T0 and T1 (T0 executes
before T1):

Let T0 be a transaction that transfers 50 from
Account A to B. T1 be a transaction that withdraws
100 from Account C. Initially A, B and C have 1000,
2000 and 700 respectively.

T0:

read (A)

A: - A - 50

Write(A)

read (B)

B:- B + 50

write (B)

T1 :

read (C)

C:-C- 100

write (C)
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Log Record entries

Portion of database

log for T0 and T1

Log database

<T0 start>

<T0, A, 950>

<T0, B, 2050>

<T0, commit>

<T1 start>

<T1, C, 600>

<T1, commit>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T1,commit>

A=950

B=2050

C=600
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Log updates at three instances of time

(a) (b) ( c)

<T0 start>

<T0, A, 950>

<T0, B, 2050>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T1,commit>
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Recovery actions

Case 1:
Shown in (a)

Crash occurs just after log 
record for Write(B) of 
transaction T0.

 No redo action required due to no commit 
in log.

 The accounts A and B remains with initial 
values.

 Incomplete transaction T0 can be deleted 
from the log

Case 2:
Shown in (b)

Crash occurs just after log 
record for Write(C) of 
transaction T1.

 Redo(T0) is performed due to commit 
record (<T0, commit>) in log.

 The accounts A and B has with 950 and 
2050 respectively.

 Incomplete transaction T1 can be deleted 
from the log

Case 3:
Shown in (c)

Crash occurs just after log 
record (<T1, commit>) is 
written in stable storage.

 The accounts A, B and C has with 950, 
2050 and 600 respectively.
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Immediate Database Modification

• The immediate database modification scheme allows database
updates of an uncommitted transaction to be made as the writes are
issued since undoing may be needed, update logs must have both old
value and new value.

• Update log record must be written before database item is written.
Assume that the log record is output directly to stable storage can be
extended to postpone log record output, so long as prior to execution
of an output(B) operation for a data block B, all log records
corresponding to items B must be flushed to stable storage.

• Output of updated blocks can take place at any time before or after
transaction commit

• Order in which blocks are output can be different from the order in
which they are written.
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Recovery procedure operations

Recovery procedure has two operations instead of one:
• undo(Ti) restores the value of all data items updated by Ti to their old 

values, going backwards from the last log record for Ti

• redo(Ti) sets the value of all data items updated by Ti to the new 
values, going forward from the first log record for Ti

• Transaction Ti needs to be undone if the log contains the record 
<Ti start>, but does not contain the record <Ti commit>.

• Transaction Ti needs to be redone if the log contains both the record 
<Ti start> and the record <Ti commit>.

• Undo operations are performed first, then redo operations.
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Example

Let accounts A, B and C initially has 1000, 2000 and 700 
respectively. The log entry of both the transactions are:

Log Database

<T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050>

A = 950

B = 2050

<T0 commit>

<T1 start>

<T1, C, 700, 600>

C = 600

<T1 commit>
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Failure 

time slots

(a) (b) ( c)

Log <T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050>

<T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050>

<T0 commit>

<T1 start>

<T1, C, 700, 600>

<T0 start>

<T0, A, 1000, 950>

<To, B, 2000, 2050>

<T0 commit>

<T1 start>

<T1, C, 700, 600>

<T1 commit>

Recovery 

Scheme

Undo(T0) Redo(T0)

Undo(T0)

Redo(T0)

Redo(T1)

Recovery 

Action

Account A and B with

1000 and 2000

Account A, B and C

with 950, 2050 and

700.

Account A, B and C with

950, 2050 and600.

Recovery Actions
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Example

• Crashes can occur while the transaction is
executing the original updates, or while
recovery action is being taken example
transactions T0 and T1 (T0 executes before
T1):

• Let T0 be a transaction that transfers 50
from Account A to B. T1 be a transaction
that withdraws 100 from Account C.
Initially A, B and C have 1000, 2000 and

700 respectively.

T0:

read (A)

A: - A - 50

Write(A)

read (B)

B:- B + 50

write (B)

T1 :

read (C)

C:-C- 100

write (C)
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Log Record entries

Portion of database

log for T0 and T1

Log database

<T0 start>

<T0, A, 950>

<T0, B, 2050>

<T0, commit>

<T1 start>

<T1, C, 600>

<T1, commit>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T1,commit>

A=950

B=2050

C=600
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Log updates at three instances of time

(a) (b) ( c)

<T0 start>

<T0, A, 950>

<T0, B, 2050>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T0 start>

< T0, A, 950>

< T0, B, 2050>

< T0, commit>

<T1, start>

< T1, C, 600>

< T1,commit>
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Example

Example: Let T1, T2, T3, and T4 are transaction recorded in log. Tc is 
checkpoint and Tt is the failure occurred.
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Shadow paging
• Shadow paging is an alternative to log-based recovery; this scheme is useful

if transactions execute serially
• Maintain two page tables during the lifetime of a transaction –the current

page table, and the shadow page table.
• Store the shadow page table in nonvolatile storage, such that state of the

database prior to transaction execution may be recovered. Shadow page
table is never modified during execution.

• To start with, both the page tables are identical. Only current page table is
used for data item accesses during execution of the transaction.

• Whenever any page is about to be written for the first time:
• Copy of this page is made onto an unused page.
• Current page table is then made to point to the copy.
• Update is performed on the copy
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Example of Shadow paging
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