

1

 LECTURE NOTES

 ON

DIGITAL IMAGE PROCESSING

B.Tech VII semester

(Autonomous R16)

(2019-20)

 Dr.S.China Venkateswarlu,Professor

 Dr.V.Padmanabha Reddy,Professor

Mr. D.Khalandar Basha, Assistant Professor

 Mr. B.Santhosh Kumar, Assistant Professor

DEPARTMENT OF ELECTRONICS & COMMUNICATION

ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING
 (Autonomous)

Dundigal,Hyderabad-500043

2

UNIT-I

INTRODUCTION

3

Digital Image Processing

An image may be defined as a two-dimensional function, f(x, y), where x and y are spatial (plane)

coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the intensity or gray

level of the image at that point. When x, y, and the amplitude values of f are all finite, discrete

quantities, we call the image a digital image. The field of digital image processing refers to

processing digital images by means of a digital computer. Note that a digital image is composed of a

finite number of elements, each of which has a particular location and value. These elements are

referred to as picture elements, image elements, pels, and pixels. Pixel is the term most widely used

to denote the elements of a digital image.

Vision is the most advanced of our senses, so it is not surprising that images play the single most

important role in human perception. However, unlike humans, who are limited to the visual band of

the electromagnetic (EM) spectrum, imaging machines cover almost the entire EM spectrum, ranging

from gamma to radio waves. They can operate on images generated by sources that humans are not

accustomed to associating with images. These include ultra-sound, electron microscopy, and

computer-generated images. Thus, digital image processing encompasses a wide and varied field of

applications. There is no general agreement among authors regarding where image processing stops

and other related areas, such as image analysis and computer vision, start. Sometimes a distinction is

made by defining image processing as a discipline in which both the input and output of a process

are images. We believe this to be a limiting and somewhat artificial boundary. For example, under

this definition, even the trivial task of computing the average intensity of an image (which yields a

single number) would not be considered an image processing operation. On the other hand, there are

fields such as computer vision whose ultimate goal is to use computers to emulate human vision,

including learning and being able to make inferences and take actions based on visual inputs. This

area itself is a branch of artificial intelligence (AI) whose objective is to emulate human intelligence.

The field of AI is in its earliest stages of infancy in terms of development, with progress having been

much slower than originally anticipated. The area of image analysis (also called image

understanding) is in between image processing and computer vision.

There are no clear-cut boundaries in the continuum from image processing at

one end to computer vision at the other. However, one useful paradigm is to consider three types of

computerized processes in this continuum: low-, mid-, and high-level processes. Low- level

processes involve primitive operations such as image preprocessing to reduce noise, contrast

enhancement, and image sharpening. A low-level process is characterized by the fact that both its

inputs and outputs are images. Mid-level processing on images involves tasks such as segmentation

(partitioning an image into regions or objects), description of those objects to reduce them to a form

suitable for computer processing, and classification (recognition) of individual objects. A mid-level

process is characterized by the fact that its inputs generally are images, but its outputs are

attributes extracted from those images (e.g., edges, contours, and the identity of individual objects).

4

Finally, higher-level processing involves ―making sense‖ of an ensemble of recognized objects, as in

image analysis, and, at the far end of the continuum, performing the cognitive functions normally

associated with vision and, in addition, encompasses processes that extract attributes from images,

up to and including the recognition of individual objects. As a simple illustration to clarify these

concepts, consider the area of automated analysis of text. The processes of acquiring an image of the

area containing the text, preprocessing that image, extracting (segmenting) the individual characters,

describing the characters in a form suitable for computer processing, and recognizing those

individual characters are in the scope of what we call digital image processing.

 Representing Digital Images:

We will use two principal ways to represent digital images. Assume that an image f(x, y) is sampled

so that the resulting digital image has M rows and N columns. The values of the coordinates (x, y)

now become discrete quantities. For notational clarity and convenience, we shall use integer values

for these discrete coordinates. Thus, the values of the coordinates at the origin are (x, y) = (0, 0). The

next coordinate values along the first row of the image are represented as (x, y) = (0, 1). It is

important to keep in mind that the notation (0, 1) is used to signify the second sample along the first

row. It does not mean that these are the actual values of physical coordinates when the image was

sampled. Figure 1 shows the coordinate convention used.

Figure1: Coordinate convention used to represent digital images

The notation introduced in the preceding paragraph allows us to write the complete M*N digital

image in the following compact matrix form:

5

The right side of this equation is by definition a digital image. Each element of this matrix

array is called an image element, picture element, pixel, or pel.

 Fundamental Steps in Digital Image Processing:

Image acquisition is the first process shown in Fig.2. Note that acquisition could be as simple as

being given an image that is already in digital form. Generally, the image acquisition stage involves

preprocessing, such as scaling.

Image enhancement is among the simplest and most appealing areas of digital image processing.

Basically, the idea behind enhancement techniques is to bring out detail that is obscured, or simply to

highlight certain features of interest in an image. A familiar example of enhancement is when we

increase the contrast of an image because ―it looks better.‖ It is important to keep in mind that

enhancement is a very subjective area of image processing.

Image restoration is an area that also deals with improving the appearance of an image. However,

unlike enhancement, which is subjective, image restoration is objective, in the sense that restoration

techniques tend to be based on mathematical or probabilistic models of image degradation.

Enhancement, on the other hand, is based on human subjective preferences regarding what

constitutes a ―good‖ enhancement result.

Color image processing is an area that has been gaining in importance because of the significant

increase in the use of digital images over the Internet.

6

Figure2: Fundamental steps in Digital Image Processing

Wavelets are the foundation for representing images in various degrees of resolution. Compression,

as the name implies, deals with techniques for reducing the storage required to save an image, or the

bandwidth required to transmit it. Although storage technology has improved significantly over the

past decade, the same cannot be said for transmission capacity. This is true particularly in uses of the

Internet, which are characterized by significant pictorial content. Image compression is familiar

(perhaps inadvertently) to most users of computers in the form of image file extensions, such as the

jpg file extension used in the JPEG (Joint Photographic Experts Group) image compression

standard.

Morphological processing deals with tools for extracting image components that are useful in the

representation and description of shape.

Segmentation procedures partition an image into its constituent parts or objects. In general,

autonomous segmentation is one of the most difficult tasks in digital image processing. A rugged

segmentation procedure brings the process a long way toward successful solution of imaging

problems that require objects to be identified individually. On the other hand, weak or erratic

segmentation algorithms almost always guarantee eventual failure. In general, the more accurate the

segmentation, the more likely recognition is to succeed.

Representation and description almost always follow the output of a segmentation stage, which

usually is raw pixel data, constituting either the boundary of a region (i.e., the set of pixels separating

one image region from another) or all the points in the region itself. In either case, converting the

7

data to a form suitable for computer processing is necessary. The first decision that must be made is

whether the data should be represented as a boundary or as a complete region. Boundary

representation is appropriate when the focus is on external shape characteristics, such as corners and

inflections. Regional representation is appropriate when the focus is on internal properties, such as

texture or skeletal shape. In some applications, these representations complement each other.

Choosing a representation is only part of the solution for transforming raw data into a form suitable

for subsequent computer processing. A method must also be specified for describing the data so that

features of interest are highlighted. Description, also called feature selection, deals with extracting

attributes that result in some quantitative information of interest or are basic for differentiating one

class of objects from another.

Recognition is the process that assigns a label (e.g., ―vehicle‖) to an object based on its descriptors.

We conclude our coverage of digital image processing with the development of methods for

recognition of individual objects.

 Components of an Image Processing System:

As recently as the mid-1980s, numerous models of image processing systems being sold throughout

the world were rather substantial peripheral devices that attached to equally substantial host

computers. Late in the 1980s and early in the 1990s, the market shifted to image processing hardware

in the form of single boards designed to be compatible with industry standard buses and to fit into

engineering workstation cabinets and personal computers. In addition to lowering costs, this market

shift also served as a catalyst for a significant number of new companies whose specialty is the

development of software written specifically for image processing.

Although large-scale image processing systems still are being sold for massive imaging

applications, such as processing of satellite images, the trend continues toward miniaturizing and

blending of general-purpose small computers with specialized image processing hardware. Figure 3

shows the basic components comprising a typical general-purpose system used for digital image

processing. The function of each component is discussed in the following paragraphs, starting with

image sensing.

With reference to sensing, two elements are required to acquire digital images. The first is a physical

device that is sensitive to the energy radiated by the object we wish to image. The second, called a

digitizer, is a device for converting the output of the physical sensing device into digital form. For

instance, in a digital video camera, the sensors produce an electrical output proportional to light

intensity. The digitizer converts these outputs to digital data. Specialized image processing hardware

usually consists of the digitizer just mentioned, plus hardware that performs other primitive

operations, such as an arithmetic logic unit (ALU), which performs arithmetic and logical operations

8

in parallel on entire images. One example of how an ALU is used is in averaging images as quickly

as they are digitized, for the purpose of noise reduction. This type of hardware sometimes is called a

front-end subsystem, and its most distinguishing characteristic is speed. In other words, this unit

performs functions that require fast data throughputs (e.g., digitizing and averaging video images at

30 framess) that the typical main computer cannot handle.

Figure3: Components of a general purpose Image Processing System

The computer in an image processing system is a general-purpose computer and can range from a PC

to a supercomputer. In dedicated applications, sometimes specially designed computers are used to

achieve a required level of performance, but our interest here is on general-purpose

image processing systems. In these systems, almost any well-equipped PC-type machine is suitable

for offline image processing tasks.Software for image processing consists of specialized modules

that perform specific tasks. A well-designed package also includes the capability for the user to write

code that, as a minimum, utilizes the specialized modules. More sophisticated software packages

allow the integration of those modules and general-purpose software commands from at least one

computer language.

Mass storage capability is a must in image processing applications. An image of size 1024*1024

pixels, in which the intensity of each pixel is an 8-bit quantity, requires one megabyte of storage

space if the image is not compressed. When dealing with thousands, or even millions, of images,

providing adequate storage in an image processing system can be a challenge. Digital storage for

9

image processing applications falls into three principal categories: (1) short-term storage for use

during processing, (2) on-line storage for relatively fast re-call, and (3) archival storage,

characterized by infrequent access. Storage is measured in bytes (eight bits), Kbytes (one thousand

bytes), Mbytes (one million bytes), G bytes (meaning giga, or one billion, bytes), and T bytes

(meaning tera, or one trillion, bytes). One method of providing short-term storage is computer

memory. Another is by specialized boards, called frame buffers, that store one or more images and

can be accessed rapidly, usually at video rates (e.g., at 30 complete images per second).The latter

method allows virtually instantaneous image zoom, as well as scroll (vertical shifts) and pan

(horizontal shifts). Frame buffers usually are housed in the specialized image processing hardware

unit shown in Fig.3.Online storage generally takes the form of magnetic disks or optical-media

storage. The key factor characterizing on-line storage is frequent access to the stored data. Finally,

archival storage is characterized by massive storage requirements but infrequent need for access.

Magnetic tapes and optical disks housed in ―jukeboxes‖ are the usual media for archival applications.

Image displays in use today are mainly color (preferably flat screen) TV monitors. Monitors are

driven by the outputs of image and graphics display cards that are an integral part of the computer

system. Seldom are there requirements for image display applications that cannot be met by display

cards available commercially as part of the computer system. In some cases, it is necessary to have

stereo displays, and these are implemented in the form of headgear containing two small displays

embedded in goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cameras, heat-sensitive devices,

inkjet units, and digital units, such as optical and CD-ROM disks. Film provides the highest possible

resolution, but paper is the obvious medium of choice for written material. For presentations, images

are displayed on film transparencies or in a digital medium if image projection equipment is used.

The latter approach is gaining acceptance as the standard for image presentations. Networking is

almost a default function in any computer system in use today. Because of the large amount of data

inherent in image processing applications, the key consideration in image transmission is bandwidth.

In dedicated networks, this typically is not a problem, but communications with remote sites via the

Internet are not always as efficient. Fortunately, this situation is improving quickly as a result of

optical fiber and other broadband technologies.

 Elements of Visual Perception:

Although the digital image processing field is built on a foundation of mathematical and probabilistic

formulations, human intuition and analysis play a central role in the choice of one technique versus

another, and this choice often is made based on subjective, visual judgments.

(1) Structure of the Human Eye:

Figure 4.1 shows a simplified horizontal cross section of the human eye. The eye is nearly a sphere,

with an average diameter of approximately 20 mm. Three membranes enclose the eye: the cornea

10

and sclera outer cover; the choroid; and the retina. The cornea is a tough, transparent tissue that

covers the anterior surface of the eye. Continuous with the cornea, the sclera is an opaque membrane

that encloses the remainder of the optic globe. The choroid lies directly below the sclera. This

membrane contains a network of blood vessels that serve as the major source of nutrition to the eye.

Even superficial injury to the choroid, often not deemed serious, can lead to severe eye damage as a

result of inflammation that restricts blood flow. The choroid coat is heavily pigmented and hence

helps to reduce the amount of extraneous light entering the eye and the backscatter within the optical

globe. At its anterior extreme, the choroid is divided into the ciliary body and the iris diaphragm. The

latter contracts or expands to control the amount of light that enters the eye. The central opening of

the iris (the pupil) varies in diameter from approximately 2 to 8 mm. The front of the iris contains the

visible pigment of the eye, whereas the back contains a black pigment.

The lens is made up of concentric layers of fibrous cells and is suspended by fibers that attach to the

ciliary body. It contains 60 to 70%water, about 6%fat, and more protein than any other tissue in the

eye. The lens is colored by a slightly yellow pigmentation that increases with age. In extreme cases,

excessive clouding of the lens, caused by the affliction commonly referred to as cataracts, can lead to

poor color discrimination and loss of clear vision. The lens absorbs approximately 8% of the visible

light spectrum, with relatively higher absorption at shorter wavelengths. Both infrared and ultraviolet

light are absorbed appreciably by proteins within the lens structure and, in excessive amounts, can

damage the eye.

Figure4.1: Simplified diagram of a cross section of the human eye.

The innermost membrane of the eye is the retina, which lines the inside of the wall’s entire posterior

portion. When the eye is properly focused, light from an object outside the eye is imaged on the

11

retina. Pattern vision is afforded by the distribution of discrete light receptors over the surface of the

retina. There are two classes of receptors: cones and rods. The cones in each eye number between

6 and 7 million. They are located primarily in the central portion of the retina, called the fovea,

and are highly sensitive to color. Humans can resolve fine details with these cones largely because

each one is connected to its own nerve end. Muscles controlling the eye rotate the eyeball until the

image of an object of interest falls on the fovea. Cone vision is called photopic or bright-light vision.

The number of rods is much larger: Some 75 to 150 million are distributed over the retinal surface.

The larger area of distribution and the fact that several rods are connected to a single nerve end

reduce the amount of detail discernible by these receptors. Rods serve to give a general, overall

picture of the field of view. They are not involved in color vision and are sensitive to low levels of

illumination. For example, objects that appear brightly colored in daylight when seen by moonlight

appear as colorless forms because only the rods are stimulated. This phenomenon is known as

scotopic or dim-light vision.

(2) Image Formation in the Eye:

The principal difference between the lens of the eye and an ordinary optical lens is that the former

is flexible. As illustrated in Fig. 4.1, the radius of curvature of the anterior surface of the lens is

greater than the radius of its posterior surface. The shape of the lens is controlled by tension in the

fibers of the ciliary body. To focus on distant objects, the controlling muscles cause the lens to be

relatively flattened. Similarly, these muscles allow the lens to become thicker in order to focus on

objects near the eye. The distance between the center of the lens and the retina (called the focal

length) varies from approximately 17 mm to about 14 mm, as the refractive power of the lens

increases from its minimum to its maximum. When the eye

 Figure4.2: Graphical representation of the eye looking at a palm tree Point C is the

optical center of the lens.

Focuses on an object farther away than about 3 m, the lens exhibits its lowest refractive

power. When the eye focuses on a nearby object, the lens is most strongly refractive. This

information makes it easy to calculate the size of the retinal image of any object. In Fig. 4.2, for

12

example, the observer is looking at a tree 15 m high at a distance of 100 m. If h is the height in mm

of that object in the retinal image, the geometry of Fig.4.2 yields 15/100=h/17 or h=2.55mm. The

retinal image is reflected primarily in the area of the fovea. Perception then takes place by the

relative excitation of light receptors, which transform radiant energy into electrical impulses that

are ultimately decoded by the brain.

(3) Brightness Adaptation and Discrimination:

Because digital images are displayed as a discrete set of intensities, the eye’s ability to discriminate

between different intensity levels is an important consideration in presenting image- processing

results. The range of light intensity levels to which the human visual system can adapt is enormous—

on the order of 10
10

—from the scotopic threshold to the glare limit. Experimental evidence indicates

that subjective brightness (intensity as perceived by the human visual system) is a logarithmic

function of the light intensity incident on the eye. Figure 4.3, a plot of light intensity versus

subjective brightness, illustrates this characteristic. The long solid curve represents the range of

intensities to which the visual system can adapt. In photopic vision alone, the range is about 10
6
. The

transition from scotopic to photopic vision is gradual over the approximate range from 0.001 to 0.1

millilambert (–3 to –1 mL in the log scale), as the double branches of the adaptation curve in this

range show.

Figure 4.3. Range of Subjective brightness sensations showing a particular adaptation level.

The essential point in interpreting the impressive dynamic range depicted in Fig.4.3 is that the visual

system cannot operate over such a range simultaneously. Rather, it accomplishes this large variation

by changes in its overall sensitivity, a phenomenon known as brightness adaptation. The total range

of distinct intensity levels it can discriminate simultaneously is rather small when compared with the

total adaptation range. For any given set of conditions, the current sensitivity level of the visual

13

system is called the brightness adaptation level, which may correspond, for example, to brightness

Ba in Fig. 4.3. The short intersecting curve represents the range of subjective brightness that the eye

can perceive when adapted to this level. This range is rather restricted, having a level Bb at and

below which all stimuli are perceived as indistinguishable blacks. The upper (dashed) portion of the

curve is not actually restricted but, if extended too far, loses its meaning because much higher

intensities would simply raise the adaptation level higher than Ba.

 Image Sensing and Acquisition:

The types of images in which we are interested are generated by the combination of an

―illumination‖ source and the reflection or absorption of energy from that source by the elements of

the ―scene‖ being imaged. We enclose illumination and scene in quotes to emphasize the fact that

they are considerably more general than the familiar situation in which a visible light source

illuminates a common everyday 3-D (three-dimensional) scene. For example, the illumination may

originate from a source of electromagnetic energy such as radar, infrared, or X-ray energy. But, as

noted earlier, it could originate from less traditional sources, such as ultrasound or even a computer-

generated illumination pattern.

Similarly, the scene elements could be familiar objects, but they can just as easily be molecules,

buried rock formations, or a human brain. We could even image a source, such as acquiring images

of the sun. Depending on the nature of the source, illumination energy is reflected from, or

transmitted through, objects. An example in the first category is light reflected from a planar surface.

An example in the

 second category is when X-rays pass through a patient’s body for the purpose of generating a

diagnostic X-ray film. In some applications, the reflected or transmitted energy is focused onto a

photo converter (e.g., a phosphor screen), which converts the energy into visible light. Electron

microscopy and some applications of gamma imaging use this approach.

Figure 5.1 shows the three principal sensor arrangements used to transform illumination energy into

digital images. The idea is simple: Incoming energy is transformed into a voltage by the combination

of input electrical power and sensor material that is responsive to the particular type of energy being

detected. The output voltage waveform is the response of the sensor(s), and a digital quantity is

obtained from each sensor by digitizing its response.

14

Figure5.1: (a) Single imaging Sensor (b) Line sensor (c) Array sensor

(1) Image Acquisition Using a Single Sensor:

Figure 5.1 (a) shows the components of a single sensor. Perhaps the most familiar sensor of this type

is the photodiode, which is constructed of silicon materials and whose output voltage waveform is

proportional to light. The use of a filter in front of a sensor improves selectivity. For example, a

green (pass) filter in front of a light sensor favors light in the green band of the color

spectrum. As a consequence, the sensor output will be stronger for green light than for other

components in the visible spectrum.

In order to generate a 2-D image using a single sensor, there has to be relative displacements in both

the x- and y-directions between the sensor and the area to be imaged. Figure 5.2 shows an

arrangement used in high-precision scanning, where a film negative is mounted onto a drum whose

mechanical rotation provides displacement in one dimension. The single sensor is mounted on a

lead screw that provides motion in the perpendicular direction. Since mechanical motion can be

controlled with high precision, this method is an inexpensive (but slow) way to obtain high-

resolution images. Other similar mechanical arrangements use a flat bed, with the sensor moving in

two linear directions. These types of mechanical digitizers sometimes are referred to as

microdensitometers.

15

Figure 5.2: Combining a single sensor with motion to generate a 2-D image

(2) Image Acquisition Using Sensor Strips:

A geometry that is used much more frequently than single sensors consists of an in-line arrangement

of sensors in the form of a sensor strip, as Fig. 5.1 (b) shows. The strip provides imaging elements in

one direction. Motion perpendicular to the strip provides imaging in the other direction, as shown in

Fig. 5.3 (a).This is the type of arrangement used in most flat bed scanners. Sensing devices with 4000

or more in-line sensors are possible. In-line sensors are used routinely in airborne imaging

applications, in which the imaging system is mounted on an aircraft that flies at a constant altitude

and speed over the geographical area to be imaged. One- dimensional imaging sensor strips that

respond to various bands of the electromagnetic spectrum are mounted perpendicular to the direction

of flight. The imaging strip gives one line of an image

at a time, and the motion of the strip completes the other dimension of a two-dimensional image.

Lenses or other focusing schemes are used to project the area to be scanned onto the sensors.

Sensor strips mounted in a ring configuration are used in medical and industrial imaging to obtain

cross-sectional (―slice‖) images of 3-D objects, as Fig. 5.3 (b) shows. A rotating X-ray source

provides illumination and the portion of the sensors opposite the source collect the X-ray energy that

pass through the object (the sensors obviously have to be sensitive to X-ray energy).This is the basis

for medical and industrial computerized axial tomography (CAT). It is important to note that the

output of the sensors must be processed by reconstruction algorithms whose objective is to transform

the sensed data into meaningful cross-sectional images.

In other words, images are not obtained directly from the sensors by motion alone; they require

extensive processing. A 3-D digital volume consisting of stacked images is generated as the object is

moved in a direction perpendicular to the sensor ring. Other modalities of imaging based on the

CAT principle include magnetic resonance imaging (MRI) and positron emission tomography

(PET).The illumination sources, sensors, and types of images are different, but conceptually they are

very similar

16

to the basic imaging approach shown in Fig. 5.3 (b).

 Figure.5.3 (a) Image acquisition using a linear sensor strip (b) Image acquisition using a

circular sensor strip.

(3) Image Acquisition Using Sensor Arrays:

Figure 5.1 (c) shows individual sensors arranged in the form of a 2-D array. Numerous

electromagnetic and some ultrasonic sensing devices frequently are arranged in an array format. This

is also the predominant arrangement found in digital cameras. A typical sensor for these cameras is a

CCD array, which can be manufactured with a broad range of sensing properties and can be

packaged in rugged arrays of 4000 * 4000 elements or more. CCD sensors are used widely in digital

cameras and other light sensing instruments. The response of each sensor is proportional to the

integral of the light energy projected onto the surface of the sensor, a property that is used in

astronomical and other applications requiring low noise images.

Noise reduction is achieved by letting the sensor integrate the input light signal over minutes or even

hours. Since the sensor array shown in Fig. 5.4 (c) is two dimensional, its key advantage is that a

complete image can be obtained by focusing the energy pattern onto the surface of the array. The

principal manner in which array sensors are used is shown in Fig.5.4. This figure shows the energy

from an illumination source being reflected from a scene element, but, as mentioned at the

beginning of this section, the energy also could be transmitted through the scene elements. The first

function performed by the imaging system shown in Fig.5.4 (c) is to collect the incoming energy and

focus it onto an image plane. If the illumination is light, the front end of the imaging system is a

17

lens, which projects the viewed scene onto the lens focal plane, as Fig. 2.15(d) shows. The sensor

array, which is coincident with the focal plane, produces outputs proportional to the integral of the

light received at each sensor. Digital and analog circuitry sweep these outputs and converts them to a

video signal, which is then digitized by another section of the imaging system. The output is a digital

image, as shown diagrammatically in Fig. 5.4 (e).

 Fig.5.4 An example of the digital image acquisition process (a) Energy (―illumination‖) source

 (b) An element of a scene (c) Imaging system (d) Projection of the scene onto the image

plane (e) Digitized image

Image Sampling and Quantization:

The output of most sensors is a continuous voltage waveform whose amplitude and spatial behavior

are related to the physical phenomenon being sensed. To create a digital image, we need to convert

the continuous sensed data into digital form. This involves two processes: sampling and quantization.

 Basic Concepts in Sampling and Quantization:

The basic idea behind sampling and quantization is illustrated in Fig.6.1. Figure 6.1(a) shows a

continuous image, f(x, y), that we want to convert to digital form. An image may be continuous with

respect to the x- and y-coordinates, and also in amplitude. To convert it to digital form, we have to

sample the function in both coordinates and in amplitude. Digitizing the coordinate values is called

sampling. Digitizing the amplitude values is called quantization.

The one-dimensional function shown in Fig.6.1 (b) is a plot of amplitude (gray level) values of the

continuous image along the line segment AB in Fig. 6.1(a).The random variations are due to image

noise. To sample this function, we take equally spaced samples along line AB, as shown in Fig.6.1

(c).The location of each sample is given by a vertical tick mark in the bottom part of the figure. The

samples are shown as small white squares superimposed on the function. The set of these discrete

locations gives the sampled function. However, the values of the samples still span (vertically) a

continuous range of gray-level values. In order to form a digital function, the gray-level values also

18

must be converted (quantized) into discrete quantities. The right side of Fig. 6.1 (c) shows the gray-

level scale divided into eight discrete levels, ranging from black to white. The vertical tick marks

indicate the specific value assigned to each of the eight gray levels. The continuous gray levels are

quantized simply by assigning one of the eight discrete gray levels to each sample. The assignment is

made depending on the vertical proximity of a sample to a vertical tick mark. The digital samples

resulting from both sampling and quantization are shown in Fig.6.1 (d). Starting at the top of the

image and carrying out this procedure line by line produces a two-dimensional digital image.

Sampling in the manner just described assumes that we have a continuous image in both coordinate

directions as well as in amplitude. In practice, the method of sampling is determined by the sensor

arrangement used to generate the image. When an image is generated by a single

Sensing element combined with mechanical motion, as in Fig. 2.13, the output of the sensor is

quantized in the manner described above. However, sampling is accomplished by selecting the

number of individual mechanical increments at which we activate the sensor to collect data.

Mechanical motion can be made very exact so, in principle; there is almost no limit as to how fine

we can sample an image. However, practical limits are established by imperfections in the optics

used to focus on the

 Figure 6.1: Generating a digital image (a) Continuous image (b) A scan line from A to Bin the

 Continuous image, used to illustrate the concepts of sampling and quantization (c)

19

Sampling and quantization. (d) Digital scan line

Sensor an illumination spot that is inconsistent with the fine resolution achievable with mechanical

displacements. When a sensing strip is used for image acquisition, the number of sensors in the strip

establishes the sampling limitations in one image direction. Mechanical motion in the other direction

can be controlled more accurately, but it makes little sense to try to achieve sampling density in one

direction that exceeds the sampling limits established by the number of sensors in the other.

Quantization of the sensor outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, there is no motion and the number of sensors in

the array establishes the limits of sampling in both directions. Figure 6.2 illustrates this concept.

Figure 6.2 (a) shows a continuous image projected onto the plane of an array sensor. Figure 6.2 (b)

shows the image after sampling and quantization. Clearly, the quality of a digital image is

determined to a large degree by the number of samples and discrete gray levels used in sampling and

quantization.

 Figure 6.2: (a) Continuous image projected onto a sensor array (b) Result of image

sampling and quantization.

Spatial and Gray-Level Resolution:

Sampling is the principal factor determining the spatial resolution of an image. Basically, spatial

resolution is the smallest discernible detail in an image. Suppose that we construct a chart with

vertical lines of width W, with the space between the lines also having width W.A line pair consists

of one such line and its adjacent space. Thus, the width of a line pair is 2W, and there are 1/2Wline

pairs per unit distance. A widely used definition of resolution is simply the smallest number of

discernible line pairs per unit distance; for example, 100 line pairs per millimeter. Gray-level

resolution similarly refers to the smallest discernible change in gray level. We have considerable

discretion regarding the number of samples used to generate a digital image, but this is not true for

the number of gray levels. Due to hardware considerations, the number of gray levels is usually an

integer power of 2.

20

The most common number is 8 bits, with 16 bits being used in some applications where enhancement

of specific gray-level ranges is necessary. Sometimes we find systems that can digitize the gray

levels of an image with 10 or 12 bit of accuracy, but these are the exception rather than the rule.

When an

actual measure of physical resolution relating pixels and the level of detail they resolve in the

original scene are not necessary, it is not uncommon to refer to an L- level digital image of size M*N

as having a spatial resolution of M*N pixels and a gray-level resolution of L levels.

 Figure 7.1: A 1024*1024, 8-bit image sub sampled down to size 32*32 pixels The number of allowable gray

levels was kept at 256.

The sub sampling was accomplished by deleting the appropriate number of rows and columns from

the original image. For example, the 512*512 image was obtained by deleting every other row and

column from the 1024*1024 image. The 256*256 image was generated by deleting every other row

and column in the 512*512 image, and so on. The number of allowed gray levels was kept at 256.

These images show the dimensional proportions between various sampling densities, but their size

differences make it difficult to see the effects resulting from a reduction in the number of samples.

The simplest way to compare these effects is to bring all the sub sampled images up to size

1024*1024 by row and column pixel replication. The results are shown in Figs. 7.2 (b) through (f).

Figure7.2 (a) is the same 1024*1024, 256-level image shown in Fig.7.1; it is repeated to facilitate

comparisons.

21

Figure 7.2: (a) 1024*1024, 8-bit image (b) 512*512 image re sampled into 1024*1024 pixels by row and column

 Duplication (c) through (f) 256*256, 128*128, 64*64, and 32*32 images re sampled into 1024*1024

pixels

Compare Fig. 7.2(a) with the 512*512 image in Fig. 7.2(b) and note that it is virtually impossible to

tell these two images apart. The level of detail lost is simply too fine to be seen on the printed page at

the scale in which these images are shown. Next, the 256*256 image in Fig. 7.2(c) shows a very

slight fine checkerboard pattern in the borders between flower petals and the black back- ground. A

slightly more pronounced graininess throughout the image also is beginning to appear. These effects

are much more visible in the 128*128 image in Fig. 7.2(d), and they become pronounced in the

64*64 and 32*32 images in Figs. 7.2 (e) and (f), respectively.

In the next example, we keep the number of samples constant and reduce the number of gray levels

from 256 to 2, in integer powers of 2.Figure 7.3(a) is a 452*374 CAT projection image, displayed

with k=8 (256 gray levels). Images such as this are obtained by fixing the X-ray source in one

position, thus producing a 2-D image in any desired direction. Projection images are used as guides

to set up the parameters for a CAT scanner, including tilt, number of slices, and range. Figures 7.3(b)

through (h) were obtained by reducing the number of bits from k=7 to k=1 while keeping the spatial

resolution constant at 452*374 pixels. The 256-, 128-, and 64-level images are visually identical for

all practical purposes. The 32-level image shown in Fig. 7.3 (d), however, has an almost

imperceptible set of very fine ridge like structures in areas of smooth gray levels (particularly in the

skull).This effect, caused by the use of an insufficient number of gray levels in smooth areas of a

digital image, is called false contouring, so called because the ridges resemble topographic contours

in a map. False contouring generally is quite visible in images displayed using 16 or less uniformly

spaced gray levels, as the images in Figs. 7.3(e) through (h) show.

22

Figure 7.3: (a) 452*374, 256-level image (b)–(d) Image displayed in 128, 64, and 32 gray levels, while

23

keeping the spatial resolution constant (e)–(g) Image displayed in 16, 8, 4, and 2 gray levels.

As a very rough rule of thumb, and assuming powers of 2 for convenience, images of size 256*256

pixels and 64 gray levels are about the smallest images that can be expected to be reasonably free of

objectionable sampling checker-boards and false contouring.

The results in Examples 7.2 and 7.3 illustrate the effects produced on image quality by varying N and

k independently. However, these results only partially answer the question of how varying N and k

affect images because we have not considered yet any relationships that might exist between these

two parameters.

An early study by Huang [1965] attempted to quantify experimentally the effects on image quality

produced by varying N and k simultaneously. The experiment consisted of a set of subjective tests.

Images similar to those shown in Fig.7.4 were used. The woman’s face is representative of an image

with relatively little detail; the picture of the cameraman contains an intermediate amount of detail;

and the crowd picture contains, by comparison, a large amount of detail. Sets of these three types of

images were generated by varying N and k, and observers were then asked to rank them according

to their subjective quality. Results were summarized in the form of so-called is preference curves in

the Nk-plane (Fig.7.5 shows average is preference curves representative of curves corresponding to

the images shown in Fig. 7.4).Each point in the Nk-plane represents an image having values of N and

k equal to the coordinates of that point.

 Figure 7.4: (a) Image with a low level of detail (b) Image with a medium level of detail (c) Image with

a relatively large amount of detail

Points lying on an isopreference curve correspond to images of equal subjective quality. It was found

in the course of the experiments that the isopreference curves tended to shift right and upward, but

their shapes in each of the three image categories were similar to those shown in

Fig. 7.5. This is not unexpected, since a shift up and right in the curves simply means larger values

for N and k, which implies better picture quality.

24

Figure 7.5: Representative is preference curves for the three types of images in Fig.7.4

The key point of interest in the context of the present discussion is that is preference curves tend to

become more vertical as the detail in the image increases. This result suggests that for images with a

large amount of detail only a few gray levels may be needed. For example, the is preference curve in

Fig.7.5 corresponding to the crowd is nearly vertical. This indicates that, for a fixed value of N, the

perceived quality for this type of image is nearly independent of the number of gray levels used. It is

also of interest to note that perceived quality in the other two image categories remained the same in

some intervals in which the spatial resolution was increased, but the number of gray levels actually

decreased. The most likely reason for this result is that a decrease in k tends to increase the apparent

contrast of an image, a visual effect that humans often perceive as improved quality in an image.

Aliasing and Moiré Patterns:

Functions whose area under the curve is finite can be represented in terms of sines and cosines of

various frequencies. The sine/cosine component with the highest frequency determines the highest

―frequency content‖ of the function. Suppose that this highest frequency is finite and that the

function is of unlimited duration (these functions are called band-limited functions).Then, the

Shannon sampling theorem [Brace well (1995)] tells us that, if the function is sampled at a rate equal

to or greater than twice its highest frequency, it is possible to recover completely the original

function from its samples. If the function is under sampled, then a phenomenon called aliasing

corrupts the sampled image. The corruption is in the form of additional frequency components being

introduced into the sampled function. These are called aliased frequencies. Note that the sampling

rate in images is the number of samples taken (in both spatial directions) per unit distance.

As it turns out, except for a special case discussed in the following paragraph, it is impossible to

satisfy the sampling theorem in practice. We can only work with sampled data that are finite in

duration. We can model the process of converting a function of unlimited duration into a function of

finite duration simply by multiplying the unlimited function by a ―gating function‖ that is valued 1

for some interval and 0 elsewhere. Unfortunately, this function itself has frequency components that

extend to infinity. Thus, the very act of limiting the duration of a band-limited function causes it to

cease being band limited, which causes it to violate the key condition of the sampling theorem. The

25

principal approach for reducing the aliasing effects on an image is to reduce its high-frequency

components by blurring the image prior to sampling. However, aliasing is always present in a

sampled image. The effect of aliased frequencies can be seen under the right conditions in the form

of so called Moiré patterns.

There is one special case of significant importance in which a function of infinite duration can be

sampled over a finite interval without violating the sampling theorem. When a function is periodic, it

may be sampled at a rate equal to or exceeding twice its highest frequency and it is possible to

recover the function from its samples provided that the sampling captures exactly an integer number

of periods of the function. This special case allows us to illustrate vividly the Moiré effect. Figure 8

shows two identical periodic patterns of equally spaced vertical bars, rotated in opposite directions

and then superimposed on each other by multiplying the two images. A Moiré pattern, caused by a

breakup of the periodicity, is seen in Fig.8 as a 2-D sinusoidal (aliased) waveform (which looks like

a corrugated tin roof) running in a vertical direction. A similar pattern can appear when images are

digitized (e.g., scanned) from a printed page, which consists of periodic ink dots.

 Figure 8: Illustration of the Moiré pattern effect

The basic relationships and distance measures between pixels in a digital image.

Neighbors of a Pixel:

A pixel p at coordinates (x, y) has four horizontal and vertical neighbors whose coordinates are given

by (x+1, y), (x-1, y), (x, y+1), (x, y-1). This set of pixels, called the 4-neighbors of p, is denoted by

N4 (p). Each pixel is a unit distance from (x, y), and some of the neighbors of p lie outside the digital

image if (x, y) is on the border of the image.

The four diagonal neighbors of p have coordinates (x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1) and

are denoted by ND (p). These points, together with the 4-neighbors, are called the 8- neighbors of p,

denoted by N8 (p). As before, some of the points in ND (p) and N8 (p) fall outside the image if (x, y)

is on the border of the image.

26

 Connectivity:

Connectivity between pixels is a fundamental concept that simplifies the definition of numerous

digital image concepts, such as regions and boundaries. To establish if two pixels are connected, it

must be determined if they are neighbors and if their gray levels satisfy a specified criterion of

similarity (say, if their gray levels are equal). For instance, in a binary image with values 0 and 1,

two pixels may be 4-neighbors, but they are said to be connected only if they have the same value.

Let V be the set of gray-level values used to define adjacency. In a binary image, V={1} if we are

referring to adjacency of pixels with value 1. In a grayscale image, the idea is the same, but set V

typically contains more elements. For example, in the adjacency of pixels with a range of possible

gray-level values 0 to 255, set V could be any subset of these 256 values. We consider three types of

adjacency:

(a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in the set N4 (p).

(b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in the set N8 (p).

(c) m-adjacency (mixed adjacency).Two pixels p and q with values from V are m-adjacent if

(i) q is in N4 (p), or

(ii) q is in ND (p) and the set has no pixels whose values are from V.

Mixed adjacency is a modification of 8-adjacency. It is introduced to eliminate the ambiguities that

often arise when 8-adjacency is used. For example, consider the pixel arrangement shown in Fig.9

(a) for V= {1}.The three pixels at the top of Fig.9 (b) show multiple (ambiguous) 8- adjacency, as

indicated by the dashed lines. This ambiguity is removed by using m-adjacency, as shown in Fig. 9

(c).Two image subsets S1 and S2 are adjacent if some pixel in S1 is adjacent to some pixel in S2. It

is understood here and in the following definitions that adjacent means 4-, 8-, or m-adjacent. A

(digital) path (or curve) from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is a

sequence of distinct pixels with coordinates

where and pixels

 are adjacent.

In this case, n is the length of the path. If (xo, yo) = (xn, yn), the path is a closed path. We can define 4-

, 8-, or m-paths depending on the type of adjacency specified. For example, the paths shown in Fig.

9 (b) between the northeast and southeast points are 8-paths, and the path in Fig. 9 (c) is an m-path.

Note the absence of ambiguity in the m-path. Let S represent a subset of pixels in an image. Two

27

pixels p and q are said to be connected in S if there exists a path between them consisting entirely of

pixels in S. For any pixel p in S, the set of pixels that are connected to it in S is called a connected

component of S. If it only has one connected component, then set S is called a connected set.

Let R be a subset of pixels in an image. We call R a region of the image if R is a connected set. The

boundary (also called border or contour) of a region R is the set of pixels in the region that have one

or more neighbors that are not in R. If R happens to be an entire image (which we recall is a

rectangular set of pixels), then its boundary is defined as the set of pixels in the first and last rows

and columns of the image. This extra definition is required because an image has no neighbors

beyond its border. Normally, when we refer to a region, we are referring to a subset

 Figure 9: (a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed) to the center pixel;

(c) m-adjacency

of an image, and any pixels in the boundary of the region that happen to coincide with the border of

the image are included implicitly as part of the region boundary.

 Distance Measures:

For pixels p, q, and z, with coordinates (x, y), (s, t), and (v, w), respectively, D is a distance function

or metric if

The Euclidean distance between p and q is defined as

For this distance measure, the pixels having a distance less than or equal to some value r from(x,

y) are the points contained in a disk of radius r centered at (x, y).

28

The D4 distance (also called city-block distance) between p and q is defined as

In this case, the pixels having a D4 distance from (x, y) less than or equal to some value r form a

diamond centered at (x, y). For example, the pixels with D4 distance ≤ 2 from (x, y) (the center point)

form the following contours of constant distance:

The pixels with D4 =1 are the 4-neighbors of (x, y).

The D8 distance (also called chessboard distance) between p and q is defined as

In this case, the pixels with D8 distance from(x, y) less than or equal to some value r form a square

centered at (x, y). For example, the pixels with D8 distance ≤ 2 from(x, y) (the center point) form the

following contours of constant distance:

The pixels with D8=1 are the 8-neighbors of (x, y). Note that the D4 and D8 distances between p and q

are independent of any paths that might exist between the points because these distances involve only the

coordinates of the points. If we elect to consider m-adjacency, however, the Dm distance between two

points is defined as the shortest m-path between the points. In this case, the distance between two pixels

will depend on the values of the pixels along the path, as well as the values of their neighbors. For

instance, consider the following arrangement of pixels and assume that p, p2 , and p4 have value 1 and

that p1 and p3 can have a value of 0 or 1:

29

Suppose that we consider adjacency of pixels valued 1 (i.e. = {1}). If p1 and p3 are 0, the length of

the shortest m-path (the Dm distance) between p and p4 is 2. If p1 is 1, then p2 and p will no longer

be m-adjacent (see the definition of m-adjacency) and the length of the shortest m-path becomes 3

(the path goes through the points pp1p2p4). Similar comments apply if p3 is 1 (and p1 is 0); in this

case, the length of the shortest m-path also is 3. Finally, if both p1 and p3 are 1 the length of the

shortest m-path between p and p4 is 4. In this case, the path goes through the sequence of points

pp1p2p3p4.

Perspective image transformation.

A perspective tranformation (also called an imaging transformation) projects 3D points onto a plane.

Perspective transformations play a central role in image processing because they provide an

approximation to the manner in which an image is formed by viewing a 3D world. These

transformations are fundamentally different, because they are nonlinear in that they involve division

by coordinate values. Figure 10 shows a model of the image formation process. The camera

coordinate system (x, y, z) has the image plane coincident with the xy plane and the optical axis

(established by the center of the lens) along the z axis. Thus the center of the image plane is at the

origin, and the centre of the lens is at coordinates (0.0, λ). If the camera is in focus for distant objects,

λ is the focal length of the lens. Here the assumption is that the camera coordinate system is aligned

with the world coordinate system (X, Y, Z).

Let (X, Y, Z) be the world coordinates of any point in a 3-D scene, as shown in the Fig. 10. We

assume throughout the following discussion that Z> λ; that is all points of interest lie in front of the

lens. The first step is to obtain a relationship that gives the coordinates (x, y) of the projection of the

point (X. Y, Z) onto the image plane. This is easily accomplished by the use of similar triangles.

With reference to Fig. 10,

Figure 10: Basic model of the imaging process the camera coordinate system (x, y, z)

 is aligned with the world coordinate system (X, Y, Z)

30

Where the negative signs in front of X and Y indicate that image points are actually

inverted, as the geometry of Fig.10 shows. The image-plane coordinates of the projected 3-

D point follow directly from above equations

These equations are nonlinear becaus they involve division by the variable Z. Although we could use

them directly as shown, it is often convenient to express them in linear matrix form, for rotation,

translation and scaling. This is easily accomplished by using homogeneous coordinates. The

homogeneous coordinates of a point with Cartesian coordinates (X, Y, Z) are defined as (kX, kY,

kZ. k), where k is an arbitrary, nonzero constant. Clearly, conversion of homogeneous coordinates

back to Cartesian coordinates is accomplished by dividing the first three homogeneous coordinates

by the fourth. A point in the Cartesian world coordinate system may be expressed in vector form as

and its homogeneous counterpart is

If we define the perspective transformation matrix as

The product Pwh yields a vector denoted ch

31

The element of ch is the camera coordinates in homogeneous form. As indicated, these coordinates

can be converted to Cartesian form by dividing each of the first three components of ch by the

fourth. Thus the Cartesian of any point in the camera coordinate system are given in vector form by

The first two components of c are the (x, y) coordinates in the image plane of a projected 3-D point

(X, Y, Z). The third component is of no interest in terms of the model in Fig. 10. As shown next,

this component acts as a free variable in the inverse perspective transformation

The inverse perspective transformation maps an image point back into 3-D.

Where P
-1

 is

32

Suppose that an image point has coordinates (xo, yo, 0), where the 0 in the z location simply

indicates that the image plane is located at z = 0. This point may be expressed in homogeneous

vector form as

or, in Cartesian coordinates

This result obviously is unexpected because it gives Z = 0 for any 3-D point. The problem here is

caused by mapping a 3-D scene onto the image plane, which is a many-to-one transformation.

The image point (x0, y0) corresponds to the set of collinear 3-D points that lie on the line passing

through (xo, yo, 0) and (0, 0, λ). The equation of this line in the world coordinate system; that is,

Equations above show that unless something is known about the 3-D point that generated an image

point (for example, its Z coordinate) it is not possible to completely recover the 3-D point from its

image. This observation, which certainly is not unexpected, can be used to formulate the inverse

perspective transformation by using the z component of ch as a free variable instead of 0. Thus, by

letting

33

It thus follows

which upon conversion to Cartesian coordinate gives

In other words, treating z as a free variable yields the equations

Solving for z in terms of Z in the last equation and substituting in the first two expressions yields

which agrees with the observation that revering a 3-D point from its image by means of the inverse

34

perspective transformation requires knowledge of at least one of the world coordinates of the point.

Fourier Transform and its inverse.

Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x) is defined by

the equation

Where j = √-1

Given F(u), f(x) can be obtained by using the inverse Fourier transform

The Fourier transform exists if f(x) is continuous and integrable and F(u) is integrable. The

Fourier transform of a real function, is generally complex,

F(u) = R(u) + jI(u)

Where R(u) and I(u) are the real and imiginary components of F(u). F(u) can be expressed in

exponential form as

where

and

F(u) = │F(u)│e
jØ(u)

│F(u)│ = [R
2
(u) + I

2
(u)]

1/2

Ø (u, v) = tan
-1

[I (u, v)/R (u, v)]

35

The magnitude function |F (u)| is called the Fourier Spectrum of f(x) and Φ(u) its phase angle. The

variable u appearing in the Fourier transform is called the frequency variable.

Figure 11: A simple function and its Fourier spectrum

The Fourier transform can be easily extended to a function f(x, y) of two variables. If f(x, y) is

continuous and integrable and F(u,v) is integrable, following Fourier transform pair exists

and

Where u, v are the frequency variables The

Fourier spectrum, phase, are

│F(u, v)│ = [R
2
(u, v) + I

2
(u, v)]

1/2

Ø(u, v) = tan
-1

[I(u, v)/R(u, v)]

Discrete Fourier transform and its inverse.

The discrete Fourier transform pair that applies to sampled function is given by,

(1)

For u = 0, 1, 2 , N-1, and

36

(2)

For x = 0, 1, 2, N-1.

In the two variable case the discrete Fourier transform pair is

For u = 0, 1, 2 . . . , M-1, v = 0, 1, 2 . . . , N - 1, and

For x = 0, 1, 2 . . . , M-1, y = 0, 1, 2 . . . , N-1.

If M = N, then discrete Fourier transform pair is

For u, v = 0, 1, 2 . . . , N – 1, and

For x, y = 0, 1, 2 . . . , N – 1

State and prove separability property of 2D-DFT.

The separability property of 2D-DFT states that, the discrete Fourier transform pair can be

expressed in the separable forms. i.e. ,

37

For u, v = 0, 1, 2 . . . , N – 1, and

For x, y = 0, 1, 2 . . . , N – 1

(1)

(2)

The principal advantage of the separability property is that F(u,v) or f(x,y) can be obtained in

two steps by successive applications of the 1-D Fourier transform or its inverse. This advantage

becomes evident if equation (1) is expressed in the form

(3)

Where,

(4)

For each value of x, the expression inside the brackets in eq(4) is a 1-D transform, with

frequency values v = 0, 1, . . . , N-1. Therefore the 2-D function f(x, v) is obtained by taking a transform

along each row of f(x, y) and multiplying the result by N. The desired result, F(u, v), is then obtained by

taking a transform along each column of F(x, v), as indicated by eq(3)

State and prove the translation property.

The translation properties of the Fourier transform pair are

(1)

and

38

(2)

Where the double arrow indicates the correspondence between a function and its Fourier

Transform,

Equation (1) shows that multiplying f(x, y) by the indicated exponential term and taking the

transform of the product results in a shift of the origin of the frequency plane to the point (uo, vo).

Consider the equation (1) with uo = vo = N/2 or

exp[j2Π(uox + voy)/N] = e
jΠ(x

+

y)

= (-1)
(x + y)

and

f(x, y)(-1)
x

+y

 F(u – N/2, v – N/2)

Thus the origin of the Fourier transform of f(x, y) can be moved to the center of its corresponding N

x N frequency square simply by multiplying f(x, y) by (-1)
x+y

 . In the one variable case this shift

reduces to multiplication of f(x) by the term (-1)
x
. Note from equation (2) that a shift in f(x, y) does

not affect the magnitude of its Fourier transform as,

State distributivity and scaling property.

Distributivity:

From the definition of the continuous or discrete transform pair,

and, in general,

39

In other words, the Fourier transform and its inverse are distributive over addition but not over

multiplication.

 Scaling:

For two scalars a and b,

af (x, y) aF(u, v)

Explain the basic principle of Hotelling transform.

Hotelling transform:
The basic principle of hotelling transform is the statistical properties of vector representation.

Consider a population of random vectors of the form,

And the mean vector of the population is defined as the expected value of x i.e.,

x = E{x}

The suffix m represents that the mean is associated with the population of x vectors. The

expected value of a vector or matrix is obtained by taking the expected value of each elememt.

The covariance matrix Cx in terms of x and mx is given as

Cx = E{(x-mx) (x-mx)
T
}

T denotes the transpose operation. Since, x is n dimensional, {(x-mx) (x-mx)
T
} will be of n x

n dimension. The covariance matrix is real and symmetric. If elements xi and xj are uncorrelated,

their covariance is zero and, therefore, cij = cji = 0.

For M vector samples from a random population, the mean vector and covariance matrix can

be approximated from the samples by

40

and

Write about Slant transform.

The Slant transform matrix of order N x N is the recursive expression Sn is given by

Where Im is the identity matrix of order M x M, and

The coefficients are

and

41

The slant transform for N = 4 will be

Properties of Slant transform

(i) The slant transform is real and orthogonal.

S = S
*

S
-1

=

S
T

(ii) The slant transform is fast, it can be implemented in (N log2N) operations on an N x 1 vector.

(iii) The energy deal for images in this transform is rated in very good to excellent range.

(iv) The mean vectors for slant transform matrix S are not sequentially ordered for n ≥ 3.

Discrete cosine transform.

The 1-D discrete cosine transform is defined as

For u = 0, 1, 2, . . , N-1. Similarly the inverse DCT is defined as

42

For u = 0, 1, 2, . . , N-1

Where α is

The corresponding 2-D DCT pair is

For u, v = 0, 1, 2, . . , N-1, and

For x, y= 0, 1, 2, . . , N-1

Haar transform.

The Haar transform is based on the Haar functions, hk(z), which are defined over the

continuous, closed interval z ε [0, 1], and for k = 0, 1, 2 . . . , N-1, where N = 2
n
. The first step in

generating the Haar transform is to note that the integer k can be decomposed uniquely as

k = 2
p
 + q - 1

where 0 ≤ p ≤ n-1, q = 0 or 1 for p = 0, and 1 ≤ q ≤ 2
p
 for p ≠ 0. For example, if N = 4, k, q, p have

following values

43

The Haar functions are defined as

for z ε [0, 1] ……. (1)

and

These results allow derivation of Haar transformation matrices of order N x N by formation of the ith

row of a Haar matrix from elements oh hi(z) for z = 0/N, 1/N, . . . , (N-1)/N. For instance, when N = 2,

the first row of the 2 x 2 Haar matrix is computed by using ho(z) with z = 0/2, 1/2. From equation (1) ,

ho(z) is equal to , independent of z, so the first row of the matrix has two

identical elements. Similarly row is computed. The 2 x 2 Haar matrix is

Similarly matrix for N = 4 is

Properties of Haar transform.

1. The Haar transform is real and orthogonal.

2. The Haar transform is very fast. It can implement O(n) operations on an N x 1 vector.

3. The mean vectors of the Haar matrix are sequentially ordered.

44

4. It has a poor energy deal for images.

Hadamard transform.

1-D forward kernel for hadamard transform is

Expression for the 1-D forward Hadamard transform is

Where N = 2
n
 and u has values in the range 0, 1, . . . , N-1.

1-D inverse kernel for hadamard transform is

Expression for the 1-D inverse Hadamard transform is

The 2-D kernels are given by the relations

45

and

2-D Hadamard transform pair is given by following equations

Values of the 1-D hadamard transform kernel for N = 8 is

The Hadamard matrix of lowest order N = 2 is

If HN represents the matrix of order N, the recursive relationship is given by

46

Where H2N is the Hadamard matrix of order 2N and N = 2
n

Walsh transform.

The discrete Walsh transform of a function f (x), denoted W(u), is given by

Walsh transform kernel is symmetric matrix having orthogonal rows and columns. These properties,

which hold in general, lead to an inverse kernel given by

Thus the inverse Walsh transform is given by

The 2-D forward and inverse Walsh kernels are given by

and

Thus the forward and inverse Walsh transforms for 2-D are given by

and

47

The Walsh Transform kernels are seperable and symmetric, because

Values of the 1-D walsh transform kernel for N = 8 is

48

UNIT-II

IMAGE ENHANCEMENT

49

Image enhancement by point processing

 Basic Gray Level Transformations:

The study of image enhancement techniques is done by discussing gray-level transformation

functions. These are among the simplest of all image enhancement techniques. The values of pixels,

before and after processing, will be denoted by r and s, respectively. As indicated in the previous

section, these values are related by an expression of the form s=T(r), where T is a transformation that

maps a pixel value r into a pixel value s. Since we are dealing with digital quantities, values of the

transformation function typically are stored in a one-dimensional array and the mappings from r to s

are implemented via table lookups. For an 8-bit environment, a lookup table containing the values of T

will have 256 entries. As an introduction to gray-level transformations, consider Fig. 1.1, which shows

three basic types of functions used frequently for image enhancement: linear (negative and identity

transformations), logarithmic (log and inverse-log transformations), and power-law (nth power and nth

root transformations).The identity function is the trivial case in which output intensities are identical to

input intensities. It is included in the graph only for completeness.

Image Negatives:

The negative of an image with gray levels in the range [0, L-1] is obtained by using the negative

transformation shown in Fig.1.1, which is given by the expression

s = L - 1 - r.

Reversing the intensity levels of an image in this manner produces the equivalent of a photographic

negative. This type of processing is particularly suited for enhancing white or gray detail embedded in

dark regions of an image, especially when the black areas are dominant in size.

Figure 2.1: Some basic gray-level transformation functions used for image enhancement

50

Log Transformations:

The general form of the log transformation shown in Fig.2.1 is

where c is a constant, and it is assumed that r ≥ 0.The shape of the log curve in Fig. 1.1 shows that

this transformation maps a narrow range of low gray-level values in the input image into a wider range

of output levels. The opposite is true of higher values of input levels. We would use a transformation of

this type to expand the values of dark pixels in an image while compressing the higher-level values.

The opposite is true of the inverse log transformation.

Any curve having the general shape of the log functions shown in Fig. 2.1 would accomplish this

spreading/compressing of gray levels in an image. In fact, the power-law transformations discussed in

the next section are much more versatile for this purpose than the log transformation. However, the log

function has the important characteristic that it compresses the dynamic range of images with large

variations in pixel values. A classic illustration of an application in which pixel values have a large

dynamic range is the Fourier spectrum. At the moment, we are concerned only with the image

characteristics of spectra. It is not unusual to encounter spectrum values that range from 0 to or higher.

While processing numbers such as these presents no problems for a computer, image display systems

generally will not be able to reproduce faithfully such a wide range of intensity values. The net effect is

that a significant degree of detail will be lost in the display of a typical Fourier spectrum.

Power-Law Transformations:

Power-law transformations have the basic form

where c and g are positive constants. Sometimes Eq. is written as

to account for an offset (that is, a measurable output when the input is zero).However, offsets typically

are an issue of display calibration and as a result they are normally ignored in Eq. Plots of s versus r for

various values of g are shown in Fig. 1.2. As in the case of the log transformation, power-law curves

with fractional values of g map a narrow range of dark input values into a wider range of output values,

with the opposite being true for higher values of input levels. Unlike the log function, however, we

notice here a family of possible transformation curves obtained simply by varying γ. As expected, we

see in Fig.1.2 that curves generated with values of g>1 have exactly the opposite effect as those

generated with values of g<1. Finally, we note that Eq. reduces to the identity transformation when c =

γ = 1. A variety of devices used for image capture, printing, and display respond according to a power

law. By convention, the exponent in the power-law equation is referred to as gamma. The process used

to correct this power-law response phenomena is called gamma correction. For example, cathode ray

tube (CRT) devices have an intensity-to-voltage response that is a power function, with exponents

51

varying from approximately 1.8 to 2.5.With reference to the curve for g=2.5 in Fig.1.2, we see that

such display systems would tend to produce images that are darker than intended.

 Figure 2.2: Plots of the equation for various values o (c=1 in all cases).

Piecewise-Linear Transformation Functions:

The principal advantage of piecewise linear functions over the types of functions we have discussed

above is that the form of piecewise functions can be arbitrarily complex. In fact, as we will see shortly,

a practical implementation of some important transformations can be formulated only as piecewise

functions. The principal disadvantage of piecewise functions is that their specification requires

considerably more user input.

Contrast stretching:

One of the simplest piecewise linear functions is a contrast-stretching transformation. Low- contrast

images can result from poor illumination, lack of dynamic range in the imaging sensor, or even wrong

setting of a lens aperture during image acquisition. The idea behind contrast stretching is to increase

the dynamic range of the gray levels in the image being processed.

Figure 2.3 (a) shows a typical transformation used for contrast stretching. The locations of points (r1 , s1)

and (r2 , s2) control the shape of the transformation Function.

52

Figure 2.3: Contrast Stretching (a) Form of Transformation function (b) A low-contrast

image (c) Result of contrast stretching (d) Result of thresholding.

If r1=s1 and r2=s2, the transformation is a linear function that produces no changes in gray levels. If

r1=r2,s1=0 and s2=L-1, the transformation becomes a thresholding function that creates a binary

image, as illustrated in Fig. 2.3 (b). Intermediate values of (r1 , s1) and (r2 , s2) produce various degrees

of spread in the gray levels of the output image, thus affecting its contrast. In general, r1 ≤ r2 and s1 ≤

s2 is assumed so that the function is single valued and monotonically increasing. This condition

preserves the order of gray levels, thus preventing the creation of intensity artifacts in the processed

image.

Figure 1.3 (b) shows an 8-bit image with low contrast. Fig. 2.3(c) shows the result of contrast

stretching, obtained by setting (r1 , s1) = (rmin , 0) and (r2 , s2) = (rmax , L-1) where rmin and rmax denote the

minimum and maximum gray levels in the image, respectively. Thus, the transformation function

stretched the levels linearly from their original range to the full range [0, L-1]. Finally, Fig. 1.3 (d)

shows the result of using the thresholding function defined previously, with r1 = r2 = m, the mean gray

level in the image. The original image on which these results are based is a scanning electron

microscope image of pollen, magnified approximately 700 times.

Gray-level slicing:

Highlighting a specific range of gray levels in an image often is desired. Applications include

enhancing features such as masses of water in satellite imagery and enhancing flaws in X-ray images.

There are several ways of doing level slicing, but most of them are variations of two basic themes.

53

One approach is to display a high value for all gray levels in the range of interest and a low value for

all other gray levels. This transformation, shown in Fig. 1.4 (a), produces a binary image. The second

approach, based on the transformation shown in Fig. 1.4 (b), brightens the desired range of gray levels

but preserves the background and gray-level tonalities in the image. Figure 1.4(c) shows a gray-scale

image, and Fig. 1.4 (d) shows the result of using the transformation in Fig. 1.4 (a).Variations of the two

transformations shown in Fig. 2.4 are easy to formulate.

 Figure 2.4 (a) This transformation highlights range [A, B] of gray levels and reduce all others to a

 Constant level (b) This transformation highlights range [A, B] but preserves all other levels (c) An image

 (d) Result of using the transformation in (a).

Bit-plane slicing:

Instead of highlighting gray-level ranges, highlighting the contribution made to total image appearance

by specific bits might be desired. Suppose that each pixel in an image is represented by 8 bits. Imagine

that the image is composed of eight 1-bit planes, ranging from bit-plane 0 for the least significant bit

to bit plane 7 for the most significant bit. In terms of 8-bit bytes, plane 0 contains all the lowest order

bits in the bytes comprising the pixels in the image and plane 7 contains all the high-order bits. Figure

 1.5 illustrates these ideas, and Fig. 2.7 shows the various bit planes for the image shown in Fig.2.6.

54

Note that the higher-order bits (especially the top four) contain the majority of the visually significant

data. The other bit planes contribute to more subtle details in the image. Separating a digital image into

its bit planes is useful for analyzing the relative importance played by each bit of the image, a process

that aids in determining the adequacy of the number of bits used to quantize each pixel.

 Figure2.5: Bit-plane representation of an 8-bit image.

In terms of bit-plane extraction for an 8-bit image, it is not difficult to show that the (binary) image for

bit-plane 7 can be obtained by processing the input image with a thresholding gray- level

transformation function that (1) maps all levels in the image between 0 and 127 to one level (for

example, 0); and (2) maps all levels between 129 and 255 to another (for example, 255).

Figure 2.6: An 8-bit fractal image

55

 Figure 2.7: The eight bit planes of the image in Fig.2.6. The number at the bottom, right of each image

identifies the bit plane.

The objective of image enhancement, spatial domain and

 point processing.

The term spatial domain refers to the aggregate of pixels composing an image. Spatial domain methods

are procedures that operate directly on these pixels. Spatial domain processes will be denoted by the

expression

Where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator on f, defined over

some neighborhood of (x, y). In addition can operate on a set of input images, such as performing the

pixel-by-pixel sum of K images for noise reduction.

The principal approach in defining a neighborhood about a point (x, y) is to use a square or rectangular

sub image area centered at (x, y), as Fig.2.1 shows. The center of the sub image is moved from pixel to

pixel starting, say, at the top left corner. The operator T is applied at each location (x, y) to yield the

output, g, at that location. The process utilizes only the pixels in the area of the image spanned by the

neighborhood.

56

Figure 2.1: A 3*3 neighborhood about a point (x, y) in an image.

Although other neighborhood shapes, such as approximations to a circle, sometimes are used, square

and rectangular arrays are by far the most predominant because of their ease of implementation. The

simplest form of T is when the neighborhood is of size 1*1 (that is, a single pixel). In this case, g

depends only on the value of f at (x, y), and T becomes a gray-level (also called an intensity or

mapping) transformation function of the form

Where, for simplicity in notation, r and s are variables denoting, respectively, the gray level of f(x, y)

and g(x, y) at any point (x, y). For example, if T(r) has the form shown in Fig. 2.2(a), the effect of this

transformation would be to produce an image of higher contrast than the original by darkening the

levels below m and brightening the levels above m in the original image. In this technique, known as

contrast stretching, the values of r below m are compressed by the transformation function into a

narrow range of s, toward black. The opposite effect takes place for values of r above m. In the limiting

case shown in Fig. 2.2(b), T(r) produces a two-level (binary) image. A mapping of this form is called a

thresholding function. Some fairly simple, yet powerful, processing approaches can be formulated with

gray-level transformations. Because enhancement at any point in an image depends only on the gray

level at that point, techniques in this category often are referred to as point processing.

Figure 2.2: Gray level transformation functions for contrast enhancement.

57

Larger neighborhoods allow considerably more flexibility. The general approach is to use a function of

the values of f in a predefined neighborhood of (x, y) to determine the value of g at (x, y).One of the

principal approaches in this formulation is based on the use of so-called masks

(also referred to as filters, kernels, templates, or windows). Basically, a mask is a small (say, 3*3) 2-

D array, such as the one shown in Fig. 2.1, in which the values of the mask coefficients determine the

nature of the process, such as image sharpening.

Histogram of a digital image-histogram is useful in image enhancement

Histogram Processing:

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete function h(rk) = (nk),

where rk is the kth gray level and nk is the number of pixels in the image having gray level rk. It is

common practice to normalize a histogram by dividing each of its values by the total number of pixels in

the image, denoted by n. Thus, a normalized histogram is given by

for k=0,1,…… .,L-1. Loosely speaking, p(rk) gives an estimate of the probability of occurrence of gray

level rk. Note that the sum of all components of a normalized histogram is equal to 1.

Histograms are the basis for numerous spatial domains processing techniques. Histogram manipulation

can be used effectively for image enhancement. Histograms are simple to calculate in software and also

lend themselves to economic hardware implementations, thus making them a popular tool for real-time

image processing.

As an introduction to the role of histogram processing in image enhancement, consider Fig. 3, which is

the pollen image shown in four basic gray-level characteristics: dark, light, low contrast, and high

contrast. The right side of the figure shows the histograms corresponding to these images. The

horizontal axis of each histogram plot corresponds to gray level values, rk.

The vertical axis corresponds to values of h(rk) = nk or p(rk) = nk/n if the values are normalized. Thus,

as indicated previously, these histogram plots are simply plots of h(rk) = nk versus rk or p(rk) = nk/n

versus rk.

58

Figure 3: Four basic image types: dark, light, low contrast, high contrast, and their

corresponding histograms.

We note in the dark image that the components of the histogram are concentrated on the low (dark)

side of the gray scale. Similarly, the components of the histogram of the bright image are biased

toward the high side of the gray scale. An image with low contrast has a histogram that will be narrow

and will be centered toward the middle of the gray scale. For a monochrome image this implies a dull,

washed-out gray look. Finally, we see that the components of the histogram in the high-contrast image

cover a broad range of the gray scale and, further, that the distribution of pixels is not too far from

uniform, with very few vertical lines being much higher than the others. Intuitively, it is reasonable to

conclude that an image, whose pixels tend to occupy the entire range of possible gray levels and, in

addition, tend to be distributed uniformly, will have an appearance of high contrast and will exhibit a

large variety of gray tones. The net effect will be an image that shows a great deal of gray-level detail

and has high dynamic range. It will be shown shortly that it is possible to develop a transformation

function that can automatically achieve this effect, based only on information available in the

histogram of the input image.

Histogram Equalization:

Consider for a moment continuous functions, and let the variable r represent the gray levels of the

image to be enhanced. We assume that r has been normalized to the interval [0, 1], with r=0

representing black and r=1 representing white. Later, we consider a discrete formulation and allow

pixel values to be in the interval [0, L-1]. For any r satisfying the a for mentioned conditions, we focus

attention on transformations of the form

That produces a level s for every pixel value r in the original image. For reasons that will become

obvious shortly, we assume that the transformation function T(r) satisfies the following conditions:

(a) T(r) is single-valued and monotonically increasing in the interval 0 ≤ r ≤ 1; and (b) 0

59

≤ T(r) ≤ 1 for 0 ≤ r ≤ 1.

The requirement in (a) that T(r) be single valued is needed to guarantee that the inverse transformation

will exist, and the monotonicity condition preserves the increasing order from black to white in the

output image. A transformation function that is not monotonically increasing could result in at least a

section of the intensity range being inverted, thus producing some inverted gray levels in the output

image. Finally, condition (b) guarantees that the output gray levels will be in the same range as the

input levels. Figure 4.1 gives an example of a transformation function that satisfies these two

conditions. The inverse transformation from s back to r is denoted

It can be shown by example that even if T(r) satisfies conditions (a) and (b), it is possible that the

corresponding inverse T
-1

 (s) may fail to be single valued.

.

Figure 2.4.1: A gray-level transformation function that is both single valued and monotonically

increasing.

The gray levels in an image may be viewed as random variables in the interval [0, 1].One of the most

fundamental descriptors of a random variable is its probability density function (PDF).Let pr(r) and

ps(s) denote the probability density functions of random variables r and s, respectively, where the

subscripts on p are used to denote that pr and ps are different functions. A basic result from an

elementary probability theory is that, if pr(r) and T(r) are known and T
-1

 (s) satisfies condition (a), then

the probability density function ps(s) of the transformed variable s can be obtained using a rather

simple formula:

Thus, the probability density function of the transformed variable, s, is determined by the gray- level

PDF of the input image and by the chosen transformation function. A transformation function of

particular importance in image processing has the form

60

where w is a dummy variable of integration. The right side of Eq. above is recognized as the cumulative

distribution function (CDF) of random variable r. Since probability density functions are always positive,

and recalling that the integral of a function is the area under the function, it follows that this

transformation function is single valued and monotonically increasing, and, therefore, satisfies condition

(a). Similarly, the integral of a probability density function for variables in the range [0, 1] also are in the

range [0, 1], so condition (b) is satisfied as well.

Given transformation function T(r),we find ps(s) by applying Eq. We know from basic calculus

(Leibniz’s rule) that the derivative of a definite integral with respect to its upper limit is simply the

integrand evaluated at that limit. In other words,

Substituting this result for dr/ds, and keeping in mind that all probability values are positive, yields

Because ps(s) is a probability density function, it follows that it must be zero outside the interval [0, 1] in

this case because its integral over all values of s must equal 1.We recognize the form of ps(s) as a uniform

probability density function. Simply stated, we have demonstrated that performing the transformation

function yields a random variable s characterized by a uniform probability density function. It is

important to note from Eq. discussed above that T(r) depends on pr(r), but, as indicated by Eq. after it,

the resulting ps(s) always is uniform, independent of the form of pr(r). For discrete values we deal with

probabilities and summations instead of probability density functions and integrals. The probability of

occurrence of gray level r in an image is approximated by

where, as noted at the beginning of this section, n is the total number of pixels in the image, nk is the

number of pixels that have gray level rk, and L is the total number of possible gray levels in the

image.The discrete version of the transformation function given in Eq. is

61

Thus, a processed (output) image is obtained by mapping each pixel with level rk in the input image

into a corresponding pixel with level sk in the output image. As indicated earlier, a plot of pr (rk) versus

rk is called a histogram. The transformation (mapping) is called histogram equalization or histogram

linearization. It is not difficult to show that the transformation in Eq. satisfies conditions (a) and (b)

stated previously. Unlike its continues counterpart, it cannot be proved in general that this discrete

transformation will produce the discrete equivalent of a uniform probability density function, which

would be a uniform histogram.

Figure2.4.2: (a) Images from Fig.3 (b) Results of histogram equalization. (c) Corresponding

histograms.

The inverse transformation from s back to r is denoted by

 Histogram Matching (Specification):

Histogram equalization automatically determines a transformation function that seeks to produce an

output image that has a uniform histogram. When automatic enhancement is desired, this is a good

approach because the results from this technique are predictable and the method is simple to

implement. In particular, it is useful sometimes to be able to specify the shape of the histogram that we

wish the processed image to have the method used to generate a processed image that has a specified

62

histogram is called histogram matching or histogram specification.

Development of the method:

Let us return for a moment to continuous gray levels r and z (considered continuous random variables),

and let pr(r) and pz(z) denote their corresponding continuo’s probability density functions. In this

notation, r and z denote the gray levels of the input and output (processed) images, respectively. We

can estimate pr(r) from the given input image, while pz(z) is the specified probability density function

that we wish the output image to have.Let s be a random variable with the property

where w is a dummy variable of integration. We recognize this expression as the continuos version of

histogram equalization. Suppose next that we define a random variable z with the property

where t is a dummy variable of integration. It then follows from these two equations that G(z)=T(r) and,

therefore, that z must satisfy the condition

The transformation T(r) can be obtained once pr(r) has been estimated from the input image. Similarly,

the transformation function G(z) can be obtained because pz(z) is given. Assuming that G
-1

 exists and

that it satisfies conditions (a) and (b) in the histogram equalization process, the above three equations

show that an image with a specified probability density function can be obtained from an input image by

using the following procedure:

(1) Obtain the transformation function T(r).

(2) To obtain the transformation function G(z).

(3) Obtain the inverse transformation function G
-1

(4) Obtain the output image by applying above Eq. to all the pixels in the input image.

The result of this procedure will be an image whose gray levels, z, have the specified probability

density function pz(z). Although the procedure just described is straightforward in principle, it is

seldom possible in practice to obtain analytical expressions for T(r) and for G
-1.

 Fortunately, this

problem is simplified considerably in the case of discrete values. The price we pay is the same as in

histogram equalization, where only an approximation to the desired histogram is achievable. In spite of

this, however, some very useful results can be obtained even with crude approximations.

63

Where n is the total number of pixels in the image, nj is the number of pixels with gray level rj, and L

is the number of discrete gray levels. Similarly, the discrete formulation is obtained from the given

histogram pz (zi), i=0, 1, 2… L-1, and has the form

As in the continuos case, we are seeking values of z that satisfy this equation. The variable vk was

added here for clarity in the discussion that follows. Finally, the discrete version of the above Eqn. is

given by

Or

Implementation:

We start by noting the following: (1) Each set of gray levels {rj} , {sj}, and {zj}, j=0, 1, 2, p , L- 1, is a

one-dimensional array of dimension L X 1. (2) All mappings from r to s and from s to z are simple

table lookups between a given pixel value and these arrays. (3) Each of the elements of these arrays,

for example, sk, contains two important pieces of information: The subscript k denotes the location of

the element in the array, and s denotes the value at that location. (4) We need to be concerned only

with integer pixel values. For example, in the case of an 8-bit image, L=256 and the elements of each

of the arrays just mentioned are integers between 0 and 255.This implies that we now work with gray

level values in the interval [0, L-1] instead of the normalized interval [0, 1] that we used before to

simplify the development of histogram processing techniques.

In order to see how histogram matching actually can be implemented, consider Fig. 2. 5(a), ignoring

for a moment the connection shown between this figures 2.5(c). Figure 2.5(a) shows a hypothetical

discrete transformation function s=T(r) obtained from a given image. The first gray level in the image,

r1 , maps to s1 ; the second gray level, r2 , maps to s2 ; the kth level rk maps to sk; and so on (the

important point here is the ordered correspondence between these values). Each value sj in the array is

pre-computed, so the process of mapping simply uses the actual value of a pixel as an index in an array

to determine the corresponding value of s. This process is particularly easy because we are dealing

with integers. For example, the s mapping for an 8-bit pixel with value 127 would be found in the

128th position in array {sj} (recall that we start at 0) out of the possible 256 positions. If we stopped

here and mapped the value of each pixel of an input image by the method just described, the output

64

would be a histogram-equalized image.

Figure 2.5. (a) Graphical interpretation of mapping from rk to sk via T(r). (b) Mapping of zq

to its corresponding value vq via G(z) (c) Inverse mapping from sk to its

corresponding value of zk.

In order to implement histogram matching we have to go one step further. Figure 5(b) is a hypothetical

transformation function G obtained from a given histogram pz(z). For any zq , this transformation

function yields a corresponding value vq. This mapping is shown by the arrows in Fig. 5(b).

Conversely, given any value vq, we would find the corresponding value zq from G
-1

. In terms of the

figure, this entire means graphically is that we would reverse the direction of the arrows to map vq into

its corresponding zq. However, we know from the definition that v=s for corresponding subscripts, so

we can use exactly this process to find the zk corresponding to any value sk that we computed

previously from the equation sk = T(rk) .This idea is shown in Fig.2.5(c). Since we really do not have

the z’s (recall that finding these values is precisely the objective of histogram matching),we must resort

to some sort of iterative scheme to find z from s.The fact that we are dealing with integers makes this

a particularly simple process. Basically, because vk = sk, we have that the z’s for which we are looking

must satisfy the equation G(zk)=sk, or (G(zk)- sk)=0. Thus, all we have to do to find the value of zk

corresponding to sk is to iterate on values of z such that this equation is satisfied for k=0,1,2,…...., L-

1. We do not have to find the inverse of G because we are going to iterate on z. Since we are dealing

with integers, the closest we can get to satisfying the equation (G(zk)-sk)=0 is to let zk= for

each value of k, where is the smallest integer in the interval [0, L-1] such that

Given a value sk, all this means conceptually in terms of Fig. 5(c) is that we would start with and

increase it in integer steps until Eq is satisfied, at which point we let repeating this process for all

values of k would yield all the required mappings from s to z, which constitutes the implementation of

Eq. In practice, we would not have to start with each time because the values of sk are known to

increase monotonically. Thus, for k=k+1, we would start with and increment in integer

65

values from there.

 Local Enhancement:

The histogram processing methods discussed in the previous two sections are global, in the

sense that pixels are modified by a transformation function based on the gray-level content of

an entire image. Although this global approach is suitable for overall enhancement, there are

cases in which it is necessary to enhance details over small areas in an image. The number of

pixels in these areas may have negligible influence on the computation of a global

transformation whose shape does not necessarily guarantee the desired local enhancement. The

solution is to devise transformation functions based on the gray-level distribution—or other

properties—in the neighborhood of every pixel in the image.

The histogram processing techniques are easily adaptable to local enhancement. The procedure is to

define a square or rectangular neighborhood and move the center of this area from pixel to pixel. At

each location, the histogram of the points in the neighborhood is computed and either a histogram

equalization or histogram specification transformation function is obtained. This function is finally

used to map the gray level of the pixel centered in the neighborhood. The center of the

neighborhood region is then moved to an adjacent pixel location and the procedure is repeated. Since

only one new row or column of the neighborhood changes during a pixel-to-pixel translation of the

region, updating the histogram obtained in the previous location with the new data introduced at each

motion step is possible. This approach has obvious advantages over repeatedly computing the

histogram over all pixels in the neighborhood region each time the region is moved one pixel

location. Another approach used some times to reduce computation is to utilize non overlapping

regions, but this method usually produces an undesirable checkerboard effect.

Image subtraction and various areas of application of image subtraction.

Image Subtraction:

The difference between two images f(x, y) and h(x, y), expressed as

is obtained by computing the difference between all pairs of corresponding pixels from f and h. The

key usefulness of subtraction is the enhancement of differences between images. The higher- order bit

planes of an image carry a significant amount of visually relevant detail, while the lower planes

contribute more to fine (often imperceptible) detail. Figure 2.7(a) shows the fractal image used earlier

to illustrate the concept of bit planes. Figure 2.7(b) shows the result of discarding (setting to zero) the

four least significant bit planes of the original image. The images are nearly identical visually, with the

exception of a very slight drop in overall contrast due to less variability of the gray level values in the

image of Fig. 2.7(b).The pixel-by-pixel difference between these two images is shown in Fig.

2.7(c).The differences in pixel values are so small that the difference image appears nearly black when

66

displayed on an 8-bit display. In order to bring out more detail, we can perform a contrast stretching

transformation. We chose histogram equalization, but an appropriate power-law transformation would

have done the job also. The result is shown in Fig. 2.7(d). This is a very useful image for evaluating the

effect of setting to zero the lower-order planes.

Figure 2.7 : (a) Original fractal image (b) Result of setting the four lower-order bit planes to

zero (c) Difference between (a) and(b) (d) Histogram equalized difference image.

One of the most commercially successful and beneficial uses of image subtraction is in the area of

medical imaging called mask mode radiography. In this case h(x, y), the mask, is an X-ray image of a

region of a patient’s body captured by an intensified TV camera (instead of traditional X-ray film)

located opposite an X-ray source. The procedure consists of injecting a contrast medium into the

patient’s bloodstream, taking a series of images of the same anatomical region as h(x, y), and

subtracting this mask from the series of incoming images after injection of the contrast medium. The

net effect of subtracting the mask from each sample in the incoming stream of TV images is that the

areas that are different between f(x, y) and h(x, y) appear in the output image as enhanced detail.

Because images can be captured at TV rates, this procedure in essence gives a movie showing how the

contrast medium propagates through the various arteries in the area being observed.

Image averaging process.

 Image Averaging:

Consider a noisy image g(x, y) formed by the addition of noise h(x, y) to an original image f(x,y);

that is,

where the assumption is that at every pair of coordinates (x, y) the noise is uncorrelated and has zero

67

average value.The objective of the following procedure is to reduce the noise content by adding a set of

noisy images, {gi (x, y)}. If the noise satisfies the constraints just stated, it can be

shown that if an image is formed by averaging K different noisy images,

Then it follows that

and

Where is the expected value of and and are the variances of

and η, all at coordinates (x, y). The standard deviation at any point in the average image is

As K increases, the above equations indicate that the variability (noise) of the pixel values at each

location (x, y) decreases. Because this means that approaches

f(x, y) as the number of noisy images used in the averaging process increases. In practice, the images gi(x,

y) must be registered (aligned) in order to avoid the introduction of blurring and other artifacts in the

output image.

The mechanics of filtering in spatial domain. Mention the points to be considered in

implementation neighborhood operations for spatial filtering.

Basics of Spatial Filtering:
Some neighborhood operations work with the values of the image pixels in the neighborhood and the

corresponding values of a sub image that has the same dimensions as the neighborhood. The sub image

is called a filter, mask, kernel, template, or window, with the first three terms being the most prevalent

terminology. The values in a filter sub image are referred to as coefficients, rather than pixels. The

concept of filtering has its roots in the use of the Fourier transform for signal processing in the so-

called frequency domain. We use the term spatial filtering to differentiate this type of process from the

more traditional frequency domain filtering.

The mechanics of spatial filtering are illustrated in Fig.2.9.1. The process consists simply of moving

the filter mask from point to point in an image. At each point (x, y), the response of the filter at that

point is calculated using a predefined relationship. The response is given by a sum of products of the

filter coefficients and the corresponding image pixels in the area spanned by the filter mask. For the 3

68

x 3 mask shown in Fig. 2. 9.1, the result (or response), R, of linear filtering with the filter mask at a

point (x, y) in the image is

which we see is the sum of products of the mask coefficients with the corresponding pixels directly

under the mask. Note in particular that the coefficient w(0, 0) coincides with image

Value f(x, y), indicating that the mask is centered at (x, y) when the computation of the sum of

products takes place. For a mask of size m x n,we assume that m=2a+1 and n=2b+1,where a and b are

nonnegative integers.

 Figure 2.9.1: The mechanics of spatial filtering. The magnified drawing shows a

 3X3 mask and the image section directly under it; the image section is shown

 displaced out from under the mask for ease of readability.

In general, linear filtering of an image f of size M x N with a filter mask of size m x n is given by the

expression:

where, from the previous paragraph, a=(m-1)/2 and b=(n-1)/2. To generate a complete filtered image

69

this equation must be applied for x=0,1,2,……, M-1 and y=0,1,2,……, N-1. In this way, we are

assured that the mask processes all pixels in the image. It is easily verified when m=n=3 that this

expression reduces to the example given in the previous paragraph.

The process of linear filtering is similar to a frequency domain concept called convolution. For this

reason, linear spatial filtering often is referred to as ―convolving a mask with an image.‖ Similarly, filter

masks are sometimes called convolution masks. The term convolution kernel also is in common use.

When interest lies on the response, R, of an m x n mask at any point (x,y), and not on the mechanics

of implementing mask convolution, it is common practice to simplify the notation by using the

following expression:

where the w’s are mask coefficients, the z’s are the values of the image graylevels corresponding to

those coefficients, and mn is the total number of coefficients in the mask. For the 3 x 3 general mask

shown in Fig.9.2 the response at any point (x, y) in the image is given by

Figure 2.9.2: Another representation of a general 3 x 3 spatial filter mask.

An important consideration in implementing neighborhood operations for spatial filtering is the issue

of what happens when the center of the filter approaches the border of the image. Consider for

simplicity a square mask of size n x n. At least one edge of such a mask will coincide with the border

of the image when the center of the mask is at a distance of (n-1)/2 pixels away from the border of the

70

image. If the center of the mask moves any closer to the border, one or more rows or columns of the

mask will be located outside the image plane. There are several ways to handle this situation. The

simplest is to limit the excursions of the center of the mask to be at a distance no less than (n-1)/2

pixels from the border. The resulting filtered image will be smaller than the original, but all the pixels

in the filtered imaged will have been processed with the full mask. If the result is required to be the

same size as the original, then the approach typically employed is to filter all pixels only with the

section of the mask that is fully contained in the image. With this approach, there will be bands of

pixels near the border that will have been processed with a partial filter mask. Other approaches

include ―padding‖ the image by adding rows and columns of 0’s (or other constant gray level), or

padding by replicating rows or columns. The padding is then stripped off at the end of the process. This

keeps the size of the filtered image the same as the original, but the values of the padding will have an

effect near the edges that becomes more prevalent as the size of the mask increases. The only way to

obtain a perfectly filtered result is to accept a somewhat smaller filtered image by limiting the

excursions of the center of the filter mask to a distance no less than (n-1)/2 pixels from the border of

the original image.

 Smoothing Spatial filters.

Smoothing filters are used for blurring and for noise reduction. Blurring is used in preprocessing steps,

such as removal of small details from an image prior to (large) object extraction, and bridging of small

gaps in lines or curves. Noise reduction can be accomplished by blurring with a linear filter and also by

non-linear filtering.

(1) Smoothing Linear Filters:

The output (response) of a smoothing, linear spatial filter is simply the average of the pixels contained

in the neighborhood of the filter mask. These filters sometimes are called averaging filters. The idea

behind smoothing filters is straight forward. By replacing the value of every pixel in an image by the

average of the gray levels in the neighborhood defined by the filter mask, this process results in an

image with reduced ―sharp‖ transitions in gray levels. Because random noise typically consists of

sharp transitions in gray levels, the most obvious application of smoothing is noise reduction.

However, edges (which almost always are desirable features of an image) also are characterized by

sharp transitions in gray levels, so averaging filters have the undesirable side effect that they blur

edges. Another application of this type of process includes the smoothing of false contours that result

from using an insufficient number of gray levels.

71

Figure 2.10.1: Two 3 x 3 smoothing (averaging) filter masks. The constant multiplier in

 front of each mask is equal to the sum of the values of its coefficients, as is

 required to compute an average.

A major use of averaging filters is in the reduction of ―irrelevant‖ detail in an image. By

―irrelevant‖we mean pixel regions that are small with respect to the size of the filter mask.

Figure 2.10.1 shows two 3 x 3 smooth filters. Use of the first filter yields the standard average of the

pixels under the mask. This can best be seen by substituting the coefficients of the mask in which is

the average of the gray levels of the pixels in the 3 x 3 neighborhood defined by the mask. Note that,

instead of being 1/9, the coefficients of the filter are all 1’s.The idea here is that it is computationally

more efficient to have coefficients valued 1. At the end of the filtering process the entire image is

divided by 9. An m x n mask would have a normalizing constant equal to 1/mn. A spatial averaging

filter in which all coefficients are equal is sometimes called a box filter. The second mask shown in

Fig.2. 10.1 is a little more interesting. This mask yields a so-called weighted average, terminology used

to indicate that pixels are multiplied by different coefficients, thus giving more importance (weight) to

some pixels at the expense of others. In the mask shown in Fig. 2. 10.1(b) the pixel at the center of the

mask is multiplied by a higher value than any other, thus giving this pixel more importance in the

calculation of the average. The other pixels are inversely weighted as a function of their distance from

the center of the mask. The diagonal terms are further away from the center than the orthogonal

neighbors (by a factor of √2) and, thus, are weighed less than these immediate neighbors of the center

pixel. The basic strategy behind weighing the center point the highest and then reducing the value of

the coefficients as a function of increasing distance from the origin is simply an attempt to reduce

blurring in the smoothing process. We could have picked other weights to accomplish the same general

objective. However, the sum of all the coefficients in the mask of Fig. 10.1(b) is equal to 16, an

attractive feature for computer implementation because it has an integer power of 2. In practice, it is

difficult in general to see differences between images smoothed by using either of the masks in Fig.

10.1, or similar arrangements, because the area these masks span at any one location in an image is so

small. The general implementation for filtering an M x N image with a weighted averaging filter of

size m x n (m and n odd) is given by the expression

72

(2) Order-Statistics Filters:

Order-statistics filters are nonlinear spatial filters whose response is based on ordering (ranking) the

pixels contained in the image area encompassed by the filter, and then replacing the value of the center

pixel with the value determined by the ranking result. The best-known example in this category is the

median filter, which, as its name implies, replaces the value of a pixel by the median of the gray levels

in the neighborhood of that pixel (the original value of the pixel is included in the computation of the

median). Median filters are quite popular because, for certain types of random noise, they provide

excellent noise-reduction capabilities, with considerably less blurring than linear smoothing filters of

similar size. Median filters are particularly effective in the presence of impulse noise, also called salt-

and-pepper noise because of its appearance as white and black dots superimposed on an image.

The median, ε, of a set of values is such that half the values in the set are less than or equal to ε, and

half are greater than or equal to ε. In order to perform median filtering at a point in an image, we first

sort the values of the pixel in question and its neighbors, determine their median, and assign this value

to that pixel. For example, in a 3 x 3 neighborhood the median is the 5th largest value, in a 5 x 5

neighborhood the 13th largest value, and so on. When several values in a neighborhood are the same,

all equal values are grouped. For example, suppose that a 3 x 3 neighborhood has values (10, 20, 20,

20, 15, 20, 20, 25, 100). These values are sorted as (10, 15, 20, 20, 20, 20, 20, 25, 100), which results

in a median of 20. Thus, the principal function of median filters is to force points with distinct gray

levels to be more like their neighbors. In fact, isolated clusters of pixels that are light or dark with

respect to their neighbors, and whose area is less than n
2

/
 2 (one-half the filter area), are eliminated by

an n x n median filter. In this case ―eliminated‖ means forced to the median intensity of the neighbors.

Larger clusters are affected considerably less.

The Gradiant and the Laplacian and their role in image enhancement.

 Use of Second Derivatives for Enhancement–The Laplacian:

The approach basically consists of defining a discrete formulation of the second-order derivative and

then constructing a filter mask based on that formulation. We are interested in isotropic filters, whose

response is independent of the direction of the discontinuities in the image to which the filter is

applied. In other words, isotropic filters are rotation invariant, in the sense that rotating the image and

then applying the filter gives the same result as applying the filter to the image first and then rotating

the result.

Development of the method:

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic derivative operator is the

73

Laplacian, which, for a function (image) f(x, y) of two variables, is defined as

Because derivatives of any order are linear operations, the Laplacian is a linear operator. In order to be

useful for digital image processing, this equation needs to be expressed in discrete form. There are

several ways to define digital Laplacian using neighborhoods. Digital second. Taking into account that

we now have two variables, we use the following notation for the partial second-order derivative in the

x-direction:

and, similarly in the y-direction, as

The digital implementation of the two-dimensional Laplacian in Eq. is obtained by summing these

two components

This equation can be implemented using the mask shown in Fig.2. 11.1(a), which gives an isotropic

result for rotations in increments of 90°.

The diagonal directions can be incorporated in the definition of the digital Laplacian by adding two

more terms to Eq., one for each of the two diagonal directions. The form of each new term is the same

as either Eq.

74

Figure 2.11.1: (a) Filter mask used to implement the digital Laplacian (b) Mask used to

implement an extension of this equation that includes the diagonal neighbors. (c)

and (d) Two other implementations of the Laplacian.

but the coordinates are along the diagonals. Since each diagonal term also contains a –2f(x, y) term,

the total subtracted from the difference terms now would be –8f(x, y). The mask used to implement

this new definition is shown in Fig.2.11.1 (b). This mask yields isotropic results for increments of 45°.

The other two masks shown in Fig. 2.11 also are used frequently in practice.They are based on a

definition of the Laplacian that is the negative of the one we used here. As such, they yield equivalent

results, but the difference in sign must be kept in mind when combining (by addition or subtraction) a

Laplacian-filtered image with another image.

Because the Laplacian is a derivative operator, its use highlights gray-level discontinuities in an image

and deemphasizes regions with slowly varying gray levels.This will tend to produce images that have

grayish edge lines and other discontinuities, all superimposed on a dark, featureless background.

Background features can be ―recovered‖ while still preserving the sharpening effect of the Laplacian

operation simply by adding the original and Laplacian images. As noted in the previous paragraph, it is

important to keep in mind which definition of the Laplacian is used. If the definition used has a

negative center coefficient, then we subtract, rather than add, the Laplacian image to obtain a

sharpened result. Thus, the basic way in which we use the Laplacian for image enhancement is as

follows:

Use of First Derivatives for Enhancement—The Gradient:

75

First derivatives in image processing are implemented using the magnitude of the gradient. For a

function f(x, y), the gradient of f at coordinates (x, y) is defined as the two-dimensional column vector

The magnitude of this vector is given by

The components of the gradient vector itself are linear operators, but the magnitude of this vector

obviously is not because of the squaring and square root operations. On the other hand, the partial

derivatives are not rotation invariant (isotropic), but the magnitude of the gradient vector .Although it

is not strictly correct, the magnitude of the gradient vector often is referred to as the gradient.

76

The computational burden of implementing over an entire image is not trivial, and it is common

practice to approximate the magnitude of the gradient by using absolute values instead of squares and

square roots:

This equation is simpler to compute and it still preserves relative changes in gray levels, but the

isotropic feature property is lost in general. However, as in the case of the Laplacian, the isotropic

properties of the digital gradient defined in the following paragraph are preserved only for a limited

number of rotational increments that depend on the masks used to approximate the derivatives. As it

turns out, the most popular masks used to approximate the gradient give the same result only for

vertical and horizontal edges and thus the isotropic properties of the gradient are preserved only for

multiples of 90°.

As in the case of the Laplacian, we now define digital approximations to the preceding equations, and

from there formulate the appropriate filter masks. In order to simplify the discussion that follows, we

will use the notation in Fig. 11.2 (a) to denote image points in a 3 x 3 region. For example, the center

point, z5 , denotes f(x, y), z1 denotes f(x- 1, y-1), and so on. The simplest approximations to a first-

order derivative that satisfy the conditions stated in that section are Gx = (z8 –z5) and Gy = (z6 – z5) .

Two other definitions proposed by Roberts [1965] in the early development of digital image processing

use cross differences:

we compute the gradient as

If we use absolute values, then substituting the quantities in the equations gives us the following

approximation to the gradient:

This equation can be implemented with the two masks shown in Figs. 11.2 (b) and(c). These masks are

referred to as the Roberts cross-gradient operators. Masks of even size are awkward to implement. The

smallest filter mask in which we are interested is of size 3 x 3.An approximation using absolute values,

still at point z5 , but using a 3*3 mask, is

77

The difference between the third and first rows of the 3 x 3 image region approximates the derivative in the

x-direction, and the difference between the third and first columns approximates the derivative in the y-

direction. The masks shown in Figs. 11.2 (d) and (e), called the Sobel operators. The idea behind using a

weight value of 2 is to achieve some smoothing by giving more importance to the center point. Note that

the coefficients in all the masks shown in Fig.2.11.2 sum to 0, indicating that they would give a response

of 0 in an area of constant gray level, as expected of a derivative operator.

Figure 2.11.2: A 3 x 3 region of an image (the z’s are gray-level values) and masks used to

compute the gradient at point labeled z5 . All masks coefficients sum to zero, as expected

of a derivative operator.

The frequency domain techniques of image enhancement in detail.

Enhancement in Frequency Domain:
The frequency domain methods of image enhancement are based on convolution theorem. This is represented

as,

Where.
g(x, y) = h (x, y)*f(x, y)

g(x, y) = Resultant image

h(x, y) = Position invariant operator f(x,

y)= Input image

78

The Fourier transform representation of equation above is,

G (u, v) = H (u, v) F (u, v)

The function H (u, v) in equation is called transfer function. It is used to boost the edges of input

image f (x, y) to emphasize the high frequency components.

The different frequency domain methods for image enhancement are as follows.

1. Contrast stretching.

2. Clipping and thresholding.

3. Digital negative.

4. Intensity level slicing and

5. Bit extraction.

1. Contrast Stretching:
Due to non-uniform lighting conditions, there may be poor contrast between the background and the

feature of interest. Figure 2.11.1.1 (a) shows the contrast stretching transformations.

Figure 2.11.1.1: (a) Histogram of input image

Figure 2.11.1.1: (b) Linear Law

Figure 2.11.1.1: (c) Histogram of the transformed image

79

These stretching transformations are expressed as

In the area of stretching the slope of transformation is considered to be greater than unity. The

parameters of stretching transformations i.e., a and b can be determined by examining the histogram

of the image.

2. Clipping and Thresholding:

Clipping is considered as the special scenario of contrast stretching. It is the case in which the

parameters are α = γ = 0. Clipping is more advantageous for reduction of noise in input signals of

range [a, b]. Threshold of an image is selected by means of its histogram. Let us take the image shown

in the following figure 2.11.2.

\

Figure 2.11.1.2

The figure 1.2 (b) consists of two peaks i.e., background and object. At the abscissa of histogram

minimum (D1) the threshold is selected. This selected threshold (D1) can separate background and

object to convert the image into its respective binary form. The thresholding transformations are

shown in figure 1.3.

Figure 2.11.1.3

3. Digital Negative:

The digital negative of an image is achieved by reverse scaling of its grey levels to the transformation.

They are much essential in displaying of medical images.

80

A digital negative transformation of an image is shown in figure 1.4.

 Figure 2.11.1.4

4. Intensity Level Slicing:
The images which consist of grey levels in between intensity at background and other objects require

to reduce the intensity of the object. This process of changing intensity level is done with the help of

intensity level slicing. They are expressed as

The histogram of input image and its respective intensity level slicing is shown in the figure 1.5.

Figure 2.11.1.5

81

When an image is uniformly quantized then, the n
th
 most significant bit can be extracted and

displayed.

Let, u = k1 2
B-1

 + k2 2
B-2

 +……………..+ kB-1 2 + kB Then,

the output is expressed as

Spatial domain and frequency domain enhancement techniques.

The spatial domain refers to the image plane itself, and approaches in this category are based on direct

manipulation of pixels in an image. Frequency domain processing techniques are based on modifying

the Fourier transform of an image. The term spatial domain refers to the aggregate of pixels

composing an image and spatial domain methods are procedures that operate directly on these pixels.

Image processing function in the spatial domain may he expressed as.

g(x, y) = T[f(x, y)]

Where

(x, y).

f(x, y) is the input image

g(x, y) is the processed image and

T is the operator on f defined over some neighborhood values of

Frequency domain techniques are based on convolution theorem. Let g(x, y) be the image formed by

the convolution of an image f(x, y) and linear position invariant operation h(x, y) i.e.,

g(x, y) = h(x, y) * f(x, y) Applying

convolution theorem

G(u, v) = H(u, v) F(u, v)

82

Where G, H and F are the Fourier transforms of g, h and f respectively. In the terminology of linear

system the transform H (u, v) is called the transfer function of the process. The edges in f(x, y) can he

boosted by using H (u, v) to emphasize the high frequency components of F (u, v).

 Ideal Low Pass Filter (ILPF) in frequency domain.

 Lowpass Filter:

The edges and other sharp transitions (such as noise) in the gray levels of an image contribute

significantly to the high-frequency content of its Fourier transform. Hence blurring (smoothing) is

achieved in the frequency domain by attenuating us the transform of a given image.

G (u, v) = H (u, v) F(u, v)

where F (u, v) is the Fourier transform of an image to be smoothed. The problem is to select a filter

transfer function H (u, v) that yields G (u, v) by attenuating the high-frequency components of F (u,

v). The inverse transform then will yield the desired smoothed image g (x, y).

 Ideal Filter:

A 2-D ideal lowpass filter (ILPF) is one whose transfer function satisfies the relation

where D is a specified nonnegative quantity, and D(u, v) is the distance from point (u, v) to the origin of the

frequency plane; that is,

Figure 3 (a) shows a 3-D perspective plot of H (u, v) u a function of u and v. The name ideal filter indicates that

oil frequencies inside a circle of radius

Figure 2.11.3: (a) Perspective plot of an ideal low pass filter transfer function; (b) filter cross

section.

Do are passed with no attenuation, whereas all frequencies outside this circle are completely attenuated. The

low pass filters are radically symmetric about the origin. For this type of filter, specifying a cross section

extending as a function of distance from the origin along a radial line is sufficient, as Fig. 2.11.13 (b) shows.

The complete filter transfer function can then be generated by rotating the cross section 360 about the origin.

83

Specification of radically symmetric filters centered on the N x N frequency square is based on the assumption

that the origin of the Fourier transform has been centered on the square. For an ideal low pass filter cross

section, the point of transition between H(u, v) = 1 and H(u, v) = 0 is often called the cutoff frequency. In the

case of Fig.2.11.3 (b), for example, the cutoff frequency is Do. As the cross section is rotated about the origin,

the point Do traces a circle giving a locus of cutoff frequencies, all of which are a distance Do from the origin.

The cutoff frequency concept is quite useful in specifying filter characteristics. It also serves as a common base

for comparing the behavior of different types of filters. The sharp cutoff frequencies of an ideal low pass filter

cannot be realized with electronic components, although they can certainly be simulated in a computer.

Butterworth low pass filter with example.

 Butterworth filter:

The transfer function of the Butterworth lowpass (BLPF) of order n and with cutoff frequency locus at

a distance Do, from the origin is defined by the relation

A perspective plot and cross section of the BLPF function are shown in figure 4.

Figure.2.11..4 (a) A Butterworth low pass filter (b) radial cross section for n = 1.

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that establishes a clear cutoff

between passed and filtered frequencies. For filters with smooth transfer functions, defining a cutoff frequency

locus at points for which H (u, v) is down to a certain fraction of its maximum value is customary. In the case of

above Eq. H (u, v) = 0.5 (down 50 percent from its maximum value of 1) when D (u, v) = Do. Another value

commonly used is 1/√2 of the maximum value of H (u, v). The following simple modification yields the desired

value when D (u, v) = Do:

84

Ideal High Pass Filter and Butterworth High Pass filter.

 High pass Filtering:

An image can be blurred by attenuating the high-frequency components of its Fourier transform.

Because edges and other abrupt changes in gray levels are associated with high-frequency

components, image sharpening can be achieved in the frequency domain by a high pass filtering

process, which attenuates the low-frequency components without disturbing high-frequency

information in the Fourier transform.

 Ideal filter:

2-D ideal high pass filter (IHPF) is one whose transfer function satisfies the relation

where Do is the cutoff distance measured from the origin of the frequency plane. Figure 5.1 shows a perspective

plot and cross section of the IHPF function. This filter is the opposite of the ideal lowpass filter, because it

completely attenuates all frequencies inside a circle of radius Do while passing, without attenuation, all

frequencies outside the circle. As in the case of the ideal lowpass filler, the IHPF is not physically realizable.

Figure 2.11..5.1: Perspective plot and radial cross section of ideal high pass filter

85

Butterworth filter:

The transfer function of the Butterworth high pass filter (BHPF) of order n and with cutoff frequency

locus at a distance Do from the origin is defined by the relation

Figure 2.11.5.2 shows a perspective plot and cross section of the BHPF function. Note that when D (u, v) =

Do, H (u, v) is down to ½ of its maximum value. As in the case of the Butterworth lowpass filter, common

practice is to select the cutoff frequency locus at points for which H (u,v) is down to 1/√2 of its maximum

value.

Figure 2.11..5.2: Perspective plot and radial cross section for Butterworth High Pass Filter with n = 1

 Gaussian High Pass and Gaussian Low Pass Filter.

Gaussian Lowpass Filters:

The form of these filters in two dimensions is given by

where, D(u, v) is the distance from the origin of the Fourier transform.

Figure 2.11.6.1: (a) Perspective plot of a GLPF transfer function, (b) Filter displayed as an image,

(c) Filter radial cross sections for various values of Do.

86

σ is a measure of the spread of the Gaussian curve. By letting σ = Du, we can express the filter in a

more familiar form in terms of the notation:

where Do is the cutoff frequency. When D (u, v) = Do, the filter is down to 0.607 of its maximum

value.

 Gaussian Highpass Filters:

The transfer function of the Gaussian highpass filter (GHPF) with cutoff frequency locus at a distance

Do from the origin is given by

The figure 6.2 shows a perspective plot, image, and cross section of the GHPF function.

 Figure 2.11. 6.2: Perspective plot, image representation, and cross section of a

typical Gaussian high pass filter

Even the filtering of the smaller objects and thin bars is cleaner with the Gaussian filler.

Laplacian is implemented in frequency domain.

 The Laplacian in the Frequency Domain:
It can be shown that

From this simple expression, it follows that

The expression inside the brackets on the left side of the above Eq. is recognized as the Laplacian of

f(x, y). Thus, we have the important result

87

which simply says that the Laplacian can be implemented in the frequency domain by using the filter

As in all filtering operations, the assumption is that the origin of F (u, v) has been centered by

performing the operation f(x, y) (-1)
x+y

 prior to taking the transform of the image. If f (and F) are of

size M X N, this operation shifts the center transform so that (u, v) = (0, 0) is at point (M/2, N/2) in

the frequency rectangle. As before, the center of the filter function also needs to be shifted:

The Laplacian-filtered image in the spatial domain is obtained by computing the inverse Fourier

transform of H (u, v) F (u, v):

Conversely, computing the Laplacian in the spatial domain and computing the Fourier transform of the

result is equivalent to multiplying F(u, v) by H(u, v). We express this dual relationship in the familiar

Fourier-transform-pair notation

The spatial domain Laplacian filter function obtained by taking the inverse Fourier transform of Eq.

has some interesting properties, as Fig.7 shows. Figure 7(a) is a 3-D perspective plot. The function is

centered at (M/2, N/2), and its value at the top of the dome is zero. All other values are negative.

Figure 7(b) shows H (u, v) as an image, also centered. Figure 7(c) is the Laplacian in the spatial

domain, obtained by multiplying by H (u, v) by (-1)
u+v

 , taking the inverse Fourier transform, and

multiplying the real part of the result by (-l)
x+y

 . Figure 7(d) is a zoomed section at about the origin of

Fig.7(c).' Figure 7(e) is a horizontal gray-level profile passing through the center of the zoomed

section. Finally, Fig.7 (f) shows the mask to implement the definition of the discrete Laplacian in the

spatial domain.

88

Figure 2.11.7: (a) 3-D plot of Laplacian in the frequency domain, (b) Image representation of (a), (c)

Laplacian in the spatial domain obtained from the inverse DFT of (b) (d) Zoomed section of the

origin of (c). (e) Gray-level profile through the center of (d). (f) Laplacian mask

A horizontal profile through the center of this mask has the same basic shape as the profile in Fig.

7(e) (that is, a negative value between two smaller positive values). We form an enhanced image g(x,

y) by subtracting the Laplacian from the original image:

High boost and high frequency filtering.

 High-Boost Filtering and High-Frequency Emphasis Filtering:

All the filtered images have one thing in common: Their average background intensity has been

reduced to near black. This is due to the fact that the highpass filters we applied to those images

eliminate the zero-frequency component of their Fourier transforms. In fact, enhancement using the

Laplacian does precisely this, by adding back the entire image to the filtered result. Sometimes it is

advantageous to increase the contribution made by the original image to the overall filtered result. This

approach, called high-boost filtering, is a generalization of unsharp masking. Unsharp masking

consists simply of generating a sharp image by subtracting from an image a blurred version of itself.

Using frequency domain terminology, this means obtaining a highpass-filtered image by subtracting

from the image a lowpass-filtered version of itself. That is

High-boost filtering generalizes this by multiplying f (x, y) by a constant A > 1:

Thus, high-boost filtering gives us the flexibility to increase the contribution made by the image to the

89

overall enhanced result. This equation may be written as

Then, using above Eq. we obtain

This result is based on a highpass rather than a lowpass image. When A = 1, high-boost filtering

reduces to regular highpass filtering. As A increases past 1, the contribution made by the image itself

becomes more dominant.

We have Fhp (u,v) = F (u,v) – Flp (u,v). But Flp (u,v) = Hlp (u,v)F(u,v), where Hlp is the transfer function

of a lowpass filter. Therefore, unsharp masking can be implemented directly in the frequency domain

by using the composite filter

Similarly, high-boost filtering can be implemented with the composite filter

with A > 1. The process consists of multiplying this filter by the (centered) transform of the input image and

then taking the inverse transform of the product. Multiplication of the real part of this result by (-l)
x+y

 gives us

the high-boost filtered image fhb (x, y) in the spatial domain.

Homomorphic filtering.

The illumination-reflectance model can be used to develop a frequency domain procedure for

improving the appearance of an image by simultaneous gray-level range compression and contrast

enhancement. An image f(x, y) can be expressed as the product of illumination and reflectance

components:

Equation above cannot be used directly to operate separately on the frequency components of

illumination and reflectance because the Fourier transform of the product of two functions is not

separable; in other words,

90

where Fi (u, v) and Fr (u, v) are the Fourier transforms of ln i(x, y) and ln r(x, y), respectively. If we

process Z (u, v) by means of a filter function H (u, v) then, from

where S (u, v) is the Fourier transform of the result. In the spatial domain,

Now we have

Finally, as z (x, y) was formed by taking the logarithm of the original image f (x, y), the inverse (exponential)

operation yields the desired enhanced image, denoted by g(x, y); that is,

91

Figure 2.11.9.1: Homomorphism filtering approach for image enhancement

And

are the illumination and reflectance components of the output image. The enhancement approach using

the foregoing concepts is summarized in Fig. 9.1. This method is based on a special case of a class of

systems known as homomorphic systems. In this particular application, the key to the approach is the

separation of the illumination and reflectance components achieved. The homomorphic filter function

H (u, v) can then operate on these components separately. The illumination component of an image

generally is characterized by slow spatial variations, while the reflectance component tends to vary

abruptly, particularly at the junctions of dissimilar objects. These characteristics lead to associating the

low frequencies of the Fourier transform of the logarithm of an image with illumination and the high

frequencies with reflectance. Although these associations are rough approximations, they can be used

to advantage in image enhancement. A good deal of control can be gained over the illumination and

reflectance components with a homomorphic filter. This control requires specification of a filter

function H (u, v) that affects the low- and high-frequency components of the Fourier transform in

different ways. Figure 9.2 shows a cross section of such a filter. If the parameters γL and γH are chosen

so that γL < 1 and γH > 1, the filter function shown in Fig. 9.2 tends to decrease the contribution made

by the low frequencies (illumination) and amplify the contribution made by high frequencies

(reflectance). The net result is simultaneous dynamic range compression and contrast enhancement.

 Figure 2.11.9.2: Cross section of a circularly symmetric filter function D (u. v) is the

distance from the origin of the centered transform.

92

UNIT-III

IMAGE RESTORATION

93

Gray level interpolation.

The distortion correction equations yield non integer values for x' and y'. Because the distorted

image g is digital, its pixel values are defined only at integer coordinates. Thus using non integer

values for x' and y' causes a mapping into locations of g for which no gray levels are defined. Inferring

what the gray-level values at those locations should be, based only on the pixel values at integer

coordinate locations, and then becomes necessary. The technique used to accomplish this is called

gray-level interpolation. The simplest scheme for gray-level interpolation is based on a nearest

neighbor approach.This method, also called zero-order interpolation, is illustrated in Fig. 3.1: This

figure shows The mapping of integer (x, y) coordinates into fractional coordinates (x', y') by means of

following equations

and
x' = c1x + c2y + c3xy + c4

y' = c5x + c6y + c7xy + c8

(A) The selection of the closest integer coordinate neighbor to (x', y');

and

(B) The assignment of the gray level of this nearest neighbor to the pixel located at (x, y).

Figure 3.1: Gray-level interpolation based on the nearest neighbor concept.

Although nearest neighbor interpolation is simple to implement, this method often has the drawback of

producing undesirable artifacts, such as distortion of straight edges in images of high resolution.

Smoother results can be obtained by using more sophisticated techniques, such as cubic convolution

interpolation, which fits a surface of the sin(z)/z type through a much larger number of neighbors

(say, 16) in order to obtain a smooth estimate of the gray level at any

94

Desired point. Typical areas in which smoother approximations generally are required include 3-D

graphics and medical imaging. The price paid for smoother approximations is additional computational

burden. For general-purpose image processing a bilinear interpolation approach that uses the gray

levels of the four nearest neighbors usually is adequate. This approach is straightforward. Because the

gray level of each of the four integral nearest neighbors of a non integral pair of coordinates (x', y') is

known, the gray-level value at these coordinates, denoted v(x', y'), can be interpolated from the values

of its neighbors by using the relationship

v (x', y') = ax' + by' + c x' y' + d

where the four coefficients are easily determined from the four equations in four unknowns that can be

written using the four known neighbors of (x', y'). When these coefficients have been determined, v(x',

y') is computed and this value is assigned to the location in f{x, y) that yielded the spatial mapping into

location (x', y'). It is easy to visualize this procedure with the aid of Fig.3.1. The exception is that,

instead of using the gray-level value of the nearest neighbor to (x', y'), we actually interpolate a value

at location (x', y') and use this value for the gray-level assignment at (x, y).

Wiener filter used for image restoration.

The inverse filtering approach makes no explicit provision for handling noise. This approach incorporates

both the degradation function and statistical characteristics of noise into the restoration process. The

method is founded on considering images and noise as random processes and the objective is to find an

estimate f of the uncorrupted image f such that the mean square error between them is minimized. This

error measure is given by

e
2
 = E {(f- f)

2
}

where E {•} is the expected value of the argument. It is assumed that the noise and the image are

uncorrelated; that one or the other has zero mean; and that the gray levels in the estimate are a linear

function of the levels in the degraded image. Based on these conditions, the minimum of the error

function is given in the frequency domain by the expression

where we used the fact that the product of a complex quantity with its conjugate is equal to the

magnitude of the complex quantity squared. This result is known as the Wiener filter, after N. Wiener

95

[1942], who first proposed the concept in the year shown. The filter, which consists of the terms

inside the brackets, also is commonly referred to as the minimum mean square error filter or the least

square error filter. The Wiener filter does not have the same problem as the inverse filter with zeros in

the degradation function, unless both H(u, v) and Sη(u, v) are zero for the same value(s) of u and v. The

terms in above equation are as follows: H (u, v) = degradation function H*(u, v) = complex conjugate

of H (u, v)

│H (u, v│
2
 = H*(u, v)* H (u, v)

Sη (u, v) = │N (u, v)
2
 = power spectrum of the noise

Sf (u, v) = │F (u, v)
2
 = power spectrum of the un-degraded image.

As before, H (u, v) is the transform of the degradation function and G (u, v) is the transform of the

degraded image. The restored image in the spatial domain is given by the inverse Fourier transform

of the frequency-domain estimate F (u, v). Note that if the noise is zero, then the noise power

spectrum vanishes and the Wiener filter reduces to the inverse filter. When we are dealing with

spectrally white noise, the spectrum │N (u, v│
2
 is a constant, which simplifies things considerably.

However, the power spectrum of the undegraded image seldom is known. An approach used frequently

when these quantities are not known or cannot be estimated is to approximate the equation as

where K is a specified constant.

Model of the Image Degradation/Restoration Process.

The Fig. 3.1shows, the degradation process is modeled as a degradation function that, together with an

additive noise term, operates on an input image f(x, y) to produce a degraded image g(x, y). Given g(x,

y), some knowledge about the degradation function H, and some knowledge about the additive noise

term η(x, y), the objective of restoration is to obtain an estimate f(x, y) of the original image. the

estimate should be as close as possible to the original input image and, in general, the more we know

about H and η, the closer f(x, y) will be to f(x, y). The degraded image is given in the spatial domain by

g (x, y) = h (x, y) * f (x, y) + η (x, y)

where h (x, y) is the spatial representation of the degradation function and, the symbol *

indicates convolution. Convolution in the spatial domain is equal to multiplication in the

frequency domain, hence

G (u, v) = H (u, v) F (u, v) + N (u, v)

where the terms in capital letters are the Fourier transforms of the corresponding terms in above

equation.

96

Figure 3.2: model of the image degradation/restoration

process.

The restoration filters used when the image degradation is due to noise only.

If the degradation present in an image is only due to noise, then,

g (x, y) = f (x, y) + η (x, y)

G (u, v) = F (u, v) + N (u, v)

The restoration filters used in this case are,

1. Mean filters

2. Order static filters and

3. Adaptive filters

Mean filters.

There are four types of mean filters. They are

(i) Arithmetic mean filter

This is the simplest of the mean filters. Let Sxy represent the set of coordinates in a

rectangular subimage window of size m X n, centered at point (x, y).The arithmetic mean filtering

process computes the average value of the corrupted image g(x, y) in the area defined by Sxy. The

value of the restored image f at any point (x, y) is simply the arithmetic mean computed using the

pixels in the region defined by Sxy. In other words

This operation can be implemented using a convolution mask in which all coefficients have

value 1/mn

97

(ii) Geometric mean filter

An image restored using a geometric mean filter is given by the expression

Here, each restored pixel is given by the product of the pixels in the subimage window, raised to the

power 1/mn. A geometric mean filter achieves smoothing comparable to the arithmetic mean filter,

but it tends to lose less image detail in the process.

(iii) Harmonic mean filter

The harmonic mean filtering operation is given by the expression

The harmonic mean filter works well for salt noise, but fails for pepper noise. It does well also with other

types of noise like Gaussian noise.

(iv) Contra harmonic mean filter

The contra harmonic mean filtering operation yields a restored image based on the expression

where Q is called the order of the filter. This filter is well suited for reducing or virtually eliminating the

effects of salt-and-pepper noise. For positive values of Q, the filter eliminates pepper noise. For negative

values of Q it eliminates salt noise. It cannot do both simultaneously. Note that the contra harmonic filter

reduces to the arithmetic mean filter if Q = 0, and to the harmonic mean filter if Q = -1.

The Order-Statistic Filters.

There are four types of Order-Statistic filters. They are

98

(i) Median filter

The best-known order-statistics filter is the median filter, which, as its name implies, replaces

the value of a pixel by the median of the gray levels in the neighborhood of that pixel:

The original value of the pixel is included in the computation of the median. Median filters are quite

popular because, for certain types of random noise, they provide excellent noise-reduction

capabilities, with considerably less blurring than linear smoothing filters of similar size. Median

filters are particularly effective in the presence of both bipolar and unipolar impulse noise.

(ii) Max and min filters

Although the median filter is by far the order-statistics filler most used in image processing, it

is by no means the only one. The median represents the 50th percentile of a ranked set of numbers,

but the reader will recall from basic statistics that ranking lends itself to many other possibilities. For

example, using the 100
th
 percentile results in the so-called max filter, given by

This filter is useful for finding the brightest points in an image. Also, because pepper noise has very low

values, it is reduced by this filter as a result of the max selection process in the subimage area Sxy. The 0
th

percentile filter is the min filter.

This filter is useful for finding the darkest points in an image. Also, it reduces salt noise as a result of

the min operation.

(iii) Midpoint filter

The midpoint filter simply computes the midpoint between the maximum and minimum values

in the area encompassed by the filter:

Note that this filter combines order statistics and averaging. This filter works best for randomly

distributed noise, like Gaussian or uniform noise.

99

(iv) Alpha - trimmed mean filter

It is a filter formed by deleting the d/2 lowest and the d/2 highest gray-level values of g(s,

t) in the neighborhood Sxy. Let gr (s, t) represent the remaining mn - d pixels. A filter formed by

averaging these remaining pixels is called an alpha-trimmed mean filter:

where the value of d can range from 0 to mn - 1. When d = 0, the alpha- trimmed filter reduces to the

arithmetic mean filter. If d = (mn - l)/2, the filter becomes a median filter. For other values of d, the

alpha-trimmed filter is useful in situations involving multiple types of noise, such as a combination of

salt-and-pepper and Gaussian noise.

 The Adaptive Filters.

Adaptive filters are filters whose behavior changes based on statistical characteristics of the

image inside the filter region defined by the m X n rectangular window Sxy.

Adaptive, local noise reduction filter:

The simplest statistical measures of a random variable are its mean and variance. These are

reasonable parameters on which to base an adaptive filler because they are quantities closely related

to the appearance of an image. The mean gives a measure of average gray level in the region over

which the mean is computed, and the variance gives a measure of average contrast in that region.

This filter is to operate on a local region, Sxy. The response of the filter at any point (x, y) on which

the region is centered is to be based on four quantities: (a) g(x, y), the value of the noisy image at (x,

y); (b) a2, the variance of the noise corrupting /(x, y) to form g(x, y); (c) ray, the local mean of the

pixels in Sxy; and (d) σ
2

L , the local variance of the pixels in Sxy.The behavior of the filter to be as

follows:

1. If σ2
η is zero, the filler should return simply the value of g (x, y). This is the trivial, zero-noise case

in which g (x, y) is equal to f (x, y).

2. If the local variance is high relative to σ
2

η the filter should return a value close to g (x, y). A high

local variance typically is associated with edges, and these should be preserved.

3. If the two variances are equal, we want the filter to return the arithmetic mean value of the

pixels in Sxy. This condition occurs when the local area has the same properties as the overall

image, and local noise is to be reduced simply by averaging.

Adaptive local noise filter is given by,

100

The only quantity that needs to be known or estimated is the variance of the overall noise, a2. The

other parameters are computed from the pixels in Sxy at each location (x, y) on which the filter window

is centered.

 Adaptive median filter:

The median filter performs well as long as the spatial density of the impulse noise is not large (as a

rule of thumb, Pa and Pb less than 0.2). The adaptive median filtering can handle impulse noise with

probabilities even larger than these. An additional benefit of the adaptive median filter is that it seeks

to preserve detail while smoothing nonimpulse noise, something that the "traditional" median filter

does not do. The adaptive median filter also works in a rectangular window area Sxy. Unlike those

filters, however, the adaptive median filter changes (increases) the size of Sxy during filter operation,

depending on certain conditions. The output of the filter is a single value used to replace the value of

the pixel at (x, y), the particular point on which the window Sxy is centered at a given time.

Consider the following notation:

zmin = minimum gray level value in Sxy zmax = maximum gray level value in Sxy zmcd

= median of gray levels in Sxy

zxy = gray level at coordinates (x, y) Smax = maximum allowed size of Sxy.

The adaptive median filtering algorithm works in two levels, denoted level A and level B, as follows:

Level A: A1 = zmed - zmin

A2 = zmed -

zmax If A1 > 0 AND A2 < 0, Go to level

B Else increase the window size

If window size ≤ Smax repeat level A Else

output zxy

Level B: B1 = zxy - zmin

B2 = zxy - zmax

101

If B1> 0 AND B2 < 0, output zxy Else

output zmed

Image Formation Model.

An image is represented by two-dimensional functions of the form f(x, y). The value or

amplitude of f at spatial coordinates (x, y) is a positive scalar quantity whose physical meaning is

determined by the source of the image. When an image is generated from a physical process, its values

are proportional to energy radiated by a physical source (e.g., electromagnetic waves). As a

consequence, f(x, y) must be nonzero and finite; that is,

0 < f (x, y) < ∞ …. (1)

The function f(x, y) may be characterized by two components:

A) The amount of source illumination incident on the scene being viewed.

B) The amount of illumination reflected by the objects in the scene.

Appropriately, these are called the illumination and reflectance components and are denoted by i

(x, y) and r (x, y), respectively. The two functions combine as a product to form f (x, y).

f (x, y) = i (x, y) r (x, y) …. (2)

where

and

0 < i (x, y) < ∞ …. (3)

0 < r (x, y) < 1 …. (4)

Equation (4) indicates that reflectance is bounded by 0 (total absorption) and 1 (total reflectance).The

nature of i (x, y) is determined by the illumination source, and r (x, y) is determined by the

characteristics of the imaged objects. It is noted that these expressions also are applicable to images

formed via transmission of the illumination through a medium, such as a chest X-ray.

Inverse filtering.

The simplest approach to restoration is direct inverse filtering, where F (u, v), the transform of

the original image is computed simply by dividing the transform of the degraded image, G (u, v), by

102

the degradation function

The divisions are between individual elements of the functions.

But G (u, v) is given by

103

It tells that even if the degradation function is known the undegraded image cannot be

recovered [the inverse Fourier transform of F(u, v)] exactly because N(u, v) is a random function

whose Fourier transform is not known.

If the degradation has zero or very small values, then the ratio N(u, v)/H(u, v) could easily

dominate the estimate F(u, v).

One approach to get around the zero or small-value problem is to limit the filter frequencies to

values near the origin. H (0, 0) is equal to the average value of h(x, y) and that this

is usually the highest value of H (u, v) in the frequency domain. Thus, by limiting the analysis to

frequencies near the origin, the probability of encountering zero values is reduced.

Noise Probability Density Functions.

The following are among the most common PDFs found in image processing applications.

Gaussian noise

Because of its mathematical tractability in both the spatial and frequency domains, Gaussian

(also called normal) noise models are used frequently in practice. In fact, this tractability is so

convenient that it often results in Gaussian models being used in situations in which they are

marginally applicable at best.

The PDF of a Gaussian random variable, z, is given by

 … (1)

where z represents gray level, µ is the mean of average value of z, and a σ is its standard deviation.

The standard deviation squared, σ
2
, is called the variance of z. A plot of this function is shown in Fig.

5.10. When z is described by Eq. (1), approximately 70% of its values will be in the range [(µ - σ), (µ

+σ)], and about 95% will be in the range [(µ - 2σ), (µ + 2σ)].

 Rayleigh noise

The PDF of Rayleigh noise is given by

104

The mean and variance of this density are given by

µ = a + ƒ Mb/4

σ2 = b(4 – Π)/4

Figure 5.10 shows a plot of the Rayleigh density. Note the displacement from the origin and the fact

that the basic shape of this density is skewed to the right. The Rayleigh density can be quite useful for

approximating skewed histograms.

Erlang (Gamma) noise

The PDF of Erlang noise is given by

where the parameters are such that a > 0, b is a positive integer, and "!" indicates factorial. The mean

and variance of this density are given by

µ = b / a

σ2 = b / a2

 Exponential noise

The PDF of exponential noise is given by

The mean of this density function is given by

105

µ = 1 / a

σ
2
 = 1 / a

2
 This

PDF is a special case of the Erlang PDF, with b = 1. Uniform

noise

The PDF of uniform noise is given by

The mean of this density function is given by

µ = a + b /2

σ2 = (b – a) 2 / 12

Impulse (salt-and-pepper) noise

The PDF of (bipolar) impulse noise is given by

If b > a, gray-level b will appear as a light dot in the image. Conversely, level a will appear

like a dark dot. If either Pa or Pb is zero, the impulse noise is called unipolar. If neither probability is

zero, and especially if they are approximately equal, impulse noise values will resemble salt-and-

pepper granules randomly distributed over the image. For this reason, bipolar impulse noise also is

called salt-and-pepper noise. Shot and spike noise also are terms used to refer to this type of noise.

106

Figure 3.4: Some important probability density functions

107

Enumerate the differences between the image enhancement and image restoration.

(i) Image enhancement techniques are heuristic procedures designed to manipulate an image in order to

take advantage of the psychophysical aspects of the human system. Whereas image restoration

techniques are basically reconstruction techniques by which a degraded image is reconstructed by

using some of the prior knowledge of the degradation phenomenon.

(ii) Image enhancement can be implemented by spatial and frequency domain technique, whereas

image restoration can be implement by frequency domain and algebraic techniques.

(iii) The computational complexity for image enhancement is relatively less when compared to the

computational complexity for irrrage restoration, since algebraic methods requires manipulation of

large number of simultaneous equation. But, under some condition computational complexity can be

reduced to the same level as that required by traditional frequency domain technique.

(iv) Image enhancement techniques are problem oriented, whereas image restoration techniques are

general and are oriented towards modeling the degradation and applying the reverse process in order

to reconstruct the original image.

(v) Masks are used in spatial domain methods for image enhancement, whereas masks are not used

for image restoration techniques.

(vi) Contrast stretching is considered as image enhancement technique because it is based on the

pleasing aspects of the review, whereas removal of’ image blur by applying a deblurring function is

considered as a image restoration technique.

Iterative nonlinear restoration using the Lucy–Richardson algorithm.

Lucy-Richardson algorithm is a nonlinear restoration method used to recover a latent image

which is blurred by a Point Spread Function (psf). It is also known as Richardson-Lucy de-

convolution. With as the point spread function, the pixels in observed image are expressed as,

Here,

uj = Pixel value at location j in the image

ci = Observed value at i
th
 pixel locacation

108

The L-R algorithm cannot be used in application in which the psf (Pij) is dependent on one or more

unknown variables.

The L-R algorithm is based on maximum-likelihood formulation, in this formulation Poisson

statistics are used to model the image. If the likelihood of model is increased, then the result is an

equation which satisfies when the following iteration converges.

Here,

f = Estimation of undegraded image.

The factor f which is present in the right side denominator leads to non-linearity. Since, the algorithm

is a type of nonlinear restorations; hence it is stopped when satisfactory result is obtained. The basic

syntax of function deconvlucy with the L-R algorithm is implemented is given below.

fr = Deconvlucy (g, psf, NUMIT, DAMPAR, WEIGHT). Here the parameters are,

g = Degraded image, fr = Restored image, psf = Point spread function

NUMIT = Total number of iterations. The remaining two parameters are,

DAMPAR

The DAMPAR parameter is a scalar parameter which is used to determine the deviation of

resultant image with the degraded image (g). The pixels which gel deviated from their original value

within the DAMPAR, for these pixels iterations are cancelled so as to reduce noise generation and

present essential image information.

109

WEIGHT

WEIGHT parameter gives a weight to each and every pixel. It is array of size similar to that of

degraded image (g). In applications where a pixel leads to improper image is removed by assigning it

to a weight as 0’. The pixels may also be given weights depending upon the flat-field correction, which

is essential according to image array. Weights are used in applications such as blurring with specified

psf. They are used to remove the pixels which are pre9ent at the boundary of the image and are blurred

separately by psf. If the array size of psf is n x n then the width of weight of border of zeroes being

used is ceil (n / 2).

110

UNIT-IV

IMAGE SEGMENTATION

111

The derivative operators useful in image segmentation and their role in segmentation.

 Gradient operators:

First-order derivatives of a digital image are based on various approximations of the 2-D gradient.

The gradient of an image f (x, y) at location (x, y) is defined as the vector

It is well known from vector analysis that the gradient vector points in the direction of maximum rate of

change of f at coordinates (x, y). An important quantity in edge detection is the magnitude

of this vector, denoted by Af, where

This quantity gives the maximum rate of increase of f (x, y) per unit distance in the direction of Af. It
is a common (although not strictly correct) practice to refer to Af also as the gradient. The direction
of the gradient vector also is an important quantity. Let α (x, y) represent the direction angle of the
vector Af at (x, y). Then, from vector analysis,

where the angle is measured with respect to the x-axis. The direction of an edge at (x, y) is perpendicular

to the direction of the gradient vector at that point. Computation of the gradient of an image is based

on obtaining the partial derivatives &f/&x and &f/&y at every pixel location. Let the 3x3 area

shown in Fig.4.1 (a) represent the gray levels in a neighborhood of an image. One of the simplest

ways to implement a first-order partial derivative at point z5 is to use the following Roberts cross-

gradient operators:

112

These derivatives can be implemented for an entire image by using the masks shown in Fig. 1.1(b).

Masks of size 2 X 2 are awkward to implement because they do not have a clear center. An approach

using masks of size 3 X 3 is given by

 Figure 4.1: A 3 X 3 region of an image (the z’s are gray-level values) and various masks used to

compute the gradient at point labeled z5.

A weight value of 2 is used to achieve some smoothing by giving more importance to the center point.

Figures 1.1(f) and (g), called the Sobel operators, and are used to implement these two equations. The

Prewitt and Sobel operators are among the most used in practice for computing digital gradients. The

113

Prewitt masks are simpler to implement than the Sobel masks, but the latter have slightly superior

noise-suppression characteristics, an important issue when dealing with derivatives. Note that the

coefficients in all the masks shown in Fig. 1.1 sum to 0, indicating that they give a response of 0 in

areas of constant gray level, as expected of a derivative operator. The masks just discussed are used to

obtain the gradient components Gx and Gy. Computation of the gradient requires that these two

components be combined. However, this implementation is not always desirable because of the

computational burden required by squares and square roots. An approach used frequently is to

approximate the gradient by absolute values:

This equation is much more attractive computationally, and it still preserves relative changes in gray

levels. However, this is not an issue when masks such as the Prewitt and Sobel masks are used to

compute Gx and Gy.

It is possible to modify the 3 X 3 masks in Fig. 4.1 so that they have their strongest responses along the

diagonal directions. The two additional Prewitt and Sobel masks for detecting discontinuities in the

diagonal directions are shown in Fig. 4.2.

Figure 4.2: Prewitt and Sobel masks for detecting diagonal edges

The Laplacian:

The Laplacian of a 2-D function f(x, y) is a second-order derivative defined as

114

For a 3 X 3 region, one of the two forms encountered most frequently in practice is

Figure 4.3 : Laplacian masks used to implement Eqns. above.

where the z's are defined in Fig. 1.1(a). A digital approximation including the diagonal neighbors is

given by

Masks for implementing these two equations are shown in Fig. 1.3. We note from these masks that the

implementations of Eqns. are isotropic for rotation increments of 90° and 45°, respectively.
Edge detection.

Intuitively, an edge is a set of connected pixels that lie on the boundary between two regions.

Fundamentally, an edge is a "local" concept whereas a region boundary, owing to the way it is defined,

is a more global idea. A reasonable definition of "edge" requires the ability to measure gray-level

transitions in a meaningful way. We start by modeling an edge intuitively. This will lead us to

formalism in which "meaningful" transitions in gray levels can be measured. Intuitively, an ideal edge

has the properties of the model shown in Fig. 4.2(a). An ideal edge according to this model is a set of

connected pixels (in the vertical direction here), each of which is located at an orthogonal step

transition in gray level (as shown by the horizontal profile in the figure).In practice, optics, sampling,

and other image acquisition imperfections yield edges that are blurred, with the degree of blurring

being determined by factors such as the quality of the image acquisition system, the sampling rate, and

illumination conditions under which the image is acquired. As a result, edges are more closely

modeled as having a "ramp like" profile, such as the one shown in Fig.4.2(b).

115

 Figure 4.2.1 (a) Model of an ideal digital edge (b) Model of a ramp edge. The slope of the ramp is

proportional to the degree of blurring in the edge.

The slope of the ramp is inversely proportional to the degree of blurring in the edge. In this model, we

no longer have a thin (one pixel thick) path. Instead, an edge point now is any point contained in the

ramp, and an edge would then be a set of such points that are connected. The "thickness" of the edge is

determined by the length of the ramp, as it transitions from an initial to a final gray level. This length is

determined by the slope, which, in turn, is determined by the degree of blurring. This makes sense:

Blurred edges lend to be thick and sharp edges tend to be thin. Figure 4. 2.2(a) shows the image from

which the close-up in Fig. 4. 2.1(b) was extracted. Figure 4. 2.2(b) shows a horizontal gray-level

profile of the edge between the two regions. This figure also shows the first and second derivatives of

the gray-level profile. The first derivative is positive at the points of transition into and out of the ramp

as we move from left to right along the profile; it is constant for points in the ramp; and is zero in areas

of constant gray level. The second derivative is positive at the transition associated with the dark side

of the edge, negative at the transition associated with the light side of the edge, and zero along the

ramp and in areas of constant gray level. The signs of the derivatives in Fig. 4. 2.2(b) would be

reversed for an edge that transitions from light to dark.

We conclude from these observations that the magnitude of the first derivative can be used to detect

the presence of an edge at a point in an image (i.e. to determine if a point is on a ramp). Similarly, the

sign of the second derivative can be used to determine whether an edge pixel lies on the dark or light

side of an edge. We note two additional properties of the second derivative around an edge: A) It

produces two values for every edge in an image (an undesirable feature); and B) an imaginary straight

line joining the extreme positive and negative values of the second derivative would cross zero near the

midpoint of the edge. This zero-crossing property of the second derivative is quite useful for locating

the centers of thick edges.

116

Figure 4..2.2 (a) Two regions separated by a vertical edge (b) Detail near the edge, showing a gray-level

profile, and the first and second derivatives of the profile.

The edge linking procedures.

The different methods for edge linking are as follows

(i) Local processing

(ii) Global processing via the Hough Transform

(iii) Global processing via graph-theoretic techniques.

(i) Local Processing:

One of the simplest approaches for linking edge points is to analyze the characteristics of pixels in a

small neighborhood (say, 3 X 3 or 5 X 5) about every point (x, y) in an image that has been labeled an

edge point. All points that are similar according to a set of predefined criteria are linked, forming an

edge of pixels that share those criteria. The two principal properties used for establishing similarity of

edge pixels in this kind of analysis are (1) the strength of the response of the gradient operator

used to produce the edge pixel; and (2) the direction of the gradient vector. The first property is given

by the value of Af.

Thus an edge pixel with coordinates (xo, yo) in a predefined neighborhood of (x, y), is similar in

magnitude to the pixel at (x, y) if

117

The direction (angle) of the gradient vector is given by Eq. An edge pixel at (xo, yo) in the predefined

neighborhood of (x, y) has an angle similar to the pixel at (x, y) if

where A is a nonnegative angle threshold. The direction of the edge at (x, y) is perpendicular to the

direction of the gradient vector at that point. A point in the predefined neighborhood of (x, y) is linked to

the pixel at (x, y) if both magnitude and direction criteria are satisfied. This process is repeated at every

location in the image. A record must be kept of linked points as the center of the neighborhood is moved

from pixel to pixel. A simple bookkeeping procedure is to assign a different gray level to each set of

linked edge pixels.

(ii) Global processing via the Hough Transform:

In this process, points are linked by determining first if they lie on a curve of specified shape. We now

consider global relationships between pixels. Given n points in an image, suppose that we want to find

subsets of these points that lie on straight lines. One possible solution is to first find all lines

determined by every pair of points and then find all subsets of points that are close to particular lines.

The problem with this procedure is that it involves finding n(n - 1)/2 ~ n
2
 lines and then performing

(n)(n(n - l))/2 ~ n
3
 comparisons of every point to all lines. This approach is computationally prohibitive

in all but the most trivial applications.

Hough [1962] proposed an alternative approach, commonly referred to as the Hough transform.

Consider a point (xi, yi) and the general equation of a straight line in slope-intercept form, yi =

a.xi + b. Infinitely many lines pass through (xi, yi) but they all satisfy the equation yi = a.xi +

b for varying values of a and b. However, writing this equation as b = -a.xi + yi, and considering the ab-

plane (also called parameter space) yields the equation of a single line for a fixed pair (xi, yi).

Furthermore, a second point (xj, yj) also has a line in parameter space associated with it, and this line

intersects the line associated with (xi, yi) at (a', b'), where a' is the slope and b' the intercept of the line

containing both (xi, yi) and (xj, yj) in the xy-plane. In fact, all points contained on this line have lines in

parameter space that intersect at (a', b'). Figure 4.3.1 illustrates these concepts.

118

Figure 4..3.1 :(a) xy-plane (b) Parameter space

Figure 4.3.2: Subdivision of the parameter plane for use in the Hough transform

The computational attractiveness of the Hough transform arises from subdividing the parameter space

into so-called accumulator cells, as illustrated in Fig. 3.2, where (amax , amin) and (bmax , bmin), are

the expected ranges of slope and intercept values. The cell at coordinates (i, j), with accumulator value

A(i, j), corresponds to the square associated with parameter space coordinates (ai , bi). Initially, these

cells are set to zero. Then, for every point (xk, yk) in the image plane, we let the parameter a equal each

of the allowed subdivision values on the fl-axis and solve for the corresponding b using the equation b

= - xk a + yk .The resulting b’s are then rounded off to the nearest allowed value in the b-axis. If a

choice of ap results in solution bq, we let A (p, q) = A (p,q) + 1. At the end of this procedure, a value of

Q in A (i, j) corresponds to Q points in the xy- plane lying on the line y = ai x + bj.

The number of subdivisions in the ab-plane determines the accuracy of the co linearity of these points.

Note that subdividing the a axis into K increments gives, for every point (xk, yk), K values of b

corresponding to the K possible values of a. With n image points, this method involves nK

computations. Thus the procedure just discussed is linear in n, and the product nK does not approach

the number of computations discussed at the beginning unless K approaches or exceeds n. A problem

with using the equation y = ax + b to represent a line is that the slope approaches infinity as the line

119

approaches the vertical. One way around this difficulty is to use the normal representation of a line:

x cosθ + y sinθ = ρ

Figure 4.3.3(a) illustrates the geometrical interpretation of the parameters used. The use of this

representation in constructing a table of accumulators is identical to the method discussed for the

slope-intercept representation. Instead of straight lines, however, the loci are sinusoidal curves in the

ρθ -plane. As before, Q collinear points lying on a line x cosθj + y sinθj = ρ, yield Q sinusoidal curves

that intersect at (pi, θj) in the parameter space. Incrementing θ and solving for the corresponding p

gives Q entries in accumulator A (i, j) associated with the cell determined by (pi, θj). Figure 4.3.3 (b)

illustrates the subdivision of the parameter space.

Figure 4.3.3 (a) Normal representation of a line (b) Subdivision of the ρθ-plane into cells

The range of angle θ is ±90°, measured with respect to the x-axis. Thus with reference to Fig. 3.3 (a), a

horizontal line has θ = 0°, with ρ being equal to the positive x-intercept. Similarly, a vertical line has

θ = 90°, with p being equal to the positive y-intercept, or θ = - 90°, with ρ being equal to the negative

y-intercept.

(iii) Global processing via graph-theoretic techniques

In this process we have a global approach for edge detection and linking based on representing edge

segments in the form of a graph and searching the graph for low-cost paths that correspond to

significant edges. This representation provides a rugged approach that performs well in the presence of

noise.

120

 Figure 4.3.4: Edge clement between pixels p and q

We begin the development with some basic definitions. A graph G = (N,U) is a finite, nonempty set of

nodes N, together with a set U of unordered pairs of distinct elements of N. Each pair (ni, nj) of U is

called an arc. A graph in which the arcs are directed is called a directed graph. If an arc is directed

from node ni to node nj, then nj is said to be a successor of the parent node ni. The process of

identifying the successors of a node is called expansion of the node. In each graph we define levels,

such that level 0 consists of a single node, called the start or root node, and the nodes in the last level

are called goal nodes. A cost c (ni, nj) can be associated with every arc (ni, nj). A sequence of nodes n1,

n2... nk, with each node ni being a successor of node ni-1 is called a path from n1 to nk. The cost of the

entire path is

The following discussion is simplified if we define an edge element as the boundary between two

pixels p and q, such that p and q are 4-neighbors, as Fig.3.4 illustrates. Edge elements are identified by

the xy-coordinates of points p and q. In other words, the edge element in Fig. 3.4 is defined by the pairs

(xp, yp) (xq, yq). Consistent with the definition an edge is a sequence of connected edge elements. We

can illustrate how the concepts just discussed apply to edge detection using the 3 X 3 image shown in

Fig. 4.3.5 (a). The outer numbers are pixel

 Figure 4..3.5: (a) A 3 X 3 image region, (b) Edge segments and their costs, (c) Edge corresponding to

the lowest-cost path in the graph shown in Fig. 4.3.6

coordinates and the numbers in brackets represent gray-level values. Each edge element, defined by

pixels p and q, has an associated cost, defined as

where H is the highest gray-level value in the image (7 in this case), and f(p) and f(q) are the gray-level

values of p and q, respectively. By convention, the point p is on the right-hand side of the direction of

121

travel along edge elements. For example, the edge segment (1, 2) (2, 2) is between points (1, 2) and

(2, 2) in Fig. 4.3.5 (b). If the direction of travel is to the right, then p is the point with coordinates (2,

2) and q is point with coordinates (1, 2); therefore, c (p, q) = 7 - [7- 6] = 6. This cost is shown in the

box below the edge segment. If, on the other hand, we are traveling to the left between the same two

points, then p is point (1, 2) and q is (2, 2). In this case the cost is 8, as shown above the edge segment

in Fig. 4.3.5(b). To simplify the discussion, we assume that edges start in the top row and terminate in

the last row, so that the first element of an edge can be only between points (1, 1), (1, 2) or (1, 2), (1,

3). Similarly, the last edge element has to be between points (3, 1), (3, 2) or (3, 2), (3, 3). Keep in mind

that p and q are 4-neighbors, as noted earlier. Figure 3.6 shows the graph for this problem. Each node

(rectangle) in the graph corresponds to an edge element from Fig. 3.5. An arc exists between two nodes

if the two corresponding edge elements taken in succession can be part of an edge.

Figure 4.3.6: Graph for the image in Fig.4.3.5 (a). The lowest-cost path is shown dashed.

As in Fig. 4.3.5 (b), the cost of each edge segment, is shown in a box on the side of the arc leading into

the corresponding node. Goal nodes are shown shaded. The minimum cost path is shown dashed, and

the edge corresponding to this path is shown in Fig.4. 3.5 (c).

122

Thresholding and global thresholding.

 Thresholding:

Because of its intuitive properties and simplicity of implementation, image thresholding enjoys a central

position in applications of image segmentation.

 Global Thresholding:
The simplest of all thresholding techniques is to partition the image histogram by using a single global

threshold, T. Segmentation is then accomplished by scanning the image pixel by pixel and labeling

each pixel as object or back-ground, depending on whether the gray level of that pixel is greater or less

than the value of T. As indicated earlier, the success of this method depends entirely on how well the

histogram can be partitioned.

Figure 4.4.1: FIGURE 10.28 (a) Original image, (b) Image histogram, (c) Result of global thresholding

with T midway between the maximum and minimum gray levels.

Figure 4.4.1(a) shows a simple image, and Fig. 4.4.1(b) shows its histogram. Figure 4.4.1(c) shows the

result of segmenting Fig. 4.4.1(a) by using a threshold T midway between the maximum and minimum

gray levels. This threshold achieved a "clean" segmentation by eliminating the shadows and leaving

only the objects themselves. The objects of interest in this case are darker than the background, so any

pixel with a gray level ≤ T was labeled black (0), and any pixel with a gray level ≥ T was labeled

white (255).The key objective is merely to generate a binary image, so the black-white relationship

could be reversed. The type of global thresholding just described can be expected to be successful in

123

highly controlled environments. One of the areas in which this often is possible is in industrial

inspection applications, where control of the illumination usually is feasible. The threshold in the

preceding example was specified by using a heuristic approach, based on visual inspection of the

histogram. The following algorithm can be used to obtain T automatically:

1. Select an initial estimate for T.

2. Segment the image using T. This will produce two groups of pixels: G1 consisting of all pixels with

gray level values >T and G2 consisting of pixels with values < T.

3. Compute the average gray level values µ1 and µ2 for the pixels in regions G1 and G2.

4. Compute a new threshold value:

5. Repeat steps 2 through 4 until the difference in T in successive iterations is smaller than a

predefined parameter To.

When there is reason to believe that the background and object occupy comparable areas in the image,

a good initial value for T is the average gray level of the image. When objects are small compared to

the area occupied by the background (or vice versa), then one group of pixels will dominate the

histogram and the average gray level is not as good an initial choice. A more appropriate initial value

for T in cases such as this is a value midway between the maximum and minimum gray levels. The

parameter To is used to stop the algorithm after changes become small in terms of this parameter. This

is used when speed of iteration is an important issue.

Adaptive thresholding process used in image segmentation.

 Basic Adaptive Thresholding:

Imaging factors such as uneven illumination can transform a perfectly segmentable histogram into a

histogram that cannot be partitioned effectively by a single global threshold. An approach for handling

such a situation is to divide the original image into subimages and then utilize a

different threshold to segment each subimage. The key issues in this approach are how to subdivide the

image and how to estimate the threshold for each resulting subimage. Since the threshold used for each

pixel depends on the location of the pixel in terms of the subimages, this type of thresholding is

adaptive.

124

 Figure 4.5 : (a) Original image, (b) Result of global thresholding. (c) Image subdivided into individual

subimages (d) Result of adaptive thresholding.

We illustrate adaptive thresholding with a example. Figure 4.5(a) shows the image, which we

concluded could not be thresholded effectively with a single global threshold. In fact, Fig.4. 5(b) shows

the result of thresholding the image with a global threshold manually placed in the valley of its

histogram. One approach to reduce the effect of non-uniform illumination is to subdivide the image

into smaller sub-images, such that the illumination of each sub image is approximately uniform. Figure

5(c) shows such a partition, obtained by subdividing the image into four equal parts, and then

subdividing each part by four again. All the sub-images that did not contain a boundary between object

and back-ground had variances of less than 75. All sub-images containing boundaries had variances in

excess of 100. Each sub-image with variance greater than 100 was segmented with a threshold

computed for that sub-image using the algorithm. The initial value for T in each case was selected as

the point midway between the minimum and maximum gray levels in the sub-image. All sub-images

with variance less than 100 were treated as one composite image, which was segmented using a single

threshold estimated using the same algorithm. The result of segmentation using this procedure is

shown in Fig.4. 5(d). With the exception of two sub-images, the improvement over Fig. 5(b) is evident.

The boundary between object and background in each of the improperly segmented sub-images was

small and dark, and the resulting histogram was almost unimodal.

 The threshold selection based on boundary characteristics.

 Boundary Characteristics for Histogram Improvement and Local Thresholding:

It is intuitively evident that the chances of selecting a "good" threshold are enhanced considerably if

the histogram peaks are tall, narrow, symmetric, and separated by deep valleys. One approach for

improving the shape of histograms is to consider only those pixels that lie on or near the edges

between objects and the background. An immediate and obvious improvement is that histograms

would be less dependent on the relative sizes of objects and the background. For instance, the

histogram of an image composed of a small object on a large background area (or vice versa) would

125

be dominated by a large peak because of the high concentration of one type of pixels.

If only the pixels on or near the edge between object and the background were used, the

resulting histogram would have peaks of approximately the same height. In addition, the probability

that any of those given pixels lies on an object would be approximately equal to the probability that it

lies on the back-ground, thus improving the symmetry of the histogram peaks. Finally, as indicated in

the following paragraph, using pixels that satisfy some simple measures based on gradient and

Laplacian operators has a tendency to deepen the valley between histogram peaks. The principal

problem with the approach just discussed is the implicit assumption that the edges between objects and

background arc known. This information clearly is not available during segmentation, as finding a

division between objects and background is precisely what segmentation is all about. However, an

indication of whether a pixel is on an edge may be obtained by computing its gradient. In addition, use

of the Laplacian can yield information regarding whether a given pixel lies on the dark or light side of

an edge. The average value of the Laplacian is 0 at the transition of an edge, so in practice the

valleys of histograms formed from the pixels selected by a gradient/Laplacian criterion can be

expected to be sparsely populated. This property produces the highly desirable deep valleys. The

gradient Aƒ at any point (x, y) in an image can be found. Similarly, the Laplacian A
2
f can also be

found. These two quantities may be used to form a three-level image, as follows:

where the symbols 0, +, and - represent any three distinct gray levels, T is a threshold, and the gradient

and Laplacian are computed at every point (x, y). For a dark object on a light background, the use of the

Eqn. produces an image s(x, y) in which (1) all pixels that are not on an edge (as determined by Aƒ

being less than T) are labeled 0; (2) all pixels on the dark side of an edge are labeled +; and (3) all

pixels on the light side of an edge are labeled -. The symbols + and - in Eq. above are reversed for a

light object on a dark background. Figure 6.1 shows the labeling produced by Eq. for an image of a dark,

underlined stroke written on a light background.
The information obtained with this procedure can be used to generate a segmented,

binary image in which l's correspond to objects of interest and 0's correspond to the background. The

transition (along a horizontal or vertical scan line) from a light background to a dark object must be

characterized by the occurrence of a - followed by a + in s (x, y). The interior of the object is

composed of pixels that are labeled either 0 or +. Finally, the transition from the object back to the

background is characterized by the occurrence of a + followed by a -. Thus a horizontal or vertical

scan line containing a section of an object has the following structure:

126

Figure 4.6.1 : Image of a handwritten stroke coded by using Eq. discussed above

where (…) represents any combination of +, -, and 0. The innermost parentheses contain object points

and are labeled 1. All other pixels along the same scan line are labeled 0, with the exception of any

other sequence of (- or +) bounded by (-, +) and (+, -).

Figure 4.6.2: (a) Original image, (b) Image segmented by local thresholding.

Figure 4. 6.2 (a) shows an image of an ordinary scenic bank check. Figure 4. 6.3 show the histogram as

a function of gradient values for pixels with gradients greater than 5. Note that this histogram has two

dominant modes that are symmetric, nearly of the same height, and arc separated by a distinct valley.

Finally, Fig.4. 6.2(b) shows the segmented image obtained by with T at or near the midpoint of the

valley. Note that this example is an illustration of local thresholding, because the value of T was

determined from a histogram of the gradient and Laplacian, which are local properties.

127

Figure 4.6.3: Histogram of pixels with gradients greater than 5

 Region based segmentation.

The objective of segmentation is to partition an image into regions. We approached this problem by

finding boundaries between regions based on discontinuities in gray levels, whereas segmentation was

accomplished via thresholds based on the distribution of pixel properties, such as gray-level values or

color.

 Basic Formulation:

Let R represent the entire image region. We may view segmentation as a process that partitions R

into n subregions, R1, R2..., Rn, such that

Here, P (Ri) is a logical predicate defined over the points in set Ri and Ǿ` is the null set. Condition (a)

indicates that the segmentation must be complete; that is, every pixel must be in a region. Condition (b)

requires that points in a region must be connected in some predefined sense. Condition (c) indicates

that the regions must be disjoint. Condition (d) deals with the properties that must be satisfied by the

pixels in a segmented region—for example P (Ri) = TRUE if all pixels in Ri, have the same gray

level. Finally, condition (c) indicates that regions Ri and Rj are different in the sense of predicate P.

 Region Growing:

As its name implies, region growing is a procedure that groups pixels or subregions into larger regions

based on predefined criteria. The basic approach is to start with a set of "seed" points and from these

grow regions by appending to each seed those neighboring pixels that have properties similar to the

128

seed (such as specific ranges of gray level or color). When a priori information is not available, the

procedure is to compute at every pixel the same set of properties that ultimately will be used to assign

pixels to regions during the growing process. If the result of these computations shows clusters of

values, the pixels whose properties place them near the centroid of these clusters can be used as seeds.

The selection of similarity criteria depends not only on the problem under consideration, but also on

the type of image data available. For example, the analysis of land-use satellite imagery depends

heavily on the use of color. This problem would be significantly more difficult, or even impossible, to

handle without the inherent information available in color images. When the images are monochrome,

region analysis must be carried out with a set of descriptors based on gray levels and spatial properties

(such as moments or texture). Basically, growing a region should stop when no more pixels satisfy the

criteria for inclusion in that region. Criteria such as gray level, texture, and color, are local in nature

and do not take into account the "history" of region growth. Additional criteria that increase the power

of a region- growing algorithm utilize the concept of size, likeness between a candidate pixel and the

pixels grown so far (such as a comparison of the gray level of a candidate and the average gray level of

the grown region), and the shape of the region being grown. The use of these types of descriptors is

based on the assumption that a model of expected results is at least partially available. Figure 4.7.1 (a)

shows an X-ray image of a weld (the horizontal dark region) containing several cracks and porosities

(the bright, white streaks running horizontally through the middle of the image). We wish to use region

growing to segment the regions of the weld failures. These segmented features could be used for

inspection, for inclusion in a database of historical studies, for controlling an automated welding

system, and for other numerous applications.

 Figure 4.7.1: (a) Image showing defective welds, (b) Seed points, (c) Result of region growing,

129

(d) Boundaries of segmented ; defective welds (in black).

130

The first order of business is to determine the initial seed points. In this application, it is known that

pixels of defective welds tend to have the maximum allowable digital value B55 in this case). Based

on this information, we selected as starting points all pixels having values of 255. The points thus

extracted from the original image are shown in Fig. Note that many of the points are clustered into

seed regions. The next step is to choose criteria for region growing. In this particular example we chose

two criteria for a pixel to be annexed to a region: (1) The absolute gray-level difference between any

pixel and the seed had to be less than 65. This number is based on the histogram shown in Fig. 4.7.2

and represents the difference between 255 and the location of the first major valley to the left, which is

representative of the highest gray level value in the dark weld region. (2) To be included in one of the

regions, the pixel had to be 8-connected to at least one pixel in that region. If a pixel was found to be

connected to more than one region, the regions were merged. Figure 4.7.1 (c) shows the regions that

resulted by starting with the seeds in Fig. 4.7.2 (b) and utilizing the criteria defined in the previous

paragraph. Superimposing the boundaries of these regions on the original image [Fig. 4.7.1(d)] reveals

that the region-growing procedure did indeed segment the defective welds with an acceptable degree of

accuracy. It is of interest to note that it was not necessary to specify any stopping rules in this case

because the criteria for region growing were sufficient to isolate the features of interest.

Figure 4.7.2: Histogram of Fig. 4.7.1 (a)

131

Region Splitting and Merging:

The procedure just discussed grows regions from a set of seed points. An alternative is to subdivide an

image initially into a set of arbitrary, disjointed regions and then merge and/or split the regions in an

attempt to satisfy the conditions. A split and merge algorithm that iteratively works toward satisfying

these constraints is developed.

Let R represent the entire image region and select a predicate P. One approach for segmenting R is to

subdivide it successively into smaller and smaller quadrant regions so that, for any region Ri, P(Ri) =

TRUE. We start with the entire region. If P(R) = FALSE, we divide the image into quadrants. If P is

FALSE for any quadrant, we subdivide that quadrant into subquadrants, and so on. This particular

splitting technique has a convenient representation in the form of a so-called quadtree (that is, a tree in

which nodes have exactly four descendants), as illustrated in Fig. 4.7.3. Note that the root of the tree

corresponds to the entire image and that each node corresponds to a subdivision. In this case, only R4

was subdivided further.

Figure 4..7.3: (a) Partitioned image (b) Corresponding quadtree.

If only splitting were used, the final partition likely would contain adjacent regions with identical

properties. This drawback may be remedied by allowing merging, as well as splitting. Satisfying the

constraints, requires merging only adjacent regions whose combined pixels satisfy the predicate P.

That is, two adjacent regions Rj and Rk are merged only if P (Rj U Rk) = TRUE.

The preceding discussion may be summarized by the following procedure, in which, at any step we

1. Split into four disjoint quadrants any region Ri, for which P (Ri) = FALSE.

2. Merge any adjacent regions Rj and Rk for which P (Rj U Rk) = TRUE.

132

3. Stop when no further merging or splitting is possible.

Several variations of the preceding basic theme are possible. For example, one possibility is to split the

image initially into a set of blocks. Further splitting is carried out as described previously, but

merging is initially limited to groups of four blocks that are descendants in the quadtree representation

and that satisfy the predicate P. When no further mergings of this type are possible, the procedure is

terminated by one final merging of regions satisfying step 2. At this point, the merged regions may be

of different sizes. The principal advantage of this approach is that it uses the same quadtree for splitting

and merging, until the final merging step.

133

UNIT-V

IMAGE COMPRESSION

134

Image compression and The redundancies in a digital image.

The term data compression refers to the process of reducing the amount of data required to represent a

given quantity of information. A clear distinction must be made between data and information. They

are not synonymous. In fact, data are the means by which information is conveyed. Various amounts of

data may be used to represent the same amount of information. Such might be the case, for example, if

a long-winded individual and someone who is short and to the point where to relate the same story.

Here, the information of interest is the story; words are the data used to relate the information. If the

two individuals use a different number of words to tell the same basic story, two different versions of

the story are created, and at least one includes nonessential data. That is, it contains data (or words)

that either provide no relevant information or simply restate that which is already known. It is thus said

to contain data redundancy.

Data redundancy is a central issue in digital image compression. It is not an abstract concept but a

mathematically quantifiable entity. If n1 and n2 denote the number of information-carrying units in two

data sets that represent the same information, the relative data redundancy RD of the first data set (the

one characterized by n1) can be defined as

where CR , commonly called the compression ratio, is

In digital image compression, three basic data redundancies can be identified and exploited:

coding redundancy, interpixel redundancy, and psychovisual redundancy. Data compression

is achieved when one or more of these redundancies are reduced or eliminated.

 Coding Redundancy:

In this, we utilize formulation to show how the gray-level histogram of an image also can provide a

great deal of insight into the construction of codes to reduce the amount of data used to represent it.

Let us assume, once again, that a discrete random variable rk in the interval [0, 1] represents the gray

levels of an image and that each rk occurs with probability pr (rk).

where L is the number of gray levels, nk is the number of times that the kth gray level appears in the

image, and n is the total number of pixels in the image. If the number of bits used to represent each

135

value of rk is l (rk), then the average number of bits required to represent each pixel is

That is, the average length of the code words assigned to the various gray-level values is found by

summing the product of the number of bits used to represent each gray level and the probability that the

gray level occurs. Thus the total number of bits required to code an M X N image is MNLavg.

 Interpixel Redundancy:

Consider the images shown in Figs. 1.1(a) and (b). As Figs. 1.1(c) and (d) show, these images have

virtually identical histograms. Note also that both histograms are trimodal, indicating the presence of

three dominant ranges of gray-level values. Because the gray levels in these images are not equally

probable, variable-length coding can be used to reduce the coding redundancy that would result from

a straight or natural binary encoding of their pixels. The coding process, however, would not alter the

level of correlation between the pixels within the images. In other words, the codes used to represent

the gray levels of each image have nothing to do with the correlation between pixels. These

correlations result from the structural or geometric relationships between the objects in the image.

 Figure 5.1: Two images and their gray-level histograms and normalized autocorrelation coefficients

along one line.

136

Figures 5.1(e) and (f) show the respective autocorrelation coefficients computed along one line of

each image.

where

The scaling factor in Eq. above accounts for the varying number of sum terms that arise for each

integer value of Δn. Of course, Δn must be strictly less than N, the number of pixels on a line. The

variable x is the coordinate of the line used in the computation. Note the dramatic difference between

the shape of the functions shown in Figs. 5.1(e) and (f). Their shapes can be qualitatively related to

the structure in the images in Figs. 5.1(a) and (b).This relationship is particularly noticeable in Fig. 5.1

(f), where the high correlation between pixels separated by 45 and 90 samples can be directly related to

the spacing between the vertically oriented matches of Fig. 5.1(b). In addition, the adjacent pixels of

both images are highly correlated. When Δn is 1, γ is 0.9922 and 0.9928 for the images of Figs. 5.1 (a)

and (b), respectively. These values are typical of most properly sampled television images. These

illustrations reflect another important form of data redundancy—one directly related to the interpixel

correlations within an image. Because the value of any given pixel can be reasonably predicted from

the value of its neighbors, the information carried by individual pixels is relatively small. Much of the

visual contribution of a single pixel to an image is redundant; it could have been guessed on the basis

of the values of its neighbors. A variety of names, including spatial redundancy, geometric

redundancy, and interframe redundancy, have been coined to refer to these interpixel dependencies.

We use the term interpixel redundancy to encompass them all.

In order to reduce the interpixel redundancies in an image, the 2-D pixel array normally used for

human viewing and interpretation must be transformed into a more efficient (but usually "nonvisual")

format. For example, the differences between adjacent pixels can be used to represent an image.

Transformations of this type (that is, those that remove interpixel redundancy) are referred to as

mappings. They are called reversible mappings if the original image elements can be reconstructed

from the transformed data set.

 Psychovisual Redundancy:

The brightness of a region, as perceived by the eye, depends on factors other than simply the light

reflected by the region. For example, intensity variations (Mach bands) can be perceived in an area of

constant intensity. Such phenomena result from the fact that the eye does not respond with equal

sensitivity to all visual information. Certain information simply has less relative importance than other

information in normal visual processing. This information is said to be psychovisually redundant. It

can be eliminated without significantly impairing the quality of image perception.

137

That psychovisual redundancies exist should not come as a surprise, because human

perception of the information in an image normally does not involve quantitative analysis of every

pixel value in the image. In general, an observer searches for distinguishing features such as edges or

textural regions and mentally combines them into recognizable groupings. The brain then correlates

these groupings with prior knowledge in order to complete the image interpretation process.

Psychovisual redundancy is fundamentally different from the redundancies discussed earlier. Unlike

coding and interpixel redundancy, psychovisual redundancy is associated with real or quantifiable

visual information. Its elimination is possible only because the information itself is not essential for

normal visual processing. Since the elimination of psychovisually redundant data results in a loss of

quantitative information, it is commonly referred to as quantization.

This terminology is consistent with normal usage of the word, which generally

means the mapping of a broad range of input values to a limited number of output values. As it is an

irreversible operation (visual information is lost), quantization results in lossy data compression.

Fidelity criterion.

The removal of psychovisually redundant data results in a loss of real or quantitative visual

information. Because information of interest may be lost, a repeatable or reproducible means of

quantifying the nature and extent of information loss is highly desirable. Two general classes of criteria

are used as the basis for such an assessment:

A) Objective fidelity criteria and

B) Subjective fidelity criteria.

When the level of information loss can be expressed as a function of the original or input image and

the compressed and subsequently decompressed output image, it is said to be based on an objective

fidelity criterion. A good example is the root-mean-square (rms) error between an input and output

image. Let f(x, y) represent an input image and let f(x, y) denote an estimate or approximation of f(x,

y) that results from compressing and subsequently decompressing the

input. For any value of x and y, the error e(x, y) between f (x, y) and f^ (x, y) can be defined as

so that the total error between the two images is

where the images are of size M X N. The root-mean-square error, erms, between f(x, y) and f^(x,

138

y) then is the square root of the squared error averaged over the M X N array, or

A closely related objective fidelity criterion is the mean-square signal-to-noise ratio of the compressed-

decompressed image. If f^ (x, y) is considered to be the sum of the original image f(x, y) and a noise

signal e(x, y), the mean-square signal-to-noise ratio of the output image, denoted SNRrms, is

The rms value of the signal-to-noise ratio, denoted SNRrms, is obtained by taking the square root of Eq.

above.

Although objective fidelity criteria offer a simple and convenient mechanism for

evaluating information loss, most decompressed images ultimately are viewed by humans.

Consequently, measuring image quality by the subjective evaluations of a human observer often is

more appropriate. This can be accomplished by showing a "typical" decompressed image to an

appropriate cross section of viewers and averaging their evaluations. The evaluations may be made

using an absolute rating scale or by means of side-by-side comparisons of f(x, y) and f^(x, y).

Image compression models.
Fig. 5.2 shows, a compression system consists of two distinct structural blocks: an encoder and a

decoder. An input image f(x, y) is fed into the encoder, which creates a set of symbols from the input

data. After transmission over the channel, the encoded representation is fed to the decoder, where a

reconstructed output image f^(x, y) is generated. In general, f^(x, y) may or may not be an exact

replica of f(x, y). If it is, the system is error free or information preserving; if not, some level of

distortion is present in the reconstructed image. Both the encoder and decoder shown in Fig.5.2 consist

of two relatively independent functions or subblocks. The encoder is made up of a source encoder,

which removes input redundancies, and a channel encoder, which increases the noise immunity of the

source encoder's output. As would be expected, the decoder includes a channel decoder followed by a

source decoder. If the channel between the encoder and decoder is noise free (not prone to error), the

channel encoder and decoder are omitted, and the general encoder and decoder become the source

encoder and decoder, respectively.

139

Figure 5.2: A general compression system model

The Source Encoder and Decoder:

The source encoder is responsible for reducing or eliminating any coding, interpixel, or psychovisual

redundancies in the input image. The specific application and associated fidelity requirements dictate

the best encoding approach to use in any given situation. Normally, the approach can be modeled by a

series of three independent operations. As Fig. 3.2 (a) shows, each operation is designed to reduce one

of the three redundancies. Figure 3.2 (b) depicts the corresponding source decoder. In the first stage of

the source encoding process, the mapper transforms the input data into a (usually nonvisual) format

designed to reduce interpixel redundancies in the input image. This operation generally is reversible

and may or may not reduce directly the amount of data required to represent the image.

Figure 5.2 : (a) Source encoder and (b) source decoder model

Run-length coding is an example of a mapping that directly results in data compression in this initial

stage of the overall source encoding process. The representation of an image by a set of transform

coefficients is an example of the opposite case. Here, the mapper transforms the image into an array of

coefficients, making its interpixel redundancies more accessible for compression in later stages of the

encoding process.

The second stage, or quantizer block in Fig. 5.2 (a), reduces the accuracy of the mapper's output in

accordance with some preestablished fidelity criterion. This stage reduces the psychovisual

redundancies of the input image. This operation is irreversible. Thus it must be omitted when error-free

compression is desired.

140

In the third and final stage of the source encoding process, the symbol coder creates a fixed- or

variable-length code to represent the quantizer output and maps the output in accordance with the

code. The term symbol coder distinguishes this coding operation from the overall source encoding

process. In most cases, a variable-length code is used to represent the mapped and quantized data set. It

assigns the shortest code words to the most frequently occurring output values and thus reduces coding

redundancy. The operation, of course, is reversible. Upon completion of the symbol coding step, the

input image has been processed to remove each of the three redundancies.

Figure 5.2(a) shows the source encoding process as three successive operations, but all three operations

are not necessarily included in every compression system. Recall, for example, that the quantizer

must be omitted when error-free compression is desired. In addition, some compression techniques

normally are modeled by merging blocks that are physically separate in

Fig. 5.2(a). In the predictive compression systems, for instance, the mapper and quantizer are often

represented by a single block, which simultaneously performs both operations.

The source decoder shown in Fig. 5.2(b) contains only two components: a symbol decoder and an

inverse mapper. These blocks perform, in reverse order, the inverse operations of the source encoder's

symbol encoder and mapper blocks. Because quantization results in irreversible information loss, an

inverse quantizer block is not included in the general source decoder model shown in Fig. 5.2(b).

 The Channel Encoder and Decoder:

The channel encoder and decoder play an important role in the overall encoding-decoding process

when the channel of Fig. 5.1 is noisy or prone to error. They are designed to reduce the impact of

channel noise by inserting a controlled form of redundancy into the source encoded data. As the

output of the source encoder contains little redundancy, it would be highly sensitive to transmission

noise without the addition of this "controlled redundancy." One of the most useful channel encoding

techniques was devised by R. W. Hamming (Hamming [1950]). It is based on appending enough bits

to the data being encoded to ensure that some minimum number of bits must change between valid

code words. Hamming showed, for example, that if 3 bits of redundancy are added to a 4-bit word, so

that the distance between any two valid code words is 3, all single-bit errors can be detected and

corrected. (By appending additional bits of redundancy, multiple-bit errors can be detected and

corrected.) The 7-bit Hamming (7, 4) code word h1, h2, h3…., h6, h7 associated with a 4-bit binary

number b3b2b1b0 is

141

where denotes the exclusive OR operation. Note that bits h1, h2, and h4 are even- parity bits
for the bit fields b3 b2 b0, b3b1b0, and b2b1b0, respectively. (Recall that a string of binary bits
has

even parity if the number of bits with a value of 1 is even.) To decode a Hamming encoded

result, the channel decoder must check the encoded value for odd parity over the bit fields in

which even parity was previously established. A single-bit error is indicated by a nonzero

parity word c4c2c1, where

If a nonzero value is found, the decoder simply complements the code word bit position indicated by

the parity word. The decoded binary value is then extracted from the corrected code word as h3h5h6h7.

 Method of generating variable length codes with an example.

 Variable-Length Coding:

The simplest approach to error-free image compression is to reduce only coding redundancy. Coding

redundancy normally is present in any natural binary encoding of the gray levels in an image. It can be

eliminated by coding the gray levels. To do so requires construction of a variable-length code that

assigns the shortest possible code words to the most probable gray levels. Here, we examine several

optimal and near optimal techniques for constructing such a code. These techniques are formulated in

the language of information theory. In practice, the source symbols may be either the gray levels of an

image or the output of a gray-level mapping operation (pixel differences, run lengths, and so on).

 Huffman coding:

The most popular technique for removing coding redundancy is due to Huffman (Huffman [1952]).

When coding the symbols of an information source individually, Huffman coding yields the smallest

possible number of code symbols per source symbol. In terms of the noiseless coding theorem, the

resulting code is optimal for a fixed value of n, subject to the constraint that the source symbols be

coded one at a time.

The first step in Huffman's approach is to create a series of source reductions by ordering the

probabilities of the symbols under consideration and combining the lowest probability symbols into a

single symbol that replaces them in the next source reduction. Figure 4.1 illustrates this process for

binary coding (K-ary Huffman codes can also be constructed). At the far left, a hypothetical set of

source symbols and their probabilities are ordered from top to bottom in terms of decreasing

probability values. To form the first source reduction, the bottom two probabilities,

0.06 and 0.04, are combined to form a "compound symbol" with probability 0.1. This compound

symbol and its associated probability are placed in the first source reduction column so that the

probabilities of the reduced source are also ordered from the most to the least probable. This process is

142

then repeated until a reduced source with two symbols (at the far right) is reached.

The second step in Huffman's procedure is to code each reduced source, starting with the smallest

source and working back to the original source. The minimal length binary code for a two-symbol

source, of course, is the symbols 0 and 1. As Fig. 4.2 shows, these symbols are assigned to the two

symbols on the right (the assignment is arbitrary; reversing the order of the 0 and 1 would work just as

well). As the reduced source symbol with probability 0.6 was generated by combining two symbols in

the reduced source to its left, the 0 used to code it is now assigned to both of these symbols, and a 0

and 1 are arbitrarily

Figure 5.4: Huffman source reductions.

Figure 5.5: Huffman code assignment procedure.

appended to each to distinguish them from each other. This operation is then repeated for each reduced

source until the original source is reached. The final code appears at the far left in Fig.

5.5. The average length of this code is

and the entropy of the source is 2.14 bits/symbol. The resulting Huffman code efficiency is 0.973.

143

Huffman's procedure creates the optimal code for a set of symbols and probabilities subject to the

constraint that the symbols be coded one at a time. After the code has been created, coding and/or

decoding is accomplished in a simple lookup table manner. The code itself is an instantaneous

uniquely decodable block code. It is called a block code because each source symbol is mapped into a

fixed sequence of code symbols. It is instantaneous, because each code word in a string of code

symbols can be decoded without referencing succeeding symbols. It is uniquely decodable, because

any string of code symbols can be decoded in only one way. Thus, any string of Huffman encoded

symbols can be decoded by examining the individual symbols of the string in a left to right manner.

For the binary code of Fig. 5.5, a left-to-right scan of the encoded string 010100111100 reveals that the

first valid code word is 01010, which is the code for symbol a3 .The next valid code is 011, which

corresponds to symbol a1. Continuing in this manner reveals the completely decoded message to be

a3a1a2a2a6.

Arithmetic encoding process with an example.

Arithmetic coding:

Unlike the variable-length codes described previously, arithmetic coding generates nonblock codes. In

arithmetic coding, which can be traced to the work of Elias, a one-to-one correspondence between

source symbols and code words does not exist. Instead, an entire sequence of source symbols (or

message) is assigned a single arithmetic code word. The code word itself defines an interval of real

numbers between 0 and 1. As the number of symbols in the message increases, the interval used to

represent it becomes smaller and the number of information units (say, bits) required to represent the

interval becomes larger. Each symbol of the message reduces the size of the interval in accordance

with its probability of occurrence. Because the technique does not require, as does Huffman's

approach, that each source symbol translate into an integral number of code symbols (that is, that the

symbols be coded one at a time), it achieves (but only in theory) the bound established by the noiseless

coding theorem.

Figure 5.6: Arithmetic coding procedure

Figure 5.6 illustrates the basic arithmetic coding process. Here, a five-symbol sequence or message,

144

a1a2a3a3a4, from a four-symbol source is coded. At the start of the coding process, the message is

assumed to occupy the entire half-open interval [0, 1). As Table 5.2 shows, this interval is initially

subdivided into four regions based on the probabilities of each source symbol. Symbol ax, for example,

is associated with subinterval [0, 0.2). Because it is the first symbol of the message being coded, the

message interval is initially narrowed to [0, 0.2). Thus in Fig. 5.6 [0, 0.2) is expanded to the full

height of the figure and its end points labeled by the values of the narrowed range. The narrowed range

is then subdivided in accordance with the original source symbol probabilities and the process

continues with the next message symbol.

Table 5.1 Arithmetic coding example

 In this manner, symbol a2 narrows the subinterval to [0.04, 0.08), a3 further narrows it to [0.056, 0.072),

and so on. The final message symbol, which must be reserved as a special end-of- message indicator,

narrows the range to [0.06752, 0.0688). Of course, any number within this subinterval—for example,

0.068—can be used to represent the message.In the arithmetically coded message of Fig. 5.6, three

decimal digits are used to represent the five-symbol message. This translates into 3/5 or 0.6 decimal digits

per source symbol and compares favorably with the entropy of the source, which is 0.58 decimal digits or

10-ary units/symbol. As the length of the sequence being coded increases, the resulting arithmetic code

approaches the bound established by the noiseless coding theorem.In practice, two factors cause coding

performance to fall short of the bound: (1) the addition of the end-of-message indicator that is needed to

separate one message from an- other; and (2) the use of finite precision arithmetic. Practical

implementations of arithmetic coding address the latter problem by introducing a scaling strategy and a

rounding strategy (Langdon and Rissanen [1981]). The scaling strategy renormalizes each subinterval to

the [0, 1) range before subdividing it in accordance with the symbol probabilities. The rounding strategy

guarantees that the truncations associated with finite precision arithmetic do not prevent the coding

subintervals from being represented accurately.

LZW coding with an example.

 LZW Coding:
The technique, called Lempel-Ziv-Welch (LZW) coding, assigns fixed-length code words to variable

length sequences of source symbols but requires no a priori knowledge of the probability of

occurrence of the symbols to be encoded. LZW compression has been integrated into a variety of

mainstream imaging file formats, including the graphic interchange format (GIF), tagged image file

format (TIFF), and the portable document format (PDF).

LZW coding is conceptually very simple (Welch [1984]). At the onset of the coding process, a

codebook or "dictionary" containing the source symbols to be coded is constructed. For 8-bit

145

monochrome images, the first 256 words of the dictionary are assigned to the gray values 0, 1, 2..., and

255. As the encoder sequentially examines the image's pixels, gray- level sequences that are not in the

dictionary are placed in algorithmically determined (e.g., the next unused) locations. If the first two

pixels of the image are white, for instance, sequence ―255- 255‖ might be assigned to location 256, the

address following the locations reserved for gray levels 0 through 255. The next time that two

consecutive white pixels are encountered, code word 256, the address of the location containing

sequence 255-255, is used to represent them.

If a 9-bit, 512-word dictionary is employed in the coding process, the original (8 + 8) bits that were

used to represent the two pixels are replaced by a single 9-bit code word. Cleary, the size of the

dictionary is an important system parameter. If it is too small, the detection of matching gray- level

sequences will be less likely; if it is too large, the size of the code words will adversely affect

compression performance.

Consider the following 4 x 4, 8-bit image of a vertical edge:

Table 5.1 details the steps involved in coding its 16 pixels. A 512-word dictionary with the following

starting content is assumed:

Locations 256 through 511 are initially unused. The image is encoded by processing its pixels in a left-

to-right, top-to-bottom manner. Each successive gray-level value is concatenated with a variable—

column 1 of Table 6.1 —called the "currently recognized sequence." As can be seen, this variable is

initially null or empty. The dictionary is searched for each concatenated sequence and if found, as was the

case in the first row of the table, is replaced by the newly concatenated and recognized (i.e., located in the

dictionary) sequence. This was done in column 1 of row 2.

Table 5.2: LZW coding example

146

No output codes are generated, nor is the dictionary altered. If the concatenated sequence is not found,

however, the address of the currently recognized sequence is output as the next encoded value, the

concatenated but unrecognized sequence is added to the dictionary, and the currently recognized

sequence is initialized to the current pixel value. This occurred in row 2 of the table. The last two

columns detail the gray-level sequences that are added to the dictionary when scanning the entire 4 x 4

image. Nine additional code words are defined. At the conclusion of coding, the dictionary contains

265 code words and the LZW algorithm has successfully identified several repeating gray-level

sequences—leveraging them to reduce the original 128-bit image lo 90 bits (i.e., 10 9-bit codes). The

encoded output is obtained by reading the third column from top to bottom. The resulting

compression ratio is 1.42:1.

A unique feature of the LZW coding just demonstrated is that the coding dictionary or code book is

created while the data are being encoded. Remarkably, an LZW decoder builds an identical

decompression dictionary as it decodes simultaneously the encoded data stream. . Although not needed

in this example, most practical applications require a strategy for handling dictionary overflow. A

simple solution is to flush or reinitialize the dictionary when it becomes full and continue coding with

a new initialized dictionary. A more complex option is to monitor compression performance and

flush the dictionary when it becomes poor or unacceptable. Alternately, the least used dictionary

entries can be tracked and replaced when necessary.

Concept of bit plane coding method.

 Bit-Plane Coding:

An effective technique for reducing an image's interpixel redundancies is to process the image's bit

planes individually. The technique, called bit-plane coding, is based on the concept of decomposing a

multilevel (monochrome or color) image into a series of binary images and compressing each binary

image via one of several well-known binary compression methods.

 Bit-plane decomposition:

The gray levels of an m-bit gray-scale image can be represented in the form of the base 2 polynomial

Based on this property, a simple method of decomposing the image into a collection of binary images

is to separate the m coefficients of the polynomial into m 1-bit bit planes. The zeroth- order bit plane is

147

generated by collecting the a0 bits of each pixel, while the (m - 1) st-order bit plane contains the am-1,

bits or coefficients. In general, each bit plane is numbered from 0 to m-1 and is constructed by setting

its pixels equal to the values of the appropriate bits or polynomial coefficients from each pixel in the

original image. The inherent disadvantage of this approach is that small changes in gray level can have

a significant impact on the complexity of the bit planes. If a pixel of intensity 127 (01111111) is

adjacent to a pixel of intensity 128 (10000000), for instance, every bit plane will contain a

corresponding 0 to 1 (or 1 to 0) transition. For example, as the most significant bits of the two binary

codes for 127 and 128 are different, bit plane 7 will contain a zero-valued pixel next to a pixel of value

1, creating a 0 to 1 (or 1 to 0) transition at that point.

An alternative decomposition approach (which reduces the effect of small gray-level variations) is to

first represent the image by an m-bit Gray code. The m-bit Gray code gm-1... g2g1g0 that corresponds to

the polynomial in Eq. above can be computed from

Here, denotes the exclusive OR operation. This code has the unique property that successive code

words differ in only one bit position. Thus, small changes in gray level are less likely to affect all m bit

planes. For instance, when gray levels 127 and 128 are adjacent, only the 7th bit plane will contain a 0

to 1 transition, because the Gray codes that correspond to 127 and 128 are 11000000 and 01000000,

respectively.

 Lossless Predictive Coding:

The error-free compression approach does not require decomposition of an image into a collection of

bit planes. The approach, commonly referred to as lossless predictive coding, is based on eliminating

the interpixel redundancies of closely spaced pixels by extracting and coding only the new

information in each pixel. The new information of a pixel is defined as the difference between the

actual and predicted value of that pixel.

Figure 8.1 shows the basic components of a lossless predictive coding system. The system consists of

an encoder and a decoder, each containing an identical predictor. As each successive pixel of the input

image, denoted fn, is introduced to the encoder, the predictor generates the anticipated value of that

pixel based on some number of past inputs. The output of the predictor is then rounded to the nearest

integer, denoted f^n and used to form the difference or prediction error which is coded using a variable-

length code (by the symbol encoder) to generate the next element of the compressed data stream.

148

Figure 5.7:A lossless predictive coding model: (a) encoder; (b) decoder

The decoder of Fig. 5.7(b) reconstructs en from the received variable-length code words and performs

the inverse operation Various local, global, and adaptive methods can be used to generate f^n. In most

cases, however, the prediction is formed by a linear combination of m previous pixels. That is,

where m is the order of the linear predictor, round is a function used to denote the rounding or nearest

integer operation, and the αi, for i = 1,2,..., m are prediction coefficients. In raster scan applications, the

subscript n indexes the predictor outputs in accordance with their time of occurrence. That is, fn, f^n

and en in Eqns. above could be replaced with the more explicit notation f (t), f^(t), and e (t), where t

represents time. In other cases, n is used as an index on the spatial coordinates and/or frame number (in

a time sequence of images) of an image. In 1-D linear predictive coding, for example, Eq. above can

be written as

149

where each subscripted variable is now expressed explicitly as a function of spatial coordinates x and

y. The Eq. indicates that the 1-D linear prediction f(x, y) is a function of the previous pixels on the

current line alone. In 2-D predictive coding, the prediction is a function of the previous pixels in a left-

to-right, top-to-bottom scan of an image. In the 3-D case, it is based on these pixels and the previous

pixels of preceding frames. Equation above cannot be evaluated for the first m pixels of each line, so

these pixels must be coded by using other means (such as a Huffman code) and considered as an

overhead of the predictive coding process. A similar comment applies to the higher-dimensional cases.

 Lossy Predictive Coding:

In this type of coding, we add a quantizer to the lossless predictive model and examine the resulting

trade-off between reconstruction accuracy and compression performance. As Fig.5.8 shows, the

quantizer, which absorbs the nearest integer function of the error-free encoder, is inserted between the

symbol encoder and the point at which the prediction error is formed. It maps the prediction error into

a limited range of outputs, denoted e^n which establish the amount of compression and distortion

associated with lossy predictive coding.

Figure 5.8: A lossy predictive coding model: (a) encoder and (b) decoder.

In order to accommodate the insertion of the quantization step, the error-free encoder of figure must be

altered so that the predictions generated by the encoder and decoder are equivalent. As Fig. shows, this is

accomplished by placing the lossy encoder's predictor within a feedback loop, where its input, denoted f˙n,

is generated as a function of past predictions and the corresponding quantized errors. That is,

This closed loop configuration prevents error buildup at the decoder's output. Note from Fig. 5.8

(b) that the output of the decoder also is given by the above Eqn.

 Optimal predictors:

The optimal predictor used in most predictive coding applications minimizes the encoder's mean- square

prediction error

subject to the constraint that

and

That is, the optimization criterion is chosen to minimize the mean-square prediction error, the quantization

error is assumed to be negligible (e˙n ≈ en), and the prediction is constrained to a linear combination of m

previous pixels.1 These restrictions are not essential, but they simplify the analysis considerably and, at the

same time, decrease the computational complexity of the predictor. The resulting predictive coding approach is

referred to as differential pulse code modulation (DPCM).

Block diagram about transform coding system.

Transform Coding:
All the predictive coding techniques operate directly on the pixels of an image and thus are spatial

domain methods. In this coding, we consider compression techniques that are based on modifying the

transform of an image. In transform coding, a reversible, linear transform (such as the Fourier transform)

is used to map the image into a set of transform coefficients, which are then quantized and coded. For

most natural images, a significant number of the coefficients have small magnitudes and can be coarsely

quantized (or discarded entirely) with little image distortion. A variety of transformations, including the

discrete Fourier transform (DFT), can be used to transform the image data.

Figure 5.8: A transform coding system: (a) encoder; (b) decoder.

Figure 5.8 shows a typical transform coding system. The decoder implements the inverse sequence of

steps (with the exception of the quantization function) of the encoder, which performs four relatively

straightforward operations: subimage decomposition, transformation, quantization, and coding. An N X N

input image first is subdivided into subimages of size n X n, which are then transformed to generate (N/n)
2
 subimage transform arrays, each of size n X n. The goal of the transformation process is to decorrelate

the pixels of each subimage, or to pack as much information as possible into the smallest number of

transform coefficients. The quantization stage then selectively eliminates or more coarsely quantizes the

coefficients that carry the least information. These coefficients have the smallest impact on reconstructed

subimage quality. The encoding process terminates by coding (normally using a variable-length code) the

quantized coefficients. Any or all of the transform encoding steps can be adapted to local image

content, called adaptive transform coding, or fixed for all subimages, called nonadaptive transform

coding.

 Wavelet Coding:

The wavelet coding is based on the idea that the coefficients of a transform that decorrelates the pixels of

an image can be coded more efficiently than the original pixels themselves. If the transform's basis

functions—in this case wavelets—pack most of the important visual information into a small number of

coefficients, the remaining coefficients can be quantized coarsely or truncated to zero with little image

distortion.

Figure shows a typical wavelet coding system. To encode a 2
J
 X 2

J
 image, an analyzing wavelet, Ψ, and

minimum decomposition level, J - P, are selected and used to compute the image’s discrete wavelet

transform. If the wavelet has a complimentary scaling function φ, the fast wavelet transform can be

used. In either case, the computed transform converts a large portion of the original image to horizontal,

vertical, and diagonal decomposition coefficients with zero mean and Laplacian-like distributions.

 Figure 5.9: A wavelet coding system: (a) encoder; (b) decoder.

