

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	DIGIT	DIGITAL COMMUNICATIONS				
Course Code	AEC00	AEC009				
Programme	B.Tech	ı				
Semester	V	ECE]			
Course Type	Core	Core				
Regulation	IARE ·	- R16				
		Theory Practical				
Course Structure	Lectu	INOC	Tutorials	Credits	Laboustanu	
	Lui	ures	Tutoriais	Creatis	Laboratory	Credits
	3		1	4	2 3	2
Chief Coordinator	3			4	•	

I. COURSE OVERVIEW:

2 0 0

The course will make them to understand various digital modulation techniques and source coding techniques. Demonstrate the ability to analyze base band transmission and pulse shaping schemes. Interpret the concept of linear block codes and convolution codes. Understand the principle of general transform domain approach and the concept of Viterbi algorithm. Further, it emphasis the knowledge on various pulse modulation schemes.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC005	IV	Analog Communications	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Digital Communications	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Quiz / Alternative Assessment Tool (AAT).

Component		Theory	Total Marks
Type of Assessment	CIE Exam	Quiz/AAT	T OTAT WATES
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Quiz - Online Examination

Two Quiz exams shall be online examination consisting of 25 multiple choice questions and are to be answered by choosing the correct answer from a given set of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

Alternative Assessment Tool (AAT)

This AAT enables faculty to design own assessment patterns during the CIA. The AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lectures, Assignments, Exercises.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Lab related exercises
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	Design, Mini Project

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by	
PSO 1	Professional Skills: To produce engineering Professional capable of synthesizing and analyzing mechanical systems including allied engineering streams.	2	Seminar	
PSO 2	Software Engineering Practices: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	-	-	
PSO 3	Successful Career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become technocrats.	2	Guest lectures	

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES :

Ι	Understand the different digital modulation techniques.
II	Discuss the importance of error detection and correction codes and use them in presence of channel noise.
III	Describe and analyze the methods of transmission of digital data using baseband and carrier modulation techniques.
IV	Decompose codes separately into source codes, channel codes, and develop competency in modeling and analyzing communication system elements.

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Analyze, interpret and model the	CLO 1	Understand the basic concepts of pulse
	components of digital		amplitude modulation (PAM), pulse position
	communication systems.	~~~~~	modulation (PPM) and pulse width
		CLO 2	Describe the advantages and disadvantages of
			digital communication systems and remember
			the concept of pulse code modulation
		CLO 3	Understand the concept of sampling,
			quantization and coding.
CO 2	Analyze, model, evaluate and	CLO 4	Understand and remember the concept of
	compare various digital		amplitude shift keying modulation and
	modulation techniques.	CLO 5	Analyze the frequency shift keying
			modulator, coherent and non-coherent
		CLO 6	Describe the difference between binary phase
			shift keying ad quadrature phase shift keying

COs	Course Outcome	CLOs	Course Learning Outcome
CO 3	Analyze, interpret and model	CLO 7	Understand the concept of baseband
	baseband pulse transmission		transmission and various line-coding formats
	systems and digital pass band		used in digital communication systems.
	transmission systems	CLO 8	Describe the significance of pulse shaping to
			reduce inter-symbol interference in digital
			communications.
		CLO 9	Understand the operation of raised cosine filter
			and eye patterns of various ASK PSK and FSK
			digital modulation techniques.
CO 4	Analyze, evaluate information	CLO 10	Understand and Remember the concept of
	theory and compare spread		mutual information and entropy in information
	spectrum techniques and		theory.
	performance of spread spectrum.	CLO 11	Design various mathematical modeling
			schemes for communication channel and
			determine their channel capacity.
		CLO 12	Analyze various spread spectrum modulation
			schemes.
		CLO 13	Direct sequence spread spectrum and
			frequency hopping spread spectrum.
CO 5	Review, analyze and design	CLO 14	Analyze the significance of linear block codes
	error-correcting codes used in		and convolution codes in digital
	digital communication.		communications. Interpret the difference
			between hamming codes and binary cyclic
			codes.
		CLO 15	Understand various types and approaches such
			as time domain approach and transform
			domain approach for implementation of
			convolution codes.
		CLO 16	Design different types of error detection and
			correction techniques for linear block codes
			and convolution codes.
		CLO 17	Acquire experience in building and
			troubleshooting simple digital communication
			system using digital modulation and
			demodulation techniques.
		CLO 18	Acquire the knowledge and develop capability
			to succeed in competitive examinations.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEC009.01	CLO 1	Understand the basic concepts of pulse	PO1	3
		amplitude modulation (PAM), pulse position		
		modulation (PPM) and pulse width modulation		
		(PWM). (PPM) and pulse width modulation		
		(PWM).		
AEC009.02	CLO 2	Describe the advantages and disadvantages of	PO1	3
		digital communication systems and remember		
		the concept of pulse code modulation technique.		
AEC009.03	CLO 3	Understand the concept of sampling,	PO2	2
		quantization and coding.		
AEC009.04	CLO 4	Understand and remember the concept of	PO5	3
		amplitude shift keying modulation and		
		demodulation.		
AEC009.05	CLO 5	Analyze the frequency shift keying modulator,	PO5	3
		coherent and non-coherent frequency shift		
		keying detectors.		
AEC009.06	CLO 6	Describe the difference between binary phase	PO2	2
		shift keying ad quadrature phase shift keying		
		techniques.		
AEC009.07	CLO 7	Understand the concept of baseband	PO2	2
		transmission and various line-coding formats		
		used in digital communication systems.		
AEC009.08	CLO 8	Describe the significance of pulse shaping to	PO2	2
		reduce inter-symbol interference in digital		
		communications.		
AEC009.09	CLO 9	Understand the operation of raised cosine filter	PO5	3
		and eye patterns of various ASK PSK and FSK		
		digital modulation techniques.		
AEC009.10	CLO 10	Understand and Remember the concept of	PO1	3
		mutual information and entropy in information		
		theory.		
AEC009.11	CLO 11	Design various mathematical modeling schemes	PO1	3
		for communication channel and determine their		
		channel capacity.		

AEC009.12	CLO 12	Analyze various spread spectrum modulation schemes such as direct sequence spread spectrum and frequency hopping spread	PO5	3
		spectrum.		
AEC009.13	CLO 13	Analyze the significance of linear block codes and convolution codes in digital communications.	PO5	3
AEC009.14	CLO 14	Interpret the difference between hamming codes and binary cyclic codes.	PO2	2
AEC009.15	CLO 15	Understand various types and approaches such as time domain approach and transform domain approach for implementation of convolution codes.	PO1	3
AEC009.16	CLO 16	Design different types of error detection and correction techniques for linear block codes and convolution codes.	PO5	3
AEC009.17	CLO 17	Acquire experience in building and troubleshooting simple digital communication system using digital modulation and demodulation techniques.	PO5	3
AEC009.18	CLO 18	Acquire the knowledge and develop capability to succeed in competitive examinations.	PO1	3

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes	Pro	Program Specific Outcomes (POs)				
(COs)	PO 1	PO 2	PO 5	PSO1	PSO2	PSO3
CO 1	3	2		1		
CO 2		2	1			
CO 3	3	2		1		1
CO 4	3	2		1		
CO 5	3	2				1

3= High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								m Specifio nes (PSOs						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3														
CLO 2	3														
CLO 3		2													
CLO 4					3										
CLO 5					3										
CLO 6		2													
CLO 7		2													
CLO 8		2													
CLO 9					3										2
CLO 10	3														2
CLO 11	3														2
CLO 12					3										
CLO 13					3										
CLO 14		2											2		
CLO 15	3												2		
CLO 16					3								2		
CLO 17					3								2		
CLO 18	3												2		

3 = **High**; **2** = **Medium**; **1** = Low

XIII. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO1, PO2, PO5, PSO1, PSO3	SEE Exams	PO1, PO2, PO5, PSO1, PSO3	Assignments	PO 1 PO 2	Seminars	PO1, PO2, PO5, PSO1, PSO3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO5,PSO1, PSO3						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

UNIT-I	PULSE DIGITAL MODULATION						
polarity); Ger Elements of o systems, appli Quantization DPCM; Delta	tion: Analog pulse modulation, Types of pulse modulation; PAM (Single polarity, double heration & demodulation of PWM; Generation and demodulation of PPM; Introduction: digital communication systems, advantages and disadvantages of digital communication ications; Pulse Digital Modulation: Elements of PCM; Sampling, quantization and coding; error, non-uniform quantization and Companding; Differential PCM (DPCM);Adaptive modulation and its drawbacks; Adaptive delta modulation; Comparison of PCM and DM e in PCM and DM systems.						
UNIT-II	DIGITAL MODULATION TECHNIQUES						
detector, FSK detector; BPS Baseband sign matched filter	Digital Modulation Techniques: Introduction, ASK modulator, coherent ASK detector, non-coherent ASK detector, FSK, bandwidth and frequency spectrum of FSK, non-coherent FSK detector, coherent FSK detector; BPSK, coherent BPSK detection; QPSK; DPSK, DEPSK; Optimal reception of digital signal: Baseband signal receiver; Probability of error; Optimum filter; matched filter, probability of error using matched filter; Probability of error for various line encoding formats; Correlation receiver; Calculation of probability of error for ASK, BPSK.						
UNIT -III	BASE BAND TRANSMISSSION AND PULSE SHAPING						
Unipolar, Pola various line er Pulse Shaping filter; Equaliz	Transmission: Requirements of a Line-encoding format, Various line encoding formats: ar, Bipolar; Scrambling techniques: BZ8S, HDB3, computation of power spectral densities of neoding formats. g: Inter symbol interference; pulse shaping to reduce ISI; Nyquist criterion; Raised cosine eation; Correlative level coding; Duo-binary encoding, modified duo –binary coding; Eye ASK,PSK,FSK; Cross Talk.						
UNIT -IV	INFORMATION THEORY AND SOURCE CODING						
Various mathe Tradeoff betw Coding Schen coding; Sprea Code division	Theory: Information, entropy, conditional entropy; Mutual information; Channel capacity; ematical modeling of communication channels and their capacities; Hartley Shannon law; ween bandwidth and S/N ratio; Source coding: Fixed length and variable length Source nes, Huffman coding; Source coding to increase average information per bit; Lossy source d spectrum modulation: Use of spread spectrum; Direct sequence spread spectrum (DSSS); n multiple access using DSSS, frequency hopping spread spectrum; PN-Sequences: d characteristics; Synchronization in spread spectrum systems.						
UNIT -V	LINEAR BLOCK CODES AND CONVOLUTION CODES						
detection and algebraic stru Encoding of approach; Sta	Codes: Introduction to error control coding; Matrix description of linear block codes, error error correction capabilities of linear block codes; Hamming code; Binary cyclic codes acture, encoding, syndrome calculation and decoding; Convolution Codes: Introduction, convolution codes; Time Domain Approach; Transform Domain Approach; General te, Tree And Trellis Diagram; Decoding using Viterbi Algorithm; Burst Error Correction: wing and convolution interleaving.						
Text Books:							
	rt Taub, Donald L. Schilling , "Principles of Communication Systems", TMH, 3 rd n,2008.						

 K. Sam Shanmugam, "Digital and Analog Communication Systems", John Wiley & Sons, 2nd Edition, 2005. 3. Herbert Taub, Donald L. Schilling , "Principles of Communication Systems", TMH, 3rd edition,2008.

Reference Books:

- 1. John Proakis, "Digital Communications", TMH, 2nd Edition 1983.
- 2. B.P.Lathi, "Modern Analog and Digital Communication", Oxford reprint, 3rd Edition, 2004.
- 3. Singh, Sapre, "Communication Systems Analog and Digital", TMH, 2nd Edition, 2004.

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1-3	Understand the concept of Pulse Modulation techniques.	CLO 1	T1-5.2 to 5.3
4-7	Understand the basics of Digital communication and PCM.	CLO 2	T1-5.4 to 5.5
8-12	Understand various pulse code modulation techniques.	CLO 3	T1- 5.6, T1-12.3,
13-17	Analyze various Digital Modulation Techniques.	CLO 4	R2-13.3, T1-6.3
18-20	Understand various PSK modulation techniques.	CLO 5	T1-11.4, R3-9.2 to 9.4
21-22	Understand the concept of probability error.	CLO 6	R2-9.10 to 9.14
23-26	Understand the concept of baseband transmission line coding formats.	CLO 7	R3-8.7, T1-5.5
27-29	Analyze the power spectral density of line coding formats.	CLO 8	R3-8.7, T1-5.5
30-32	Understand various pulse shaping techniques.	CLO 9	T3-4.4 to 4.5
33-34	Analyze various coding and decoding schemes.	CLO 10	T3-4.6
35-36	Understand the concept of eye diagram and cross talk.	CLO 11	T3- 4.11 to T1- 52.3
37-41	Understand the concept of information theory and channel capacity.	CLO 12	T3-9.2, T3-9.6, T 3-9.7
42-46	Analyze various source-coding techniques.	CLO 13	T1-13.7, R3- 11.1 to 11.7
47-52	Understand the concept of Spread spectrum modulation.	CLO 14	T1-2.7, T1-15.4 to 15.6
53-57	Understand the concept of linear block codes.	CLO 15	T1-13.9
58-60	Understand the concept of convolution codes.	CLO 16	R3-11
61-65	Analyze general approach for convolution codes.	CLO 17	T1-13.18
66-69	Understand the concept of error correction.	CLO 18	T1-13.10

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S no	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Probability of error for various line-coding formats.	Seminars	PO 1	PSO 1
2	Scrambling techniques: BZ8S, HDB3 And computation of power spectral densities of various line encoding formats.	Seminars / NPTEL	PO 4	PSO 1
3	Various mathematical modeling of communication channels and their capacities.	NPTEL	PO 2	PSO 1

Prepared by: Dr. S. Vinoth , Associate Professor

HOD, ECE