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Unit-I: Precisional Motion
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• Staticforceanalysis

– Staticequilibrium

– Equilibriumof twoand three force members

– Members with two forces andtorque

– Freebody diagrams

– principleof virtualwork

• Staticforce analysisof

– four barmechanism

– slider-crankmechanismwith and without friction.
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• A gyroscope is a device for measuring or maintaining
orientation, based on the principles of angular momentum.

• Mechanically, agyroscope is a spinning wheel or disk in which
the axle is free to assume any orientation. Although this
orientation does not remain fixed, it changes in response
toan external torque much less and in a different direction
than it would without the large angular momentum associated
with the disk's high rate of spin and moment of inertia.

• Since external torque is minimized by mounting the device in
gimbals, its orientation remains nearly fixed, regardless of any
motion of the platform on which itis mounted.

Gyroscope



Gyroscope
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A mechanical gyroscope is essentially a spinning wheel or
disk whose axle is free to take any orientation. This
orientation changes much less in response to a given
external torque than it would without the large angular
momentum associated with the gyroscope's high rate of
spin.

Gyroscope
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Gyroscopes have two basic properties:
Rigidity and Precession
These properties are defined as follows:
RIGIDITY: The axis of rotation (spin axis) of the gyro wheel 
tends to remain in a fixed direction in space if no force is 
applied to it.
PRECESSION: The axis of rotation has a tendency to turn at a 
right angle to the direction of an applied force.
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PROPERTIES OF GYROSCOPES 
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PROPELLER ROTATES ANTICLOCKWISE 
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Effect of Gyroscopic Couple on a Naval Ship

•Steering is the turning of a complete ship in a curve towards 
left or right, while it moves forward.

•Consider the ship taking a left turn, and rotor rotates in the 
clockwise direction when viewed from the stern, as shown 
inFig.

•The effect of gyroscopic couple on a naval ship during steering 
taking  left or right turn may be obtained 
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StabilityofaFourWheelDriveMovinginaCurvedPath
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StabilityofaFourWheelDriveMovinginaCurvedPath
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StabilityofaTwo WheelDriveMoving inaCurvedPath
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Unit-II   Clutches, Brakes and Dynamometers

• A clutch is designed with the following requirements

– Allow the vehicle to come to a stop while the
transmission remains in
gear

– Allow the driver to smoothly take off from a dead stop

– Allow the driver to smoothly change gears

– Must not slip under heavy loads and full engine power
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Types of clutches

Positive clutches

When positive drive is required then positive clutches 
are used. The simplest type of positive clutch is the jaw 
clutch which transmits the torque from one shaft to 
another shaft through interlocking jaws.
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Single plate clutch

Single plate clutch

It consists of various elements

 pressure plate,

 friction plate (clutch plate),

 driving shaft,

 splined driven shaft,

 splined hub,

 brass bush etc.
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Multi plate clutch
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Centrifugal clutch
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Brakes

• Brake is a device by means of which an artificial frictional resistance 
is applied to a moving body in order to retard or stop the motion of 
a body. During braking process, the brake absorbs either kinetic 
energy or potential energy or both by an object.

(a) Single block or shoe brake Construction

• It consists of blocks which are pressed against the surface of a 
rotating drum by means of lever. The friction between friction 
lining on the block and drum retards the rotation of the drum. The 
block or shoe is made up of softer material than the rim of the 
drum.

•The material of the block for light and slow vehicles is wood and 
rubber and for heavy and fast vehicles it is cast steel.
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Shoe brake 
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b) Pivoted block brake

• Construction

• A pivoted block brake is shown in figure. Unlike single block
brake, in this the shoe is pivoted to lever to get uniform wear.
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cDouble block or shoe brake

This load produces the bending of the shaft. It can be prevented by 
using a double block or shoe brake having two blocks on the two 
sides of the drum.
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It consists of a rope, belt or flexible steel band lined with
frictional material which is wrapped partly round the drum.

Working

When band is pressed against the external surface of drum, 
the frictional force between drum and band will induce 
braking torque on the drum.

There are two types of band brake,

(a) Simple band brake

(b) Differential band brake

Band brake Construction
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(a) Simple band brake
Construction
In this brake one end of the band is attached
at the fulcrum of the lever while the other end is at
a distance 'b' from fulcrum
(b) Differential band brake
In a differential band brake, neither end of the
band is attached to the fulcrum of the lever.
The two ends of band are attached to the two points on 
opposite side of the fulcrum as shown in figure
The lever AOC is pivoted at fulcrum '0' and two ends of band 
are attached at points A and B.
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Dynamometers

Definition:

•Dynamometer is a device which is used to measure the
frictional resistance. By knowing frictional resistance we can
determine the torque transmitted and hence the power of the
engine.

Types of dynamometers:

1)Absorption dynamometer: Prony brake dynamometer Rope 

brake dynamometer Hydraulic dynamometer

2) Transmission dynamometer: Belt transmission dynamometer 

Epicyclic dynamometer

Torsion dynamometer
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Prony brake dynamometer
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Rope brake dynamometer
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Unit-III   Turning moment diagram
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Turning Moment(Or Crank Effort) Diagram (TMD)

• Turning moment diagram is a graphical representation of 
turning moment or torque (along Y-axis)versus crank 
angle(X-axis)for various positions of crank.

• Uses of TMD

1. The area under the TMD gives the work done per cycle.

2. The work done per cycle when divided by the crank angle 
per cycle

gives the mean torque Tm.
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• Flywheels are used in IC engines, Pumps, Compressors & in
machines performing intermittent operations such as punching,
shearing, riveting, etc.

•A Flywheel may be of Disk type or Rim Type Flywheels help in
smoothening out the fluctuations of the torque on the
crankshaft & maintain the speed within the prescribed limits.

FLYWHEEL
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The function of governor is to regulate the speed of an engine

when there are variation in the load

Eg. When the load on an engine increases, its speed decreases,

therefore it is necessary to increase the supply of working fluid &

vice-versa. Thus, Governor automatically controls the speed

under varying load.

Types of Governors:

The governors may broadly be classified as

1)Centrifugal governors

2)Inertia governors

Governors
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When the load on the engine decreases, the engine and governor

speed increased, which results in the increase of centrifugal force

on the balls. Thus the ball move outwards and sleeve rises

upwards. This upward movement of sleeve reduces the supply of

the working fluid and hence the speed is decreased. In this case

power output is reduced.
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Fc x h = W x r

mr 2 x  h   =   m.g.r

h  =   g / 2

When g is in m/s2 and  is in rad/sec, then h is in mtrs.  
If N is the speed in r.p.m. then

 =   2N / 60

H   =   9.81 / (2N / 60)

=    895 / N2 mtrs.
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The porter governor is a modification of a Watt’s governor,

with central load attached to the sleeve. The load moves up

and down the central spindle. This additional downward force

increases the speed of revolution required to enable the balls

to rise to any predetermined level.
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The Proell governor has the balls fixed at B & C to the

extension of the links DF & EG, as shown. The arms FP & GQ

are pivoted at p & Q respectively.

Consider the equilibrium of the forces on one half of

the governor. The instantaneous centre (I) lies on the

intersection of the line PF produced and the line from the D

drawn perpendicular to the spindle axis. The perpendicular

BM is drawn on ID
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It is a spring loaded governor, consists of two bell crank levers

pivoted at the pts. O, O to the frame. Frame is attached to the governor

spindle and therefore rotates with it. Each lever carries a ball at the end

of the vertical arm OB & a roller at the end of horizontal arm OR. A

helical spring in compression provides equal downward forces on two

rollers through collar on the sleeve. The spring force may be adjusted

by screwing a nut up or down on the sleeve.
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Unit-IV  Balancing

Why Balancing is necessary?

• The high speed of engines and other machines is a common
phenomenon now-a-days.

• It is, therefore, very essential that all the rotating and reciprocating
parts should be completely balanced as far as possible.

• If these parts are not properly balanced, the dynamic forces are
set up.

• These forces not only increase the loads on bearings and stresses
in the various members, but also produce unpleasant and even
dangerous vibrations.
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Balancing of Rotating Masses

• Whenever a certain mass is attached to a rotating shaft, it exerts
some centrifugal force, whose effect is to bend the shaft and to
produce vibrations in it.

• In order to prevent the effect of centrifugal force, another  mass is 
attached to the opposite side of the shaft, at such a  position so as to 
balance the effect of the centrifugal force  of the first mass.

• This is done in such a way that the centrifugal force of both  the 
masses are made to be equal and opposite.

• The process of providing the second mass in order to  counteract the 
effect of the centrifugal force of the first  mass, is called balancing of 
rotating masses.
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• Consider a disturbing mass m1 attached to a shaft rotating at 
ω rad/s as shown.

• Let r1 be the radius of rotation of the mass m1 (i.e. distance 
between the axis of rotation of the shaft and the centre of 
gravity of the mass m1).

• We know that the centrifugal force exerted by the mass m1 
on the shaft,This centrifugal force acts radially outwards and 
thus produces bending moment on the shaft.

• In order to counteract the effect of this force, a balancing 
mass (m2) may be  attached in the same plane of rotation as 
that of disturbing mass (m1) such that  the centrifugal forces 
due to the two masses are equal and opposite.
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1. When the plane of the disturbing mass lies in between 
the planes  of the two balancing masses

• Consider a disturbing mass m lying in a plane A to be balanced 
by two rotating  masses m1 and m2 lying in two different 
planes L and M as shown in Fig.

• Let r, r1 and r2 be the radii of rotation of the masses in planes 
A, L and M
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2. Graphical method
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Balancing of Reciprocating masses

• Various forces acting on the reciprocating parts of an engine.

• The resultant of all the forces acting on the body of the engine due 
to  inertia forces only is known as unbalanced force or shaking 
force.

• Thus if the resultant of all the forces due to inertia effects is zero, 
then  there will be no unbalanced force, but even then an 
unbalanced  couple or shaking couple will be present.
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FR = Force required to accelerate the reciprocating parts.

FI = Inertia force due to reciprocating parts,
FN = Force on the sides of the cylinder walls or normal force 
acting on the cross-head  guides, and FB = Force acting on the 
crankshaft bearing or main bearing.

•Since FR and FI, are equal in magnitude but opposite in 
direction, therefore they balance each other.

•The horizontal component of FB (i.e. FBH) acting along the line 
of  reciprocation is also equal and opposite to FI .

•This force FBH = FU is an unbalanced force or shaking force and 
required to be  properly balanced.
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• Defined as oscillatory motion of bodies in response to 

disturbance. Oscillations occur due to the presence of a 

restoring force

• Vibrations are everywhere:

• Human body: eardrums, vocal cords, walking and running

• Vehicles: residual imbalance of engines, locomotive wheels

• Rotating machinery: Turbines, pumps, fans, reciprocating 

machines, Musical instruments

• Excessive vibrations can have detrimental effects:

• Noise,Loosening of fasteners,Tool chatter,Fatigue failure

• Discomfort

Unit-V  Vibrations
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• In simple terms, a vibratory system involves the transfer of 

potential energy to kinetic energy and vice-versa in 

alternating fashion.

• When there is a mechanism for dissipating energy 

(damping) the oscillation gradually diminishes.

• In general, a vibratory system consists of three basic 

components:

• A means of storing potential energy (spring, gravity)

• A means of storing kinetic energy (mass, inertial 

component)

• A means to dissipate vibrational energy (damper)

Fundamentals
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• This can be observed with a pendulum:

• At position 1: the kinetic energy is zero and the 

potential energy is mgl(1 cos )

• At position 2: the kinetic energy is at its 

maximum 

• At position 3: the kinetic energy is again 

zero and the potential energy at its 

maximum.

• In this case the oscillation will eventually stop 

due to aerodynamic drag and pivot friction 

HEAT
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The number of degrees of freedom : number of independent 

coordinates required to completely determine the 

motion of all parts of the system at any time.

Examples of single degree of freedom systems:

Degrees of Freedom
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Classification of Vibration

• Free and Forced vibrations

• Free vibration: Initial disturbance, system left to 

vibrate without  influence of external forces. 

Forced vibration: Vibrating system is stimulated by 

external forces.  If excitation frequency coincides 

with natural frequency, resonance occurs. 

• Undamped and damped vibration:Undamped 

vibration: No dissipation of energy.  In many cases, 

damping is (negligibly) small (steel 1 – 1.5%).  

However small, damping has critical importance when 

analysing systems at or near resonance. Damped

vibration: Dissipation of energy occurs  - vibration 

amplitude decays.
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• Linear and nonlinear vibration

• Linear vibration: Elements (mass, spring, 

damper) behave linearly. Superposition 

holds - double excitation level = double 

response level,  mathematical solutions 

well defined.

• Nonlinear vibration: One or more element 

behave in nonlinear fashion (examples). 

Superposition does not hold, and analysis 

technique not clearly defined.  

Classification of Vibration
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• Pure spring element considered to have negligible mass 

and damping

• Force proportional to spring deflection (relative motion 

between ends):

Spring Elements

 F k x
• For linear springs, the potential energy stored  

is:
 

21
2

 U k x

• Actual springs sometimes behave in nonlinear 

fashion

• Important to recognize the presence and 

significance (magnitude) of nonlinearity

• Desirable to generate linear estimate



68

eq 1 2k =k + k
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   1 1 2 2 eq tk k k
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• Absorbs energy from vibratory system   vibration amplitude 

decays.Damping element considered to have no mass or 

elasticity. Real damping systems very complex, damping 

modelled as:

• Viscous damping:Based on viscous fluid flowing through 

gap or orifice.Eg: film between sliding surfaces, flow b/w 

piston & cylinder, flow thru orifice, film around journal 

bearing. Damping force  relative velocity between ends

• Coulomb (dry Friction) damping:Based on friction between 

unlubricated surfaces.Damping force is constant and 

opposite the direction of motion

Damping Elements
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Harmonic Motion

2
2 2

2

dx
A cos( t )

dt

and

d x
A sin( t ) x

dt

 

  



   
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• Cycle: motion of body from equilibrium position 

extreme position  equilibrium position  extreme 

position in other direction  equilibrium position .

• Amplitude: Maximum value of motion from 

equilibrium.  (Peak – Peak = 2 x amplitude)

• Period: Time taken to complete one cycle

2





1
f

2



 
 
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Free undamped vibration single DoF

• Single DoF:

• mass treated as rigid, limped 

(particle)

• Elasticity idealised by single spring

• only one natural frequency.

• The equation of motion can be derived 

using Newton’s second law of motion

• D’Alembert’s Principle, 

• The principle of virtual displacements 

and,The principle of conservation of 

energy.

F( t ) kx mx

or

mx kx 0

  

 







74

n n

n n

i t i t

n

st

x( t ) Acos( t ) B sin( t )

or

x( t ) Ae Be

alternatively, if we let s i

x( t ) C e

 

 







 

 

 



Free undamped vibration single DoF

( t 0 ) 0

( t 0 ) n 0

initial displacement

initial velo

x A

c yx B x i

x

t





 

  
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1
2

o
0 n n

n

2
2 0 0 n

0 0
n o

0 n

x
x( t ) x cos( t ) sin( t )

x x
A x a tan

x

x( t

if we let and the

) A sin( t )

n

 







 

 

    
      
     

 







Free undamped vibration single DoF
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n

st

n n
st st

k

m

mg
sin ce k

g 1 g
or f

2






  





 

Free undamped vibration single DoF
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n
o

n

2o
o o

2
o

n 2
o

2 2 2
o G

2
G

n 2
o

2
G

Natural frequency :

sin ce for a simple pendulum

Then, and since then

A

mgd

J

g

l
J

l J mk
md

kgd
and l

dk

k k d

k
l d

d
l GA d OA

g g g

l OAk / d

k
GA

d

pplying the parallel axis theorem

Let

The location A













 

 

 

 

  

  

 




is the " centre of percussion




Free undamped vibration single DoF
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 

 

22 2
max max n

22 2
max max n

n

1 Al
U A X and T 2 f X

2 g

1 Al
U T A X 2 f X

2 g

1 2g
f

2 l


 


 



 
   

 

 
    

 

 
  

 
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Free single DoF vibration + viscous damping

 



 

     

  





st
n

st

F cx

mx cx kx o

c damping cons tan t or

r mx cx kx

coefficient Ns / m

Applying Newton' s second law of motion to obtain the eqn.of motion :

I

0

x( t )

f the solution is as

Ce where s i

then : x( t ) sCe an

sumed to take the form :

d



   

  

  

      
       

   

 1 2

2 st

2

22

1,2

s t s t
1 1 2 2

Substituting for x, x and x in the eqn.of motion

The root of the characteristic eqn. are :

The two solutions are :

x( t ) s Ce

ms cs k 0

c c 4mk c c k
s

2m 2m 2m m

x ( t ) C e and x ( t ) C e

 


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2
c

c n
c k k

0 c 2m 2m 2 kmr
2m m m

o 
   

      
  

Free single DoF vibration + viscous damping

 

2 2
n n

c
n

c c

2
2

1,2 n

1 t 1 t

1 2

cc c c

c 2m c 2m

c c k
s 1

2m 2m m

or

The roots can be re written :

And the solution beco

x( t ) C e C e

mes :

     

 

  

   
        
   

  

   
          

   

 


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   n

0 0

' ' 0 n 0
1 0 2

2
n

t 2 20 n 0
0 n n

2
n

Then

Therefore the soluti

x( t 0 ) x and x( t 0 ) x

x x
C x and C

1

x x
x( t ) e x cos 1 t sin 1 t

on becomes

1





 


   

 



   


 



  
    

  

 





Free single DoF vibration + viscous damping
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Forced (harmonically excited) single DoF vibration –
undamped.

0mx kx F cos( t ) 

0
h p 1 n 2 n 2

F
x( t ) x ( t ) x ( t ) C cos( t ) C sin( t ) cos( t )

k m
  


    



st
n n2

n

0

st
n2

n

0

n

x( t ) Acos( t ) cos( t ) for / 1

1

x( t ) Acos( t ) cos( t ) for / 1

1

where A and are functions of x and x as before.


    






   








   
 

  
 

   
 

  
 


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Forced (harmonically excited) single DoF 
vibration – Damped.

 
1 2

st 2 222

X 1 2 r
a tan

1 r
1 r 2 r







 
   

       
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 
 

   

0
0

2

2

0 2 22 2 2 2 2 2

2

X / F is called the RECEPTANCE ( Dynamic compliance )

multiplying the numerator & denomin ator on the RHS by k m ic

and separating real and imaginary comp

F
X

k m ic

k m c
X F i

k m c k m c

onents :

 

 









 


 



 

 
 

 
 

 
 

    

 

i 2 2

i0
1 2

2 22 2 2

p

applying the complex relationships :

The magnitude of the response can be written as :

And the steady state solution

y
x i

become

y Ae where A x y and a tan
x

F c
X e where a tan

k m

s :

k m c

x ( t











 





 
      

 

 
   

  
 

  



 

i( t )0
1

2 22 2 2

F
) e

k m c

 

 



 
 

  

Forced (harmonically excited) single DoF 
vibration – Damped.
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y( t ) Y sin( t )

k( x y )

c( x y ) 

Response due to base motion (harmonic)



86

2 2

mx c( x y ) k( x y ) 0

mx cx kx cy ky

c Y cos( t )

If y( t

kY sin( t )

Asin( t )

c
where

) Y sin( t )

A Y k ( c ) and a

the eqn.of motion

tan

become

k

s :

  

 








    

   

 

 

 
    



 

  

  

Response due to base motion (harmonic)
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 

   

2 2

p 11
2 22 2 2

1 2

p

1
2

2 2 2

2 22 2 2 2 2

The solution can be simplified to :

Y k ( c )
x ( t ) sin( t )

k m c

c c
where a tan and a tan

k k m

x ( t ) X sin( t )

where

X k ( c ) 1 ( 2 r )

Y
k m c 1 r ( 2 r )


  

 

 
 



 

 

  


  

 
 

  

  
     

   

 

  
   

 
  

       

 

1
2

3 3

2 22 2

Displacement Transmissibi

and

mc 2 r
a tan a tan

1 ( 4 1)rk k m ( c

y

)

lit

 


 






   
    
   



    

Response due to base motion (harmonic)
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   

2

2

2
i( t )

p
n

2

2 22

F( t ) me sin( t )

Mx cx kx me sin( t )

me
x ( t ) X sin( t ) Im H( i ) e

The eqn. of motion is :

and the steady state solution becomes :

The response amplitude and phase are gi

M

me
X

k M

v n by :

c

e

 

 

 


  





 





  

  
     
   




 



 

   

2 2
2

1 1
n 22 222

2 2

me MX r
H( i ) or r H( i )

M me
1 r 2 r

c 2 r
a tan a tan

k M 1 r


 




 




 
   

   
    

   

   
    

   

Rotating Imbalance Excitation
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SDoF systems – General forcing functions – Nonperiodic

• When the forcing function is arbitrary and nonperiodic 

(aperiodic) it cannot be represented with a Fourier series

• Alternative methods for determining the response must 

be used:

• Representation of the excitation function with a 

Convolution integral

• Using Laplace Transformations

• Approximating F(t) with a suitable interpolation 

method then using a numerical procedure

• Numerical integration of the equations of motion.
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• Convolution integral

• Consider one of the simplest nonperiodic exciting 

force:  Impulsive force: which has a large magnitude F 

which acts for a very short time t.

• An impulse can be measured by the resulting change 

in momentum:

1 2

2 1

where x and x represent the velocity of the lumped mass befor

Im pulse F t m

e and after t

x

he impulse

mx

.

  

 


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t t

t

t t

t 0
t

and a unit impulse is def

F F dt

f lim F dt Fd

ined

t 1

as















  









x( t 0 ) 0 and x( t 0 ) 0 or x( t 0 ) 0 and x( t 0 ) 0         

 
nt

d
d

e
x( t ) g( t ) sin t

m








 
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Two DOF systems
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• No. of DoF of system = No. of mass elements x number of 

motion types for each mass 

• For each degree of freedom there exists an equation of motion 

– usually coupled differential equations.

• Coupled means that the motion in one coordinate system 

depends on the other

• If harmonic solution is assumed, the equations produce two 

natural frequencies and the amplitudes of the two degrees of 

freedom are related by the natural, principal or normal mode 

of vibration.
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• Under an arbitrary initial disturbance, the system will 

vibrate freely such that the two normal modes are 

superimposed.

• Under sustained harmonic excitation, the system will 

vibrate at the excitation frequency.  Resonance occurs 

if the excitation frequency corresponds to one of the 

natural frequencies of the system
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Two DOF systems



97



98

1 1 1 1 1 1 2 2 1 2 2 1 1

2 2 2 2 1 2 2 1 3 2 3 2 2

1 1 1 2 1 2 2 1 2 1 2 2 1

2 2 2 1 2 3 2 2 1 2 3 2 2

o

m x c x k x c ( x x ) k ( x x ) F

m x c ( x x ) k ( x x ) c x k x F

m x ( c c )x c x ( k k )x k x F

m x c x ( c c )x k x ( k k )x F

r

      

      

      

      

   

   

  

  
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• Equations of motion

Mode shapes of Undamped System

1 1 1 2 1 2 2

2 2 2 1 2 3 2

m x ( k k )x k x 0

m x k x ( k k )x 0

   

   





  

  

  
  

2
1 1 2 1 2 2

2
2 1 2 2 3 2

2
1 1 2 1 2 2

2
2 1 2 2 3 2

m k k X k X cos( t ) 0

k X m k k X cos( t ) 0

m k k X k X 0

k X m k k X 0

  

  





      
 

       
 

    

     

As these equations must be zero for all values of t, the cosine terms cannot be zero. Therefore:
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