DIGITAL ELECTRONICS

(AECB03) III SEMESTER
ELECTRICAL AND ELECTRONICS ENGINEERING

PREPARED BY
V.BINDU SREE J.SRAVANA

Unit-I
FUNDAMENTALS OF DIGITAL SYSTEMS ANR LOGIC FAMILIES
$>$ Binary number system.
A method of representing numbers that has 2 as its base and uses only the digits 0 and 1.

Ex:10100010
>Decimal number system
A number system that uses a notation in which each number is expressed in base 10 by using one of the first nine integers or 0 in each place and letting each place value be a power of 10

Numbers:0,1,2,3,4,5,6,7,8,9

NUMBER SYSTEMS

$>$ Octal number system

The octal numbering system uses the numerals 0-1-2-3-4-5-6-7.
$>$ Hexa decimal number system
The hexadecimal numeral system, often shortened to "hex", is a numeral system made up of 16 symbols (base 16) they are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E.

Binary to Decimal Conversion:

It is by the positional weights method. In this method, each binary digit of the no. is multiplied by its position weight. The product terms are added to obtain the decimal no

Example:

$$
101011_{2}=>\quad 1 \times 2^{0}=1
$$

NUMBER BASE CONVERSION

Binary to Octal conversion:

Starting from the binary pt. make groups of 3 bits each, on either side of the binary pt, \& replace each 3 bit binary group by the equivalent octaldigit.

$$
1011010111_{2}=?_{8}
$$

Example:

$$
1011010111_{2}=1327_{8}
$$

NUMBER BASE CONVERSION

Binary to Hexadecimal conversion:

For this make groups of 4 bits each, on either side of the binary pt \&
replace each 4 bit group by the equivalent hexadecimal digit.
Example:
$1010111011_{2}=?_{16}$

$$
1010111011_{2}=2 \mathrm{BB}_{16}
$$

NUMBER BASE CONVERSION

Decimal to Binary conversion:

Technique
$>$ Divide by two, keep track of the remainder
$>$ First remainder is bit 0 (LSB, least-significant bit)

$$
\begin{aligned}
& >S_{125_{10}}=? \\
& \begin{array}{l|r}
\hline 2 & 125 \\
2 & 62 \\
2 & 1 \\
2 & 31 \\
2 & 0 \\
2 & 15 \\
2 & 7 \\
2 & 1 \\
2 & 1 \\
2 & 1 \\
\hline & 1 \\
& 1
\end{array} \\
& 125_{10}=1111101_{2}
\end{aligned}
$$

NUMBER BASE CONVERSION

Decimal to Octal Conversion:

- To convert a mixed decimal no to a mixed octal no. convert the integer and fraction parts separately.
-To convert decimal integer no. to octal, successively divide the given no by 8 till the quotient is 0 . The last remainder is the MSD The remainder read upwards give the equivalent octal integer no.
-To convert the given decimal fraction to octal, successively multiply the decimal fraction \& the subsequent decimal fractions by 8 till the product is 0 or till the required accuracy is the MSD. The integers to the left of the octal pt read downwards give the octal fraction.

NUMBER BASE CONVERSION

Example:

$$
1234_{10}=?_{8}
$$

$$
1234_{10}=2322_{8}
$$

NUMBER BASE CONVERSION

Decimal to Hexadecimal conversion:

- It is successively divide the given decimal no. by 16 till the quotient is zero. The last remainder is the MSB. The remainder read from bottom to top gives the equivalent hexadecimal integer.
-To convert a decimal fraction to hexadecimal successively multiply the given decimal fraction \& subsequent decimal fractions by 16, till the product is zero. Or till the required accuracy is obtained and collect all the integers to the left of decimal pt. The first integer is MSB \& the integer read from top to bottom .

NUMBER BASE CONVERSION

Example:

$$
\begin{aligned}
& 1234_{10}=?_{16} \\
& \begin{array}{l|l}
16 & 1234
\end{array} \\
& 16 \lcm{77} 2 \\
& 16 \underset{0}{4} \quad 13=\mathrm{D} \\
& 1234_{10}=4 D 2_{16}
\end{aligned}
$$

NUMBER BASE CONVERSION

Octal to binary Conversion:

Convert each octal digit to a 3-bit equivalent binary representation

$$
705_{8}=?_{2}
$$

$$
705_{8}=111000101_{2}
$$

NUMBER BASE CONVERSION

Octal to decimal Conversion:

Multiply each digit in the octal no by the weight of its position \& add all the product terms Decimal value of the octal no.

$$
724_{8} \Rightarrow \quad \begin{array}{rlr}
4 \times 8^{0} & =4 \\
2 \times 8^{1} & =16 \\
7 \times 8^{2} & =\frac{448}{468_{10}}
\end{array}
$$

NUMBER BASE CONVERSION

Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to binary \& then the binary no. to hexadecimal.

$$
\begin{aligned}
& 1076_{8}=?_{16}
\end{aligned}
$$

NUMBER BASE CONVERSION

Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to binary \& then the binary no. to hexadecimal.

$$
\begin{aligned}
& 1076_{8}=?_{16}
\end{aligned}
$$

NUMBER BASE CONVERSION

Hexa decimal to binary Conversion:

Convert each hexadecimal digit to a 4-bit equivalent binary
representation

$$
10 \mathrm{AF}_{16}=?_{2}
$$

1	0	A	F
0001	0000	1010	1111
	$10 \mathrm{AF}_{16}$	$=0001000010101111_{2}$	

NUMBER BASE CONVERSION

Hexa decimal to decimal Conversion:
Convert each hexadecimal digit to a 4-bit equivalent binary representation

$$
\begin{aligned}
& \mathrm{ABC}_{16} \Rightarrow \quad C \times 16^{0}=12 \times 1=12 \\
& \mathrm{~B} \times 16^{1}=11 \times 16=176 \\
& \mathrm{~A} \times 16^{2}=10 \times 256=\frac{2560}{2748_{10}}
\end{aligned}
$$

NUMBER BASE CONVERSION

Hexa decimal to octal Conversion:
Use binary as an intermediary
$1 \mathrm{FOC}_{16}=?_{8}$

BINARYARITHMETIC

Binary Addition:
Rules:
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=10$
i.e, 0 with a carry of 1 .

Binary Subtraction:
Rules:

$$
\begin{aligned}
& 0-0=0 \\
& 1-1=0 \\
& 1-0=1 \\
& 0-1=1
\end{aligned}
$$

with a borrow of1

BINARY ARITHMETIC

Binary Division:

Binary multiplication:

Rules:

$$
\begin{aligned}
& 0 \times 0=0 \\
& 1 \times 1=0 \\
& 1 \times 0=0 \\
& 0 \times 1=0
\end{aligned}
$$

Example : 101101_{2} by 110 110) 101101 (111.1 110
 1010
 110

1001
110

110
110

1's compliment of \boldsymbol{n} number:

It is obtained by simply complimenting each bit of the numbers that is all 1's to 0's and all 0's to 1's

Example: 1's complement of 1101001 is 0010110
2's compliment of \mathbf{n} number:
It is obtained by simply complimenting each bit of the numbers that is all 1's to 0's and all 0's to 1 's and add 1 to the value

$$
\text { Example: 2's complement of } 1101001 \text { is } 0010110
$$

$$
+1=0010111
$$

9's \& 10's Complements:

It is the Subtraction of decimal number can be accomplished by the 9's \& 10's compliment methods similar to the 1's \& 2's compliment methods of binary. The 9's compliment of a decimal number is obtained by subtracting each digit of that decimal number from 9 . The 10's compliment of a decimal number is obtained by adding a 1 to its 9's compliment.

1's compliment arithmetic:

In1's complement subtraction, add the 1's complement of the subtrahend to the minuend. If there is a carryout, bring the carry around \& add it to the LSB called the end around carry. Look at the sign bit (MSB) . If this is a 0 , the result is positive $\&$ is in true binary. If the MSB is a 1 (carry or no carry), the result is negative $\&$ is in its is complement form .Take its 1 's complement to get the magnitude in binary.

2's compliment arithmetic:

The 2's complement system is used to represent negative numbers using modulus arithmetic. The word length of a computer is fixed i.e, if a 4 bit number is added to another 4 bit number the result will be only of 4 bits. Carry if any, from the fourth bit will overflow called the Modulus arithmetic.

Representation of signed numbers binary arithmetic in

computers:

Two ways of representing signed numbers is Sign Magnitude form and Complemented form there are two complimented forms i.e. 1's compliment form and 2's compliment form

BINARY WEIGHTED AND NON- WEIGHTED CODES

Weighted Codes:

The weighted codes are those that obey the position weighting principle, which states that the position of each number represent a specific weight. In these codes each decimal digit is represented by a group of four bits.

In weighted codes, each digit is assigned a specific weight according to its position. For example, in 8421/BCD code, 1001 the weights of $1,1,0,1$ (from left to right) are $8,4,2$ and 1 respectively.

Examples:8421,2421 are all weighted codes.

BINARY WEIGHTED AND NON- WEIGHTED CODES

Non-weighted codes:
The non-weighted codes are not positionally weighted. In other words codes that are not assigned with any weight to each digit position.

Examples:Excess-3(XS-3) and Gray Codes.

BINARY CODED DECIMAL

BCD Addition:

It is individually adding the corresponding digits of the decimal numbers expressed in 4 bit binary groups starting from the LSD.

If there is no carry \& the sum term is not an illegal code, no correction is needed.

If there is a carry out of one group to the next group or if the sum term is an illegal code then $6_{10}(0110)$ is added to the sum term of that group \& the resulting carry is added to the next group.

BINARY CODED DECIMAL

BCD Subtraction:

Performed by subtracting the digits of each 4 bit group of the subtrahend the digits from the corresponding 4- bit group of the minuend in binary starting from the LSD. if there is no borrow from the next group, then $6_{10}(0110)$ is subtracted from the difference term of this group.

BINARY CODE

Error - Detecting codes:

When binary data is transmitted \& processed, it is susceptible to noise that can alter or distort its contents. The 1's may get changed to 0's \& 0's may get changed to 1's because digital systems must be accurate to the digit, error can pose a problem. Several schemes have been devised to detect the occurrence of a single bit error in a binary word, so that whenever such an error occurs the concerned binary word can be corrected \& retransmitted.

ERROR - DETECTING CODES

$>$ When we talk about digital systems, be it a digital computer or a digital communication set-up, the issue of error detection and correction is of great practical significance.
$>$ Errors creep into the bit stream owing to noise or other impairments during the course of its transmission from the transmitter to the receiver.
$>$ While the addition of redundant bits helps in achieving the goal of making transmission of information from one place to another error free or reliable, it also makes it inefficient.

ERROR - DETECTING CODES

Some Common Error Detecting and CorrectingCodes
$>$ Parity Code
$>$ Hamming Code

Parity Code:

$>$ A parity bit is an extra bit added to a string of data bits in order to detect any error that might have crept into it while it was being stored or processed and moved from one place to another in a digital system.

ERROR - DETECTING CODES

The parity bit can be set to 0 and 1 depending on the type of the parity required.
$>$ For even parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word is even. Shown in fig. (a).
$>$ For odd parity, this bit is set to 1 or 0 such that the no. of "1 bits" in the entire word is odd. Shown in fig. (b).

ERROR - DETECTING CODES

Hamming Code:

$>$ An increase in the number of redundant bits added to message bits can enhance the capability of the code to detect and correct errors.
$>$ If sufficient number of redundant bits arranged such that different error bits produce different error results, then it should be possible not only to detect the error bit but also to identify its location.
$>$ In fact, the addition of redundant bits alters the 'distance' code parameter.

ERROR - DETECTING CODES

$>$ For example, the addition of single-bit parity results in a code with a Hamming distance of at least 2.
$>$ The smallest Hamming distance in the case of a threefold repetition code would be 3 .
$>$ Hamming noticed that an increase in distance enhanced the code's ability to detect and correct errors.
$>$ Hamming's code was therefore an attempt at increasing the Hamming distance and at the same time having as high an information throughput rate as possible.

ERROR - DETECTING CODES

$>$ The generalized form of code is
$P_{1} P_{2} D_{1} P_{3} D_{2} D_{3} D_{4} P_{4} D_{5} D_{6} D_{7} D_{8} D_{9} D_{10} D_{11} P_{5} \ldots . .$, where P and D respectively represent parity and data bits.
$>$ We can see from the generalized form of the code that all bit positions that are powers of 2 (positions 1, 2, 4, 8, $16 \ldots$...) are used as parity bits.All other bit positions (positions 3, 5, 6, 7, 9, $10,11 \ldots$) are used to encode data.
$>$ Each parity bit is allotted a group of bits from the data bits in the code word, and the value of the parity bit (0 or 1) is used to give it certain parity.

ERROR - DETECTING CODES

$>$ Groups are formed by first checking bits and then alternately skipping and checking bits following the parity bit. Here, is the position of the parity bit; 1 for $P_{1}, 2$ for $P_{2}, 4$ for $P_{3}, 8$ for P_{4} and so on.
$>$ Now, the position of P_{3} is at number 4. In order to form the group, we check the first three bits $N-1=3$ and then follow it up by alternately skipping and checking four bits ($N=4$).

ERROR - DETECTING CODES

$>$ The Hamming code is capable of correcting single-bit errors on messages of any length.
$>$ Although the Hamming code can detect two-bit errors, it cannot give the error locations.
> The number of parity bits required to be transmitted along with the message, however, depends upon the message length.

$$
\left(2^{n}-n\right)>m
$$

$>$ The number of parity bits n required to encode m message bits is the smallest integer that satisfies the condition

ERROR - DETECTING CODES

$>$ The code word sequence for this code is written as $P_{1} P_{2} D_{1} P_{3} D_{2} D_{3} D_{4}$, with P_{1}, P_{2} and P_{3} being the parity bits and D_{1}, D_{2}, D_{3} and D_{4} being the data bits.

- Generation of Hamming Code:

	P_{1}	P_{2}	D_{1}	P_{3}	D_{2}	D_{3}	D_{4}
Data bits (without parity)			0		1	1	0
Data bits with parity bit P_{1}	1		0		1		0
Data bits with parity bit P_{2}		1	0			1	0
Data bits with parity bit P_{3}				0	1	1	0
Data bits with parity	1	1	0	0	1	1	0

BOOLEAN ALGEBRA

- Binary

$$
\begin{aligned}
& \text { A1a: } X=0 \text { if } X=1 \\
& \text {, } A 1 b: X=1 \text { if } X=0
\end{aligned}
$$

- Complement
, aka invert,NOT
) $A 2 a$: if $X=0, X^{\prime}=1$
, $A 2 b$: if $X=1, X^{\prime}=0$
- The tick mark'

X	X
0	1
1	0

- Other symbolfor complement: $\mathrm{X}^{\prime}=\overline{\mathrm{X}}$
- ANDoperation
, $A 3 a: 0 \bullet 0=0$
) A4a:1•1=1
, $A 5 a: 0 \bullet 1=1 \bullet 0=0$
- The dot • means AND
- Other symbol forAND: $\mathrm{X} \cdot \mathrm{Y}=\mathrm{XY}$ (nosymbol)
- OR Operation
) $A 3 b: 1+1=1$
) $A 4 b: 0+0=0$
) A5b: $1+0=0+1=1$
- The plus + means OR

X	Y	$X+Y$
0	0	0
0	1	1
1	0	1
1	1	1

- Variable: Variables are the different symbols in a Boolean expression
- Literal: Each occurrence of a variable or its complement is called a literal

$$
\bar{A}+A \cdot B+A \cdot \bar{C}+\bar{A} \cdot B \cdot C
$$

- Term: A term is the expression formed by literals and operations at one level

BOOLEAN ALGEBRA

OR operation

- IdentityElements

$$
\begin{aligned}
& , a: X+0=X \\
& , b: X \cdot 1=x
\end{aligned}
$$

- Commutativity

$$
\begin{aligned}
& , a: X+Y=Y+X \\
& , b: X \bullet Y=Y \bullet X
\end{aligned}
$$

- Complements

$$
\begin{aligned}
& \text {, } a: X+X^{\prime}=1 \\
& , \quad b: X \bullet X^{\prime}=0
\end{aligned}
$$

X	Y	$\mathrm{X}+0$	$\mathrm{X}+\mathrm{Y}$	$\mathrm{Y}+\mathrm{X}$	X^{\prime}	$\mathrm{X}+\mathrm{X}^{\prime}$
0	0	0	0	0	1	1
0	1	0	1	1	1	1
1	0	1	1	1	0	1
1	1	1	1	1	0	1

AND operation

X	Y	$X \bullet 1$	$X \bullet Y$	$Y \bullet X$	X^{\prime}	$X \bullet X^{\prime}$
0	0	0	0	0	1	0
0	1	0	0	0	1	0
1	0	1	0	0	0	0
1	1	1	1	1	0	0

BOOLEAN ALGEBRA

- Associativity

$$
\begin{aligned}
& \text {, } a:(X+Y)+Z=X+(Y+Z) \\
& \text {, } b:(X \cdot Y) \cdot Z=X \bullet(Y \bullet Z)
\end{aligned}
$$

X	Y	Z	$\mathrm{X}+\mathrm{Y}$	$(\mathrm{X}+\mathrm{Y})+\mathrm{Z}$	$\mathrm{Y}+\mathrm{Z}$	$\mathrm{X}+(\mathrm{Y}+\mathrm{Z})$	$\mathrm{X} \bullet \mathrm{Y}$	$(\mathrm{X} \bullet \mathrm{Y}) \bullet \mathrm{Z}$	$\mathrm{Y} \bullet \mathrm{Z}$	$\mathrm{X} \bullet(\mathrm{Y} \bullet \mathrm{Z})$
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	1	0	0	0	0
0	1	0	1	1	1	1	0	0	0	0
0	1	1	1	1	1	1	0	0	1	0
1	0	0	1	1	0	1	0	0	0	0
1	0	1	1	1	1	1	0	0	0	0
1	1	0	1	1	1	1	1	0	0	0
1	1	1	1	1	1	1	1	1	1	1

BOOLEAN ALGEBRA

- Distributivity

$$
\begin{aligned}
& \text { > } a: X+(Y \bullet Z)=(X+Y) \bullet(X+Z) \\
& \text {, } b: X \bullet(Y+Z)=(X \bullet Y)+(X \bullet Z)
\end{aligned}
$$

X Y Z	X+Y	X+Z	$\begin{gathered} \hline(X+Y) \bullet \\ (X+Z) \end{gathered}$	$Y \bullet Z$	$\begin{gathered} \mathrm{X}+ \\ (\mathrm{Y} \bullet \mathrm{Z}) \end{gathered}$	$X \bullet Y$	X $\cdot \mathrm{Z}$	$\begin{gathered} \hline X \cdot Y+ \\ X \cdot Z \end{gathered}$	Y+Z	$\begin{gathered} \mathrm{X} \\ (\mathrm{Y}+\mathrm{Z}) \end{gathered}$
$0 \quad 00$	0	0	0	0	0	0	0	0	0	0
$0 \begin{array}{lll}0 & 0 & 1\end{array}$	0	1	0	0	0	0	0	0	1	0
$0 \begin{array}{lll}0 & 1 & 0\end{array}$	1	0	0	0	0	0	0	0	1	0
$\begin{array}{llll}0 & 1 & 1\end{array}$	1	1	1	1	1	0	0	0	1	0
$1 \begin{array}{lll}1 & 0 & 0\end{array}$	1	1	1	0	1	0	0	0	0	0
$\begin{array}{lll}1 & 0 & 1\end{array}$	1	1	1	0	1	0	1	1	1	1
$\begin{array}{llll}1 & 1 & 0\end{array}$	1	1	1	0	1	1	0	1	1	1
$1 \begin{array}{lll}1 & 1\end{array}$	1	1	1	1	1	1	1	1	1	1

BOOLEAN ALGEBRA

- Idempotency

$$
\begin{aligned}
& \text {, } a: X+X=X \\
& , b: X \bullet X=X
\end{aligned}
$$

- Null elements

$$
\begin{aligned}
& \text {, } a: X+1=1 \\
& , b: X \cdot 0=0
\end{aligned}
$$

OR		AND						
X Y	X+Y	$X \bullet Y$	X+X	$\mathrm{X} \bullet \mathrm{X}$	X+1	$\mathrm{X} \cdot 0$	X^{\prime}	$\mathrm{X}^{\prime \prime}$
00	0	0	0	0	1	0	1	0
01	1	0	0	0	1	0	1	0
10	1	0	1	1	1	0	0	1
11	1	1	1	1	1	0	0	1

- Involution

$$
\text { , a: }\left(X^{\prime}\right)^{\prime}=X
$$

BOOLEAN ALGEBRA

- Absorption

$$
\begin{aligned}
& \text { ra: }(X \cdot Y)+\left(X \cdot Y^{\prime} \cdot Z\right)=(X \cdot Y)+(X \cdot Z) \\
& \text { rb: }(X+Y) \cdot\left(X+Y^{\prime}+Z\right)= \\
& (X+Y) \cdot(X+Z)
\end{aligned}
$$

X Y Z	Y^{\prime}	XY	XY'Z	$\begin{aligned} & \hline(X Y)+ \\ & \left(X Y^{\prime} Z\right) \end{aligned}$	XZ	$\begin{gathered} \hline(X Y)+ \\ (X Z) \end{gathered}$	X+Y	$\begin{gathered} \hline X+Y^{\prime} \\ +Z \end{gathered}$	$\begin{gathered} (X+Y) \bullet \\ \left(X+Y^{\prime}+Z\right) \end{gathered}$	X+Z	$\begin{gathered} \hline(X+Y) \bullet \\ (X+Z) \end{gathered}$
$0 \quad 00$	1	0	0	0	0	0	0	1	0	0	0
0001	1	0	0	0	0	0	0	1	0	1	0
0 0 1 0	0	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	1	1	1	1	1
100	1	0	0	0	0	0	1	1	1	1	1
$1 \begin{array}{lll}1 & 0 & 1\end{array}$	1	0	1	1	1	1	1	1	1	1	1
$1 \begin{array}{llll}1 & 1 & 0\end{array}$	0	1	0	1	0	1	1	1	1	1	1
$1 \begin{array}{lll}1 & 1 & 1\end{array}$	0	1	0	1	1	1	1	1	1	1	1

BOOLEAN ALGEBRA

- DeMorgan's theorem (very important!)

$$
\text { , a: }(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}
$$

$$
X+Y=X \bullet Y \quad \text { break (or connect) the bar \& change }
$$

the sign
, $b:(X . Y)^{\prime}=X^{\prime}+Y^{\prime}$
$X \bullet Y=X+Y \quad$ break (or connect) the bar \& change the sign

Generalized DeMorgan's theorem:

- GT8a: $\left(X_{1}+X_{2}+\ldots+X_{n-1}+X_{n}\right)^{\prime}=X_{1}{ }^{\prime} \cdot X_{2}{ }^{\prime} \bullet \ldots \bullet X_{n-1}{ }^{\prime} \bullet X_{n}{ }^{\prime}$ OR ${ }^{-A}{ }^{-A N D}$.

\mathbf{X}	Y	$\mathbf{X}+\mathrm{Y}$	$\mathrm{X} \cdot \mathrm{Y}$	X^{\prime}	Y^{\prime}	$(\mathrm{X}+\mathrm{Y})^{\prime}$	$\mathrm{X}^{\prime} \cdot \mathrm{Y}^{\prime}$	$\left(\mathrm{X} \cdot \mathrm{Y}^{\prime}\right.$	$\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}$
\mathbf{O}	$\mathbf{0}$	\mathbf{O}	$\mathbf{0}$	1	1	1	1	1	1
\mathbf{O}	$\mathbf{1}$	$\mathbf{1}$	O	1	0	0	0	1	1
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	0	1	0	0	1	1
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	0	0	0	0	0	0

BOOLEAN ALGEBRA

- Consensus Theorem
, $a:(X \cdot Y)+(X \cdot Z)+(Y \bullet Z)=$
$(X \cdot Y)+\left(X^{\prime} \cdot Z\right)$
) $\mathrm{b}:(\mathrm{X}+\mathrm{Y}) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Z}\right) \cdot(\mathrm{Y}+\mathrm{Z})=$
$(X+Y) \bullet\left(X^{\prime}+Z\right)$

X	Y	Z	X'	XY	X'Z	YZ	$\begin{gathered} \hline(X Y)+ \\ \left(X^{\prime} \mathrm{Z}\right)+ \\ (\mathrm{YZ}) \end{gathered}$	$\begin{gathered} (X Y)+ \\ \left(X^{\prime} Z\right) \end{gathered}$	X+Y	$\mathrm{X}^{\prime}+\mathrm{Z}$	Y+Z	$\begin{gathered} \hline(X+Y) \bullet \\ \left(X^{\prime}+Z\right) \bullet \\ (Y+Z) \end{gathered}$	$\begin{aligned} & (X+Y) \bullet \\ & \left(X^{\prime}+Z\right) \end{aligned}$
0	0	0	1	0	0	0	0	0	0	1	0	0	0
0	0	1	1	0	1	0	1	1	O	1	1	O	O
	1	0	1	0	0	0	0	0	1	1	1	1	1
0	1	1	1	0	1	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0	0	1	0	0	0	0
1	0	1	O	0	0	0	0	0	1	1	1	1	1
	1	0	\bigcirc	1	0	0	1	1	1	0	1	0	0
1	1	1	O	1	0	1	1	1	1	1	1	1	1

$>$ For n variables, there are 2^{n} possible combinations of Values from all 0 s to all 1s
$>$ There are 2 possible values for the output of a function of a combination of values of n variables i.e. 0 and 1
$>$ There are $2^{2 n}$ different switching functions for n variables
$>n=0$ (no inputs) $\quad 2^{2^{n}}=2^{2^{0}}=2^{1}=2$
Output can be either 0 or 1
$>n=1(1$ input, $A) \quad 2^{2^{n}}=2^{2^{1}}=2^{2}=4$
Output can be $0,1, A$, or A^{\prime}

SWITCHING FUNCTIONS EXAMPLE

$>n=2(2$ inputs, A and $B) \quad \Rightarrow \quad 2^{2^{n}}=2^{2^{2}}=2^{4}=16$

$\xrightarrow{\mathrm{A}}$| B |
| :---: |
| switch
 function
 $n=2$ |

$$
\begin{aligned}
& f_{1}=A^{\prime} B^{\prime}=(A+B)^{\prime} \\
& f_{2}=A^{\prime} B \\
& f_{3}=A^{\prime} B^{\prime}+A^{\prime} B=A^{\prime}\left(B^{\prime}+B\right)=A^{\prime}
\end{aligned}
$$

CANONICAL AND STANDERED FORMS

Logical functions are generally expressed in terms of different combinations of logical variables with their true forms as well as the complement forms. Binary logic values obtained by the logical functions and logic variables are in binary form. An arbitrary logic function can be expressed in the following forms.
$>$ Sum of the Products (SOP)
$>$ Product of the Sums (POS)

CANONICAL AND STANDERED FORMS

- Product Term: In Boolean algebra, the logical product of several variables on which a function depends is considered to be a product term. In other words, the AND function is referred to as a product term or standard product.
- Sum Term: An OR function is referred to as a sum term
- Sum of Products (SOP): The logical sum of two or more logical

- Product of Sums (POS): Similarly, the logical product of two or morelogical sum terms is called a product of sums expression

CANONICAL AND STANDERED FORMS

$>$ Standard form: The standard form of the Boolean function is when it is expressed in sum of the products or product of the sums fashion
> Nonstandard Form: Boolean functions are also sometimes expressed in nonstandard forms ${ }^{F}\left(A B{ }^{\circ}+C D e+\bar{C} \bar{D}\right)$, which is neither a sum of products form nor a product of sums form.
> Minterm: A product term containing all n variables of the function in either true or complemented form is called the minterm. Each minterm is obtained by an AND operation of the variables in their true form or complemented form.

CANONICAL AND STANDERED FORMS

$>$ Maxterm: A sum term containing all n variables of the function in either true or complemented form is called the Maxterm. Each Maxterm is obtained by an OR operation of the variables in their true form or complemented form.
$>$ The canonical sum of products form of a logic function can be obtained by using the following procedure
$>$ Check each term in the given logic function. Retain if it is a minterm, continue to examine the next term in the same manner.
$>$ Multiply all the products and discard the redundant terms.

CANONICAL AND STANDERED FORMS

- Example: Obtain the canonical sum of product form of the following function $F(A, B, C)=A+B C$
- Solution:

$$
\begin{aligned}
F(A, B, C) & =A+B C \\
& =A(B+\bar{B})(C+\bar{C})+B C(A+\bar{A}) \\
& =(A B+A \bar{B})(C+\bar{C})+A B C+\bar{A} B C \\
& =A B C+A \bar{B} C+A B \bar{C}+A \bar{B} \bar{C}+A B C+\bar{A} B C \\
=A B C+A \bar{B} C+ & A B \bar{C}+A \bar{B} \bar{C}+\bar{A} B C(\text { as } A B C+A B C=A B C)
\end{aligned}
$$

- Hence the canonical sum of the product expression of the given function is

$$
F(A, B, C)=A B C+A \bar{B} C+A B \bar{C}+A \bar{B} \bar{C}+\bar{A} B C
$$

CANONICAL AND STANDERED FORMS

The product of sums form is a method (or form) of simplifying the Boolean expressions of logic gates. In this POS form, all the variables are ORed, i.e. written as sums to form sum terms. All these sum terms are ANDed (multiplied) together to get the product-of-sum form. This form is exactly opposite to the SOP form. So this can also be said as -Dual of SOP form .

$$
(\mathrm{A}+\mathrm{B}) *(\mathrm{~A}+\mathrm{B}+\mathrm{C}) *(\mathrm{C}+\mathrm{D})
$$

POS form can be obtained by
> Writing an OR term for each input combination, which produces LOW

ALGEBRAIC SIMPLIFICATION

Minimize the following Boolean expression using Boolean identities -
$F(A, B, C)=(A+B)(A+C) F(A, B, C)=(A+B)(A+C)$ Solution
Given, $F(A, B, C)=(A+B)(A+C)$
$F(A, B, C)=A . A+A . C+B . A+B . C$ [Applying distributive Rule]
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}+\mathrm{A} . \mathrm{C}+\mathrm{B} . \mathrm{A}+\mathrm{B} . \mathrm{C}$ [Applying Idempotent Law]
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}(1+\mathrm{C})+\mathrm{B} . \mathrm{A}+\mathrm{B} . \mathrm{C}[$ Applying distributive Law]
$F(A, B, C)=A+B . A+B . C[$ Applying dominance
$F(A, B, C)=(A+1) \cdot A+B \cdot C[A p p l y i n g$ distributive Law]
$F(A, B, C)=1 . A+B . C$ [Applying dominance Law]
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{A}+\mathrm{B} . \mathrm{C}$ [Applying dominance Law]
So, $F(A, B, C)=A+B C F(A, B, C)=A+B C$ is the minimized form.

DIGITAL LOGIC GATES

AND GATE:

AND
$Z=A . B$

$$
\begin{array}{cc|c}
\mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\hline 0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

OR GATE:

$$
Z=A+B
$$

DIGITAL LOGIC GATES

NOT GATE:

$Z=A^{\prime}$

X	Y
0	1
1	0

NAND GATE:

$$
\mathrm{Z}=\mathrm{A} . \mathrm{B}
$$

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

DIGITAL LOGIC GATES

NOR GATE:

$$
Z=A+B
$$

$$
\begin{array}{cc|c}
\mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\hline 0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}
$$

Ex-OR GATE:

$$
\mathrm{Z}=\mathrm{A}^{\oplus} \mathrm{B}
$$

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

MULTILEVEL NAND-NOR REALIZATION

NAND Gate as an Inverter Gate

NAND Gate as an AND Gate

MULTILEVEL NAND-NOR REALIZATION

NAND Gate as an OR Gate

$\left.\begin{array}{|l|l|l|}\hline \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \hline\end{array}\right]$

Equivalent to ORGate

MULTILEVEL NAND-NOR REALIZATION

1. All NOR input pins connect to the input signal \mathbf{A} gives an output \mathbf{A}^{\prime}.

2. One NOR input pin is connected to the input signal \mathbf{A} while all other input pins are connected to logic 0 . The output will be \mathbf{A}^{\prime}.

Implementing OR Using only NOR Gates

An OR gate can be replaced by NOR gates as shown in the figure (The OR is replaced by a NOR gate with its output complemented by a NOR gate inverter)

MULTILEVEL NAND-NOR REALIZATION

Example1: implement the following function $F=A B+C D$

- The implementation of Boolean functions with NAND gates requires that the functions be in sum of products (SOP) form.
- This function can be implemented by three steps.

(a)

(b)

MULTILEVEL NAND-NOR REALIZATION

Example1: implement the following function $F=A B+C D$

- The implementation of Boolean functions with NAND gates requires that the functions be in sum of products (SOP) form.

(a)

(b)

MULTILEVEL NAND-NOR REALIZATION

Example1: implement the following function $F=A B+C D$

- The implementation of Boolean functions with NAND gates requires that the functions be in sum of products (SOP) form.

(a)

(b)

MULTILEVEL NAND-NOR REALIZATION

Example1: implement the following function $F=A B+C D$

- The implementation of Boolean functions with NAND gates requires that the functions be in sum of products (SOP) form.
- This function can be implemented by three steps.

(a)

(b)

Logic delay, TTL/CMOS interfacing

CMOS DRIVING TTL AND CMOS DRIVING TTL

Interfacing a CMOS to a TTL under 5Volts power supply

Unit-II
COMBINATIONAL DIGITAL CIRCUITS
-Boolean algebra helps us simplify expressions andcircuits

- Karnaugh Map: A graphical technique for simplifying aBooleanexpression into eitherform:
-minimal sum of products(MSP)
-minimal product of sums(MPS)
- Goal of thesimplification.
-There are a minimal number of product/sumterms
-Each term has a minimal number ofliterals
- A two-variable function has four possible minterms. We can re- arrange these minterms into a Karnaugh map

x	y	minter m
0	0	$x^{\prime} y^{\prime}$
0	1	$x^{\prime} y$
1	0	$x y^{\prime}$
1	1	$x y$

- Now we can easily see which minterms contain commonliterals
- Minterms on the left and right sides contain y' and y respectively

- Make as few rectangles as possible, to minimize the number of products in the final expression.
- Make each rectangle as large as possible, to minimize the number of literals in each term.
- Rectangles can be overlapped, if that makes them larger
- The most difficult step is grouping together all the 1 s in the K map
- Make rectangles around groups of one, two, four or eight 1s
- All of the 1 s in the map should beincluded inat least one rectangle. Do not include any of the Os
- Each group corresponds to one product term

3 VARIABLEK-MAP

- Maxterms are grouped to find minimal PoS expression
yz

00
01
1110
0 x

1 | $x+y+z$ | $x+y+z^{\prime}$ | $x+y^{\prime}+z^{\prime}$ | $x+y^{\prime}+z$ |
| :---: | :---: | :---: | :---: |
| $x^{\prime}+y+z$ | $x^{\prime}+y+z^{\prime}$ | $x^{\prime}+y^{\prime}+z^{\prime}$ | $x^{\prime}+y^{\prime}+z$ |

- Let's consider simplifying $f(x, y, z)=x y+y^{\prime} z+x z$
- You should convert the expression into a sum of mintermsform,
- The easiest way to do this is to make a truth table forthe function, and then read off the minterms
- You can either write out the literals or use the minterm shorthand
- Here is the truth table and sum of minterms for our

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$
\begin{aligned}
f(x, y, z)= & x^{\prime} y^{\prime} z+x y^{\prime} z+x y z^{\prime} \\
& +x y z \\
& =m_{1}+m_{5}+m_{6}+m_{7}
\end{aligned}
$$

- For a three-variable expression with inputs x, y, z, the arrangement of

\times	YZ			
	00	01	11	10
	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	x'yz	$x^{\prime} y z^{\prime}$
	$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	xyz	$x y z '$
	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	x'yz	$x^{\prime} y z^{\prime}$
X	$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	xyz	$x y z '$

	YZ			
	00	01	11	10
0	m_{0}	m_{1}	m_{3}	m_{2}
1	m_{4}	m_{5}	m_{7}	m_{6}

		y		
	m_{0}	m_{1}	m_{3}	m_{2}
X	m_{4}	m_{5}	m_{7}	m_{6}

- Here is the filled in K-map, with all groups shown
- The magenta and green groups overlap, which makes each of them as large as possible
- Minterm m_{6} is in a group all by its lonesome

| | y | | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 0 | 1 | | 1 | 0 |
| \times | 0 | | 1 | | 0 | 1 |

- The final MSP here is $x^{\prime} z+y^{\prime} z+x y z^{\prime}$
- There may not necessarily be a unique MSP. The K-map below yields
two
valid and equivalent MSPs, because there are two possible waysto

Remember that overlapping groups is possible, as shownabove

- Maxterms are grouped to find minimal PoS expression yz

$$
\begin{array}{llll}
00 & 01 & 11 & 10
\end{array}
$$

0

	$x+y+z$	$x+y+z^{\prime}$	$x+y^{\prime}+z^{\prime}$	$x+y^{\prime}+z$
1	$x^{\prime}+y+z$	$x^{\prime}+y+z^{\prime}$	$x^{\prime}+y^{\prime}+z^{\prime}$	$x^{\prime}+y^{\prime}+z$

- We can do four-variable expressionstoo!
- The minterms in the third and fourth columns, and in thethird and
fourth rows, are switchedaround.
- Again, this ensures that adjacent squares have common literals
- Grouping minterms is similar to the three-variable case, but:
- You can have rectangular groups of 1, 2, 4, 8 or 16 minterms
- You can wrap around all four sides

4-VARIABLE K-MAP

- The express jion yisalrea dy a sum of minterms, s o herye'stheK -map:

	1	0	0	1	
	0	1	0	0	X
W	0	1	0	0	
	1	0	0	1	
		Z			

	m_{0}	m_{1}	m_{3}	m_{2}	
	m_{4}	m_{5}	m_{7}	m_{6}	\times
\mathbf{W}	m_{12}	m_{13}	m_{15}	m_{14}	
	m_{8}	m_{9}	m_{11}	m_{10}	
	Z				

- We can make the following groups, resulting in the MSP $x^{\prime} z^{\prime}+x y^{\prime} z$

Example: Simplify $m_{0}+m_{2}+m_{5}+m_{8}+m_{10}+m_{13}$

- $F(W, X, Y, Z)=\Pi M(0,1,2,4,5)$

- In our example, we can write $f(x, y, z)$ in two equivalentways

$$
\begin{aligned}
& f(x, y, z)=x^{\prime} y^{\prime} z+x y^{\prime} z+x y z^{\prime} \quad f(x, y, z)=m_{1}+m_{5}+m_{6}+m_{7} \\
& +x y z
\end{aligned}
$$

	$x^{\prime} y^{\prime} z^{\prime}$	x'y'z	x'yz	$x^{\prime} y z '$
X	$x y^{\prime} z^{\prime}$	$x y^{\prime} z$	xyz	$x y z '$

		y			
		m_{0}	m_{1}	m_{3}	
X	m_{4}	m_{5}	m_{2}		
		m_{6}			
		Z			

- In either case, the resulting K-map is shownbelow

5-VARIABLE K-MAP

DON’T CARE CONDITION

- You don't always need all 2^{n} input combinations in annvariable function
- If you can guarantee that certain input combinations never
occur
- If some outputs aren't used in the rest of the circuit

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	x
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	\times
1	1	1	1

- We mark don’t-care outputs in truth tables and K-maps with Xs.

DON’T CARE CONDITION

- Find a MSP for

$$
f(w, x, y, z)=m(0,2,4,5,8,14,15), d(w, x, y, z)=m(7,10,13)
$$

This notation means that input combinations wxyz = 0111, 1010 and 1101(corresponding to minterms m_{7}, m_{10} and m_{13}) are unused.

				y	
	1	0	0	1	
W	1	1	x	0	X
	0	x	1	1	
	1	0	0	x	

DON’T CARE CONDITION

- Find a MSP for:

$$
f(w, x, y, z)=m(0,2,4,5,8,14,15), d(w, x, y, z)=? m(7,10,13)
$$

$$
f(w, x, y, z)=x^{\prime} z^{\prime}+w^{\prime} x y^{\prime}+w x y
$$

- Combinational circuit is a circuit in which we combine the different gates in the circuit, for example encoder, decoder, multiplexer and demultiplexer.

Some of the characteristics of combinational circuits are:

- The output of combinational circuit at any instant of time, depends only on the levels present at inputterminals.
- The combinational circuit do not use any memory. The previous state of input does not have any effect on the present state of the circuit.
- A combinational circuit can have an n number of inputs and m number of outputs.

COMBINATIONAL CIRCUITS

- Block diagram:
possible combinations of inputvalues.

```
n input
```

variables

- Specific functions : of combinational circuits
- Adders, subtractors , multiplexers, comparators , encoder, Decoder. MSI Circuits and standard cells

Analysis procedure

Toobtain the output Boolean functions from a logic diagram, proceed as follows:

1. Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for eachgate output.
2. Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.
3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

Design Procedure

1.The problem is stated
2.The number of available input variables and required output variables is determined.
3.The input and output variables are assigned letter symbols.
4. The truth table that defines the required relationshipbetween inputs
and outputs is derived.
5.The simplified Boolean function for each output is obtained.
6.The logic diagram is drawn.

ADDERS

Half Adder

A Half Adder is a combinational circuit with two binary inputs (augends and addend bits and two binary outputs (sum and carry bits.) It adds the two inputs (A and B) and produces the sum (S) and the carrv (C) bits.

Fig 1:Block diagram

		Outputs	
A	B	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	

Fig 2:Truth table

$$
\begin{gathered}
\text { Sum }=A^{\prime} B+A B^{\prime}=A \bigcirc B \\
\text { Carry }=A B
\end{gathered}
$$

Full subtractor

The full subtractor perform subtraction of three input bits: the minuend, subtrahend, and borrow in and generates two output bits difference and borrow out.

Fig 7:Block diagram

Inputs			Difference	Borrow
A	B	b_{1}	d	b
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Fig 8: Truthtable

$$
\begin{aligned}
& d=\bar{A} \bar{B} b_{i}+\bar{A} B \bar{b}_{i}+A \bar{B} \bar{b}_{i}+A B b_{i}=A \oplus B \oplus b_{i} \\
& \mathrm{~b}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{~b}_{\mathrm{i}}+\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{~b}}_{\mathrm{i}}+\overline{\mathrm{A} B b_{i}+\mathrm{AB} b_{i}=\overline{\mathrm{A}} \mathrm{~B}+(\overline{\mathrm{A} \oplus \mathrm{~B}}) \mathrm{b}_{\mathrm{i}}}
\end{aligned}
$$

A binary parallel adder is a digital circuit that adds two binary numbers in parallel form and produces the arithmetic sum of those numbers in parallelform

Fig 9:parallel adder

Fig 10:parallel subtractor

CARRY LOOK-A- HEAD ADDER

- In parallel-adder, the speed with which an addition can be performed is governed by the time required for the carriesto propagate or ripple through all of the stages of theadder.
- The look-ahead carry adder speeds up the process by eliminating this ripple carry delay.

$$
\begin{aligned}
\mathrm{S}_{n} & =\mathrm{P}_{n} \oplus \mathrm{C}_{n} \text { where } \mathrm{P}_{n}=\mathrm{A}_{n} \oplus \mathrm{~B}_{n} \\
\mathrm{C}_{\text {on }} & =\mathrm{C}_{n+1}=\mathrm{G}_{n}+\mathrm{P}_{n} \mathrm{C}_{n} \text { where } \mathrm{G}_{n}=\mathrm{A}_{n} \cdot \mathrm{~B}_{n}
\end{aligned}
$$

CARRY LOOK-A- HEAD ADDER

Fig:1 block diagram

A binary multiplier is an electronic circuit used in digital electronics, such as a computer, to multiply two binary numbers. It is built using binary adders.
Example: (101 x011)
Partial products are: $101 \times 1,101 \times 1$, and 101×0

- We can also make an $n \times m$ "block" multiplier and use that to form partial products.
- Example: 2×2 - The logic equations for each partial-product binary digit are shown below
- We need to "add" the columns to get the product bits P0, P1, P2, and P3.

$\frac{+}{P_{3}} \frac{\left(a_{1} \cdot b_{1}\right)}{P_{2}} \frac{\left(a_{1} \cdot b_{0}\right)}{P_{1}} \frac{P_{0}}{}$

Fig 1: 2×2 multiplier array

MAGNITUDE COMPARATOR

Magnitude comparator takes two numbers as input in binary form and determines whether one number is greater than, less than or equal to the other number.

1-Bit Magnitude Comparator
A comparator used to compare two bits is called a single bit comparator.

MAGNITUDE COMPARATOR

Inputs		Outputs		
A	B	$A>B$	$A=B$	$A<B$
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Fig 2:Logic diagram of 1-bit comparator

MAGNITUDE COMPARATOR

- 2 Bit magnitude comparator

Fig :3 Block diagram

Inputs						Outputs		
\mathbf{A}_{1}	\mathbf{A}_{0}	\mathbf{B}_{1}	\mathbf{B}_{0}	$\mathbf{A}>\mathbf{B}$	$\mathbf{A}=\mathbf{B}$	$\mathbf{A}<\mathbf{B}$		
0	0	0	0	0	1	0		
0	0	0	1	0	0	1		
0	0	1	0	0	0	1		
0	0	1	1	0	0	1		
0	1	0	0	1	0	0		
0	1	0	1	0	1	0		
0	1	1	0	0	0	1		
0	1	1	1	0	0	1		
1	0	0	0	1	0	0		
1	0	0	1	1	0	0		
1	0	1	0	0	1	0		
1	0	1	1	0	0	1		
1	1	0	0	1	0	0		
1	1	0	1	1	0	0		
1	1	1	0	1	0	0		
1	1	1	1	0	1	0		

Fig :4 Truthtable

MAGNITUDE COMPARATOR

Fig 5:Logic diagram of 2-bit comparator

BCD Adder

- Perform the addition of two decimal digits in BCD, together with an input carry from a previous stage.
- When the sum is 9 or less, the sum is in proper BCD form and no correction is needed.
- When the sum of two digits is greater than 9, a correction of 0110 should be added to that sum, to produce the proper BCD result. This will produce a carry to be added to the next decimal position.

- A binary decoder is a combinational logic circuit that converts binary information from the \mathbf{n} coded inputs to a maximum of $2^{\text {n }}$ unique outputs.
- We have following types of decoders $2 \times 4,3 \times 8,4 \times 16 \ldots$.

2x4 decoder

Fig 1: Block diagram

Inputs		Output			
A	B	D_{0}	D_{2}	D_{2}	D_{3}
0	0	1	0	0	0
0	1	0	1	0	0
0	1	0	0	1	0
1	1	0	0	0	1

Fig 2:Truthtable

Higher order decoder implementation using lower order. Ex:4x16 decoder using 3x8decoders

- An Encoder is a combinational circuit that performs the reverse operation of Decoder. It has maximum of 2^{n} input lines and ' n ' output lines.
- It will produce a binary code equivalent to the input, which is active High.

Fig 1:block diagram of 4×2 encoder

Octal to binary encoder

	Octal digits			
		A_{2}	A_{1}	A_{0}
D_{0}	0	0	0	0
D_{1}	1	0	0	1
D_{2}	2	0	1	0
D_{3}	3	0	1	1
D_{4}	4	1	0	0
D_{5}	5	1	0	1
D_{6}	6	1	1	0
D_{7}	7	1	1	1

Fig 2:Truth table

Fig 3: Logic diagram

Priority encoder

A 4 to 2 priority encoder has four inputs $Y_{3}, Y_{2}, Y_{1} \& Y_{0}$ and two outputs $A_{1} \& A_{0}$. Here, the input, Y_{3} has the highest priority, whereas the input, Y_{0} has the lowest priority.

Inputs						
$\mathbf{Y}_{\mathbf{3}}$	$\mathbf{Y}_{\mathbf{2}}$	$\mathbf{Y}_{\mathbf{1}}$	$\mathbf{Y}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	\mathbf{V}
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	x	0	1	1
0	1	x	x	1	0	1
1	x	x	x	1	1	1

Fig 4:Truthtable

- Multiplexer is a combinational circuit that has maximum of 2^{n} data inputs, ' n ' selection lines and single output line. One of these data inputs will be connected to the output based on the values of selection lines.
- We have different types of multiplexers $2 \times 1,4 \times 1,8 \times 1,16 \times 1,32 \times 1 \ldots . .$.

Fig 1: Block diagram

Fig 2: Truthtable

Fig 3: Logic diagram

- Now let us implement the higher-order Multiplexer using lower-order Multiplexers.

MULTIPLEXERS

- Ex: 8x1 Multiplexer

Fig 3: 8x1 Multiplexer diagram

MULTIPLEXERS

- Implementation of Boolean function usingmultiplexer
- $f(A 1, A 2, A 3)=\Sigma(3,5,6,7)$ implementation using 8×1 mux

MULTIPLEXERS

$f(A 1, A 2, A 3)=\Sigma(3,5,6,7)$ implementation using 4×1 mux
Method:1

Minterms	A_{1}	A_{2}	A_{3}	
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	1	0	0	0
4	1	0	1	1
5	1	1	0	1
7	1	1	1	1

MULTIPLEXERS

Method:2

Minterm	A_{1}	A_{2}	A_{3}		f	
0	0	0	0	0		
1	0	0	1	0	$\mathrm{f}=0$	I_{0}
3	0	1	1	1	$\mathrm{f}=A_{3}$	I_{1}
5	1	0	1	1	$\mathrm{f}=A_{3}$	I_{2}
4	1	I	0	1		
7	1	I	1	1	$\mathrm{f}=1$	I_{3}

- A demultiplexer is a device that takes a single input line and routes it to one of several digital outputlines.
- A demultiplexer of 2^{n} outputs has n select lines, which are used to select which output line to send the input.
- We have $1 \times 2,1 \times 4,8 \times 1$.... Demultiplexers.

Fig:1 Block diagram

Selection Inputs		Outputs			
s_{1}	$\mathrm{~s}_{0}$	\mathbf{Y}_{3}	\mathbf{Y}_{2}	\mathbf{Y}_{1}	\mathbf{Y}_{0}
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

Fig :2 Truthtable

DEMULTIPLEXER

Boolean functions for each outputas

$$
\begin{gathered}
Y_{3}=s_{1} s_{0} I \\
Y_{2}=s_{1} s_{0}{ }^{\prime} I \\
Y_{1}=s_{1}{ }^{\prime} s_{0} I \\
Y_{0}=s_{1}{ }^{\prime} s_{0}{ }^{\prime} I
\end{gathered}
$$

Fig:3 Logic diagram

A code converter is a logic circuit whose inputs are bit patterns representing numbers (or character) in one code and whose outputs are the corresponding representation in a different code.

Design of a 4-bit binary to gray code converter

4-bit binary					4-bit Gray			
B_{4}	$\mathrm{~B}_{3}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$		G_{4}	G_{3}	G_{2}	G_{1}
0	0	0	0		0	0	0	0
0	0	0	1		0	0	0	1
0	0	1	0		0	0	1	1
0	0	1	1	0	0	1	0	
0	1	0	0	0	1	1	0	
0	1	0	1	0	1	1	1	
0	1	1	0	0	1	0	1	
0	1	1	1	0	1	0	0	
1	0	0	0	1	1	0	0	
1	0	0	1	1	1	0	1	
1	0	1	0	1	1	1	1	
1	0	1	1	1	1	1	0	
1	1	0	0	1	0	1	0	
1	1	0	1	1	0	1	1	
1	1	1	0	1	0	0	1	
1	1	1	1	1	0	0	0	

Fig :1 Truthtable

CODE CONVERTERS

K-map simplification

$$
\begin{array}{ll}
\mathrm{G}_{4}=\sum \mathrm{m}(8,9,10,11,12,13,14,15) & \mathrm{G}_{4}=\mathrm{B}_{4} \\
\mathrm{G}_{3}=\sum \mathrm{m}(4,5,6,7,8,9,10,11) & \mathrm{G}_{3}=\overline{\mathrm{B}}_{4} \mathrm{~B}_{3}+\mathrm{B}_{4} \overline{\mathrm{~B}}_{3}=\mathrm{B}_{4} \oplus \mathrm{~B}_{3} \\
\mathrm{G}_{2}=\sum \mathrm{m}(2,3,4,5,10,11,12,13) & \mathrm{G}_{2}=\overline{\mathrm{B}}_{3} \mathrm{~B}_{2}+\mathrm{B}_{3} \overline{\mathrm{~B}}_{2}=\mathrm{B}_{3} \oplus \mathrm{~B}_{2} \\
\mathrm{G}_{1}=\sum \mathrm{m}(1,2,5,6,9,10,13,14) & \mathrm{G}_{1}=\overline{\mathrm{B}}_{2} \mathrm{~B}_{1}+\mathrm{B}_{2} \overline{\mathrm{~B}}_{1}=\mathrm{B}_{2} \oplus \mathrm{~B}_{1}
\end{array}
$$

Fig: 2 Logic diagram

HAZARDS AND GLITCHES

glitch: unwanted output
A circuit with the potential for a glitch has a hazard. Glitches occur when different pathways have different delays

- Causes circuit noise
- Dangerous if logic makes a decision while output is unstable

Solutions

- Design hazard-free circuits
- Difficult when logic is multilevel
- Wait until signals are stable
- Static 1-hazard
- Output should stay logic 1

- Gate delays cause brief glitch to logic 0
- Static 0-hazard
- Output should stay logic 0
- Gate delays cause brief glitch to logic $\mathbb{1 1}$

Dynamic hazards

- Output should toggle cleanly
- Gate delays cause multiple transitions

Often occurs when a literal and its complement momentarily assume the same value

- Through different paths with different delays
- Causes an (ideally) static output to glitch

Often occurs when a literal assumes multiple values

- Through different paths with different delays
- Causes an output to toggle multiple times

Dynamic hazards

ELIMINATING STATIC HAZARDS

- Key idea: Glitches happen when a changing input spans separate K-map encirclements
- Example: 1101 to 0101 change can cause a static-1 glitch

- ABCD: $1101 \rightarrow 0101$

$$
F=A C^{\prime}+A^{\prime} D
$$

ELIMINATING STATIC HAZARDS

- Solution: Add redundant K-map encirclements
- Ensure that all single-bit changes are covered by same block
- First eliminate static-1 hazards: Use SOP form
- If need to eliminate static-0 hazards, use POS form
- Technique only works for 2-level logic

$$
\mathbf{F}=\mathbf{A} \mathbf{C}^{\prime}+\mathbf{A}^{\prime} \mathbf{D}+\mathbf{C}^{\prime} \mathbf{D}
$$

Unit-III
SEQUENTIAL CIRCUITS AND SYSTEMS

Gated latch is a basic latch that includes input gating and a control signal.

The latch retains its existing state when the control input is equal to 0 .

Its state may be changed when the control signal is equal to 1.In our discussion we referred to the control input as the clock.

We consider two types of gated latches:

- Gated SR latch uses the S and R inputs to set the latch to 1
- Gated D latch uses the D input to force the latch into a state that has the same logic value as the Dinput.

Basic latch is a feedback connection oftwo NOR gates or two NAND gates.
It can store one bit of information.
It can be set to 1 using the S input andreset to 0 using the R input.
$>$ A feedback loop with even numberof inverters
\Rightarrow If $\mathrm{A}=0, \mathrm{~B}=1$ or when $\mathrm{A}=1, \mathrm{~B}=0$
$>$ This circuit is not useful due to the lack ofa mechanism for changing its state

(b) Characteristic table

(d) Graphical symbol

(a) Circuit

(b) Characteristic table

(c) Graphical symbol

Flip flops:

A flip-flop is a storage element based onthe gated latch principle.
It can have its output state changed onlyon the edge of the controlling clocksignal.

Types Of Flip-flops:

- SR flip-flop (Set, Reset)
- T flip-flop (Toggle)
- D flip-flop (Delay)
- JK flip-flop

Flip flops:

$>$ Edge-triggered flip-flop is affected only by the input values present when the active edge of the clock occurs
$>$ Master-slave flip-flop is built with two gated
$>$ latches

- The master stage is active during half of the clock cycle, and the slave stage is active during the other half.
- The output value of the flip-flop changes on theedge of the clock that activates the transfer into the slave stage

INPUTS			OUTPU T	STATE
CLK	S	R	Q	
X	0	0	No Change	Previous
$\mathbf{4}$	0	1	0	Reset
$\boldsymbol{4}$	1	0	1	Set
$\boldsymbol{\uparrow}$	1	1	-	Forbidde n

SR FLIPFLOP Excitation Table \&Timing Diagram

SR FLIP-FLOP			
$Q(t)$	$Q(t+1)$	S	R
0	0	0	\times
0	1	1	0
1	0	0	1
1	1	\times	0

EXCITATION TABLE OF SR FLIP-FLOP

(a) Logic diagram with NAND gates

(b) Graphical symbol

Q	D	$Q(t+1)$
0	0	0
0	1	1
1	0	0
1	1	1

(c) Transition table

D FLIPFLOP Excitation Table \&Timing Diagram:

Present state $\left(Q_{n}\right)$	Next state $\left(Q_{n+1}\right)$	D
0	0	0
0	1	1
1	0	0
1	1	1

(a) Logic diagram

(b) Graphical symbol

Q	T	$Q(t+1]$
0	0	0
0	1	1
1	0	1
1	1	0

(c) Transition table

JK FLIPFLOP

$$
\begin{array}{cc|c}
J & K & Q(t+1) \\
\hline O & O & Q(t) \\
O & 1 & O \\
1 & O & 1 \\
1 & 1 & \bar{Q}(t)
\end{array}
$$

(b) Characteristic table
(c) Graphical symbol

Q Output		Inputs	
Present State	Next State	$\mathbf{J}_{\mathbf{n}}$	$\mathbf{K}_{\mathbf{n}}$
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

Master Slave JK FLIPFLOP

Sample inputs while clock high
Sample inputs while clock low
Uses time to break feedback path from outputs to inputs!

Correct Toggle Operation

Conversion Of FLIPFLOP:

1. Draw the block diagram of the target flip flop from the given problem.
2. Write truth table for the target flip-flop.
3. Write excitation table for the available flipflop.
4. Draw k-map for target flip-flop.
5. Draw the block diagram.

- Characteristic Table

\mathbf{S}	\mathbf{R}	$\mathrm{Q}(\mathrm{t}+1)$	Operation
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$?$	Undefined

- Characteristic Equation

$$
Q(t+1)=J \bar{Q}+\bar{K} Q
$$

- Excitation Table

$\mathbf{Q (t)}$	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	\mathbf{J}	\mathbf{K}
0	0	0	Operation
0	1	X	No change
0	1	X	Set
1	0	X	
1	1	X	Reset
1	0	No Change	

Characteristic Equation:

Flip-flop	Characteristic Equation
D	$Q(t+1)=D$
T	$Q(t+1)=T \oplus Q(t)$
$S R$	$Q(t+1)=S+R^{\prime} Q(t)$
$J K$	$Q(t+1)=J Q(t)^{\prime}+K Q(t)$

$>$ Counters are a specific type of sequential circuit.
> Like registers, the state, or the flip-flop values themselves, serves as the "output."
$>$ The output value increases by one on each clock cycle.
$>$ After the largest value, the output "wraps around" back to 0.
$>$ Counters can act as simple clocks to keep track of "time."
> You may need to record how many times something has happened.

- How many bits have been sent or received?
- How many steps have been performed in some computation?

Asynchronous Counters:

Asynchronous counter created from two JK flip-flops An asynchronous (ripple) counter is a single d-type flip-flop, with its J (data) input fed from its own inverted output. This circuit can store one bit, and hence can count from zero to one before it overflows (starts over from 0).

Asynchronous Up/Down Counters:

"Up" count sequence

Q_{2}| | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$Q_{3} \quad 0 \begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
"Down" count sequence

$\overline{Q_{1}}$| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\overline{Q_{2}}$| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllllllllll} & Q_{3} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

The counters which use clock signal to change their transition are called "Synchronous counters". This means the synchronous counters depends on their clock input to change state values. In synchronous counters, all flip flops are connected to the same clock signal and all flip flops will trigger at the same time.
Types of Counters:
Binary counters
4 bit synchronous UP counter
4 bit synchronous DOWN counter
4 bit synchronous UP / DOWN counter
Loadable counters
BCD counters
Ring counters
Johnson counters etc.

Johnson counter				
State	Q0	Q1	Q2	Q3
$\mathbf{0}$	0	0	0	0
$\mathbf{1}$	1	0	0	0
$\mathbf{2}$	1	1	0	0
$\mathbf{3}$	1	1	1	0
$\mathbf{4}$	1	1	1	1
$\mathbf{5}$	0	1	1	1
$\mathbf{6}$	0	0	1	1
$\mathbf{7}$	0	0	0	1
$\mathbf{0}$	0	0	0	0

Straight ring counter				
State	QO	$Q 1$	$Q 2$	$Q 3$
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
0	1	0	0	0

Shift Register:

Shift registers, like counters, are a form of sequential logic. Sequential logic, unlike Combinational Logic is not only affected by the present inputs, but also, by the prior history. In other words, sequential logic remembers past events.
Types of Shift Registers:

- Serial-in/serial-out

Parallel-in/serial-out
Serial-in/parallel-out
Universal parallel-in/parallel-out

Serial in to Parallel Output:

4-bit Parallel Data Output

Clock Pulse No	QA	QB	QC	QD
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1
5	0	0	0	0

Serial in to Serial Output:

Parallel in to Serial Output:

Parallel in to Parallel Output:

(b) Characteristic table

(d) Graphical symbol

(a) Circuit

(b) Characteristic table

(c) Graphical symbol

Flip flops:

A flip-flop is a storage element based onthe gated latch principle.
It can have its output state changed onlyon the edge of the controlling clocksignal.

Types Of Flip-flops:

- SR flip-flop (Set, Reset)
- T flip-flop (Toggle)
- D flip-flop (Delay)
- JK flip-flop

Flip flops:

> Edge-triggered flip-flop is affected only by the input values present when the active edge of the clock occurs
> Master-slave flip-flop is built with two gated
> latches

- The master stage is active during half of the clock cycle, and the slave stage is active during the other half.
- The output value of the flip-flop changes on theedge of the clock that activates the transfer into the slave stage

INPUTS			OUTPU T	STATE
CLK	S	R	Q	
X	0	0	No Change	Previous
$\mathbf{4}$	0	1	0	Reset
$\boldsymbol{4}$	1	0	1	Set
$\boldsymbol{\uparrow}$	1	1	-	Forbidde n

SR FLIPFLOP Excitation Table \&Timing Diagram

SR FLIP-FLOP			
$Q(t)$	$Q(t+1)$	S	R
0	0	0	\times
0	1	1	0
1	0	0	1
1	1	\times	0

EXCITATION TABLE OF SR FLIP-FLOP

(a) Logic diagram with NAND gates

(b) Graphical symbol

Q	D	$Q(t+1)$
0	0	0
0	1	1
1	0	0
1	1	1

(c) Transition table

D FLIPFLOP Excitation Table \&Timing Diagram:

Present state $\left(Q_{n}\right)$	Next state $\left(Q_{n+1}\right)$	D
0	0	0
0	1	1
1	0	0
1	1	1

(a) Logic diagram

(b) Graphical symbol

Q	T	$Q(t+1]$
0	0	0
0	1	1
1	0	1
1	1	0

(c) Transition table

JK FLIPFLOP

$$
\begin{array}{cc|c}
J & K & Q(t+1) \\
\hline O & O & Q(t) \\
0 & 1 & O \\
1 & O & 1 \\
1 & 1 & \bar{Q}(t)
\end{array}
$$

(b) Characteristic table (c) Graphical symbol

Q Output		Inputs	
Present State	Next State	$\mathbf{J}_{\mathbf{n}}$	$\mathbf{K}_{\mathbf{n}}$
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

Master Slave JK FLIPFLOP

Sample inputs while clock high
Sample inputs while clock low
Uses time to break feedback path from outputs to inputs!

Correct Toggle Operation

- Characteristic Table

\mathbf{S}	\mathbf{R}	$\mathrm{Q}(\mathrm{t}+1)$	Operation
0	0	$Q(t)$	No change
0	1	0	Reset
1	0	1	Set
1	1	$?$	Undefined

- Characteristic Equation

$$
Q(t+1)=J \bar{Q}+\bar{K} Q
$$

- Excitation Table

$\mathbf{Q (t)}$	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	\mathbf{J}	\mathbf{K}
0	0	0	Operation
0	1	X	No change
0	1	X	Set
1	0	X	
1	1	X	Reset
1	0	No Change	

Characteristic Equation:

Flip-flop	Characteristic Equation
D	$Q(t+1)=D$
T	$Q(t+1)=T \oplus Q(t)$
$S R$	$Q(t+1)=S+R^{\prime} Q(t)$
$J K$	$Q(t+1)=J Q(t)^{\prime}+K^{\prime} Q(t)$

Asynchronous Up/Down Counters:

"Up" count sequence

$Q_{1} 00 \begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1\end{array}$

Q_{2}| | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$Q_{3} \quad 0 \begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
"Down" count sequence

$\overline{Q_{1}}$| 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\overline{Q_{2}}$| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllllllllllll} & Q_{3} & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

Johnson counter				
State	Q0	Q1	Q2	Q3
$\mathbf{0}$	0	0	0	0
$\mathbf{1}$	1	0	0	0
$\mathbf{2}$	1	1	0	0
$\mathbf{3}$	1	1	1	0
$\mathbf{4}$	1	1	1	1
$\mathbf{5}$	0	1	1	1
$\mathbf{6}$	0	0	1	1
$\mathbf{7}$	0	0	0	1
$\mathbf{0}$	0	0	0	0

Straight ring counter				
State	QO	$Q 1$	$Q 2$	$Q 3$
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
0	1	0	0	0
1	0	1	0	0
2	0	0	1	0
3	0	0	0	1
0	1	0	0	0

Serial in to Parallel Output:

4-bit Parallel Data Output

Clock Pulse No	QA	QB	QC	QD
0	0	0	0	0
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1
5	0	0	0	0

Serial in to Serial Output:

Parallel in to Serial Output:

Parallel in to Parallel Output:

Unit-IV
 A/D AND D/A CONVERTERS

Data Converters:

Introduction:

> In electronics a digital to analog converter is a system that converts a digital signal into analog signal.
$>$ An analog to digital converter is a system that converts a analog signal into digital signal.

Data Converters:

- Classification of ADCs
- Direct type ADC.
- Integrating type ADC
- Direct type ADCs
- Flash (comparator) type converter
- Counter type converter
- Tracking or servo converter.
- Successive approximation type converter

Integrating type converters:

An ADC converter that perform conversion in an indirect manner by first changing the analog I/P signal to a linear function of time or frequency and then to a digital code is known as integrating type A/D converter.

DAC TECHNIQUES:

$>$ Weighted resistor DAC
$>$ R-2R ladder DAC
$>$ Inverted R-2R ladder DAC
> IC 1408 DAC

DAC TECHNIQUES:

Weighted Resistor DAC

Inverted R-2R DAC

IC 1408 DAC

MC1408 D/A Converter With Current Output

IC 1408 DAC Specifications:
> Resolution
$>$ Non-linearity or Linearity Error
$>$ Gain error and Offset Error
> Settling Time

IC 1408 DAC Applications:
> Microcomputer interfacing
> CRT Graphics Generation
> Programmable Power Supplies
> Digitally controlled gain circuits
$>$ Digital Filters

DAC CLASSIFICATIONS AND SPECIFICATIONS:

DAC characteristics:

- Resolution
$>$ Reference Voltage
$>$ Speed
$>$ Settling Time
$>$ Linearity

DAC CLASSIFICATIONS AND SPECIFICATIONS:

Resolution:

$>$ The change in output voltage for a change of the LSB.
$>$ Related to the size of the binary representation of the voltage. (8bit)
$>$ Higher resolution results in smaller steps between voltage values

DAC CLASSIFICATIONS AND SPECIFICATIONS:

Reference Voltage:

> Multiplier DAC
-Reference voltage is a constant set by the manufacturer
$>$ Non-Multiplier DAC
-Reference voltage is variable
$>$ Full scale Voltage
-Slightly less than the reference voltage $\left(\mathrm{V}_{\text {ref }}-\mathrm{V}_{\text {LSB }}\right)$

DAC CLASSIFICATIONS AND SPECIFICATIONS:

Speed:

> Also called the conversion rate or sampling rate -rate at which the register value is updated.
$>$ For sampling rates of over 1 MHz a DAC is designated as high speed.
$>$ Speed is limited by the clock speed of the microcontroller and the settling time of the DAC.

DAC CLASSIFICATIONS AND SPECIFICATIONS:

Settling Time:

$>$ Time in which the DAC output settles at the desired value $\pm 1 / 2$ $\mathrm{V}_{\text {LSB }}$.
$>$ Faster DACs decrease the settling time.

DAC CLASSIFICATIONS AND SPECIFICATIONS:

Linearity:

> Represents the relationship between digital values and analog outputs.
$>$ Should be related by a single proportionality constant. (constant slope)

ADC Techniques:

> Flash ADC
> Sigma-delta ADC
> Dual slope converter
$>$ Successive approximation converter

SUCCESSIVE APPROXIMATION :

- A Successive Approximation Register (SAR) is added to the circuit
- Instead of counting up in binary sequence, this register counts by trying all values of bits starting with the MSB and finishing at the LSB.
- The register monitors the comparators output to see if the binary count is greater or less than the analog signal input and adjusts the bits accordingly

SUCCESSIVE APPROXIMATION :

Advantages

- Capable of high speed and reliable
- Medium accuracy compared to other ADC types
- Good tradeoff between speed and cost
- Capable of outputting the binary number in serial (one bit at a time) format.

Disadvantages

- Higher resolution successive approximation ADC's will be slower
- Speed limited to $\sim 5 \mathrm{Msamples} / \mathrm{s}$

FLASH CONVERSION:

FLASH CONVERTERS

- Consists of a series of comparators, each one comparing the input signal to a unique reference voltage.
- The comparatoroutputs connect to the inputs of a priority encoder circuit, which produces a binary output

FLASH CONVERSION:

FLASH CONVERTERS

- Consists of a series of comparators, each one comparing the input signal to a unique reference voltage.
- The comparatoroutputs connect to the inputs of a priority encoder circuit, which produces a binary output

FLASH CONVERSION:

FLASH CONVERTERS

- Consists of a series of comparators, each one comparing the input signal to a unique reference voltage.
- The comparatoroutputs connect to the inputs of a priority encoder circuit, which produces a binary output

FLASH CONVERTERS

FLASH CONVERSION:

FLASH CONVERTERS

- As the analog input voltage exceeds the reference voltage at each comparator, the comparator outputs will sequentially saturate to a high state.
- The priority encoder generates a binary number based on the highest-
order active input, ignoring all other active inputs.

MODULE-V SEMICONDUCTOR MEMORIES AND PROGRAMMABLE L-GIC DEVICES

Memory Organization:

A memory unit is the collection of storage units or devices together. The memory unit stores the binary information in the form of bits. Memory/storage is classified into 2 categories:
Volatile Memory: This loses its data, when power is switched off. Non-Volatile Memory: This is a permanent storage and does not lose any data when power is switched off.

Auxiliary memory access time is generally 1000 times that of the main memory, hence it is at the bottom of the hierarchy.
The main memory occupies the central position because it is equipped to communicate directly with the CPU and with auxiliary memory devices through Input/output processor (I/O). he cache memory is used to store program data which is currently being executed in the CPU.

Each memory type, is a collection of numerous memory locations. To access data from any memory, first it must be located and then the data is read from the memory location. Following are the methods to access information from memory locations:

Random Access: Main memories are random access memories, in which each memory location has a unique address. Using this unique address any memory location can be reached in the same amount of time in any order.
Sequential Access: This methods allows memory access in a sequence or in order.
Direct Access: In this mode, information is stored in tracks, with each track having a separate read/write head.

The memory unit that communicates directly within the CPU, Auxillary memory and Cache memory, is called main memory. It is the central storage unit of the computer system. It is a large and fast memory used to store data during computer operations. Main memory is made up of RAM and ROM, with RAM integrated circuit chips holing the major share.
RAM: Random Access Memory

- DRAM: Dynamic RAM, is made of capacitors and transistors, and must be refreshed every $10 \sim 100 \mathrm{~ms}$. It is slower and cheaper than SRAM.
- SRAM: Static RAM, has a six transistor circuit in each cell and retains data, until powered off.

Main Memory :

Auxiliary Memory

Devices that provide backup storage are called auxiliary memory. For example: Magnetic disks and tapes are commonly used auxiliary devices. Other devices used as auxiliary memory are magnetic drums, magnetic bubble memory and optical disks. It is not directly accessible to the CPU, and is accessed using the Input/Output channels.

Main Memory :

Memory size
The size of memory sticks these days range from 64 MB up to 32 GB giving you plenty of options when it comes to choosing the size of storage space on your memory stick.

Content-addressable memory (CAM) :Content-addressable memory (CAM) is a special type of computer memory used in certain very-high-speed searching applications. It is also known as associative memory, associative storage, or associative array, although the last term is more often used for a programming data structure.

A charge-coupled device (CCD) is a device for the movement of electrical charge, usually from within the device to an area where the charge can be manipulated, for example conversion into a digital value. This is achieved by "shifting" the signals between stages within the device one at a time.
In recent years CCD has become a major technology for digital imaging (MOS) capacitors. These capacitors are biased above the threshold for inversion when image acquisition begins, allowing the conversion of incoming photons into electron charges at the semiconductor-oxide interface;
the CCD is then used to read out these charges. exacting quality demands, such as consumer and professional digital cameras, active pixel sensors, also known as complementary metal-oxidesemiconductors (CMOS) are generally used; the large quality advantage CCDs enjoyed early on has narrowed over time.

Programmable logic device

A programmable logic device (PLD) is an electronic component used to build reconfigurable digital circuits. Unlike integrated circuits (IC) which consist of logic gates and have a fixed function, a PLD has an undefined function at the time of manufacture. Before the PLD can be used in a circuit it must be programmed

FPGAs use a grid of logic gates, and once stored, the data doesn't change, similar to that of an ordinary gate array. The term "field-programmable" means the device is programmed by the customer, not the manufacturer.
FPGAs are usually programmed after being soldered down to the circuit board, in a manner similar to that of larger CPLDs. In most larger FPGAs, the configuration is volatile and must be reloaded into the device whenever power is applied or different functionality is required. Configuration is typically stored in a configuration PROM or EEPROM. EEPROM versions may be insystem programmable (typically via JTAG).

