
DIGITAL ELECTRONICS
(AECB03)

III SEMESTER
ELECTRICAL AND ELECTRONICS ENGINEERING

PREPARED BY
V.BINDU SREE

J.SRAVANA

FUNDAMENTALS OF DIGITAL SYSTEMS AND
LOGIC FAMILIES

Unit-I

NUMBER SYSTEMS

3

Binary number system.

A method of representing numbers that has 2 as its base

and uses only the digits 0 and 1.

Ex:10100010

Decimal number system

A number system that uses a notation in which

each number is expressed in base 10 by using one of the first nine

integers or 0 in each place and letting each place value be a power

of 10

Numbers:0,1,2,3,4,5,6,7,8,9

NUMBER SYSTEMS

4

Octal number system

The octal numbering system uses the numerals 0-1-2-3-4-5-

6-7.

Hexa decimal number system

The hexadecimal numeral system, often shortened to "hex", is

a numeral system made up of 16 symbols (base 16) they are

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E.

NUMBER BASE CONVERSION

5

Binary to Decimal Conversion:

It is by the positional weights method . In this method,
each binary digit of the no. is multiplied by its position weight .
The product terms are added to obtain the decimalno

Example:

1010112 => 1 x 20 = 1

1 x 21 = 2

0 x 22 = 0

1 x 23 = 8

0 x 24 = 0

1 x 25 = 32

4310

NUMBER BASE CONVERSION

6

Binary to Octal conversion:

Starting from the binary pt. make groups of 3 bits each, on

either side of the binary pt, & replace each 3 bit binary group by

the equivalent octaldigit.

Example:

10110101112 = ?8

1 011 010 111

1 3 2 7

10110101112 = 13278

NUMBER BASE CONVERSION

7

Binary to Hexadecimal conversion:

For this make groups of 4 bits each , on either side of the binary pt &

replace each 4 bit group by the equivalent hexadecimal digit.

Example:

NUMBER BASE CONVERSION

8

Decimal to Binary conversion:

Technique

Divide by two, keep track of the remainder

 First remainder is bit 0 (LSB, least-significant bit)

 Second remainder is bit 1 etc

NUMBER BASE CONVERSION

9

Decimal to Octal Conversion:

• To convert a mixed decimal no to a mixed octal no. convert the
integer and fraction parts separately.

•To convert decimal integer no. to octal, successively divide the

given no by 8 till the quotient is 0. The last remainder is the MSD

The remainder read upwards give the equivalent octal integer no.

•To convert the given decimal fraction to octal, successively

multiply the decimal fraction & the subsequent decimal fractions

by 8 till the product is 0 or till the required accuracy is the MSD.

The integers to the left of the octal pt read downwards give the

octal fraction.

Example:

10

NUMBER BASE CONVERSION

NUMBER BASE CONVERSION

11

Decimal to Hexadecimal conversion:

•It is successively divide the given decimal no. by 16 till the

quotient is zero. The last remainder is the MSB. The remainder

read from bottom to top gives the equivalent hexadecimal

integer.

•To convert a decimal fraction to hexadecimal successively multiply

the given decimal fraction & subsequent decimal fractions by 16,

till the product is zero. Or till the required accuracy is obtained

and collect all the integers to the left of decimal pt. The first

integer is MSB & the integer read from top to bottom .

Example:

12

NUMBER BASE CONVERSION

NUMBER BASE CONVERSION

13

Octal to binary Conversion:

Convert each octal digit to a 3-bit equivalent binary

representation

NUMBER BASE CONVERSION

14

Octal to decimal Conversion:

Multiply each digit in the octal no by the weight of its

position & add all the product terms Decimal value of the octal no.

NUMBER BASE CONVERSION

15

Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to

binary & then the binary no. to hexadecimal.

NUMBER BASE CONVERSION

16

Octal to hexadecimal conversion:

The simplest way is to first convert the given octal no. to

binary & then the binary no. to hexadecimal.

NUMBER BASE CONVERSION

17

Hexa decimal to binary Conversion:

Convert each hexadecimal digit to a 4-bit equivalent binary

representation

NUMBER BASE CONVERSION

18

Hexa decimal to decimal Conversion:

Convert each hexadecimal digit to a 4-bit equivalent binary

representation

NUMBER BASE CONVERSION

19

Hexa decimal to octal Conversion:

Use binary as an intermediary

BINARYARITHMETIC

20

Binary Addition:

Rules: 0+0=0

0+1=1

1+0=1

1+1=10
i.e, 0 with a carry of 1.

Binary Subtraction:

Rules: 0-0=0
1-1=0
1-0=1
0-1=1

with a borrow of1

BINARY ARITHMETIC

21

Binary multiplication:

Rules:
0x0=0
1x1=0
1x0=0
0x1=0

Binary Division:

Example : 1011012 by110
110) 101101 (111.1

110

1010
110

1001
110

110
110

000

COMPLEMENTS

22

1’s compliment of n number:

It is obtained by simply complimenting each bit of the

numbers that is all 1’s to 0’s and all 0’s to 1’s

Example: 1’s complement of 1101001 is 0010110

2’s compliment of n number:

It is obtained by simply complimenting each bit of the

numbers that is all 1’s to 0’s and all 0’s to 1’s and add 1 to the

value

Example: 2’s complement of 1101001 is 0010110

+1= 0010111

COMPLEMENTS

23

9’s & 10’s Complements:

It is the Subtraction of decimal number can be

accomplished by the 9’s & 10’s compliment methods similar

to the 1’s & 2’s compliment methods of binary . The 9’s

compliment of a decimal number is obtained by

subtracting each digit of that decimal number from 9. The

10’s compliment of a decimal number is obtained by adding

a 1 to its 9’scompliment.

COMPLEMENTS

24

1’s compliment arithmetic:

In1’s complement subtraction, add the 1’s

complement of the subtrahend to the minuend. If there is a

carryout , bring the carry around & add it to the LSB called

the end around carry. Look at the sign bit (MSB) . If this is a 0,

the result is positive & is in true binary. If the MSB is a 1 (

carry or no carry), the result is negative & is in its is

complement form .Take its 1’s complement to get the

magnitude in binary.

COMPLEMENTS

25

2’s compliment arithmetic:

The 2’s complement system is used to represent

negative numbers using modulus arithmetic . The word

length of a computer is fixed i.e, if a 4 bit number is added to

another 4 bit number the result will be only of 4 bits. Carry if

any , from the fourth bit will overflow called the Modulus

arithmetic.

SIGNED BINARY NUMBERS

26

Representation of signed numbers binary arithmetic in

computers:

Two ways of representing signed numbers is Sign

Magnitude form and Complemented form there are two

complimented forms i.e. 1’s compliment form and 2’s

compliment form

BINARY WEIGHTED AND NON- WEIGHTEDCODES

27

Weighted Codes:

The weighted codes are those that obey the position

weighting principle, which states that the position of each

number represent a specific weight. In these codes each

decimal digit is represented by a group of four bits.

In weighted codes, each digit is assigned a specific weight

according to its position. For example, in 8421/BCD code, 1001

the weights of 1, 1, 0, 1 (from left to right) are 8, 4, 2 and 1

respectively.

Examples:8421,2421 are all weighted codes.

BINARY WEIGHTED AND NON- WEIGHTEDCODES

28

Non-weighted codes:

The non-weighted codes are not positionally

weighted . In other words codes that are not assigned

with any weight to each digit position.

Examples:Excess-3(XS-3) and Gray Codes.

BINARY CODED DECIMAL

29

BCD Addition:

It is individually adding the corresponding digits of the

decimal numbers expressed in 4 bit binary groups starting

from the LSD .

If there is no carry & the sum term is not an illegal

code , no correction is needed.

If there is a carry out of one group to the next group

or if the sum term is an illegal code then 610 (0110) is added

to the sum term of that group & the resulting carry is added

to the next group.

BINARY CODED DECIMAL

30

BCD Subtraction:

Performed by subtracting the digits of each 4 bit group

of the subtrahend the digits from the corresponding 4- bit

group of the minuend in binary starting from the LSD . if there

is no borrow from the next group , then 610 (0110) is

subtracted from the difference term of this group.

BINARY CODE

31

Error – Detecting codes:

When binary data is transmitted & processed , it is

susceptible to noise that can alter or distort its contents. The

1’s may get changed to 0’s & 0’s may get changed to 1’s because

digital systems must be accurate to the digit, error can pose a

problem. Several schemes have been devised to detect the

occurrence of a single bit error in a binary word, so that

whenever such an error occurs the concerned binary word

can be corrected & retransmitted.

ERROR – DETECTING CODES

32

 When we talk about digital systems, be it a digital computer

or a digital communication set-up, the issue of error

detection and correction is of great practical significance.

 Errors creep into the bit stream owing to noise or other

impairments during the course of its transmission from the

transmitter to the receiver.

 While the addition of redundant bits helps in achieving the

goal of making transmission of information from one place

to another error free or reliable, it also makes it inefficient.

ERROR – DETECTING CODES

33

Some Common Error Detecting and CorrectingCodes

 Parity Code

 Hamming Code

Parity Code:

 A parity bit is an extra bit added to a string of data bits in order

to detect any error that might have crept into it while it was

being stored or processed and moved from one place to

another in a digital system.

ERROR – DETECTING CODES

34

The parity bit can be set to 0 and 1 depending on the

type of the parity required.

For even parity, this bit is set to 1 or 0 such that the no.

of "1 bits" in the entire word is even. Shown in fig. (a).

For odd parity, this bit is set to 1 or 0 such that the no.

of "1 bits" in the entire word is odd. Shown in fig. (b).

fig. (a) fig. (b)

ERROR – DETECTING CODES

35

Hamming Code:

 An increase in the number of redundant bits added to message

bits can enhance the capability of the code to detect and

correct errors.

 If sufficient number of redundant bits arranged such that

different error bits produce different error results, then it

should be possible not only to detect the error bit but also to

identify its location.

 In fact, the addition of redundant bits alters the ‘distance’ code

parameter.

ERROR – DETECTING CODES

36

 For example, the addition of single-bit parity results in a

code with a Hamming distance of at least 2.

 The smallest Hamming distance in the case of a threefold

repetition code would be 3.

 Hamming noticed that an increase in distance enhanced the

code’s ability to detect and correct errors.

 Hamming’s code was therefore an attempt at increasing the

Hamming distance and at the same time having as high an

information throughput rate as possible.

ERROR – DETECTING CODES

37

 The generalized form of code is

P1P2D1P3D2D3D4P4D5D6D7D8D9D10D11P5.....,where P and D

respectively represent parity and data bits.

 We can see from the generalized form of the code that all bit

positions that are powers of 2 (positions 1, 2, 4, 8, 16 ...) are

used as parity bits.All other bit positions (positions 3, 5, 6, 7, 9,

10, 11 ...) are used to encode data.

 Each parity bit is allotted a group of bits from the data bits in

the code word, and the value of the parity bit (0 or 1) is used to

give it certain parity.

ERROR – DETECTING CODES

38

 Groups are formed by first checking bits and then alternately

skipping and checking bits following the parity bit. Here, is the

position of the parity bit; 1 for P1, 2 for P2, 4 for P3, 8 for P4 and

so on.

Now, the position of P3 is at number 4. In order to form the

group, we check the first three bits N-1=3 and then follow it up

by alternately skipping and checking four bits (N=4).

ERROR – DETECTING CODES

39

 The Hamming code is capable of correcting single-bit errors

on messages of any length.

 Although the Hamming code can detect two-bit errors, it

cannot give the error locations.

 The number of parity bits required to be transmitted along

with the message, however, depends upon the message

length.

 The number of parity bits n required to encode m message

bits isthe smallest integer that satisfies the condition

ERROR – DETECTING CODES

40

 The code word sequence for this code is written as

P1P2D1P3D2D3D4, with P1, P2 and P3 being the parity bits

and D1, D2, D3 and D4 being the data bits.

• Generation of Hamming Code:

BOOLEAN ALGEBRA

41

BOOLEAN ALGEBRA

42

• Variable: Variables are the different symbols in a Boolean

expression

• Literal: Each occurrence of a variable or its complement is

called a literal

• Term: A term is the expression formed by literals and

operations at one level

BOOLEAN ALGEBRA

43

BOOLEAN ALGEBRA

44

• Associativity

› a: (X+Y)+Z=X+(Y+Z)

› b: (X•Y)•Z=X•(Y•Z)

BOOLEAN ALGEBRA

45

• Distributivity

› a: X+(Y•Z) = (X+Y)•(X+Z)

› b: X•(Y+Z) = (X•Y)+(X•Z)

BOOLEAN ALGEBRA

46

• Idempotency

› a:X+X=X

› b: X•X=X

• Null elements

› a:X+1=1

› b:X•0=0

• Involution

› a: (X’)’=X

BOOLEAN ALGEBRA

47

• Absorption

›a: (X•Y)+(X•Y’•Z)=(X•Y)+(X•Z)

› b: (X+Y)•(X+Y’+Z) =
(X+Y)•(X+Z)

BOOLEAN ALGEBRA

48

• DeMorgan’s theorem (very important!)

› a: (X+Y)’= X’•Y’
X+Y = X•Y break (or connect) the bar & change

the sign
› b: (X.Y)’=X’+Y’

X•Y = X+Y break (or connect) the bar & change the
sign

Generalized DeMorgan’s theorem:

• GT8a: (X1+X2+…+Xn-1+Xn)’=X1’•X2’•…•Xn-1’•Xn’

• GT8b: (X1•X2•…•Xn-1•Xn)’= X1’+X2’+…+Xn-1’+Xn’

BOOLEAN ALGEBRA

49

• Consensus Theorem

› a: (X•Y)+(X’•Z)+(Y•Z) =
(X•Y)+(X’•Z)

› b: (X+Y)•(X’+Z)•(Y+Z) =
(X+Y)•(X’+Z)

SWITCHING FUNCTIONs

50

 For n variables, there are 2n possible combinations of Values

from all 0s to all 1s

 There are 2 possible values for the output of a function of a

combination of values of n variables i.e. 0 and 1

 There are 22n different switching functions for n variables

 n=0 (no inputs) 22n = 220 = 21 =2

Output can be either 0 or 1

 n=1 (1 input, A) 22n = 221 = 22 =4

Output can be 0, 1, A, or A’

SWITCHING FUNCTIONS EXAMPLE

51

22n = 222 = 24 =16 n=2 (2 inputs, A and B)

f0 = 0

f1 =A’B’= (A+B)’
f2 =A’B
f3 = A’B’+A’B =A’(B’+B) =A’

CANONICAL AND STANDERED FORMS

52

Logical functions are generally expressed in terms of

different combinations of logical variables with their true

forms as well as the complement forms. Binary logic

values obtained by the logical functions and logic

variables are in binary form. An arbitrary logic function

can be expressed in the following forms.

 Sum of the Products (SOP)

 Product of the Sums (POS)

CANONICAL AND STANDERED FORMS

53

• Product Term: In Boolean algebra, the logical product of several

variables on which a function depends is considered to be a

product term. In other words, the AND function is referred to

as a product term or standard product.

• Sum Term: An OR function is referred to as a sum term

• Sum of Products (SOP): The logical sum of two or more logical

productterms is referred to as a sum of products expression

• Product of Sums (POS): Similarly, the logical product of two or

morelogical sum terms is called a product of sums expression

CANONICAL AND STANDERED FORMS

54

 Standard form: The standard form of the Boolean function is

when it is expressed in sum of the products or product of the

sums fashion

 Nonstandard Form: Boolean functions are also sometimes

expressed in nonstandard forms like , which is neither a

sum of products form nor a product of sums form.

 Minterm: A product term containing all n variables of the

function in either true or complemented form is called the

minterm. Each minterm is obtained by an AND operation of

the variables in their true form or complemented form.

CANONICAL AND STANDERED FORMS

55

 Maxterm: A sum term containing all n variables of the function

in either true or complemented form is called the Maxterm.

Each Maxterm is obtained by an OR operation of the variables

in their true form or complemented form.

 The canonical sum of products form of a logic function can be

obtained by using the following procedure

 Check each term in the given logic function. Retain if it is a

minterm, continue to examine the next term in the same

manner.

 Multiply all the products and discard the redundant terms.

CANONICAL AND STANDERED FORMS

56

CANONICAL AND STANDERED FORMS

57

The product of sums form is a method (or form) of simplifying the

Boolean expressions of logic gates. In this POS form, all the

variables are ORed, i.e. written as sums to form sum terms. All

these sum terms are ANDed (multiplied) together to get the

product-of-sum form. This form is exactly opposite to the SOP

form. So this can also be said as ―Dualof SOP form‖.

(A+B) * (A + B + C) * (C +D)

POS form can be obtained by

 Writing an OR term for each input combination, which

produces LOW

output.

ALGEBRAIC SIMPLIFICATION

58

Minimize the following Boolean expression using Boolean

identities −

F(A,B,C)=(A+B)(A+C)F(A,B,C)=(A+B)(A+C)Solution

Given, F(A,B,C)=(A+B)(A+C)

F (A,B,C)=A.A+A.C+B.A+B.C [Applying distributive Rule]

F(A,B,C)=A+A.C+B.A+B.C [Applying Idempotent Law]

F(A,B,C)=A(1+C)+B.A+B.C [Applying distributive Law]

F(A,B,C)=A+B.A+B.C [Applying dominance

F(A,B,C)=(A+1).A+B.C [Applying distributive Law]

F(A,B,C)=1.A+B.C [Applying dominance Law]

F(A,B,C)=A+B.C [Applying dominance Law]

So, F(A,B,C)=A+BCF(A,B,C)=A+BC is the minimized form.

DIGITAL LOGIC GATES

59

AND GATE:

Z=A.B AND

OR GATE:

Z=A+B

DIGITAL LOGIC GATES

60

NOT GATE:

Z=A’ AND

NAND GATE:

Z=A.B

DIGITAL LOGIC GATES

61

NOR GATE:

Z=A+B AND

Ex-OR GATE:

Z=A B

MULTILEVEL NAND-NOR REALIZATION

62

AND

NAND Gate as an Inverter Gate

NAND Gate as an AND Gate

MULTILEVEL NAND-NOR REALIZATION

63

AND

NAND Gate as an OR Gate

MULTILEVEL NAND-NOR REALIZATION

64

AND

MULTILEVEL NAND-NOR REALIZATION

65

AND
Example1: implement the following function F = AB +CD

• The implementation of Boolean functions with NAND gates

requires that the functions be in sum of products (SOP) form.

• This function can be implemented by three steps.

MULTILEVEL NAND-NOR REALIZATION

66

AND
Example1: implement the following function F = AB +CD

• The implementation of Boolean functions with NAND gates

requires that the functions be in sum of products (SOP)

form.

• This function can be implemented by three steps.

MULTILEVEL NAND-NOR REALIZATION

67

AND
Example1: implement the following function F = AB +CD

• The implementation of Boolean functions with NAND gates

requires that the functions be in sum of products (SOP)

form.

• This function can be implemented by three steps.

MULTILEVEL NAND-NOR REALIZATION

68

AND
Example1: implement the following function F = AB +CD

• The implementation of Boolean functions with NAND gates

requires that the functions be in sum of products (SOP) form.

• This function can be implemented by three steps.

CMOS DRIVING TTL AND CMOS DRIVING TTL

Interfacing a CMOS to a TTL under 5Volts power supply

Logic delay, TTL/CMOS interfacing

Unit-II
COMBINATIONAL DIGITAL CIRCUITS

KARANAUGHMAP

•Boolean algebra helps us simplify expressions andcircuits

•Karnaugh Map: A graphical technique for simplifying
aBooleanexpression into eitherform:

–minimal sum of products(MSP)

–minimal product of sums(MPS)

•Goal of thesimplification.

–There are a minimal number of product/sumterms

–Each term has a minimal number ofliterals

71

KARANAUGH MAP

 A two-variable function has four possible minterms. We can
re- arrange
these minterms into a Karnaughmap

X

72

 Now we can easily see which minterms containcommonliterals
◦ Minterms on the left and right sides contain y’ and y

respectively
◦ Minterms in the top and bottom rows contain x’ and x

respectively
Y

KARANAUGH MAP

• Make as few rectangles as possible, to minimize the number of
products in the finalexpression.

• Make each rectangle as large as possible, to minimize the
number of literals in each term.

• Rectangles can be overlapped, if that makes them larger

• The most difficult step is grouping together all the 1s in the K-
map

• Make rectangles around groups of one, two, four or eight 1s

• All of the 1s in the map should beincluded inat least one
rectangle. Do not include any of the0s

• Each group corresponds to oneproduct term

73

3 VARIABLE K-MAP

• Maxterms are grouped to find minimal PoS

74

3 VARIABLE K-MAP

• Let’s consider simplifying f(x,y,z) = xy + y’z + xz

• You should convert the expression into a sum of
mintermsform,

• The easiest way to do this is to make a truth table forthe
function, and then read off theminterms

• You can either write out the literals or use the minterm
shorthand

• Here is the truth table and sum of minterms for our
example:

75

3 VARIABLE K-MAP

 For a three-variable expression with inputs x, y,z, the
arrangement of

minterms is more tricky:

76

3 VARIABLE K-MAP

• Here is the filled in K-map, with all groups shown

– The magenta and green groups overlap, which makes
each of them as

large as possible

– Minterm m6 is in a group all by its lonesome

• The final MSP here is x’z + y’z +xyz’

77

3 VARIABLE K-MAP

• There may not necessarily be a unique MSP.The K-map below
yields
two

valid and equivalent MSPs, because there are two possible
waysto

include minterm m7

78

3 VARIABLE K-MAP

79

4-VARIABLE K-MAP

• We can do four-variable expressionstoo!
– The minterms in the third and fourth columns, and in

thethird
and
fourth rows, are switchedaround.

– Again, this ensures that adjacent squares have common
literals

• Grouping minterms is similar to the three-variable case, but:
– You can have rectangular groups of 1, 2, 4, 8 or 16

minterms
– You can wrap around all four sides

80

4-VARIABLE K-MAP

81

4-VARIABLE K-MAP

82

4-VARIABLE K-MAP

83

5-VARIABLE K-MAP

84

5-VARIABLE K-MAP

• In our example, we can write f(x,y,z) in two equivalentways

85

5-VARIABLE K-MAP

86

DON’T CARE CONDITION

• You don’t always need all 2n input combinations in ann-
variable
function
– If you can guarantee that certain input combinations

never
occur

– If some outputs aren’t used in the rest of thecircuit

• We mark don’t-care outputs in truth tables and K-maps with
Xs.

87

DON’T CARE CONDITION

• Find a MSP for

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) =m(7,10,13)

This notation means that input combinations wxyz = 0111,

1010 and 1101(corresponding to minterms m7, m10 and m13)

are unused.

88

DON’T CARE CONDITION

• Find a MSP for:

f(w,x,y,z) = m(0,2,4,5,8,14,15), d(w,x,y,z) =m(7,10,13)

89

COMBINATIONAL CIRCUITS

• Combinational circuit is a circuit in which we combine the
different gates in the circuit, for example encoder, decoder,
multiplexer and demultiplexer.

Some of the characteristics of combinational circuits are:

• The output of combinational circuit at any instant of time,
depends
only on the levels present at inputterminals.

• The combinational circuit do not use any memory. The previous
state
of input does not have any effect on the present state of the circuit.

• A combinational circuit can have an n number of inputs and m
number of outputs.

90

COMBINATIONAL CIRCUITS

• Block diagram:
possible combinations of inputvalues.

91

• Specific functions : of combinational circuits
• Adders, subtractors , multiplexers, comparators , encoder,

Decoder. MSI Circuits and standardcells

ANALYSIS PROCEDURE

Analysis procedure

Toobtain the output Boolean functions from a logic diagram,

proceed as follows:

1. Label all gate outputs that are a function of input variables with

arbitrary symbols. Determine the Boolean functions for

eachgate output.

2. Label the gates that are a function of input variables and

previously labeled gates with other arbitrary symbols. Find

the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the

circuit are obtained.

92

DESIGN PROCEDURE

Design Procedure

1.The problem is stated

2.The number of available input variables andrequired output

variables is determined.

3.The input and output variables are assigned letter symbols.

4.The truth table that defines the required relationshipbetween
inputs

and outputs is derived.

5.The simplified Boolean function for each output is obtained.

6.The logic diagram is drawn.

93

BINARY ADDERS

ADDERS

Half Adder

A Half Adder is a combinational circuit with two binary inputs
(augends and addend bits and two binary outputs (sum and
carry bits.) It adds the two inputs (A and B) and produces the
sum (S) and the carry (C) bits.

94

Fig 1:Block diagram
Fig 2:Truthtable

Sum=A′B+AB′=A B

Carry=AB

+

BINARY SUBTRACTORS

Full subtractor

The full subtractor perform subtraction of three input bits: the
minuend , subtrahend , and borrow in and generates two
output bits difference and borrow out.

Fig 8: Truthtable

95

Fig 7:Block diagram

PARALLEL ADDER AND SUBTRACTOR

A binary parallel adder is a digital circuit that adds two binary
numbers in parallel form and produces the arithmetic sum of
those numbers in parallelform

Fig 10:parallel subtractor

96

Fig 9:parallel adder

CARRY LOOK-A- HEAD ADDER

• In parallel-adder , the speed with which an addition can
be performed is governed by the time required for the
carriesto propagate or ripple through all of the stages of
theadder.

• The look-ahead carry adder speeds up the process by
eliminating
this ripple carry delay.

97

CARRY LOOK-A- HEAD ADDER

98

Fig:1 blockdiagram

BINARY MULTIPLIER

A binary multiplier is an electronic circuit used in digital
electronics, such as a computer, to multiply two binary
numbers. It is built using binary adders.

Example: (101 x 011)

Partial products are: 101 × 1, 101 × 1, and 101 ×0

99

BINARY MULTIPLIER

• We can also make an n × m “block” multiplier and use thatto
form partial products.

• Example: 2 × 2 – The logic equations for each partial-product
binary digit are shown below

• We need to "add" the columns to get the product bits P0,P1,
P2, and P3.

100

BINARY MULTIPLIER

101

MAGNITUDE COMPARATOR

Magnitude comparator takes two numbers as input in binary
form and determines whether one number is greater than,
less than or equal to the other number.

1-Bit Magnitude Comparator

A comparator used to compare two bits is called a single bit
comparator.

102

Fig :1 Block diagram

MAGNITUDE COMPARATOR

103

MAGNITUDE COMPARATOR

• 2 Bit magnitude comparator

104

Fig :3 Block diagram

Fig :4 Truthtable

MAGNITUDE COMPARATOR

105

Fig 5:Logic diagram of 2-bitcomparator

BCD ADDER

BCD Adder

• Perform the addition of two decimal digits in BCD, together
with an input carry from a previous stage.

• When the sum is 9 or less, the sum is in proper BCD form
and no correction is needed.

• When the sum of two digits is greater than 9, a correction of
0110 should be added to that sum, to produce the proper
BCD result. This will produce a carry to be added to the
next decimal position.

106

DECODER

• A binary decoder is a combinational logic circuit that
converts binary information from the n coded inputs to a
maximum of 2nunique outputs.

• We have following types of decoders 2x4,3x8,4x16….

2x4 decoder

107

Fig 1: Block diagram
Fig 2:Truthtable

DECODER

108

Higher order decoder implementation using lower order.

Ex:4x16 decoder using 3x8decoders

ENCODERS

• An Encoder is a combinational circuit that performs the
reverse operation of Decoder. It has maximum of 2n

input lines and ‘n’ output lines.

• It will produce a binary code equivalent to the input, which is
active High.

Fig 1:block diagram of 4x2encoder

109

ENCODERS

Octal to binaryencoder

110

Fig 2:Truth table

Fig 3: Logic diagram

ENCODERS

Priority encoder

A 4 to 2 priority encoder has four inputs Y3, Y2, Y1 & Y0 and
two outputs A1 & A0. Here, the input, Y3 has the highest
priority, whereas the input, Y0 has the lowest priority.

111

ENCODERS

Fig 4:Truthtable

MULTIPLEXERS

• Multiplexer is a combinational circuit that has maximum of
2n data inputs, ‘n’ selection lines and single output line. One
of these data inputs will be connected to the output based
on the values of selection lines.

• We have different types of multiplexers
2x1,4x1,8x1,16x1,32x1……

112

Fig 1: Blockdiagram Fig 2: Truthtable

MULTIPLEXERS

Fig 3: Logic diagram

• Now, let us implement the higher-order Multiplexer

using lower-order Multiplexers.

113

MULTIPLEXERS

• Ex: 8x1 Multiplexer

114

Fig 3: 8x1 Multiplexer diagram

MULTIPLEXERS

• Implementation of Boolean function usingmultiplexer

• f(A1 , A2 , A3) =Σ(3,5,6,7) implementation using 8x1 mux

115

MULTIPLEXERS

f(A1 , A2 , A3) =Σ(3,5,6,7) implementation using 4x1 mux

Method:1

116

MULTIPLEXERS

Method:2

117

DEMULTIPLEXER

• A demultiplexer is a device that takes a single input line and
routes it to one of several digital outputlines.

• A demultiplexer of 2n outputs has n select lines, which are
used to select which output line to send the input.

• We have 1x2,1x4,8x1…. Demultiplexers.

118

Fig:1 Block diagram Fig :2 Truthtable

DEMULTIPLEXER

Boolean functions for each outputas

119

Fig:3 Logicdiagram

CODE CONVERTERS

A code converter is a logic circuit whose inputs are bit
patterns representing numbers (or character) in one code
and whose outputs are the corresponding representation in
a different code.

Design of a 4-bit binary to gray code converter

120

Fig :1 Truthtable

CODE CONVERTERS

K-map simplification

121

CODE CONVERTERS

122

Fig: 2 Logicdiagram

HAZARDS AND GLITCHES

• glitch: unwanted output

• A circuit with the potential for a glitch has a hazard.

• Glitches occur when different pathways have different
delays

 Causes circuit noise

 Dangerous if logic makes a decision while output is
unstable

Solutions

 Design hazard-free circuits

 Difficult when logic is multilevel

 Wait until signals are stable

123

TYPES OF HAZARDS

 Static 1-hazard
 Output should stay logic 1
 Gate delays cause brief glitch to logic 0

 Static 0-hazard
 Output should stay logic 0
 Gate delays cause brief glitch to logic 1

 Dynamic hazards
 Output should toggle cleanly
 Gate delays cause multiple transitions

124

0
1 1

1
0 0

1 1
0 0

1 1
0 0

STATIC HAZARDS

 Often occurs when a literal and its complement
momentarily assume the same value

 Through different paths with different delays

 Causes an (ideally) static output to glitch

125

Static hazards

DYNAMIC HAZARDS

 Often occurs when a literal assumes multiple values

 Through different paths with different delays

 Causes an output to toggle multiple times

126

Dynamic hazards

ELIMINATING STATIC HAZARDS

127

 Key idea: Glitches happen when a changing input spans
separate K-map encirclements

 Example: 1101 to 0101 change can cause a static-1
glitch

ELIMINATING STATIC HAZARDS

128

 Solution: Add redundant K-map encirclements
 Ensure that all single-bit changes are covered by same

block
 First eliminate static-1 hazards: Use SOP form
 If need to eliminate static-0 hazards, use POS form

 Technique only works for 2-level logic

Unit-III
SEQUENTIAL CIRCUITS AND SYSTEMS

• Gated latch is a basic latch that includes input gating and
a control signal.

The latch retains its existing state when the control input is
equal to 0.

• Its state may be changed when the control signal is equal to
1.In our discussion we referred to the control input as the
clock.

 We consider two types of gated latches:
◦ Gated SR latch uses the Sand R inputs to set the latch to 1
◦ Gated D latch uses the D input to force the latch into a state

that has the same logic value as the Dinput.

SEQUENTIAL CIRCUITS

130

Basic Latch

 Basic latch is a feedback connection oftwo NOR gates or two
NAND gates.

 It can store one bit of information.

 It can be set to 1 using the S input andreset to 0 using the R
input.

131

A B

A feedback loop with even numberof inverters

If A = 0, B = 1 or when A = 1, B =0

This circuit is not useful due to the lack ofa

mechanism for changing its state

SEQUENTIAL CIRCUITS

Gated SR Latch

132

RS LATCH:

Gated D Latch

133

D LATCH:

Flip-Flop

 A flip-flop is a storage element based onthe gated latch
principle.

 It can have its output state changed onlyon the edge of the
controlling clocksignal.

Types Of Flip-flops:

 SR flip-flop (Set, Reset)

 T flip-flop (Toggle)

 D flip-flop (Delay)

 JK flip-flop

134

Flip flops:

Edge-triggered flip-flop is affected only by the input values
present when the active edge of the clock occurs

Master-slave flip-flop is built with two gated
 latches

 The master stage is active during half of the clock cycle, and
the slave stage is active during the other half.

 The output value of the flip-flop changes on theedge of the
clock that activates the transfer into the slave stage

135

Flip flops:

SR Flip-flop

136

SR Flip flop

SR Flip flop Excitation table and Timing diagram:

137

SR FLIPFLOP Excitation Table &Timing Diagram

D Flip flop

138

D FLIPFLOP:

D Flip-flop Excitation Table and Timing Diagram:

139

D FLIPFLOP Excitation Table &Timing Diagram:

T Flip-flop Using NOR gate:

140

T FLIPFLOP :

Jk Flipflop:

141

JK FLIPFLOP

JK Flip-flop Excitation Table and Timing Diagram:

142

JK FLIPFLOP

Master Slave JK Flip-flop

143

Master Slave JK FLIPFLOP

Conversion of Flip-flops:

144

Conversion Of FLIPFLOP:

JK to SR Flipflop:

145

Jk to SR FLIPFLOP:

Characteristic Equations of Flip-flops:

146

Characteristic Equation:

Counters:

 Counters are a specific type of sequential circuit.
 Like registers, the state, or the flip-flop values themselves,

serves as the “output.”
 The output value increases by one on each clock cycle.
 After the largest value, the output “wraps around” back to 0.
 Counters can act as simple clocks to keep track of “time.”
 You may need to record how many times something has

happened.
How many bits have been sent or received?
How many steps have been performed in some computation?

147

Counters:

Asynchronous Counter:

 Asynchronous counter created from two JK flip-flops An
asynchronous (ripple) counter is a single d-type flip-flop, with its
J (data) input fed from its own inverted output. This circuit can
store one bit, and hence can count from zero to one before it
overflows (starts over from 0).

148

Asynchronous Counters:

Asynchronous Up-Down Counter:

149

Asynchronous Up/Down Counters:

Synchronous Counter:

 The counters which use clock signal to change their transition are
called “Synchronous counters”. This means the synchronous
counters depends on their clock input to change state values. In
synchronous counters, all flip flops are connected to the same
clock signal and all flip flops will trigger at the same time.

Types of Counters:

 Binary counters

 4 bit synchronous UP counter

 4 bit synchronous DOWN counter

 4 bit synchronous UP / DOWN counter

 Loadable counters

 BCD counters

 Ring counters

 Johnson counters etc. 150

Synchronous Counters:

Johnson Counter:

151

Johnson Counters:

Ring Counter:

152

Ring Counters:

Shift Register

 Shift registers, like counters, are a form of sequential logic.
Sequential logic, unlike Combinational Logic is not only affected
by the present inputs, but also, by the prior history. In other
words, sequential logic remembers past events.

Types of Shift Registers:

 Serial-in/serial-out

 Parallel-in/serial-out

 Serial-in/parallel-out

 Universal parallel-in/parallel-out

153

Shift Register:

Serial-in to Parallel-Out Register:

154

Serial in to Parallel Output:

Serial-in to Serial out Register:

155

Serial in to Serial Output:

Parallel-in Serial out Register:

156

Parallel in to Serial Output:

P to arallel-in to Parallel out Register:

157

Parallel in to Parallel Output:

Gated SR Latch

158

RS LATCH:

Gated D Latch

159

D LATCH:

Flip-Flop

 A flip-flop is a storage element based onthe gated latch
principle.

 It can have its output state changed onlyon the edge of the
controlling clocksignal.

Types Of Flip-flops:

 SR flip-flop (Set, Reset)

 T flip-flop (Toggle)

 D flip-flop (Delay)

 JK flip-flop

160

Flip flops:

 Edge-triggered flip-flop is affected only by the input values present when
the active edge ofthe clock occurs

 Master-slave flip-flop is built with twogated

 latches

 The master stage is active during half of the clock cycle, and the slave
stage is active during the other half.

 The output value of the flip-flop changes on theedge of the clock that
activates the transfer into the slave stage

161

Flip flops:

SR Flip-flop

162

SR Flip flop

SR Flip flop Excitation table and Timing diagram:

163

SR FLIPFLOP Excitation Table &Timing Diagram

D Flip flop

164

D FLIPFLOP:

D Flip-flop Excitation Table and Timing Diagram:

165

D FLIPFLOP Excitation Table &Timing Diagram:

T Flip-flop Using NOR gate:

166

T FLIPFLOP :

Jk Flipflop:

167

JK FLIPFLOP

JK Flip-flop Excitation Table and Timing Diagram:

168

JK FLIPFLOP

Master Slave JK Flip-flop

169

Master Slave JK FLIPFLOP

JK to SR Flipflop:

170

Jk to SR FLIPFLOP:

Characteristic Equations of Flip-flops:

171

Characteristic Equation:

Asynchronous Up-Down Counter:

172

Asynchronous Up/Down Counters:

Johnson Counter:

173

Johnson Counters:

Ring Counter:

174

Ring Counters:

Serial-in to Parallel-Out Register:

175

Serial in to Parallel Output:

Serial-in to Serial out Register:

176

Serial in to Serial Output:

Parallel-in Serial out Register:

177

Parallel in to Serial Output:

P to arallel-in to Parallel out Register:

178

Parallel in to Parallel Output:

Unit-IV
A/D AND D/A CONVERTERS

DATA CONVERTERS:

 In electronics a digital to analog converter is a system that
converts a digital signal into analog signal.

 An analog to digital converter is a system that converts a
analog signal into digital signal.

Introduction:

Data Converters:

CONVERTERS

• Classification of ADCs

– Direct type ADC.

– Integrating type ADC

• Direct type ADCs

• Flash (comparator) type converter

• Counter type converter

• Tracking or servo converter.

• Successive approximation type converter

Data Converters:

Integrating type converters:

An ADC converter that perform conversion in an indirect manner by

first changing the analog I/P signal to a linear function of time or

frequency and then to a digital code is known as integrating type

A/D converter.

Data Converters:

 Weighted resistor DAC

 R-2R ladder DAC

 Inverted R-2R ladder DAC

 IC 1408 DAC

DAC TECHNIQUES:

Weighted Resistor DAC

Vref

DAC TECHNIQUES:

DAC TECHNIQUES:

Inverted R-2R DAC

IC 1408 DAC & Inverted R-2R DACINVERTED R-2R DAC:

IC 1408 DAC

INVERTED R-2R DAC:

IC 1408 DAC Specifications:

 Resolution

 Non-linearity or Linearity Error

 Gain error and Offset Error

 Settling Time

INVERTED R-2R DAC:

IC 1408 DAC Applications:

 Microcomputer interfacing

 CRT Graphics Generation

 Programmable Power Supplies

 Digitally controlled gain circuits

 Digital Filters

INVERTED R-2R DAC:INVERTED R-2R DAC:

DAC characteristics:

 Resolution

 Reference Voltage

 Speed

 Settling Time

 Linearity

INVERTED R-2R DAC:DAC CLASSIFICATIONS AND SPECIFICATIONS:

Resolution:

 The change in output voltage for a change of the LSB.

 Related to the size of the binary representation of the voltage. (8-
bit)

 Higher resolution results in smaller steps between voltage values

DAC CLASSIFICATIONS AND SPECIFICATIONS:DAC CLASSIFICATIONS AND SPECIFICATIONS:

Reference Voltage:

 Multiplier DAC

-Reference voltage is a constant set by the manufacturer

 Non-Multiplier DAC

-Reference voltage is variable

 Full scale Voltage

-Slightly less than the reference voltage (Vref-VLSB)

DAC CLASSIFICATIONS AND SPECIFICATIONS:

Speed:

 Also called the conversion rate or sampling rate –rate at which
the register value is updated.

 For sampling rates of over 1 MHz a DAC is designated as high
speed.

 Speed is limited by the clock speed of the microcontroller
and the settling time of the DAC.

DAC CLASSIFICATIONS AND SPECIFICATIONS:

Settling Time:

 Time in which the DAC output settles at the desired value ± ½
VLSB.

 Faster DACs decrease the settling time.

DAC CLASSIFICATIONS AND SPECIFICATIONS:

Linearity:

 Represents the relationship between digital values and analog
outputs.

 Should be related by a single proportionality constant. (constant
slope).

DAC CLASSIFICATIONS AND SPECIFICATIONS:

ADC Techniques:

 Flash ADC

 Sigma-delta ADC

 Dual slope converter

 Successive approximation converter

ADC:

• A Successive Approximation Register (SAR) is added to the circuit

• Instead of counting up in binary sequence, this register counts by

trying all values of bits starting with the MSB and finishing at the

LSB.

• The register monitors the comparators output to see if the binary

count is greater or less than the analog signal input and adjusts the

bits accordingly

SUCCESSIVE APPROXIMATION :

Advantages

• Capable of high speed and reliable

• Medium accuracy compared to other ADC types

• Good tradeoff between speed and cost

• Capable of outputting the binary number in serial (one bit at a

time) format.

SUCCESSIVE APPROXIMATION :

Successive Approximation ADC

Disadvantages

• Higher resolution successive approximation ADC’s will be
slower

• Speed limited to ~5Msamples/s

SUCCESSIVE APPROXIMATION :

FLASH CONVERTERS

• Consists of a series of comparators, each one comparing the input

signal to a unique reference voltage.

• The comparatoroutputs connect to the inputs of a priority

encoder circuit, which produces a binary output

FLASH CONVERSION:

FLASH CONVERTERS

• Consists of a series of comparators, each one comparing the input

signal to a unique reference voltage.

• The comparatoroutputs connect to the inputs of a priority

encoder circuit, which produces a binary output

FLASH CONVERSION:

FLASH CONVERTERS

• Consists of a series of comparators, each one comparing the input

signal to a unique reference voltage.

• The comparatoroutputs connect to the inputs of a priority

encoder circuit, which produces a binary output

FLASH CONVERSION:

FLASH CONVERTERS

FLASH CONVERSION:

FLASH CONVERTERS

• As the analog input voltage exceeds the reference voltage at each

comparator, the comparator outputs will sequentially saturate to a

high state.

• The priority encoder generates a binary number based on the
highest-

order active input, ignoring all other active inputs.

FLASH CONVERSION:

SEMICONDUCTOR MEMORIES AND PROGRAMMABLE LOGIC
DEVICES

MODULE-V

Memory Organization:

 A memory unit is the collection of storage units or devices
together. The memory unit stores the binary information in the
form of bits. Memory/storage is classified into 2 categories:

 Volatile Memory: This loses its data, when power is switched off.

 Non-Volatile Memory: This is a permanent storage and does not
lose any data when power is switched off.

207

Memory Organization:

208

 Auxiliary memory access time is generally 1000 times that of the
main memory, hence it is at the bottom of the hierarchy.

 The main memory occupies the central position because it is
equipped to communicate directly with the CPU and with
auxiliary memory devices through Input/output processor (I/O).

 he cache memory is used to store program data which is
currently being executed in the CPU.

Memory :

Memory Access Methods

 Each memory type, is a collection of numerous memory
locations. To access data from any memory, first it must be
located and then the data is read from the memory location.
Following are the methods to access information from memory
locations:

 Random Access: Main memories are random access memories,
in which each memory location has a unique address. Using this
unique address any memory location can be reached in the
same amount of time in any order.

 Sequential Access: This methods allows memory access in a
sequence or in order.

 Direct Access: In this mode, information is stored in tracks, with
each track having a separate read/write head.

209

Memory Access Method :

Main Memory:

 The memory unit that communicates directly within the CPU,
Auxillary memory and Cache memory, is called main memory. It
is the central storage unit of the computer system. It is a large
and fast memory used to store data during computer
operations. Main memory is made up of RAM and ROM, with
RAM integrated circuit chips holing the major share.

 RAM: Random Access Memory

 DRAM: Dynamic RAM, is made of capacitors and transistors,
and must be refreshed every 10~100 ms. It is slower and
cheaper than SRAM.

 SRAM: Static RAM, has a six transistor circuit in each cell and
retains data, until powered off.

210

Main Memory :

 Auxiliary Memory

 Devices that provide backup storage are called auxiliary
memory. For example: Magnetic disks and tapes are commonly
used auxiliary devices. Other devices used as auxiliary memory
are magnetic drums, magnetic bubble memory and optical disks.

 It is not directly accessible to the CPU, and is accessed using the
Input/Output channels.

211

Main Memory :

 Memory size

The size of memory sticks these days range from 64 MB up to
32 GB giving you plenty of options when it comes to choosing
the size of storage space on your memory stick.

 Content-addressable memory (CAM) :Content-addressable
memory (CAM) is a special type of computer memory used in
certain very-high-speed searching applications. It is also known
as associative memory, associative storage, or associative array,
although the last term is more often used for a programming
data structure.

212

Main Memory :

Charge-coupled device:

 A charge-coupled device (CCD) is a device for the movement of
electrical charge, usually from within the device to an area where
the charge can be manipulated, for example conversion into a
digital value. This is achieved by "shifting" the signals between
stages within the device one at a time.

 In recent years CCD has become a major technology for digital
imaging (MOS) capacitors. These capacitors are biased above the
threshold for inversion when image acquisition begins, allowing
the conversion of incoming photons into electron charges at the
semiconductor-oxide interface;

 the CCD is then used to read out these charges. exacting quality
demands, such as consumer and professional digital cameras,
active pixel sensors, also known as complementary metal-oxide-
semiconductors (CMOS) are generally used; the large quality
advantage CCDs enjoyed early on has narrowed over time.

213

Main Memory :

Programmable logic device:

 A programmable logic device (PLD) is an electronic component
used to build reconfigurable digital circuits. Unlike integrated
circuits (IC) which consist of logic gates and have a fixed
function, a PLD has an undefined function at the time of
manufacture. Before the PLD can be used in a circuit it must be
programmed

214

Programmable logic device

FPGA:

 FPGAs use a grid of logic gates, and once stored, the data
doesn't change, similar to that of an ordinary gate array. The
term "field-programmable" means the device is programmed by
the customer, not the manufacturer.

 FPGAs are usually programmed after being soldered down to
the circuit board, in a manner similar to that of larger CPLDs. In
most larger FPGAs, the configuration is volatile and must be re-
loaded into the device whenever power is applied or different
functionality is required. Configuration is typically stored in a
configuration PROM or EEPROM. EEPROM versions may be in-
system programmable (typically via JTAG).

215

FPGA:

