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INTRODUCTION

» Image — A two-dimensional signal that can be observed by human
visual system

» Digital image — Representation of images by sampling in time and
space.

» Digital image processing — perform digital signal processing
operations on digital images




DIGITAL IMAGE FUNDAMENTALS &

IMAGE TRANSFORMS

» The field of digital image processing refers to processing digital
images by means of a digital computer.

» An image may be defined as a two- dimensional function, f(x,y)
where x and y are spatial (plane) coordinates, and the amplitude of f
at any pair of coordinates (x, y) is called the intensity or gray level of
the image at that point.

» When x, y, and the amplitude values of f are all finite, discrete
guantities, we call the image a digital image



The Origins of Digital Image Processing

» One of the first applications of digital images was in the newspaper
industry, when pictures were first sent by submarine cable between
London and New York.

» Specialized printing equipment coded pictures for cable transmission and
then reconstructed them at the receiving end.




What is a Digital Image?

» Pixel values typically represent gray levels, colours, heights,
opacities etc

» Remember digitization implies that a digital image is an
approximation of a real scene




What is a Digital Image?

Common image formats include:
* 1 sample per point (B&W or Grayscale)
* 3 samples per point (Red, Green, and Blue)
* 4 samples per point (Red, Green, Blue, and “Alpha”, a.k.a.
Opacity)




What is Digital Image Processing

» Digital image processing focuses on two major tasks

» Improvement of pictorial information for human interpretation

» Processing of image data for storage, transmission and
representation for autonomous machine perception.

» Some argument about where image processing ends and fields such
as image analysis and computer vision start




Applications of DIP

» The field of image processing has applications medicine and the
space program.

» Computer procedures are used to enhance the contrast or code
the intensity levels into color for easier interpretation of X-rays
and other images used in industry, medicine, and the biological
sciences

» Geographers use the same or similar techniques to study
pollution patterns from aerial and satellite imagery



Applications of DIP

One of the most common uses of DIP
techniques: improve quality, remove noise
etc
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Applications: Medicine

X-ray imaging




Applications: Medicine

*Radio frequencies
‘Magnetic Resonance Imaging (MRI)
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Key Stages in Digital Image Processing: Image Restoration
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Key Stages in Digital Image Processing: Segmentation2
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Key Stages in Digital Image Processing: Object Recognition
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Key Stages in Digital Image Processing:
Image Compression

Image Morphological
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Unipolar Encoding

» Figure was transmitted in this way and reproduced on a telegraph printer
fitted with typefaces simulating a halftone pattern

» The initial problems in improving the visual quality of these early
digital pictures were related to the selection of printing
procedures and the distribution of intensity levels



Unipolar Encoding

» The printing technique based on phographic reproduction made from tapes
perforated at the perforated at the telegraph receiving terminal from 1921

» Figure shows an image obtained using this method.

» The improvements are tonal quality and in resolution



Unipolar Encoding

» The early Bartlane systems were capable of coding images in five
distinct levels of gray.
» This capability was increased to 15 levels in 1929

» Figure is typical of the type of images that could be obtained
using the 15-tone equipment



Image Sampling and Quantization

) »| Sampling L) »{ Quantization M Computer
Digitization

Computer u(m,n)» con\?e{f;ion L | Display
Analog display

Fig 1 Image sampling and quantization / Analog image display




Image Sampling and Quantization
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Image Sampling and Quantization
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Image Sampling and Quantization

The Nyquist rate. The aliasing. The fold-over frequencies

2VX0 :

I ! >
0 Vxo W
Fig. 5 Aliasing - fold-over frequencies

The sampling theorem in the two-dimensional case




Practical limitations in image sampling and

reconstruction

Input§ Scanning | gfxy) | Ideal sampler
mage | system L Ay
| aperture
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g (xy)

ig. 7 The block diagram of a real sampler & reconstruction (display) system




Practical limitations in image sampling and reconstruction
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Image Sampling and Quantization

ab

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image
sampling and quantization.




Image Sampling and Quantization
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Picture elements, Image elements, pels, and pixels %.Aneg
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» A digital image is composed of a finite number of elements, each of
which has a particular location and value.

» These elements are referred to as picture elements, image elements,
pels, and pixels.

» Pixel is the term most widely used to denote the elements of a digital
image.




Basic Relationships Between Pixels

1. Neighbors of a Pixel :-

A pixel p at coordinates (x, y) has four horizontal and vertical neighbors
whose coordinates are given by (x+1, y), (x-1, y), (x, y+1), (x, y-1)

This set of pixels, called the 4-neighbors of p, is denoted by N4(p).

Each pixel is a unit distance from (x, y), and some of the neighbors of
p lie outside the digital image if (x, y) is on the border of the image.




Basic Relationships Between Pixels

Np(p) and Ng(p)

> The four diagonal neighbors of p have coordinates (x+1,
y+1)1 (X+1I y_l)) (X-ll y+1)r (X_ll y_l)

and are denoted by ND(p).

» These points, together with the 4-neighbors, are called the 8-
neighbors of p, denoted by Ng(p).

» If some of the points in ND(p) and N8(p) fall outside the image if (x,
y) is on the border of the image.




Basic Relationships Between Pixels

We consider three types of adjacency:
(a) 4-adjacency.

Two pixels p and g with values from V are 4-adjacent if g is in the set N4(p).

(b) 8-adjacency.

Two pixels p and g with values from V are 8-adjacent if g is in the set Ng(p).

(c) m-adjacency (mixed adjacency).
(d) Two pixels p and g with values from V are m-adjacent if

* (i) gisin N4(p), or

- (ii) g is in Np(p) and the set whose values are from V.




Basic Relationships Between Pixels

» Two pixels p and g are said to be connected in S if there exists a path
between them consisting entirely of pixels in S.

» For any pixel pin S, the set of pixels that are connected to itin S is
called a connected component of S.

0 1 1 (S 0 1----1
0 1 0 0 17 0 0 1. 0
0 0 1 0 0 I 0 0 1

abec

FIGURE (a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed)
to the center pixel; (c) m-adjacency.




Image transforms

why transform?

m Better image processing
= Take into account long-range correlations in space

= Conceptual insights in spatial-frequency information.
what it means to be “smooth, moderate change, fast change,

n

m Fast computation: convolution vs. multiplication

39



Image transforms

m Alternative representation and sensing

= Obtain transformed data as measurement in radiology images
(medical and astrophysics), inverse transform to recover image

m Efficient storage and transmission
= Energy compaction
= Pick a few “representatives” (basis)
= Just store/send the “contribution” from each basis




Why Fourier Transform

» The Fourier Transform is an important image processing tool which is
used to decompose an image into its sine and cosine components.

» The Fourier Transform is used in a wide range of applications, such
as image analysis, image filtering, image reconstruction
and image compression.




Why 2D Fourier Transform

» Two-Dimensional Fourier Transform can be generalized to higher
dimensions. For example, many signals are functions of 2D space defined
over an x-y plane. Two-dimensional Fourier transform also has four

different forms depending on whether the 2D signal is periodic and

discrete.

» A fast Fourier transform (FFT) is an algorithm that computes the discrete

Fourier transform (DFT) of a sequence, or its inverse (IDFT).
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Implementation of the 2-D Walsh Transform

The 2-D Walsh transform is separable and symmetric.

Therefore it can be implemented as a sequence of two 1-D Walsh

transforms, in a fashion similar to that of the 2-D DFT.

The Walsh transform consists of basis functions whose values are only

1 and -1.

They have the form of square waves.

Remember that the Fourier transform is based on trigonometric terms




Implementation of the 2-D Walsh Transform

These functions can be implemented more efficiently in a digital environment

than the exponential basis functions of the Fourier transform.
The concept of frequency exists also in Walsh transform basis functions.

We can think of frequency as the number of zero crossings or the number of

transitions in a basis vector and we call this number sequency.




Computation of the Walsh Transform

> For the fast computation of the Walsh transform there exists an
algorithm called Fast Walsh Transform (FWT).

» Thisis a straightforward modification of the FFT.




Properties of the Hadamard Transform

» Most of the comments made for Walsh transform are valid here.

» The Hadamard transform differs from the Walsh transform only in the
order of basis functions. The order of basis functions of the Hadamard

transform does not allow the fast computation of it by using a

straightforward modification of the FFT.




Recursive Relationship of the Hadamard Transform o

e An important property of Hadamard transformis that,
letting H, represent the Hadamard matrix of order N
the recursiverelationship holds :

H N H N
_ H N H N _
e Therefore, starting from a small Hadamard matrix

we can compute a Hadamard matrix of any size.
e This is a good reason to use the Hadamard transform!

H2N —

47



Images of 1-D Hadamard matrices

232 Hadamard matrx (non-ordered) 2¥2 Hadamard matrix {ordered)
0.5 . 0.5 .

0.5 ; 0.5

1.5 1.5

25 25
0.5 1.5 2.5 0.5 1.5 2.5
4dxd Hadamard matrix (non-orderaed) 2¥2 Hadamard matrix (ordered)
.5 H ; ; .5 0.5 ; ; - 0.5
1 5F-ne-- " P 1.5
25 F----- - O 25
35t 3.5
4.5 0.5 4.5
0.5 0.5
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Slant transform

> The Slant transform matrix of order N x N is the recursive
expression S_is given by

ﬁ
4
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Where | is the identity matrix of order M x M, and
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Properties of Slant transform

The slant transform is real and orthogonal.
S=S5"S-1=ST

The slant transform is fast, it can be implemented in (N log,N)
operations on an N x 1 vector.

The energy deal for images in this transform is rated in very good to
excellent range.

The mean vectors for slant transform matrix S are not sequentially
ordered for n > 3.




Slant transform

= similar to STFT (short-time Fourier transform)
= partition a NxN image into mxn sub-images
= save computation: O(N) instead of O(NlogN)
= |loose long-range correlation
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Energy compaction comparison
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Figure 5.18 Distribution of variances of the transform cocfficients (in decreasing
order) of a stationary Markov sequence with N = 16, p = 0.95 (see Example 5.9).




Haar Transform

» The Haar transform is based on the Haar functions, h,(z), which are

defined over the continuous, closed interval z € [0, 1],

> andfork=0,1,2...,N-1, where N = 2". The first step in generating
the Haar transform is to note that the integer k can be decomposed
uniquely as
k=2P+qg-1

> where0<p<n-1,g=0orlforp=0,and1<q<2Pforp=0.For

example, if N =4, k, g, p have following values




Haar Transform

The Haar functions are'd_efined as

HI} ﬁ-;'{.!} = V_ﬁ

forze|O, 1] ....... (1)




The Discrete Haar Transform

» A complete orthogonal system of functions in

[0, 1], p € [0, ==] which take values from the set {0, 2j : j € N} was
defined by Haar [1].

» This system of functions has property that each function continuous on
interval [0, 1] may be represented by a uniformly and convergent series in

terms of elements of this system. There are some other definitions of the

Haar functions .




The Discrete Haar Transform

> Those definitions are mutually differing with respect to the values of Haar

functions at the points of discontinuity.
> For example the original Haar definition is as follows [4]:

> haar(0,t)=1, fort € [0, 1); haar(1, t) =1, fort € [0, and haar(k, 0) = limt—>0+

haar(k, t), haar(k, 1) = limt—->1- haar(k, t) and at the points of discontinuity

within the interior (0, 1) haar(k, t) =1




Properties of Haar transform

» The Haar transform is real and orthogonal.

» The Haar transform is very fast. It can implement O(n) operations on an
N x 1 vector.

» The mean vectors of the Haar matrix are sequentially ordered.

> It has a poor energy deal for images.




Hotelling transform

» The basic principle of hotelling transform is the statistical properties
of vector representation. Consider a population of random vectors
of the form,




Hotelling transform

» And the mean vector of the population is defined as the expected value of
Xi.e.,

» m, _ E{x}

» The suffix m represents that the mean is associated with the population of
x vectors. The expected value of a vector or matrix is obtained by taking
the expected value of each elememt.

» The covariance matrix C, in terms of x and m, is given as

C, = E{(x-m,) (x-m,)}




Hotelling transform

» T denotes the transpose operation. Since, x is n dimensional, {(x-m,) (x-
m, )"} will be of n x n dimension. The covariance matrix is real and

symmetric. If elements x; and x; are uncorrelated, their covariance is zero
and, therefore,

Cij=C; = 0.
» For M vector samples from a random population, the mean vector and
covariance matrix can be approximated from the samples by

1 S

i

tl'—*
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DIGITAL IMAGE PROCESSING

UNIT-II

IMAGE ENHANCEMENT



IMAGE ENHANCEMENT

Image enhancement:

1. Improving the interpretability or perception of information in
images for human viewers

2. Providing better' input for other automated image processing
techniques

Spatial domain methods:
operate directly on pixels
Frequency domain methods:

operate on the Fourier transform of an image




IMAGE ENHANCEMENT

» To process an image so that the result is more suitable than the

original image for a specific application.

» Spatial domain methods and frequency domain methods.




FIGURE 3.1 A

3 X3
neighborhood
about a point

(x. v) in an image.

Spatial Domain Methods

Origin

Image f(x. y)




Spatial Domain Methods

e Procedures that operate directly on the aggregate of pixels composing
an image

g(x,y)=T[T(X,y)]

e A neighborhood about (x,y) is defined by using a square (or rectangular)
subimage area centered at (x,y).




Spatial domain

Fig. Spatial representation of ILPFs of order 1 and 20 and corresponding
intensity



Spatial domain

» Spatial domain: Image Enhancement Three basic type of functions are
used for image enhancement.

» Image enhancement point processing techniques: Linear ( Negative
image and Identity transformations) Logarithmic transformation Power law
transforms (nth power and nth root transformations) Grey level slicing Bit

plane slicing We are dealing now with image processing methods that are
based only on the intensity of single pixels.

» Intensity transformations Linear function Negative and identity
Transformations



Point Processing

» The simplest spatial domain operations occur when the
neighbourhood is simply the pixel itself ¢In this case T is referred to as

a grey level transformation function or a point processing operation.

» Point processing operations take the form es =T (r ) ewhere s refers to
the processed image pixel value and r refers to the original image pixel

value

> Negative images are useful for enhancing white or grey detail
embedded in dark regions of an image — Note how much clearer the
tissue is in the negative image of the mammogram belows=1.0-r

Original Image Negative Image



What is a Histogram?

» |In Statistics, Histogram is a graphical representation showing a visual

impression of the distribution of data.

» An Image Histogram is a type of histogram that acts as a graphical
representation of the lightness/color distribution in a digital image. It

plots the number of pixels for each value.

» The histogram of a digital image with gray levels in the range [0, L-1] is
a discrete function h(r,) = n,, where r,is the kth gray level and nis the

number of pixels in the image having gray level r,



Why Histogram?

e Histograms are the basis for numerous spatial domain processing

techniques.

e Histogram manipulation can be used effectively for image enhancement

e Histograms can be used to provide useful image statistics




An Example of Histogram

Dark image

Bright image




Spatial domain

» Spatial domain: Image Enhancement Three basic type of functions are

used for image enhancement.

» Image enhancement point processing techniques: Linear ( Negative
image and ldentity transformations) Logarithmic transformation Power law
transforms (nth power and nth root transformations) Grey level slicing Bit
plane slicing We are dealing now with image processing methods that are

based only on the intensity of single pixels.

» Intensity transformations Linear function Negative and identity

Transformations
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Spatial domain

- >
- -

Fig. Spatial representation of ILPFs of order 1 and 20 and
corresponding intensity
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Spatial domain

- >
- -

Fig. Spatial representation of ILPFs of order 1 and 20 and
corresponding intensity



Spatial Domain Methods

® Procedures that operate directly on the aggregate of pixels composing an image

O]

® A neighborhood about (x,y) is defined by using a square (or rectangular)
subimage area centered at (x,y).

g(X, y)=T[T(X y)]




Spatial Domain Methods

FIGURE 3.1 A Origin

3X3 -V
neighborhood
about a point [ (x.¥)
(x, ¥) in an image. T

Image f(x. )




Spatial Domain Methods

® When the neighborhood is 1 x 1 then g depends only on the value of f at (x,y) an
becomes a gray-level transformation (or mapping) function:

s=T(r)
r,s: gray levels of f(x,y) and g(x,y) at (x,y)

* Point processing techniqgues (e.g. contrast stretching, thresholding)




Spatial Domain Methods

I
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a b

FIGURE 3.2 Gray-
level
transformation
functions for
contrast
enhancement.




Spatial Domain Methods

® Mask processing or filtering: when the values of f in a predefined
neighborhood of (x,y) determine the value of g at (x,y).

* Through the use of masks (or kernels, templates, or windows, or
filters).

® These are methods based only on the intensity of single pixels.

» r denotes the pixel intensity before processing.

» s denotes the pixel intensity after processing.




Spatial Domain Methods

Intensity Transformations

® |mage negatives

® Piecewise-Linear Transformation Functions:
* Contrast stretching
* Gray-level slicing
* Bit-plane slicing

> Implemented via Look-Up Tables (LUT) where values of T are stored in a 1-D
array (for 8-bit, LUT will have 256 values)




Spatial Domain Methods

FIGURE 3.3 Some I —1 | | |
basic gray-level
transformation
functions used for Negative
image
enhancement. th oot
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Spatial Domain Methods

Image Negatives

® Are obtained by using the transformation function s=T(r).

I — 1

-——--—---—J




Spatial Domain Methods

ab

FIGURE 3.4

(a) Original
digital
mammaogram.

(b) Negative
image obtained
using the negative
transformation in
Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)



Spatial domain

® Function reverses the order from black to white so that the intensity of the
output image decreases as the intensity of the input increases.

® Used mainly in medical images and to produce slides of the screen.
s=clog(1+r)
c: constant

® Compresses the dynamic range of images with large variations in pixel
values




a b

FIGURE 3.5
(a) Fourier
spectrum.
(b) Result of

applving the log

transformation
given in

Eq.(3.2-2) with

c=1.

Spatial Domain Methods




Spatial Domain Methods

L -1 —
v = 0.04
v = 0.10
3L/M4 v = 0.20 H
- v = 0.40
2
= v = .67
=
5 L2 vy=1 7
a
= vy = 1.3
o
v =23
L y =50 g
v = 10.0
0 | | | _//
0 L4 Lj2 3L/M4 L -1

Input gray level. r

FIGURE 3.6 Plots
of the equation
s = cr’ for
various values of
v({c = linall
cases).




ab
cd

FIGURE 3.7

{a) Linear-wedge
oray-scale image.
(b) Response of
monitor to linear
wedge.

{¢) Gamma-
corrected wedge.
{(d) Output of
monitor.

Spatial Domain Methods

Image as viewed on monitor

Image as viewed on monitor




Spatial Domain Methods

FIGURE 3.9
(a) Aerial image.
(b)—(d) Results of
applving the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 3.0.4.0, and
3.0, respectively.
(Original image
for this example
courtesy of
NASAL)



Piecewise-Linear Transformation Functions

Contrast Stretching

® To increase the dynamic range of the gray levels in the image being
processed.




Contrast Stretching

® The locations of (r,,s,) and (r,,s,) control the shape of the transformation
function.

* If r,=s,and r,= s, the transformation is a linear function and produces no
changes.

* Ifr;=r,, s,=0 and s,=L-1, the transformation becomes a thresholding
function that creates a binary image.




Contrast Stretching

® More on function shapes:

* Intermediate values of (r;,s,) and (r,,s,) produce various degrees of
spread in the gray levels of the output image, thus affecting its contrast.

e Generally, r,<r, and s.<s, is assumed.
1="2 1—°-2




Gray Level Slicing

® To highlight a specific range of gray levels in an image (e.g. to enhance
certain features).

One way is to display a high value
for all gray levels in the range of
interest and a low value for all other
gray levels (binary image).

—— 1 (1)




Gray Level Slicing

* The second approach is to brighten the desired range of gray levels but
preserve the background and gray-level tonalities in the image:




Spatial Domain Methods

FIGURE 3.11

(a) This
transformation
highlights range
| A, B] of gray
levels and reduces
all others to a
constant level.
(b) This
transformation
highlights range
| A, B] but
preserves all
other levels.

(c) Animage.
(d) Result of
using the
transformation
n (a).



Bit Slicing

® To highlight the contribution made to the total image appearance by bits.

* i.e. Assuming that each pixel is represented by 8 bits, the image is
composed of 8 1-bit planes.

* Plane 0 contains the least significant bit and plane 7 contains the most
significant bit.




Bit Plane Slicing

® More on bit planes:

* Only the higher order bits (top four) contain visually significant data. The
other bit planes contribute the more subtle details.

* Plane 7 corresponds exactly with an image thresholded at gray level 128.




One 8-bit byte

Spatial Domain

Bit-plane 7 FIGURE 3.12
o Bit-plane
(most significant) :
representation of
an 8-bit image.
Bit-plane 0
(least significant)




Spatial Domain Methods

FIGURE 3.13 An S-bit fractal image. (A fractal is an image generated from mathematical
expressions). (Courtesy of Ms. Melissa D. Binde, Swarthmore College, Swarthmore. PA.)



Spatial Domain Methods

FIGURE 3.14 The eight bit planes of the image in Fig. 3.13. The number at the bottom,
right of each image identifies the bit plane.



Spatial Domain Filtering

averaging filters
lowpass filters E———
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Spatial Domain Filtering

Smoothing Spatial Filter
Weighted average




Spatial Domain Filtering

Examples of Low Pass Masks ( Local Averaging

Image from Hubble telescope, image processed by 5x5 averaging window, and

image afier thresholding (nasa)

HEEE R
I EEERE TENE EEN R

111 I EEEE HEEE R
L 1|11 LT[ 1]1 L1111t
111 R R EE
i EEEE HENE N EN

L1111
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Spatial Domain Filtering

»The most popular masks for low pass filtering are masks with all their
coefficients positive and equal to each other as for example the mask shown
below. Moreover, they sum up to 1 in order to maintain the mean of the

image.

1|1 |1

sl1 |1 |1

Gaussian filtering LA

»The two dimensional Gaussian mask has values that attempts to
approximate the continuous function. In theory, the Gaussian distribution
is non-zero everywhere, which would require an infinitely large
convolution kernel, but in practice it is effectively zero more than about
three standard deviations from the mean, and so we can truncate the
kernel at this point. The following shows a suitable integer-valued
convolution kernel that approximates a Gaussian with a of 1.0.
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Non-Linear Filters

»The best-known example in this category is the Median filter, which, as its
name implies, replaces the value of a pixel by the median of the gray levels in
the neighborhood of that pixel (the original value of the pixel is included in the
computation of the median).

> Order static filter / ;YoY-liYead filter) / median filter Objective:Replace the valve
of the pixel by the median of the intensity values in the neighbourhood of that
pixel

» Although the median filter is by far the most useful order-statistics filter in
image processing, it is by no means the only one. The median represents the
50th percentile of a ranked set of numbers, but the reader will recall from basic
statistics that ranking lends itself to many other possibilities.
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Non-Linear Filters

High pass = Original — Low pass

High-Pass Filtering: Illustration




Non-Linear Filters

High pass filtered image may be computed as the difference between the
original image and a lowpass filtered version of that image as follows

Highpass = Original — Lowpass
Highboost = A(Origimal) - Lawpass
= (4-1)(Original)+ Original - Lowpass
= (4-1)(Original)+ Highpass
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Non-Linear Filters

o |lo |o 11| -1 4 | |
1
o |lo |0 1| 1| -1 U e S e

High-Pass Filtering

- Shape of impulse response: +ve coefficients
near its centre., —-ve coefficients 1n periphery.

- E.g. 3x3 mask with +ve value 1n the middle,
surrounded by 8 neighbours of —ve values.




Sharpening Spatial Filters

» To integration, it is logical to conclude that sharpening could be accomplished by
spatial differentiation.

» This section deals with various ways of defining and implementing operators for
Image sharpening by digital differentiation.

» Fundamentally, the strength the response of a derivative operator is
proportional to the degree of discontinuity of the image at the point at which
the operator is applied. Thus, image differentiation enhances edges and other
discontinuities (such as noise) and deemphasizes areas with slowly varying
gray- level values.
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Sharpening Non linear Filter

Dimensional high pass spatial filters:

An edge is the boundary between two regions with relatively distinct grey level
properties. The idea underlying most edge detection techniques is the
computation of a local derivative operator.

The magnitude of the first derivative calculated within a neighborhood around the

pixel of interest, can be used to detect the presence of an edge in an image.
First derivatives in image processing are implemented using the magnitude of the

gradient.
- ar

r ox
v p— -* p—
! [G] of

| ay]_

he magnitude of this vector is given by
Vi = mag( Vf)
_ 2 271/2
o [G'A + GF]

RO
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Spatial Filters

Sharpening Spatial Filters:

derivative
(1)must be zero in flat segments (areas of constantgray-level values);

(2)must be nonzero at the onset of a gray-level step orramp; and
(3)must be nonzero alongramps.

Similarly, any definition of a second derivative
(1)must be zero in flatareas;

(2)must be nonzero at the onset and end of a gray-level step orramp;
(3)must be zero along ramps of constantslope.

110



Spatial Filters

T4 f”jf’ - Vf = :f[:,-'lj'|'L}’}+f[:,ti—1~}'}+f{j.,}'+1}+f{,ti,,}'—1:}:|
VAL ak ~4f(x.y)

Laplacian operator (for enhancing fine details)

The Laplacian of a 2-Dfunction  f (X, y) is a second order derivative defined as
> 7

OX2 oY
. . _ VA=47—(z2+z7 +7 +2)
In practice it can be also implemented using a 3x3 mask 5 2 4 6 8

Consider a pixel of interest f(x,y)=z, and a rectangular neighborhood of size 3x3=9
pixels (including the pixel of interest) as shown below.

The main disadvantage of
the "
Laplacian operator

is that it produces double
edges




Spatial Filters

(a) Filter mask used to implement the
digital Laplacian

0 —1 [a] —1 —1 —1 ['1 f 'l, .1. |; w1 |” |
ik jia ! Nk} [1 “;I’ i ']1 jih ]]

(8] —1 (] —1 —1 —1 - 4‘!.(-":! F)J

f(x,y) — V*f(x.y) if the center coefficient of the

Laplacian mask is negative
f(x.y) + V3f(x.y) if the center coefficient of the
k Laplacian mask is positive.
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Spatial Filters

0l1-110 0/0|0 0(-1|0
115 |-1 = 0(1|0 + -114 (-1
0l1-110 0|00 0(-1|0
11-11-1 000 -1]-11-1
119 [-1 = 0|10 + -118 -1
-11-1 -1 0|0|0 -1{-1-1




Spatial Filters

s a). image of the North
pole of the moon

s b). Laplacian-filtered
image with

111
181
$ | & | 1

s ¢). Laplacian image scaled
for display purposes

s d). image enhanced by
addition with original
image
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Spatial Filters

Use of first derivatives for Image Sharpening ( Non linear)

About two dimensional high pass spatial filters

An edge is the boundary between two regions with relatively distinct grey level
properties. The idea underlying most edge detection techniques is the
computation of a local derivative operator.

The magnitude of the first derivative calculated within a neighborhood around
the

pixel of interest, can be used to detect the presence of an edge in an image.
First derivatives in image processing are implemented using the magnitude of

the

gradient.

For a function f(x, y), the gradient of f at coordinates (x, y) is defined as the
two- dimensio

115



Spatial Filters

'he magnitude of this vector is given by
Vf = mag( Vf)
=[G + G

GG

1/2




Spatial Filters

Gradient Mask S R

= simplest approximation, 2x2

G,=(z—z5) and G_}r:(‘:ﬁ_zj}
Vi = [GIZ + Gﬁ]}i =[(zg - 35)2 +(z4 _35:'2]H
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Spatial Filters

Consider a pixel of interest r(x.»)==z; and a rectangular neighborhood of size 3x3=9
pixels (including the pixel of interest) as shown below.

>V
£ Z3 Z3
Z4 Z; Zg
Z Zg Zg
L J
X
Roberts operator
Above Equation can be approximated at point Zs in a number of ways. The
simplest is to usethe difference (Zs- Zg) in the x direction and (Zs- Zs) inthey
direction. This approximation is known as the Roberts operator, and is expressed

mathematically as follows

Bf Bl 25 Blzg B 25 Bzg | || |
Another approach for approximating the equation is to use cross differences

BBz Bzs 2 ke@ 2, |




Spatial Filters

T o T ~ 7

— o o O

Roberts operator
f o o =

' | —T '
FEobaerds oDberator

= Roberts cross-gradient operators, 2x2

G, =(z,—z5) and Gy = (Z5 — Z6)

Vf =[G+ G2V =[(2, - 2) + (zs — 26)*1”

Vfﬁ‘zg—zﬁ‘ﬂzs—zﬁ‘ 1 | a o | -1

(=




Spatial Filters

VT (X, V) r approximation to the abtrix is:

Vo (2,42,42) (042,42 |4 (2, 4 2+ 1) - (3 42, + 1)

The difference between the first and third rows approximates the
derivative in the x

direction
eThe difference between the first and third columns
approximates the derivative in the y direction

*The Prewitt operator masks may be used to implement the
above approximation

-1 -1]-1 -1 0 |1
g1 010 -1 0|1
1111 -1 0 |1
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Spatial Filters

»9bel operator.

Definition and comparison with the Prewitt operator [ gives weighiage to centre pixel)
The most popular approximation of equation (1) but using a 3=3 mask is the following.
Uzl + 25,45 (z,+ 2+ )l + 22, 5 ) (2, ¢ 22, + 2 )

This approximation is known as the Sobel operator.

* ¥

-1 0 |1 -1 -2 | -1

2o 2 |\|0 |0 |0

o L A I N -

¥ —0bel operator

X

If we considerthe left mask ofthe Sobel operator, this causes differentiation along the »
direction.




Spatial Linear Filters

= Sobel operators, 3x3
G _=(z,+2z,+z,)—(z, +2z,+z,)
G,=(z;+2z,+2z,)—(z, +2z, +z;)

—~ -1 -2 ~1 -1 a 1
Vi =G |+ ‘G},‘
the weight value 2 is to ’ ’ ’ i 2
achieve smoothing by | , , . . ,

giving more important
to the cenfter point .
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Spatial Filters

ab

FIGURE 3.45
Optical image of
contact lens (note
defects on the
boundary at 4 and
5 o’clock).

(b) Sobel
eradient.
(Original image
courtesy of

Mr. Pete Sites.
Perceptics
Corporation.)

110



Filtering in the Frequency Domain

Filters in the frequency domain can be divided in four groups: Low pass filters

.......... IMAGE BLUR

Remove frequencies away from the origin
Commonly, frequency response of these filters is symmetric around the origin;

The largest amount of energy is concentrated on low frequencies, but it represents

just
image luminance and visually not so important part of image.

High pass filters ............ EDGES DETECTION

Remove signal components around and further away from origin

Small energy on high frequency corresponds to visually very important image
features such as edges and details. Sharpening = boosting high frequency pixels

‘2



Filtering in the Frequency Domain

Low pass filters ( smoothing
fiteldsejal Low Pass filters Butterworth low  ILPF

pass filters Gaussian low pass filters BLPF
High Pass Filters ( Sharpening GLPF
filters)
Ideal High pass filters Butterworth High pass IHPF
filters Gaussian High pass filters Laplacian (Baﬂ?l::
in frequency domain
High boost, high frequency emphasis filters
Homomorthic filters logn or In

fix,y)= ilxy) r(xy)
F[f(u,v)]=  F[log n[i(x,y) r(x,y)] = F [log n [i(x,y)] + F [log n [r(x,y)]
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Filtering in the Frequency Domain

Frequency domain filtering operation ox.y) =

Four Filter [nverse SHH@F.y)
o tng;:)% function Fourier
Huv) I transform l
Fluv) S [F(x,y )] Gluyy=H (u,v)F(u,v)
Pre- Posl-

processing processing

flx.y) 2(x,y)

Input Enhanced

image image

Basic steps for filtering in the frequency domain,



Filtering in the Frequency Domain

o . image
original <
imaga spectrum

Fy

filtered i filtered
image 7 iltere
speftrum image
GH g
transfer
|:| Sfunction
zero-padded Wa
h
spatial domain Fourier domain » spatial domain

Note,
muttiplication in
Fourier domain is
full complex
operation



Filtering in the Frequency Domain

Filtering in the Frequency Domain

*Basic Steps for zero padding

Zero Pad the input image f(x,y) to p =2M-1, and q=2N-1, if
arrays are of same size.

If functions f(x,y) and h(x,y) are of size MXN
and KXL, respectively, PuM + N -1
QuwK+L-1

Zero-pad h and f

ePad both to at least

eRadix-2 FFT requires power of 2

For example, if M=N =512 and K=L =16,
then P=Q=1024

eResults in linear convolution

eExtract center MxN
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Filtering in the Frequency Domain

1.Multiply the input padded image by (-1) **vto center the
transform.

2.Compute F(u,v), the DFT of the image from (1).

3.Multiply F(u,v) by a filter function H(u,v).

4.Compute the inverse DFT of the result in (3).

5.0btain the real part of the result in (4).
6.Multiply the result in (5) by (-1)x+v.

Given the filter H(u,v) (filter transfer function OR filter or filter
function) in the frequency domain, the Fourier transform of the
output image (filtered image) is given by:

G (u,v)=H (u,v) F (u,v) Step (3) is array multiplication

The filtered image g(x,y) is simply the inverse Fourier transform of
G(U,V). gplx, y) = {real[%“i[G(u, v)]]}(-—l)x"'"
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Filtering in the Frequency Domain

K points

F——"M points —— ~t

f(x)

2K points

F—— M points —— -

\F(u)| a b
M FIGURE 4.2 (a) A
discrete function
of M points, and

(b) its Fourier
spectrum. (¢) A
discrete function
with twice the

F——"M points —— -

number of
nonzero points,
F(u)] and (d) its Fourier
D AK i spectrum.

M W

F——M points ——— -



Filtering in the Frequency Domain

Low Pass Filter

High Pass Filter

A

/— Origin

ab
cd

(a) A two-dimensional lowpass filter function. (b) Result of lowpass filtering the image
(c) A two-dimensional highpass filter function. (d) Result of highpass filtering the image '
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Filtering in the Frequency Domain

» Since h(x,y) can be obtained from the response of a frequency domain filter to
an impulse, h(x,y) spatial filter is some times referred as r finite impulse
response filter (FIR) of  H(u,v)

=

> f(x,y) * h(x,y) F(u,v) H(u,v)

» Spatial domain processing, in general, is faster than frequency domain
processing.

» In some cases, it is desirable to generate spatial domain mask that approximates
a given frequency domain filter.

» The following procedure is one way to create these masks in a

» least square error sense.

» Recall that filter processing in frequency domain, which is product of filter and
function, becomes convolution of function and filter in spatial domain.

1] N



Filtering in the Frequency Domain

» This restriction 1in effect creates an n x n convolution mask 7 .
with Founer transform of

n—1 n—1 — 2w LOC+WW
(e, v}——ZZF}'(I V)e o
x=0 =0
where . v=0, 1, 2. ......... . IN-1.

» The objective i1s to find the coetficients of A(x, y) such that
IMean square SIrror 1s minimaiazed.

MN—-1 N1

2"

H=




Filtering in the Frequency Domain

Consider the following filter transfer function:

;H(u,v)mh J (y)=(MI12.NT2

| otherwise

"

» This filter will set F(0,0) to zero and leave all the other frequency components.
Such a filter is called the notch filter, since it is constant function with a hole
(notch) at the origin.




Filtering in the Frequency Domain

HOMOMORPHIC FILTERING
an image can be modeled mathematically in terms of illumination and reflectance as follow:

fxy) =1(x,y) r(x,y)

Note that;:
F{f(x y)}# Fli(x, y)} Flr(x, y)}

To accomplish separability, first map the model to natural log domain and then take
the Fourier transform of it. z(x, y) = In{ f (x, y)} = In{i(x, y)}+ In{r(x, y)} Then,

F{z(x, y)} = F{In i(x, y)}+ F{In r(x, y)}

or

Z(u,v)=1(u,v)+R(u,v)

Now, if we process Z(u,v) by means of a filter function H(u,v) then,




Filtering in the Frequency Domain

= MNow., if we process Z{u.v) by means of a filter function
H(u.v) then.,
S, v)=H(u.v)Z(w.v) =
= H (. v)T(u.v)+H (. v)IR(w.Vv)

= Taking inverse Fourier transform of S(u.v) brings the result
back into natural log domain.

s(x.v)=F ' Su.v)}
— F {H (. DI} + F {H e R}

By letting

i'(x, V) = F  {H @.v)I(2.v)}
r(x, v) = FH{H (2, VIR, v)]




Filtering in the Frequency Domain

— MNow. to et back to spatial domain., we need to get imverse
transtormm of natural log. which 1s exponential.

s, ¥) =7 (x. )+ (x. )

g(x.v) =expls(x.v)]

exp[7'(x. )] -exp[s'(x. )]
= I, (. 3y )r, (. »)

Where 1,(x.%) 1s 1llimiination and r(x. %) 1s reflectance components
of the output 1mage.

= This method 1s based on a special case of a class of systems
known as homomorphiic sysiermts.

—

— The overall model 1n block diagrai will look as follow:

Fy) g (x.y)
—y Inm [ FFT [ Hwv) [ IFFT [y exp [




DIGITAL IMAGE PROCESSING

UNIT-III

IMAGE RESTORATION



Image restoration degradation model

algebraic approach to restoration
inverse filtering
Least mean square filters

constrained least square restoration

interactive restoration




What is Image Restoration?

Image restoration attempts to restore images that have been degraded
* |dentify the degradation process and attempt to reverse it
* Similar to image enhancement, but more objective




INTRODUCTION

® Objective of image restoration

* torecover adistorted image to the original form based on
Idealized models.

® The distortion is due to

* Image degradation in sensing environment e.g. random
atmospheric turbulence

* Noisy degradation from sensor noise.

» Blurring degradation due to sensors
© e.g. camera motion or out-of-focus

o Geometric distortion

o e.g. earth photos taken by a camera in a satellite




Model

f(x,y) g H ’®—' g(x.y)

@ f(x,y) is the original image.

@ H represents the system that affects our image.

@ n(x,y) is disturbance, e.g., noise or external contribution.
@ Obtained degraded image g(x.y) = H(f(x.y)) + n(x.y).

@ Possible defects in the imaging system causing degradation:
Bad focusing.

Motion.

Non-linearity of the sensor.
Noise.

etc...

¥y ¥y ¥y vy



Image degradation / restoration model

g(x,y) )
o~ Il —

n(x,y)

- _/
e ~ hd g

degradation restoration

e When H is a LSI system

g(x,y)=h(x,y)* f(x,y) +n(x,y)
G(u,v)=Hu,v)F(u,v)+ N(u,v)




An Image Degradation Model

Two types of degradation
* Additive noise

Spatial domain restoration (denoising) techniques are preferred

* Image blur

Frequency domain methods are preferred

We model the degradation process by a degradation function h(x,y), an
additive noise term, n(x,y), as g(x,y)=h(x,y)f(x,y)+ n(x,y)

f(x,y) is the (input) image free from any degradation
g(x,y) is the degraded image
+is the convolution operator

The goal is to obtain an estimate of f(x,y) according to the knowledge
about the degradation function h and the additive noise

In frequency domain: G(u,v)=H(u,v)F(u,v)+N(u,v)

Three cases are considered in this Chapter

* g(x,y)=f(x,y)+ n(x,y) (5-2~5-4)
¢ g(x,y)=h(x,y)*f(x,y) (5'5~5'6)
* g(x,y)=h(x,y)-f(x,y)+ n(x,y) (5-7~5-9)



A Model of the Image Degradation/Restoration Process o

Degradation

flry) = function
H

DEGRADATION

Noise
)

Restoration
ilter(s)

RESTORATION

fir,)

FGURE 5.1 A
model of the
mage
degradation/
restoration
DIOCESS




e We first consider the degradation due to noise only
= his an impulse for now ( H is a constant)

e White noise

= Autocorrelation function is an impulse function multiplied by a constant
2

N-1M-1

a(x,y) =, 2 n(s,)-n(s=xt-y)=Ned(x,y)

t=0 s=

+ It means there is no correlation between any two pixels in the noise image
+ There is no way to predict the next noise value

= The spectrum of the autocorrelation function is a constant (white) (the
statement in page 222 about white noise is wrong)




Noise models

® Assuming that noise is
* independent of spatial coordinates, and
* uncorrelated with respect to the image content

e Gaussian noise
= Probability density function (PDF)
1

p(2) =m

m z: gray level (Gaussian random variable)

e—(z—_,u)z /207

= /: mean of average value of z

m o standard deviation of z

2 -
o : variance of z




Noise (image) can be classified according the

distribution of the values of pixels (of the
noise image) or its (normalized)
histogram

Gaussian noise is characterized by two

parameters, L (mean) and o2 (variance),
by

e—(z—y)2/20'2

p(z) = —
70% values of z fall in the range [(u-
o),(nto)]

95% values of z fall in the range [(p-
20),(p+20)]

(yaussian

e O R



Rayleigh noise

B g(z —a)e "V forz>a
P(z)=1b

0 forz<a

e The mean and variance of this
density are given by

J—a+ /4 and o2 = 24 =)

e aand b can be obtained through
mean and variance

Rayleigh




We can consider a noisy image to be modelled as follows:

g(x,y)=1T(x,y)+n(Xy)

where f(x, y) is the original image pixel, n(x, y) is the noise term and g(x, y)
is the resulting noisy pixel

If we can estimate the noise model we can figure out how to restore the
image



There are many different models for
the image
noise term n(x, y):

* Gaussian
o Most common model
* Rayleigh
* Erlang (Gamma)
* Exponential
* Uniform
* Impulse
o Salt and pepper noise

P(z)

W 2arer

0Len7?
2 arer

Plz)

Fiz)
: 06072
. |\ Gaussian Rayleigh
B — # ;LI+ o z A z
z
riz)
ﬂ- -
Exponential
g—15-1)
Z z
£z}
_______ Uniform o
Impulse
Pl




e Impulse (salt-and-pepper) noise

P,; forz=a P I ——
p(z)=<P, forz=»>
0 otherwise ) —

s bipolarif P #0, B, #0

Impulse

» unipolar if one of P, and F, 1s 0
» noise looks like salt-and-pepper granules if P, ~ F,

m negative or positive; scaling 1s often necessary to
form digital images

extreme values occur (e.g. a = 0, b = 255)




Different restoration approaches

* Frequency domain

* Inverse filter

* Wiener (minimum mean square error) filter
* Algebraic approaches

* Unconstrained optimization

* Constrained optimization

* The regularization theory




Algebraic Approach to Restoration

® The concept of algebraic approach is to estimate the original image which
minimizes a predefined

criterion of performances.

O]

® Unconstraint restoration approach 2. Constraint restoration approach




Inverse filtering

simplest approach to restoration is direct inverse
filtering:
2 G(u,v) Even if we know the
F(U’V) - H (u V) degradation function, we
’ cannot recover the un-
degraded image

F(u,v) = F(u,v)

If the degradation has zero or very small values, then the ratio
N/H could easily dominate our estimation of F .

One approach to get around the zero or small-value problem is to limit
the filter frequencies to value near the origin.




N N(u,v)
H(u,v)

Floiza posie
BEECTRIm

A pliluaes Decowalution
apasirur Hr ol

S d i




Wiener filter (1942)

* Objective function: find an estimate of fsuch that the mean square error
between them is minimized

e =E{(f- f)}
1 ‘H(u, v)z

H(M, V) ‘H(u, V)Z +S (u, v)/ S, (u, v)
* Potential problems:

* Weights all errors equally regardless of their location in the image,

while the eye is considerably more tolerant of errors in dark areas and
high-gradient areas in the image.

* In minimizing the mean square error, Wiener filter also smooth the
image more than the eye would prefer

Fluv)=

G(u,v)



Algebraic approach — Unconstrained restoration vs. Inverse

filter

o —Hf +n

seek f such that Hf approximates g
— in a least squares sense
n=g- Hf d

TE-Inlf =[g- ni
aiﬁ): 0=-2H' é - Hf):> H'Hf =H'g

of
f- — Q_ITH)lHTg — H'lé'[T)lHTg — H-1g

N\
/7

differentiate right hand side

2 with respect to f

Compared to the inverse filter:



Algebraic approach — Constrained restoration vs. Wiener

filter

2
, where Q is a linear operator on f,

Minimizing HQf‘

subject to the constraint ||g - Hf||” =|n|".

Model this problem using Lagrange optimization method
We seek f that minimizes the criterion (or objective) function

s €)= |t " ) €

o
a 1s a constant, called the LLagrange multiplier.

w;f = 0=2Q"Qf - 2aH" - Hf)

f=HH+0Q"Q) ' H'g

° +a'8"g - Hf

1 ‘H(u,v)z
Hu,v) | H ) + S, un)lS) (u,v)G(”"’)

Fu,v)=

Compared to:



Degradation Model

® In noise-free cases, a blurred image can be modeled as

y =X*h
h:linearspace-invariant blur function
X :original image

In the DFT domain, Y(u,v) = X(u,v) H(u,v)




Start from the generative model

g(x,y) = h(x,y)*xfix,y) + n(x,y) € G(uv) = H(uv) F(u,v) + N(u,v)

and for the moment ignore n(x,y), then an estimate of fix,y) Is
obtained from

ﬁ(z-f,v) = G(u,v) / H(u,v)

Restoration with an inverse filter

gxy),

F.T.

G(u,v)

Inverse filter

ﬁ(z-f,v) h

[.LF.T.

i)




Inverse Filtering

® Assume h is known (low-pass filter)

n

Inverse filter G(u,v) =1/ H(u,v)
n

>~<(u,v) = Y(u,v) G(u,v)
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Wiener Filter Formulation

n Least Mean Square Filter

GU) 2 H' (u,V)
HU,V)|” +[S,(u,W/S  (u,V) ]
@ In practice
G(uy) = —H (LY

H(u,W)|” +K



Wiener Filter Results

G(u,v), K=0.02
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Maximum-Likelihood (ML) Estimation

® h 1s unknown

n Assume parametric models for the blur
function, original image, and/or noise

n Parametric set @is estimated by
O =arg{maxp(y | 0)}

n Solution 1s difficult



Expectation-Maximization (EM) Algorithm

Find complete set Z: for z € Z, f(z)=y

Choose an initial guess of &
® Expectation-step

g(@16*)=E[p(z|9) ]y, 6]
Maximization-step

o' =arg maxg(é | 0°)



Minimum Mean Square Error Filtering

(Wiener Filtering)

This approach incorporate both the degradation function

and statistical characteristic of noise into the restoration

process.
Image and noise

are random
process

e’ =E[(f-)7]. °

The objective is to find an estimation for f such that minimized e?




Euv) = —— 2|H(U’V)| G(u,V)
CHUY) [HUu,v)[" +S,u,v)/S,(u,v)
Constant Unknown
-
F(u,v) = . |H(u,\;)| G(u,v)
CHUWY) H@uv)| +K




abec

FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).

(b) Radially limited inverse filter result. (¢) Wiener filter result.

Full inverse Radially limited
filtering inverse filtering




Reduce
d noise
variance




Inverse filtering

¢ When H(u,v) is known, the simplest approach
to restoration is direct inverse filtering

N(u,v)

F(u,v)=F(u,v)+

H(u,v)

g(x,y) .
o >

n(x,y)




o However, even if H is known completely, the
undegraded image cannot be recovered exactly
due to noise NV

H(u,v) H(u,v)
* Even worse when H has zero or very small values,
N/H would dominate the estimated image

ﬁ(u,v) =

* One way to get around this problem is to limit the
filter frequencies to values near the origin where
H is large in general



5/6
Degradation function 1 (u,v) = e—k[(”—'\"’ 2% +(v-N/2)*

ab
:d
° ¢
An example GURE 5.27
Restoring
Fig. 5.25(b) with
Eq.l(ii.'!-l] 3. ;
{a) Result o
Butterworth filter H, e the ul
filter. (b) Result
with H cut off
n= 10 outside a radius of

40:(c) outside a
radius of 70; and
(d) outside a
radius of 83,

G(u,v)
H(u,v)

A

v

= F(u,v) = f(x,)

MH,, (u,v) = ﬁ(u,v)
H(u,v) 0

f(x,)

Cutting off values of the ratio outside a radius




Wiener filtering

e Main limitation of inverse filtering

= Very sensitive to noise

¢ Wiener filtering (minimum mean square error
filtering)

s Use statistic information about signal and noise to
improve the restoration

s Consider images and noise as random processes

s Objective:

e’ = E{(f — /)’} = min

g(x,y) A
ror— @l >

n(x.y)




e Assumptions
= The noise and the image are uncorrelated

= One or the other has zero mean

e Estimated image
min{e’} = F(u,v)

H ()] = H" u,v)H (u,v)
S, (u,v) = |N(u,v)‘2: power spectrum of the noise

S (u,v)= |F(u,v)|2: power spectrum of the original image

(7(x,3) & N@u.v), f(x,¥) < F(u,v))




e Wiener filter

e When noise is zero (N(u,v) =0)
1
H(u,v)

H (u,v)= —> the mverse filter

 When S, (u,v) and/or S (u,v) are unknown

| | H(u,v) [ some constant

) o TH ) K




Drawback with Wiener Filtering

Drawback:

@ Must know (or approximate) the power spectra of undegraded
image and noise.

Better choice:

@ Constrained Least Squares Filter (CLSF).

» Need only knowledge of mean and variance of noise (apart from
degradation function).

» Only one parameter, which can be iteratively computed for

optimality.




G(u.v)

An example

[ H(u.v) [ = Fu.v) < f(x.y)

H(u.v)

G(u,v)
H(u,v)

|H(u,v)[ +K

H,(u,v)= ﬁ(u,v) & f(x,y)\ |

— F(”,V) FIGURE 5.28 Comparison of inverse- and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(h) Radially limited inverse filter result, (¢) Wiener filter result.




Geometric transformations

® Objective: to eliminate geometric
distortion that occurs when an image is
captured

® Examples of geometric distortion

e Pincushion distortion (associated with
zoom lenses)




e Examples of geometric distortion
= Barrel distortion (associated with wide angle lenses )

= Perspective distortion




e Examples of geometric distortion
= Barrel distortion (associated with wide angle lenses )

= Perspective distortion




e Spatial transformation

13 AT/ Be:
HHH

| distortion restoration |

f(x,9) f(x,p)

= Restoration:
x'=r(x,y) rsknown |x=7'(x",y")
\ —— o
yi=s(x,y) y=s'(x%y)
= Unfortunately, functions r(x,y) and s(x,y) that describe the
geometric distortion over the entire 1image 1s generally unknown




e In practice, the geometric distortion is often
approximated by the bilinear transformation

x'=r(x,y)=cx+c,y+cxy+e,
vi=s(x,y)=cx+cy+co.xy+cg
e 4 pairs of tiepoints are needed to derive the 8
coetficients

= one pair of tiepoints results in two linear equations

_ — _ -1 —

C x v o x» 1 0 0 0 0 X'
¢y O 0 0O 0 x »v xy I V'

Cg 0O 0 0 0 x, y, x5 |1 V's |




* Restoration of the image within the quadrilateral region

= (X, Vo) = X'y = 1(Xg, ¥p), Vo = (X, 3) /%
N \

" f(xg:y{]):g(x'(]:y'u) “‘-=+.
(x55¥p)
* In general, enough tiepoints are \ S/
W

needed to generate a set of (5 7(x,)

quadrilaterals that cover the entire

image, with each quadrilateral having

its own 8 coefficients



e A problem when calculating
(xLy)=((x.y).s(x.y)) €= (x.y)

= x' and y' may not be integers

= gray-level interpolation 1s necessary

Spatial transformation

/,_\*--..

“"-. |' '

(x, }*}./ . EE >
\\ _,./‘/ Tr}earestneighhm to(x\ ¥)
“\_//,f'" ‘

Giray-level assignment glx'. ')

ERY

FIGURE 5.33 Ciray-level interpolation based on the nearest neighbor concept.




e Gray-level interpolation

s Nearest neighbor interpolation
x'=Round{r(x,y)}
y'=Round{s(x, )}

+ stmple but may result in undesirable artifacts, such as step-like
edges that should be straight/smooth before transformation

Spatial transformation

(x.y) / I f‘ .
' “\
\ / Nearest neighbor to [+ ¥')

h d
\__,/.f

iz ) Gray-level assipnment glx'.y")

FIGURE 5.33 Grav-level interpolation based on the nearest neighbor concepl.




Iterative nonlinear restoration using the Lucy—Richardson

algorithm.

® Lucy-Richardson algorithm is a nonlinear restoration method used to
recover a latent image which is blurred by a Point Spread Function (psf). It
is also known as Richardson-Lucy de-convolution. With as the point spread
function, the pixels in observed image are expressed as,

© u; = Pixel value at location j in the image
® ¢, = Observed value at it" pixel locacation



Here,

f = Estimation of undegraded image.

The factor f which is present in the right side denominator leads to non-
linearity. Since, the algorithm is a type of nonlinear restorations; hence it
is stopped when satisfactory result is obtained. The basic syntax of
function deconvlucy with the L-R algorithm is implemented is given below.

jhl(-('. Y)= f‘ (x. ,V,{h("'.t. - )X gx, y)

h(x, v)X fi(x,
fr = Deconvlucy (g, psf, NUMIT, DAN SIEREI o

are,
g = Degraded image, f, = Restored image, psf = Point spread function
NUMIT = Total number of iterations. The remaining two parameters are,



| Iterative deterministic approaches to restoration

They refer to a large class of methods that have been mvestigated extensively over the
last decades. They possess the following advantages.

. There 15 no need to explicitly implement the mmverse of an operator. The restoration process
1z monitored as it progresses. Termunation of the alponthm may take place before

COMVErgence.

- The effects of noise can be controlled in each iteration
. The algorithms nsed can be spatially adaptive._
. The problem specifications are wvery flexable with respect to the type of degradation

Lierative techniques can be applied mn cases of spatially varying or nonhinear degradations
or m cases where the type of degradation 1z completely vnknown (blind restoration).

In general, iterative restoration refers to any techmguoe that attempts to nimimize a function of the
form
ML)

nsing an updating mle for the partially restored image.




Constrained Least Squares Iteration

In this method we attempt to solve the problem of constramed restoratiom
iteratively. As already mentioned the following functional is muininized

AL (E o) = — \f]2 2 Gbed 2

The necessary condifion for a omMndomanm 1s that the gradient of A4 (f o) 15 equal to zero. That
gradient is

E(f)= VEM(f o) =2[(H H+ o«CTCyf— HT ¥]
The initial estimate and the updating 1nle for obtaining the restored immagse are now given by
fo — GH' ¥
ficer = fic + FH y — (H H +aC T C)ic ]

It can be proved that the above iteration (knowmn as Iterative CLS or Tikhonow-Mhlles Method)
comverges 11

where Amax is the maximnem eigenvalhoe of the myatrix




DIGITAL IMAGE PROCESSING

UNIT-IV

IMAGE SEGMENTATION




Image segmentation detection of discontinuities

edge linking and boundary detection

threshold

region oriented segmentation morphological image processing
dilation and erosion

structuring element decomposition

the Strel function

erosion

Combining dilation and erosion: Opening and closing the hit and miss
transformation.




Introduction

» What is segmentation?

® Three major ways to do.

v Thresholding

v Edge-based segmentation
v Region-based segmentation




® Image segmentation divides an image into regions that are connected and
have some similarity within the region and some difference between
adjacent regions.

® The goal is usually to find individual objects in an image.

® For the most part there are fundamentally two kinds of approaches to
segmentation: discontinuity and similarity.

* Similarity may be due to pixel intensity, color or texture.

» Differences are sudden changes (discontinuities) in any of these, but
especially sudden changes in intensity along a boundary line, which is
called an edge.



Detection of Discontinuities

9
® There are three kinds of discontinuities of R =WZ +W,Z;, +...+WoZ, = Z_;Wizi
intensity: points, lines and edges.

® The most common way to look for
discontinuities is to scan a small mask
over the image. The mask determines
which kind of discontinuity to look for.

FIGURE 10.1 A

peneral 3 X3

i i w
mask. S R

wo|ows |

| wy |




Detection of Discontinuities

Point Detection

®. R/=T
where T :a nonnegative threshold e b

FIGURE 10.2

-1 8 -1 (a) Point
detection mask.
(b) X-ray image
of a turbine blade
with a porosity.
(¢) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems
Ltd.)




Detection of Discontinuities

Point Detection

a
—1 —1 —1 bcd
‘R‘ >T FIGURE 10.2
—1 8 -1 (a) ]'-'uinl
where T :a nonnegative threshold detection mask.
(b) X-ray image
-1 -1 ] of a turbine blade

with a porosity.
(c) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems
Ltd.)




Detection of Discontinuities

Point Detection

a
1 —1 —1 s
‘R‘ >T FIGURE 10.2
. _1 8 ~1 (a) Point
where T :a nonnegative threshold detection mask.
(b} X-rav image
—1 —1 —1 of a turhine blade

with a porosity.
(¢) Result of point
detection.

(d) Result of
using Eq. (10.1-2).
(Original image
courtesy of
X-TEK Systems
Ltd.)




Detection of Discontinuities

Edge Detection

Model of an ideal digital edge Model of a ramp digital edge ab

FIGURE 10.5

(a) Model of an
ideal digital edge.
(b) Model of a
ramp edge. The
slope of the ramp
Is proportional to
the degree of
blurring in the
edge.

Gray-level profile Gray-level profile
of a horizontal line of a horizontal line
through the image through the image




a b

FIGURE 10.6

{a) Two regions
separated by a
vertical edge.

(b)) Detail near
the edge, showing
a gray-level
profile, and the
first and second
derivatives of the
profile.

Detection of Discontinuities

Edge Detection

Grav-level profile

First

derivative

Second
derivative




Detection of Discontinuities
Edge Detection

FIGURE 10.7 First column: images and gray-level profiles of a ramp edge corrupted by
random Gaussian noise of mean O and = 0.0,0.1, 1.0, and 10.0, respectively. Second col-
umn: first-derivative images and gray-level profiles. Third column: second-derivative

images and gray-level profiles.

B o or m



Detection of Discontinuities
Edge Detection

FIGURE 10.7 First column: images and gray-level profiles of a ramp edee corrupted by @
random Gaussian noise of mean 0 and - = 0.0,0.1,1.0,and 10.0, respectively. Second col- b
ummn: first-derivative images and gray-level profiles. Third column: second-derivative ¢

d

images and gray-level profiles.



Detection of Discontinuities

Gradient Operators

@ First-order derivatives:

* The gradient of an image f(x,y) at location (x,y) is defined
as the vector: _ _ S

G a
vi=| 7 |=|3
G |5

. . . . _ 2 2 V2
* The magnitude of this vector:Vf = mag(Vf) = [GX +Gy]y

* The direction of this vector: a(X,y) = tanl(ij
G

y




Detection of Discontinuities

Roberts cross-gradient operators

Prewitt operators

Sobel operators

Gradient Operators

—1 0 0 —1
0 1 1 0
Roberts
—1 —1 —1 —1 0
' 0 0 0 —1 0
1 1 1 —1 0
Prewitt
—1 —2 —1 —1 0




Detection of Discontinuities

Gradient Operators

Prewitt masks for
detecting diagonal edges

— —1 0 1 —1 0 1

—1 —1 0 0 1 1
Prewitt
0 1 2 —2 —1 0
Sobel masks for '
detecting diagonal edges ~1 0 1 —1 0 1
—2 —1 0 0 1 2
a b
c d Sobel

FIGURE 10.9 Prewitt and Sobel masks for detecting diagonal edges.



Detection of Discontinuities
Gradient Operators: Example \ARER

a b

c d

FIGURE 10.10

(a) Original
image. (b) |G,|.
component of the
gradient in the
x-direction.

(C) |G".1.|.
component in the
y-direction.

(d) Gradient

image, |G,| + |G,|.

v ~|G,|+[G,|




Detection of Discontinuities

Gradient Operators

® Second-order derivatives: (The Laplacian)
* The Laplacian of an 2D function f(x,y) is defined as

o°f o°f
V2 = ~2 +8y2

* Two forms in practice:

FIGURE 10.13
Laplacian masks 0 | -1 0 -1 | -1 | -1
used to
implement

Egs. (10.1-14) and
(10.1-15).
respectively.




Detection of Discontinuities

Gradient Operators

r2

h(r)=—-e 20° where r?=x?+y?
and o :thestandard deviation

® The Laplacianof his

The Laplacian of a

Vzh(r) _ Gaussian (LoG)

® The Laplacian of a Gaussian sometimes is called the
Mexican hat function. It also can be computed by
smoothing the image with the Gaussian smoothing mask,
followed by application of the Laplacian mask.




Detection of Discontinuities

Gradient Operators

ab
c d

FIGURE 10.14
Laplacian of a
Gaussian (LoG).
(a) 3-D plot.

(b) Image (black
1S negative. gray is
the zero plane,
and white is
positive ).

(¢) Cross section
showing zero

Vih Crossings.

4 (d) 5 x 5 mask
approximation to
the shape of (a).




Edge Linking and Boundary Detection

Global Processing via the Hough Transform

® Hough transform: a way of finding edge points in an image that lie
along a straight line.

® Example: xy-plane v.s. ab-plane (parameter space)

y. =ax; +b

b' ab
-y : - b
\ | FIGURE 10.17
: - —r _ (a) xy-plane.
! b= Tha T (b) Parameter
.im \ i / L
L (xji" }r‘,] \




Thresholding

 Finding histogram of gray level intensity.

v Basic Globa}
v Otsu’s Method

v Multiple Threshold

v Variable Thresholding




Thresholding

® Assumption: the range of intensity levels covered by objects of interest
is different from the background.

1 it f(x,y)>T

g% y):{o it f(xy)<T

T T, T,

ab

FIGURE 10.26 (a) Gray-level histograms that can be partitioned by (a) a single thresh-
old, and (b) multiple thresholds.



a b

2|

FIGURE 10.30
(a) Original
image. (b) Result
of global
thresholding.
(c) Image
subdivided into
individual
subimages.

(d) Result of
adaptive
thresholding.

Thresholding

Basic Adaptive Thresholding




Thresholding

Optimal Global and Adaptive Thresholding

® This method treats pixel values as probability density functions.

® The goal of this method is to minimize the probability of
misclassifying pixels as either object or background.

® There are two kinds of error:
* mislabeling an object pixel as background, and
* mislabeling a background pixel as object.

FIGURE 10.32
Girav-level
probability
density functions
of two regions in
an image.

p(z)
&




a
b

FIGURE 10.37

(a) Original
image. (b) Image
segmented by

local thresholding.

(Courtesy of IBM
Corporation.)

Thresholding




Region-Based Segmentation

® Edges and thresholds sometimes do not give good results for
segmentation.

® Region-based segmentation is based on the connectivity of
similar pixels in a region.

* Each region must be uniform.
* Connectivity of the pixels within the region is very important.

® There are two main approaches to region-based
segmentation: region growing and region splitting.



Region-Based Segmentation

Basic Formulation

® Let R represent the entire image region.

©® Segmentation is a process that partitions R into subregions, R,,R,,...,R,, such
that

(a) inRi -R
(b) R, Is a connected region, 1=1,2,...,n
(0 RNR;=¢ foralliand J,1# |
(d) P(R)=TRUEfori=12,...,n
(e) P(R;wUR,;)=FALSE forany adjacent regions R; and R;
where P(R,): a logical predicate defined over the points in set R,
For example: P(R,)=TRUE if all pixels in R, have the same gray level.



a b

c d

FIGURE 10.40

(a) Image
showing defective
welds. (b) Seed
points. (¢) Result

of region growing.

(d) Boundaries of
segmented
defective welds
(in black).
(Original image
courtesy of
X-TEK Systems,
Ltd.).

Region-Based Segmentation

Region Growing




Region-Based Segmentation

Region Growing

® Fig.1(a) shows the histogram of Fig.1(a) .It is difficult to segment the
defects by thresholding methods. (Applying region growing methods are
better in this case.)

12000

Figure 1(b)

10000

‘Il.. |
1 1 1
127 161 255

B ol
53

o




Region-Based Segmentation

Region Splitting and Merging

® Region splitting is the opposite of region growing.

* First there is a large region (possible the entire image).

* Then a predicate (measurement) is used to determine if the region is
uniform.

* If not, then the method requires that the region be split into two regions.

* Then each of these two regions is independently tested by the predicate
(measurement).

* This procedure continues until all resulting regions are uniform.



Region-Based Segmentation

Region Splitting

® The main problem with region splitting is determining where to split a region.
® One method to divide a region is to use a quad tree structure.
® Quadtree: a tree in which nodes have exactly four descendants.

ab

FIGURE 10.42
(a) Partitioned
image.

(b) Corresponding R R,
quadtree.




Region-Based Segmentation

Region Splitting and Merging

® The split and merge procedure:
* Split into four disjoint quadrants any region R; for which P(R.) = FALSE.

* Merge any adjacent regions R; and R, for which P(R;,UR,) = TRUE. (the
quadtree structure may not be preserved)

* Stop when no further merging or splitting is possible.

abc

FIGURE 10.43
(a) Original
image. (b) Result

of split and merge
procedure.

(¢) Result of
thresholding (a).

%

%



Segmentation by Morphological Watersheds

The concept of watersheds is based on visualizing an image in three
dimensions: two spatial coordinates versus gray levels.

In such a topographic interpretation, we consider three types of points:

* (a) points belonging to a regional minimum

* (b) points at which a drop of water would fall with certainty to a single
minimum

* (c) points at which water would be equally likely to fall to more than one
such minimum

@ The principal objective of segmentation algorithms based on these concepts
is to find the watershed lines.



Binary Morphological Processing

® Non-linear image processing technique
* Order of sequence of operations is important
Linear: (3+2)*3 = (5)*3=15
3*3+2*3=9+6=15
Non-linear: (3+2)? + (5)2=25 [sum, then square]
(3)% + (2)? =9+4=13 [square, then sum]
® Based on geometric structure
® Used for edge detection, noise removal and feature extraction
= Used to ‘understand’ the shape/form of a binary image



Introduction

Structuring Element
Erosion

Dilation

Opening

Closing
Hit-and-miss
Thinning

© ® © ®©® ® ® ©@ ®

Thickening




Image — Set of Pixels

@ Basic idea is to treat an object within an image as a set of pixels (or
coordinates of pixels)

® In binary images, pixels that are ‘off’, set to 0, are background and appear
black.

® Foreground pixels (objects) are 1 and appear white




® Neighborhood
@®© Set of pixels defined by their location relation to the pixel of interest

* Defined by structuring element
* Specified by connectivity

® Connectivity-
e ‘4-connected’

o ‘8-connected’




Translation of Object A by vector b

@ Define Translation ob object A by vector b:
A={tel?:t=a+b,ae A}
Where I? is the two dimensional image space that contains the image

@ Definition of DILATION is the UNION of all the translations:
ADB=u{tel?>:t=atb,ace A}forallb’sinB




DILATION

® The shape of B determines the final shape of the dilated object.

® B acts as a geometric filter that changes the geometric structure of A




@ Erosion is an important morphological operation

® Applied Structuring Element.
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Setof coordinate points =
{ ['1|'1}| {ﬂ.—1}, {11_1}|
[-1,':'}, [U,U}, [11':'}-

['1| 1)! [U, 1}- [1| 1} }



@ Basic operations

@ Are dual to each other:
* Erosion shrinks foreground, enlarges Background

* Dilation enlarges foreground, shrinks background




Erosion

@ Erosion is the set of all points in the image, where the structuring element
“fits into”.

@ Consider each foreground pixel in the input image
* If the structuring element fits in, write a “1” at the origin of the structuring

element!
® Simple application of pattern matching
@ Input:

* Binary Image (Gray value)
* Structuring Element, containing only 1s!



® View gray value images as a stack of binary images!

[ Width of eroding kernel: == J

Intensity Intensity

N\ A

— —

A Goordinate X Coordinate




Example: Dilation

@ Dilation is an important morphological operation

® Applied Structu

1 1 i Setof coordinate points =

{ ['1| '1}| {EII '1}| {11_1}|

['1| U}, [U, U}, [1 1 U}I

1 1 1 (1,13, (0, 1% (1,13 }




Dilation

@ Dilation is the set of all points in the image, where the structuring element
“touches” the foreground.

® Consider each pixel in the input image

* If the structuring element touches the foreground image, write a “1” at
the origin of the structuring element!

® Input:
* Binary Image
* Structuring Element, containing only 1s!!



Dilation and Erosion

© DILATION: Adds pixels to the boundary of an object

@ EROSIN: Removes pixels from the boundary of an object

® Number of pixels added or removed depends on size and shape of
structuring element




® Important operations

® Derived from the fundamental operations
e Dilatation
e Erosion
@ Usually applied to binary images, but gray value images are also possible

® Opening and closing are dual operations




Opening

® Similar to Erosion
* Spot and noise removal
* Less destructive
@ Erosion next dilation
® the same structuring element for both operations.
® Input:
* Binary Image
* Structuring Element, containing only 1s!




Opening

® Take the structuring element (SE) and slide it around inside each foreground
region.

» All pixels which can be covered by the SE with the SE being entirely within
the foreground region will be preserved.

» All foreground pixels which can not be reached by the structuring element

without lapping over the edge of the foreground object will be eroded
away!

® Opening is idempotent: Repeated application has no further effects!
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® Structuring element




Closing

® Similar to Dilation
* Removal of holes
* Tends to enlarge regions, shrink background

® Closing is defined as a Dilatation, followed by an Erosion using the same
structuring element for both operations.

Dilation next erosion!

Input:

* Binary Image

* Structuring Element, containing only 1s!

OO,



Closing

® Take the structuring element (SE) and slide it around outside each foreground
region.

* All background pixels which can be covered by the SE with the SE being
entirely within the background region will be preserved.

* All background pixels which can not be reached by the structuring element
without lapping over the edge of the foreground object will be turned into
a foreground.

® Opening is idempotent: Repeated application has no further effects!



DIGITAL IMAGE PROCESSING

UNIT-V

IMAGE COMPRESSION



Introduction
Huffman coding
Run-length coding
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coding

LZW compression
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Transform image
coding




INTRODUCTION

Digital image coding and compression

Techniques and algorithms concerned with the minimization of the memory
needed to represent and store digital images

®@Compression factors
Transmission and storing of large images.

Reduce of baud rate.
Reduce of transmission time.




TYPES OF COMPRESSION TECHNIQUES

Lossless compression techniques

These are used when raw image data are difficult to obtain or contain
vital information that may be destroyed
by compression, e.g. in medical diagnostic imaging.

Lossy compression techniques

* These can be used when raw image data can be easily reproduced or
when the information loss can be tolerated at the receiver site, e.g.
in Digital Television, Teleconferencing



ENTROPY CODING

Pulse Coding Modulation (PCM) using B bits/pixel.

The average number of bits per pixel can be reduced by
assigning binary codes of different bit length to the
various image intensities.

The pdf (probability density function) p(i) can be
estimated by calculating the digital image histogram.

Assignment of short code words to intensities having a
hgh probability of occurrence and larger code words
to less frequent image intensity levels.



HUFFMAN CODING

The image intensity levels are coded by using variable length codewords.
No codeword can be the prefix of another codeword

Average codeword length

H(B)<L<H(B)+1




HUFFMAN CODING

Figurel: (a) Construction of Huffman code tree,
(b) tree rearrangement
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Run-length coding

Each image line can be represented as follows:

(Xlr'--) X/\/I ) (gl;/]_);(g2;/2 );---1 (gk;/k )

where:

91= Xy 9k =Xy

Each couple (g, /) is called gray-level run.




Run-length coding




RUN-LENGTH CODING

The resulting compression is considerable if the grey-level runs are relatively
large.

The savings are even larger when the image is binary.

An end of line (EOL) code word indicates the start of an image and the end
of a line.




RUN-LENGTH CODING

The run-length coding has been standardized by CCITT.

It has been included in Group 3 coding schemes (FAX transmission).

EOL

DATA

EOL

DATA

FILL

EOL| - -

EOL

DATA

EOL

EOL

EOL

EOL

EOL

EOL

Figure: Format of an image coded by a run-length code.




RUN-LENGTH CODING

Terminating Codewords

Run length White run Black run

0 00110101 0000110111

1 000111 010

2 0111 11

3 1000 10

4 1011 011

5 1100 0011

6 1110 0010

7 1111 00011

8 10011 000101

9 10100 000100

10 00111 0000100

11 01000 0000101

12 001000 0000111

13 000011 00000100

14 110100 00000111
110101 000011000

Flgure Part of modified Huffman codebook for run-length
coding (CCITT).




LZW COMPRESSION

General-purpose compression scheme
proposed by Lempel-Ziv and Welch.

It can be used for the compression of any
binary data file.

It is incorporated in several de facto
image storage standards (e.g. TIFF, GIF).




LZW COMPRESSION

It is a lossless, fast and effective algorithm and can operate on
images of any bit depth.

LZW compression is based on the construction of a code table
that maps frequently encountered bit strings to output
codewords.

The digital image as well as the coded one is treated as a one-
dimensional bit string.




LZW COMPRESSION

» The speed of both LZW compression and decompression depends on the
implementation of the code table and on the efficient searching in it.

» The decompression is usually faster because no search is needed.

» The compression ratio ranges from 1:1.5 to 1:3.

» Substantial compression can be obtained for binary or bitmap images
(moderate compression for raw greyscale images).




PREDICTIVE CODING

One way to describe information redundancy in digital
images is to wuse predictability in local image
neighbourhoods.

The pixel intensity f(n,m) can be predicted from the
intensities of its neighbourhooding pixels A:

f (n,m) = L[f, (n—i,m- j), (Q,))eA]

= ITL : = T

| BF | B

Y L

rt T
Figure: Causal windows used in image prediction




PREDICTIVE CODING

Let us suppose that it is sufficient to code the error:

e(n/m) = f(n,m) B f(n,m)

If e,(n,m) is the quantized and coded value of the error e(n,m), the
pixel value can be reconstructed as follows:

fr(nlm) Lfr(n_ilm_j)r
If the prediction is good, the error term has a small dynamic range and

a substantial compression can be achieved.

For the reconstruction, the transmission of the prediction
coefficients and of the coded error is needed.



PREDICTIVE CODING

% Extensively used in telecommunications.
“ Itis a lossy coding scheme.

% The quantization of the error signal always creates an irrecoverable

amount of distortion.

Quantizer

Predictor

Communication
channel

f(n, m)

Predictor




2 0 00

Predictive Differential Pulse Code Modulation with entropy codin&jf"if

* Itis alossless coding scheme.
* The performance of the DPCM depends greatly on the predictor used
and on the choice of its coefficients.

f(n,m) e(m,m) f(nym)

Entropy Communic. Entropy +
T‘jl')_ coding ™ channel [T decoding 15 ._|
= +
Predictor f (nj m} f (_-n : m) Predictor




PREDICTIVE CODING

Let us suppose that the image line f{m) can be modeled as a stationary
AR process:

flm) = ia(k) f(m—k)+o(m), E[& (m)]:o2

where d(m) is a white additive Gaussian noise uncorrelated to f(m).

A natural choice for the prediction scheme is:

f D ia(k) f.(m—k)

k=1




PREDICTIVE CODING

The quantized error signal e,(m) Is transmitted to
rectheer 5
. e,(m)=Q[e(m)]=Q[f (m)— T (m)]

The image row Is reconstructed by

using. fr(m):ia(k) f.(m—k)+e,(m)

k=1
The prediction coefficients can be chosen by
solving the set of normal equations (where R(K) Is
the autocorrelation function):

[ RORQD .. Rp-1) 1 a@) 1 [ R@) |
RO RO ... R(p-2la@)| RO
M M M M M M
R(p-1) ... RO Jla(p)] [R(p)

R(p-2
)



PREDICTIVE CODING

The error image can be obtained and quantized,
once the coefficients a(l,j) are known:

e(n,m) = f (n,m)—f (n,m)

The digital image can be reconstructed at the
receiver as
follows: f.(nm)=> > a(, j)f,(n—i,m- j)+e,(n,m)

(i,]) €A

The autocorrelation coefficients can be estimated
by using:

. 1 N, M L
R(, ])= (2N+1)(2M1) i:Z:Z:f(k,l)f(kﬂ,l +])

—N
J=—M



TRANSFORM IMAGE CODING

Transform image coding
We try to use image transforms in an effort to concentrate the image
energy in a few transform coefficients.

- - Quantizer | | ;
) F(1) , (1) o
f(2) F@2)™ Bit —{Quantizer 2= [(2) Inverse f(2)
| 5] Transform | i - [
: : allocation : Transform 5
f(L) F(L) F(L) F(1)
e —=lQuantizer L —»

Ennﬁrding Dec;gding




TRANSFORM IMAGE CODING

Letf be the vector representing an image of size
L = N xM. The transform vector F is given by:

F = Af

where A is the transform matrix. The inverse transform is defined
as follows:

f=A"F

Unitary transform definition:

AAT =ATA =1




TRANSFORM IMAGE CODING

The DC coefficient and some other “low-frequency” coefficients
tend to concentrate most of the signal energy.

A varying number of bits can be allocated to the remaining
coefficients.

The transform coefficients F(k), 1<k <K are quantized using K
guantizers.

The decoding is done by applying the inverse transform to the

encoded coefficient vector.




TRANSFORM IMAGE CODING

Problems to be solved for a good transform coding algorithm

The choice of the transform to be used (DFT, WHT, DCT, DST etc.).

The choice of image block size.
The determination of bit allocation.
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TRANSFORM IMAGE CODING

Figure : (a) Original image. (b) JPEG compressed image.




