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Digital Image Processing 

An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial   (plane) 

coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray 

level of the image at that point. When x, y, and the amplitude values of f are all finite, discrete 

quantities, we call the image a digital image. The field of digital image processing refers to 

processing digital images by means of a digital computer. Note that a digital image is composed of a 

finite number of elements, each of which has a particular location and  value. These elements are 

referred to as picture elements, image elements, pels, and pixels. Pixel is the term most widely used 

to denote the elements of a digital image. 

Vision is the most advanced of our senses, so it is not surprising that images play the single most 

important role in human perception. However, unlike humans, who are limited to the visual band of 

the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging 

from gamma to radio waves. They can operate on images generated by sources that humans are not 

accustomed to associating with images. These include ultra-sound, electron microscopy, and 

computer-generated images. Thus, digital image processing encompasses a wide and varied field of 

applications. There is no general agreement among  authors regarding where image processing stops 

and other related areas, such as image analysis and computer vision, start. Sometimes a distinction is 

made by defining image processing as a discipline in which both the input and output of a process 

are images. We believe this to be a limiting and somewhat artificial boundary. For example, under 

this definition, even  the trivial  task of computing the average intensity of an image (which yields a 

single number) would not be considered an image processing operation. On the other hand, there are 

fields such as computer vision whose ultimate goal is to use computers to emulate human vision, 

including learning and being able to make inferences and take actions based on visual inputs. This 

area itself is a branch of artificial intelligence (AI) whose objective is to emulate human intelligence. 

The field of AI is in its earliest stages of infancy in terms of development, with progress having been 

much slower than originally anticipated. The area of image analysis (also called image 

understanding) is in between image processing and computer vision. 

There are no clear-cut boundaries in the continuum from image processing at 

one end to computer vision at the other. However, one useful paradigm is to consider three types of 

computerized processes in this continuum: low-, mid-, and high-level processes. Low- level 

processes involve primitive operations such as image preprocessing to reduce  noise,  contrast 

enhancement, and image sharpening. A low-level process is characterized by the  fact  that both its 

inputs and outputs are images. Mid-level processing on  images involves tasks such  as segmentation 

(partitioning an image into regions or objects), description of those objects to reduce them to a form 

suitable for computer processing, and classification (recognition) of individual objects. A mid-level 

process is characterized by the fact that its inputs generally are  images, but its outputs are 

attributes extracted from those images (e.g., edges, contours, and the identity of individual objects). 
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Finally, higher-level processing involves ―making sense‖ of an ensemble of recognized objects, as in 

image analysis, and, at the far end of the continuum, performing the cognitive functions normally 

associated with vision and,  in  addition,  encompasses processes that extract attributes from images, 

up to and including the recognition of individual objects. As a simple illustration to clarify these 

concepts, consider the area of automated analysis of text. The processes of acquiring an image of the 

area containing the text, preprocessing that image, extracting (segmenting) the individual characters, 

describing the characters in a form suitable for computer processing, and recognizing those  

individual  characters are in the scope of what we call digital image processing. 

        Representing Digital Images: 
 

We will use two principal ways to represent digital images. Assume that an image f(x, y) is sampled 

so that the resulting digital image has M rows and N columns. The values of the coordinates (x, y) 

now become discrete quantities. For notational clarity and convenience, we  shall use integer values 

for these discrete coordinates. Thus, the values of the coordinates at the origin are (x, y) = (0, 0). The 

next coordinate values along the first row of the image are represented as (x, y) = (0, 1). It is 

important to keep in mind that the notation (0, 1) is used to signify the second sample along the first 

row. It does not mean that these are the actual values of physical coordinates when the image was 

sampled. Figure 1 shows the coordinate convention used. 

 

 

 

 
Figure1: Coordinate convention used to represent digital images 

The notation introduced in the preceding paragraph allows us to write the complete M*N digital 

image in the following compact matrix form: 
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The right side of this equation is by definition a digital image. Each element of this matrix 

array   is called an image element, picture element, pixel, or pel. 

        

        Fundamental Steps in Digital Image Processing: 
 

Image acquisition is the first process shown in Fig.2. Note that acquisition could be as simple as 

being given an image that is already in digital form. Generally, the image acquisition stage involves 

preprocessing, such as scaling. 

Image enhancement is among the simplest and most appealing areas of digital image processing. 

Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to 

highlight certain features of interest in an image. A familiar example of enhancement is when we 

increase the contrast of an image because ―it looks better.‖ It is important to keep in mind that 

enhancement is a very subjective area of image processing. 

Image restoration is an area that also deals with improving the appearance of an image.  However, 

unlike enhancement, which is subjective, image restoration is objective, in the sense that restoration 

techniques tend to be based on mathematical or probabilistic models of image degradation. 

Enhancement, on the other hand, is based on human subjective preferences regarding what 

constitutes a ―good‖ enhancement result. 

Color image processing is an area that has been gaining in importance because of the significant 

increase in the use of digital images over the Internet. 

 

 
 



 

6 

 

 
 

Figure2: Fundamental steps in Digital Image Processing 

 
Wavelets are the foundation for representing images in various degrees of resolution. Compression, 

as the name implies, deals with techniques for reducing the storage required to   save an image, or the 

bandwidth required to transmit it. Although storage technology has improved significantly over the 

past decade, the same cannot be said for transmission capacity. This is true particularly in uses of the 

Internet, which are characterized by significant pictorial content. Image compression is familiar 

(perhaps inadvertently) to most users of computers in the form of image file extensions, such as the 

jpg file extension used in the  JPEG  (Joint  Photographic Experts Group) image compression 

standard. 

Morphological processing deals with tools for extracting image components that are useful in the 

representation and description of shape. 

Segmentation procedures partition an image into its constituent parts or objects. In general, 

autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged 

segmentation procedure brings the process a long way toward successful solution of imaging 

problems that require objects to be identified individually. On the other hand, weak or erratic 

segmentation algorithms almost always guarantee eventual failure. In general, the more accurate the 

segmentation, the more likely recognition is to succeed. 

Representation and description almost always follow the output of a segmentation stage, which 

usually is raw pixel data, constituting either the boundary of a region (i.e., the set of pixels separating 

one image region from another) or all the points in the region itself. In either case, converting  the 
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data to a form suitable for computer processing is necessary. The first decision  that must be made is 

whether the data should be represented as a boundary or as a complete region. Boundary 

representation is appropriate when the focus is on external  shape  characteristics, such as corners and 

inflections. Regional representation is appropriate when the focus is on internal properties, such as 

texture or skeletal shape. In some applications, these representations complement each other. 

Choosing a representation is only part of the solution for transforming raw data into a form suitable 

for subsequent computer processing. A method must also be specified for describing the data so that 

features of interest are highlighted. Description, also called feature selection, deals with extracting 

attributes that result in some quantitative information of interest or are basic for differentiating one 

class of objects from another. 

Recognition is the process that assigns a label (e.g., ―vehicle‖) to an object based on its descriptors. 

We conclude our coverage of digital image processing with the development of methods for 

recognition of individual objects. 

        Components of an Image Processing System: 
 

As recently as the mid-1980s, numerous models of image processing systems being sold throughout 

the world were rather substantial peripheral devices that attached to  equally  substantial host 

computers. Late in the 1980s and early in the 1990s, the market shifted to image processing hardware 

in the form of single boards designed to be compatible with industry standard buses and to fit into 

engineering workstation cabinets and personal computers. In addition to lowering costs, this market 

shift also served as a catalyst for a significant number of new companies whose specialty is the 

development of software written specifically for image processing. 

 

 

Although large-scale image processing systems still are being sold for massive imaging 

applications, such as processing of satellite images, the trend continues toward miniaturizing and 

blending of general-purpose small computers with specialized  image processing hardware. Figure 3 

shows the basic components comprising a typical general-purpose system used for digital image 

processing. The function of each component is discussed in the following paragraphs, starting with 

image sensing. 

With reference to sensing, two elements are required to acquire digital images. The first is a physical 

device that is sensitive to the energy radiated by the object we wish to image. The  second, called a 

digitizer, is a device for converting the output of the physical sensing device into digital form. For 

instance, in a digital video camera, the sensors produce an electrical output proportional to light 

intensity. The digitizer converts these outputs to digital data. Specialized image processing hardware 

usually consists of the digitizer just mentioned, plus hardware that performs other primitive 

operations, such as an arithmetic logic unit (ALU), which performs arithmetic and logical operations 
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in parallel on entire images. One example of how an ALU is used is in averaging images as quickly 

as they are digitized, for the purpose of noise reduction. This type of hardware sometimes is called a 

front-end subsystem, and its most distinguishing characteristic is speed. In other words, this unit 

performs  functions that require  fast data throughputs (e.g., digitizing and averaging video images at 

30 framess) that the typical main computer cannot handle. 

 

 
 

 
Figure3: Components of a general purpose Image Processing System 

 
The computer in an image processing system is a general-purpose computer and can range from a PC 

to a supercomputer. In dedicated applications, sometimes specially designed computers are used to 

achieve a required level of performance, but our interest here is on general-purpose 

image processing systems. In these systems, almost any well-equipped PC-type machine is suitable 

for offline image processing tasks.Software for image processing consists of specialized modules 

that perform specific tasks. A well-designed package also includes the capability for the user to write 

code that, as a minimum, utilizes the specialized modules. More sophisticated software packages 

allow the integration of those modules and general-purpose software commands from at least one 

computer language. 

Mass storage capability is a must in image processing applications. An image of size 1024*1024 

pixels, in which the intensity of each pixel is an 8-bit quantity, requires one megabyte of storage 

space if the image is not compressed. When dealing with thousands, or even millions, of images, 

providing adequate storage in an image processing system can be a challenge. Digital storage for 
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image processing applications falls into three principal categories: (1) short-term storage for use 

during processing, (2) on-line storage for relatively fast re-call, and (3) archival storage, 

characterized by infrequent access. Storage is measured in bytes (eight bits), Kbytes (one thousand 

bytes), Mbytes (one million bytes), G bytes (meaning giga, or one billion, bytes), and T bytes 

(meaning tera, or one trillion, bytes). One method of providing short-term storage is computer 

memory. Another is by specialized boards, called frame buffers, that store one or more images and 

can be accessed rapidly, usually at video rates (e.g., at 30 complete images per second).The latter 

method allows virtually instantaneous image zoom, as well as scroll (vertical shifts) and pan 

(horizontal shifts). Frame buffers usually are housed in the specialized image processing hardware 

unit shown in Fig.3.Online storage generally takes the form of magnetic disks or optical-media 

storage. The key factor characterizing on-line storage is frequent access to the stored data. Finally, 

archival storage is characterized by massive storage requirements but infrequent need for access. 

Magnetic tapes and optical disks housed in ―jukeboxes‖ are the usual media for archival applications. 

Image displays in use today are mainly color (preferably flat screen) TV monitors. Monitors are 

driven by the outputs of image and graphics display cards that are an integral part  of  the computer 

system. Seldom are there requirements for image display applications that cannot be  met by display 

cards available commercially as part of the computer system. In some cases, it is necessary to have 

stereo displays, and these are implemented in the form of headgear containing two small displays 

embedded in goggles worn by the user. 

Hardcopy devices for recording images include laser printers, film cameras, heat-sensitive  devices, 

inkjet units, and digital units, such as optical and CD-ROM disks. Film provides the highest possible 

resolution, but paper is the obvious medium of choice for written material. For presentations, images 

are displayed on film transparencies or in a digital medium if image projection equipment is used. 

The latter approach is gaining acceptance as the standard for image presentations. Networking is 

almost a default function in any computer system in use today. Because of the  large amount of data 

inherent in image processing applications, the key consideration in image transmission is bandwidth. 

In dedicated networks, this typically is not a problem, but communications with remote sites via the 

Internet are not always as efficient. Fortunately, this situation is improving quickly as a result of 

optical fiber and other broadband technologies. 

              Elements of Visual Perception: 
 

Although the digital image processing field is built on a foundation of mathematical and probabilistic 

formulations, human intuition and analysis play a central role in the choice of one technique versus 

another, and this choice often is made based on subjective, visual judgments. 

(1) Structure of the Human Eye: 
 

Figure 4.1 shows a simplified horizontal cross section of the human eye. The eye is nearly a sphere, 

with an average diameter of approximately 20 mm. Three  membranes enclose the  eye: the cornea 
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and sclera outer cover; the choroid; and the retina. The cornea is a tough, transparent tissue that 

covers the anterior surface of the eye. Continuous with the cornea, the sclera is an opaque membrane 

that encloses the remainder of the optic globe. The choroid lies directly below the sclera. This 

membrane contains a network of blood vessels that serve as the major source of nutrition to the eye. 

Even superficial injury to the choroid, often not deemed serious, can lead to severe eye damage as a 

result of inflammation that restricts blood flow. The choroid coat is heavily pigmented and hence 

helps to reduce the amount of extraneous light entering the eye and the backscatter within the optical 

globe. At its anterior extreme, the choroid is divided into the ciliary body and the iris diaphragm. The 

latter contracts or expands to control the amount of light that enters the eye. The central opening of 

the iris (the pupil) varies in diameter from approximately 2 to 8 mm. The front of the iris contains the 

visible pigment of the eye, whereas  the back contains a black pigment. 

The lens is made up of concentric layers of fibrous cells and is suspended by fibers that attach to the 

ciliary body. It contains 60 to 70%water, about 6%fat, and more protein than any other tissue in the 

eye. The lens is colored by a slightly yellow pigmentation that increases with age. In extreme cases, 

excessive clouding of the lens, caused by the affliction commonly referred to as cataracts, can lead to 

poor color discrimination and loss of clear vision. The lens absorbs approximately 8% of the visible 

light spectrum, with relatively higher absorption at shorter wavelengths. Both infrared and ultraviolet 

light are absorbed appreciably by proteins within the lens structure and, in excessive amounts, can 

damage the eye. 

 

 

 
 

Figure4.1: Simplified diagram of a cross section of the human eye. 

 
The innermost membrane of the eye is the retina, which lines the inside of the wall’s entire posterior 

portion. When the eye is properly focused, light from an object outside the eye is  imaged on the 
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retina. Pattern vision is afforded by the distribution of discrete light receptors over the surface of the 

retina. There are two classes of receptors: cones and rods. The cones in each   eye number between 

6 and 7 million. They are located primarily in the central portion of the retina, called the fovea, 

and are highly sensitive to color. Humans can resolve fine details with these cones largely because 

each one is connected to its own nerve end. Muscles controlling the eye rotate the eyeball until the 

image of an object of interest falls on the fovea. Cone vision is called photopic or bright-light vision. 

The number of rods is much larger: Some  75  to 150  million are distributed over the retinal surface. 

The larger area of distribution and the fact that several rods are connected to a single nerve end 

reduce the amount of detail discernible by these receptors. Rods serve to give a general, overall 

picture of the field of view. They are not involved in color vision and are sensitive to low levels of 

illumination. For example, objects that appear brightly colored in daylight when seen by moonlight 

appear as colorless forms because only the rods are stimulated. This phenomenon is known as 

scotopic or dim-light vision. 

(2) Image Formation in the Eye: 
 

The principal difference between the lens of the eye and an ordinary optical lens is  that the  former 

is flexible. As illustrated in Fig. 4.1, the radius of curvature of the anterior surface of the lens is 

greater than the radius of its posterior surface. The shape of the lens is controlled by  tension in the 

fibers of the ciliary body. To focus on distant objects,  the  controlling  muscles cause the lens to be 

relatively flattened. Similarly, these muscles allow the  lens  to  become thicker in order to focus on 

objects near the eye. The distance between the center of the lens and the retina (called the focal 

length) varies from approximately 17 mm to about 14 mm, as the refractive power of the lens 

increases from its minimum to its maximum. When the eye 

 
 

 
 

 
                                                Figure4.2: Graphical representation of the eye looking at a palm tree Point C is the 

optical center of the lens. 

 
Focuses on an object farther away than about 3 m, the lens exhibits its lowest refractive 

power. When the eye focuses on a nearby object, the lens is most strongly refractive. This 

information makes it easy to calculate the size of the retinal image of any object. In Fig. 4.2, for 
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example, the observer is looking at a tree 15 m high at a distance of 100 m. If h is the height in mm 

of that object in the retinal image, the geometry of Fig.4.2 yields 15/100=h/17 or h=2.55mm. The 

retinal image is reflected primarily in the area of the fovea. Perception then takes place by the 

relative excitation of light receptors, which transform radiant energy into electrical impulses that 

are ultimately decoded by the brain. 

 
(3) Brightness Adaptation and Discrimination: 

 

Because digital images are displayed as a discrete set of intensities, the eye’s ability to discriminate 

between different intensity levels is an important consideration in presenting image- processing 

results. The range of light intensity levels to which the human visual system can adapt is enormous—

on the order of 10
10

—from the scotopic threshold to the glare limit. Experimental evidence indicates 

that subjective brightness (intensity as perceived by the human visual system) is a logarithmic 

function of the light intensity incident on the eye. Figure 4.3, a plot of light intensity versus 

subjective brightness, illustrates this characteristic. The long solid curve represents the range of 

intensities to which the visual system can adapt. In photopic vision alone, the range is about 10
6
. The 

transition from scotopic to photopic vision is gradual over the approximate range from 0.001 to 0.1 

millilambert (–3 to –1 mL in the log scale), as the double branches of the adaptation curve in this 

range show. 

Figure 4.3. Range of Subjective brightness sensations showing a particular adaptation level. 

The essential point in interpreting the impressive dynamic range depicted in Fig.4.3 is that the visual 

system cannot operate over such a range simultaneously. Rather, it accomplishes this large variation 

by changes in its overall sensitivity, a phenomenon known as brightness adaptation.   The total range 

of distinct intensity levels it can discriminate simultaneously is rather small when compared with the 

total adaptation range. For any given set of conditions, the current sensitivity level of the visual 
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system is called the brightness adaptation level, which may correspond, for example, to brightness 

Ba in Fig. 4.3. The short intersecting curve represents the range of subjective brightness that the eye 

can perceive when adapted to this level. This range is rather restricted, having a level Bb at and 

below which all stimuli are perceived as indistinguishable blacks. The upper (dashed) portion of the 

curve is not actually restricted but, if extended too far, loses its meaning because much higher 

intensities would simply raise the adaptation level higher than Ba. 

        Image Sensing and Acquisition: 
 

The types of images in which we are interested are generated by the combination of an 

―illumination‖ source and the reflection or absorption of energy from that source by the elements of 

the ―scene‖ being imaged. We enclose illumination and scene in quotes to emphasize the fact that 

they are considerably more general than the familiar situation in which a visible light source 

illuminates a common everyday 3-D (three-dimensional) scene. For example, the illumination may 

originate from a source of electromagnetic energy such as radar, infrared, or X-ray energy. But, as 

noted earlier, it could originate from less traditional sources, such as ultrasound or even a computer-

generated illumination pattern. 

Similarly, the scene elements could be familiar objects, but they can just as easily be molecules, 

buried rock formations, or a human brain. We could even image a source, such as acquiring images 

of the sun. Depending on the nature of the source, illumination energy  is reflected  from, or 

transmitted through, objects. An example in the first category is light reflected from a planar surface. 

An example in the 

 second category is when X-rays pass through a patient’s body for the purpose of generating a 

diagnostic X-ray film. In some applications, the reflected or transmitted energy is focused onto a 

photo converter (e.g., a phosphor screen), which converts the energy   into visible light. Electron 

microscopy and some applications of gamma imaging use this approach. 

Figure 5.1 shows the three principal sensor arrangements used to transform illumination energy into 

digital images. The idea is simple: Incoming energy is transformed into a voltage by the combination 

of input electrical power and sensor material that is responsive to the particular type of energy being 

detected. The output voltage waveform is the response of the sensor(s), and a digital quantity is 

obtained from each sensor by digitizing its response. 
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Figure5.1: (a) Single imaging Sensor (b) Line sensor (c) Array sensor 

 
(1) Image Acquisition Using a Single Sensor: 

 

Figure 5.1 (a) shows the components of a single sensor. Perhaps the most familiar sensor of this type 

is the photodiode, which is constructed of silicon materials and whose output voltage waveform is 

proportional to light. The use of a filter in front of a sensor improves selectivity. For example, a 

green (pass) filter in front of a light sensor favors light in the green band of the color 

spectrum. As a consequence, the sensor output will be stronger for green light than for other 

components in the visible spectrum. 

In order to generate a 2-D image using a single sensor, there has to be relative displacements in both 

the x- and y-directions between the sensor and the area to be imaged. Figure 5.2 shows an 

arrangement used in high-precision scanning, where a film negative is mounted onto a drum whose 

mechanical rotation provides displacement in one dimension. The single sensor  is  mounted on a 

lead screw that provides motion in the perpendicular direction. Since mechanical motion can be 

controlled with high precision, this method is an inexpensive (but slow) way to obtain high-

resolution images. Other similar mechanical arrangements use a flat bed, with the sensor moving in 

two linear directions. These types of mechanical digitizers sometimes are referred to as 

microdensitometers. 
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Figure 5.2: Combining a single sensor with motion to generate a 2-D image 

 
(2) Image Acquisition Using Sensor Strips: 

 

A geometry that is used much more frequently than single sensors consists of an in-line arrangement 

of sensors in the form of a sensor strip, as Fig. 5.1 (b) shows. The strip provides imaging elements in 

one direction. Motion perpendicular to the strip provides imaging in  the  other direction, as shown in 

Fig. 5.3 (a).This is the type of arrangement used in most flat bed scanners. Sensing devices with 4000 

or more in-line sensors are possible. In-line sensors are used routinely in airborne imaging 

applications, in which the imaging system is mounted  on  an  aircraft that flies at a constant altitude 

and speed over the geographical area to be imaged. One- dimensional imaging sensor strips that 

respond to various bands of the electromagnetic spectrum are mounted perpendicular to the direction 

of flight. The imaging strip gives one line of an image 

at a time, and the motion of the strip completes the other dimension of a two-dimensional image. 

Lenses or other focusing schemes are used to project the area to be scanned onto the sensors. 

Sensor strips mounted in a ring configuration are used in medical and industrial imaging  to  obtain 

cross-sectional (―slice‖) images of 3-D objects, as Fig. 5.3 (b) shows. A rotating X-ray source 

provides illumination and the portion of the sensors opposite the source collect the X-ray energy that 

pass through the object (the sensors obviously have to be sensitive to X-ray energy).This is the basis 

for medical and industrial computerized axial tomography (CAT). It is important to note that the 

output of the sensors must be processed by reconstruction algorithms whose objective is to transform 

the sensed data into meaningful cross-sectional images. 

In other words, images are not obtained directly from the sensors by motion alone; they require 

extensive processing. A 3-D digital volume consisting of stacked images is generated as the  object is 

moved in a direction perpendicular to the sensor  ring. Other  modalities of imaging  based on the 

CAT principle include magnetic resonance imaging (MRI) and positron emission tomography 

(PET).The illumination sources, sensors, and types of images are different, but conceptually they are 

very similar  
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to the basic imaging approach shown in Fig. 5.3 (b). 

 

 

 
 

 
                                           Figure.5.3 (a) Image acquisition using a linear sensor strip (b) Image acquisition using a 

circular sensor strip. 

(3) Image Acquisition Using Sensor Arrays: 
 

Figure 5.1 (c) shows individual sensors arranged in the form of a 2-D array. Numerous 

electromagnetic and some ultrasonic sensing devices frequently are arranged in an array format. This 

is also the predominant arrangement found in digital cameras. A typical sensor for these cameras is a 

CCD array, which can be manufactured with a broad range of sensing properties    and can be 

packaged in rugged arrays of 4000 * 4000 elements or more. CCD sensors are used widely in digital 

cameras and other light sensing instruments. The response of each sensor is proportional to the 

integral of the light energy projected onto the surface of the sensor, a property that is used in 

astronomical and other applications requiring low noise images.  

 

Noise reduction is achieved by letting the sensor integrate the input light signal over minutes or even 

hours. Since  the sensor array shown in Fig. 5.4 (c) is two dimensional, its key advantage is that a 

complete image can be obtained by focusing the energy pattern onto the surface of the array. The 

principal manner in which array sensors are used is shown in  Fig.5.4. This figure shows the energy 

from  an illumination source being reflected from a scene element, but, as mentioned at the 

beginning   of this section, the energy also could be transmitted through the scene elements. The  first  

function performed by the imaging system shown in Fig.5.4 (c) is to collect the incoming energy and 

focus it onto an image plane. If the illumination is light, the front end of the imaging system  is a 
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lens, which projects the viewed scene onto the lens focal plane, as Fig. 2.15(d) shows. The sensor 

array, which is coincident with the focal plane, produces outputs proportional to  the integral of the 

light received at each sensor. Digital and analog circuitry sweep these outputs and converts them to a 

video signal, which is then digitized by another section of the imaging system. The output is a digital 

image, as shown diagrammatically in Fig. 5.4 (e). 

 

 

 
                       Fig.5.4 An example of the digital image acquisition process (a) Energy (―illumination‖) source  

                                          (b) An element of a scene (c) Imaging system (d) Projection of the scene onto the image 

plane (e) Digitized image 

Image Sampling and Quantization: 
 

The output of most sensors is a continuous voltage waveform whose amplitude and spatial behavior 

are related to the physical phenomenon being sensed. To create a digital image, we   need to convert 

the continuous sensed data into digital form. This involves two processes: sampling and quantization. 

       Basic Concepts in Sampling and Quantization: 
 

The basic idea behind sampling and quantization is illustrated in Fig.6.1. Figure 6.1(a) shows a 

continuous image, f(x, y), that we want to convert to digital form. An image may be continuous with 

respect to the x- and y-coordinates, and also in amplitude. To convert it to digital form, we have to 

sample the function in both coordinates and in amplitude. Digitizing the coordinate   values is called 

sampling. Digitizing the amplitude values is called quantization. 

The one-dimensional function shown in Fig.6.1 (b) is a plot of amplitude (gray level) values of  the 

continuous image along the line segment AB in Fig. 6.1(a).The random variations are due to image 

noise. To sample this function, we take equally spaced samples along line AB, as shown    in Fig.6.1 

(c).The location of each sample is given by a vertical tick mark in the bottom part of   the figure. The 

samples are shown as small white squares superimposed on the function. The set of these discrete 

locations gives the sampled function. However, the values of the samples still span (vertically) a 

continuous range of gray-level values. In order to form a digital function, the gray-level values also 
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must be converted (quantized) into discrete quantities. The right side of Fig. 6.1 (c) shows the gray-

level scale divided into eight discrete levels, ranging from black to white. The vertical tick marks 

indicate the specific value assigned to each of the eight gray    levels. The continuous gray levels are 

quantized simply by assigning one of the eight discrete gray levels to each sample. The assignment is 

made depending on the vertical proximity of a sample to a vertical tick mark. The digital samples 

resulting from both sampling and quantization are shown in Fig.6.1 (d). Starting at the top of the 

image and carrying out this procedure line by line produces a two-dimensional digital image.  

Sampling in the manner just described assumes that we have a continuous image in both coordinate 

directions as well as in amplitude. In practice, the method of sampling is determined by the sensor 

arrangement used to generate the image. When an image is generated by a single 

Sensing element combined with mechanical motion, as in Fig. 2.13, the output of the sensor is 

quantized in the manner described above. However, sampling is accomplished by selecting the 

number of individual mechanical increments at which we activate the sensor to collect data. 

Mechanical motion can be made very exact so, in principle; there is almost no limit as to how   fine 

we can sample an image. However, practical limits are established by imperfections in the optics 

used to focus on the 

 

 
                            Figure 6.1: Generating a digital image (a) Continuous image (b) A scan line from A to Bin the  

                                               Continuous image, used to illustrate the concepts of sampling and quantization (c) 
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Sampling and quantization. (d) Digital scan line 

 

Sensor an illumination spot that is inconsistent with the fine resolution achievable with mechanical 

displacements. When a sensing strip is used for image acquisition, the number of sensors in the strip 

establishes the sampling limitations in one image direction.  Mechanical motion in the other direction 

can be controlled more accurately, but it makes little sense to try to achieve sampling density in one 

direction that exceeds the sampling limits established by the number of sensors in the other. 

Quantization of the sensor outputs completes the process of generating a digital image. 

When a sensing array is used for image acquisition, there is no motion and the number of sensors in 

the array establishes the limits of sampling in both directions. Figure 6.2 illustrates this concept. 

Figure 6.2 (a) shows a continuous image projected onto the plane of an array sensor. Figure 6.2 (b) 

shows the image after sampling and quantization. Clearly, the quality of a digital image is 

determined to a large degree by the number of samples and discrete gray levels used in sampling and 

quantization. 

                                Figure 6.2: (a) Continuous image projected onto a sensor array (b) Result of image 

sampling and quantization. 

Spatial and Gray-Level Resolution: 
 

Sampling is the principal factor determining the spatial resolution of an image. Basically, spatial 

resolution is the smallest discernible detail in an image. Suppose that we construct a chart with 

vertical lines of width W, with the space between the lines also having width W.A line pair consists 

of one such line and its adjacent space. Thus, the width of a line pair  is 2W,  and  there are 1/2Wline 

pairs per unit distance. A widely used definition of resolution is simply the smallest number of 

discernible line pairs per unit distance; for example, 100 line pairs per millimeter. Gray-level 

resolution similarly refers to the smallest discernible change in gray level. We have considerable 

discretion regarding the number of samples used to generate a digital image, but    this is not true for 

the number of gray levels. Due to hardware considerations, the number of gray levels is usually an 

integer power of 2. 
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The most common number is 8 bits, with 16 bits being used in some applications where enhancement 

of specific gray-level ranges is necessary. Sometimes we find systems that can digitize the gray 

levels of an image with 10 or 12 bit of accuracy, but these are the exception  rather than the rule. 

When an  

actual measure of physical resolution relating pixels and  the level  of detail they resolve in the 

original scene are not necessary, it is not uncommon to refer to an L- level digital image of size M*N 

as having a spatial resolution of M*N pixels and a gray-level resolution of L levels. 

 

 

             Figure 7.1: A 1024*1024, 8-bit image sub sampled down to size 32*32 pixels The    number of allowable gray 

levels was kept at 256. 

The sub sampling was accomplished by deleting the appropriate number of rows and columns from 

the original image. For example, the 512*512 image was obtained by deleting every other row and 

column from the 1024*1024 image. The 256*256 image was generated by deleting every other row 

and column in the 512*512 image, and so on. The number of allowed gray levels was kept at 256. 

These images show the dimensional proportions between various sampling densities, but their size 

differences make it difficult to see the effects resulting from a reduction in the number of samples. 

The simplest way to compare these effects is to bring all the sub sampled images up to size 

1024*1024 by row and column pixel replication. The results are shown in Figs. 7.2 (b) through (f). 

Figure7.2 (a) is the same 1024*1024, 256-level image shown in Fig.7.1; it is repeated to facilitate 

comparisons. 
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Figure 7.2: (a) 1024*1024, 8-bit image (b) 512*512 image re sampled into 1024*1024 pixels by row and column    

                           Duplication (c) through (f) 256*256, 128*128, 64*64, and 32*32 images re sampled into 1024*1024 

pixels 

Compare Fig. 7.2(a) with the 512*512 image in Fig. 7.2(b) and note that it is virtually impossible to 

tell these two images apart. The level of detail lost is simply too fine to be seen on the printed page at 

the scale in which these images are shown. Next, the 256*256 image in Fig. 7.2(c) shows a very 

slight fine checkerboard pattern in the borders between flower petals and the black back- ground. A 

slightly more pronounced graininess throughout the image also is beginning to appear. These effects 

are much more visible in the 128*128 image in Fig. 7.2(d), and they become pronounced in the 

64*64 and 32*32 images in Figs. 7.2 (e) and (f), respectively. 

 

In the next example, we keep the number of samples constant and reduce the number of gray levels 

from 256 to 2, in integer powers of 2.Figure 7.3(a) is a 452*374 CAT projection image, displayed 

with k=8 (256 gray levels). Images such as this are obtained by fixing the X-ray source in one 

position, thus producing a 2-D image in any desired direction. Projection images are used as guides 

to set up the parameters for a CAT scanner, including tilt, number of slices, and range. Figures 7.3(b) 

through (h) were obtained by reducing the number of bits from k=7 to k=1 while keeping the spatial 

resolution constant at 452*374 pixels. The 256-, 128-, and 64-level images are visually identical for 

all practical purposes. The 32-level image shown in Fig. 7.3 (d), however, has an almost 

imperceptible set of very fine ridge like structures in areas of smooth gray levels (particularly in the 

skull).This effect, caused by the use of an insufficient number of gray levels in smooth areas of a 

digital image, is called false contouring, so called because the ridges resemble topographic contours 

in a map. False contouring generally is quite visible in images displayed using 16 or less uniformly 

spaced gray levels, as the images in Figs. 7.3(e) through (h) show. 
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Figure 7.3:  (a) 452*374, 256-level image (b)–(d) Image displayed in 128, 64, and 32 gray levels, while 
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keeping the spatial resolution constant (e)–(g) Image displayed in 16, 8, 4, and 2 gray levels. 

As a very rough rule of thumb, and assuming powers of 2 for convenience, images of size 256*256 

pixels and 64 gray levels are about the smallest images that can be expected to be reasonably free of 

objectionable sampling checker-boards and false contouring. 

The results in Examples 7.2 and 7.3 illustrate the effects produced on image quality by varying N and 

k independently. However, these results only partially answer the question of how varying N and k 

affect images because we have not considered yet any relationships that might exist between these 

two parameters. 

An early study by Huang [1965] attempted to quantify experimentally the effects on image quality 

produced by varying N and k simultaneously. The experiment consisted of a set of subjective tests. 

Images similar to those shown in Fig.7.4 were used. The woman’s face is representative of an image 

with relatively little detail; the picture of the cameraman contains an intermediate amount of detail; 

and the crowd picture contains, by comparison, a large amount of detail. Sets of these three types of 

images were generated by varying N and k, and observers    were then asked to rank them according 

to their subjective quality. Results were summarized in the form of so-called is preference curves in 

the Nk-plane (Fig.7.5 shows average is preference curves representative of curves corresponding to 

the images shown in Fig. 7.4).Each point in the Nk-plane represents an image having values of N and 

k equal to the coordinates of that point. 

 

 

 

                         Figure 7.4: (a) Image with a low level of detail (b) Image with a medium level of detail (c) Image with 

a relatively large amount of detail 

Points lying on an isopreference curve correspond to images of equal subjective quality. It was found 

in the course of the experiments that the isopreference curves tended to shift right and upward, but 

their shapes in each of the three image categories were similar to those shown in 

Fig. 7.5. This is not unexpected, since a shift up and right in the curves simply means larger  values 

for N and k, which implies better picture quality. 
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Figure 7.5: Representative is preference curves for the three types of images in Fig.7.4 

 

The key point of interest in the context of the present discussion is that is preference curves tend to 

become more vertical as the detail in the image increases. This result suggests that for images with a 

large amount of detail only a few gray levels may be needed. For example, the is preference curve in 

Fig.7.5 corresponding to the crowd is nearly  vertical. This indicates that, for a fixed value of N, the 

perceived quality for this type of image is nearly independent of the number of gray levels used. It is 

also of interest to note that perceived quality in the other two image categories remained the same in 

some intervals in which the spatial resolution was increased, but the number of gray levels actually 

decreased. The most likely reason for this result is that a decrease in k tends to increase the apparent 

contrast of an image, a visual effect that humans often perceive as improved quality in an image.      

Aliasing and Moiré Patterns: 

Functions whose area under the curve is finite can be represented in terms of sines and cosines of 

various frequencies. The sine/cosine component with the highest frequency determines the highest 

―frequency content‖ of the function. Suppose that this highest frequency is finite and that the 

function is of unlimited duration (these functions are called band-limited functions).Then, the 

Shannon sampling theorem [Brace well (1995)] tells us that, if the function is sampled at a rate equal 

to or greater than twice its highest frequency, it is possible to recover completely the original 

function from its samples. If the function is under sampled, then a phenomenon called aliasing 

corrupts the sampled image. The corruption is in the form of additional frequency components being 

introduced into the sampled function. These are called aliased frequencies.  Note that the sampling 

rate in images is the number of samples taken (in both spatial directions) per unit distance. 

As it turns out, except for a special case discussed in the following paragraph, it is impossible to 

satisfy the sampling theorem in practice. We can only work with sampled data that are finite in 

duration. We can model the process of converting a function of unlimited duration into a function of 

finite duration simply by multiplying the unlimited function by a ―gating function‖ that is valued 1 

for some interval and 0 elsewhere. Unfortunately, this function itself has frequency components that 

extend to infinity. Thus, the very act of limiting the duration of a band-limited function causes it to 

cease being band limited, which causes it to violate the key condition of the sampling theorem. The 
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principal approach for reducing the aliasing effects on an image is to reduce its high-frequency 

components by blurring the image prior to sampling. However, aliasing is always present in a 

sampled image. The effect of aliased frequencies can be seen under the right conditions in the form 

of so called Moiré patterns. 

There is one special case of significant importance in which a function of infinite duration can be 

sampled over a finite interval without violating the sampling theorem. When a function is periodic, it 

may be sampled at a rate equal to or exceeding twice its highest frequency and it is possible to 

recover the function from its samples provided that the sampling captures exactly an integer number 

of periods of the function. This special case allows us to illustrate vividly the Moiré effect. Figure 8 

shows two identical periodic patterns of equally spaced vertical bars, rotated in opposite directions 

and then superimposed on each other by multiplying the two images. A Moiré pattern, caused by a 

breakup of the periodicity, is seen in Fig.8 as a 2-D sinusoidal (aliased) waveform (which looks like 

a corrugated tin roof) running in a vertical direction. A similar pattern can appear when images are 

digitized (e.g., scanned) from a printed page, which consists of periodic ink dots. 

 

 

 
 

                      Figure 8: Illustration of the Moiré pattern effect 

 

The basic relationships and distance measures between pixels in a digital image. 

Neighbors of a Pixel: 

 

A pixel p at coordinates (x, y) has four horizontal and vertical neighbors whose coordinates are given 

by (x+1, y), (x-1, y), (x, y+1), (x, y-1). This set of pixels, called the 4-neighbors of p, is denoted by 

N4 (p). Each pixel is a unit distance from (x, y), and some of the neighbors of p lie outside the digital 

image if (x, y) is on the border of the image. 

The four diagonal neighbors of p have coordinates (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1) and 

are denoted by ND (p). These points, together with the 4-neighbors, are called the 8- neighbors of p, 

denoted by N8 (p). As before, some of the points in ND (p) and N8 (p) fall outside the image if (x, y) 

is on the border of the image. 
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        Connectivity: 

 

Connectivity between pixels is a fundamental concept that simplifies the definition of numerous 

digital image concepts, such as regions and boundaries. To establish if two pixels are connected, it 

must be determined if they are neighbors and if their gray levels satisfy a specified criterion of 

similarity (say, if their gray levels are equal). For instance, in a binary image with values 0 and 1, 

two pixels may be 4-neighbors, but they are said to be connected only if they have the same value. 

Let V be the set of gray-level values used to define adjacency. In a binary image, V={1} if we are 

referring to adjacency of pixels with value 1. In a grayscale image, the idea is the same, but set V 

typically contains more elements. For example, in the adjacency of pixels with a range of possible 

gray-level values 0 to 255, set V could be any subset of these 256 values. We consider three types of 

adjacency: 

(a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in the set N4 (p). 

 

(b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the set N8 (p). 

 

(c) m-adjacency (mixed adjacency).Two pixels p and q with values from V are m-adjacent if 

 

(i) q is in N4 (p), or 

 

(ii) q is in ND (p) and the set has no pixels whose values are from V. 

Mixed adjacency is a modification of 8-adjacency. It is introduced to eliminate the ambiguities that 

often arise when 8-adjacency is used. For example, consider the pixel arrangement shown in Fig.9 

(a) for V= {1}.The three pixels at the top of Fig.9 (b) show multiple (ambiguous) 8- adjacency, as 

indicated by the dashed lines. This ambiguity is removed by using m-adjacency, as shown in Fig. 9 

(c).Two image subsets S1 and S2 are adjacent if some pixel in S1 is adjacent to some pixel in S2. It 

is understood here and in the following definitions that adjacent means 4-, 8-, or m-adjacent. A 

(digital) path (or curve) from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is a 

sequence of distinct pixels with coordinates 

 

where       and pixels  

  are adjacent.  

In this case, n is the length of the path. If (xo, yo) = (xn, yn), the path is a closed path. We can define 4-

, 8-, or m-paths depending on the type of adjacency specified.  For example, the paths shown in Fig. 

9 (b) between the northeast and southeast points are 8-paths, and the path in Fig. 9 (c) is an m-path. 

Note the absence of ambiguity in the m-path. Let S represent a subset of pixels in an image. Two 
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pixels p and q are said to be connected in S if there exists a path between them consisting entirely of 

pixels in S. For any pixel p in S, the set of   pixels that are connected to it in S is called a connected 

component of S. If it only has one connected component, then set S is called a connected set. 

Let R be a subset of pixels in an image. We call R a region of the image if R is a connected set. The 

boundary (also called border or contour) of a region R is the set of pixels in the region that have one 

or more neighbors that are not in R. If R happens to be an entire image (which we    recall is a 

rectangular set of pixels), then its boundary is defined as the set of pixels in the first   and last rows 

and columns of the image. This extra definition  is required because an image has  no neighbors 

beyond its border. Normally, when we refer to a region, we are referring to a subset 

 

 

           Figure 9:  (a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed) to the center pixel; 

(c) m-adjacency 

 

 

of an image, and any pixels in the boundary of the region that happen to coincide with the border of 

the image are included implicitly as part of the region boundary. 

 

      Distance Measures: 

 

For pixels p, q, and z, with coordinates (x, y), (s, t), and (v, w), respectively, D is a distance function 

or metric if 

    

 

The Euclidean distance between p and q is defined as 

 

 

For this distance measure, the pixels having a distance less than or equal to some value r from(x, 

y) are the points contained in a disk of radius r centered at (x, y). 
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The D4 distance (also called city-block distance) between p and q is defined as 

 

 

 
In this case, the pixels having a D4 distance from (x, y) less than or equal to some value r form a 

diamond centered at (x, y). For example, the pixels with D4 distance ≤ 2 from (x, y) (the center point) 

form the following contours of constant distance: 

 

 

 

The pixels with D4 =1 are the 4-neighbors of (x, y). 

 

The D8 distance (also called chessboard distance) between p and q is defined as 

 

 

In this case, the pixels with D8 distance from(x, y) less than or equal to some value r form a  square 

centered at (x, y). For example, the pixels with D8 distance ≤ 2 from(x, y) (the center  point) form the 

following contours of constant distance: 

 

 

 

The pixels with D8=1 are the 8-neighbors of (x, y). Note that the D4 and D8 distances between p and q 

are independent of any paths that might exist between the points because these distances involve only the 

coordinates of the points. If we elect to consider m-adjacency, however, the Dm distance between two 

points is defined as the shortest m-path between the points. In this case, the distance between two pixels 

will depend on the values of the pixels along the path, as well as the values of their neighbors. For 

instance, consider the following arrangement of pixels and assume that p, p2 , and p4 have value 1 and 

that p1 and p3 can have a value of 0 or 1: 
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Suppose that we consider adjacency of pixels valued 1 (i.e. = {1}). If p1 and p3 are 0, the length   of 

the shortest m-path (the Dm distance) between p and p4 is 2. If p1 is 1, then p2 and p will no longer 

be m-adjacent (see the definition of m-adjacency) and the length of the shortest m-path becomes 3  

(the path goes through  the points pp1p2p4). Similar comments apply if p3 is 1 (and p1  is 0); in this 

case, the length of the shortest m-path also is 3. Finally, if both p1 and p3 are 1 the length of the 

shortest m-path between p and p4 is 4. In this case, the path goes through the sequence of points 

pp1p2p3p4. 

Perspective image transformation. 

A perspective tranformation (also called an imaging transformation) projects 3D points onto a plane. 

Perspective transformations play a central role in image processing because they provide an 

approximation to the manner in which an image is formed by viewing a 3D world. These 

transformations are fundamentally different, because they are nonlinear in that they involve division 

by coordinate values. Figure 10 shows a model of the image formation process. The camera 

coordinate system (x, y, z) has the image plane coincident with the xy plane and the optical axis 

(established by the center    of the lens) along the z axis. Thus the center of the image plane is at the 

origin, and the centre of the lens is at coordinates (0.0, λ). If the camera is in focus for distant objects, 

λ is the focal length of the lens. Here the assumption is that the camera coordinate system is aligned 

with the world coordinate system (X, Y, Z). 

Let (X, Y, Z) be the world coordinates of any point in a 3-D scene, as shown in the Fig. 10. We 

assume throughout the following discussion that Z> λ; that is all points of interest lie in front of the 

lens. The first step is to obtain a relationship that gives the coordinates (x, y) of the projection of the 

point (X. Y, Z) onto the image plane. This is easily accomplished by the use of similar triangles. 

With reference to Fig. 10, 

Figure 10:  Basic model of the imaging process the camera coordinate system (x, y, z)   

                                   is aligned with the world coordinate system (X, Y, Z) 
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Where the negative signs in front of X and Y indicate that image points are actually 

inverted, as the geometry of Fig.10 shows. The image-plane coordinates of the projected 3-

D point follow directly from above equations 
 

 

These equations are nonlinear becaus they involve division by the variable Z. Although we could use 

them directly as shown, it is often convenient to express them in linear matrix form,    for rotation, 

translation and scaling. This is easily accomplished by using homogeneous coordinates. The 

homogeneous coordinates of a point with Cartesian coordinates (X, Y, Z) are defined as    (kX, kY, 

kZ. k), where k is an arbitrary, nonzero constant. Clearly, conversion of homogeneous coordinates 

back to Cartesian coordinates is accomplished by dividing the first  three homogeneous coordinates 

by the fourth. A point in the Cartesian world coordinate system may   be expressed in vector form as 

 

 

and its homogeneous counterpart is 

 

If we define the perspective transformation matrix as 

 

The product Pwh yields a vector denoted ch 
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The element of ch is the camera coordinates in homogeneous form. As indicated, these coordinates 

can be converted to Cartesian form by dividing each of the first three components of ch by the 

fourth. Thus the Cartesian of any point in the camera coordinate system are given in vector form by 

 

 

The first two components of c are the (x, y) coordinates in the image plane of a projected 3-D point 

(X, Y, Z). The third component is of no interest in terms of the model in Fig. 10. As shown next, 

this component acts as a free variable in the inverse perspective transformation 

 

The inverse perspective transformation maps an image point back into 3-D. 

 

 

Where P
-1

 is 
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Suppose that an image point has coordinates (xo, yo, 0), where the 0 in the z location simply 

indicates that the image plane is located at z = 0. This point may be expressed in homogeneous 

vector form as 

 

 

 

 

or, in Cartesian coordinates 
 
 

This result obviously is unexpected because it gives Z = 0 for any 3-D point. The problem here is 

caused by mapping a 3-D scene onto the image plane, which is a many-to-one transformation. 

The image point (x0, y0) corresponds to the set of collinear 3-D points that lie on the line passing 

through (xo, yo, 0) and (0, 0, λ). The equation of this line in the world coordinate system; that is, 

 

Equations above show that unless something is known about the 3-D point that generated an image 

point (for example, its Z coordinate) it is not possible to completely recover the 3-D point from its 

image. This observation, which certainly is not unexpected, can be used to formulate the inverse 

perspective transformation by using the z component of ch as a free variable instead of 0. Thus, by 

letting 
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It thus follows 

 

 
which upon conversion to Cartesian coordinate gives 

 

 
In other words, treating z as a free variable yields the equations 

 

Solving for z in terms of Z in the last equation and substituting in the first two expressions yields 

 

 

 

which agrees with the observation that revering a 3-D point from its image by means of the inverse 
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perspective transformation requires knowledge of at least one of the world coordinates of the point. 

Fourier Transform and its inverse. 
 

Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x) is defined by 

the equation 

 

 

Where j = √-1 

 

Given F(u), f(x) can be obtained by using the inverse Fourier transform 

 

 

The Fourier transform exists if f(x) is continuous and integrable and F(u) is integrable. The 

Fourier transform of a real function, is generally complex, 

F(u) = R(u) + jI(u) 

 
Where R(u) and I(u) are the real and imiginary components of F(u). F(u) can be expressed in 

exponential form as 

 

 

where 

 

 

and 

F(u) = │F(u)│e
jØ(u)

 

 

 

│F(u)│ = [R
2
(u) + I

2
(u)]

1/2
 

 

 

Ø (u, v) = tan
-1

[ I (u, v)/R (u, v) ] 
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The magnitude function |F (u)| is called the Fourier Spectrum of f(x) and Φ(u) its phase angle. The 

variable u appearing in the Fourier transform is called the frequency variable. 

 

 

 
 

Figure 11: A simple function and its Fourier spectrum 

The Fourier transform can be easily extended to a function f(x, y) of two variables. If f(x, y) is 

continuous and integrable and F(u,v) is integrable, following Fourier transform pair exists 

 

and 

 

Where u, v are the frequency variables The 

Fourier spectrum, phase, are 

│F(u, v)│ = [R
2
(u, v) + I

2
(u, v )]

1/2
 

Ø(u, v) = tan
-1

[ I(u, v)/R(u, v) ] 

 

Discrete Fourier transform and its inverse. 

The discrete Fourier transform pair that applies to sampled function is given by, 

 

 

 

 

(1) 

 

For u = 0, 1, 2 . . . . , N-1, and 
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(2) 

 

For x = 0, 1, 2 . . . ., N-1. 

 

In the two variable case the discrete Fourier transform pair is 

 

 

For u = 0, 1, 2 . . . , M-1, v = 0, 1, 2 . . . , N - 1, and 

 

 

 

For x = 0, 1, 2 . . . , M-1, y = 0, 1, 2 . . . , N-1. 

 

If M = N, then discrete Fourier transform pair is 

 

 

For u, v = 0, 1, 2 . . . , N – 1, and 

 

 

For x, y = 0, 1, 2 . . . , N – 1 

State and prove separability property of 2D-DFT. 
 

The separability property of 2D-DFT states that, the discrete Fourier transform pair can be 

expressed in the separable forms. i.e. , 
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For u, v = 0, 1, 2 . . . , N – 1, and 

 

For x, y = 0, 1, 2 . . . , N – 1 

(1) 

 

 

 

 

(2) 

The principal advantage of the separability property is that F(u,v) or f(x,y) can be obtained in 

two steps by successive applications of the 1-D Fourier transform or its inverse. This advantage 

becomes evident if equation (1) is expressed in the form 

 

 

 

(3) 
 

Where, 
 

 

 

 
(4)  

 

For each value of x, the expression inside the brackets in eq(4) is a 1-D transform, with 

frequency values v = 0, 1, . . . , N-1. Therefore the 2-D function f(x, v) is obtained by taking a transform 

along each row of f(x, y) and multiplying the result by N. The desired result, F(u, v), is then obtained by 

taking a transform along each column of F(x, v), as indicated by eq(3) 

State and prove the translation property. 
 

The translation properties of the Fourier transform pair are 
 

 

(1) 
 

and 
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(2) 
 

Where the double arrow indicates the correspondence between a function and its Fourier 

Transform, 

Equation (1) shows that multiplying f(x, y) by the indicated exponential term and taking the 

transform of the product results in a shift of the origin of the frequency plane to the point (uo, vo). 

Consider the equation (1) with uo = vo = N/2 or 

 

exp[j2Π(uox + voy)/N] = e
jΠ(x

 
+
 
y)

 

= (-1)
(x + y) 

 

and  

f(x, y)(-1)
x
 
+y

  F(u – N/2, v – N/2) 

 

Thus the origin of the Fourier transform of f(x, y) can be moved to the center of its  corresponding N 

x N frequency square simply by multiplying f(x, y) by (-1)
x+y

 . In the one variable case this shift 

reduces to multiplication of f(x) by the term (-1)
x
. Note from equation (2) that a shift in f(x, y) does 

not affect the magnitude of its Fourier transform as, 

 

 
State distributivity and scaling property. 

 

Distributivity: 
 

From the definition of the continuous or discrete transform pair, 

and, in general, 
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In other words, the Fourier transform and its inverse are distributive over addition but not over 

multiplication. 

       Scaling: 
 

For two scalars a and b, 
 

af (x, y)  aF(u, v) 
 

 

Explain the basic principle of Hotelling transform. 

 

Hotelling transform: 
The basic principle of hotelling transform is the statistical properties of vector representation. 

Consider a population of random vectors of the form, 

 

 

And the mean vector of the population is defined as the expected value of x i.e., 

 

x = E{x} 

 
The suffix m represents that the mean is associated with the population of x vectors. The 

expected value of a vector or matrix is obtained by taking the expected value of each elememt. 

The covariance matrix Cx in terms of x and mx is given as 

 

Cx = E{(x-mx) (x-mx)
T
} 

T denotes the transpose operation. Since, x is n dimensional, {(x-mx) (x-mx)
T
} will be of n x 

n dimension. The covariance matrix is real and symmetric. If elements xi and xj are uncorrelated, 

their covariance is zero and, therefore, cij = cji = 0. 

For M vector samples from a random population, the mean vector and covariance matrix can 

be approximated from the samples by 
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and 
 

Write about Slant transform. 
 

The Slant transform matrix of order N x N is the recursive expression Sn is given by 

 

 

Where Im is the identity matrix of order M x M, and 

The coefficients are 

 

 

and 
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The slant transform for N = 4 will be 

Properties of Slant transform 
 

(i) The slant transform is real and orthogonal. 

 

S = S
*
 

S
-1 

= 

S
T 

(ii) The slant transform is fast, it can be implemented in (N log2N) operations on an N x 1 vector. 

 

(iii) The energy deal for images in this transform is rated in very good to excellent range. 

 

(iv) The mean vectors for slant transform matrix S are not sequentially ordered for n ≥ 3. 

 

Discrete cosine transform. 
 

The 1-D discrete cosine transform is defined as 

 

For u = 0, 1, 2, . . , N-1. Similarly the inverse DCT is defined as 
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For u = 0, 1, 2, . . , N-1 

 

Where α is 

The corresponding 2-D DCT pair is 
 

For u, v = 0, 1, 2, . . , N-1, and 

For x, y= 0, 1, 2, . . , N-1 
 

Haar transform. 
 

The Haar transform is based on the Haar functions, hk(z), which are defined over the 

continuous, closed interval z ε [0, 1], and for k = 0, 1, 2 . . . , N-1, where N = 2
n
. The first step in 

generating the Haar transform is to note that the integer k can be decomposed uniquely as 

k = 2
p
 + q - 1 

where 0 ≤ p ≤ n-1, q = 0 or 1 for p = 0, and 1 ≤ q ≤ 2
p
 for p ≠ 0. For example, if N = 4, k, q, p have 

following values 
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The Haar functions are defined as 

 

for z ε [0, 1] ……. (1) 

 

and 

These results allow derivation of Haar transformation matrices of order N x N by formation of   the ith 

row of a Haar matrix from elements oh hi(z) for z = 0/N, 1/N, . . . , (N-1)/N. For instance, when N = 2, 

the first row of the 2 x 2 Haar matrix is computed by using ho(z) with z = 0/2, 1/2. From equation (1) , 

ho(z) is equal to , independent of z, so the first row of the matrix has two 

identical   elements. Similarly row is computed. The 2 x 2 Haar matrix is 

 

 

Similarly matrix for N = 4 is 
 
 

Properties of Haar transform. 
 

1. The Haar transform is real and orthogonal. 

 

2. The Haar transform is very fast. It can implement O(n) operations on an N x 1 vector. 

3. The mean vectors of the Haar matrix are sequentially ordered. 
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4. It has a poor energy deal for images. 

 
Hadamard transform. 

 

1-D forward kernel for hadamard transform is 
 

Expression for the 1-D forward Hadamard transform is 

 

Where N = 2
n
 and u has values in the range 0, 1, . . . , N-1. 

1-D inverse kernel for hadamard transform is 

 

Expression for the 1-D inverse Hadamard transform is 

 

The 2-D kernels are given by the relations 
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and 

 

 

 

 

2-D Hadamard transform pair is given by following equations 

 

 

 
 

 

Values of the 1-D hadamard transform kernel for N = 8 is 
 

 

The Hadamard matrix of lowest order N = 2 is 

 

 

If HN represents the matrix of order N, the recursive relationship is given by 
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Where H2N is the Hadamard matrix of order 2N and N = 2
n
 

 

Walsh transform. 

 

The discrete Walsh transform of a function f (x), denoted W(u), is given by 

Walsh transform kernel is symmetric matrix having orthogonal rows and columns. These properties, 

which hold in general, lead to an inverse kernel given by 

 

 

Thus the inverse Walsh transform is given by 

 

 

The 2-D forward and inverse Walsh kernels are given by 

 

and 

 

Thus the forward and inverse Walsh transforms for 2-D are given by 

 

and 
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The Walsh Transform kernels are seperable and symmetric, because 

 

 

Values of the 1-D walsh transform kernel for N = 8 is 
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UNIT-II 

 

IMAGE ENHANCEMENT 
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Image enhancement by point processing 

       Basic Gray Level Transformations: 
 

The study of image enhancement techniques is done by discussing gray-level transformation 

functions. These are among the simplest of all image enhancement techniques. The values of pixels, 

before and after processing, will be denoted by r and s, respectively. As indicated in the previous 

section, these values are related by an expression of the form s=T(r), where T is a transformation that 

maps a pixel value r into a pixel value s. Since we are dealing with digital quantities, values of the 

transformation function typically are stored in a one-dimensional array and the mappings from r to s 

are implemented via table lookups. For an 8-bit environment, a lookup table containing the values of T 

will have 256 entries. As an introduction to gray-level transformations, consider Fig. 1.1, which  shows 

three basic types of functions used  frequently  for image enhancement: linear (negative and identity 

transformations), logarithmic (log and inverse-log transformations), and power-law (nth power and nth 

root transformations).The  identity function is the trivial case in which output intensities are identical to  

input intensities. It  is included in the graph only for completeness. 

Image Negatives: 
 

The negative of an image with gray levels in the range [0, L-1] is obtained by using the negative 

transformation shown in Fig.1.1, which is given by the expression 

s = L - 1 - r. 

 
Reversing the intensity levels of an image in this manner produces the equivalent of a photographic 

negative. This type of processing is particularly suited for enhancing white or gray detail embedded in 

dark regions of an image, especially when the black areas are dominant in  size. 
 

 
 

Figure 2.1: Some basic gray-level transformation functions used for image enhancement 
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Log Transformations: 

 

The general form of the log transformation shown in Fig.2.1 is 

 

 

where c is a constant, and it is assumed that r ≥ 0.The shape of the log curve in Fig. 1.1 shows   that 

this transformation maps a narrow range of low gray-level values in the input image into a wider range 

of output levels. The opposite is true of higher values of input levels. We would use a transformation of 

this type to expand the values of dark pixels in an image while compressing the higher-level values. 

The opposite is true of the inverse log transformation. 

Any curve having the general shape of the log functions shown in Fig. 2.1 would accomplish this 

spreading/compressing of gray levels in an image. In fact, the power-law transformations discussed in 

the next section are much more versatile for this purpose than the log transformation. However, the log 

function has the important characteristic that it compresses the dynamic range of images with large 

variations in pixel values. A classic illustration of an application in which pixel values have a large 

dynamic range is the Fourier spectrum. At the moment, we are concerned only with the image 

characteristics of spectra. It is not unusual to encounter spectrum values that range from 0 to or higher. 

While processing numbers  such  as  these presents no problems for a computer, image display systems 

generally will not be able to reproduce faithfully such a wide range of intensity values. The net effect is 

that a significant degree of detail will be lost in the display of a typical Fourier spectrum. 

 
Power-Law Transformations: 
 

Power-law transformations have the basic form 

 

 

where c and g are positive constants. Sometimes Eq. is written as 

 

to account for an offset (that is, a measurable output when the input is zero).However, offsets typically 

are an issue of display calibration and as a result they are normally ignored in Eq. Plots of s versus r for 

various values of g are shown in Fig. 1.2. As in the case of the log transformation, power-law curves 

with fractional values of g map a narrow range of dark input values into a wider range of output values, 

with the opposite being true for higher values of input levels. Unlike the log function, however, we 

notice here a family of possible transformation curves obtained simply by varying γ. As expected, we 

see in Fig.1.2 that curves generated with values of g>1 have exactly the opposite effect as those 

generated with values of g<1. Finally, we note that Eq. reduces to the identity transformation when c = 

γ = 1. A variety of devices used for image capture, printing, and display respond according to a power 

law. By convention, the exponent in the power-law equation is referred to as gamma. The process used 

to correct this power-law response phenomena is called gamma correction. For example, cathode ray  

tube (CRT) devices have an intensity-to-voltage response that is a power function, with exponents 
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varying from approximately 1.8 to 2.5.With reference to the curve for g=2.5 in Fig.1.2, we see  that 

such display systems would tend to produce images that are darker than intended. 

 

 

 
 

       Figure 2.2: Plots of the equation                 for various values o (c=1 in all cases). 

 
Piecewise-Linear Transformation Functions: 

 

The principal advantage of piecewise linear functions over the types of functions we have discussed 

above is that the form of piecewise functions can be arbitrarily complex. In fact, as we will see shortly, 

a practical implementation of some important transformations can be formulated only as piecewise 

functions. The principal disadvantage of piecewise functions is that their specification requires 

considerably more user input. 

Contrast stretching: 
 

One of the simplest piecewise linear functions is a contrast-stretching transformation. Low- contrast 

images can result from poor illumination, lack of dynamic range in the imaging sensor,   or even wrong 

setting of a lens aperture during image acquisition. The idea behind contrast stretching is to increase 

the dynamic range of the gray levels in the image being processed. 

Figure 2.3 (a) shows a typical transformation used for contrast stretching. The locations of points (r1 , s1) 

and (r2 , s2) control the shape of the transformation Function. 
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Figure 2.3:  Contrast Stretching (a) Form of Transformation function (b) A low-contrast 

image (c) Result of contrast stretching (d) Result of thresholding. 

 

If r1=s1 and r2=s2, the transformation is a linear function that produces no changes in gray levels. If 

r1=r2,s1=0 and s2=L-1, the transformation becomes a thresholding function that creates a binary 

image, as illustrated in Fig. 2.3 (b). Intermediate values of (r1 , s1) and (r2 , s2) produce various degrees 

of spread in the gray levels of the output image, thus affecting its contrast. In general, r1 ≤ r2 and s1 ≤ 

s2 is assumed so that the function is single valued and monotonically increasing. This condition 

preserves the order of gray levels, thus preventing the creation of intensity artifacts in the processed 

image. 

Figure 1.3 (b) shows an 8-bit image with low contrast. Fig. 2.3(c) shows the result of contrast 

stretching, obtained by setting (r1 , s1) = (rmin , 0) and (r2 , s2) = (rmax , L-1) where rmin and rmax denote the 

minimum and maximum gray levels in the image, respectively. Thus, the transformation function 

stretched the levels linearly from their original range to the full range [0, L-1]. Finally, Fig. 1.3 (d) 

shows the result of using the thresholding function defined previously, with r1 = r2 = m, the mean gray 

level in the image. The original image on which these results are based is a scanning electron 

microscope image of pollen, magnified approximately 700 times. 

 
Gray-level slicing: 
 

Highlighting a specific range of gray levels in an image often is desired. Applications include 

enhancing features such as masses of water in satellite imagery and enhancing flaws in X-ray images. 

There are several ways of doing level slicing, but most of them are variations of two    basic themes.  
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One approach is to display a high value for all gray levels in the range of interest and a low value for 

all other gray levels. This transformation, shown in Fig. 1.4 (a), produces a binary image. The second 

approach, based on the transformation shown in Fig. 1.4 (b), brightens the desired range of gray levels 

but preserves the background and gray-level tonalities in the image. Figure 1.4(c) shows a gray-scale 

image, and Fig. 1.4 (d) shows the result of using the transformation in Fig. 1.4 (a).Variations of the two 

transformations shown in Fig. 2.4 are easy to formulate. 

 

 
 

 
           Figure 2.4 (a) This transformation highlights range [A, B] of gray levels and reduce all others   to a  

                Constant level (b) This transformation highlights range [A, B] but preserves all other levels (c) An image  

               (d) Result of using the transformation in (a). 

 

Bit-plane slicing: 
 

Instead of highlighting gray-level ranges, highlighting the contribution made to total image appearance 

by specific bits might be desired. Suppose that each pixel in an image is represented by 8 bits. Imagine 

that the image is composed of eight 1-bit planes, ranging from bit-plane 0 for the least significant bit 

to bit plane 7 for the most significant bit. In terms of 8-bit bytes, plane 0 contains all the lowest order 

bits in the bytes comprising the pixels in the image and plane 7 contains all the high-order bits. Figure 

 1.5 illustrates these ideas, and Fig. 2.7 shows the various   bit planes for the image shown in Fig.2.6. 
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Note that the higher-order bits (especially the top    four) contain the majority of the visually significant  

 

data. The other bit planes contribute to more subtle details in the image. Separating a digital image into 

its bit planes is useful for analyzing the relative importance played by each bit of the image, a process 

that aids in determining the adequacy of the number of bits used to quantize each pixel. 

 

 

 
 

 
                     Figure2.5: Bit-plane representation of an 8-bit image. 

 
In terms of bit-plane extraction for an 8-bit image, it is not difficult to show that the (binary) image for 

bit-plane 7 can be obtained by processing the input image with a thresholding gray- level 

transformation function that (1) maps all levels in the image between 0 and 127 to one level (for 

example, 0); and (2) maps all levels between 129 and 255 to another (for example, 255). 

 
 

 
 

Figure 2.6:  An 8-bit fractal image 
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      Figure 2.7: The eight bit planes of the image in Fig.2.6. The number at the bottom, right of each image 

identifies the bit plane. 

The objective of image enhancement, spatial domain and  

 point processing. 

 
The term spatial domain refers to the aggregate of pixels composing an image. Spatial domain methods 

are procedures that operate directly on these pixels. Spatial domain processes will be denoted by the 

expression 

 
Where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator on f, defined over 

some neighborhood of (x, y). In addition can operate on a set of input images, such as performing the 

pixel-by-pixel sum of K images for noise reduction. 

The principal approach in defining a neighborhood about a point (x, y) is to use a square or rectangular 

sub image area centered at (x, y), as Fig.2.1 shows. The center of the sub image is moved from pixel to 

pixel starting, say, at the top left corner. The operator T is applied at each location (x, y) to yield the 

output, g, at that location. The process utilizes only the pixels in the   area of the image spanned by the 

neighborhood. 
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Figure 2.1: A 3*3 neighborhood about a point (x, y) in an image. 

 

Although other neighborhood shapes, such as approximations to a circle, sometimes are used, square 

and rectangular arrays are by far the most predominant because of their ease of implementation. The 

simplest form of T is when the neighborhood is of size 1*1 (that is, a single pixel). In this case, g 

depends only on the value of f at (x, y), and T becomes a gray-level (also called an intensity or 

mapping) transformation function of the form 

 

Where, for simplicity in notation, r and s are variables denoting, respectively, the gray  level of  f(x, y) 

and g(x, y) at any point (x, y). For example, if T(r) has the form shown in Fig. 2.2(a), the effect of this 

transformation would be to produce an image of higher contrast than the original by darkening the 

levels below m and brightening the levels above m in the original image. In this technique, known as 

contrast stretching, the values of r below m are compressed by the transformation function into a 

narrow range of s, toward black. The opposite effect takes place for values of r above m. In the limiting 

case shown in Fig. 2.2(b), T(r) produces a two-level (binary) image. A mapping of this form is called a 

thresholding function. Some fairly simple, yet powerful, processing approaches can be formulated with 

gray-level transformations. Because enhancement at any point in an image depends only on the gray 

level at that point, techniques in this category often are referred to as point processing. 

 

 

Figure 2.2: Gray level transformation functions for contrast enhancement. 
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Larger neighborhoods allow considerably more flexibility. The general approach is to use a function of 

the values of f in a predefined neighborhood of (x, y) to determine the value of g at   (x, y).One of the 

principal approaches in this formulation is based on the use of so-called masks 
 

(also referred to as filters, kernels, templates, or windows). Basically, a mask is a small (say,    3*3) 2-

D array, such as the one shown in Fig. 2.1, in which the values of the mask coefficients determine the 

nature of the process, such as image sharpening. 

 
Histogram of a digital image-histogram is useful in image enhancement 

Histogram Processing: 
 

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete function h(rk) = (nk), 

where rk is the kth gray level and nk is the number of pixels in the image having gray level rk. It is 

common practice to normalize a histogram by dividing each of its values by the total number of pixels in 

the image, denoted by n. Thus, a normalized histogram is given by 

for k=0,1,…… .,L-1. Loosely speaking, p(rk) gives an estimate of the probability of occurrence   of gray 

level rk. Note that the sum of all components of a normalized histogram is equal to 1. 

Histograms are the basis for numerous spatial domains processing techniques. Histogram manipulation 

can be used effectively for image enhancement. Histograms are simple to calculate in software and also 

lend themselves to economic hardware implementations, thus making them a popular tool for real-time 

image processing. 

As an introduction to the role of histogram processing in image enhancement, consider Fig. 3, which is 

the pollen image shown in four basic gray-level characteristics: dark, light, low contrast, and high 

contrast. The right side of the figure shows the histograms corresponding to these images. The 

horizontal axis of each histogram plot corresponds to gray level values, rk. 

The vertical axis corresponds to values of h(rk) = nk or p(rk) = nk/n if the values are normalized. Thus, 

as indicated previously, these histogram plots are simply plots of h(rk) = nk versus rk or p(rk) = nk/n 

versus rk. 
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Figure 3: Four basic image types: dark, light, low contrast, high contrast, and their 

corresponding histograms. 

We note in the dark image that the components of the histogram are concentrated on the low (dark) 

side of the gray scale. Similarly, the components of the histogram of the bright image are biased 

toward the high side of the gray scale. An image with low contrast has a histogram that will be narrow 

and will be centered toward the middle of the gray scale. For a monochrome   image this implies a dull, 

washed-out gray look. Finally, we see that the components of the histogram in the high-contrast image 

cover a broad range of the gray scale and, further, that the distribution of pixels is not too far from 

uniform, with very few vertical lines being much higher than the others. Intuitively, it is reasonable to 

conclude that an image, whose pixels tend to occupy the entire range of possible gray levels and, in 

addition, tend to be distributed uniformly, will have an appearance of high contrast and will exhibit a 

large variety of gray tones. The net effect will be an image that shows a great deal of gray-level detail 

and has high dynamic range. It will be shown shortly that it is possible to develop a transformation 

function that can automatically achieve this effect, based only on information available in the 

histogram of the input image. 

Histogram Equalization: 
 

Consider for a moment continuous functions, and let the variable r represent the gray levels of    the 

image to be enhanced. We assume that r has been normalized to the interval [0, 1], with r=0 

representing black and r=1 representing white. Later, we consider a discrete formulation and allow 

pixel values to be in the interval [0, L-1]. For any r satisfying the a for mentioned conditions, we focus 

attention on transformations of the form 

 

That produces a level s for every pixel value r in the original image. For reasons that will become 

obvious shortly, we assume that the transformation function T(r) satisfies the following conditions: 

(a) T(r) is single-valued and monotonically increasing in the interval 0 ≤ r ≤ 1; and (b) 0 
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≤ T(r) ≤ 1 for 0 ≤ r ≤ 1. 

The requirement in (a) that T(r) be single valued is needed to guarantee that the inverse transformation 

will exist, and the monotonicity condition preserves the increasing order from black to white in the 

output image. A transformation function that is not monotonically increasing could result in at least a 

section of the intensity range being inverted, thus producing some  inverted gray levels in the output 

image. Finally, condition (b) guarantees that the output gray levels will be in the same range as the 

input levels. Figure 4.1 gives an example of a transformation function that satisfies these two 

conditions. The inverse transformation from s back to r is denoted 

 

It can be shown by example that even if T(r) satisfies conditions (a) and (b), it is possible that the 

corresponding inverse T
-1

 (s) may fail to be single valued. 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 
Figure 2.4.1: A gray-level transformation function that is both single valued and monotonically 

increasing. 

 
The gray levels in an image may be viewed as random variables in the interval [0, 1].One of the most 

fundamental descriptors of a random variable is its probability density function (PDF).Let pr(r) and 

ps(s) denote the probability density functions of random variables r and s, respectively, where the 

subscripts on p are used to denote that pr and ps are different functions. A basic result from an 

elementary probability theory is that, if pr(r) and T(r) are known and T
-1

 (s) satisfies condition (a), then 

the probability density function ps(s) of the transformed variable s can be obtained using a rather 

simple formula: 

 
Thus, the probability density function of the transformed variable, s, is determined by the gray- level 

PDF of the input image and by the chosen transformation function. A transformation function of 

particular importance in image processing has the form 
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where w is a dummy variable of integration. The right side of Eq. above is recognized as the cumulative 

distribution function (CDF) of random variable r. Since probability density functions are always positive, 

and recalling that the integral of a function is the area under the function, it follows that this 

transformation function is single valued and monotonically increasing, and, therefore, satisfies condition 

(a). Similarly, the integral of a probability density function for variables in the range [0, 1] also are in the 

range [0, 1], so condition (b) is satisfied as well. 

Given transformation function T(r),we find ps(s) by applying Eq. We know from basic calculus 

(Leibniz’s rule) that the derivative of a definite integral with respect to its upper limit is simply  the 

integrand evaluated at that limit. In other words, 

 

 
Substituting this result for dr/ds, and keeping in mind that all probability values are positive,  yields 

Because ps(s) is a probability density function, it follows that it must be zero outside the interval [0, 1] in 

this case because its integral over all values of s must equal 1.We recognize the form of ps(s) as a uniform 

probability density function. Simply stated, we have demonstrated that performing the transformation 

function yields a random variable s characterized by a uniform probability density function. It  is 

important to note from Eq. discussed above that T(r) depends  on pr(r), but, as indicated by Eq. after it, 

the resulting ps(s) always is uniform, independent of the form of pr(r). For discrete values we deal with 

probabilities and summations instead  of  probability density functions and integrals. The probability of 

occurrence of gray level r in an image is approximated by 

 

where, as noted at the beginning of this section, n is the total number of pixels in the image, nk is the 

number of pixels that have gray level rk, and L is the total number of possible gray levels in  the 

image.The discrete version of the transformation function given in Eq. is 



 

61 

 

 

Thus, a processed (output) image is obtained by mapping each pixel with level rk in the input image 

into a corresponding pixel with level sk in the output image. As indicated earlier, a plot of  pr (rk) versus 

rk is called a histogram. The transformation (mapping) is called histogram equalization or histogram 

linearization. It is not difficult to show that the transformation in Eq. satisfies conditions (a) and (b) 

stated previously. Unlike its continues counterpart, it cannot be proved in general that this discrete 

transformation will produce the discrete equivalent of a uniform probability density function, which 

would be a uniform histogram. 

 

Figure2.4.2:  (a) Images from Fig.3 (b) Results of histogram equalization. (c) Corresponding 

histograms. 

The inverse transformation from s back to r is denoted by 

       Histogram Matching (Specification): 
 

Histogram equalization automatically determines a transformation function that seeks to produce an 

output image that has a uniform histogram. When automatic enhancement is desired, this is a good 

approach because the results from this technique are predictable and the method is simple to 

implement. In particular, it is useful sometimes to be able to specify the shape of the histogram that we 

wish the processed image to have the method used to generate a processed image that has a specified 
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histogram is called histogram matching or histogram specification. 

Development of the method: 
 

Let us return for a moment to continuous gray levels r and z (considered continuous random variables), 

and let pr(r) and pz(z) denote their corresponding continuo’s probability density functions. In this 

notation, r and z denote the gray levels of the input and output (processed) images, respectively. We 

can estimate pr(r) from the given input image, while pz(z) is  the  specified probability density function 

that we wish the output image to have.Let s be a random variable with the property 

 
where w is a dummy variable of integration. We recognize this expression as  the  continuos version of 

histogram equalization. Suppose next that we define a random variable z with the property 

 

where t is a dummy variable of integration. It then follows from these two equations that G(z)=T(r) and, 

therefore, that z must satisfy the condition 

The transformation T(r) can be obtained once pr(r) has been estimated from the input image. Similarly, 

the transformation function G(z) can  be obtained because pz(z) is given. Assuming  that G
-1

 exists and 

that it satisfies conditions (a) and (b) in the histogram equalization process,    the above three equations 

show that an image with a specified probability density function can be obtained from an input image by 

using the following procedure: 

(1) Obtain the transformation function T(r). 

 

(2) To obtain the transformation function G(z). 

 

(3) Obtain the inverse transformation function G
-1

 

(4) Obtain the output image by applying above Eq. to all the pixels in the input image. 

The result of this procedure will be an image whose gray levels, z, have the specified probability 

density function pz(z). Although the procedure just described is straightforward in principle, it is 

seldom possible in practice to obtain analytical expressions for T(r) and for G
-1.

 Fortunately, this 

problem is simplified considerably in the case of discrete values. The price we pay is the same as in 

histogram equalization, where only an approximation to the desired histogram is achievable. In spite of 

this, however, some very useful results can be obtained even with crude approximations. 
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Where n is the total number of pixels in the image, nj is the number of pixels with gray level rj,   and L 

is the number of discrete gray levels. Similarly, the discrete formulation is obtained from the given 

histogram pz (zi), i=0, 1, 2… L-1, and has the form 

 

As in the continuos case, we are seeking values of z that satisfy this equation. The variable vk was 

added here for clarity in the discussion that follows. Finally, the discrete version of the above Eqn. is 

given by 

 

 
Or 

 

Implementation: 
 

We start by noting the following: (1) Each set of gray levels {rj} , {sj}, and {zj}, j=0, 1, 2, p , L-   1, is a 

one-dimensional array of dimension L X 1. (2) All mappings from r to s and from s to z   are simple 

table lookups between a given pixel value and these arrays. (3) Each of the elements   of these arrays, 

for example, sk, contains two important pieces of information: The subscript k denotes the location of 

the element in the array, and s denotes the value at that location. (4) We need to be concerned only 

with integer pixel values. For example, in the case of an 8-bit image, L=256 and the elements of each 

of the arrays just mentioned are integers between 0 and 255.This implies that we now work with gray 

level values in the interval [0, L-1] instead of the normalized interval [0, 1] that we used before to 

simplify the development of histogram processing techniques. 

In order to see how histogram matching actually can be implemented, consider Fig. 2. 5(a), ignoring 

for a moment the connection shown between this figures 2.5(c). Figure 2.5(a) shows a hypothetical 

discrete transformation function s=T(r) obtained from a given image. The first gray level in the image, 

r1 , maps to s1 ; the second gray level, r2 , maps to s2 ; the kth level rk maps to sk; and so on (the 

important point here is the ordered correspondence between these values). Each value sj in the array is 

pre-computed, so the process of mapping simply uses the actual value of a pixel as an index in an array 

to determine the corresponding value of s. This process is particularly easy because we are dealing 

with integers. For example, the s mapping for an 8-bit pixel with value 127 would be found in the 

128th position in array {sj} (recall that we start at 0) out of the possible 256 positions. If we stopped  

here and mapped the value of each   pixel of an input image by the method just described, the output 
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would be a histogram-equalized image. 
 

 
 

Figure 2.5. (a) Graphical interpretation of mapping from rk to sk via T(r). (b) Mapping of zq 

to   its corresponding value vq via G(z)  (c) Inverse mapping from sk to its 

corresponding value  of zk. 

In order to implement histogram matching we have to go one step further. Figure 5(b) is a hypothetical 

transformation function G obtained from a given histogram pz(z). For any zq , this transformation 

function yields  a corresponding value vq. This mapping is shown by the arrows in Fig. 5(b). 

Conversely, given any value vq, we would find the corresponding value zq from G
-1

. In terms of the 

figure, this entire means graphically is that we would reverse the direction of the arrows to map vq into 

its corresponding zq. However, we know from the definition that v=s for corresponding subscripts, so 

we can use exactly this process to find the zk corresponding to any value sk that we computed 

previously from the equation sk = T(rk) .This idea is shown in Fig.2.5(c). Since we really do not have 

the z’s (recall that finding these values is precisely the objective of histogram matching),we must resort 

to some sort of iterative scheme to find z from s.The fact   that we are dealing with integers makes this 

a particularly simple process. Basically, because vk = sk, we have that the z’s for which we are looking 

must satisfy the equation G(zk)=sk, or (G(zk)- sk)=0. Thus, all we have to do to find the value of zk 

corresponding to sk is to iterate on values of   z such that this equation is satisfied for k=0,1,2,…...., L-

1. We do not have to find the inverse of  G because we are going to iterate on z. Since we are dealing 

with integers, the closest we can get to  satisfying  the  equation (G(zk)-sk)=0  is  to  let  zk=    for  

each  value  of  k,  where      is the smallest integer in the interval [0, L-1] such that 

 

Given a value sk, all this means conceptually in terms of Fig. 5(c) is that we would start with and 

increase it in integer steps until Eq  is satisfied, at which point we let repeating  this process for   all 

values of k would yield all the required mappings from s to z, which constitutes the implementation of 

Eq. In practice, we would not have to start with each time because the values  of sk  are known  to 

increase monotonically. Thus, for k=k+1, we  would  start  with    and increment in integer 
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values from there. 

         Local Enhancement: 
 

The histogram processing methods discussed in the previous two sections are global, in the 

sense that pixels are modified by a transformation function based on the gray-level content of 

an entire image. Although this global approach is suitable for overall enhancement, there are 

cases in   which it is necessary to enhance details over small areas in an image. The number of 

pixels in these areas may have negligible influence on the computation of a global 

transformation whose shape does not necessarily guarantee the desired local enhancement. The 

solution is to devise transformation functions based on the gray-level distribution—or other 

properties—in the neighborhood of every pixel in the image.  

The histogram processing techniques are easily adaptable to local enhancement. The procedure is to 

define a square or  rectangular neighborhood  and  move the center of this area from pixel to pixel. At 

each location, the histogram of the points in the neighborhood is computed and either a histogram 

equalization or histogram specification transformation function is obtained. This function is finally 

used to map the gray level of the pixel centered in the neighborhood. The center of the 

neighborhood region is then moved to an adjacent pixel location and the procedure is repeated. Since 

only one new row or column of the neighborhood changes during a pixel-to-pixel translation of the 

region, updating the histogram obtained in the previous location with the new data introduced at each 

motion step is possible. This approach has obvious advantages over repeatedly computing the 

histogram over  all pixels  in the neighborhood region each time the region is moved one pixel 

location. Another approach used some times to reduce computation is to utilize non overlapping 

regions, but this method usually produces an undesirable checkerboard effect. 

 

Image subtraction and various areas of application of image subtraction. 

Image Subtraction: 
 

The difference between two images f(x, y) and h(x, y), expressed as 

 

 

is obtained by computing the difference between all pairs of corresponding pixels from f and h. The 

key usefulness of subtraction is the enhancement of differences between images. The higher- order bit 

planes of an  image carry a significant amount of visually relevant detail, while the   lower planes 

contribute more to fine (often imperceptible) detail. Figure 2.7(a) shows the fractal image used earlier 

to illustrate the concept of bit planes. Figure 2.7(b) shows the result of discarding (setting to zero) the 

four least significant bit planes of the original image. The images are nearly identical visually, with the 

exception of a very slight drop in overall contrast due to   less variability of the gray level values in the 

image of Fig. 2.7(b).The pixel-by-pixel difference between these two images is shown in Fig. 

2.7(c).The differences in pixel values are so small that the difference image appears nearly black when 
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displayed on an 8-bit display. In order to bring out more detail, we can perform a contrast stretching 

transformation. We chose histogram equalization, but an appropriate power-law transformation would  

 

have done the job also. The result is shown in Fig. 2.7(d). This is a very useful image for evaluating the 

effect of setting to zero the lower-order planes. 

 

 

 

Figure 2.7 : (a) Original fractal image (b) Result of setting the four lower-order bit planes to    

zero (c) Difference between (a) and(b) (d) Histogram equalized difference image. 

 
One of the most commercially successful and beneficial uses of image subtraction is in the area   of 

medical imaging called mask mode radiography. In this case h(x, y), the mask, is an X-ray image of a 

region of a patient’s body captured by an intensified TV camera (instead of traditional X-ray film) 

located opposite an X-ray source. The procedure consists of injecting a contrast medium into  the 

patient’s bloodstream, taking a series of images of the same anatomical region  as h(x, y), and 

subtracting this mask from the series of incoming images after injection of the contrast medium. The 

net effect of subtracting the mask from each sample in the incoming   stream of TV images is that the 

areas that are different between f(x, y) and h(x, y) appear in the output image as enhanced detail. 

Because images can be captured at TV rates, this procedure in essence gives a movie showing how the 

contrast medium propagates through the various arteries in the area being observed. 

Image averaging process. 

       Image Averaging: 

 

Consider a noisy image g(x, y) formed by the addition of noise h(x, y) to  an original  image  f(x,y); 

that is, 

 

where the assumption is that at every pair of coordinates (x, y) the noise is uncorrelated and has zero 
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average value.The objective of the following procedure is to reduce the noise content by adding a set of 

noisy images, {gi (x, y)}. If the noise satisfies the constraints just stated, it can be 

shown  that if an image is formed by averaging K different noisy images, 

 

 

Then it follows that 

 

and 

 

 

Where      is the expected value of and    and    are the variances of   

and η, all at coordinates (x, y). The standard deviation at any point in the average image is 

 

As K increases, the above equations indicate that the variability (noise) of the pixel values at   each   

location   (x,   y)   decreases. Because      this means that    approaches 

f(x, y) as the number of noisy images used in the averaging process increases. In practice, the images gi(x, 

y) must be registered (aligned) in order to avoid the introduction of blurring and other artifacts in the 

output image. 

 
The mechanics of filtering in spatial domain. Mention the points to be considered in 

implementation neighborhood operations for spatial filtering. 

 

Basics of Spatial Filtering: 
Some neighborhood operations work with the values of the image pixels in the neighborhood and the 

corresponding values of a sub image that has the same dimensions as the neighborhood. The sub image 

is called a filter, mask, kernel, template, or window, with the first three terms being the most prevalent 

terminology. The values in a filter sub image are referred to as coefficients, rather than pixels. The 

concept of filtering has its roots in the use of the Fourier transform for signal processing in the so-

called frequency domain. We use the term spatial filtering to differentiate this type of process from the 

more traditional frequency domain filtering. 

The mechanics of spatial filtering are illustrated in Fig.2.9.1. The process consists simply of moving 

the filter mask from point to point in an image. At each point (x, y), the response of the filter at that 

point is calculated using a predefined relationship.  The response is given by a sum   of products of the 

filter coefficients and the corresponding image pixels in the area spanned by   the filter mask. For the 3 
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x 3 mask shown in Fig. 2. 9.1, the result (or response), R, of linear filtering with the filter mask at a  

point (x, y) in the image is 

 

 

 

which we see is the sum of products of the mask coefficients with the corresponding pixels directly 

under the mask. Note in particular that the coefficient w(0, 0) coincides with image 

Value f(x, y), indicating that the mask is centered at (x, y) when the computation of the sum of 

products takes place. For a mask of size m x n,we assume that m=2a+1 and n=2b+1,where a and   b are 

nonnegative integers. 

 

 
                                                   Figure 2.9.1:  The mechanics of spatial filtering. The magnified drawing shows a  

                                                3X3 mask and the image section directly under it; the image section is shown  

               displaced out from under the mask for ease of readability. 

In general, linear filtering of an image f of size M x N with a filter mask of size m x n is given by the 

expression: 

 
 

where, from the previous paragraph, a=(m-1)/2 and b=(n-1)/2. To generate a complete filtered image 
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this equation must be applied for x=0,1,2,……, M-1 and y=0,1,2,……, N-1. In this way,  we are 

assured that the mask processes all pixels in the image. It is easily verified when m=n=3 that this 

expression reduces to the example given in the previous paragraph. 

 

The process of linear filtering is similar to a frequency domain concept called convolution. For this 

reason, linear spatial filtering often is referred to as ―convolving a mask with an image.‖ Similarly, filter 

masks are sometimes called  convolution  masks. The term convolution kernel  also is in common use. 

When interest lies on  the response, R, of an m x n mask at any point   (x,y), and not on the mechanics  

of implementing mask convolution, it is common practice to simplify the notation by using the 

following expression: 

 

 

where the w’s are mask coefficients, the z’s are the values of the image graylevels corresponding to 

those coefficients, and mn is the total number of coefficients in the mask. For the 3 x 3 general mask 

shown in Fig.9.2 the response at any point (x, y) in the image is given by 

 

 

 

 

 

Figure 2.9.2: Another representation of a general 3 x 3 spatial filter mask. 

 

An important consideration in implementing neighborhood operations for spatial filtering is the issue 

of what happens when the center of the filter approaches the border of the image. Consider for 

simplicity a square mask of size n x n. At least one edge of such a mask will coincide with the border 

of the image when the center of the mask is at a distance of (n-1)/2 pixels away from the border of the 
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image. If the center of the mask moves any closer to the border, one or more rows or columns of the 

mask will be located outside the image plane. There are several ways to handle this situation. The 

simplest is to limit the excursions of the center of the mask to be at a distance no less than (n-1)/2 

pixels from the border. The resulting filtered image will be smaller than the original, but all the pixels 

in the filtered imaged will have been processed with the full mask. If the result is required to be the  

same size as the original, then the approach typically employed is   to filter all pixels only with the 

section of the mask that is fully contained in the image. With this approach, there will be bands of 

pixels near the border that will have been processed with a   partial filter mask. Other approaches 

include ―padding‖ the image by adding rows and columns of 0’s (or other constant gray level), or 

padding by replicating rows or columns. The padding is then stripped off at the end of the process. This 

keeps the size of the filtered image the same as the original, but the values of  the padding will have an 

effect near the edges that becomes more prevalent as the size of the mask increases. The only way to 

obtain a perfectly filtered result is to accept a somewhat smaller   filtered image by limiting the 

excursions of the center of the filter mask to a distance no less than (n-1)/2 pixels from the border of 

the original image. 

 
 Smoothing Spatial filters. 
 

Smoothing filters are used for blurring and for noise reduction. Blurring is used in preprocessing steps, 

such as removal of small details from an image prior to (large) object extraction, and bridging of small 

gaps in lines or curves. Noise reduction can be accomplished by blurring with a linear filter and also by 

non-linear filtering. 

(1) Smoothing Linear Filters: 
 

The output (response) of a smoothing, linear spatial filter is simply the average of the pixels contained 

in the neighborhood of the filter mask. These filters sometimes are called averaging filters. The idea 

behind smoothing filters is straight forward. By replacing the value of every pixel in an image by the 

average of the gray levels in the neighborhood defined by the filter mask, this process results in an 

image with reduced ―sharp‖ transitions in gray levels. Because random    noise typically consists of 

sharp transitions in gray levels, the most obvious application of smoothing is noise reduction. 

However, edges (which almost always are desirable features of an image) also are characterized by 

sharp transitions in gray levels, so averaging filters have the undesirable side effect that they blur 

edges. Another application of this type of process includes the smoothing of false contours that result 

from using an insufficient number of gray levels. 
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Figure 2.10.1:  Two 3 x 3 smoothing (averaging) filter masks. The constant multiplier in  

                          front of each mask is equal to the sum of the values of its coefficients, as is  

                           required to compute an average. 

 

A major use of averaging filters is in the reduction of ―irrelevant‖ detail in an image. By 

―irrelevant‖we mean pixel regions that are small with respect to the size of the filter mask. 

Figure 2.10.1 shows two 3 x 3 smooth filters. Use of the first filter yields the standard average   of the 

pixels under the mask. This can best be seen by substituting the coefficients of the mask in which is 

the average of the gray levels of the pixels in the 3 x 3 neighborhood defined by the mask. Note that, 

instead of being 1/9, the coefficients of the filter are all 1’s.The idea here is that   it is computationally 

more efficient to have coefficients valued 1. At the end of the filtering process the entire image is 

divided by 9. An m x n mask would have a normalizing constant    equal to 1/mn. A spatial averaging 

filter in which all coefficients are equal is sometimes called a box filter. The second mask shown in 

Fig.2. 10.1 is a little more interesting. This mask yields a so-called weighted average, terminology used 

to indicate that pixels are multiplied by different coefficients, thus giving more importance (weight) to 

some pixels at the expense of others. In the mask shown in Fig. 2. 10.1(b) the pixel at the center of the 

mask is multiplied by a higher value than any other, thus giving this pixel more importance in the 

calculation of the average. The other pixels are inversely weighted as a function of their distance from 

the center of the mask. The diagonal terms are further away from the center than the orthogonal 

neighbors (by a factor of √2) and, thus, are weighed less than these immediate neighbors of the center 

pixel. The basic strategy behind weighing the center point the highest and then reducing the value of 

the coefficients as a function of increasing distance from the origin is simply an attempt to reduce 

blurring in the smoothing process. We could have picked other weights to accomplish the same general 

objective. However, the sum of all the coefficients in the mask of Fig. 10.1(b) is equal to 16, an 

attractive feature for computer implementation because it has an integer power of 2. In practice,    it is 

difficult in general to see differences between images smoothed by using either of the masks in Fig. 

10.1, or similar arrangements, because the area these masks span at any one location in an image is so 

small. The general implementation for filtering an M x N image with a weighted averaging filter of 

size m x n (m and n odd) is given by the expression 
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(2) Order-Statistics Filters: 
 

Order-statistics filters are nonlinear spatial filters whose response is based on ordering (ranking) the 

pixels contained in the image area encompassed by the filter, and then replacing the value of the center 

pixel with the value determined by the ranking result. The best-known example in this category is the 

median filter, which, as its name implies, replaces the value of a pixel by the median of the gray levels 

in the neighborhood of that pixel (the original value of the pixel is included in the computation of the 

median). Median filters are quite popular because, for certain types of random noise, they provide 

excellent noise-reduction capabilities, with considerably less blurring than linear smoothing filters of 

similar size. Median filters are particularly effective in the presence of impulse noise, also called salt-

and-pepper noise because of its appearance as  white and black dots superimposed on an image. 

The median, ε, of a set of values is such that half the values in the set are less than or equal to ε, and 

half are greater than or equal to ε. In order to perform median filtering at a point in an image, we first 

sort the values of the pixel in question and its neighbors, determine their median, and  assign this value 

to that pixel. For example, in a 3 x 3 neighborhood the median is the 5th largest value, in a 5 x 5 

neighborhood the 13th largest value, and so on. When several values in a neighborhood are the same, 

all equal values are grouped. For example, suppose that a 3 x 3 neighborhood has values (10, 20, 20, 

20, 15, 20, 20, 25, 100). These values are sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100), which results 

in a median of 20. Thus, the principal function of median filters is to force points with distinct gray 

levels to be more like their neighbors. In fact, isolated clusters of pixels that are light or dark with 

respect to their neighbors, and whose area is less than n
2
 
/
 2 (one-half the filter area), are eliminated by 

an n x n median filter. In this case ―eliminated‖ means forced to the median intensity of the neighbors. 

Larger clusters are affected considerably less. 

 
The Gradiant and the Laplacian and their role in image enhancement. 

  Use of Second Derivatives for Enhancement–The Laplacian: 
 

The approach basically consists of defining a discrete formulation of the second-order derivative and 

then constructing a filter mask based on that formulation. We are interested in isotropic  filters, whose 

response is independent of the direction of the discontinuities in the  image  to  which the filter is 

applied. In other words, isotropic filters are rotation invariant, in the sense that rotating the image and 

then applying the filter gives the same result as applying the filter to the image first and then rotating 

the result. 

Development of the method: 

 

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic derivative operator is the 
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Laplacian, which, for a function (image) f(x, y) of two variables, is defined as 

 

Because derivatives of any order are linear operations, the Laplacian is a linear operator. In order to be 

useful for digital image processing, this equation needs to be expressed in discrete form. There are 

several ways to define digital Laplacian using neighborhoods. Digital second. Taking into account that 

we now have two variables, we use the following notation for the partial second-order derivative in the 

x-direction: 

 

 

 
 

and, similarly in the y-direction, as 

 

 
The digital implementation of the two-dimensional Laplacian in Eq. is obtained by summing   these 

two components 

 

This equation can be implemented using the mask shown in Fig.2. 11.1(a), which gives an isotropic 

result for rotations in increments of 90°. 

The diagonal directions can be incorporated in the definition of the digital Laplacian by adding two 

more terms to Eq., one for each of the two diagonal directions. The form of each new term is the same 

as either Eq. 
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Figure 2.11.1: (a) Filter mask used to implement the digital Laplacian (b) Mask used to  

implement an extension of this equation that includes the diagonal neighbors. (c) 

and (d) Two other implementations of the Laplacian. 

but the coordinates are along the diagonals. Since each diagonal term also contains a –2f(x, y) term, 

the total subtracted from the difference terms now would be –8f(x, y). The mask used to implement 

this new definition is shown in Fig.2.11.1 (b). This mask yields isotropic results for increments of 45°. 

The other two masks shown in Fig. 2.11 also are used frequently in practice.They are based on a 

definition of the Laplacian that is the negative of the one we used here. As such, they yield equivalent 

results, but the difference in sign must be kept in mind when combining (by addition or subtraction) a 

Laplacian-filtered image with another image. 

Because the Laplacian is a derivative operator, its use highlights gray-level discontinuities in an image 

and deemphasizes regions with slowly varying gray levels.This will tend  to  produce images that have 

grayish edge lines and other discontinuities, all superimposed on a dark, featureless background. 

Background features can be ―recovered‖ while still preserving the sharpening effect of the Laplacian 

operation simply by adding the original and Laplacian images. As noted in the previous paragraph, it is 

important to keep in mind which definition of the Laplacian is used. If the definition used has a 

negative center coefficient, then we subtract, rather than add, the Laplacian image to obtain a 

sharpened result. Thus, the basic way in which we use the Laplacian for image enhancement is as 

follows: 

Use of First Derivatives for Enhancement—The Gradient: 
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First derivatives in image processing are implemented using the magnitude of the gradient. For a 

function f(x, y), the gradient of f at coordinates (x, y) is defined as the two-dimensional column vector 

The magnitude of this vector is given by 

 

The components of the gradient vector itself are linear operators, but the magnitude of this vector 

obviously is not because of the squaring and square root operations. On the other hand, the    partial 

derivatives are not rotation invariant (isotropic), but the magnitude of the gradient vector .Although it 

is not strictly correct, the magnitude of the gradient vector often is referred to as the gradient. 
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The computational burden of implementing over an entire image is not trivial, and it is common 

practice to approximate the magnitude of the gradient by using absolute values instead of squares and 

square roots: 

 

This equation is simpler to compute and it still preserves relative changes in gray levels, but the 

isotropic feature property is lost in general. However, as in the case of the  Laplacian,  the isotropic 

properties of the digital gradient defined in the following paragraph are preserved only for a limited 

number of rotational increments that depend on the masks used to approximate the derivatives. As it 

turns out, the most popular masks used to approximate the gradient give the same result only for 

vertical and horizontal edges and thus the isotropic properties of the gradient are preserved only for 

multiples of 90°. 

As in the case of the Laplacian, we now define digital approximations to the preceding equations, and 

from there formulate the appropriate filter masks. In order to simplify the discussion that follows, we 

will use the notation in Fig. 11.2 (a) to denote image points in a 3 x 3 region. For example, the center 

point, z5 , denotes f(x, y), z1 denotes f(x- 1, y-1), and so on. The simplest approximations to a first-

order derivative that satisfy the conditions stated in that section are Gx = (z8 –z5) and Gy = (z6 – z5) . 

Two other definitions proposed by Roberts [1965] in the early development of digital image processing 

use cross differences: 

we compute the gradient as 

 
If we use absolute values, then substituting the quantities in the equations gives us the following 

approximation to the gradient: 

 

This equation can be implemented with the two masks shown in Figs. 11.2 (b) and(c). These masks are 

referred to as the Roberts cross-gradient operators. Masks of even size are awkward to implement. The 

smallest filter mask in which we are interested is of size 3 x 3.An approximation using absolute values, 

still at point z5 , but using a 3*3 mask, is 
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The difference between the third and first rows of the 3 x 3 image region approximates the derivative in the 

x-direction, and the difference between the third and first columns approximates the derivative in the y-

direction. The masks shown in Figs. 11.2 (d) and (e), called the Sobel operators. The idea behind using a 

weight value of 2 is to achieve some smoothing by giving  more importance to the center point. Note that 

the coefficients in all the masks shown in Fig.2.11.2 sum to 0, indicating that they would give a response 

of 0 in an area of constant gray level,    as expected of a derivative operator. 

 

 

Figure 2.11.2:  A 3 x 3 region of an image (the z’s are gray-level values) and masks used to 

compute the gradient at point labeled z5 . All masks coefficients sum to zero, as expected 

of   a derivative operator. 

 

The frequency domain techniques of image enhancement in detail. 

Enhancement in Frequency Domain: 
The frequency domain methods of image enhancement are based on convolution theorem. This is represented 

as, 

 

Where. 
g(x, y) = h (x, y)*f(x, y) 

 

g(x, y) = Resultant image 

h(x, y) = Position invariant operator f(x, 

y)= Input image 
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The Fourier transform representation of equation above is, 

 

G (u, v) = H (u, v) F (u, v) 

 

The function H (u, v) in equation is called transfer function. It is used to boost the edges of input 

image f (x, y) to emphasize the high frequency components. 

The different frequency domain methods for image enhancement are as follows. 

1. Contrast stretching. 

2. Clipping and thresholding. 

3. Digital negative. 

4. Intensity level slicing and 

5. Bit extraction. 

1. Contrast Stretching: 
Due to non-uniform lighting conditions, there may be poor contrast between the background and the 

feature of interest. Figure 2.11.1.1 (a) shows the contrast stretching transformations. 
 

 
Figure 2.11.1.1:  (a) Histogram of input image 

 

 
 

Figure 2.11.1.1:  (b) Linear Law 

 

 

 

 
Figure 2.11.1.1:  (c) Histogram of the transformed image 
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These stretching transformations are expressed as 

In the area of stretching the slope of transformation is considered to be greater than unity. The 

parameters of stretching transformations i.e., a and b can be determined by examining the histogram 

of the image. 

 

2. Clipping and Thresholding: 
 

Clipping is considered as the special scenario of contrast stretching. It is the case in which the 

parameters are α = γ = 0. Clipping is more advantageous for reduction of noise in input signals of 

range [a, b]. Threshold of an image is selected by means of its histogram. Let us take the image shown 

in the following figure 2.11.2. 
 

 

 

 

 

 

 

 

 

 

\ 
 

Figure 2.11.1.2 

 
The figure 1.2 (b) consists of two peaks i.e., background and object. At the abscissa of histogram 

minimum (D1) the threshold is selected. This selected threshold (D1) can separate background and 

object to convert the image into its respective binary form. The thresholding transformations are 

shown in figure 1.3. 

 

 

Figure 2.11.1.3 

3. Digital Negative: 

 

The digital negative of an image is achieved by reverse scaling of its grey levels to the transformation. 

They are much essential in displaying of medical images. 
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A digital negative transformation of an image is shown in figure 1.4. 

 

 
 

                                 Figure 2.11.1.4 

4. Intensity Level Slicing: 
The images which consist of grey levels in between intensity at background and other objects require 

to reduce the intensity of the object. This process of changing intensity level is done with the help of 

intensity level slicing. They are expressed as 

 

 

The histogram of input image and its respective intensity level slicing is shown in the figure 1.5. 

 

 

 

Figure 2.11.1.5 
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When an image is uniformly quantized then, the n
th
 most significant bit can be extracted and 

displayed. 

Let, u = k1 2
B-1

 + k2 2
B-2

 +……………..+ kB-1 2 + kB Then, 

the output is expressed as 

 

Spatial domain and frequency domain enhancement techniques. 

The spatial domain refers to the image plane itself, and approaches in this category are based on direct 

manipulation of pixels in an image. Frequency domain processing techniques are based on modifying 

the Fourier transform of an image. The term spatial domain refers to the aggregate of pixels 

composing an image and spatial domain methods are procedures that operate directly on these pixels. 

Image processing function in the spatial domain may he expressed as. 

 

g(x, y) = T[f(x, y)] 

 

Where 

 

 

(x, y). 

f(x, y) is the input image 

g(x, y) is the processed image and 

T is the operator on f defined over some neighborhood values of 

Frequency domain techniques are based on convolution theorem. Let g(x, y) be the image  formed by 

the convolution of an image f(x, y) and linear position invariant operation h(x, y) i.e., 

 

g(x, y) = h(x, y) * f(x, y) Applying 

convolution theorem 

G(u, v) = H(u, v) F(u, v) 
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Where G, H and F are the Fourier transforms of g, h and f respectively. In the terminology of linear 

system the transform H (u, v) is called the transfer function of the process. The edges in f(x, y) can he 

boosted by using H (u, v) to emphasize the high frequency components of F (u, v). 

 
  Ideal Low Pass Filter (ILPF) in frequency domain. 

 

       Lowpass Filter: 

 
The edges and other sharp transitions (such as noise) in the gray levels of an image contribute 

significantly to the high-frequency content of its Fourier transform. Hence blurring (smoothing) is 

achieved in the frequency domain by attenuating us the transform of a given image. 

G (u, v) = H (u, v) F(u, v) 

 

where F (u, v) is the Fourier transform of an image to be smoothed. The problem is to select a filter 

transfer function H (u, v) that yields G (u, v) by attenuating the high-frequency components of F (u, 

v). The inverse transform then will yield the desired smoothed image g (x, y). 

 

       Ideal Filter: 

A 2-D ideal lowpass filter (ILPF) is one whose transfer function satisfies the relation 

 

where D is a specified nonnegative quantity, and D(u, v) is the distance from point (u, v) to the origin of the 

frequency plane; that is, 

Figure 3 (a) shows a 3-D perspective plot of H (u, v) u a function of u and v. The name ideal filter indicates that 

oil frequencies inside a circle of radius 

 

 
 

Figure 2.11.3: (a) Perspective plot of an ideal low pass filter transfer function; (b) filter cross 

section. 

 

Do are passed with no attenuation, whereas all frequencies outside this circle are completely attenuated. The 

low pass filters are radically symmetric about the origin. For this type of filter, specifying a cross section 

extending as a function of distance from the origin along a radial line is sufficient, as Fig. 2.11.13 (b) shows. 

The complete filter transfer function can then be generated by rotating the cross section 360 about the origin. 
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Specification of radically symmetric filters centered on the N x N frequency square is based on the assumption 

that the origin of the Fourier transform has been centered on the square. For an ideal low pass filter cross 

section, the point of transition between H(u, v) = 1 and H(u, v) = 0 is often called the cutoff frequency. In the 

case of Fig.2.11.3 (b), for example, the cutoff frequency is Do. As the cross section is rotated about the origin, 

the point Do traces a circle giving a locus of cutoff frequencies, all of which are a distance Do from the origin. 

The cutoff frequency concept is quite useful in specifying filter characteristics. It also serves as a common base 

for comparing the behavior of different types of filters. The sharp cutoff frequencies of an ideal low pass filter 

cannot be realized with electronic components, although they can certainly be simulated in a computer. 

Butterworth low pass filter with example. 

 

      Butterworth filter: 

 
The transfer function of the Butterworth lowpass (BLPF) of order n and with cutoff frequency locus at 

a distance Do, from the origin is defined by the relation 

 

 

A perspective plot and cross section of the BLPF function are shown in figure 4. 

 

 

Figure.2.11..4 (a) A Butterworth low pass filter (b) radial cross section for n = 1. 

 

 

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that establishes  a clear cutoff 

between passed and filtered frequencies. For filters with smooth transfer functions, defining a cutoff frequency 

locus at points for which H (u, v) is down to a certain fraction of its maximum value is customary. In the case of 

above Eq. H (u, v) = 0.5 (down 50 percent from its maximum value of 1) when D (u, v) = Do. Another value 

commonly used is 1/√2 of the maximum value of H (u, v). The following simple modification yields the desired 

value when D (u, v) = Do: 
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Ideal High Pass Filter and Butterworth High Pass filter. 

 

       High pass Filtering: 

 
An image can be blurred by attenuating the high-frequency components of its Fourier transform. 

Because edges and other abrupt changes in gray levels are associated with high-frequency 

components, image sharpening can be achieved in the frequency domain by a high pass filtering 

process, which attenuates the low-frequency components without disturbing high-frequency 

information in the Fourier transform. 

 

       Ideal filter: 

 

2-D ideal high pass filter (IHPF) is one whose transfer function satisfies the relation 

 

where Do is the cutoff distance measured from the origin of the frequency plane. Figure 5.1 shows a perspective 

plot and cross section of the IHPF function. This filter is the opposite of the ideal lowpass filter, because it 

completely attenuates all frequencies inside a circle of radius Do while passing, without attenuation, all 

frequencies outside the circle. As in the case of the ideal lowpass filler, the IHPF is not physically realizable. 

 

 

Figure 2.11..5.1:  Perspective plot and radial cross section of ideal high pass filter 
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Butterworth filter: 

 

The transfer function of the Butterworth high pass filter (BHPF) of order n and with cutoff frequency 

locus at a distance Do from the origin is defined by the relation 

Figure 2.11.5.2 shows a perspective plot and cross section of the BHPF function. Note that when  D  (u, v) = 

Do, H (u, v) is down to ½ of its maximum value. As in the case of the Butterworth lowpass filter, common 

practice is to select the cutoff frequency locus at points for which H (u,v) is down to 1/√2 of its maximum 

value. 
 

 
Figure 2.11..5.2:  Perspective plot and radial cross section for Butterworth High Pass Filter with n = 1 

 

  Gaussian High Pass and Gaussian Low Pass Filter. 

 
Gaussian Lowpass Filters: 

The form of these filters in two dimensions is given by 

 

where, D(u, v) is the distance from the origin of the Fourier transform. 

 

 

 

 

Figure 2.11.6.1:  (a) Perspective plot of a GLPF transfer function, (b) Filter displayed as an image, 

(c) Filter radial cross sections for various values of Do. 
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σ is a measure of the spread of the Gaussian curve. By letting σ = Du, we can express the filter in  a 

more familiar form in terms of the notation: 

 

where Do is the cutoff frequency. When D (u, v) = Do, the filter is down to  0.607  of its maximum 

value. 

      Gaussian Highpass Filters: 

 

The transfer function of the Gaussian highpass filter (GHPF) with cutoff frequency locus at a distance 

Do from the origin is given by 

 

The figure 6.2 shows a perspective plot, image, and cross section of the GHPF function. 

 

 

                                         Figure 2.11. 6.2: Perspective plot, image representation, and cross section of a 

typical Gaussian high pass filter 

Even the filtering of the smaller objects and thin bars is cleaner with the Gaussian filler. 

 

Laplacian is implemented in frequency domain. 

 

     The Laplacian in the Frequency Domain: 
It can be shown that 

 

From this simple expression, it follows that 

 

The expression inside the brackets on the left side of the above Eq. is recognized  as  the  Laplacian of 

f(x, y). Thus, we have the important result 
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which simply says that the Laplacian can be implemented in the frequency domain by using the filter 

 

As in all filtering operations, the assumption is that the origin of F (u, v) has been centered by 

performing the operation f(x, y) (-1) 
x+y

 prior to  taking the transform of  the image. If f (and F)  are of 

size M X N, this operation shifts the center transform so that (u, v) = (0, 0) is at point   (M/2, N/2) in 

the frequency rectangle. As before, the center of the filter function also needs to be shifted: 

 

The Laplacian-filtered image in the spatial domain is obtained by computing the inverse Fourier 

transform of H (u, v) F (u, v): 

 

Conversely, computing the Laplacian in the spatial domain and computing the Fourier transform of the 

result is equivalent to multiplying F(u, v) by H(u, v). We express this dual relationship in the familiar 

Fourier-transform-pair notation 

 

The spatial domain Laplacian filter function obtained by taking the inverse Fourier transform of Eq. 

has some interesting properties, as Fig.7 shows. Figure 7(a) is a 3-D perspective plot. The function is 

centered at (M/2, N/2), and its value at the top of the dome is zero. All other values   are negative. 

Figure 7(b) shows H (u, v) as an image, also centered. Figure 7(c) is the Laplacian   in the spatial 

domain, obtained by multiplying by H (u, v) by (-1)
u+v

 , taking the inverse Fourier transform, and 

multiplying the real part of the result by (-l)
x+y

 . Figure 7(d) is a zoomed section at about the origin of 

Fig.7(c).' Figure 7(e) is a horizontal gray-level profile passing through the center of the zoomed 

section. Finally, Fig.7 (f) shows the mask to implement the definition of the discrete Laplacian in the 

spatial domain. 
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Figure 2.11.7:  (a) 3-D plot of Laplacian in the frequency domain, (b) Image representation of (a), (c) 

Laplacian in the spatial domain obtained from the inverse DFT of  (b) (d)  Zoomed section  of the 

origin of (c). (e) Gray-level profile through the center of (d). (f) Laplacian mask 

A horizontal profile through the center of this mask has the same basic shape as the profile in  Fig. 

7(e) (that is, a negative value between two smaller positive values). We form an enhanced image g(x, 

y) by subtracting the Laplacian from the original image: 

 

High boost and high frequency filtering. 

 

      High-Boost Filtering and High-Frequency Emphasis Filtering: 

 
All the filtered images have one thing in common: Their average background intensity has been 

reduced to near black. This is due to the fact that the highpass filters we applied to those images 

eliminate the zero-frequency component of their Fourier transforms. In fact, enhancement using the 

Laplacian does precisely this, by adding back the entire image to the filtered result.  Sometimes it is 

advantageous to increase the contribution made by the original image to the overall filtered result. This 

approach, called high-boost filtering, is a generalization of unsharp masking. Unsharp masking 

consists simply of generating a sharp image by subtracting from an image a blurred version of itself. 

Using frequency domain terminology, this means obtaining a highpass-filtered image by subtracting 

from the image a lowpass-filtered version of itself. That is 

 

High-boost filtering generalizes this by multiplying f (x, y) by a constant A > 1: 

 

Thus, high-boost filtering gives us the flexibility to increase the contribution made by the image  to the 
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overall enhanced result. This equation may be written as 

 

 

Then, using above Eq. we obtain 

 

This result is based on a highpass rather than a lowpass image. When A = 1, high-boost filtering 

reduces to regular highpass filtering. As A increases past 1, the contribution made by the image itself 

becomes more dominant. 

 

We have Fhp (u,v) = F (u,v) – Flp (u,v). But Flp (u,v) = Hlp (u,v)F(u,v), where Hlp is the transfer function 

of a lowpass filter. Therefore, unsharp masking can be implemented directly in the frequency domain 

by using the composite filter 

 

Similarly, high-boost filtering can be implemented with the composite filter 

with A > 1. The process consists of multiplying this filter by the (centered) transform of the input image and 

then taking the inverse transform of the product. Multiplication of the real part of this result by (-l) 
x+y

 gives us 

the high-boost filtered image fhb (x, y) in the spatial domain. 

 
Homomorphic filtering. 

 

   
The illumination-reflectance model can be used to develop a frequency domain procedure for 

improving the appearance of an image by simultaneous gray-level range compression  and  contrast 

enhancement. An image f(x, y) can be expressed as the product of illumination and reflectance 

components: 

 

Equation above cannot be used directly to operate separately on the frequency components of 

illumination and reflectance because the Fourier transform of the product of two functions is not 

separable; in other words, 
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where Fi (u, v) and Fr (u, v) are the Fourier transforms of ln i(x, y) and ln r(x, y), respectively. If we 

process Z (u, v) by means of a filter function H (u, v) then, from 

where S (u, v) is the Fourier transform of the result. In the spatial domain, 

Now we have 

 

Finally, as z (x, y) was formed by taking the logarithm of the original image f (x, y), the inverse (exponential) 

operation yields the desired enhanced image, denoted by g(x, y); that is, 
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Figure 2.11.9.1:  Homomorphism filtering approach for image enhancement 

And  

 

 

are the illumination and reflectance components of the output image. The enhancement approach using 

the foregoing concepts is summarized in Fig. 9.1. This method is based on a special case of a class of 

systems known as homomorphic systems. In this particular application, the key to the approach is the 

separation of the illumination and reflectance components achieved. The homomorphic filter function 

H (u, v) can then operate on these components separately. The illumination component of an image 

generally is characterized by slow spatial variations, while the reflectance component tends to vary 

abruptly, particularly at the junctions of dissimilar objects. These characteristics lead to associating the 

low  frequencies of  the Fourier transform of the logarithm of an image with illumination and the high 

frequencies  with reflectance. Although these associations are rough approximations, they can be used 

to advantage in image enhancement. A good deal of control can be gained over the illumination and 

reflectance components with a homomorphic filter. This control requires specification of a filter 

function H (u, v) that affects the low- and high-frequency components of the Fourier transform in 

different ways. Figure 9.2 shows a cross section of such a filter. If the parameters γL and γH are chosen 

so that γL < 1 and γH > 1, the filter function shown in Fig. 9.2 tends to decrease the contribution made 

by the low frequencies (illumination) and amplify the contribution made by high frequencies 

(reflectance). The net result is simultaneous dynamic range compression and contrast enhancement. 

 

 

                                        Figure 2.11.9.2: Cross section of a circularly symmetric filter function D (u. v) is the 

distance from the origin of the centered transform. 
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UNIT-III 

 

 

IMAGE RESTORATION 
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Gray level interpolation. 
 

The distortion correction equations yield non integer values for x' and y'. Because the distorted 

image g is digital, its pixel values are defined only at integer coordinates. Thus using  non integer 

values for x' and y' causes a mapping into locations of g for which no gray levels are defined. Inferring 

what the gray-level values at those locations should be, based only on the pixel values at integer 

coordinate locations, and then becomes necessary. The technique used to  accomplish this is called 

gray-level interpolation. The simplest scheme for gray-level interpolation is based on a nearest 

neighbor approach.This method, also called zero-order interpolation, is illustrated in Fig. 3.1: This 

figure shows The mapping of integer (x, y) coordinates into fractional coordinates (x', y') by means of 

following equations 

 

 

and 
x' = c1x + c2y + c3xy + c4 

 

 

y' = c5x + c6y + c7xy + c8 

 

(A) The selection of the closest integer coordinate neighbor to (x', y'); 

and  

(B) The assignment of the gray level of this nearest neighbor to the pixel located at (x, y). 
 

Figure 3.1: Gray-level interpolation based on the nearest neighbor concept. 

 

Although nearest neighbor interpolation is simple to implement, this method often has the drawback of 

producing undesirable artifacts, such as distortion of straight edges in images of   high resolution. 

Smoother results can be obtained by using more sophisticated techniques, such   as cubic convolution 

interpolation, which fits a surface of the sin(z)/z type through a much larger number of neighbors 

(say, 16) in order to obtain a smooth estimate of the gray level at any 
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Desired point. Typical areas in which smoother approximations generally are required include 3-D 

graphics and medical imaging. The price paid for smoother approximations is additional computational 

burden. For general-purpose image processing a bilinear interpolation approach that uses the gray 

levels of the four nearest neighbors usually is adequate. This approach is straightforward. Because the 

gray level of each of the four integral nearest neighbors of a non integral pair of coordinates (x', y') is 

known, the gray-level value at these coordinates, denoted v(x', y'), can be interpolated from the values 

of its neighbors by using the relationship 

v (x', y') = ax' + by' + c x' y' + d 

where the four coefficients are easily determined from the four equations in four unknowns that can be 

written using the four known neighbors of (x', y'). When these coefficients have been determined, v(x', 

y') is computed and this value is assigned to the location in f{x, y) that yielded the spatial mapping into 

location (x', y'). It is easy to visualize this procedure with the aid of Fig.3.1. The exception is that, 

instead of using the gray-level value of the nearest neighbor to (x', y'), we actually interpolate a value 

at location (x', y') and use this value for the gray-level assignment at (x, y). 

Wiener filter used for image restoration. 
 

The inverse filtering approach makes no explicit provision for handling noise. This approach incorporates 

both the degradation function and statistical characteristics of noise into the restoration process. The 

method is founded on considering images and noise as random processes and the objective is to find an 

estimate f of the uncorrupted image f such that the mean square error between them is minimized. This 

error measure is given by 

e
2
 = E {(f- f )

2
} 

where E {•} is the expected value of the argument. It is assumed that the noise and the image are 

uncorrelated; that one or the other has zero mean; and that the gray levels in the estimate are a linear 

function of the levels in the degraded image. Based on these conditions, the minimum of the error 

function is given in the frequency domain by the expression 

 

 
 

where we used the fact that the product of a complex quantity with its conjugate is equal to the 

magnitude of the complex quantity squared. This result is known as the Wiener filter, after N. Wiener 
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[1942], who first proposed the concept in the year shown. The filter, which consists of   the terms 

inside the brackets, also is commonly referred to as the minimum mean square error filter or the least 

square error filter. The Wiener filter does not have the same problem as the inverse filter with zeros in 

the degradation function, unless both H(u, v) and Sη(u, v) are zero for the same value(s) of u and v. The 

terms in above equation are as follows: H (u, v) = degradation function H*(u, v) = complex conjugate 

of H (u, v) 

│H (u, v│ 
2
 = H*(u, v)* H (u, v) 

Sη (u, v) = │N (u, v) 
2
 = power spectrum of the noise 

Sf (u, v) = │F (u, v) 
2
 = power spectrum of the un-degraded image. 

As before, H (u, v) is the transform of the degradation function and G (u, v) is the transform of the 

degraded image. The restored image in the spatial domain is given by the    inverse Fourier transform 

of the frequency-domain estimate F (u, v). Note that if the noise is   zero, then the noise power 

spectrum vanishes and the Wiener filter reduces to the inverse filter. When we are dealing with 

spectrally white noise, the spectrum │N (u, v│ 
2
 is a constant, which simplifies things considerably. 

However, the power spectrum of the undegraded image seldom is known. An approach used frequently 

when these quantities are not known or cannot be estimated is to approximate the equation as 

 
 

where K is a specified constant. 

Model of the Image Degradation/Restoration Process. 
 

The Fig. 3.1shows, the degradation process is modeled as a degradation function that, together with an 

additive noise term, operates on an input image f(x, y) to produce a degraded image g(x, y). Given g(x, 

y), some knowledge about the degradation function H, and some knowledge about the additive noise 

term η(x, y), the objective of restoration is to obtain an estimate f(x, y) of the original image. the 

estimate should be as close as possible to the original input image and, in general, the more we know 

about H and η, the closer f(x, y) will be to f(x, y). The degraded image is given in the spatial domain by 

 

g (x, y) = h (x, y) * f (x, y) + η (x, y) 

where h (x, y) is the spatial representation of the degradation function and, the symbol * 

indicates convolution. Convolution in the spatial domain is equal to multiplication in the 

frequency domain, hence 

G (u, v) = H (u, v) F (u, v) + N (u, v) 

where the terms in capital letters are the Fourier transforms of the corresponding terms in above 

equation. 
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Figure 3.2: model of the image degradation/restoration 

process. 
 

The restoration filters used when the image degradation is due to noise only. 
 

If the degradation present in an image is only due to noise, then, 

 

g (x, y) = f (x, y) + η (x, y) 

G (u, v) = F (u, v) + N (u, v) 

The restoration filters used in this case are, 

 

1. Mean filters 

2. Order static filters and 

3. Adaptive filters 

 
Mean filters. 

 

There are four types of mean filters. They are 
 

(i) Arithmetic mean filter 
 

This is the simplest of the mean filters. Let Sxy represent the set of coordinates in a 

rectangular subimage window of size m X n, centered at point (x, y).The arithmetic mean   filtering 

process computes the average value of the corrupted image g(x, y) in the area defined by Sxy. The 

value of the restored image f at any point (x, y) is simply the arithmetic mean computed using the 

pixels in the region defined by Sxy. In other words 
 

This operation can be implemented using a convolution mask in which all coefficients have 

value 1/mn 
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(ii) Geometric mean filter 
 

An image restored using a geometric mean filter is given by the expression 
 

 
 

Here, each restored pixel is given by the product of the pixels in the subimage window, raised to the 

power 1/mn. A geometric mean filter achieves smoothing comparable to the arithmetic mean filter, 

but it tends to lose less image detail in the process. 

(iii) Harmonic mean filter 
 

The harmonic mean filtering operation is given by the expression 

The harmonic mean filter works well for salt noise, but fails for pepper noise. It does well also with other 

types of noise like Gaussian noise. 

(iv) Contra harmonic mean filter 

 

The contra harmonic mean filtering operation yields a restored image based on the expression 

where Q is called the order of the filter. This filter is well suited for reducing or virtually eliminating the 

effects of salt-and-pepper noise. For positive values of Q, the filter eliminates pepper noise. For negative 

values of Q it eliminates salt noise. It cannot do both simultaneously. Note that the contra harmonic filter 

reduces to the arithmetic mean filter if Q = 0, and to the harmonic mean filter if Q = -1. 

The Order-Statistic Filters. 
 

There are four types of Order-Statistic filters. They are 
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(i) Median filter 

The best-known order-statistics filter is the median filter, which, as its name implies, replaces 

the value of a pixel by the median of the gray levels in the neighborhood of that pixel: 
 

The original value of the pixel is included in the computation of the median. Median filters are quite 

popular because, for certain types of random noise, they provide excellent noise-reduction 

capabilities, with considerably less blurring than linear smoothing filters of similar size. Median 

filters are particularly effective in the presence of both bipolar and unipolar impulse noise. 

(ii) Max and min filters 
 

Although the median filter is by far the order-statistics filler most used in image processing, it 

is by no means the only one. The median represents the 50th percentile of a ranked set of numbers, 

but the reader will recall from basic statistics that ranking lends itself to many other possibilities. For 

example, using the 100
th
 percentile results in the so-called max filter,  given by 

This filter is useful for finding the brightest points in an image. Also, because pepper noise has very low 

values, it is reduced by this filter as a result of the max selection process in the subimage area Sxy. The 0
th
 

percentile filter is the min filter. 
 

This filter is useful for finding the darkest points in an image. Also, it reduces salt noise as a result of 

the min operation. 

(iii) Midpoint filter 
 

The midpoint filter simply computes the midpoint between the maximum and minimum values 

in the area encompassed by the filter: 

 

 
 

Note that this filter combines order statistics and averaging. This filter works best for randomly 

distributed noise, like Gaussian or uniform noise. 
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(iv) Alpha - trimmed mean filter 
 

It is a filter formed by deleting the d/2 lowest and the d/2 highest gray-level values of g(s, 

t) in the neighborhood Sxy. Let gr (s, t) represent the remaining mn - d pixels. A filter formed by 

averaging these remaining pixels is called an alpha-trimmed mean filter: 

where the value of d can range from 0 to mn - 1. When d = 0, the alpha- trimmed filter reduces to the 

arithmetic mean filter. If  d = (mn - l)/2, the filter becomes a median filter. For other values    of d, the 

alpha-trimmed filter is useful in situations involving multiple types of noise, such as a combination of 

salt-and-pepper and Gaussian noise. 

  The Adaptive Filters. 
 

Adaptive filters are filters whose behavior changes based on statistical characteristics of the 

image inside the filter region defined by the m X n rectangular window Sxy. 

Adaptive, local noise reduction filter: 
 

The simplest statistical measures of a random variable are its mean and variance. These are 

reasonable parameters on which to base an adaptive filler because they are quantities closely related 

to the appearance of an image. The mean gives a measure of average gray level in the region over 

which the mean is computed, and the variance gives a measure of average contrast in that region. 

This filter is to operate on a local region, Sxy. The response of the filter at any point (x, y) on which 

the region is centered is to be based on four quantities: (a) g(x, y), the value of the  noisy image at (x, 

y); (b) a2, the variance of the noise corrupting /(x, y) to form g(x, y); (c) ray, the local mean of the 

pixels in Sxy; and (d) σ
2

L , the local variance of the pixels in Sxy.The behavior of the filter to be as 

follows: 
 

1. If σ2
η is zero, the filler should return simply the value of g (x, y). This is the trivial, zero-noise case 

in which g (x, y) is equal to f (x, y). 

2. If the local variance is high relative to σ
2

η the filter should return a value close to g (x, y). A high 

local variance typically is associated with edges, and these should be preserved. 

3. If the two variances are equal, we want the filter to return the arithmetic mean value of the 

pixels in Sxy. This condition occurs when the local area has the same properties as the overall 

image, and local noise is to be reduced simply by averaging. 

Adaptive local noise filter is given by, 
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The only quantity that needs to be known or estimated is the variance of the overall noise, a2.   The 

other parameters are computed from the pixels in Sxy at each location (x, y) on which the  filter window 

is centered. 

 Adaptive median filter: 
 

The median filter performs well as long as the spatial density of the impulse noise is not large (as  a 

rule of thumb, Pa and Pb less than 0.2). The adaptive median filtering can handle impulse noise with 

probabilities even larger than these. An additional benefit of the adaptive median filter is   that it seeks 

to preserve detail while smoothing nonimpulse noise, something  that  the  "traditional" median filter 

does not do. The adaptive median filter also works in a rectangular window area Sxy. Unlike those 

filters, however, the adaptive median filter changes (increases) the size of Sxy during filter operation, 

depending on certain conditions. The output of the filter is a single value used to replace the value of 

the pixel at (x, y), the particular point on which the window Sxy is centered at a given time. 

Consider the following notation: 

 

zmin = minimum gray level value in Sxy zmax = maximum gray level value in Sxy zmcd 

= median of gray levels in Sxy 

zxy = gray level at coordinates (x, y) Smax = maximum allowed size of Sxy. 

The adaptive median filtering algorithm works in two levels, denoted level A and level B, as follows: 

Level A: A1 = zmed - zmin 

A2 = zmed - 

zmax If A1 > 0 AND A2 < 0, Go to level 

B Else increase the window size 

If window size ≤ Smax repeat level A Else 

output zxy  

Level B: B1 = zxy - zmin  

B2 = zxy - zmax 
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If B1> 0 AND B2 < 0, output zxy Else 

output zmed 

 
 
 
 
Image Formation Model. 

 

An image is represented by two-dimensional functions of the form f(x, y). The value or 

amplitude of f at spatial coordinates (x, y) is a positive scalar quantity whose physical meaning is 

determined by the source of the image. When an image is generated from a physical process, its values 

are proportional to energy radiated by a physical source (e.g., electromagnetic waves). As   a 

consequence, f(x, y) must be nonzero and finite; that is, 

0 < f (x, y) < ∞ …. (1) 

The function f(x, y) may be characterized by two components: 

A) The amount of source illumination incident on the scene being viewed. 

 

B) The amount of illumination reflected by the objects in the scene. 

 

Appropriately, these are called the illumination and reflectance components and are denoted by   i 

(x, y) and r (x, y), respectively. The two functions combine as a product to form f (x, y). 

 

f (x, y) = i (x, y) r (x, y) …. (2) 
 

where 

 

 
and 

0 < i (x, y) < ∞ …. (3) 

 

 
0 < r (x, y) < 1 …. (4) 

 

Equation (4) indicates that reflectance is bounded by 0 (total absorption) and 1 (total reflectance).The 

nature of i (x, y) is determined by the illumination source, and r (x, y) is determined by the 

characteristics of the imaged objects. It is noted that these expressions also are applicable to images 

formed via transmission of the illumination through a medium, such as a chest X-ray. 

Inverse filtering. 
 

The simplest approach to restoration is direct inverse filtering, where F (u, v), the transform of 

the original image is computed simply by dividing the transform of the degraded image, G (u, v), by 
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the degradation function 

The divisions are between individual elements of the functions. 

 

But G (u, v) is given by 
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It tells that even if the degradation function is known the undegraded image cannot be 

recovered [the inverse Fourier transform of F( u, v)] exactly because N(u, v)  is  a  random function 

whose Fourier transform is not known. 

If the degradation has zero or very small values, then the ratio N(u, v)/H(u, v) could   easily 

dominate the estimate F(u, v). 

One approach to get around the zero or small-value problem is to limit the filter frequencies to 

values near the origin. H (0, 0) is equal to the average value of h(x, y) and that this 

 

is usually the highest value of H (u, v) in the frequency domain. Thus, by limiting the analysis to 

frequencies near the origin, the probability of encountering zero values is reduced. 

Noise Probability Density Functions. 
 

The following are among the most common PDFs found in image processing applications. 
 

Gaussian noise 
 

Because of its mathematical tractability in both the spatial and frequency domains, Gaussian 

(also called normal) noise models are used frequently in practice. In fact,  this  tractability is so 

convenient that it often results in Gaussian models being used in situations in which they are 

marginally applicable at best. 

The PDF of a Gaussian random variable, z, is given by 
 

             … (1) 

where z represents gray level, µ is the mean of average value of z, and a σ is its standard  deviation. 

The standard deviation squared, σ
2
, is  called  the variance of z. A plot of this function  is shown in Fig. 

5.10. When z is described by Eq. (1), approximately 70% of its values will be in the range [(µ - σ), (µ 

+σ)], and about 95% will be in the range [(µ - 2σ), (µ + 2σ)]. 

 Rayleigh noise 
 

The PDF of Rayleigh noise is given by 



 

104 

 

The mean and variance of this density are given by 

µ = a + ƒ Mb/4 

σ2 = b(4 – Π)/4 

Figure 5.10 shows a plot of the Rayleigh density. Note the displacement from the origin and the fact 

that the basic shape of this density is skewed to the right. The Rayleigh density can be quite useful for 

approximating skewed histograms. 

Erlang (Gamma) noise 

 

The PDF of Erlang noise is given by 
 

where the parameters are such that a > 0, b is a positive integer, and "!" indicates factorial. The mean 

and variance of this density are given by 

µ = b / a 

σ2 = b / a2 
 

 Exponential noise 
 

The PDF of exponential noise is given by 

 

The mean of this density function is given by 
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µ = 1 / a 

σ
2
 = 1 / a

2
 This 

PDF is a special case of the Erlang PDF, with b = 1. Uniform 

noise 

The PDF of uniform noise is given by 

 
 

The mean of this density function is given by 
 

µ = a + b /2 

σ2 = (b – a ) 2 / 12 
 

Impulse (salt-and-pepper) noise 
 

The PDF of (bipolar) impulse noise is given by 
 

If b > a, gray-level b will appear as a light dot in the image. Conversely, level a will  appear 

like a dark dot. If either Pa or Pb is zero, the impulse noise is called unipolar. If neither probability is 

zero, and especially if they are approximately equal, impulse noise values will resemble salt-and-

pepper granules randomly distributed over the image. For this reason, bipolar impulse noise also is 

called salt-and-pepper noise. Shot and spike noise also are terms used to  refer to this type of noise. 
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Figure 3.4: Some important probability density functions 
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Enumerate the differences between the image enhancement and image restoration. 
 

(i) Image enhancement techniques are heuristic procedures designed to manipulate an image in order to 

take advantage of the psychophysical aspects of the human system. Whereas image restoration 

techniques are basically reconstruction techniques by which a degraded image is reconstructed by 

using some of the prior knowledge of the degradation phenomenon. 

(ii) Image enhancement can be implemented by spatial and frequency  domain  technique, whereas 

image restoration can be implement by frequency domain and algebraic techniques. 

(iii) The computational complexity for image enhancement is relatively less when compared to the 

computational complexity for irrrage restoration, since algebraic methods requires manipulation of 

large number of simultaneous equation. But, under some  condition  computational complexity can be 

reduced to the same level as that required by traditional frequency domain technique. 

(iv) Image enhancement techniques are problem oriented, whereas image restoration techniques are 

general and are oriented towards modeling  the degradation and applying the reverse process  in order 

to reconstruct the original image. 

(v) Masks are used in spatial domain methods for image enhancement, whereas masks are not used 

for image restoration techniques. 

(vi) Contrast stretching is considered as image enhancement technique because it is based on the 

pleasing aspects of the review, whereas removal of’ image blur by applying a deblurring function is 

considered as a image restoration technique. 

Iterative nonlinear restoration using the Lucy–Richardson algorithm. 

 
Lucy-Richardson algorithm is a nonlinear restoration method used to recover a latent image 

which is blurred by a Point Spread Function (psf). It is also known as Richardson-Lucy de-

convolution. With as the point spread function, the pixels in observed image are expressed as, 

 

 

Here,  

uj = Pixel value at location j in the image 

ci = Observed value at i
th
 pixel locacation 
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The L-R algorithm cannot be used in application in which the psf (Pij) is dependent on one or more 

unknown variables. 

 

The L-R algorithm is based on maximum-likelihood formulation, in this formulation Poisson 

statistics are used to model the image. If the likelihood of model is increased, then the result is an 

equation which satisfies when the following iteration converges. 
 

 

Here, 

 

f = Estimation of undegraded image. 

 

The factor f which is present in the right side denominator leads to non-linearity. Since, the algorithm 

is a type of nonlinear restorations; hence it is stopped when satisfactory result is obtained. The basic 

syntax of function deconvlucy with the L-R algorithm is implemented is given below. 

 

fr = Deconvlucy (g, psf, NUMIT, DAMPAR, WEIGHT). Here the parameters are, 

 

g = Degraded image, fr = Restored image, psf = Point spread function 

 

NUMIT = Total number of iterations. The remaining two parameters are, 

 

DAMPAR 

 

The DAMPAR parameter is a scalar parameter which is used to determine the deviation   of 

resultant image with the degraded image (g). The pixels which gel deviated from their original value 

within the DAMPAR, for these pixels iterations are cancelled so as to reduce noise generation and 

present essential image information. 
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WEIGHT 
 

WEIGHT parameter gives a weight to each and every pixel. It is array of size similar to that of 

degraded image (g). In applications where a pixel leads to improper image is removed by assigning it 

to a weight as 0’. The pixels may also be given weights depending upon the flat-field correction, which 

is essential according to image array. Weights are used in applications such as blurring with specified 

psf. They are used to remove the pixels which are pre9ent at the boundary of the image and are blurred 

separately by psf. If the array size of psf is n x n then the width of weight of border of zeroes being 

used is ceil (n / 2). 
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UNIT-IV 

 

IMAGE SEGMENTATION  
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The derivative operators useful in image segmentation and their role in segmentation. 

    Gradient operators: 
 

First-order derivatives of a digital image are based on various approximations of the 2-D gradient. 

The gradient of an image f (x, y) at location (x, y) is defined as the vector 
 

It is well known from vector analysis that the gradient vector points in the direction of maximum rate of 

change of f at coordinates (x, y). An important quantity in edge detection is the magnitude 

of this vector, denoted by Af, where 

 
 
This quantity gives the maximum rate of increase of f (x, y) per unit distance in the direction of Af. It 
is a common (although not strictly correct) practice to refer to Af also as the gradient. The direction 
of the gradient vector also is an important quantity. Let α (x, y) represent the direction angle of the 
vector Af at (x, y). Then, from vector analysis, 

 

where the angle is measured with respect to the x-axis. The direction of an edge at (x, y) is perpendicular 

to the direction of the gradient vector at that point. Computation of the gradient of an image is based 

on obtaining the partial derivatives &f/&x and &f/&y at every pixel location. Let the 3x3 area 

shown in Fig.4.1 (a) represent the gray levels in a neighborhood of an image. One of the simplest 

ways to implement a first-order partial derivative at point z5 is to use the following Roberts cross-

gradient operators: 
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These derivatives can be implemented for an entire image by using the masks shown in Fig. 1.1(b). 

Masks of size 2 X 2 are awkward to implement because they do not have a clear center.  An approach 

using masks of size 3 X 3 is given by 

 
 
 

                             Figure 4.1: A 3 X 3 region of an image (the z’s are gray-level values) and various masks used to 

compute the gradient at point labeled z5. 

 

 

 

 

A weight value of 2 is used to achieve some smoothing by giving more importance to the center point. 

Figures 1.1(f) and (g), called the Sobel operators, and are used to implement these two equations. The 

Prewitt and Sobel operators are among the most used in practice for computing digital gradients. The  



 

113 

 

 

Prewitt masks are simpler to implement than the Sobel masks, but the latter have slightly superior 

noise-suppression characteristics, an important issue when dealing with derivatives. Note that the 

coefficients in all the masks shown in Fig. 1.1 sum to 0, indicating that they give a response of 0 in 

areas of constant gray level, as expected of a derivative operator. The masks just discussed are used to 

obtain the gradient components Gx and Gy. Computation of the gradient requires that these two 

components be combined. However, this implementation is not always desirable because of the 

computational burden required by squares and square roots. An approach used frequently is to 

approximate the gradient by absolute values: 
 

This equation is much more attractive computationally, and it still preserves relative changes in gray 

levels. However, this is not an issue when masks such as the Prewitt and Sobel masks are used to 

compute Gx and Gy. 

It is possible to modify the 3 X 3 masks in Fig. 4.1 so that they have their strongest responses along the 

diagonal directions. The two additional Prewitt and Sobel masks for detecting discontinuities in the 

diagonal directions are shown in Fig. 4.2. 

 
 

Figure 4.2: Prewitt and Sobel masks for detecting diagonal edges 

 

The Laplacian: 
 

The Laplacian of a 2-D function f(x, y) is a second-order derivative defined as 
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For a 3 X 3 region, one of the two forms encountered most frequently in practice is 

 
 

Figure 4.3 : Laplacian masks used to implement Eqns. above. 
 

where the z's are defined in Fig. 1.1(a). A digital approximation including the diagonal neighbors is 

given by 
 

Masks for implementing these two equations are shown in Fig. 1.3. We note  from these masks that the 

implementations of Eqns. are isotropic for rotation increments of 90° and 45°, respectively. 
Edge detection. 

Intuitively, an edge is a set of connected pixels that lie on the boundary between two regions. 

Fundamentally, an edge is a "local" concept whereas a region boundary, owing to the way it is defined, 

is a more global idea. A reasonable definition of "edge" requires the ability to measure gray-level 

transitions in a meaningful way. We start by modeling an edge intuitively. This will lead us to 

formalism in which "meaningful" transitions in gray levels can be  measured. Intuitively, an ideal edge 

has the properties of the model shown in Fig. 4.2(a). An ideal edge according to this model is a set of 

connected pixels (in the vertical direction here), each of which  is located at an orthogonal step 

transition in gray level (as shown by the horizontal profile in the figure).In practice, optics, sampling, 

and other image acquisition imperfections yield edges that are blurred, with the degree of blurring 

being determined by factors such as the quality of the image acquisition system, the sampling rate, and 

illumination conditions under which the image   is acquired. As a result, edges are more closely 

modeled as having a "ramp like" profile, such as the one shown in Fig.4.2(b). 
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                           Figure 4.2.1 (a) Model of an ideal digital edge (b) Model of a ramp edge. The slope of the ramp is 

proportional to the degree of blurring in the edge. 

The slope of the ramp is inversely proportional to the degree of blurring in the edge. In this model, we 

no longer have a thin (one pixel thick) path. Instead, an edge point now is any point contained in the 

ramp, and an edge would then be a set of such points that are connected. The "thickness" of the edge is 

determined by the length of the ramp, as it transitions from an initial to a final gray level. This length is 

determined by the slope, which, in turn, is determined by the degree of blurring. This makes sense: 

Blurred edges lend to be thick and sharp edges tend to be thin. Figure 4. 2.2(a) shows the image from 

which the close-up in Fig. 4. 2.1(b) was extracted. Figure 4. 2.2(b) shows a horizontal gray-level 

profile of the edge between the two regions. This figure also shows the first and second derivatives of 

the gray-level profile. The first derivative is positive at the points of transition into and out of the ramp 

as we move from left to right along the profile; it is constant for points in the ramp; and is zero in areas 

of constant gray level. The second derivative is positive at the transition associated with the dark side 

of the edge, negative at the transition associated with the light side of the edge, and zero along the 

ramp and in areas of constant gray level. The signs of the derivatives in Fig. 4. 2.2(b) would be 

reversed for an edge that transitions from light to dark. 

We conclude from these observations that the magnitude of the first derivative can be used to detect 

the presence of an edge at a point in an image (i.e. to determine if a point is on a ramp). Similarly, the 

sign of the second derivative can be used to determine whether an edge pixel lies on the dark or light 

side of an edge. We note two additional properties of the second derivative around an edge: A) It 

produces two values for every edge in an image (an undesirable feature); and B) an imaginary straight 

line joining the extreme positive and negative values of the second derivative would cross zero near the 

midpoint of the edge. This zero-crossing property of the second derivative is quite useful for locating 

the centers of thick edges. 
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Figure 4..2.2 (a) Two regions separated by a vertical edge (b) Detail near the edge, showing a gray-level 

profile, and the first and second derivatives of the profile. 

The edge linking procedures. 

The different methods for edge linking are as follows 

 

(i) Local processing 

 

(ii) Global processing via the Hough Transform 

 

(iii) Global processing via graph-theoretic techniques. 

 

(i) Local Processing: 
 

One of the simplest approaches for linking edge points is  to analyze the characteristics of pixels  in a 

small neighborhood (say, 3 X 3 or 5 X 5) about every point (x, y) in an image that has been labeled an 

edge point. All points that are similar according to a set of predefined criteria are linked, forming an 

edge of pixels that share those criteria. The two principal properties used for establishing similarity of 

edge pixels in this  kind  of  analysis are (1) the strength of the response of the gradient operator 

used to produce the edge pixel; and (2) the direction of the gradient vector. The first property is given 

by the value of Af. 

Thus an edge pixel with coordinates (xo, yo) in a predefined neighborhood of (x, y), is similar in 

magnitude to the pixel at (x, y) if 
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The direction (angle) of the gradient vector is given by Eq. An edge pixel at (xo, yo) in the predefined 

neighborhood of (x, y) has an angle similar to the pixel at (x, y) if 

where A is a nonnegative angle threshold. The direction of the edge at (x, y) is perpendicular to the 

direction of the gradient vector at that point. A point in the predefined neighborhood of (x, y) is linked to 

the pixel at (x, y) if both magnitude and direction criteria are satisfied. This process is repeated at every 

location in the image. A record must be kept of linked points as the center of the neighborhood is moved 

from pixel to pixel. A simple bookkeeping procedure is to assign a different gray level to each set of 

linked edge pixels. 
 

(ii) Global processing via the Hough Transform: 
 

In this process, points are linked by determining first if they lie on a curve of specified shape. We now 

consider global relationships between pixels. Given n points in an image, suppose that we want to find 

subsets of these points that lie on straight lines. One possible solution is to first find all lines 

determined by every pair of points and then find all subsets of points that are close to particular lines. 

The problem with this procedure is that it involves finding n(n - 1)/2 ~ n
2
 lines  and then performing 

(n)(n(n - l))/2 ~ n
3
 comparisons of every point to all lines. This approach is computationally prohibitive 

in all but the most trivial applications. 

Hough [1962] proposed an alternative approach, commonly referred to as the Hough transform. 

Consider a point (xi,  yi)  and  the  general  equation  of  a  straight  line  in  slope-intercept  form, yi  =  

a.xi  +  b.  Infinitely  many  lines  pass  through  (xi,  yi)  but  they  all  satisfy  the  equation  yi = a.xi + 

b for varying values of a and b. However, writing this equation as b = -a.xi + yi, and considering the ab-

plane (also called parameter space) yields the equation of a single line for a fixed pair (xi, yi). 

Furthermore, a second point (xj, yj) also has a line in parameter space associated with it, and this line 

intersects the line associated with (xi, yi) at (a', b'), where a' is the slope and b' the intercept of the line 

containing both (xi, yi) and (xj, yj) in the xy-plane. In fact, all points contained on this line have lines in 

parameter space that intersect at (a', b'). Figure 4.3.1 illustrates these concepts. 
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Figure 4..3.1 :(a) xy-plane (b) Parameter space 
 

 
 

Figure 4.3.2:  Subdivision of the parameter plane for use in the Hough transform 

 
The computational attractiveness of the Hough transform arises from subdividing the parameter space 

into so-called accumulator cells,  as  illustrated  in  Fig.  3.2,  where  (amax  ,  amin)  and  (bmax , bmin), are 

the expected ranges of slope and intercept values. The cell at coordinates (i, j), with accumulator value 

A(i, j), corresponds to the square associated with parameter space coordinates (ai , bi). Initially, these 

cells are set to zero. Then, for every point (xk, yk) in the image plane, we let the parameter a equal each 

of the allowed subdivision values on the fl-axis and solve for the corresponding b using the equation b 

= - xk a + yk .The resulting b’s are then rounded off to the nearest allowed value in the b-axis. If a 

choice of ap results in solution bq, we let A (p, q) = A (p,q) + 1. At the end of this procedure, a value of 

Q in A (i, j) corresponds to Q points in the xy- plane lying on the line y = ai x + bj.  

 

The number of subdivisions in the ab-plane determines the accuracy of the co linearity of these points. 

Note that subdividing the a axis into K increments gives, for every point (xk, yk), K values of b 

corresponding to the K possible values of a. With n image points, this method involves nK 

computations. Thus the procedure just discussed is linear  in n, and the product nK does not approach 

the number of computations discussed at the  beginning unless K approaches or exceeds n. A problem 

with using the equation y = ax + b to represent a line is that the slope approaches infinity as the line 
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approaches the vertical. One way around this difficulty  is to  use the normal representation of a line: 

x cosθ + y sinθ = ρ 
  

Figure 4.3.3(a) illustrates the geometrical interpretation of the parameters used. The use of this 

representation in constructing a table of accumulators is identical to the method discussed for the 

slope-intercept representation. Instead of straight lines, however, the loci are sinusoidal curves in the 

ρθ -plane. As before, Q collinear points lying on a line x cosθj + y sinθj = ρ,  yield  Q sinusoidal curves 

that intersect at (pi, θj) in the parameter space. Incrementing θ and solving for  the corresponding p 

gives Q entries in accumulator A (i, j) associated with the cell determined by (pi, θj). Figure 4.3.3 (b) 

illustrates the subdivision of the parameter space. 

 

Figure 4.3.3 (a) Normal representation of a line (b) Subdivision of the ρθ-plane into cells 

 
The range of angle θ is ±90°, measured with respect to the x-axis. Thus with reference to Fig. 3.3 (a), a 

horizontal line has θ = 0°, with ρ being equal to the positive x-intercept. Similarly,  a  vertical line has 

θ = 90°, with p being equal to the positive y-intercept, or θ = - 90°, with ρ being equal to the negative 

y-intercept. 

 
(iii) Global processing via graph-theoretic techniques 

 

In this process we have a global approach for edge detection and linking based on representing edge 

segments in the form of a graph and searching the graph for low-cost paths that correspond  to 

significant edges. This representation provides a rugged approach that performs well in the presence of 

noise. 
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              Figure 4.3.4:  Edge clement between pixels p and q 

 

We begin the development with some basic definitions. A graph G = (N,U) is a finite, nonempty set of 

nodes N, together with a set U of unordered pairs of distinct elements of N. Each pair (ni,   nj) of U is 

called an arc. A graph in which the arcs are directed is called a directed graph. If an    arc is directed 

from node ni to node nj, then nj is said to be a successor of the parent node ni. The process of 

identifying the successors of a node is called expansion of the node. In each graph we define levels, 

such that level 0 consists of a single node, called the start or root node, and the  nodes in the last level 

are called goal nodes. A cost c (ni, nj) can be associated with every arc (ni, nj). A sequence of nodes n1, 

n2... nk, with each node ni being a successor of node ni-1 is called a path from n1 to nk. The cost of the 

entire path is 
 

The following discussion is simplified if we define an edge element as the boundary between    two 

pixels p and q, such that p and q are 4-neighbors, as Fig.3.4 illustrates. Edge elements are identified by 

the xy-coordinates of points p and q. In other words, the edge element in Fig. 3.4 is defined by the pairs 

(xp, yp) (xq, yq). Consistent with the definition an edge is a sequence of connected edge elements. We 

can illustrate how the concepts just discussed apply to  edge detection using the  3 X 3 image shown in 

Fig. 4.3.5 (a). The outer numbers are pixel 

 

 
 

                              Figure 4..3.5:  (a) A 3 X 3 image region, (b) Edge segments and their costs, (c) Edge corresponding to 

the lowest-cost path in the graph shown in Fig. 4.3.6 

 

coordinates and the numbers in brackets represent gray-level values. Each edge element, defined by 

pixels p and q, has an associated cost, defined as 
 

where H is the highest gray-level value in the image (7 in this case), and f(p) and f(q) are the gray-level 

values of p and q, respectively. By convention, the point p is on the right-hand side of the direction of 
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travel along edge elements. For example, the edge segment (1, 2)  (2, 2) is  between points (1, 2) and 

(2, 2) in Fig. 4.3.5 (b). If the direction of travel is  to  the right, then p is the point with coordinates (2, 

2) and q is point with coordinates (1, 2); therefore, c (p, q) = 7 - [7- 6] = 6. This cost is shown in the  

box below the edge segment. If, on the other hand, we are traveling to the left between the same two 

points, then p is point (1, 2) and q is (2, 2). In this case the cost is 8, as shown above the edge segment 

in Fig. 4.3.5(b). To simplify the discussion, we assume that edges start in the top row and terminate in 

the last row, so that the first element of an edge can be only between points (1, 1), (1, 2) or (1, 2), (1, 

3). Similarly, the last edge element has to be between points (3, 1), (3, 2) or (3, 2), (3, 3). Keep in mind 

that p and q are 4-neighbors, as noted earlier. Figure 3.6 shows the graph for this problem. Each node 

(rectangle) in the graph corresponds to an edge element from Fig. 3.5. An arc exists between two nodes 

if the two corresponding edge elements taken in succession can be part of an edge. 

 
 

Figure 4.3.6: Graph for the image in Fig.4.3.5 (a). The lowest-cost path is shown dashed. 

 
As in Fig. 4.3.5 (b), the cost of each edge segment, is shown in a box on the side of the arc leading into 

the corresponding node. Goal nodes are shown shaded. The minimum cost path is shown dashed, and 

the edge corresponding to this path is shown in Fig.4. 3.5 (c). 
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Thresholding and   global thresholding. 

      Thresholding: 
 

Because of its intuitive properties and simplicity of implementation, image thresholding enjoys a central 

position in applications of image segmentation. 

      Global Thresholding: 
The simplest of all thresholding techniques is to partition the image histogram by using a single global 

threshold, T. Segmentation is then accomplished by scanning the image pixel by pixel and labeling 

each pixel as object or back-ground, depending on whether the gray level of that pixel is greater or less 

than the value of T. As indicated earlier, the success of this method depends entirely on how well the 

histogram can be partitioned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.1: FIGURE 10.28 (a) Original image, (b) Image histogram, (c) Result of global thresholding 

with T midway between the maximum and minimum gray levels. 

Figure 4.4.1(a) shows a simple image, and Fig. 4.4.1(b) shows its histogram. Figure 4.4.1(c) shows the 

result of segmenting Fig. 4.4.1(a) by using a threshold T midway between the maximum and minimum 

gray levels. This threshold achieved a "clean" segmentation by eliminating the shadows and leaving 

only the objects themselves. The objects of interest in this case are darker than the background, so any 

pixel with a gray level ≤ T was labeled black (0), and any pixel with  a gray level ≥ T was labeled 

white (255).The key objective is merely to generate a binary image, so the black-white relationship 

could be reversed. The type of global thresholding just described can be expected to be successful in 
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highly controlled environments. One of the areas in which this often is possible is in industrial 

inspection applications, where control of the illumination usually is feasible. The threshold in the 

preceding example was specified by using a heuristic approach, based on visual inspection of the 

histogram. The following algorithm can be used to obtain T automatically: 

1. Select an initial estimate for T. 

 

2. Segment the image using T. This will produce two groups of pixels: G1 consisting of all pixels with 

gray level values >T and G2 consisting of pixels with values < T. 

3. Compute the average gray level values µ1 and µ2 for the pixels in regions G1 and G2. 

 

4. Compute a new threshold value: 

 

5. Repeat steps 2 through 4 until the difference in T in successive iterations is smaller than a 

predefined parameter To. 

When there is reason to believe that the background and object occupy comparable areas in the image, 

a good initial value for T is the average gray level of the image. When objects are small compared to 

the area occupied by the background (or vice versa), then one group of pixels will dominate the 

histogram and the average gray level is not as good an initial choice. A more appropriate initial value 

for T in cases such as this is a value midway between the maximum and minimum gray levels. The 

parameter To is used to stop the algorithm after changes become small in terms of this parameter. This 

is used when speed of iteration is an important issue. 

 
Adaptive thresholding  process used in image  segmentation. 

 
        Basic Adaptive Thresholding: 

 

Imaging factors such as uneven illumination can transform a perfectly segmentable histogram  into a 

histogram that cannot be partitioned effectively by a single global threshold. An approach for handling 

such a situation is to divide the original image into subimages and then utilize a 

different threshold to segment each subimage. The key issues in this approach are how to subdivide the 

image and how to estimate the threshold for each resulting subimage. Since the threshold used for each 

pixel depends on the location of the pixel in terms of the subimages, this type of thresholding is 

adaptive. 
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                             Figure 4.5 : (a) Original image, (b) Result of global thresholding. (c) Image subdivided into individual 

subimages (d) Result of adaptive thresholding. 

We illustrate adaptive thresholding with a example. Figure 4.5(a) shows the image, which we 

concluded could not be thresholded effectively with a single global threshold. In fact, Fig.4. 5(b) shows 

the result of thresholding the image with a global threshold manually placed in the valley of its 

histogram. One approach to reduce the effect of non-uniform illumination is to subdivide    the image 

into smaller sub-images, such that the illumination of each sub image is approximately uniform. Figure 

5(c) shows such a partition, obtained by subdividing the image into four equal parts, and then 

subdividing each part by four again. All the sub-images that did not contain a boundary between object 

and back-ground had variances of less than 75. All sub-images containing boundaries had variances in 

excess of 100. Each sub-image with variance greater than 100 was segmented with a threshold 

computed for that sub-image using the algorithm. The initial value for T in each case was selected as 

the point midway between the minimum and maximum gray levels in the sub-image. All sub-images 

with variance less than 100 were treated as one composite image, which was segmented using a single 

threshold estimated using the same algorithm. The result of segmentation using this procedure is 

shown in Fig.4. 5(d). With the exception of two sub-images, the improvement over Fig. 5(b) is evident. 

The boundary between object and background in each of the improperly segmented sub-images was 

small and dark, and the resulting histogram was almost unimodal. 

 
 The threshold selection based on boundary characteristics. 

        Boundary Characteristics for Histogram Improvement and Local Thresholding: 
 

It is intuitively evident that the chances of selecting a "good" threshold are enhanced considerably if 

the histogram peaks are tall, narrow, symmetric, and separated by deep valleys. One approach for 

improving the shape of histograms is to consider only those pixels that lie on    or near the edges 

between objects and the background. An immediate and obvious improvement is that histograms 

would be less dependent on the relative sizes of objects and the background.  For instance, the 

histogram of an image composed of a small object on a large background area  (or vice versa) would 
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be dominated by a large peak because of the high concentration of one type of pixels. 

If only the pixels on or near the edge between object and the background were used, the 

resulting histogram would have peaks of approximately the same height. In addition, the probability 

that any of those given pixels lies on an object would be approximately equal to the probability that it 

lies on the back-ground, thus improving the symmetry of the histogram peaks. Finally, as indicated in 

the following paragraph, using pixels that satisfy some simple measures based on gradient and 

Laplacian operators has a tendency to deepen the valley between histogram peaks. The principal 

problem with the approach just discussed is the implicit assumption that the edges between objects and 

background arc known. This information clearly is not available during segmentation, as finding a 

division between objects and background is precisely what segmentation is all about. However, an 

indication of whether a pixel is on an edge may be obtained by computing its gradient. In addition, use 

of the Laplacian can yield information regarding whether a given pixel lies on the dark or light side of 

an edge. The average value of the Laplacian is 0 at the transition of an edge, so in practice the 

valleys of histograms formed from the pixels selected by a gradient/Laplacian criterion can be 

expected to be sparsely populated.  This property produces the highly desirable deep valleys. The 

gradient Aƒ at any point (x, y) in an image can be found. Similarly, the Laplacian A
2
f can   also be 

found. These two quantities may be used to form a three-level image, as follows: 

where the symbols 0, +, and - represent any three distinct gray levels, T is a threshold, and the gradient 

and Laplacian are computed at every point (x, y). For a dark object on a light  background, the use of the 

Eqn. produces an image s(x, y) in which (1) all pixels that are not on an edge (as determined by Aƒ 

being less than T) are labeled 0; (2) all pixels on the dark side of an edge are labeled +; and (3) all 

pixels on the light side of an edge are labeled -. The symbols + and - in Eq. above are reversed for a 

light object on a dark background. Figure 6.1 shows the labeling produced by Eq. for an image of a dark, 

underlined stroke written on a light background.  
The information obtained with this procedure can be used to generate a segmented, 

binary image in which l's correspond to objects of interest and 0's correspond to the background. The 

transition (along a horizontal or vertical scan line) from a light background to a dark object must be 

characterized by the occurrence of a - followed by a + in s (x, y). The interior of the  object is 

composed of pixels that are labeled either 0 or +. Finally, the transition from the object back to the 

background is characterized by the occurrence of a + followed by a -. Thus  a horizontal or vertical 

scan line containing a section of an object has the following structure: 
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Figure 4.6.1 : Image of a handwritten stroke coded by using Eq. discussed above 

 

where (…) represents any combination of +, -, and 0. The innermost parentheses contain object points 

and are labeled 1. All other pixels along the same scan line are labeled 0, with  the exception of any 

other sequence of (- or +) bounded by (-, +) and (+, -). 
 

Figure 4.6.2:  (a) Original image, (b) Image segmented by local thresholding. 

Figure 4. 6.2 (a) shows an image of an ordinary scenic bank check. Figure 4. 6.3 show the histogram as 

a function of gradient values for pixels with gradients greater than 5. Note that this histogram has two 

dominant modes that are symmetric, nearly of the same height, and arc separated by a distinct valley. 

Finally, Fig.4. 6.2(b) shows the segmented image obtained by with T at or near the midpoint of the 

valley. Note that this example is an illustration of local thresholding, because the value of T was 

determined from a histogram of the gradient and Laplacian, which are local properties. 
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Figure 4.6.3:  Histogram of pixels with gradients greater than 5 

 Region based segmentation. 
 

The objective of segmentation is to partition an image into regions. We approached this problem by 

finding boundaries between regions based on discontinuities in gray levels, whereas segmentation was 

accomplished via thresholds based on the distribution of pixel properties, such as gray-level values or 

color. 

     Basic Formulation: 
 

Let R represent  the entire image region. We may view segmentation  as a process that partitions  R 

into n subregions, R1, R2..., Rn, such that 

 

Here, P (Ri) is a logical predicate defined over the points in set Ri and Ǿ` is the  null  set. Condition (a) 

indicates that the segmentation must be complete; that is, every pixel must be in a region. Condition (b) 

requires that points in a region must be connected in some predefined   sense. Condition (c) indicates 

that the regions must be disjoint. Condition (d) deals with the properties that must be satisfied by the 

pixels in a segmented region—for example P (Ri) =   TRUE if all pixels in Ri, have the same gray 

level. Finally, condition (c) indicates that regions Ri and Rj are different in the sense of predicate P. 

      Region Growing: 
 

As its name implies, region growing is a procedure that groups pixels or subregions into larger regions 

based on predefined criteria. The basic approach is to start with a set of "seed" points and from these 

grow regions by appending to each seed those neighboring pixels that have properties similar to the 
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seed (such as specific ranges of gray level or color). When a priori information is  not available, the 

procedure is to compute at every pixel the same set of properties that ultimately will be used to assign 

pixels to regions during the growing process. If the result of these computations shows clusters of 

values, the pixels whose properties place them near the centroid  of these clusters can be used as seeds. 

The selection of similarity criteria depends not only on the problem under consideration, but also on 

the type of image data available. For example, the analysis of land-use satellite imagery depends 

heavily on the use of color. This problem would be significantly more difficult, or even impossible, to 

handle without the inherent information available in color images. When  the images are monochrome, 

region analysis must be carried out with a set of descriptors based on gray levels and spatial properties 

(such as moments or texture). Basically, growing a region should stop when no more pixels satisfy the 

criteria for inclusion in that region. Criteria such as gray level, texture, and color, are local in nature 

and do not take into account the "history" of region growth. Additional criteria that increase the power 

of a region- growing algorithm utilize the concept of size, likeness between a candidate pixel and the 

pixels grown so far (such as a comparison of the gray level of a candidate and the average gray level of 

the grown region), and the shape of the region being grown. The use of these types of descriptors is 

based on the assumption that a model of expected results is at least partially available. Figure 4.7.1 (a) 

shows an X-ray image of a weld (the horizontal dark region) containing several cracks and porosities 

(the bright, white streaks running horizontally through the middle of the image). We wish to use region 

growing to segment the regions of the weld failures. These segmented features could be used for 

inspection, for inclusion in a database of historical studies, for controlling an automated welding 

system, and for other numerous applications. 

 

                                   Figure 4.7.1:  (a) Image showing defective welds, (b) Seed points, (c) Result of region growing, 
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(d) Boundaries of segmented ; defective welds (in black). 
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The first order of business is to determine the initial seed points. In this application, it is known that 

pixels of defective welds tend to have the maximum allowable digital value B55 in this   case). Based 

on this information, we selected as starting points all pixels having values of 255.  The points thus 

extracted from the original image are shown in Fig.  Note that many of the points are clustered into 

seed regions. The next step is to choose criteria for region growing. In this particular example we chose 

two criteria for a pixel to be annexed to a region: (1) The absolute gray-level difference between any 

pixel and the seed had to be less than 65. This number is based on the histogram shown in  Fig. 4.7.2 

and represents the difference between 255 and the location of the  first major valley to the left, which is 

representative of the highest gray level value in the dark weld region. (2) To be included in one of the 

regions, the pixel had to be 8-connected to at least one pixel in that region. If a pixel was found to be 

connected to more than one region, the regions were merged. Figure 4.7.1 (c) shows the regions that 

resulted by starting with the seeds in Fig. 4.7.2 (b) and utilizing the criteria defined in the previous 

paragraph. Superimposing the boundaries of these regions on the original image [Fig. 4.7.1(d)] reveals 

that the region-growing procedure did indeed segment the defective welds with an acceptable degree of 

accuracy. It is of interest to note that it was not necessary to specify any stopping rules in this case 

because the criteria for region growing were sufficient to isolate the features of interest. 

 

 

Figure 4.7.2:  Histogram of Fig. 4.7.1 (a) 
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Region Splitting and Merging: 
 

The procedure just discussed grows regions from a set of seed points. An alternative is to subdivide an 

image initially into a set of arbitrary, disjointed regions and then merge and/or split the regions in an 

attempt to satisfy the conditions. A split and merge algorithm that iteratively works toward satisfying 

these constraints is developed. 

Let R represent the entire image region and select a predicate P. One approach for segmenting R  is to 

subdivide it successively into smaller and smaller quadrant regions so that, for any region    Ri, P(Ri) = 

TRUE. We start with the entire region. If P(R) = FALSE, we divide the image into quadrants. If P is 

FALSE for any quadrant, we subdivide that quadrant into subquadrants, and so on. This particular 

splitting technique has a convenient representation in the form of a so-called quadtree (that is, a tree in 

which nodes have exactly four descendants), as illustrated in Fig. 4.7.3. Note that the root of the tree 

corresponds to the entire image and that each node corresponds to a subdivision. In this case, only R4 

was subdivided further. 
 

Figure 4..7.3: (a) Partitioned image (b) Corresponding quadtree. 

 
If only splitting were used, the final partition likely would contain adjacent regions with identical 

properties. This drawback may be remedied by allowing merging, as well as splitting. Satisfying the 

constraints, requires merging only adjacent regions whose combined pixels satisfy the predicate P. 

That is, two adjacent regions Rj and Rk are merged only if P (Rj U Rk) = TRUE. 

The preceding discussion may be summarized by the following procedure, in which, at any step we 

1. Split into four disjoint quadrants any region Ri, for which P (Ri) = FALSE. 

 

2. Merge any adjacent regions Rj and Rk for which P (Rj U Rk) = TRUE. 
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3. Stop when no further merging or splitting is possible. 

 
Several variations of the preceding basic theme are possible. For example, one possibility is to split the 

image initially into a set of blocks. Further splitting is carried out as  described  previously, but 

merging is initially limited to groups of four blocks that are descendants in the quadtree representation 

and that satisfy the predicate P. When no further  mergings of this type  are possible, the procedure is 

terminated by one final merging of regions satisfying step 2. At this point, the merged regions may be 

of different sizes. The principal advantage of this approach is that it uses the same quadtree for splitting 

and merging, until the final merging step. 
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IMAGE COMPRESSION 
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Image compression and The redundancies in a digital image. 

The term data compression refers to the process of reducing the amount of data required to represent a 

given quantity of information. A clear distinction must be made between data and information. They 

are not synonymous. In fact, data are the means by which information is conveyed. Various amounts of 

data may be used to represent the same amount of information. Such might be the case, for example, if 

a long-winded individual and someone who is short and  to the point where to relate the same story. 

Here, the information of interest is the story; words are the data used to relate the information. If the 

two individuals use a different number of words to tell the same basic story, two different versions of 

the story are created, and at least one includes nonessential data. That is, it contains data (or words) 

that either provide no relevant information or simply restate that which is already known. It is thus said 

to contain data redundancy. 

Data redundancy is a central issue in digital image compression. It is not an abstract concept but   a 

mathematically quantifiable entity. If n1 and n2 denote the number of information-carrying units in two 

data sets that represent the same information, the relative data redundancy RD of the first data set (the 

one characterized by n1) can be defined as 

 

where CR , commonly called the compression ratio, is 

In digital image compression, three basic data redundancies can be identified and exploited: 

coding redundancy, interpixel redundancy, and psychovisual redundancy. Data compression 

is achieved when one or more of these redundancies are reduced or eliminated. 

        Coding Redundancy: 
 

In this, we utilize formulation to show how the gray-level histogram of an image  also  can provide a 

great deal of insight into the construction of codes to reduce the amount of data used to represent it. 

Let us assume, once again, that a discrete random variable rk in the interval [0, 1] represents the gray 

levels of an image and that each rk occurs with probability pr (rk). 
 

where L is the number of gray levels, nk is the number of times that the kth gray level appears in the 

image, and n is the total number of pixels in the image. If the number of bits used to represent each 
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value of rk is l (rk), then the average number of bits required to represent each pixel is 

That is, the average length of the code words assigned  to the various gray-level values is found  by 

summing the product of the number of bits used to represent each gray level and the  probability that the 

gray level occurs. Thus the total number of bits required to code an M X N image is MNLavg. 

 

      Interpixel Redundancy: 
 

Consider the images shown in Figs. 1.1(a) and (b). As Figs. 1.1(c) and (d) show, these images have 

virtually identical histograms. Note also that both histograms are trimodal, indicating the presence of 

three dominant ranges of gray-level values. Because the gray levels in these images are not equally 

probable, variable-length coding can be used to reduce the coding redundancy   that would result from 

a straight or natural binary encoding of their pixels. The coding process, however, would not alter the 

level of correlation between the pixels within the images. In other words, the codes used to represent 

the gray levels of each image have nothing to do with the correlation between pixels. These 

correlations result from the structural or  geometric  relationships between the objects in the image. 

 
 
 

                               Figure 5.1:  Two images and their gray-level histograms and normalized autocorrelation coefficients 

along one line. 
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Figures 5.1(e) and (f) show the respective autocorrelation coefficients computed along one line    of 

each image. 

where 
 

The scaling factor in Eq. above accounts for the varying number of sum terms that arise for each 

integer value of Δn. Of course, Δn must be strictly less than N, the number of pixels on a line.   The 

variable x is the coordinate of the line used in the computation. Note the dramatic difference between 

the shape of the functions shown in Figs. 5.1(e) and (f). Their shapes can  be  qualitatively related to 

the structure in the images in Figs. 5.1(a) and (b).This relationship is particularly noticeable in Fig. 5.1 

(f), where the high correlation between pixels separated by 45 and 90 samples can be directly related to 

the spacing between the vertically oriented matches of Fig. 5.1(b). In addition, the adjacent pixels of 

both images are highly correlated. When Δn is 1, γ  is 0.9922 and 0.9928 for the images of Figs. 5.1 (a) 

and (b), respectively. These values are    typical of most properly sampled television images. These 

illustrations reflect another important form of data redundancy—one directly related to the interpixel 

correlations within an image.  Because the value of any given pixel can be reasonably predicted from 

the value of its neighbors, the information carried by individual pixels is relatively small. Much of the 

visual contribution of a single pixel to an image is redundant; it could have been guessed on the basis 

of the values of its neighbors. A variety of names, including spatial redundancy, geometric 

redundancy, and interframe redundancy, have been coined to refer to these interpixel dependencies. 

We use the term interpixel redundancy to encompass them all.  

In order to reduce the interpixel redundancies in an image, the 2-D pixel array normally used for 

human viewing and interpretation must be transformed into a more efficient (but usually "nonvisual") 

format. For example, the differences between adjacent pixels can be used to represent an image. 

Transformations of this type (that is, those that remove interpixel redundancy) are referred to as 

mappings. They are called reversible mappings if the original image elements can be reconstructed 

from the transformed data set. 

       Psychovisual Redundancy: 
 

The brightness of a region, as perceived by the eye, depends on factors other than simply the light 

reflected by the region. For example, intensity variations (Mach bands) can be perceived in an area of 

constant intensity. Such phenomena result from the fact that the eye does not respond with equal 

sensitivity to all visual information. Certain information simply has less relative importance than other 

information in normal visual processing. This information is said to be psychovisually redundant. It 

can be eliminated without significantly impairing the quality of image perception. 
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That psychovisual redundancies exist should not come as a surprise,  because  human 

perception of the information in an image normally does not involve quantitative analysis of every 

pixel value in the image. In general, an observer searches for distinguishing features   such as edges or 

textural regions and mentally combines them into recognizable groupings. The brain then correlates 

these groupings with prior knowledge in order to complete the image interpretation process. 

Psychovisual redundancy is fundamentally different from  the  redundancies discussed earlier. Unlike 

coding and interpixel redundancy, psychovisual redundancy is associated with real or quantifiable 

visual information. Its elimination is possible only because the information itself is not essential for 

normal visual processing. Since the elimination of psychovisually redundant data results in a loss of 

quantitative information, it is commonly referred to as quantization. 

This terminology is consistent with normal usage of the word, which generally 

means the mapping of a broad range of input values to a limited number of output values. As it is an 

irreversible operation (visual information is lost), quantization results in lossy data compression. 

 

Fidelity criterion. 

The removal of psychovisually redundant data results in a loss of real or quantitative visual 

information. Because information of interest may be lost, a repeatable or reproducible means of 

quantifying the nature and extent of information loss is highly desirable. Two general classes of criteria 

are used as the basis for such an assessment: 

A) Objective fidelity criteria and 

 

B) Subjective fidelity criteria. 
 

When the level of information loss can be expressed as a function of the original or input image and 

the compressed and subsequently decompressed output image, it is said to be based on an objective 

fidelity criterion. A good example is the root-mean-square (rms) error between an input and output 

image. Let f(x, y) represent an input image and let f(x, y) denote an estimate or approximation of f(x, 

y) that results from compressing and subsequently decompressing the 

input. For any value of x and y, the error e(x, y) between f (x, y) and f^ (x, y) can be defined as 

 

so that the total error between the two images is 
 

where the images are of size M X N. The root-mean-square error, erms, between f(x, y) and f^(x, 
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y) then is the square root of the squared error averaged over the M X N array, or 

 

A closely related objective fidelity criterion is the mean-square signal-to-noise ratio of the compressed-

decompressed image. If f^ (x, y) is considered to be the sum of the original image  f(x, y) and a noise 

signal e(x, y), the mean-square signal-to-noise ratio of the output image, denoted SNRrms, is 

 

The rms value of the signal-to-noise ratio, denoted SNRrms, is obtained by taking the square root  of Eq. 

above. 

Although objective fidelity criteria offer a simple and convenient mechanism for 

evaluating information loss, most decompressed images ultimately are viewed by humans. 

Consequently, measuring image quality by the subjective evaluations of a human observer often  is 

more appropriate. This can be accomplished by showing a "typical" decompressed image to an 

appropriate cross section of viewers and averaging their evaluations. The evaluations may be  made 

using an absolute rating scale or by means of side-by-side comparisons of f(x, y) and f^(x, y). 

 

Image compression models. 
Fig. 5.2 shows, a compression system consists of two distinct structural blocks: an encoder and a 

decoder. An input image f(x, y) is fed into the encoder, which creates a set of symbols from the input 

data. After transmission over the channel, the encoded representation is fed to the decoder, where a 

reconstructed output image f^(x, y) is generated. In general, f^(x, y) may or may not be  an exact 

replica of f(x, y). If it is, the system is error free or information preserving; if not, some level of 

distortion is present in the reconstructed image. Both the encoder and decoder shown in Fig.5.2 consist 

of two relatively independent functions or subblocks. The encoder is made up of   a source encoder, 

which removes input redundancies, and a channel encoder, which increases the noise immunity of the 

source encoder's output. As would be expected, the decoder includes a channel decoder followed by  a 

source decoder. If the channel between the encoder  and decoder  is noise free (not prone to error), the 

channel encoder and decoder are omitted, and the general encoder and decoder become the source 

encoder and decoder, respectively. 
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Figure 5.2: A general compression system model 

 
The Source Encoder and Decoder: 

 

The source encoder is responsible for reducing or eliminating any coding, interpixel, or psychovisual 

redundancies in the input image. The specific application and associated fidelity requirements dictate 

the best encoding approach to use in any given situation. Normally, the approach can be modeled by a 

series of three independent operations. As Fig. 3.2 (a) shows, each operation is designed to reduce one 

of the three redundancies. Figure 3.2 (b) depicts the corresponding source decoder. In the first stage of 

the source encoding process, the mapper transforms the input data into a (usually nonvisual) format 

designed to reduce interpixel redundancies in the input image. This operation generally is reversible 

and may or may  not  reduce directly the amount of data required to represent the image. 

 

 
Figure 5.2 : (a) Source encoder and (b) source decoder model 

 

Run-length coding is an example of a mapping that directly results in data compression in this initial 

stage of the overall source encoding process. The representation of an image by a set of transform 

coefficients is an example of the opposite case. Here, the mapper transforms the image into an array of 

coefficients, making its interpixel redundancies more accessible for compression in later stages of the 

encoding process. 

The second stage, or quantizer block in Fig. 5.2 (a), reduces the accuracy of the mapper's output in 

accordance with some preestablished fidelity criterion. This stage reduces the psychovisual 

redundancies of the input image. This operation is irreversible. Thus it must be omitted when error-free 

compression is desired. 
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In the third and final stage of the source encoding process, the symbol  coder creates a fixed- or 

variable-length code to represent the quantizer output and maps the  output in accordance with the 

code. The term symbol coder distinguishes this coding operation from the overall source encoding 

process. In most cases, a variable-length code is used to represent the mapped and quantized data set. It 

assigns the shortest code words to the most frequently occurring output values and thus reduces coding 

redundancy. The  operation,  of  course, is reversible. Upon completion of the symbol coding step, the 

input image has been processed to remove each of the three redundancies. 

Figure 5.2(a) shows the source encoding process as three successive operations, but all three operations 

are not necessarily included in every compression system. Recall, for example, that   the quantizer 

must be omitted when error-free compression is desired. In addition, some compression techniques 

normally are modeled by merging blocks that are physically separate in 
 

Fig. 5.2(a). In the predictive compression systems, for instance, the mapper and quantizer are  often 

represented by a single block, which simultaneously performs both operations. 

The source decoder shown in Fig. 5.2(b) contains only two components: a symbol decoder and an 

inverse mapper. These blocks perform, in reverse order, the inverse operations of the source encoder's 

symbol encoder and mapper blocks. Because quantization results in irreversible information loss, an 

inverse quantizer block is not included in the general source decoder model shown in Fig. 5.2(b). 

 
     The Channel Encoder and Decoder: 

 

The channel encoder and decoder play an important role in the overall  encoding-decoding  process 

when the channel of Fig. 5.1 is noisy or prone to error. They are designed to reduce the impact of 

channel noise by inserting a controlled form of redundancy into the source encoded  data. As the 

output of the source encoder contains little redundancy, it would be highly sensitive  to transmission 

noise without the addition of this "controlled redundancy." One of  the  most useful channel encoding 

techniques was devised by R. W. Hamming (Hamming [1950]). It is based on appending enough bits 

to the data being encoded to ensure that some minimum number of bits must change between valid 

code words. Hamming showed, for example, that if 3 bits of redundancy are added to a 4-bit word, so 

that the distance between any two valid code words is    3, all single-bit errors can be detected and 

corrected. (By appending additional bits  of  redundancy, multiple-bit errors can be detected and 

corrected.) The 7-bit Hamming (7, 4) code word h1, h2, h3…., h6, h7 associated with a 4-bit binary 

number b3b2b1b0 is 
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where denotes the exclusive OR operation. Note that bits h1, h2, and h4 are even- parity bits  
for the bit fields b3 b2 b0, b3b1b0, and b2b1b0, respectively. (Recall that a string of binary bits 
has 

even parity if the number of bits with a value of 1 is even.) To decode a Hamming  encoded  

result, the channel decoder must check the encoded value for odd parity over the bit fields in 

which even parity was previously established. A single-bit error is indicated by a nonzero 

parity word c4c2c1, where 

 
 

If a nonzero value is found, the decoder simply complements the code word  bit  position  indicated by 

the parity word. The decoded binary value is then extracted from the corrected code word as h3h5h6h7. 

  Method of generating variable length codes with an example. 

 

        Variable-Length Coding: 
 

The simplest approach to error-free image compression is to reduce only coding redundancy. Coding 

redundancy normally is present in any natural binary encoding of the gray levels in an image. It can be 

eliminated by coding the gray levels. To do so requires construction of a variable-length code that 

assigns the shortest possible code words to the most  probable gray levels. Here, we examine several 

optimal and near optimal techniques for constructing such a code. These techniques are formulated in 

the language of information theory. In practice, the source symbols may be either the gray levels of an 

image or the output of a gray-level mapping operation (pixel differences, run lengths, and so on). 

       Huffman coding: 
 

The most popular technique for removing coding redundancy is due to Huffman (Huffman [1952]). 

When coding the symbols of an information source individually, Huffman coding yields the smallest 

possible number of code symbols per source symbol. In terms  of the noiseless  coding theorem, the 

resulting code is optimal for a fixed value of n, subject to the constraint that the source symbols be 

coded one at a time. 

The first step in Huffman's approach is to create a series of source reductions by ordering the 

probabilities of the symbols under consideration and combining the lowest probability symbols into a 

single symbol that replaces them in the next source reduction. Figure 4.1 illustrates this process for 

binary coding (K-ary Huffman codes can also be constructed). At the far left, a hypothetical set of 

source symbols and their probabilities are ordered from top to bottom in terms of decreasing 

probability values. To form the first source reduction, the bottom two probabilities, 

0.06 and 0.04, are combined to form a "compound symbol" with probability 0.1. This compound 

symbol and its associated probability are placed in the first source reduction column so that the 

probabilities of the reduced source are also ordered from the most to the least probable. This process is 
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then repeated until a reduced source with two symbols (at the far right) is reached. 

The second step in Huffman's procedure is to code each reduced source, starting with the smallest 

source and working back to the original source. The minimal length binary code for a two-symbol 

source, of course, is the symbols 0 and 1. As Fig. 4.2 shows, these symbols are assigned to the two 

symbols on the right (the assignment is arbitrary; reversing the order of the 0 and 1 would work just as 

well). As the reduced source symbol with probability 0.6 was generated by combining two symbols in 

the reduced source to its left, the 0 used to code it is now assigned to both of these symbols, and a 0 

and 1 are arbitrarily 
 

Figure 5.4: Huffman source reductions. 

 

 

 

Figure 5.5: Huffman code assignment procedure. 

 
appended to each to distinguish them from each other. This operation is then repeated for each reduced 

source until the original source is reached. The final code appears at the far left in Fig. 

5.5. The average length of this code is 

 

 
 

and the entropy of the source is 2.14 bits/symbol. The resulting Huffman code  efficiency is  0.973. 
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Huffman's procedure creates the optimal code for a set of symbols and probabilities subject to    the 

constraint that the symbols be coded one at a time. After the code has been created, coding and/or 

decoding is accomplished in a simple lookup table manner. The code itself is an instantaneous 

uniquely decodable block code. It is called a block code because each source symbol is mapped into a 

fixed sequence of code symbols. It is instantaneous, because each code word in a string of code 

symbols can be decoded without referencing succeeding symbols. It is uniquely decodable, because 

any string of code symbols can be decoded in only one way. Thus, any string of Huffman encoded 

symbols can be decoded by examining the individual symbols of the string in a left to right manner. 

For the binary code of Fig. 5.5, a left-to-right scan of the encoded string 010100111100 reveals that the 

first valid code word is 01010, which is the code  for symbol a3 .The next valid code is 011, which 

corresponds to symbol a1. Continuing in this manner reveals the completely decoded message to be 

a3a1a2a2a6. 

Arithmetic encoding process with an example. 

Arithmetic coding: 

 
Unlike the variable-length codes described previously, arithmetic coding generates nonblock codes. In 

arithmetic coding, which can be traced to the work of Elias, a one-to-one  correspondence between 

source symbols and code words does not exist. Instead, an entire sequence of source symbols (or 

message) is assigned a single arithmetic code word. The code word itself defines an interval of real 

numbers between 0 and 1. As the number of symbols in the message increases, the interval used to 

represent it becomes smaller and the number of  information units (say, bits) required to represent the 

interval becomes larger. Each symbol of the message reduces the size of the interval in accordance 

with its probability of  occurrence.  Because the technique does not require, as does Huffman's 

approach, that each source symbol translate into an integral number of code symbols (that is, that the 

symbols be coded one at a time), it achieves (but only in theory) the bound established by the noiseless 

coding theorem. 

 

 

Figure 5.6: Arithmetic coding procedure 

Figure 5.6 illustrates the basic arithmetic coding process. Here, a five-symbol sequence or message, 
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a1a2a3a3a4, from a four-symbol source is coded. At the start of the coding process, the message is 

assumed to occupy the entire half-open interval [0, 1). As Table 5.2 shows, this  interval is initially 

subdivided into four regions based on the probabilities of each source symbol. Symbol ax, for example, 

is associated with subinterval [0, 0.2). Because it is the first symbol of the message being coded, the 

message interval is initially narrowed to [0, 0.2).  Thus in Fig. 5.6  [0, 0.2) is expanded to the full 

height of the figure and its end points labeled by the values of the narrowed range. The narrowed range 

is then subdivided in accordance with the original source symbol probabilities and the process 

continues with the next message symbol. 

Table 5.1 Arithmetic coding example 

  In this manner, symbol a2 narrows the subinterval to [0.04, 0.08), a3 further narrows it to [0.056, 0.072),    

and so on. The final message symbol, which must be reserved as a special end-of- message indicator, 

narrows the range to [0.06752, 0.0688). Of course, any number within this subinterval—for example, 

0.068—can be used to represent the message.In the arithmetically coded message of Fig. 5.6, three 

decimal digits are used to represent the five-symbol message. This translates into 3/5 or 0.6 decimal digits 

per source symbol and compares favorably with the entropy of the source, which is 0.58 decimal digits or 

10-ary units/symbol. As the length of the sequence being coded increases, the  resulting  arithmetic code 

approaches the bound established by the noiseless coding theorem.In practice, two factors cause coding 

performance to fall short of the bound: (1)  the addition of the end-of-message indicator that is needed to 

separate one message from an- other; and (2) the use of finite precision arithmetic. Practical 

implementations of  arithmetic coding address the latter problem by introducing a scaling strategy and a 

rounding strategy (Langdon and Rissanen [1981]). The scaling strategy renormalizes each subinterval to 

the [0, 1) range before subdividing it in accordance with the symbol probabilities. The rounding strategy 

guarantees that the truncations associated with finite precision arithmetic do not prevent the coding 

subintervals from being represented accurately. 

 
LZW coding with an example. 

       

      LZW Coding: 
The technique, called Lempel-Ziv-Welch (LZW) coding, assigns fixed-length code words to variable 

length sequences of source symbols but requires no a priori knowledge  of  the  probability of 

occurrence of the symbols to be encoded. LZW compression has been integrated into a variety of 

mainstream imaging file formats, including the graphic  interchange  format (GIF), tagged image file 

format (TIFF), and the portable document format (PDF). 

LZW coding is conceptually very simple (Welch [1984]). At the onset of the coding process, a 

codebook or "dictionary" containing the source symbols to be coded is constructed. For 8-bit 
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monochrome images, the first 256 words of the dictionary are assigned to the gray values 0, 1, 2..., and 

255. As the encoder sequentially examines the image's pixels, gray- level sequences that are not in the 

dictionary are placed in algorithmically determined (e.g., the next unused) locations. If the first two 

pixels of the image are white, for instance, sequence ―255- 255‖ might be assigned to location 256, the 

address following the locations reserved for gray levels 0 through 255. The next time that two 

consecutive white pixels are encountered, code    word 256, the address of the location containing 

sequence 255-255, is used to represent them. 

If    a 9-bit, 512-word dictionary is employed in the coding process, the original (8 + 8) bits that were 

used to represent the two pixels are replaced by a single 9-bit code word. Cleary, the size of the 

dictionary is an important system parameter. If it is too small, the detection of matching gray- level 

sequences will be less likely; if it is too large, the size of the code words will adversely  affect 

compression performance.  

Consider the following 4 x 4, 8-bit image of a vertical edge: 
 

 

 
Table 5.1 details the steps involved in coding its 16 pixels. A 512-word dictionary with the following 

starting content is assumed: 

 

Locations 256 through 511 are initially unused. The image is encoded by processing its pixels in   a left-

to-right, top-to-bottom manner. Each successive gray-level value is concatenated with a variable—

column 1 of Table 6.1 —called the "currently recognized sequence." As can be seen, this variable is 

initially null or empty. The dictionary is searched for each concatenated sequence and if found, as was the 

case in the first row of the table, is replaced by the newly concatenated and recognized (i.e., located in the 

dictionary) sequence. This was done in column 1 of row 2. 

Table 5.2: LZW coding example 
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No output codes are generated, nor is the dictionary altered. If the concatenated sequence is not found, 

however, the address of the currently recognized sequence is output as the next encoded value, the 

concatenated but unrecognized sequence is added to the dictionary, and the currently recognized 

sequence is initialized to the current pixel value. This occurred in row 2 of the table. The last two 

columns detail the gray-level sequences that are added to the dictionary when scanning the entire 4 x 4 

image. Nine additional code words are defined. At the conclusion of coding, the dictionary contains 

265 code words and the LZW algorithm has successfully  identified several repeating gray-level 

sequences—leveraging them to reduce the original 128-bit image lo 90 bits (i.e., 10 9-bit codes). The 

encoded output is obtained by reading the  third  column from top to bottom. The resulting 

compression ratio is 1.42:1. 

A unique feature of the LZW coding just demonstrated is that the coding dictionary or code book is 

created while the data are being encoded. Remarkably, an LZW  decoder builds an identical 

decompression dictionary as it decodes simultaneously the encoded data stream. . Although not needed 

in this example, most practical applications require a strategy for handling dictionary overflow. A 

simple solution is to flush or reinitialize the dictionary when  it becomes full and continue coding with 

a new initialized dictionary. A more complex option is  to monitor compression performance and 

flush the dictionary when it becomes poor or unacceptable. Alternately, the least used dictionary 

entries can be tracked and replaced when necessary. 

 

Concept of bit plane coding method. 

 
      Bit-Plane Coding: 

 

An effective technique for reducing an image's interpixel redundancies is to process the image's  bit 

planes individually. The technique, called bit-plane coding, is based on the concept of decomposing a 

multilevel (monochrome or color) image into a series of binary images and compressing each binary 

image via one of several well-known binary compression methods. 

       Bit-plane decomposition: 
 

The gray levels of an m-bit gray-scale image can be represented in the form of the base 2 polynomial 
 

Based on this property, a simple method of decomposing the image into a collection of binary images 

is to separate the m coefficients of the polynomial into m 1-bit bit planes. The zeroth- order bit plane is 
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generated by collecting the a0 bits of each pixel, while the (m - 1) st-order bit plane contains the am-1, 

bits or coefficients. In general, each bit plane is numbered from 0 to m-1 and is constructed by setting 

its pixels equal to the values of the appropriate bits or polynomial coefficients from each pixel in the 

original image. The inherent disadvantage of this approach is that small changes in gray level can have 

a significant impact on the complexity of the bit planes. If a pixel of intensity 127 (01111111) is 

adjacent to a pixel of intensity 128 (10000000), for instance, every bit plane will contain a 

corresponding 0 to 1 (or 1 to 0) transition. For example,    as the most significant bits of the two binary 

codes for 127 and 128 are different, bit plane 7 will contain a zero-valued pixel next to a pixel of value 

1, creating a 0 to 1 (or 1 to 0) transition at    that point. 

An alternative decomposition approach (which reduces the effect of small gray-level variations) is to 

first represent the image by an m-bit Gray code. The m-bit Gray code gm-1...  g2g1g0 that corresponds to 

the polynomial in Eq. above can be computed from 

 
 

Here,  denotes the exclusive OR operation. This code has the unique property that successive code 

words differ in only one bit position. Thus, small changes in gray level are less likely to affect all m bit 

planes. For instance, when gray levels 127 and 128 are adjacent, only the 7th bit plane will contain a 0 

to 1 transition, because the Gray codes that correspond to 127 and 128 are 11000000 and 01000000, 

respectively. 

 

      Lossless Predictive Coding: 
 

The error-free compression approach does not require decomposition of an image into  a  collection of 

bit planes. The approach, commonly referred to as lossless predictive coding, is based on eliminating 

the interpixel redundancies of closely spaced pixels by  extracting  and coding only the new 

information in each pixel. The new information of a pixel is defined as the difference between the 

actual and predicted value of that pixel. 

Figure 8.1 shows the basic components of a lossless predictive  coding  system. The system consists of 

an encoder and a decoder, each containing an identical predictor. As each successive pixel of the input 

image, denoted fn, is introduced to the encoder,  the  predictor generates the anticipated value of that 

pixel based on some number of past inputs. The output of the predictor is then rounded to the nearest 

integer, denoted f^n and used to form the difference or prediction error which is coded using a variable-

length code (by the symbol  encoder) to generate the next element of the compressed data stream. 
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Figure 5.7:A lossless predictive coding model: (a) encoder; (b) decoder 

 

The decoder of Fig. 5.7(b) reconstructs en from the received variable-length code words and performs 

the inverse operation Various local, global, and adaptive methods can be used to generate f^n. In most 

cases, however, the prediction is formed by a linear combination of m previous pixels. That is, 

 

where m is the order of the linear predictor, round is a function used to denote the rounding or nearest 

integer operation, and the αi, for i = 1,2,..., m are prediction coefficients. In raster scan applications, the 

subscript n indexes the predictor outputs in accordance with their time of occurrence. That is, fn, f^n 

and en in Eqns. above could be replaced with  the  more  explicit notation f (t), f^(t), and e (t), where t 

represents time. In other cases, n is used as an index on the spatial coordinates and/or frame number (in 

a time sequence of images) of an  image. In 1-D  linear predictive coding, for example, Eq. above can 

be written as 
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where each subscripted variable is now expressed explicitly as a function of spatial coordinates x and 

y. The Eq. indicates that the 1-D linear prediction f(x, y) is a function of the previous pixels  on the 

current line alone. In 2-D predictive coding, the prediction is a function of the previous pixels in a left-

to-right, top-to-bottom scan of an image. In the 3-D case, it is based on these   pixels and the previous 

pixels of preceding frames. Equation above cannot be evaluated for the first m pixels of each line, so 

these pixels must be coded by using other means (such as a  Huffman code) and considered as an 

overhead of the predictive coding process. A similar comment applies to the higher-dimensional cases. 

 
      Lossy Predictive Coding: 

 

In this type of coding, we add a quantizer to the lossless predictive model and examine the resulting 

trade-off between reconstruction accuracy and compression performance. As Fig.5.8 shows, the 

quantizer, which absorbs the nearest integer function of the error-free encoder, is inserted between the 

symbol encoder and the point at which the prediction error is formed. It  maps the prediction error into 

a limited range of outputs, denoted e^n which establish the amount of compression and distortion 

associated with lossy predictive coding. 
 

Figure 5.8: A lossy predictive coding model: (a) encoder and (b) decoder. 



 

 

In order to accommodate the insertion of the quantization step, the error-free encoder of figure must be 

altered so that the predictions generated by the encoder and decoder are equivalent. As Fig. shows, this is 

accomplished by placing the lossy encoder's predictor within a feedback loop, where its input, denoted f˙n, 

is generated as a function of past predictions and the corresponding quantized errors. That is, 

This closed loop configuration prevents error buildup at the decoder's output. Note from Fig. 5.8 

(b) that the output of the decoder also is given by the above Eqn. 

 

      Optimal predictors: 
 

The optimal predictor used in most predictive coding applications minimizes the encoder's mean- square 

prediction error 

 

subject to the constraint that 

and 

That is, the optimization criterion is chosen to minimize the mean-square prediction error, the quantization 

error is assumed to be negligible (e˙n ≈ en), and the prediction is constrained to a linear combination of m 

previous pixels.1 These restrictions are not essential, but they simplify  the analysis considerably and, at the 

same time, decrease the computational complexity of the predictor. The resulting predictive coding approach is 

referred to as differential pulse code modulation (DPCM). 

Block diagram about transform coding system. 
 

Transform Coding: 
All the predictive coding techniques operate directly on the pixels of an image and thus are spatial 

domain methods. In this coding, we consider compression techniques that are based on modifying the 

transform of an image. In transform coding, a reversible, linear transform (such as the Fourier transform) 

is used to map the image into a set of transform coefficients, which are then quantized and coded. For 

most natural images, a significant number of the coefficients have small magnitudes and can be coarsely 

quantized (or discarded entirely) with little image distortion. A variety of transformations, including the 

discrete Fourier transform (DFT), can be used to transform the image data. 

 

 



 

 

 

Figure 5.8: A transform coding system: (a) encoder; (b) decoder. 

 
Figure 5.8 shows a typical transform coding system. The decoder implements the inverse sequence of 

steps (with the exception of the quantization function) of the encoder, which performs four relatively 

straightforward operations: subimage decomposition, transformation, quantization, and coding. An N X N 

input image first is subdivided into subimages of size n X n, which are then transformed to generate (N/n) 
2
 subimage transform arrays, each of  size n  X n. The goal of the transformation process is to decorrelate 

the pixels of each subimage, or to pack    as much information as possible into the smallest number of 

transform coefficients. The quantization stage then selectively eliminates or more coarsely quantizes the 

coefficients that carry the least information. These coefficients have the smallest impact on reconstructed 

subimage quality. The encoding process terminates by coding (normally using a variable-length code) the 

quantized coefficients. Any or all of the transform encoding steps can be adapted to local image 

content, called adaptive transform coding, or fixed for all subimages, called nonadaptive transform 

coding. 

        Wavelet Coding: 
 

The wavelet coding is based on the idea that the coefficients of a transform that decorrelates the pixels of 

an image can be coded more efficiently than the original pixels themselves. If the transform's basis 

functions—in this case wavelets—pack most of the important visual information into a small number of 

coefficients, the remaining coefficients can be quantized coarsely or truncated to zero with little image 

distortion. 

Figure shows a typical wavelet coding system. To encode a 2
J
 X 2

J
 image, an analyzing wavelet, Ψ, and 

minimum decomposition level, J - P, are selected and used to compute the image’s discrete wavelet 

transform. If the wavelet has a complimentary scaling function φ, the   fast wavelet transform can be 

used. In either case, the computed transform converts a large  portion of the original image to horizontal, 

vertical, and diagonal decomposition  coefficients   with zero mean and Laplacian-like distributions. 

                                                                                     Figure 5.9: A wavelet coding system: (a) encoder; (b) decoder. 

 


