
1

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad -500 043

INFORMATION TECHNOLOGY

COURSE LECTURE NOTES

Course Name DATABASE MANAGEMENT SYSTEMS

Course Code ACSB08

Programme B.Tech

Semester IV

Course

Coordinator
Mr. U. Sivaji, Assistant Professor

Course Faculty Mr. N PoornaChandra Rao, Assistant Professor

 Mr. N Bhaswanth, Assistant Professor

 Ms. B Ramya sree, Assistant Professor

 Ms. K Mayuri, Assistant Professor

 Ms. B Vijaya Durga, Assistant Professor

Lecture Numbers 1-63

Topic Covered All

COURSE OBJECTIVES (COs):

The course should enable the students to:

I
 Understand the role of database management system in an organization and learn the database

 Concepts.

II Design Entity Relationship model for a database.

III Demonstrate the use of constraints and relational algebra operations.

IV Describe the basics of SQL and construct queries using SQL.

V Understand the importance of normalization in databases.

COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the ability to do the

following:

ACSB08.01 Describe the Purpose of Database Systems, Data Models, and View of Data.

ACSB08.02 Summarize the concept of Database Languages, Database Users.

ACSB08.03 Identify the Various Components of overall DBS architecture.

ACSB08.04 Use the concept of ER Model.

2

ACSB08.05 Describe Basics of Relational Model.

ACSB08.06 Determine Relational algebra, The Self variable.

ACSB08.07 Understand selection and projection, set operations.

ACSB08.08 Determine renaming, joins, division.

ACSB08.09 Use examples of algebra queries.

ACSB08.10
Illustrate Tuple relational calculus, Domain relational calculus, and also expressive power

of algebra and calculus.

ACSB08.11 Understand SQL – Data Definition commands, Queries with various options.

ACSB08.12 Analyze the concept of Mata manipulation commands, Views, Joins, views.

ACSB08.13 Illustrate Calling a function, Returning multiple values from a function.

ACSB08.14
Contrast the Usage of Relational database design, Functional dependencies, Armstrong

Axioms

ACSB08.15
Define Normalization, 2nd and 3rd Normalization, Basic definitions of MVDs and JDs, 4th

and 5th normal forms.

ACSB08.16 Discuss the concept of Transaction, Transaction State.

ACSB08.17 Understand Atomicity and Durability, Concurrent Executions.

ACSB08.18 Summarize the concept of Serializability, Recoverability.

ACSB08.19 Discuss the Concurrency Control and various Protocols.

ACSB08.20

Understand the concept of Multiversion Schemes, Deadlock Handling. Recovery: Failure

Classification, Storage Structure, Recovery and Atomicity, Log-Based Recovery, Shadow

Paging, Recovery with Concurrent Transactions Buffer Management.

ACSB08.21 Knowledge about the Physical Storage Media, Magnetic Disks, Storage Access

ACSB08.22 Apply Working with File Organization, Organization of Records in Files.

ACSB08.23
Understand Ordered Indices, B+-Tree Index Files, B-Tree Index Files, Static Hashing,

Dynamic Hashing.

ACSB08.24 Comparison of Ordered Indexing and Hashing.

ACSB08.25 Illustrate Query Processing: Overview, Measures of Query Cost.

3

SYLLABUS

Module-I

CONCEPTUAL MODELING INTRODUCTION

Classes: 09

Introduction to Data bases: Purpose of Database Systems, View of Data, Data Models, Database Languages,

Database Users, Various Components of overall DBS architecture, Various Concepts of ER Model, Basics of

Relational Model

Module-II RELATIONAL APPROACH Classes: 09

Relational algebra and calculus: Relational algebra, selection and projection, set operations, renaming, joins,

division, examples of algebra queries, relational calculus: Tuple relational calculus, Domain relational calculus,

expressive power of algebra and calculus

Module-III

SQL QUERY - BASICS , RDBMS - NORMALIZATION

Classes: 09

SQL – Data Definition commands, Queries with various options, Mata manipulation commands, Views, Joins,

views, integrity and security; Relational database design: Pitfalls of RDBD, Lossless join decomposition,

Functional dependencies , Armstrong Axioms, Normalization for relational databases 1st , 2 nd and 3rd normal

forms, Basic definitions of MVDs and JDs, 4th and 5th normal forms.

Module-IV

TRANSACTION MANAGEMENT

Classes: 09

Transaction processing: Transaction Concept, Transaction State, Implementation of Atomicity and Durability,

Concurrent Executions, Serializability, Recoverability. Concurrency Control: Lock-Based Protocols,

Timestamp-Based Protocols, Validation-Based Protocols, Multiple Granularity, Multiversion Schemes,

Deadlock Handling. Recovery: Failure Classification, Storage Structure, Recovery and Atomicity, Log-Based

Recovery, Shadow Paging, Recovery With Concurrent Transactions Buffer Management.

Module-V

DATA STORAGE AND QUERY PROCESSING

Classes: 09

Data storage: Overview of Physical Storage Media, Magnetic Disks, Storage Access, File Organization,

Organization of Records in Files. Indexing and Hashing: Basic Concepts: Ordered Indices, B+-Tree Index Files,

B-Tree Index Files, Static Hashing, Dynamic Hashing, Comparison of Ordered Indexing and Hashing. Query

Processing: Overview, Measures of Query Cost.

Text Books:

1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan, "Database System Concepts", McGraw-Hill,

 6
th

 Edition, 2017.

Reference Books:

1. Raghu Ramakrishnan, "Database Management System", Tata McGraw-Hill Publishing Company, 3
rd

Edition, 2007.

2. Hector Garcia Molina, Jeffrey D. Ullman, Jennifer Widom, "Database System Implementation", Pearson

Education, United States, 1
st
 Edition, 2000.

3. Peter Rob, Corlos Coronel, "Database System, Design, Implementation and Management", Thompson

Learning Course Technology, 5
th

 Edition, 2003

4

Module-I

Conceptual Modeling

Introduction to Data bases

 Data: data is a collection of raw facts and figures.

 DataBase: database is a collection of interrelated data.

 DBMS: database is a collection of interrelated data and set of programs can access that system.

Database System Applications

1. Enter Price Information:

– Sales: customers, products, purchases

– Accounting: payments, receipts, account balance, assets.

– Human Resources: employee records, salaries, tax deductions

– Manufacturing: production, inventory, orders, supply chain

– Online Retails: order tracking, customized recommendations

2. Banking and Finance: all transactions

– Credit card Transaction: generation of monthly statements.

– Finance: storing information about holdings and sales,

3. Universities: registration, grades

4. Airlines: reservations, schedules

5. Telecommunications: keeping records of calls made, generating monthly bills

Purpose of Database Systems

In the early days, database applications were built directly on top of file systems

 Drawbacks of using file systems to store data:

 Data redundancy and inconsistency: Multiple file formats, duplication of

information in different files

 Difficulty in accessing data: Need to write a new program to carry out each

new task

 Data isolation: multiple files and formats

 Integrity problems: Hard to add new constraints or change existing ones

5

 Atomicity of updates: Failures may leave database in an inconsistent state

with partial updates carried out. Example: Transfer of funds from one

account to another should either complete or not happen at all

 Concurrent access anomalies: Example: Two people reading a balance and

updating it at the same time

 Security problems: Database systems offer solutions to all the above

problems

View of Data

A database is a collection of interrelated data and set of programs that allow users to accessand

modify these data. A major purpose of a database system is to provide users with an abstract view of

the data. That is, the system hides certain details of how the data stored and maintained.

Data Abstraction:

Major purpose of DBMS is to provide users with abstract view of data i.e. the system hides certain

details of how the data are stored and maintained. Since database system users are not computer

trained, developers hide the complexity from users through 3 levels of abstraction, to simplify user‘s

interaction with the system.

 Levels of Abstraction

 Physical level of data abstraction: How the data are actually stored. This s the lowest

level of abstraction which describes how data are actually stored.

 Logical level of data abstraction: This level hides what data are actually stored in the

database and what relations hip exists among them. Describes data stored in database,

and the relationships among the data.

 View Level of data abstraction: View provides security mechanism to prevent user

from accessing certain parts of database. application programs hide details of data

types. Views can also hide information (such as an employee‘s salary) for security

purposes.

6

Figure 1.TheThree level of abstraction.

Instances and schemas:

Instance: The collection of information stored in the database at a particular movement is called an

instance of the database.

 Similar to types and variables in programming languages

Schema: the overall design of the database is called the database schema.

 Example: The database consists of information about a set of customers and accounts and the

relationship between them .Analogous to type information of a variable in a program

– Physical schema: database design at the physical level.

Logical schema: database design at the logical level

Data Models

Data Model: Underlying the structure of a database is the data model,

A collection of conceptual tools for describing data, data relationships, data semantics and consistency

constraints.

 Relational model: The relational model uses a collection of tables to represent both data and the

relationships among those data. Each table has multiple columns, and each column has a

unique name, Tables are also called known as relations.

 Entity-Relationship Model: The Entity –Relationship (E-R) data model uses a collection of

basic objects, called entities, and relationships among these objects.

An entity is a ―thing‖ or ―object‖ in the real world that is distinguishable from other object

 Object-Based Data Models: Object-oriented Programming (especially in Java, C++,or C#).

 Semi structured Data Model: The semi structured data model permits the specification of data

where individual data items of the same type may have different sets of attributes.

7

 Other older models:

– Network Model

– Hierarchical Model

Database Languages

A Database provides a DDL to specify the database schema and a DML to express database queries

and updates.

Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or manipulate data as

organized by the appropriate data model.

The types of access are:

• Retrieval of information stored in the database

• Insertion of new information into the database

 • Deletion of information from the database

 • Medication of information stored in the database

There are basically two types:

• Procedural DMLs require a user to specify what data are needed and how to get those data.

• Declarative DMLs (also referred to as non procedural DMLs) require user to specify what data are

needed without specifying how to get those data.

Data- Definition Language (DDL):

We specify a database schema by a set of definitions expressed by a special language called a data-

definition language(DDL).The DDL is also used to specify additional properties of the data.

SQL provides a rich DDL that allows one to define tables, integrity constraints, assertions, etc…

Example: create table accoun(account_number char(10), branch_name char(10),

 balance integer)

In addition, the DDL statement updates the data dictionary, which contains metadata; the schema of a

table is an example of metadata.

Data Base Access From Application Programs:

Application programs are programs that are used to interact with the database.

To access the database, DML Statements need to be executed form the host language. ‗

There are two ways o do this.

8

 By Providing an Application Program interface (set of procedures) that can be used to send

DML and DDL statement to the database and retrieve the results.(ODBC and JDBC).

 By extending the host language syntax to embed DML calls within the host language program.

A special character prefaces DML calls and preprocessor called the DML pre complier

,converts the DML statements to normal procedure calls in the host language

SQL: widely used non-procedural language

Example 1: Find the name of the customer with customer-id 192-83-7465

 select customer.customer_name

 from customer

 where customer.customer_id = ‗192-83-7465‘

Example 2: Find the balances of all accounts held by the customer with customer-Id 192-83-7465.

 select account.balance

 from depositor, account

 where depositor.customer_id = ‗192-83-7465‘ and

 depositor.account_number = account.account_number

Example 3: Find the name of the customer with customer-id 192-83-7465

 select customer.customer_name

 from customer

 where customer.customer_id = ‗192-83-7465‘

Database Users

 A primary goal of a database system is to retrieve information from and store new information

into the database. People who work with a database can be categorized as database users or

database administrators.

Data base Users and User Interfaces

 There are four different types of database system users, differentiated by the way they expect to

interact with the system.

 Different types of user interfaces have been designed for the different types of users.

 Na¨ıve users are unsophisticated users who interact with the system by invoking one of

the application programs that have been written previously. For example, a clerk in the

university who needs to add a new instructor to Users are differentiated by the way they

expect to interact with the system department A invokes a program called New - hire. This

program asks the clerk for the name of the new instructor, her new ID, the name of the

department (that is, A), and the salary

 Application programmers: are computer professionals who write application programs.

Application programmers can choose from many tools to develop user interfaces. Rapid

application development (RAD) tools are tools that en- able an application programmer to

construct forms and reports with minimal programming effort.

9

 Sophisticated users: interact with the system with out writing programs. In- stead, they form

their requests either using a database query language or by using tools such as data analysis

software. Analysts who submit queries to explore data in the database fall in this category.

 Specialized users: are sophisticated users who write specialized database applications that do

not fit into the traditional data-processing framework. Among these applications are computer

aided design systems, knowledge- base and expert systems, systems that store data with

complex data types (for example, graphics data and audio data),and environment-modeling

systems.

Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data and the programs

that access those data. A person who has such central control over the system is called a data base

administrator (DBA).

 The functions of a DBA include:

 Schema definition. The DBA creates the original database schema by executing a set of data

definition statements in the DDL.

 Storage structure and access-method definition.

 Schema and physical-organization modification.

– Routine maintenance.

– Periodically backing up the database.

– Ensuring that enough free disk space is available for normal operations, and upgrading disk

space as required.

– Monitoring jobs running on the Data base.

Various Components of overall DBS architecture

The architecture of database systems is greatly influenced by the underlying computer system on

which the database is runs:

Database system can be.

 Centralized

 Client-server

 Parallel (multiple processors and disks)

 Distributed

 Overall System Structure

10

Database Application Architectures:

– Database applications are usually partitioned into two or three parts, as in Figure1.8.1..In a two-

tier architecture, the application resides at the client machine, where it invokes database system

functionality at the server machine through query language statements.

– Application program interface standards like ODBC and JDBC are used for interaction between

the client and the server. In contrast,

– In a three-tier architecture, the client machine acts as merely a front end and does not contain any

direct database calls.

– Instead, the client end communicates with an application server, usually through a forms

interface.

– The application server in turn communicates with a database system to access data.

11

– The business logic of the application, which says what actions to carry out under what

conditions, is embedded in the application server, instead of being distributed across multiple

clients.

– Three-tier applications are more appropriate for large applications, and for applications that run

on the World Wide Web.

Figure .Two-tier and Three –tier architecture.

Various Concepts of ER Model

 The database design process can be divided into six steps. The ER model is most relevant to the

first three steps:

(1) Requirements Analysis: The very first step in designing a database application is to understand

what data is to be stored in the database, what applications must be built on top of it, and what

operations are most frequent and subject to performance requirements. In other words, we must find

out what the users want from the database.

 (2) Conceptual Database Design: The information gathered in the requirements analysis step is used

to develop a high-level description of the data to be stored in the database, along with the constraints

that are known to hold over this data. This step is often carried out using the ER model, or a similar

high-level data model.

(3) Logical Database Design: We must choose a DBMS to implement our database design, and

convert the conceptual database design into a database schema in the data model of the chosen

DBMS. We will only consider relational DBMSs, and therefore, the task in the logical design step is

to convert an ER schema into a relational database schema.

The result is a conceptual schema, sometimes called the logical schema, in the relational data model.

12

E-R DIAGRAMS

Beyond ER Design

The ER diagram is just an approximate description of the data, constructed through a very subjective

evaluation of the information collected during requirements analysis.

Once we have a good logical schema, we must consider performance criteria and design the

physical schema. Finally, we must address security issues and ensure that users are able to access the

data they need, but not data that we wish to hide from them. The remaining three steps of database design

are briefly described below:

(4) Schema Refinement: The fourth step in database design is to analyze the collection of relations in our

relational database schema to identify potential problems,

(5) Physical Database Design: In this step we must consider typical expected workloads that our database

must support and further refine the database design to ensure that it meets desired performance criteria

(6) Security Design: In this step, we identify different user groups and different roles played by various

users (e.g., the development team for a product, the customer support representatives, the product

manager).

For each role and user group, we must identify the parts of the database that they must be able to access

and the parts of the database that they should not be allowed to access, and take steps to ensure that they

can access only the necessary parts.

Types of attributes

Attributes are properties of entities. Attributes are represented by means of eclipses. Every eclipse

represents one attribute and is directly connected to its entity (rectangle).

13

 Simple attribute:

Simple attributes are atomic values, which cannot be divided further. For example, student's

phone-number is an atomic value of 10 digits.

[Image: Simple Attributes]

Composite attribute:

Composite attributes are made of more than one simple attribute. For example, a student's complete name

may have first_name and last_name.

If the attributes are composite, they are further divided in a tree like structure. Every node is then

connected to its attribute. That is composite attributes are represented by eclipses that are connected with

an eclipse.

[Image: Composite Attributes]

Single-valued attribute:

Single valued attributes contain on single value. For example: Social_Security_Number.

Multi-value attribute:

14

Multi-value attribute may contain more than one values. For example, a person can have more than one

phone numbers, email_addresses etc.

Multivalued attributes are depicted by double

eclipse.

Derived attribute:

Derived attributes are attributes, which do not exist physical in the database, but there values are derived

from other attributes presented in the database. For example, average_salary in a department should be

saved in database instead it can be derived. For another example, age can be derived from data_of_birth.

 Derived attributes are depicted by dashed eclipse.

[Image: Derived Attributes]

15

Relationships and Relationship Sets

The association among entities is called relationship. For example, employee entity has relation work

s_at with department. Another example is for student who enrolls in some course. Here, Works_at and

Enrolls are called relationship.

Relationship Set:

Relationship of similar type is called relationship set. Like entities, a relationship too can have attributes.

These attributes are called descriptive attributes.

Degree of relationship

The number of participating entities in an relationship defines the degree of the relationship.

Binary = degree 2

Ternary = degree 3

n-ary = degree

Mapping Cardinalities:

Cardinality defines the number of entities in one entity set which can be associated to the number of

entities of other set via relationship set.

One-to-one: one entity from entity set A can be associated with at most one entity of entity set B and vice

versa.

[Image: One-to-one relation]

One-to-many: One entity from entity set A can be associated with more than one entities of entity set B

but from entity set B one entity can be associated with at most one entity.

16

[Image: One-to-many relation]

Many-to-one: More than one entities from entity set A can be associated with at most one entity of entity

set B but one entity from entity set B can be associated with more than one entity from entity set A.

[Image: Many-to-one relation]

Many-to-many: one entity from A can be associated with more than one entity from B and vice versa.

[Image: Many-to-many relation]

17

An entity is an object in the real world that is distinguishable from other objects.

Examples include the following: the Green Dragonzord toy, the toy department, the manager of the toy

department, the home address of the manager of the toy department.

A collection of similar entities is called an entity set.

A attribute is an property of an entity.

Additional Features Of Er Model:

 Key Constraints

 Participation Constraints

 Weak Entities

 Class Hierarchies

 Aggregation

 Key Constraints

There must be at least one minimal subset of attributes in the relation, which can identify a tuple

uniquely. This minimal subset of attributes is called key for that relation. If there are more than one such

minimal subsets, these are called candidate keys.

Weak Entities

A weak entity can be identified uniquely only by considering the primary key of another (owner) entity.

Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner,

many weak entities).

Weak entity set must have total participation in this identifying relationship set.

Weak Entity Sets

An entity set that does not have a primary key is referred to as a weak entity set.

The existence of a weak entity set depends on the existence of a identifying entity set

 it must relate to the identifying entity set via a total, one-to-many relationship set from the identifying

to the weak entity set Identifying relationship depicted using a double diamond The discriminator (or

partial key) of a weak entity set is the set of attributes that distinguishes among all the entities of a weak

entity set. The primary key of a weak entity set is formed by the primary key of the strong entity set on

which the weak entity set is existence dependent, plus the weak entity set‘s discriminator depict a weak

entity set by double rectangles.

Under line the discriminator of a weak entity set with a dashed line.

More Weak Entity Set Examples

18

In a university, a course is a strong entity and a course_offering can be modeled as a weak entity The

discriminator of course_offering would be semester (including year) and section_number (if there

is more than one section). If we model course_offering as a strong entity we would model

course_number as an attribute. Then the relationship with course would be implicit in the course_number

attribute

A weak entity sets is one which does not have any primary key associated with it.

Mapping process (Algorithm):

[Image: Mapping Weak Entity Sets]

Basics of Relational Model

Relational Model Concepts

1. Attribute: Each column in a Table. Attributes are the properties which define a relation. e.g.,

Student_Rollno, NAME,etc.

2. Tables – In the Relational model the, relations are saved in the table format. It is stored along

with its entities. A table has two properties rows and columns. Rows represent records and

columns represent attributes.

3. Tuple – It is nothing but a single row of a table, which contains a single record.

4. Relation Schema: A relation schema represents the name of the relation with its attributes.

5. Degree: The total number of attributes which in the relation is called the degree of the

relation.

6. Cardinality: Total number of rows present in the Table.

7. Column: The column represents the set of values for a specific attribute.

8. Relation instance – Relation instance is a finite set of tuples in the RDBMS system. Relation

instances never have duplicate tuples.

9. Relation key - Every row has one, two or multiple attributes, which is called relation key.

10. Attribute domain – Every attribute has some pre-defined value and scope which is known as

attribute domain

19

Relational Integrity constraints

Relational Integrity constraints is referred to conditions which must be present for a valid relation.

These integrity constraints are derived from the rules in the mini-world that the database represents.

There are many types of integrity constraints. Constraints on the Relational database management

system is mostly divided into three main categories are:

1. Domain constraints

2. Key constraints

3. Referential integrity constraints

Domain Constraints

Domain constraints can be violated if an attribute value is not appearing in the corresponding domain

or it is not of the appropriate data type.

Domain constraints specify that within each tuple, and the value of each attribute must be unique.

This is specified as data types which include standard data types integers, real numbers, characters,

Booleans, variable length strings, etc.

Example:

Create DOMAIN CustomerName

CHECK (value not NULL)

The example shown demonstrates creating a domain constraint such that CustomerName is not NULL

Key constraints

An attribute that can uniquely identify a tuple in a relation is called the key of the table. The value of

the attribute for different tuples in the relation has to be unique.

Example:

In the given table, CustomerID is a key attribute of Customer Table. It is most likely to have a single

key for one customer, CustomerID =1 is only for the CustomerName =" Google".

CustomerID CustomerName Status

1 Google Active

2 Amazon Active

3 Apple Inactive

20

Referential integrity constraints

Referential integrity constraints is base on the concept of Foreign Keys. A foreign key is an important

attribute of a relation which should be referred to in other relationships. Referential integrity

constraint state happens where relation refers to a key attribute of a different or same relation.

However, that key element must exist in the table.

Example:

In the above example, we have 2 relations, Customer and Billing.

Tuple for CustomerID =1 is referenced twice in the relation Billing. So we know

CustomerName=Google has billing amount $300

Operations in Relational Model

Four basic update operations performed on relational database model are

Insert, update, delete and select.

 Insert is used to insert data into the relation

 Delete is used to delete tuples from the table.

 Modify allows you to change the values of some attributes in existing tuples.

 Select allows you to choose a specific range of data.

Whenever one of these operations are applied, integrity constraints specified on the relational

database schema must never be violated.

21

Insert Operation

The insert operation gives values of the attribute for a new tuple which should be inserted into a

relation.

Update Operation

You can see that in the below-given relation table CustomerName= 'Apple' is updated from Inactive

to Active.

Delete Operation

To specify deletion, a condition on the attributes of the relation selects the tuple to be deleted.

In the above-given example, CustomerName= "Apple" is deleted from the table.

The Delete operation could violate referential integrity if the tuple which is deleted is referenced by

foreign keys from other tuples in the same database.

Select Operation

22

In the above-given example, CustomerName="Amazon" is selected

Best Practices for creating a Relational Model

 Data need to be represented as a collection of relations

 Each relation should be depicted clearly in the table

 Rows should contain data about instances of an entity

 Columns must contain data about attributes of the entity

 Cells of the table should hold a single value

 Each column should be given a unique name

 No two rows can be identical

 The values of an attribute should be from the same domain

Advantages of using Relational model

 Simplicity: A relational data model is simpler than the hierarchical and network model.

 Structural Independence: The relational database is only concerned with data and not with a

structure. This can improve the performance of the model.

 Easy to use: The relational model is easy as tables consisting of rows and columns is quite

natural and simple to understand

 Query capability: It makes possible for a high-level query language like SQL to avoid complex

database navigation.

 Data independence: The structure of a database can be changed without having to change any

application.

 Scalable: Regarding a number of records, or rows, and the number of fields, a database should

be enlarged to enhance its usability.

Disadvantages of using Relational model

 Few relational databases have limits on field lengths which can't be exceeded.

 Relational databases can sometimes become complex as the amount of data grows, and the

relations between pieces of data become more complicated.

 Complex relational database systems may lead to isolated databases where the information

cannot be shared from one system to another.

23

Module – II

Relational Approach

Relational algebra and calculus

Relational algebra is a procedural query language, which takes instances of relations as input and

yields instances of relations as output. It uses operators to perform queries. An operator can be

either unary or binary. They accept relations as their input and yield relations as their output.

Relational algebra is performed recursively on a relation and intermediate results are also considered

relations.

The fundamental operations of relational algebra are as follows −

 Select

 Project

 Union

 Set different

 Cartesian product

 Rename

We will discuss all these operations in the following sections.

Select Operation (σ)

It selects tuples that satisfy the given predicate from a relation.

Notation − σp(r)

Where σ stands for selection predicate and r stands for relation. p is prepositional logic formula which

may use connectors like and, or, and not. These terms may use relational operators like − =, ≠, ≥, < ,

>, ≤.

For example −

σsubject = "database"(Books)

Output − Selects tuples from books where subject is 'database'.

σsubject = "database" and price = "450"(Books)

Output − Selects tuples from books where subject is 'database' and 'price' is 450.

σsubject = "database" and price = "450" or year > "2010"(Books)

Output − Selects tuples from books where subject is 'database' and 'price' is 450 or those books

published after 2010.

24

Project Operation (∏)

It projects column(s) that satisfy a given predicate.

Notation − ∏A1, A2, An (r)

Where A1, A2 , An are attribute names of relation r.

Duplicate rows are automatically eliminated, as relation is a set.

For example −

∏subject, author (Books)

Selects and projects columns named as subject and author from the relation Books.

Set Operations:

Union Operation (∪)

It performs binary union between two given relations and is defined as −

r ∪ s = { t | t ∈ r or t ∈ s}

Notation − r U s

Where r and s are either database relations or relation result set (temporary relation).

For a union operation to be valid, the following conditions must hold −

 r, and s must have the same number of attributes.

 Attribute domains must be compatible.

 Duplicate tuples are automatically eliminated.

∏ author (Books) ∪ ∏ author (Articles)

Output − Projects the names of the authors who have either written a book or an article or both.

Set Difference (−)

The result of set difference operation is tuples, which are present in one relation but are not in the

second relation.

Notation − r − s

Finds all the tuples that are present in r but not in s.

∏ author (Books) − ∏ author (Articles)

Output − Provides the name of authors who have written books but not articles.

Cartesian Product (Χ)

Combines information of two different relations into one.

25

Notation − r Χ s

Where r and s are relations and their output will be defined as −

r Χ s = { q t | q ∈ r and t ∈ s}

σauthor = 'tutorialspoint'(Books Χ Articles)

Output − Yields a relation, which shows all the books and articles written by tutorialspoint.

Rename Operation (ρ)

The results of relational algebra are also relations but without any name. The rename operation allows

us to rename the output relation. 'rename' operation is denoted with small Greek letter rho ρ.

Notation − ρ x (E)

Where the result of expression E is saved with name of x.

Additional operations are −

 Set intersection

 Assignment

 Natural join

Join Operations

Join operation is essentially a cartesian product followed by a selection criterion.

Join operation denoted by ⋈.

JOIN operation also allows joining variously related tuples from different relations.

Types of JOIN:

Various forms of join operation are:

Inner Joins:

 Theta join

 EQUI join

 Natural join

Outer join:

 Left Outer Join

 Right Outer Join

 Full Outer Join

26

Inner Join:

In an inner join, only those tuples that satisfy the matching criteria are included, while the rest are

excluded. Let's study various types of Inner Joins:

Theta Join:

The general case of JOIN operation is called a Theta join. It is denoted by symbol θ

Example

A ⋈θ B

Theta join can use any conditions in the selection criteria.

For example:

A ⋈ A.column 2 > B.column 2 (B)

A ⋈ A.column 2 > B.column 2 (B)

column 1 column 2

1 2

EQUI join:

When a theta join uses only equivalence condition, it becomes a equi join.

For example:

A ⋈ A.column 2 = B.column 2 (B)

A ⋈ A.column 2 = B.column 2 (B)

column 1 column 2

1 1

EQUI join is the most difficult operations to implement efficiently in an RDBMS and one reason why

RDBMS have essential performance problems.

NATURAL JOIN (⋈)

Natural join can only be performed if there is a common attribute (column) between the relations. The

name and type of the attribute must be same.

27

Example

Consider the following two tables

C

Num Square

2 4

3 9

D

Num Cube

2 8

3 18

C ⋈ D

C ⋈ D

Num Square Cube

2 4 4

3 9 9

OUTER JOIN

In an outer join, along with tuples that satisfy the matching criteria, we also include some or all tuples

that do not match the criteria.

Left Outer Join(A B)

In the left outer join, operation allows keeping all tuple in the left relation. However, if there is no

matching tuple is found in right relation, then the attributes of right relation in the join result are filled

with null values.

28

Consider the following 2 Tables

A

Num Square

2 4

3 9

4 16

B

Num Cube

2 8

3 18

5 75

A B

A ⋈ B

Num Square Cube

2 4 4

3 9 9

29

4 16 -

Right Outer Join: (A B)

In the right outer join, operation allows keeping all tuple in the right relation. However, if there is no

matching tuple is found in the left relation, then the attributes of the left relation in the join result are

filled with null values.

A B

A ⋈ B

Num Cube Square

2 8 4

3 18 9

5 75 -

Full Outer Join: (A B)

In a full outer join, all tuples from both relations are included in the result, irrespective of the

matching condition.

A B

A ⋈ B

Num Cube Square

2 4 8

3 9 18

30

4 16 -

5 - 75

Summary

Operation Purpose

Select(σ) The SELECT operation is used for selecting a

subset of the tuples according to a given selection

condition

Projection(π) The projection eliminates all attributes of the

input relation but those mentioned in the

projection list.

Union Operation(∪) UNION is symbolized by symbol. It includes all

tuples that are in tables A or in B.

Set Difference(-) - Symbol denotes it. The result of A - B, is a

relation which includes all tuples that are in A but

not in B.

Intersection(∩) Intersection defines a relation consisting of a set

of all tuple that are in both A and B.

Cartesian Product(X) Cartesian operation is helpful to merge columns

from two relations.

Inner Join Inner join, includes only those tuples that satisfy

the matching criteria.

Theta Join(θ) The general case of JOIN operation is called a

Theta join. It is denoted by symbol θ.

EQUI Join When a theta join uses only equivalence

condition, it becomes a equi join.

Natural Join(⋈) Natural join can only be performed if there is a

common attribute (column) between the relations.

31

Outer Join In an outer join, along with tuples that satisfy the

matching criteria.

Left Outer Join() In the left outer join, operation allows keeping all

tuple in the left relation.

Right Outer join() In the right outer join, operation allows keeping

all tuple in the right relation.

Full Outer Join() In a full outer join, all tuples from both relations

are included in the result irrespective of the

matching condition.

Relational Calculus

In contrast to Relational Algebra, Relational Calculus is a non-procedural query language, that is, it

tells what to do but never explains how to do it.

Relational calculus exists in two forms −

Tuple Relational Calculus (TRC)

In the tuple relational calculus, you will have to find tuples for which a predicate is true. The calculus

is dependent on the use of tuple variables. A tuple variable is a variable that 'ranges over' a named

relation: i.e., a variable whose only permitted values are tuples of the relation.

Example:

For example, to specify the range of a tuple variable S as the Staff relation, we write:

Staff(S)

To express the query 'Find the set of all tuples S such that F(S) is true,' we can write:

{S | F(S)}

Here, F is called a formula (well-formed formula, or wff in mathematical logic). For example, to

express the query 'Find the staffNo, fName, lName, position, sex, DOB, salary, and branchNo of all

staff earning more than £10,000', we can write:

{S | Staff(S) ∧ S.salary > 10000}

Example:

{t | TEACHER (t) and t.SALARY>20000}

- It implies that it selects the tuples from the TEACHER in such a way that the resulting teacher tuples

will have the salary greater than 20000. This is an example of selecting a range of values.

{t | TEACHER (t) AND t.DEPT_ID = 6}

32

- T select all the tuples of teachers name who work under Department 8. Any tuple variable with 'For

All' (?) or 'there exists' (?) condition is termed as a bound variable. In the last example, for any range

of values of SALARY greater than 20000, the meaning of the condition does not alter. Bound

variables are those ranges of tuple variables whose meaning will not alter if another tuple variable

replaces the tuple variable.

In the second example, you have used DEPT_ID= 8 which means only for DEPT_ID = 8 display the

teacher details. Such variable is called free variable. Any tuple variable without any 'For All' or 'there

exists' condition is called Free Variable.

Domain Relational Calculus

In the tuple relational calculus, you have use variables that have series of tuples in a relation. In the

domain relational calculus, you will also use variables, but in this case, the variables take their values

from domains of attributes rather than tuples of relations. A domain relational calculus expression has

the following general format:

{d1, d2, . . . , dn | F(d1, d2, . . . , dm)} m ≥ n

where d1, d2, . . . , dn, . . . , dm stand for domain variables and F(d1, d2, . . . , dm) stands for a

formula composed of atoms.

Example:

select TCHR_ID and TCHR_NAME of teachers who work for department 8, (where suppose - dept. 8

is Computer Application Department)

{<tchr_id, tchr_name=""> | <tchr_id, tchr_name=""> ? TEACHER Λ DEPT_ID = 10}

Get the name of the department name where Karlos works:

{DEPT_NAME |< DEPT_NAME > ? DEPT Λ ? DEPT_ID (? TEACHER Λ TCHR_NAME =

Karlos)}

It is to be noted that these queries are safe. The use domain relational calculus is restricted to safe

expressions; moreover, it is equivalent to the tuple relational calculus which in turn is similar to the

relational algebra.

expressive power of algebra and calculus

We presented two formal query languages for the relational model. Are they equivalent in power?

Can every query that can be expressed in relational algebra also be expressed in relational calculus?

The answer is yes, it can.

Regarding expressiveness, we can show that every query that can be expressed using a safe relational

calculus query can also be expressed as a relational algebra query. The expressive power of relational

algebra is often used as a metric of how powerful a relational database query language is. If a query

language can express all the queries that we can express in relational algebra, it is said to be

relationally complete. A practical query language is expected to be relationally complete; in addition,

commercial query languages typically support features that allow us to express some queries that

cannot be expressed in relational algebra.

33

Module-III

SQL Query - Basics, RDBMS - Normalization

SQL

Structured Query Language(SQL) as we all know is the database language by the use of which we can

perform certain operations on the existing database and also we can use this language to create a

database. SQL uses certain commands like Create, Drop, Insert etc. to carry out the required tasks.

These SQL commands are mainly categorized into four categories as:

1. DDL – Data Definition Language

2. DQl – Data Query Language

3. DML – Data Manipulation Language

4. DCL – Data Control Language

Though many resources claim there to be another category of SQL clauses TCL – Transaction Control

Language. So we will see in detail about TCL as well.

1. DDL(Data Definition Language) : DDL or Data Definition Language actually consists of the

SQL commands that can be used to define the database schema. It simply deals with

descriptions of the database schema and is used to create and modify the structure of database

objects in the database.

Examples of DDL commands:

 CREATE – is used to create the database or its objects (like table, index, function,

views, store procedure and triggers).

 DROP – is used to delete objects from the database.

 ALTER-is used to alter the structure of the database.

 TRUNCATE–is used to remove all records from a table, including all spaces

allocated for the records are removed.

 COMMENT –is used to add comments to the data dictionary.

 RENAME –is used to rename an object existing in the database.

2. DQL (Data Query Language) :

DML statements are used for performing queries on the data within schema objects. The purpose of

DQL Command is to get some schema relation based on the query passed to it.

Example of DQL:

 SELECT – is used to retrieve data from the a database.

https://www.geeksforgeeks.org/sql-create/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-alter-add-drop-modify/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-comments/
https://www.geeksforgeeks.org/sql-alter-rename/
https://www.geeksforgeeks.org/sql-select-clause/

34

3. DML(Data Manipulation Language) : The SQL commands that deals with the manipulation of

data present in the database belong to DML or Data Manipulation Language and this includes

most of the SQL statements.

Examples of DML:

 INSERT – is used to insert data into a table.

 UPDATE – is used to update existing data within a table.

 DELETE – is used to delete records from a database table.

4. DCL(Data Control Language) : DCL includes commands such as GRANT and REVOKE

which mainly deals with the rights, permissions and other controls of the database system.

Examples of DCL commands:

 GRANT-gives user‘s access privileges to database.

 REVOKE-withdraw user‘s access privileges given by using the GRANT command.

5. TCL(transaction Control Language) : TCL commands deals with the transaction within the

database.

Examples of TCL commands:

 COMMIT– commits a Transaction.

 ROLLBACK– rollbacks a transaction in case of any error occurs.

 SAVEPOINT–sets a savepoint within a transaction.

 SET TRANSACTION–specify characteristics for the transaction.

Data definition commands

Data definition commands are used to create, modify and remove database objects such as schemas,

tables, views, indexes etc.

Common Data Definition commands:

Create

The main use of create command is to create a new table in database. It has a predefined syntax in

which we specify the columns and their respective data types.

General syntax:

CREATE TABLE <TABLE NAME>

(<COLUMN NAME> <DATA TYPE>,

<COLUMN NAME> <DATA TYPE>,

<COLUMN NAME> <DATA TYPE>,

https://www.geeksforgeeks.org/sql-insert-statement/
https://www.geeksforgeeks.org/sql-update-statement/
https://www.geeksforgeeks.org/sql-delete-statement/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/
https://www.geeksforgeeks.org/sql-transactions/

35

<COLUMN NAME> <DATA TYPE>

);

Example: Create a student table with columns student name and roll number.

CREATE TABLE STUDENT

(STUDENT_NAME VARCHAR(30),

ROLL_NUMBER INT

);

Alter

An existing database object can be modified using the alter command. Alter command can do

following changes to any table-

1. Add new columns.

2. Add new integrity constraints.

3. Modify existing columns.

4. Drop integrity constraints.

General Syntax of the ALTER command is mentioned below:

For adding a new column

ALTER TABLE <table_name> ADD <column_name>

 For renaming a table

ALTER TABLE <table_name> RENAME To <new_table_name >

For modifying a column

ALTER TABLE <table_name> MODIFY <column_name > <data type >

For deleting a column

ALTER TABLE <table_name> DROP COLUMN <column_name>

Drop

This command can delete an index, table or view. Basically, any component from a relational

database management system can be removed using the Drop command. Once the object is dropped,

it cannot be reused.

The general syntax of drop command is as follows:

DROP TABLE <table_name>;

36

DROP DATABASE <database_name>;

DROP TABLE <index_name>;

Truncate

Using the truncate command, all the records in a database are deleted, but the database structure is

maintained.

General syntax:

TRUNCATE TABLE <table name>

Comment

This command is used to add comments to the data dictionary.

General syntax:

1. Single line comments: use ‗ --‗ before any text.

2. Multiline comments: /* comments in between */

Rename

The rename command renames an object

General Syntax:

Rename <old name> to <new name>

Data manipulation commands

Data manipulation commands are used to manipulate data in the database.

Some of the Data Manipulation Commands are-

Select

Select statement retrieves the data from database according to the constraints specifies alongside.

SELECT <COLUMN NAME>

FROM <TABLE NAME>

WHERE <CONDITION>

GROUP BY <COLUMN LIST>

HAVING <CRITERIA FOR FUNCTION RESULTS>

ORDER BY <COLUMN LIST>

General syntax:

Example: select * from employee where e_id>100;

37

Insert

Insert statement is used to insert data into database tables.

General Syntax:

INSERT INTO <TABLE NAME> (<COLUMNS TO INSERT>) VALUES (<VALUES TO

INSERT>)

Example: insert into Employee (name, dept_id) values (‗ABC‘, 3);

Update

The update command updates existing data within a table.

General syntax:

UPDATE <TABLE NAME>

SET <COLUMN NAME> = <UPDATED COLUMN VALUE>,

<COLUMN NAME> = <UPDATED COLUMN VALUE>,

<COLUMN NAME> = <UPDATED COLUMN VALUE>,…

WHERE <CONDITION>

Example: update Employee set Name=‘AMIT‘ where E_id=5;

Delete

Deletes records from the database table according to the given constraints.

General Syntax:

DELETE FROM <TABLE NAME>

WHERE <CONDITION>

Example:

delete from Employee where e_id=5;

To delete all records from the table:

Delete * from <TABLE NAME>;

Merge

Use the MERGE statement to select rows from one table for update or insertion into another table.

The decision whether to update or insert into the target table is based on a condition in the ON clause.

It is also known as UPSERT i.e. combination of UPDATE and INSERT.

General Syntax (SQL):

MERGE <TARGET TABLE> [AS TARGET]

38

USING <SOURCE TABLE> [AS SOURCE]

ON <SEARCH CONDITION>

[WHEN MATCHED

THEN <MERGE MATCHED >]

[WHEN NOT MATCHED [BY TARGET]

THEN < MERGE NOT MATCHED >]

[WHEN NOT MATCHED BY SOURCE

THEN <MERGE MATCHED >];

General Syntax (Oracle)

MERGE INTO <TARGET TABLE>

USING <SOURCE TABLE>

ON <SEARCH CONDITION>

[WHEN MATCHED

THEN <MERGE MATCHED >]

[WHEN NOT MATCHED

THEN < MERGE NOT MATCHED >];

views

A view is nothing more than a SQL statement that is stored in the database with an associated name.

A view is actually a composition of a table in the form of a predefined SQL query.

A view can contain all rows of a table or select rows from a table. A view can be created from one or

many tables which depends on the written SQL query to create a view.

Views, which are a type of virtual tables allow users to do the following −

 Structure data in a way that users or classes of users find natural or intuitive.

 Restrict access to the data in such a way that a user can see and (sometimes) modify exactly

what they need and no more.

 Summarize data from various tables which can be used to generate reports.

Creating Views

Database views are created using the CREATE VIEW statement. Views can be created from a single

table, multiple tables or another view.

39

To create a view, a user must have the appropriate system privilege according to the specific

implementation.

The basic CREATE VIEW syntax is as follows −

CREATE VIEW view_name AS

SELECT column1, column2.....

FROM table_name

WHERE [condition];

You can include multiple tables in your SELECT statement in a similar way as you use them in

a normal SQL SELECT query.

Example

Consider the CUSTOMERS table having the following records −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Following is an example to create a view from the CUSTOMERS table. This view would be used to

have customer name and age from the CUSTOMERS table.

SQL > CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age

FROM CUSTOMERS;

Now, you can query CUSTOMERS_VIEW in a similar way as you query an actual table. Following

is an example for the same.

SQL > SELECT * FROM CUSTOMERS_VIEW;

40

This would produce the following result.

+----------+-----+

| name | age |

+----------+-----+

| Ramesh | 32 |

| Khilan | 25 |

| kaushik | 23 |

| Chaitali | 25 |

| Hardik | 27 |

| Komal | 22 |

| Muffy | 24 |

+----------+-----+

The WITH CHECK OPTION

The WITH CHECK OPTION is a CREATE VIEW statement option. The purpose of the WITH

CHECK OPTION is to ensure that all UPDATE and INSERTs satisfy the condition(s) in the view

definition.

If they do not satisfy the condition(s), the UPDATE or INSERT returns an error.

The following code block has an example of creating same view CUSTOMERS_VIEW with the

WITH CHECK OPTION.

CREATE VIEW CUSTOMERS_VIEW AS

SELECT name, age

FROM CUSTOMERS

WHERE age IS NOT NULL

WITH CHECK OPTION;

The WITH CHECK OPTION in this case should deny the entry of any NULL values in the view's

AGE column, because the view is defined by data that does not have a NULL value in the AGE

column.

Updating a View

A view can be updated under certain conditions which are given below −

 The SELECT clause may not contain the keyword DISTINCT.

41

 The SELECT clause may not contain summary functions.

 The SELECT clause may not contain set functions.

 The SELECT clause may not contain set operators.

 The SELECT clause may not contain an ORDER BY clause.

 The FROM clause may not contain multiple tables.

 The WHERE clause may not contain subqueries.

 The query may not contain GROUP BY or HAVING.

 Calculated columns may not be updated.

 All NOT NULL columns from the base table must be included in the view in order for the

INSERT query to function.

So, if a view satisfies all the above-mentioned rules then you can update that view. The following

code block has an example to update the age of Ramesh.

SQL > UPDATE CUSTOMERS_VIEW

 SET AGE = 35

 WHERE name = 'Ramesh';

This would ultimately update the base table CUSTOMERS and the same would reflect in the view

itself. Now, try to query the base table and the SELECT statement would produce the following result.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Inserting Rows into a View

42

Rows of data can be inserted into a view. The same rules that apply to the UPDATE command also

apply to the INSERT command.

Here, we cannot insert rows in the CUSTOMERS_VIEW because we have not included all the NOT

NULL columns in this view, otherwise you can insert rows in a view in a similar way as you insert

them in a table.

Deleting Rows into a View

Rows of data can be deleted from a view. The same rules that apply to the UPDATE and INSERT

commands apply to the DELETE command.

Following is an example to delete a record having AGE = 22.

SQL > DELETE FROM CUSTOMERS_VIEW

 WHERE age = 22;

This would ultimately delete a row from the base table CUSTOMERS and the same would reflect in

the view itself. Now, try to query the base table and the SELECT statement would produce the

following result.

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Dropping Views

Obviously, where you have a view, you need a way to drop the view if it is no longer needed. The

syntax is very simple and is given below −

DROP VIEW view_name;

Following is an example to drop the CUSTOMERS_VIEW from the CUSTOMERS table.

DROP VIEW CUSTOMERS_VIEW;

43

Joins

The SQL Joins clause is used to combine records from two or more tables in a database. A JOIN is a

means for combining fields from two tables by using values common to each.

Consider the following two tables −

Table 1 − CUSTOMERS Table

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Table 2 − ORDERS Table

+-----+---------------------+-------------+--------+

|OID | DATE | CUSTOMER_ID | AMOUNT |

+-----+---------------------+-------------+--------+

| 102 | 2009-10-08 00:00:00 | 3 | 3000 |

| 100 | 2009-10-08 00:00:00 | 3 | 1500 |

| 101 | 2009-11-20 00:00:00 | 2 | 1560 |

| 103 | 2008-05-20 00:00:00 | 4 | 2060 |

+-----+---------------------+-------------+--------+

Now, let us join these two tables in our SELECT statement as shown below.

SQL> SELECT ID, NAME, AGE, AMOUNT

 FROM CUSTOMERS, ORDERS

 WHERE CUSTOMERS.ID = ORDERS.CUSTOMER_ID;

44

This would produce the following result.

+----+----------+-----+--------+

| ID | NAME | AGE | AMOUNT |

+----+----------+-----+--------+

| 3 | kaushik | 23 | 3000 |

| 3 | kaushik | 23 | 1500 |

| 2 | Khilan | 25 | 1560 |

| 4 | Chaitali | 25 | 2060 |

+----+----------+-----+--------+

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can be used

to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be used to

join tables. However, the most common operator is the equal to symbol.

There are different types of joins available in SQL −

 INNER JOIN − returns rows when there is a match in both tables.

 LEFT JOIN − returns all rows from the left table, even if there are no matches in the right table.

 RIGHT JOIN − returns all rows from the right table, even if there are no matches in the left table.

 FULL JOIN − returns rows when there is a match in one of the tables.

 SELF JOIN − is used to join a table to itself as if the table were two tables, temporarily renaming

at least one table in the SQL statement.

 CARTESIAN JOIN − returns the Cartesian product of the sets of records from the two or more

joined tables.

Integrity

Data integrity in the database is the correctness, consistency and completeness of data. Data integrity

is enforced using the following three integrity constraints:

1. Entity Integrity - This is related to the concept of primary keys. All tables should have their

own primary keys which should uniquely identify a row and not be NULL.

2. Referential Integrity - This is related to the concept of foreign keys. A foreign key is a key of

a relation that is referred in another relation.

3. Domain Integrity - This means that there should be a defined domain for all the columns in a

database.

DB2 database and functions can be managed by two different modes of security controls:

1. Authentication

2. Authorization

https://www.tutorialspoint.com/sql/sql-inner-joins.htm
https://www.tutorialspoint.com/sql/sql-left-joins.htm
https://www.tutorialspoint.com/sql/sql-right-joins.htm
https://www.tutorialspoint.com/sql/sql-full-joins.htm
https://www.tutorialspoint.com/sql/sql-self-joins.htm
https://www.tutorialspoint.com/sql/sql-cartesian-joins.htm

45

Authentication

Authentication is the process of confirming that a user logs in only in accordance with the rights to

perform the activities he is authorized to perform. User authentication can be performed at operating

system level or database level itself. By using authentication tools for biometrics such as retina and

figure prints are in use to keep the database from hackers or malicious users.

The database security can be managed from outside the db2 database system. Here are some type of

security authentication process:

 Based on Operating System authentications.

 Lightweight Directory Access Protocol (LDAP)

For DB2, the security service is a part of operating system as a separate product. For Authentication,

it requires two different credentials, those are userid or username, and password.

Authorization

You can access the DB2 Database and its functionality within the DB2 database system, which is

managed by the DB2 Database manager. Authorization is a process managed by the DB2 Database

manager. The manager obtains information about the current authenticated user, that indicates which

database operation the user can perform or access.

Here are different ways of permissions available for authorization:

Primary permission: Grants the authorization ID directly.

Secondary permission: Grants to the groups and roles if the user is a member

Public permission: Grants to all users publicly.

Context-sensitive permission: Grants to the trusted context role.

Authorization can be given to users based on the categories below:

 System-level authorization

 System administrator [SYSADM]

 System Control [SYSCTRL]

 System maintenance [SYSMAINT]

 System monitor [SYSMON]

Authorities provide of control over instance-level functionality. Authority provide to group privileges,

to control maintenance and authority operations. For instance, database and database objects.

 Database-level authorization

 Security Administrator [SECADM]

 Database Administrator [DBADM]

46

 Access Control [ACCESSCTRL]

 Data access [DATAACCESS]

 SQL administrator. [SQLADM]

 Workload management administrator [WLMADM]

 Explain [EXPLAIN]

Authorities provide controls within the database. Other authorities for database include with LDAD

and CONNECT.

 Object-Level Authorization: Object-Level authorization involves verifying privileges when an

operation is performed on an object.

 Content-based Authorization: User can have read and write access to individual rows and

columns on a particular table using Label-based access Control [LBAC].

Security

DB2 tables and configuration files are used to record the permissions associated with authorization

names. When a user tries to access the data, the recorded permissions verify the following

permissions:

 Authorization name of the user

 Which group belongs to the user

 Which roles are granted directly to the user or indirectly to a group

 Permissions acquired through a trusted context.

While working with the SQL statements, the DB2 authorization model considers the combination of

the following permissions:

 Permissions granted to the primary authorization ID associated with the SQL statements.

 Secondary authorization IDs associated with the SQL statements.

 Granted to PUBLIC

 Granted to the trusted context role.

Instance level authorities

Let us discuss some instance related authorities.

System administration authority (SYSADM)

It is highest level administrative authority at the instance-level. Users with SYSADM authority can

execute some databases and database manager commands within the instance. Users with SYSADM

authority can perform the following operations:

47

 Upgrade a Database

 Restore a Database

 Update Database manager configuration file.

System control authority (SYSCTRL)

It is the highest level in System control authority. It provides to perform maintenance and utility

operations against the database manager instance and its databases. These operations can affect

system resources, but they do not allow direct access to data in the database.

Users with SYSCTRL authority can perform the following actions:

 Updating the database, Node, or Distributed Connect Service (DCS) directory

 Forcing users off the system-level

 Creating or Dropping a database-level

 Creating, altering, or dropping a table space

 Using any table space

 Restoring Database

System maintenance authority (SYSMAINT)

It is a second level of system control authority. It provides to perform maintenance and utility

operations against the database manager instance and its databases. These operations affect the system

resources without allowing direct access to data in the database. This authority is designed for users to

maintain databases within a database manager instance that contains sensitive data.

Only Users with SYSMAINT or higher level system authorities can perform the following tasks:

 Taking backup

 Restoring the backup

 Roll forward recovery

 Starting or stopping instance

 Restoring tablespaces

 Executing db2trc command

 Taking system monitor snapshots in case of an Instance level user or a database level user.

A user with SYSMAINT can perform the following tasks:

 Query the state of a tablespace

 Updating log history files

48

 Reorganizing of tables

 Using RUNSTATS (Collection catalog statistics)

System monitor authority (SYSMON)

With this authority, the user can monitor or take snapshots of database manager instance or its

database. SYSMON authority enables the user to run the following tasks:

 GET DATABASE MANAGER MONITOR SWITCHES

 GET MONITOR SWITCHES

 GET SNAPSHOT

 LIST

 RESET MONITOR

 UPDATE MONITOR SWITCHES

Database authorities

Each database authority holds the authorization ID to perform some action on the database. These

database authorities are different from privileges. Here is the list of some database authorities:

 ACCESSCTRL: allows to grant and revoke all object privileges and database authorities.

 BINDADD: Allows to create a new package in the database.

 CONNECT: Allows to connect to the database.

 CREATETAB: Allows to create new tables in the database.

 CREATE_EXTERNAL_ROUTINE: Allows to create a procedure to be used by applications

and the users of the databases.

 DATAACCESS: Allows to access data stored in the database tables.

 DBADM: Act as a database administrator. It gives all other database authorities except

ACCESSCTRL, DATAACCESS, and SECADM.

 EXPLAIN: Allows to explain query plans without requiring them to hold the privileges to

access the data in the tables.

 IMPLICIT_SCHEMA: Allows a user to create a schema implicitly by creating an object using

a CREATE statement.

 LOAD: Allows to load data into table.

 QUIESCE_CONNECT: Allows to access the database while it is quiesce (temporarily

disabled).

 SECADM: Allows to act as a security administrator for the database.

49

 SQLADM: Allows to monitor and tune SQL statements.

 WLMADM: Allows to act as a workload administrator

 Privileges

 SETSESSIONUSER

Authorization ID privileges involve actions on authorization IDs. There is only one privilege, called

the SETSESSIONUSER privilege. It can be granted to user or a group and it allows to session user to

switch identities to any of the authorization IDs on which the privileges are granted. This privilege is

granted by user SECADM authority.

Schema privileges

This privileges involve actions on schema in the database. The owner of the schema has all the

permissions to manipulate the schema objects like tables, views, indexes, packages, data types,

functions, triggers, procedures and aliases. A user, a group, a role, or PUBLIC can be granted any user

of the following privileges:

 CREATEIN: allows to create objects within the schema

 ALTERIN: allows to modify objects within the schema.

 DROPIN

This allows to delete the objects within the schema.

Tablespace privileges

These privileges involve actions on the tablespaces in the database. User can be granted the USE

privilege for the tablespaces. The privileges then allow them to create tables within tablespaces. The

privilege owner can grant the USE privilege with the command WITH GRANT OPTION on the

tablespace when tablespace is created. And SECADM or ACCESSCTRL authorities have the

permissions to USE privileges on the tablespace.

Table and view privileges

The user must have CONNECT authority on the database to be able to use table and view privileges.

The privileges for tables and views are as given below:

CONTROL

It provides all the privileges for a table or a view including drop and grant, revoke individual table

privileges to the user.

ALTER

It allows user to modify a table.

DELETE

It allows the user to delete rows from the table or view.

50

INDEX

It allows the user to insert a row into table or view. It can also run import utility.

REFERENCES

It allows the users to create and drop a foreign key.

SELECT

It allows the user to retrieve rows from a table or view.

UPDATE

It allows the user to change entries in a table, view.

Package privileges

User must have CONNECT authority to the database. Package is a database object that contains the

information of database manager to access data in the most efficient way for a particular application.

CONTROL

It provides the user with privileges of rebinding, dropping or executing packages. A user with this

privileges is granted to BIND and EXECUTE privileges.

BIND

It allows the user to bind or rebind that package.

EXECUTE

Allows to execute a package.

Index privileges

This privilege automatically receives CONTROL privilege on the index.

Sequence privileges

Sequence automatically receives the USAGE and ALTER privileges on the sequence.

Routine privileges

It involves the action of routines such as functions, procedures, and methods within a database.

Pitfalls in Relational-Database Design

Obviously, we can have good and bad designs. Among the undesirable design items are:

 Repetition of information

 Inability to represent certain information

 The relation lending with the schema is an example of a bad design:

51

Lending-Schema=(branch-name, branch-city, assets, cutomer-name, loan-number, amount)

 branch-name branch-city assets customer-name loan-number amount

Downtown Brooklyn 9000000 Jones L-17 1000

Redwood Palo Alto 2100000 Smith L-23 2000

Perryridge Horseneck 1700000 Hayes L-15 1500

Downtown Brooklyn 9000000 Jackson L-14 1500

Mianus Horseneck 400000 Jones L-93 500

Round Hill Horseneck 8000000 Turner L-11 900

Pownal Bennington 300000 Williams L-29 1200

North Town Rye 3700000 Hayes L-16 1300

Downtown Brooklyn 9000000 Johnson L-23 2000

Perryridge Horseneck 1700000 Glenn L-25 2500

Brighton Brooklyn 7100000 Brooks L-10 2200

Looking at the Downtown and Perryridge, when a new loan is added, the branch-city and assets must

be repeated. That makes updating the table more difficult, because the update must guarantee that all

tuples are updated. Additional problems come from having two people take out one loan (L-23).

More complexity is involved when Jones took out a loan at a second branch (maybe one near home

and the other near work.) Notice that there is no way to represent information on a branch unless

there is a loan.

Decomposition

The obvious solution is that we should decompose this relation. As an alternative design, we can use

the Decomposition rule: If A implies BC then A implies B and A implies C.

This gives us the schemas:

 branch-customer-schema = (branch-name, branch-city, assets, customer-name)

 customer-loan-schema = (customer-name, loan-number, amount)

 branch-name branch-city assets customer-name

Downtown Brooklyn 9000000 Jones

52

Redwood Palo Alto 2100000 Smith

Perryridge Horseneck 1700000 Hayes

Downtown Brooklyn 9000000 Jackson

Mianus Horseneck 400000 Jones

Round Hill Horseneck 8000000 Turner

Pownal Bennington 300000 Williams

North Town Rye 3700000 Hayes

Downtown Brooklyn 9000000 Johnson

Perryridge Horseneck 1700000 Glenn

Brighton Brooklyn 7100000 Brooks

customer-name loan-number amount

Jones L-17 1000

Smith L-23 2000

Hayes L-15 1500

Jackson L-14 1500

Jones L-93 500

Turner L-11 900

Williams L-29 1200

Hayes L-16 1300

Johnson L-23 2000

Glenn L-25 2500

Brooklyn L-10 2200

53

Then when we need to get back to the original table, we can do a natural join on the two

relations branch-customer and customer-loan.

Evaluating this design, how does it compare to the first version?

 Looking at the Downtown and Perryridge, when a new loan is added, the branch-city and assets

must be repeated. Problem still exists.

 Problems come from having two people take out one loan (L-23). Problem still exists.

 More complexity is involved when Jones took out a loan at a second branch. Problem still

exists.

 Notice that there is no way to represent information on a branch unless there is a loan. Problem

still exists.

Worse, there is a new problem! When we do the natural join, we get back four additional tuples that

did not exists in the original table:

 (Downtown, Brooklyn, 9000000, Jones, L-93, 500)

 (Perryridge, Horseneck, 1700000, Hayes, L-16, 1300)

 (Mianus, Horseneck, 400000, Jones, L-17, 1000)

 (North Town, Rye, 3700000, Hayes, L-15, 1500)

We are no long able to represent in the database information about which customers are borrows from

which branch. This is called a lossy decomposition or lossy-join decomposition. A decomposition

that is not a lossy-decomposition is a lossless-join decomposition. Lossless-joins are a requirement for

good design and this causes constraints on the set of possible relations. We say that a relation

is legal if it satisfies all rules, or constraints, imposed.

The proper way to decomposition this example so that we can have a lossless-join is to use three

relations.

 branch-schema = (branch-name, assets, branch-city)

 loan-schema = (branch-name, loan-number, amount)

 borrower-schema = (customer-name, loan-number)

Lossless Join Decomposition:

 The lossless join property is a feature of decomposition supported by normalization. It is the

ability to ensure that any instance of the original relation can be identified from corresponding

instances in the smaller relations.

R : relation, F : set of functional dependencies on R,

X,Y : decomposition of R

54

 A decomposition {R1, R2,…, Rn} of a relation R is called a lossless decomposition for R if the

natural join of R1, R2,…, Rn produces exactly the relation R.

 A decomposition is lossless if we can recover:

R(A, B, C) -> Decompose -> R1(A, B) R2(A, C) -> Recover -> R‘(A, B, C)

Thus,R‘ = R

 Decomposition is lossles if :

X ∩ Y -> X, that is: all attributes common to both X and Y functionally determine ALL the attributes

in X.

X ∩ Y -> Y, that is: all attributes common to both X and Y functionally determine ALL the attributes

in Y

If X ∩ Y forms a superkey of either X or Y, the decomposition of R is a lossless decomposition.

Dependency Preserving Decomposition:

 A decomposition D = {R1, R2, ..., Rn} of R is dependency-preserving with respect to F if the

union of the projections of F on each Ri in D is equivalent to F;

if (F1∪ F2 ∪ …∪Fn)+ = F +

 Example-

R= (A, B, C)

F = {A ->B, B->C}

Key = {A}

Ris not in BCNF

Decomposition R1 = (A, B), R2 = (B, C)

R1 and R2 are in BCNF, Lossless-join decomposition, Dependency preserving

 Each Functional Dependency specified in F either appears directly in one of the relations in the

decomposition.

 It is not necessary that all dependencies from the relation R appear in some relation Ri.

 It is sufficient that the union of the dependencies on all the relations Ri be equivalent to the

dependencies on R.

 is lost in the decomposition

Functional dependencies

Functional dependency in DBMS, as the name suggests is a relationship between attributes of a table

dependent on each other. Introduced by E. F. Codd, it helps in preventing data redundancy and gets to

know about bad designs.

55

To understand the concept thoroughly, let us consider P is a relation with attributes A and B.

Functional Dependency is represented by -> (arrow sign)

Then the following will represent the functional dependency between attributes with an arrow sign:

A -> B

Above suggests the following:

Example

The following is an example that would make it easier to understand functional dependency:

We have a <Department> table with two attributes: DeptId and DeptName.

DeptId = Department ID

DeptName = Department Name

The DeptId is our primary key. Here, DeptId uniquely identifies the DeptName attribute. This is

because if you want to know the department name, then at first you need to have the DeptId.

DeptId DeptName

001 Finance

002 Marketing

003 HR

Therefore, the above functional dependency between DeptId and DeptName can be determined

as DeptId is functionally dependent on DeptName:

DeptId -> DeptName

56

Types of Functional Dependency

Functional Dependency has three forms:

1. Trivial Functional Dependency

2. Non-Trivial Functional Dependency

3. Completely Non-Trivial Functional Dependency

Let us begin with Trivial Functional Dependency:

Trivial Functional Dependency

It occurs when B is a subset of A in:

A ->B

Example

We are considering the same <Department> table with two attributes to understand the concept of

trivial dependency.

The following is a trivial functional dependency since DeptId is a subset of DeptId and DeptName

{ DeptId, DeptName } -> Dept Id

Non –Trivial Functional Dependency

It occurs when B is not a subset of A in:

A ->B

Example

DeptId -> DeptName

The above is a non-trivial functional dependency since DeptName is a not a subset of DeptId.

Completely Non - Trivial Functional Dependency

It occurs when A intersection B is null in:

A ->B

57

Armstrong Axioms

Armstrong‘s Axioms Property of Functional Dependency

Armstrong‘s Axioms property was developed by William Armstrong in 1974 to reason about

functional dependencies.

The property suggests rules that hold true if the following are satisfied:

1. Transitivity

If A->B and B->C, then A->C i.e. a transitive relation.

2. Reflexivity

A-> B, if B is a subset of A.

3. Augmentation

The last rule suggests: AC->BC, if A->B

If F is a set of functional dependencies then the closure of F, denoted as F
+
, is the set of all functional

dependencies logically implied by F. Armstrong's Axioms are a set of rules, that when applied

repeatedly, generates a closure of functional dependencies.

 Reflexive rule − If alpha is a set of attributes and beta is_subset_of alpha, then alpha holds beta.

 Augmentation rule − If a → b holds and y is attribute set, then ay → by also holds. That is

adding attributes in dependencies, does not change the basic dependencies.

 Transitivity rule − Same as transitive rule in algebra, if a → b holds and b → c holds, then a →

c also holds. a → b is called as a functionally that determines b.

Normalization

If a database design is not perfect, it may contain anomalies, which are like a bad dream for any

database administrator. Managing a database with anomalies is next to impossible.

 Update anomalies − If data items are scattered and are not linked to each other properly, then it

could lead to strange situations. For example, when we try to update one data item having its

copies scattered over several places, a few instances get updated properly while a few others

are left with old values. Such instances leave the database in an inconsistent state.

 Deletion anomalies − We tried to delete a record, but parts of it was left undeleted because of

unawareness, the data is also saved somewhere else.

 Insert anomalies − We tried to insert data in a record that does not exist at all.

Normalization is a method to remove all these anomalies and bring the database to a consistent state.

First Normal Form

First Normal Form is defined in the definition of relations (tables) itself. This rule defines that all the

attributes in a relation must have atomic domains. The values in an atomic domain are indivisible

units.

58

We re-arrange the relation (table) as below, to convert it to First Normal Form.

Each attribute must contain only a single value from its pre-defined domain.

Second Normal Form

Before we learn about the second normal form, we need to understand the following −

 Prime attribute − An attribute, which is a part of the candidate-key, is known as a prime

attribute.

 Non-prime attribute − An attribute, which is not a part of the prime-key, is said to be a non-

prime attribute.

If we follow second normal form, then every non-prime attribute should be fully functionally

dependent on prime key attribute. That is, if X → A holds, then there should not be any proper subset

Y of X, for which Y → A also holds true.

We see here in Student_Project relation that the prime key attributes are Stu_ID and Proj_ID.

According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be dependent upon both

and not on any of the prime key attribute individually. But we find that Stu_Name can be identified by

59

Stu_ID and Proj_Name can be identified by Proj_ID independently. This is called partial dependency,

which is not allowed in Second Normal Form.

We broke the relation in two as depicted in the above picture. So there exists no partial dependency.

Third Normal Form

For a relation to be in Third Normal Form, it must be in Second Normal form and the following must

satisfy −

 No non-prime attribute is transitively dependent on prime key attribute.

 For any non-trivial functional dependency, X → A, then either −

o X is a superkey or,

o A is prime attribute.

We find that in the above Student_detail relation, Stu_ID is the key and only prime key attribute. We

find that City can be identified by Stu_ID as well as Zip itself. Neither Zip is a superkey nor is City a

prime attribute. Additionally, Stu_ID → Zip → City, so there exists transitive dependency.

To bring this relation into third normal form, we break the relation into two relations as follows −

60

Boyce-Codd Normal Form

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on strict terms. BCNF

states that −

 For any non-trivial functional dependency, X → A, X must be a super-key.

In the above image, Stu_ID is the super-key in the relation Student_Detail and Zip is the super-key in

the relation ZipCodes. So,

Stu_ID → Stu_Name, Zip

and

Zip → City

Which confirms that both the relations are in BCNF.

Multi-valued dependency

When existence of one or more rows in a table implies one or more other rows in the same table, then

the Multi-valued dependencies occur.

If a table has attributes P, Q and R, then Q and R are multi-valued facts of P.

It is represented by double arrow:

->->

For our example:

P->->Q

P->->R

In the above case, Multivalued Dependency exists only if Q and R are independent attributes.

A table with multivalued dependency violates the 4NF.

Example

61

Let us see an example:

<Student>

StudentName CourseDiscipline Activities

Amit Mathematics Singing

Amit Mathematics Dancing

Yuvraj Computers Cricket

Akash Literature Dancing

Akash Literature Cricket

Akash Literature Singing

In the above table, we can see Students Amit and Akash have interest in more than one activity.

This is multivalued dependency because CourseDiscipline of a student are independent of Activities,

but are dependent on the student.

Therefore, multivalued dependency:

StudentName ->-> CourseDiscipline

StudentName ->-> Activities

The above relation violates Fourth Normal Form in Normalization.

To correct it, divide the table into two separate tables and break Multivalued Dependency:

<StudentCourse>

StudentName CourseDiscipline

Amit Mathematics

Amit Mathematics

Yuvraj Computers

Akash Literature

Akash Literature

Akash Literature

<StudentActivities>

62

StudentName Activities

Amit Singing

Amit Dancing

Yuvraj Cricket

Akash Dancing

Akash Cricket

Akash Singing

This breaks the multivalued dependency and now we have two functional dependencies:

StudentName -> CourseDiscipline

StudentName - > Activities

Join Dependency

If a table can be recreated by joining multiple tables and each of this table have a subset of the

attributes of the table, then the table is in Join Dependency. It is a generalization of Multivalued

Dependency

Join Dependency can be related to 5NF, wherein a relation is in 5NF, only if it is already in 4NF and

it cannot be decomposed further.

Example

<Employee>

EmpName EmpSkills EmpJob (Assigned Work)

Tom Networking EJ001

Harry Web Development EJ002

Katie Programming EJ002

The above table can be decomposed into the following three tables; therefore it is not in 5NF:

<EmployeeSkills>

EmpName EmpSkills

Tom Networking

63

Harry Web Development

Katie Programming

<EmployeeJob>

EmpName EmpJob

Tom EJ001

Harry EJ002

Katie EJ002

<JobSkills>

EmpSkills EmpJob

Networking EJ001

Web Development EJ002

Programming EJ002

Our Join Dependency:

{(EmpName, EmpSkills), (EmpName, EmpJob), (EmpSkills, EmpJob)}

The above relations have join dependency, so they are not in 5NF. That would mean that a join

relation of the above three relations is equal to our original relation <Employee>.

4NF

The 4NF comes after 1NF, 2NF, 3NF, and Boyce-Codd Normal Form. It was introduced by Ronald

Fagin in 1977.

To be in 4NF, a relation should be in Bouce-Codd Normal Form and may not contain more than one

multi-valued attribute.

Example

Let us see an example:

<Movie>

Movie_Name Shooting_Location Listing

64

MovieOne UK Comedy

MovieOne UK Thriller

MovieTwo Australia Action

MovieTwo Australia Crime

MovieThree India Drama

The above is not in 4NF, since

1. More than one movie can have the same listing

2. Many shooting locations can have the same movie

Let us convert the above table in 4NF:

<Movie_Shooting>

Movie_Name Shooting_Location

MovieOne UK

MovieOne UK

MovieTwo Australia

MovieTwo Australia

MovieThree India

<Movie_Listing>

Movie_Name Listing

MovieOne Comedy

MovieOne Thriller

MovieTwo Action

MovieTwo Crime

MovieThree Drama

Now the violation is removed and the tables are in 4NF.

65

5NF

The 5NF (Fifth Normal Form) is also known as project-join normal form. A relation is in Fifth

Normal Form (5NF), if it is in 4NF, and won‘t have lossless decomposition into smaller tables.

You can also consider that a relation is in 5NF, if the candidate key implies every join dependency in

it.

Example

The below relation violates the Fifth Normal Form (5NF) of Normalization:

<Employee>

EmpName EmpSkills EmpJob (Assigned Work)

David Java E145

John JavaScript E146

Jamie jQuery E146

Emma Java E147

The above relation can be decomposed into the following three tables; therefore, it is not in 5NF:

<EmployeeSkills>

EmpName EmpSkills

David Java

John JavaScript

Jamie jQuery

Emma Java

The following is the <EmployeeJob> relation that displays the jobs assigned to each employee:

<EmployeeJob>

EmpName EmpJob

David E145

John E146

Jamie E146

66

Emma E147

Here is the skills that are related to the assigned jobs:

<JobSkills>

EmpSkills EmpJob

Java E145

JavaScript E146

jQuery E146

Java E147

Our Join Dependency:

{(EmpName, EmpSkills), (EmpName, EmpJob), (EmpSkills, EmpJob)}

The above relations have join dependency, so they are not in 5NF. That would mean that a join

relation of the above three relations is equal to our original relation <Employee>.

67

Module –IV

 Transaction Management

TRANSACTION CONCEPT

A Transaction is a unit of program execution that accesses and possibly updates various data items.

Example transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Two main issues to deal with:

Failures of various kinds, such as hardware failures and system crashes

Concurrent execution of multiple transactions

Example of Fund Transfer Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Atomicity requirement

if the transaction fails after step 3 and before step 6, money will be ―lost‖ leading to an inconsistent

database state

68

Failure could be due to software or hardware the system should ensure that updates of a partially

executed transaction are not reflected in the database.

Durability requirement — once the user has been notified that the transaction has completed (i.e., the

transfer of the $50 has taken place), the updates to the database by the transaction must persist even if

there are software or hardware failures.

Example of Fund Transfer Transaction to transfer $50 from account A to account B:

1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

Consistency requirement in above example: the sum of A and B is unchanged by the execution of the

transaction In general, consistency requirements include Explicitly specified integrity constraints such

as primary keys and foreign keys Implicit integrity constraints Example sum of balances of all

accounts, minus sum of loan amounts must equal value of cash-in-hand A transaction must see a

consistent database. During transaction execution the database may be temporarily inconsistent. When

the transaction completes successfully the database must be consistent Erroneous transaction logic can

lead to inconsistency.

Example of Fund Transfer Isolation requirement — if between steps 3 and 6, another transaction T2 is

allowed to access the partially updated database, it will see an inconsistent database (the sum A + B

will be less than it should be).

 T1 T2

1. read(A)

2. A := A – 50

3. write(A)

 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B)

Isolation can be ensured trivially by running transactions serially that is, one after the other.

However, executing multiple transactions concurrently has significant benefits.

69

ACID Properties

Atomicity. Either all operations of the transaction are properly reflected in the database or none are.

Consistency. Execution of a transaction in isolation preserves the consistency of the database.

Isolation. Although multiple transactions may execute concurrently, each transaction must be unaware

of other concurrently executing transactions. Intermediate transaction results must be hidden from

other concurrently executed transactions. That is, for every pair of transactions Ti and Tj, it appears to

Ti that either Tj, finished execution before Ti started, or Tj started execution after Ti finished.

Durability. After a transaction completes successfully, the changes it has made to the database persist,

even if there are system failures.

Transaction State

• Active – the initial state; the transaction stays in this state while it is executing

• Partially committed – after the final statement has been executed.

• Failed -- after the discovery that normal execution can no longer proceed.

• Aborted – after the transaction has been rolled back and the database restored to its

State prior to the start of the transaction. Two options after it has been aborted: restart the transaction

can be done only if no internal logical error kill the transaction

• Committed – after successful completion.

70

Implementation Of Atomicity And Durability

The recovery-management component of a database system implements the support for atomicity and

durability. Example of the shadow-database scheme:all updates are made on a shadow copy of the

database db_pointer is made to point to the updated shadow copy after the transaction reaches partial

commit and all updated pages have been flushed to disk.

db_pointer always points to the current consistent copy of the database.In case transaction fails, old

consistent copy pointed to by db_pointer can be used, and the shadow copy can be deleted.

The shadow-database scheme: Assumes that only one transaction is active at a time. Assumes disks

do not fail Useful for text editors, but extremely inefficient for large databases (why?)

Variant called shadow paging reduces copying of data, but is still not practical for large databases

does not handle concurrent transactions

Concurrent Executions

Multiple transactions are allowed to run concurrently in the system. Advantages are: increased

processor and disk utilization, leading to better transaction throughput.

Example one transaction can be using the CPU while another is reading from or writing to the disk

reduced average response time for transactions: short transactions need not wait

behind long ones Concurrency control schemes – mechanisms to achieve isolation that is, to control

the interaction among the concurrent transactions in order to prevent them from destroying the

consistency of the database.

Schedule – a sequences of instructions that specify the chronological order in which instructions of

concurrent transactions are executed a schedule for a set of transactions must consist of all

instructions of those transactions must preserve the order in which the instructions appear in each

individual transaction.

71

A transaction that successfully completes its execution will have commit instructions as the last

statement by default transaction assumed to execute commit instruction as its last step

A transaction that fails to successfully complete its execution will have an abort instruction as the last

statement.

Schedule 1

• Let T1 transfer $50 from A to B, and T2 transfer 10% of the balance from A to B.

• A serial schedule in which T1 is followed by T2 :

Schedule 2

Schedule 3

72

Let T1 and T2 be the transactions defined previously.The following schedule is not a serial schedule,

but it is equivalent to Schedule 1.

Serializability

Basic Assumption – Each transaction preserves database consistency.Thus serial execution of a set of

transactions preserves database consistency.A (possibly concurrent) schedule is serializable if it is

equivalent to a serial schedule. Different forms of schedule equivalence give rise to the notions of:

1. conflict serializability

2.view serializability

Simplified view of transactions We ignore operations other than read and write instructions; We

assume that transactions may perform arbitrary computations on data in local buffers in between reads

and writes. Our simplified schedules consist of only read and write instructions. Conflicting

Instructions Instructions li and lj of transactions Ti and Tj respectively, conflict if and only if there

exists some item Q accessed by both li and lj, and at least one of these instructions wrote Q.

 1. li = read(Q), lj = read(Q). li and lj don‘t conflict.

2. li = read(Q), lj = write(Q). They conflict.

3. li = write(Q), lj = read(Q). They conflict

4. li = write(Q), lj = write(Q). They conflict

Intuitively, a conflict between li and lj forces a (logical) temporal order between them. If li and lj are

consecutive in a schedule and they do not conflict, their results would remain the same even if they

had been interchanged in the schedule.

73

Conflict Serializability

If a schedule S can be transformed into a schedule S´ by a series of swaps of non-conflicting

instructions, we say that S and S´ are conflict equivalent.

We say that a schedule S is conflict serializable if it is conflict equivalent to a serial schedule

Schedule 3 can be transformed into Schedule 6, a serial schedule where T2 follows T1, by series of

swaps of non-conflicting instructions.Therefore Schedule 3 is conflict serializable.

Example of a schedule that is not conflict serializable:We are unable to swap instructions in the above

schedule to obtain either the serial schedule < T3, T4 >, or the serial schedule < T4, T3 >.

View Serializability

Let S and S´ be two schedules with the same set of transactions. S and S´ are view equivalent if the

following three conditions are met, for each data item Q,If in schedule S, transaction Ti reads the

initial value of Q, then in schedule S’ also transaction Ti must read the initial value of Q.

If in schedule S transaction Ti executes read(Q), and that value was produced by transaction Tj (if

any), then in schedule S’ also transaction Ti must read the value of Q that was produced by the same

write(Q) operation of transaction Tj .The transaction (if any) that performs the final write(Q) operation

in schedule S must also perform the final write(Q) operation in schedule S’. As can be seen, view

equivalence is also based purely on reads and writes alone.

A schedule S is view serializable if it is view equivalent to a serial schedule.Every conflict serializable

schedule is also view serializable.Below is a schedule which is view-serializable but not conflict

serializable.

 What serial schedule is above equivalent to?

 Every view serializable schedule that is not conflict serializable has blind writes.

 Other Notions of Serializability

74

The schedule below produces same outcome as the serial schedule < T1, T5 >, yet is not conflict

equivalent or view equivalent to it. Determining such equivalence requires analysis of operations

other than read and write.

Recoverability

Recoverable schedule — if a transaction Tj reads a data item previously written by a transaction Ti ,

then the commit operation of Ti appears before the commit operation of Tj.The following schedule

(Schedule 11) is not recoverable if T9 commits immediately after the read

If T8 should abort, T9 would have read (and possibly shown to the user) an inconsistent database state.

Hence, database must ensure that schedules are recoverable.

Cascading Rollbacks

Cascading rollback – a single transaction failure leads to a series of transaction rollbacks. Consider

the following schedule where none of the transactions has yet committed (so the schedule is

recoverable)

75

If T10 fails, T11 and T12 must also be rolled back. Can lead to the undoing of a significant amount of

work Cascade less schedules — cascading rollbacks cannot occur; for each pair of transactions Ti and

Tj such that Tj reads a data item previously written by Ti, the commit operation of Ti appears before

the read operation of Tj.Every cascade less schedule is also recoverable It is desirable to restrict the

schedules to those that are cascade less

Concurrency Control

A database must provide a mechanism that will ensure that all possible schedules are

either conflict or view serializable, and are recoverable and preferably cascadeless A policy in which

only one transaction can execute at a time generates serial schedules, but provides a poor degree of

concurrency Are serial schedules recoverable/cascadeless? Testing a schedule for serializability after

it has executed is a little too late! Goal – to develop concurrency control protocols that will assure

serializability.

Implementation Of Isolation

Schedules must be conflict or view serializable, and recoverable, for the sake of database consistency,

and preferably cascadeless.A policy in which only one transaction can execute at a time generates

serial schedules,but provides a poor degree of concurrency.Concurrency-control schemes tradeoff

between the amount of concurrency they allow and the amount of overhead that they incur.Some

schemes allow only conflict-serializable schedules to be generated, while others allow view-

serializable schedules that are not conflict-serializable.

76

Testing For Serializability

• Consider some schedule of a set of transactions T1, T2, ..., Tn

• Precedence graph — a direct graph where the vertices are the transactions (names).

• We draw an arc from Ti to Tj if the two transaction conflict, and Ti accessed the data

 item on which the conflict arose earlier.

• We may label the arc by the item that was accessed.

Test for Conflict Serializability A schedule is conflict serializable if and only if its precedence graph

is acyclic.Cycle-detection algorithms exist which take order n
2
 time, where n is the number of vertices

in the graph. (Better algorithms take order n + e where e is the number of edges.)

77

If precedence graph is acyclic, the serializability order can be obtained by a topological sorting of the

graph. This is a linear order consistent with the partial order of the graph.

For example, a serializability order for Schedule A would be T5 T1 T3 T2 T4 Are there

others?

Test for View Serializability

The precedence graph test for conflict serializability cannot be used directly to test for view

serializability.Extension to test for view serializability has cost exponential in the size of the

precedence graph.The problem of checking if a schedule is view serializable falls in the class of NP-

complete problems. Thus existence of an efficient algorithm is extremely unlikely.

However practical algorithms that just check some sufficient conditions for view serializability can

still be used.

Concurrency Control

Concurrency Control vs. Serializability Tests

Concurrency-control protocols allow concurrent schedules, but ensure that the schedules are

conflict/view serializable, and are recoverable and cascadeless .Concurrency control protocols

generally do not examine the precedence graph as it is being created Instead a protocol imposes a

discipline that avoids nonseralizable schedules.Different concurrency control protocols provide

different tradeoffs between the amount of concurrency they allow and the amount of overhead that

they incur.Tests for serializability help us understand why a concurrency control protocol is correct.

78

Weak Levels of Consistency

Some applications are willing to live with weak levels of consistency, allowing schedules that are not

serializable E.g. a read-only transaction that wants to get an approximate total balance of all

Accounts. Example. database statistics computed for query optimization can be approximate (why?)

Such transactions need not be serializable with respect to other transactions Tradeoff accuracy for

performance Levels of Consistency in SQL-92 Serializable — default Repeatable read — only

committed records to be read, repeated reads of same record must return same value. However, a

transaction may not be serializable

 it may find some records inserted by a transaction but not find others.

 Read committed — only committed records can be read, but successive reads of recor may

 return different (but committed) values.

 Read uncommitted — even uncommitted records may be read.Transaction Definition in

 SQL Data manipulation language must include a construct for specifying the set of actions

 that comprise a transaction.In SQL, a transaction begins implicitly.A transaction in SQL ends

 by:Commit work commits current transaction and begins a new one.

Rollback work causes current transaction to abort In almost all database systems, by default,

every SQL statement also commits implicitly if it executes successfully Implicit commit can

be turned off by a database directive E.g. in JDBC,connection. setAutoCommit(false);

Lock Based Protocols

A lock is a mechanism to control concurrent access to a data item

Fig:Lock-compatibility matrix

Data items can be locked in two modes :

79

 1. exclusive (X) mode. Data item can be both read as well as

 written. X-lock is requested using lock-X instruction.

 2. shared (S) mode. Data item can only be read. S-lock is

 requested using lock-S instruction.

Lock requests are made to concurrency-control manager. Transaction can proceed only after request is

granted.

 A transaction may be granted a lock on an item if the requested lock is compatible with locks

already held on the item by other transactions

 Any number of transactions can hold shared locks on an item, but if any transaction holds an

exclusive on the item no other transaction may hold any lock on the item.

 If a lock cannot be granted, the requesting transaction is made to wait till all incompatible

locks held by other transactions have been released. The lock is then granted.

 Example :if a transaction performing locking:

 T2: lock-S(A);

 read (A);

 unlock(A);

 lock-S(B);

 read (B);

 unlock(B);

 display(A+B)

Locking as above is not sufficient to guarantee serializability — if A and B get updated in-between the

read of A and B, the displayed sum would be wrong.

• A locking protocol is a set of rules followed by all transactions while requesting and

releasing locks. Locking protocols restrict the set of possible schedules.Pitfalls of Lock-Based

Protocols Consider the partial schedule Neither T3 nor T4 can make progress — executing lock-S(B)

causes T4 to wait for T3 to release its lock on B, while executing lock-X(A) causes T3 to wait for T4

to release its lock on A.Such a situation is called a deadlock. To handle a deadlock one of T3 or T4

must be rolled back and its locks released.The potential for deadlock exists in most locking

protocols. Deadlocks are a necessary evil.

80

Starvation is also possible if concurrency control manager is badly designed. For example: A

transaction may be waiting for an X-lock on an item, while a sequence of other transactions request

and are granted an S-lock on the same item.The same transaction is repeatedly rolled back due to

deadlocks.Concurrency control manager can be designed to prevent starvation.

Two-Phase Locking Protocol

This is a protocol which ensures conflict-serializable schedules.

Phase 1: Growing Phase

– transaction may obtain locks

– transaction may not release locks

Phase 2: Shrinking Phase

– transaction may release locks

– transaction may not obtain locks

The protocol assures serializability. It can be proved that the transactions can be serialized in the order

of their lock points (i.e. the point where a transaction acquired its final lock). All locks are released

after commit or abort

Implementation of Locking

A lock manager can be implemented as a separate process to which transactions send lock and unlock

requests The lock manager replies to a lock request by sending a lock grant messages (or a message

asking the transaction to roll back, in case of a deadlock).The requesting transaction waits until its

request is answered The lock manager maintains a data-structure called a lock table to record granted

locks and pending requests The lock table is usually implemented as an in-memory hash table indexed

on the name of the data item being locked.

Two-phase locking does not ensure freedom from deadlocks

• Cascading roll-back is possible under two-phase locking. To avoid this, follow a

modified protocol called strict two-phase locking. Here a transaction must hold all its exclusive locks

till it commits/aborts.

• Rigorous two-phase locking is even stricter: here all locks are held till commit/abort.

 In this protocol transactions can be serialized in the order in which they commit.

Timestamp Based Protocols

Each transaction is issued a timestamp when it enters the system. If an old transaction Ti has time-

stamp TS(Ti), a new transaction Tj is assigned time-stamp TS(Tj) such that TS(Ti) <TS(Tj).

81

The protocol manages concurrent execution such that the time-stamps determine the

serializability order.In order to assure such behavior, the protocol maintains for each data Q two

timestamp values:

W-timestamp(Q) is the largest time-stamp of any transaction that executed

write(Q) successfully.

R-timestamp(Q) is the largest time-stamp of any transaction that executed

read(Q) successfully.

The timestamp ordering protocol ensures that any conflicting read and write operations are

executed in timestamp order.

Suppose a transaction Ti issues a read(Q)

If TS(Ti) W-timestamp(Q), then Ti needs to read a value of Q that was

 already overwritten.Hence, the read operation is rejected, and Ti is rolled back.

If TS(Ti) W-timestamp(Q), then the read operation is executed, and R-

timestamp(Q) is set to max(R-timestamp(Q), TS(Ti)).

Suppose that transaction Ti issues write(Q).

If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is producing was needed

previously, and the system assumed that that value would never be produced.

Hence, the write operation is rejected, and Ti is rolled back.

If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of Q.

Hence, this write operation is rejected, and Ti is rolled back.Otherwise, the write operation is

executed, and W-timestamp(Q) is set to TS(Ti).

82

A partial schedule for several data items for transactions with

timestamps 1, 2, 3, 4, 5

Correctness of Timestamp-Ordering Protocol

83

The timestamp-ordering protocol guarantees serializability since all the arcs in the

precedence graph are of the form:

Thus, there will be no cycles in the precedence graph Timestamp protocol ensures freedom from

deadlock as no transaction ever waits. But the schedule may not be cascade-free, and may not even

be recoverable.

Thomas‘ Write Rule Modified version of the timestamp-ordering protocol in which obsolete write

operations may be ignored under certain circumstances. When Ti attempts to write data item Q, if

TS(Ti) < W-timestamp(Q), then Ti is attempting to write an obsolete value of {Q}. Rather than

rolling back Ti as the timestamp ordering protocol would have done, this {write} operation can be

ignored.Otherwise this protocol is the same as the timestamp ordering protocol.

 Thomas' Write Rule allows greater potential concurrency.

 Allows some view-serializable schedules that are not conflict-serializable.

Validation Based Protocol

Execution of transaction Ti is done in three phases.

 1. Read and execution phase: Transaction Ti writes only to temporary local variables

 2. Validation phase: Transaction Ti performs a ``validation test'' to determine if local variables can

 be written without violating serializability.

 3. Write phase: If Ti is validated, the updates are applied to the database; otherwise, Ti is

 rolled back.

The three phases of concurrently executing transactions can be interleaved, but each

transaction must go through the three phases in that order.Assume for simplicity that the validation

and write phase occur together,atomically and serially i.e., only one transaction executes

validation/write at a time.Also called as optimistic concurrency control since transaction executes

fully in the hope that all will go well during validation.

Each transaction Ti has 3 timestamps

 Start(Ti) : the time when Ti started its execution

 Validation(Ti): the time when Ti entered its validation phase

 Finish(Ti) : the time when Ti finished its write phase Serializability order is determined by

timestamp given at validation time, to increase concurrency.

84

Multiple Granularities

Allow data items to be of various sizes and define a hierarchy of data granularities, where the small

granularities are nested within larger ones Can be represented graphically as a tree (but don't confuse

with tree-locking protocol) When a transaction locks a node in the tree explicitly, it implicitly locks all

the node's descendents in the same mode.

Granularity of locking (level in tree where locking is done):ine granularity (lower in tree): high

concurrency, high locking overhead coarse granularity (higher in tree): low locking overhead, low

concurrency

Example of Granularity Hierarchy

85

The levels, starting from the coarsest (top) level are

– database

– area

– file

– record

In addition to S and X lock modes, there are three additional lock modes with multiple granularity:

intention-shared (IS): indicates explicit locking at a lower level of the tree but

only with shared locks.

intention-exclusive (IX): indicates explicit locking at a lower level with exclusive or shared locks

shared and intention-exclusive (SIX): the subtree rooted by that node is locked explicitly in shared

mode and explicit locking is being done at a lower level with exclusive-mode locks.intention locks

allow a higher level node to be locked in S or X mode without having to check all descendent nodes.

86

Multiversion Schemes

Multiversion concurrency control techniques keep the old values of a data item when the item is

updated. Several versions (values) of an item are maintained. When a transaction requires access to an

item, an appropriate version is chosen to maintain the serialisability of the concurrently executing

schedule, if possible. The idea is that some read operations that would be rejected in other techniques

can still be accepted, by reading an older version of the item to maintain serialisability.

An obvious drawback of multiversion techniques is that more storage is needed to maintain multiple

versions of the database items. However, older versions may have to be maintained anyway â€― for

example, for recovery purpose. In addition, some database applications require older versions to be

kept to maintain a history of the evolution of data item values. The extreme case is a temporal

database, which keeps track of all changes and the items at which they occurred. In such cases, there

is no additional penalty for multiversion techniques, since older versions are already maintained.

Multiversion techniques based on timestamp ordering

In this technique, several versions X1, X2, â€¦ Xk of each data item X are kept by the system. For

each version, the value of version Xi and the following two timestamps are kept:

1. read_TS(Xi): The read timestamp of Xi; this is the largest of all the timestamps of transactions

that have successfully read version Xi.

2. write_TS(Xi): The write timestamp of Xi; this is the timestamp of the transaction that wrote the

value of version Xi.

87

Whenever a transaction T is allowed to execute a write_item(X) operation, a new version of item X,

Xk+1, is created, with both the write_TS(Xk+1) and the read_TS(Xk+1) set to TS(T).

Correspondingly, when a transaction T is allowed to read the value of version Xi, the value of

read_TS(Xi) is set to the largest of read_TS(Xi) and TS(T).

To ensure serialisability, we use the following two rules to control the reading and writing of data

items:

1. If transaction T issues a write_item(X) operation, and version i of X has the highest

write_TS(Xi) of all versions of X which is also less than or equal to TS(T), and TS(T) <

read_TS(Xi), then abort and roll back transaction T; otherwise, create a new version Xj of X

with read_TS(Xj) = write_TS(Xj) = TS(T).

2. If transaction T issues a read_item(X) operation, and version i of X has the highest

write_TS(Xi) of all versions of X which is also less than or equal to TS(T), then return the

value of Xi to transaction T, and set the value of read_TS(Xj) to the largest of TS(T) and the

current read_TS(Xj).

Multiversion two-phase locking

In this scheme, there are three locking modes for an item: read, write and certify. Hence, the state of

an item X can be one of 'read locked', 'write locked', 'certify locked' and 'unlocked'. The idea behind

the multiversion two-phase locking is to allow other transactions Tâ€™ to read an item X while a

single transaction T holds a write lock X. (Compare with standard locking scheme.) This is

accomplished by allowing two versions for each item X; one version must always have been written

by some committed transaction. The second version Xâ€™ is created when a transaction T acquires a

write lock on the item. Other transactions can continue to read the committed version X while T holds

the write lock. Now transaction T can change the value of Xâ€™ as needed, without affecting the

value of the committed version X. However, once T is ready to commit, it must obtain a certify lock

on all items that it currently holds write locks on before it can commit. The certify lock is not

compatible with read locks, so the transaction may have to delay its commit until all its write lock

items are released by any reading transactions. At this point, the committed version X of the data item

is set to the value of version Xâ€™, version Xâ€™ is discarded, and the certify locks are then

released. The lock compatibility table for this scheme is shown below:

Figure 13.35

In this multiversion two-phase locking scheme, reads can proceed concurrently with a write operation

â€― an arrangement not permitted under the standard two-phase locking schemes. The cost is that a

transaction may have to delay its commit until it obtains exclusive certify locks on all items it has

updated. It can be shown that this scheme avoids cascading aborts, since transactions are only allowed

to read the version X that was written by committed transaction. However, deadlock may occur.

88

Granularity of data items

All concurrency control techniques assumed that the database was formed of a number of items. A

database item could be chosen to be one of the following:

 A database record.

 A field value of a database record.

 A disk block.

 A whole file.

 The whole database.

Several trade-offs must be considered in choosing the data item size. We shall discuss data item size

in the context of locking, although similar arguments can be made for other concurrency control

techniques.

First, the larger the data item size is, the lower the degree of concurrency permitted. For example, if

the data item is a disk block, a transaction T that needs to lock a record A must lock the whole disk

block X that contains A. This is because a lock is associated with the whole data item X. Now, if

another transaction S wants to lock a different record B that happens to reside in the same block X in

a conflicting disk mode, it is forced to wait until the first transaction releases the lock on block X. If

the data item size was a single record, transaction S could proceed as it would be locking a different

data item (record B).

On the other hand, the smaller the data item size is, the more items will exist in the database. Because

every item is associated with a lock, the system will have a larger number of locks to be handled by

the lock manger. More lock and unlock operations will be performed, causing a higher overhead. In

addition, more storage space will be required for the lock table. For timestamps, storage is required

for the read_TS and write_TS for each data item, and the overhead of handling a large number of

items is similar to that in the case of locking.

The size of data items is often called the data item granularity. Fine granularity refers to small item

size, whereas coarse granularity refers to large item size. Given the above trade-offs, the obvious

question to ask is: What is the best item size? The answer is that it depends on the types of

transactions involved. If a typical transaction accesses a small number of records, it is advantageous to

have the data item granularity be one record. On the other hand, if a transaction typically accesses

many records of the same file, it may be better to have block or file granularity so that the transaction

will consider all those records as one (or a few) data items.

Most concurrency control techniques have a uniform data item size. However, some techniques have

been proposed that permit variable item sizes. In these techniques, the data item size may be changed

to the granularity that best suits the transactions that are currently executing on the system.

deadlock

Another problem that may be introduced by 2PL protocol is deadlock. The formal definition of

deadlock will be discussed below. Here, an example is used to give you an intuitive idea about the

deadlock situation. The two transactions that follow the 2PL protocol can be interleaved as shown

here:

89

Figure 13.24

At time step 5, it is not possible for T1â€™ to acquire an exclusive lock on X as there is already a

shared lock on X held by T2â€™. Therefore, T1â€™ has to wait. Transaction T2â€™ at time step 6

tries to get an exclusive lock on Y, but it is unable to as T1â€™ has a shared lock on Y already.

T2â€™ is put in waiting too. Therefore, both transactions wait fruitlessly for the other to release a

lock. This situation is known as a deadly embrace or deadlock. The above schedule would terminate

in a deadlock.

Conservative 2PL

A variation of the basic 2PL is conservative 2PL also known as static 2PL, which is a way of avoiding

deadlock. The conservative 2PL requires a transaction to lock all the data items it needs in advance. If

at least one of the required data items cannot be obtained then none of the items are locked. Rather,

the transaction waits and then tries again to lock all the items it needs. Although conservative 2PL is a

deadlock-free protocol, this solution further limits concurrency.

Strict 2PL

In practice, the most popular variation of 2PL is strict 2PL, which guarantees a strict schedule. (Strict

schedules are those in which transactions can neither read nor write an item X until the last transaction

that wrote X has committed or aborted). In strict 2PL, a transaction T does not release any of its locks

until after it commits or aborts. Hence, no other transaction can read or write an item that is written by

T unless T has committed, leading to a strict schedule for recoverability. Notice the difference

between conservative and strict 2PL; the former must lock all items before it starts, whereas the latter

does not unlock any of its items until after it terminates (by committing or aborting). Strict 2PL is not

deadlock-free unless it is combined with conservative 2PL.

In summary, all type 2PL protocols guarantee serialisability (correctness) of a schedule but limit

concurrency. The use of locks can also cause two additional problems: deadlock and livelock.

Conservative 2PL is deadlock-free.

In a multi-process system, deadlock is an unwanted situation that arises in a shared resource

environment, where a process indefinitely waits for a resource that is held by another process.

For example, assume a set of transactions {T0, T1, T2, ...,Tn}. T0 needs a resource X to complete its

task. Resource X is held by T1, and T1 is waiting for a resource Y, which is held by T2. T2 is waiting

for resource Z, which is held by T0. Thus, all the processes wait for each other to release resources. In

this situation, none of the processes can finish their task. This situation is known as a deadlock.

90

Deadlocks are not healthy for a system. In case a system is stuck in a deadlock, the transactions

involved in the deadlock are either rolled back or restarted.

Deadlock Prevention

To prevent any deadlock situation in the system, the DBMS aggressively inspects all the operations,

where transactions are about to execute. The DBMS inspects the operations and analyzes if they can

create a deadlock situation. If it finds that a deadlock situation might occur, then that transaction is

never allowed to be executed.

There are deadlock prevention schemes that use timestamp ordering mechanism of transactions in

order to predetermine a deadlock situation.

Wait-Die Scheme

In this scheme, if a transaction requests to lock a resource (data item), which is already held with a

conflicting lock by another transaction, then one of the two possibilities may occur −

 If TS(Ti) < TS(Tj) − that is Ti, which is requesting a conflicting lock, is older than Tj − then

Ti is allowed to wait until the data-item is available.

 If TS(Ti) > TS(tj) − that is Ti is younger than Tj − then Ti dies. Ti is restarted later with a

random delay but with the same timestamp.

This scheme allows the older transaction to wait but kills the younger one.

Wound-Wait Scheme

In this scheme, if a transaction requests to lock a resource (data item), which is already held with

conflicting lock by some another transaction, one of the two possibilities may occur −

 If TS(Ti) < TS(Tj), then Ti forces Tj to be rolled back − that is Ti wounds Tj. Tj is restarted later

with a random delay but with the same timestamp.

 If TS(Ti) > TS(Tj), then Ti is forced to wait until the resource is available.

This scheme, allows the younger transaction to wait; but when an older transaction requests an item

held by a younger one, the older transaction forces the younger one to abort and release the item.

In both the cases, the transaction that enters the system at a later stage is aborted.

Deadlock Avoidance

Aborting a transaction is not always a practical approach. Instead, deadlock avoidance mechanisms

can be used to detect any deadlock situation in advance. Methods like "wait-for graph" are available

but they are suitable for only those systems where transactions are lightweight having fewer instances

of resource. In a bulky system, deadlock prevention techniques may work well.

Wait-for Graph

This is a simple method available to track if any deadlock situation may arise. For each transaction

entering into the system, a node is created. When a transaction Ti requests for a lock on an item, say

91

X, which is held by some other transaction Tj, a directed edge is created from Ti to Tj. If Tj releases

item X, the edge between them is dropped and Ti locks the data item.

The system maintains this wait-for graph for every transaction waiting for some data items held by

others. The system keeps checking if there's any cycle in the graph.

Here, we can use any of the two following approaches −

 First, do not allow any request for an item, which is already locked by another transaction. This

is not always feasible and may cause starvation, where a transaction indefinitely waits for a

data item and can never acquire it.

 The second option is to roll back one of the transactions. It is not always feasible to roll back

the younger transaction, as it may be important than the older one. With the help of some

relative algorithm, a transaction is chosen, which is to be aborted. This transaction is known

as the victim and the process is known as victim selection.

Recovery System:

Crash Recovery

DBMS is a highly complex system with hundreds of transactions being executed every second. The

durability and robustness of a DBMS depends on its complex architecture and its underlying hardware

and system software. If it fails or crashes amid transactions, it is expected that the system would

follow some sort of algorithm or techniques to recover lost data.

Failure Classification

To see where the problem has occurred, we generalize a failure into various categories, as follows −

Transaction failure

A transaction has to abort when it fails to execute or when it reaches a point from where it can‘t go

any further. This is called transaction failure where only a few transactions or processes are hurt.

Reasons for a transaction failure could be −

92

 Logical errors − Where a transaction cannot complete because it has some code error or any

internal error condition.

 System errors − Where the database system itself terminates an active transaction because the

DBMS is not able to execute it, or it has to stop because of some system condition. For

example, in case of deadlock or resource unavailability, the system aborts an active

transaction.

System Crash

There are problems − external to the system − that may cause the system to stop abruptly and cause

the system to crash. For example, interruptions in power supply may cause the failure of underlying

hardware or software failure.

Examples may include operating system errors.

Disk Failure

In early days of technology evolution, it was a common problem where hard-disk drives or storage

drives used to fail frequently.

Disk failures include formation of bad sectors, unreachability to the disk, disk head crash or any other

failure, which destroys all or a part of disk storage.

Storage Structure

We have already described the storage system. In brief, the storage structure can be divided into two

categories −

 Volatile storage − As the name suggests, a volatile storage cannot survive system crashes.

Volatile storage devices are placed very close to the CPU; normally they are embedded onto

the chipset itself. For example, main memory and cache memory are examples of volatile

storage. They are fast but can store only a small amount of information.

 Non-volatile storage − These memories are made to survive system crashes. They are huge in

data storage capacity, but slower in accessibility. Examples may include hard-disks, magnetic

tapes, flash memory, and non-volatile (battery backed up) RAM.

Recovery and Atomicity

When a system crashes, it may have several transactions being executed and various files opened for

them to modify the data items. Transactions are made of various operations, which are atomic in

nature. But according to ACID properties of DBMS, atomicity of transactions as a whole must be

maintained, that is, either all the operations are executed or none.

When a DBMS recovers from a crash, it should maintain the following −

 It should check the states of all the transactions, which were being executed.

 A transaction may be in the middle of some operation; the DBMS must ensure the atomicity of

the transaction in this case.

 It should check whether the transaction can be completed now or it needs to be rolled back.

93

 No transactions would be allowed to leave the DBMS in an inconsistent state.

There are two types of techniques, which can help a DBMS in recovering as well as maintaining the

atomicity of a transaction −

 Maintaining the logs of each transaction, and writing them onto some stable storage before

actually modifying the database.

 Maintaining shadow paging, where the changes are done on a volatile memory, and later, the

actual database is updated.

Log-based Recovery

Log is a sequence of records, which maintains the records of actions performed by a transaction. It is

important that the logs are written prior to the actual modification and stored on a stable storage

media, which is failsafe.

Log-based recovery works as follows −

 The log file is kept on a stable storage media.

 When a transaction enters the system and starts execution, it writes a log about it.

<Tn, Start>

 When the transaction modifies an item X, it write logs as follows −

<Tn, X, V1, V2>

It reads Tn has changed the value of X, from V1 to V2.

 When the transaction finishes, it logs −

<Tn, commit>

The database can be modified using two approaches −

 Deferred database modification − All logs are written on to the stable storage and the database

is updated when a transaction commits.

 Immediate database modification − Each log follows an actual database modification. That is,

the database is modified immediately after every operation.

Recovery with Concurrent Transactions

When more than one transaction are being executed in parallel, the logs are interleaved. At the time of

recovery, it would become hard for the recovery system to backtrack all logs, and then start

recovering. To ease this situation, most modern DBMS use the concept of 'checkpoints'.

Checkpoint

Keeping and maintaining logs in real time and in real environment may fill out all the memory space

available in the system. As time passes, the log file may grow too big to be handled at all. Checkpoint

is a mechanism where all the previous logs are removed from the system and stored permanently in a

94

storage disk. Checkpoint declares a point before which the DBMS was in consistent state, and all the

transactions were committed.

Recovery

When a system with concurrent transactions crashes and recovers, it behaves in the following manner

−

 The recovery system reads the logs backwards from the end to the last checkpoint.

 It maintains two lists, an undo-list and a redo-list.

 If the recovery system sees a log with <Tn, Start> and <Tn, Commit> or just <Tn, Commit>, it

puts the transaction in the redo-list.

 If the recovery system sees a log with <Tn, Start> but no commit or abort log found, it puts the

transaction in undo-list.

All the transactions in the undo-list are then undone and their logs are removed. All the transactions in

the redo-list and their previous logs are removed and then redone before saving their logs.

95

Module-V

Data Storage and Query Processing

Overview of Physical Storage Media

Storage media are classified by speed of access, cost per unit of data to buy the media, and by the

medium's reliability. Unfortunately, as speed and cost go up, the reliability does down.

1. Cache is the fastest and the most costly for of storage. The type of cache referred to here is the

type that is typically built into the CPU chip and is 256KB, 512KB, or 1MB. Thus, cache is

used by the operating system and has no application to database, per se.

2. Main memory is the volatile memory in the computer system that is used to hold programs and

data. While prices have been dropping at a staggering rate, the increases in the demand for

memory have been increasing faster. Today's 32-bit computers have a limitation of 4GB of

memory. This may not be sufficient to hold the entire database and all the associated

programs, but the more memory available will increase the response time of the DBMS.

There are attempts underway to create a system with the most memory that is cost effective,

and to reduce the functionality of the operating system so that only the DBMS is supported,

so that system response can be increased. However, the contents of main memory are lost if a

power failure or system crash occurs.

3. Flash memory is also referred to as electrically erasable programmable read-only memory

(EEPROM). Since it is small (5 to 10MB) and expensive, it has little or no application to the

DBMS.

4. Magnetic-disk storage is the primary medium for long-term on-line storage today. Prices have

been dropping significantly with a corresponding increase in capacity. New disks today are in

excess of 20GB. Unfortunately, the demands have been increasing and the volume of data has

been increasing faster. The organizations using a DBMS are always trying to keep up with the

demand for storage. This media is the most cost-effective for on-line storage for large

databases.

5. Optical storage is very popular, especially CD-ROM systems. This is limited to data that is

read-only. It can be reproduced at a very low-cost and it is expected to grow in popularity,

especially for replacing written manuals.

6. Tape storage is used for backup and archival data. It is cheaper and slower than all of the other

forms, but it does have the feature that there is no limit on the amount of data that can be

stored, since more tapes can be purchased. As the tapes get increased capacity, however,

restoration of data takes longer and longer, especially when only a small amount of data is to

be restored. This is because the retrieval is sequential, the slowest possible method.

Magnetic Disks

A typical large commercial database may require hundreds of disks!

Physical Characteristics of Disks

96

Disks are actually relatively simple. There is normally a collection of platters on a spindle. Each

platter is coated with a magnetic material on both sides and the data is stored on the surfaces. There is

a read-write head for each surface that is on an arm assembly that moves back and forth. A motor

spins the platters at a high constant speed, (60, 90, or 120 revolutions per seconds.)

The surface is divided into a set of tracks (circles). These tracks are divided into a set of sectors,

which is the smallest unit of data that can be written or read at one time. Sectors can range in size

from 31 bytes to 4096 bytes, with 512 bytes being the most common. A collection of a specific track

from both surfaces and from all of the platters is called a cylinder.

Platters can range in size from 1.8 inches to 14 inches. Today, 5 1/4 inches and 3 1/2 inches are the

most common, because they have the highest seek times and lowest cost.

A disk controller interfaces the computer system and the actual hardware of the disk drive. The

controller accepts high-level command to read or write sectors. The controller then converts the

commands in the necessary specific low-level commands. The controller will also attempt to protect

the integrity of the data by computing and using checksums for each sector. When attempting to read

the data back, the controller recalculates the checksum and makes several attempts to correctly read

the data and get matching checksums. If the controller is unsuccessful, it will notify the operating

system of the failure.

The controller can also handle the problem of eliminating bad sectors. Should a sector go bad, the

controller logically remaps the sector to one of the extra unused sectors that disk vendors provide, so

that the reliability of the disk system is higher. It is cheaper to produce disks with a greater amount of

sectors than advertised and then map out bad sectors than it is to produce disks with no bad sectors or

with extremely limited possibility of sectors going bad.

There are many different types of disk controllers, but the most common ones today are SCSI, IDE,

and EIDE.

One other characteristic of disks that provides an interesting performance is the distance from the

read-write head to the surface of the platter. The smaller this gap is means that data can be written in a

smaller area on the disk, so that the tracks can be closer together and the disk has a greater capacity.

Often the distance is measured in microns. However, this means that the possibility of the head

touching the surface is increased. When the head touches the surface while the surface is spinning at a

high speed, the result is called a "head crash", which scratches the surface and defaces the head. The

bottom line to this is that someone must replace the disk.

Performance Measures of Disks

1. Seek time is the time to reposition the head and increases with the distance that the head must

move. Seek times can range from 2 to 30 milliseconds. Average seek time is the average of all

seek times and is normally one-third of the worst-case seek time.

2. Rotational latency time is the time from when the head is over the correct track until the data

rotates around and is under the head and can be read. When the rotation is 120 rotations per

second, the rotation time is 8.35 milliseconds. Normally, the average rotational latency

time is one-half of the rotation time.

3. Access time is the time from when a read or write request is issued to when the data transfer

begins. It is the sum of the seek time and latency time.

97

4. Data-transfer rate is the rate at which data can be retrieved from the disk and sent to the

controller. This will be measured as megabytes per second.

5. Mean time to failure is the number of hours (on average) until a disk fails. Typical times today

range from 30,000 to 800,000 hours (or 3.4 to 91 years).

Optimization of Disk-Block Access

Requests for disk I/O are generated by both the file system and by the virtual memory manager found

in most systems. Each request specifies the address on the disk to be referenced; that address specifies

is in the form of a block number. Each block is a contiguous sequence of sectors from a single track of

one platter and ranges from 512 bytes to several kilobytes of data. The lower level file manager must

convert block addresses into the hardware-level cylinder, surface, and sector number.

Since access to data on disk is several orders of magnitude slower is access to data in main memory;

much attention has been paid to improving the speed of access to blocks on the disk. This is also

where more main memory can speed up the response time, by making sure that the data needed is in

memory when it is needed.

This is the same problem that is addressed in designing operating systems, to insure the best response

time from the file system manager and the virtual memory manager.

 Scheduling. Disk-arm scheduling algorithms attempt to order accesses in an attempt to increase

the number of accesses that can be processed in a given amount of time. The might include

First-Come/First-Serve, Shortest Seek First, and elevator.

 File organization. To reduce block-access time, data could be arranged on the disk in the same

order that it is expected to be retrieved. (This would be storing the data on the disk in order

based on the primary key.) At best, this starts to produce less and less of a benefit, as there are

more inserts and deletes. Also we have little control of where on the disk things get stored.

The more the data gets fragmented on the disk, the more time it takes to locate it.

 Nonvolatile write buffer. Using non-volatile memory (flash memory) can be used to protect the

data in memory from crashes, but it does increase the cost. It is possible that the use of an

UPS would be more effective and cheaper.

 Log disk. You can use a disk for writing a sequential log.

 Buffering. The more information you have in buffers in main memory, the more likely you are

to not have to get the information from the disk. However it is more likely that more of the

memory will be wasted with information not necessary.

RAID

RAIDs are Redundant Arrays of Inexpensive Disks. There are six levels of organizing these disks:

 0 -- Non-redundant Striping

 1 -- Mirrored Disks

 2 -- Memory Style Error Correcting Codes

 3 -- Bit Interleaved Parity

98

 4 -- Block Interleaved Parity

 5 -- Block Interleaved Distributed Parity

 6 -- P + Q Redundancy

Tertiary Storage

This is commonly optical disks and magnetic tapes.

Storage Access

A database is mapped into a number of different files, which are maintained by the underlying

operating system. Files are organized into block and a block may contain one or more data item.

A major goal of the DBMS is to minimize the number of block transfers between the disk and

memory. Since it is not possible to keep all blocks in main memory, we need to manage the allocation

of the space available for the storage of blocks. This is also similar to the problems encountered by the

operating system, and can be in conflict with the operating system, since the OS is concerned with

processes and the DBMS is concerned with only one family of processes.

Buffer Manager

Programs in a DBMS make requests (that is, calls) on the buffer manager when they need a block

from a disk. If the block is already in the buffer, the requester is passed the address of the block in

main memory. If the block in not in the buffer, the buffer manager first allocates space in the buffer

for the block, through out some other block, if required, to make space for the new block. If the block

that is to be thrown out has been modified, it must first be written back to the disk. The internal

actions of the buffer manager are transparent to the programs that issue disk-block requests.

 Replacement strategy. When there is no room left in the buffer, a block must be removed from

the buffer before a new one can be read in. Typically, operating systems use a least recently

use (LRU) scheme. There is also a Most Recent Used (MRU) that can be more optimal for

DBMSs.

 Pinned blocks. A block that is not allowed to be written back to disk is said to be pinned. This

could be used to store data that has not been committed yet.

 Forced output of blocks. There are situations in which it is necessary to write back to the block

to the disk, even though the buffer space is not currently needed. This might be done during

system lulls, so that when activity picks up, a write of a modified block can be avoided in

peak periods.

File Organization

Fixed-Length Records

Suppose we have a table that has the following organization:

type deposit = record

 branch-name : char(22);

99

 account-number : char(10);

 balance : real;

end

 If each character occupies 1 byte and a real occupies 8 bytes, then this record occupies 40

bytes. If the first record occupies the first 40 bytes and the second record occupies the second

40 bytes, etc. we have some problems.

 It is difficult to delete a record, because there is no way to indicate that the record is deleted.

(At least one system automatically adds one byte to each record as a flag to show if the record

is deleted.) Unless the block size happens to be a multiple of 40 (which is extremely

unlikely), some records will cross block boundaries. It would require two block access to read

or write such a record.

One solution might be to compress the file after each deletion. This will incur a major amount of

overhead processing, especially on larger files. Additionally, there is the same problem on inserts!

Another solution would be to have two sets of pointers. One that would link the current record to the

next logical record (linked list) plus a free list (a list of free slots.) This increases the size the file.

Variable-Length Records

We can use variable length records:

 Storage of multiple record types in one file.

 Record types that allow variable lengths for one or more fields

 Record types that allow repeating fields.

A simple method for implementing variable-length records is to attach a special end-of-record symbol

at the end of each record. But this has problems:

 To easy to reuse space occupied formerly by a deleted record.

 There is no space in general for records to grow. If a variable-length record is updated and

needs more space, it must be moved. This can be very costly.

It could be solved:

 By making a variable-length into a fixed length.

 By using pointers to point to fixed length records, chained together by pointers.

As you can see, there is not an easy answer.

Organization of Records in Files

Heap File Organization

Any record can be placed anywhere in the file. There is no ordering of records and there is a single

file for each relation.

100

Sequential File Organization

Records are stored in sequential order based on the primary key.

Hashing File Organization

Any record can be placed anywhere in the file. A hashing function is computed on some attribute of

each record. The function specifies in which block the record should be placed.

Clustering File Organization

Several different relations can be stored in the same file. Related records of the different relations can

be stored in the same block.

Data Dictionary Storage

A RDBMS needs to maintain data about the relations, such as the schema. This is stored in a data

dictionary (sometimes called a system catalog):

 Names of the relations

 Names of the attributes of each relation

 Domains and lengths of attributes

 Names of views, defined on the database, and definitions of those views

 Integrity constraints

 Names of authorized users

 Accounting information about users

 Number of tuples in each relation

 Method of storage for each relation (clustered/non-clustered)

 Name of the index

 Name of the relation being indexed

 Attributes on which the index in defined

 Type of index formed

Indexing and Hashing: Basic Concepts

Basic Concepts

An index for a file is like a catalog for a book in the library. Cards in the catalog are stored in

order with portions of the catalog order by author's name, book title, or subject. Items in the

database are catalogued with indices based on keys. When a table is defined, it has a primary key;

however, it can have additional keys defined.

101

Typical databases are too large to search sequentially looking for specific records and more

sophisticated indexing techniques are employed. The two basic kinds of indices are:

Ordered indices

 Hash indices

Different techniques are evaluated on the basis of several opposing factors:

 Access types: The access could be for a specific value or a specified range.

 Access time: The amount of time it takes to find a particular data item or set of items.

 Insertion time: The time it takes to insert a new data item. This value includes the time it takes

to find the correct place to insert the new data items, as well as update the index structure.

Obviously, the more indices that must be updated, the longer this will take. (Note: When

optimizing performance of a DBMS, it is useful to review all indices to make sure that the

primary key is the key used most often and then any other indices are being used often

enough to justify the overhead of maintaining the index.)

 Deletion time: The time it takes to delete a data item. This includes the time to locate the item

and then delete it, as well as updating the index structure. (Note: When optimizing

performance of a DBMS, it is useful to review how deletions can cascade and cause deletions

in other tables. This is part of the overhead of maintaining the index structure.)

 Space overhead: The addition space occupied by an index structure. Provided that the amount

of additional space is moderate, it is usually worthwhile to sacrifice the space to achieve

improved performance. (With the rapidly dropping prices and increased capacity, the

developer must still be limited by the constraint that there is only so much space available and

that it still requires more time to maintain the structure. This overhead can still be

significant!)

With indexing, there is now a new meaning for the over-used word "key":

 Primary key

 Candidate key

 Superkey

 Search key

Records in an indexed file are stored in some type of order (including unordered.). If the file

containing the records is order sequentially, the index whose search key specifies the sequential

order of the file is the primary key. Primary indices are also called clustering indices. Indices

whose search key specifies an order different from the sequential order are called secondary

indices, or nonclustering indices.

Primary Index

If we assume that all files are ordered sequentially on some search key (primary index), then such

files are called index-sequential files. (The Index-Sequential Access Method or ISAM is one of the

oldest index schemes used in database systems.) They are used for applications that require both

102

sequential processing of the entire file and random access to the individual records. An example

for a back account would be:

RECORD

NR (not in

table)

LOCATION

(primary key)

ACCOUNT

NR

BALANCE NEXT

RECORD

1 Brighton A-217 750 2

2 Downtown A-101 500 3

3 Downtown A-110 600 4

4 Mianus A-215 700 5

5 Perryridge A-102 900 6

6 Perryridge A-201 700 7

7 Perryridge A-218 700 8

8 Redwood A-222 700 9

9 Round Hill A-305 350 NULL

It could be even more complex if the primary key was the combination of the location and the

account number. The advantage of this method is that when processing is being done sequentially,

this is the fastest access method. However it is expensive in terms of maintaining. If a record is to

be added to the table, the appropriate slot must be located, a new slot must be added to the table,

and all records must be moved down one slot. Then the new slot is inserted. Then all of the index

columns must be updated. The file stored on the disk can be stored as contiguous or non-

contiguous data. In terms of the DBMS performance, being able to maintain the file contiguously

offers better DBMS performance, however the is probably in conflict with the operating system's

allocation method. (Some DBMS systems will allocate the maximum space that a file can have

when the file is created to reduce the overhead caused when records are added to the file.) Some

systems require space that the operating system can not manage, so that some of these problems

are reduced.

Deletions are preformed in the reverse sequence. The appropriate slot must be located and all

records below that slot must be moved up. Again, all of the index columns must be update.

103

Updates on these kind of files are normally batched together to minimize the system overhead,

because the cost of updating one record is almost exactly the same as updating one hundred

records. This is not particularly suited to interactive updates.

Dense and Sparse Indices

This can be improved by adding another data structure (especially for random access).

 Dense Index. An index record (or index entry) appears for every search-key value, containing

the value and the location for the first data record with that value. The dense index for the

previous table would look like:

Value Start

Brighton 1

Downtown 2

Mianus 4

Perryridge 5

Redwood 8

Round Hill 9

 Sparse Index. An index record is created only for some of the values, which is the only

difference between the two versions in terms of the data and its structure. With the sparse

index, the system has to locate the largest value in the index that does not exceed the search

key. From that point the records must be checked sequentially until a match is found.

Obviously, it is generally faster to locate a record if we have a dense index rather than a spare

index, but the maintenance overhead is greater for a dense index in addition to requiring more

disk space. This is the tradeoff that the system designer must make. The major advantage to the

sparse index is that it will required bring in less blocks, which can be expensive in terms of time,

because searching the block once is memory is SO much faster! The obvious answer might not be

the best answer.

Multilevel Indices

The above system appears to work well, but it does not scale up well. If the index is small enough

to keep in memory this is a really good method, but when the index becomes too large, the

problems of searching the index become just like searching the file: It takes too long!

Suppose we have a file with 100,000 records with 10 records stored per block. If we have one

index record for each block, the index has 10,000 entries. Since the index entries are smaller,

104

there might be 100 entries per block in 100 blocks that are stored sequentially on the disk. Doing

a sequential search would involve up to 100 reads (average would be n/2, or 50 reads).

Binary searches could be used. The cost for b blocks would be log2(b) blocks to be read. In this

example that would be seven reads. If each read is 30 milliseconds access time, we have 210

milliseconds, which by today's standards is long! (That example ignores a number of other time-

consuming activities.) A binary search is not possible if the system was built using overflow

blocks.

What if we use a sparse index on the index file, which is small enough to keep in memory! That

new index is an outer index and the original index is an inner index. The system performs a binary

search on the outer index and now only has to make one read for the correct block of the inner

index. There can be any number of inner levels, creating a multilevel index system.

Multilevel indices are closely related to tree structures, such as the binary trees used for in-

memory indexing.

Index Update

Algorithms for updating single-level indices:

 Deletion. To delete a record, look up the record to delete. If the deleted record was the only

record for that particular search-key, then the search-key value is also deleted from a dense

index. If the deleted record was the first record for a particular search-key value, then the

index was be updated to point the next record. Likewise if a sparse index was used, it too may

have to be similarly updated.

 Insertion. First we perform a lookup using the search-key value of the record to be inserted.

The index is dense and the search-key does not appear in the index, the search-key value must

be inserted into the index. If the index is sparse, it may not have to be modified.

Insertion and deletion algorithms for multilevel indices are a simple extension of this scheme.

Secondary Indices

A secondary index on a candidate key looks just like a dense primary index, except that the record

pointers are not stored in the record itself and must be stored somewhere else. Additionally, the

secondary index might not be based on a candidate key. Therefore, it is not sufficient to point to

the first occurrence. There must be pointers to every record. The "dense" index points to a

structure that has an entry for each occurrence of that value. Obviously, the maintenance of

secondary indices is more costly.

B
+
-Tree Index Files

The main disadvantage of the index-sequential file organization is that performance degrades as

the file grows, both for index lookups and for sequential scans through the data. A secondary

disadvantage is to overhead of maintaining the file in a sequential order when inserting large

amounts of data.

The B
+
-tree index structure is widely used to maintain efficiency despite insertions and deletions

of data. It is a multilevel index, where each node contains some pointers and search-key values.

105

B+ tree is used to store the records in the secondary memory. If the records are stored using this

concept, then those files are called as B+ tree index files. Since this tree is balanced and sorted, all the

nodes will be at same distance and only leaf node has the actual value, makes searching for any record

easy and quick in B+ tree index files.

Even insertion/deletion in B+ tree does not take much time. Hence B+ tree forms an efficient method

to store the records.

Searching, inserting and deleting a record is done in the same way we have seen above. Since it is a

balance tree, it searches for the position of the records in the file, and then it fetches/inserts /deletes

the records. In case it finds that tree will be unbalanced because of insert/delete/update, it does the

proper re-arrangement of nodes so that definition of B+ tree is not changed.

Below is the simple example of how student details are stored in B+ tree index files.

Suppose we have a new student Bryan. Where will he fit in the file? He will fit in the 1st leaf node.

Since this leaf node is not full, we can easily add him in the node.

But what happens if we want to insert another student Ben to this file? Some re-arrangement to the

nodes is needed to maintain the balance of the file.

106

Benefits of B+ Tree index files

As the file grows in the database, the performance remains the same. It does not degrade like in

ISAM. This is because all the records are maintained at leaf node and all the nodes are at equi-

distance from root. In addition, if there is any overflow, it automatically re-organizes the structure.

Even though insertion and deletion are little complicated, it can be done in fraction of seconds.

Leaf node allows only partial/ half filled, since records are larger than pointers.

B Tree index Files

B tree index file is similar to B+ tree index files, but it uses binary search concepts. In this method,

each root will branch to only two nodes and each intermediary node will also have the data. And leaf

node will have lowest level of data. However, in this method also, records will be sorted. Since all

intermediary nodes also have records, it reduces the traversing till leaf node for the data. A simple B

tree can be represented as below:

Fig: B tree

See the difference between this tree structure and B+ tree for the same example above. Here there is

no repetition or pointers till leaf node. All the records are stored in all the nodes.

If we need to insert any record, it will be done as B+ tree index files, but it will make sure that each

node will branch only to two nodes. If there is not enough space in any of the node, it will split the

node and store the records.

107

Example of Simple Insert

Fig: Example of Simple Insert

Example of splitting the nodes while inserting

Fig: Example of splitting the nodes while inserting

Static Hashing

In static hashing, when a search-key value is provided, the hash function always computes the same

address. For example, if mod-4 hash function is used, then it shall generate only 5 values. The output

address shall always be same for that function. The number of buckets provided remains unchanged

at all times.

108

Operation

 Insertion − When a record is required to be entered using static hash, the hash

function h computes the bucket address for search key K, where the record will be stored.

Bucket address = h(K)

Search − When a record needs to be retrieved, the same hash function can be used to retrieve

the address of the bucket where the data is stored.

Delete − This is simply a search followed by a deletion operation.

Bucket Overflow

The condition of bucket-overflow is known as collision. This is a fatal state for any static hash

function. In this case, overflow chaining can be used.

Overflow Chaining − When buckets are full, a new bucket is allocated for the same hash result

and is linked after the previous one. This mechanism is called Closed Hashing.

Linear Probing − When a hash function generates an address at which data is already stored,

the next free bucket is allocated to it. This mechanism is called Open Hashing.

109

Dynamic Hashing
The problem with static hashing is that it does not expand or shrink dynamically as the size of

the database grows or shrinks. Dynamic hashing provides a mechanism in which data buckets

are added and removed dynamically and on-demand. Dynamic hashing is also known

as extended hashing.

Hash function, in dynamic hashing, is made to produce a large number of values and only a

few are used initially.

Organization

The prefix of an entire hash value is taken as a hash index. Only a portion of the hash value is

used for computing bucket addresses. Every hash index has a depth value to signify how many

bits are used for computing a hash function. These bits can address 2n buckets. When all these

bits are consumed − that is, when all the buckets are full − then the depth value is increased

linearly and twice the buckets are allocated.

Operation

Querying − Look at the depth value of the hash index and use those bits to compute the bucket

address.

Update − Perform a query as above and update the data.

Deletion − Perform a query to locate the desired data and delete the same.

Insertion − Compute the address of the bucket

If the bucket is already full.

Add more buckets.

Add additional bits to the hash value.

Re-compute the hash function.

Else

Add data to the bucket,

If all the buckets are full, perform the remedies of static hashing.

Hashing is not favorable when the data is organized in some ordering and the queries require a

range of data. When data is discrete and random, hash performs the best.

110

Hashing algorithms have high complexity than indexing. All hash operations are done in

constant time.

One disadvantage of sequential file organization is that we must access an index structure to

locate data, or must use binary searches. This results in more I/O operations that are expensive in

terms of time. File organizations based on the technique of hashing allows us to avoid accessing

an index structure, yet indexing the file.

Hash File Organization

In a hash file organization, we obtain the address of the disk block (actually a bucket that can

contain one or more records) containing the desired record by computing a function on the search-

key value of the record.

If K is the set of all search-key values, B is the set of all bucket addresses, h is the hash function,

we can computer the address of the bucket to insert a record with the search-key Ki using h(Ki).

Assuming there is space in the bucket, we can simply insert the record. We locate the record with

the search-key Ki using h(Ki). Deletion is done the same way.

However if it turns out the two records have the same hash value, h(K5) = h(K7), then we do a

sequence search on the bucket for the record that is desired.

Hash Functions

The worst possible hash function maps all search-key values to the same bucket. The ideal hash

functions will spread the records uniformly across all the buckets, so that all buckets have the

same number of records.

At design time, we do not necessarily know what search-key values will be stored in the file. The

typical hash function performs computation on the internal binary representation of the characters

in the search key. It is critical that the hash function be as close to the ideal as possible, because it

is the most efficient one for locating the data on a timely basis.

Handling of Bucket Overflow

When trying to insert a record into a full bucket causes an overflow and can be caused by either

insufficient buckets or skew.

The number of buckets required is based on the maximum number of records stored divided by

the number of records that will fit into a bucket. Rarely do we get that exact fit, the required

number of buckets is increased by some fudge factor, typically 20% This wastes twenty percent of

the space, but reduces that probability of having the overflow problem.

The skew can be caused when either multiple records have the same key or the chosen hash

function results in nonuniform distribution of search keys.

Overflow can be handled by adding addition buckets to hold the records from the single bucket

that overflowed (called closed hashing) or simply using some other bucket (open hashing).

An important drawback on hashing is that the hash function must be chosen when we implement

the system and can not be easily changed afterwards,

111

Hash Indices

In addition to using hashing for file organization, the indices can be hashed.

Comparison of Ordered Indexing and Hashing

Each scheme has advantages in certain situations. And the DBMS implementor could leave the

decision to the database designer and provide several methods. Normally, the implementor only

provides a very limited number of schemes.

Typically, ordered indexing is used unless it is known in advance that range queries will be

infrequent, in which case hashing is used. Hash organizations are particularly useful for

temporary files created during query processing, if lookups on a key value are required and no

ranges queries will be performed.

Index Definition in SQL

Creating an index:

CREATE INDEX <index-name> ON <relation-name> (<attribute-list>)

Example:

CREATE INDEX branch-index ON branch (branch-name)

Deleting an index:

DROP INDEX <index-name>

Query Processing: Overview

1. Parsing and translation

2. Optimization

3. Evaluation

1. Parsing and translation

 Translate the query into its internal form. This is then translated into relational

algebra.

 Parser checks syntax, verifies relations.

2. Optimization

 A relational algebra expression may have many equivalent expressions. Each

relational algebra operation can be evaluated using one of several different

algorithm.

112

3. Evaluation

 The query-execution engine takes a query-evaluation plan, executes that plan, and

returns the answers to the query.

Measures of Query Cost

 Cost is generally measured as total elapsed time for answering query.

o Many factors contribute to time cost

o "disk accesses, CPU, or even network communication.

 Typically disk access is the predominant cost, and is also relatively easy to

estimate. Measured by taking into account

o Number of seeks * average-seek-cost

o Number of blocks read * average-block-read-cost

o Number of blocks written * average-block-write-cost

o "Cost to write a block is greater than cost to read a block – data is read

back after being written to ensure that the write was successful

 For simplicity we just use number of block transfers from disk as the cost measure

o We ignore the difference in cost between sequential and random I/O for

simplicity

o We also ignore CPU costs for simplicity

 Costs depends on the size of the buffer in main memory

o Having more memory reduces need for disk access

o Amount of real memory available to buffer depends on other concurrent

OS processes, and hard to determine ahead of actual execution

o We often use worst case estimates, assuming only the minimum amount of

memory needed for the operation is available

 Real systems take CPU cost into account, differentiate between sequential and

random I/O, and take buffer size into account

 We do not include cost to writing output to disk in our cost formulae

